1/* Extended regular expression matching and search library,
2   version 0.12.
3   (Implements POSIX draft P1003.2/D11.2, except for some of the
4   internationalization features.)
5
6   Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
7   2002, 2005, 2010, 2013 Free Software Foundation, Inc.
8   This file is part of the GNU C Library.
9
10   The GNU C Library is free software; you can redistribute it and/or
11   modify it under the terms of the GNU Lesser General Public
12   License as published by the Free Software Foundation; either
13   version 2.1 of the License, or (at your option) any later version.
14
15   The GNU C Library is distributed in the hope that it will be useful,
16   but WITHOUT ANY WARRANTY; without even the implied warranty of
17   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18   Lesser General Public License for more details.
19
20   You should have received a copy of the GNU Lesser General Public
21   License along with the GNU C Library; if not, write to the Free
22   Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
23   02110-1301 USA.  */
24
25/* This file has been modified for usage in libiberty.  It includes "xregex.h"
26   instead of <regex.h>.  The "xregex.h" header file renames all external
27   routines with an "x" prefix so they do not collide with the native regex
28   routines or with other components regex routines. */
29/* AIX requires this to be the first thing in the file. */
30#if defined _AIX && !defined __GNUC__ && !defined REGEX_MALLOC
31  #pragma alloca
32#endif
33
34#undef	_GNU_SOURCE
35#define _GNU_SOURCE
36
37#ifndef INSIDE_RECURSION
38# ifdef HAVE_CONFIG_H
39#  include <config.h>
40# endif
41#endif
42
43#include <ansidecl.h>
44
45#ifndef INSIDE_RECURSION
46
47# if defined STDC_HEADERS && !defined emacs
48#  include <stddef.h>
49#  define PTR_INT_TYPE ptrdiff_t
50# else
51/* We need this for `regex.h', and perhaps for the Emacs include files.  */
52#  include <sys/types.h>
53#  define PTR_INT_TYPE long
54# endif
55
56# define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
57
58/* For platform which support the ISO C amendement 1 functionality we
59   support user defined character classes.  */
60# if defined _LIBC || WIDE_CHAR_SUPPORT
61/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>.  */
62#  include <wchar.h>
63#  include <wctype.h>
64# endif
65
66# ifdef _LIBC
67/* We have to keep the namespace clean.  */
68#  define regfree(preg) __regfree (preg)
69#  define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
70#  define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
71#  define regerror(errcode, preg, errbuf, errbuf_size) \
72	__regerror(errcode, preg, errbuf, errbuf_size)
73#  define re_set_registers(bu, re, nu, st, en) \
74	__re_set_registers (bu, re, nu, st, en)
75#  define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
76	__re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
77#  define re_match(bufp, string, size, pos, regs) \
78	__re_match (bufp, string, size, pos, regs)
79#  define re_search(bufp, string, size, startpos, range, regs) \
80	__re_search (bufp, string, size, startpos, range, regs)
81#  define re_compile_pattern(pattern, length, bufp) \
82	__re_compile_pattern (pattern, length, bufp)
83#  define re_set_syntax(syntax) __re_set_syntax (syntax)
84#  define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
85	__re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
86#  define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
87
88#  define btowc __btowc
89
90/* We are also using some library internals.  */
91#  include <locale/localeinfo.h>
92#  include <locale/elem-hash.h>
93#  include <langinfo.h>
94#  include <locale/coll-lookup.h>
95# endif
96
97/* This is for other GNU distributions with internationalized messages.  */
98# if (HAVE_LIBINTL_H && ENABLE_NLS) || defined _LIBC
99#  include <libintl.h>
100#  ifdef _LIBC
101#   undef gettext
102#   define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES)
103#  endif
104# else
105#  define gettext(msgid) (msgid)
106# endif
107
108# ifndef gettext_noop
109/* This define is so xgettext can find the internationalizable
110   strings.  */
111#  define gettext_noop(String) String
112# endif
113
114/* The `emacs' switch turns on certain matching commands
115   that make sense only in Emacs. */
116# ifdef emacs
117
118#  include "lisp.h"
119#  include "buffer.h"
120#  include "syntax.h"
121
122# else  /* not emacs */
123
124/* If we are not linking with Emacs proper,
125   we can't use the relocating allocator
126   even if config.h says that we can.  */
127#  undef REL_ALLOC
128
129#  if defined STDC_HEADERS || defined _LIBC
130#   include <stdlib.h>
131#  else
132char *malloc ();
133char *realloc ();
134#  endif
135
136/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
137   If nothing else has been done, use the method below.  */
138#  ifdef INHIBIT_STRING_HEADER
139#   if !(defined HAVE_BZERO && defined HAVE_BCOPY)
140#    if !defined bzero && !defined bcopy
141#     undef INHIBIT_STRING_HEADER
142#    endif
143#   endif
144#  endif
145
146/* This is the normal way of making sure we have a bcopy and a bzero.
147   This is used in most programs--a few other programs avoid this
148   by defining INHIBIT_STRING_HEADER.  */
149#  ifndef INHIBIT_STRING_HEADER
150#   if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
151#    include <string.h>
152#    ifndef bzero
153#     ifndef _LIBC
154#      define bzero(s, n)	((void) memset (s, '\0', n))
155#     else
156#      define bzero(s, n)	__bzero (s, n)
157#     endif
158#    endif
159#   else
160#    include <strings.h>
161#    ifndef memcmp
162#     define memcmp(s1, s2, n)	bcmp (s1, s2, n)
163#    endif
164#    ifndef memcpy
165#     define memcpy(d, s, n)	(bcopy (s, d, n), (d))
166#    endif
167#   endif
168#  endif
169
170/* Define the syntax stuff for \<, \>, etc.  */
171
172/* This must be nonzero for the wordchar and notwordchar pattern
173   commands in re_match_2.  */
174#  ifndef Sword
175#   define Sword 1
176#  endif
177
178#  ifdef SWITCH_ENUM_BUG
179#   define SWITCH_ENUM_CAST(x) ((int)(x))
180#  else
181#   define SWITCH_ENUM_CAST(x) (x)
182#  endif
183
184# endif /* not emacs */
185
186# if defined _LIBC || HAVE_LIMITS_H
187#  include <limits.h>
188# endif
189
190# ifndef MB_LEN_MAX
191#  define MB_LEN_MAX 1
192# endif
193
194/* Get the interface, including the syntax bits.  */
195# include "xregex.h"  /* change for libiberty */
196
197/* isalpha etc. are used for the character classes.  */
198# include <ctype.h>
199
200/* Jim Meyering writes:
201
202   "... Some ctype macros are valid only for character codes that
203   isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
204   using /bin/cc or gcc but without giving an ansi option).  So, all
205   ctype uses should be through macros like ISPRINT...  If
206   STDC_HEADERS is defined, then autoconf has verified that the ctype
207   macros don't need to be guarded with references to isascii. ...
208   Defining isascii to 1 should let any compiler worth its salt
209   eliminate the && through constant folding."
210   Solaris defines some of these symbols so we must undefine them first.  */
211
212# undef ISASCII
213# if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
214#  define ISASCII(c) 1
215# else
216#  define ISASCII(c) isascii(c)
217# endif
218
219# ifdef isblank
220#  define ISBLANK(c) (ISASCII (c) && isblank (c))
221# else
222#  define ISBLANK(c) ((c) == ' ' || (c) == '\t')
223# endif
224# ifdef isgraph
225#  define ISGRAPH(c) (ISASCII (c) && isgraph (c))
226# else
227#  define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
228# endif
229
230# undef ISPRINT
231# define ISPRINT(c) (ISASCII (c) && isprint (c))
232# define ISDIGIT(c) (ISASCII (c) && isdigit (c))
233# define ISALNUM(c) (ISASCII (c) && isalnum (c))
234# define ISALPHA(c) (ISASCII (c) && isalpha (c))
235# define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
236# define ISLOWER(c) (ISASCII (c) && islower (c))
237# define ISPUNCT(c) (ISASCII (c) && ispunct (c))
238# define ISSPACE(c) (ISASCII (c) && isspace (c))
239# define ISUPPER(c) (ISASCII (c) && isupper (c))
240# define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
241
242# ifdef _tolower
243#  define TOLOWER(c) _tolower(c)
244# else
245#  define TOLOWER(c) tolower(c)
246# endif
247
248# ifndef NULL
249#  define NULL (void *)0
250# endif
251
252/* We remove any previous definition of `SIGN_EXTEND_CHAR',
253   since ours (we hope) works properly with all combinations of
254   machines, compilers, `char' and `unsigned char' argument types.
255   (Per Bothner suggested the basic approach.)  */
256# undef SIGN_EXTEND_CHAR
257# if __STDC__
258#  define SIGN_EXTEND_CHAR(c) ((signed char) (c))
259# else  /* not __STDC__ */
260/* As in Harbison and Steele.  */
261#  define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
262# endif
263
264# ifndef emacs
265/* How many characters in the character set.  */
266#  define CHAR_SET_SIZE 256
267
268#  ifdef SYNTAX_TABLE
269
270extern char *re_syntax_table;
271
272#  else /* not SYNTAX_TABLE */
273
274static char re_syntax_table[CHAR_SET_SIZE];
275
276static void init_syntax_once (void);
277
278static void
279init_syntax_once (void)
280{
281   register int c;
282   static int done = 0;
283
284   if (done)
285     return;
286   bzero (re_syntax_table, sizeof re_syntax_table);
287
288   for (c = 0; c < CHAR_SET_SIZE; ++c)
289     if (ISALNUM (c))
290	re_syntax_table[c] = Sword;
291
292   re_syntax_table['_'] = Sword;
293
294   done = 1;
295}
296
297#  endif /* not SYNTAX_TABLE */
298
299#  define SYNTAX(c) re_syntax_table[(unsigned char) (c)]
300
301# endif /* emacs */
302
303/* Integer type for pointers.  */
304# if !defined _LIBC && !defined HAVE_UINTPTR_T
305typedef unsigned long int uintptr_t;
306# endif
307
308/* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
309   use `alloca' instead of `malloc'.  This is because using malloc in
310   re_search* or re_match* could cause memory leaks when C-g is used in
311   Emacs; also, malloc is slower and causes storage fragmentation.  On
312   the other hand, malloc is more portable, and easier to debug.
313
314   Because we sometimes use alloca, some routines have to be macros,
315   not functions -- `alloca'-allocated space disappears at the end of the
316   function it is called in.  */
317
318# ifdef REGEX_MALLOC
319
320#  define REGEX_ALLOCATE malloc
321#  define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
322#  define REGEX_FREE free
323
324# else /* not REGEX_MALLOC  */
325
326/* Emacs already defines alloca, sometimes.  */
327#  ifndef alloca
328
329/* Make alloca work the best possible way.  */
330#   ifdef __GNUC__
331#    define alloca __builtin_alloca
332#   else /* not __GNUC__ */
333#    if HAVE_ALLOCA_H
334#     include <alloca.h>
335#    endif /* HAVE_ALLOCA_H */
336#   endif /* not __GNUC__ */
337
338#  endif /* not alloca */
339
340#  define REGEX_ALLOCATE alloca
341
342/* Assumes a `char *destination' variable.  */
343#  define REGEX_REALLOCATE(source, osize, nsize)			\
344  (destination = (char *) alloca (nsize),				\
345   memcpy (destination, source, osize))
346
347/* No need to do anything to free, after alloca.  */
348#  define REGEX_FREE(arg) ((void)0) /* Do nothing!  But inhibit gcc warning.  */
349
350# endif /* not REGEX_MALLOC */
351
352/* Define how to allocate the failure stack.  */
353
354# if defined REL_ALLOC && defined REGEX_MALLOC
355
356#  define REGEX_ALLOCATE_STACK(size)				\
357  r_alloc (&failure_stack_ptr, (size))
358#  define REGEX_REALLOCATE_STACK(source, osize, nsize)		\
359  r_re_alloc (&failure_stack_ptr, (nsize))
360#  define REGEX_FREE_STACK(ptr)					\
361  r_alloc_free (&failure_stack_ptr)
362
363# else /* not using relocating allocator */
364
365#  ifdef REGEX_MALLOC
366
367#   define REGEX_ALLOCATE_STACK malloc
368#   define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
369#   define REGEX_FREE_STACK free
370
371#  else /* not REGEX_MALLOC */
372
373#   define REGEX_ALLOCATE_STACK alloca
374
375#   define REGEX_REALLOCATE_STACK(source, osize, nsize)			\
376   REGEX_REALLOCATE (source, osize, nsize)
377/* No need to explicitly free anything.  */
378#   define REGEX_FREE_STACK(arg)
379
380#  endif /* not REGEX_MALLOC */
381# endif /* not using relocating allocator */
382
383
384/* True if `size1' is non-NULL and PTR is pointing anywhere inside
385   `string1' or just past its end.  This works if PTR is NULL, which is
386   a good thing.  */
387# define FIRST_STRING_P(ptr) 					\
388  (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
389
390/* (Re)Allocate N items of type T using malloc, or fail.  */
391# define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
392# define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
393# define RETALLOC_IF(addr, n, t) \
394  if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
395# define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
396
397# define BYTEWIDTH 8 /* In bits.  */
398
399# define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
400
401# undef MAX
402# undef MIN
403# define MAX(a, b) ((a) > (b) ? (a) : (b))
404# define MIN(a, b) ((a) < (b) ? (a) : (b))
405
406typedef char boolean;
407# define false 0
408# define true 1
409
410static reg_errcode_t byte_regex_compile (const char *pattern, size_t size,
411                                         reg_syntax_t syntax,
412                                         struct re_pattern_buffer *bufp);
413
414static int byte_re_match_2_internal (struct re_pattern_buffer *bufp,
415                                     const char *string1, int size1,
416                                     const char *string2, int size2,
417                                     int pos,
418                                     struct re_registers *regs,
419                                     int stop);
420static int byte_re_search_2 (struct re_pattern_buffer *bufp,
421                             const char *string1, int size1,
422                             const char *string2, int size2,
423                             int startpos, int range,
424                             struct re_registers *regs, int stop);
425static int byte_re_compile_fastmap (struct re_pattern_buffer *bufp);
426
427#ifdef MBS_SUPPORT
428static reg_errcode_t wcs_regex_compile (const char *pattern, size_t size,
429                                        reg_syntax_t syntax,
430                                        struct re_pattern_buffer *bufp);
431
432
433static int wcs_re_match_2_internal (struct re_pattern_buffer *bufp,
434                                    const char *cstring1, int csize1,
435                                    const char *cstring2, int csize2,
436                                    int pos,
437                                    struct re_registers *regs,
438                                    int stop,
439                                    wchar_t *string1, int size1,
440                                    wchar_t *string2, int size2,
441                                    int *mbs_offset1, int *mbs_offset2);
442static int wcs_re_search_2 (struct re_pattern_buffer *bufp,
443                            const char *string1, int size1,
444                            const char *string2, int size2,
445                            int startpos, int range,
446                            struct re_registers *regs, int stop);
447static int wcs_re_compile_fastmap (struct re_pattern_buffer *bufp);
448#endif
449
450/* These are the command codes that appear in compiled regular
451   expressions.  Some opcodes are followed by argument bytes.  A
452   command code can specify any interpretation whatsoever for its
453   arguments.  Zero bytes may appear in the compiled regular expression.  */
454
455typedef enum
456{
457  no_op = 0,
458
459  /* Succeed right away--no more backtracking.  */
460  succeed,
461
462        /* Followed by one byte giving n, then by n literal bytes.  */
463  exactn,
464
465# ifdef MBS_SUPPORT
466	/* Same as exactn, but contains binary data.  */
467  exactn_bin,
468# endif
469
470        /* Matches any (more or less) character.  */
471  anychar,
472
473        /* Matches any one char belonging to specified set.  First
474           following byte is number of bitmap bytes.  Then come bytes
475           for a bitmap saying which chars are in.  Bits in each byte
476           are ordered low-bit-first.  A character is in the set if its
477           bit is 1.  A character too large to have a bit in the map is
478           automatically not in the set.  */
479        /* ifdef MBS_SUPPORT, following element is length of character
480	   classes, length of collating symbols, length of equivalence
481	   classes, length of character ranges, and length of characters.
482	   Next, character class element, collating symbols elements,
483	   equivalence class elements, range elements, and character
484	   elements follow.
485	   See regex_compile function.  */
486  charset,
487
488        /* Same parameters as charset, but match any character that is
489           not one of those specified.  */
490  charset_not,
491
492        /* Start remembering the text that is matched, for storing in a
493           register.  Followed by one byte with the register number, in
494           the range 0 to one less than the pattern buffer's re_nsub
495           field.  Then followed by one byte with the number of groups
496           inner to this one.  (This last has to be part of the
497           start_memory only because we need it in the on_failure_jump
498           of re_match_2.)  */
499  start_memory,
500
501        /* Stop remembering the text that is matched and store it in a
502           memory register.  Followed by one byte with the register
503           number, in the range 0 to one less than `re_nsub' in the
504           pattern buffer, and one byte with the number of inner groups,
505           just like `start_memory'.  (We need the number of inner
506           groups here because we don't have any easy way of finding the
507           corresponding start_memory when we're at a stop_memory.)  */
508  stop_memory,
509
510        /* Match a duplicate of something remembered. Followed by one
511           byte containing the register number.  */
512  duplicate,
513
514        /* Fail unless at beginning of line.  */
515  begline,
516
517        /* Fail unless at end of line.  */
518  endline,
519
520        /* Succeeds if at beginning of buffer (if emacs) or at beginning
521           of string to be matched (if not).  */
522  begbuf,
523
524        /* Analogously, for end of buffer/string.  */
525  endbuf,
526
527        /* Followed by two byte relative address to which to jump.  */
528  jump,
529
530	/* Same as jump, but marks the end of an alternative.  */
531  jump_past_alt,
532
533        /* Followed by two-byte relative address of place to resume at
534           in case of failure.  */
535        /* ifdef MBS_SUPPORT, the size of address is 1.  */
536  on_failure_jump,
537
538        /* Like on_failure_jump, but pushes a placeholder instead of the
539           current string position when executed.  */
540  on_failure_keep_string_jump,
541
542        /* Throw away latest failure point and then jump to following
543           two-byte relative address.  */
544        /* ifdef MBS_SUPPORT, the size of address is 1.  */
545  pop_failure_jump,
546
547        /* Change to pop_failure_jump if know won't have to backtrack to
548           match; otherwise change to jump.  This is used to jump
549           back to the beginning of a repeat.  If what follows this jump
550           clearly won't match what the repeat does, such that we can be
551           sure that there is no use backtracking out of repetitions
552           already matched, then we change it to a pop_failure_jump.
553           Followed by two-byte address.  */
554        /* ifdef MBS_SUPPORT, the size of address is 1.  */
555  maybe_pop_jump,
556
557        /* Jump to following two-byte address, and push a dummy failure
558           point. This failure point will be thrown away if an attempt
559           is made to use it for a failure.  A `+' construct makes this
560           before the first repeat.  Also used as an intermediary kind
561           of jump when compiling an alternative.  */
562        /* ifdef MBS_SUPPORT, the size of address is 1.  */
563  dummy_failure_jump,
564
565	/* Push a dummy failure point and continue.  Used at the end of
566	   alternatives.  */
567  push_dummy_failure,
568
569        /* Followed by two-byte relative address and two-byte number n.
570           After matching N times, jump to the address upon failure.  */
571        /* ifdef MBS_SUPPORT, the size of address is 1.  */
572  succeed_n,
573
574        /* Followed by two-byte relative address, and two-byte number n.
575           Jump to the address N times, then fail.  */
576        /* ifdef MBS_SUPPORT, the size of address is 1.  */
577  jump_n,
578
579        /* Set the following two-byte relative address to the
580           subsequent two-byte number.  The address *includes* the two
581           bytes of number.  */
582        /* ifdef MBS_SUPPORT, the size of address is 1.  */
583  set_number_at,
584
585  wordchar,	/* Matches any word-constituent character.  */
586  notwordchar,	/* Matches any char that is not a word-constituent.  */
587
588  wordbeg,	/* Succeeds if at word beginning.  */
589  wordend,	/* Succeeds if at word end.  */
590
591  wordbound,	/* Succeeds if at a word boundary.  */
592  notwordbound	/* Succeeds if not at a word boundary.  */
593
594# ifdef emacs
595  ,before_dot,	/* Succeeds if before point.  */
596  at_dot,	/* Succeeds if at point.  */
597  after_dot,	/* Succeeds if after point.  */
598
599	/* Matches any character whose syntax is specified.  Followed by
600           a byte which contains a syntax code, e.g., Sword.  */
601  syntaxspec,
602
603	/* Matches any character whose syntax is not that specified.  */
604  notsyntaxspec
605# endif /* emacs */
606} re_opcode_t;
607#endif /* not INSIDE_RECURSION */
608
609
610#ifdef BYTE
611# define CHAR_T char
612# define UCHAR_T unsigned char
613# define COMPILED_BUFFER_VAR bufp->buffer
614# define OFFSET_ADDRESS_SIZE 2
615# define PREFIX(name) byte_##name
616# define ARG_PREFIX(name) name
617# define PUT_CHAR(c) putchar (c)
618#else
619# ifdef WCHAR
620#  define CHAR_T wchar_t
621#  define UCHAR_T wchar_t
622#  define COMPILED_BUFFER_VAR wc_buffer
623#  define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */
624#  define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_T)+1)
625#  define PREFIX(name) wcs_##name
626#  define ARG_PREFIX(name) c##name
627/* Should we use wide stream??  */
628#  define PUT_CHAR(c) printf ("%C", c);
629#  define TRUE 1
630#  define FALSE 0
631# else
632#  ifdef MBS_SUPPORT
633#   define WCHAR
634#   define INSIDE_RECURSION
635#   include "regex.c"
636#   undef INSIDE_RECURSION
637#  endif
638#  define BYTE
639#  define INSIDE_RECURSION
640#  include "regex.c"
641#  undef INSIDE_RECURSION
642# endif
643#endif
644
645#ifdef INSIDE_RECURSION
646/* Common operations on the compiled pattern.  */
647
648/* Store NUMBER in two contiguous bytes starting at DESTINATION.  */
649/* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
650
651# ifdef WCHAR
652#  define STORE_NUMBER(destination, number)				\
653  do {									\
654    *(destination) = (UCHAR_T)(number);				\
655  } while (0)
656# else /* BYTE */
657#  define STORE_NUMBER(destination, number)				\
658  do {									\
659    (destination)[0] = (number) & 0377;					\
660    (destination)[1] = (number) >> 8;					\
661  } while (0)
662# endif /* WCHAR */
663
664/* Same as STORE_NUMBER, except increment DESTINATION to
665   the byte after where the number is stored.  Therefore, DESTINATION
666   must be an lvalue.  */
667/* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
668
669# define STORE_NUMBER_AND_INCR(destination, number)			\
670  do {									\
671    STORE_NUMBER (destination, number);					\
672    (destination) += OFFSET_ADDRESS_SIZE;				\
673  } while (0)
674
675/* Put into DESTINATION a number stored in two contiguous bytes starting
676   at SOURCE.  */
677/* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
678
679# ifdef WCHAR
680#  define EXTRACT_NUMBER(destination, source)				\
681  do {									\
682    (destination) = *(source);						\
683  } while (0)
684# else /* BYTE */
685#  define EXTRACT_NUMBER(destination, source)				\
686  do {									\
687    (destination) = *(source) & 0377;					\
688    (destination) += ((unsigned) SIGN_EXTEND_CHAR (*((source) + 1))) << 8; \
689  } while (0)
690# endif
691
692# ifdef DEBUG
693static void PREFIX(extract_number) (int *dest, UCHAR_T *source);
694static void
695PREFIX(extract_number) (int *dest, UCHAR_T *source)
696{
697#  ifdef WCHAR
698  *dest = *source;
699#  else /* BYTE */
700  int temp = SIGN_EXTEND_CHAR (*(source + 1));
701  *dest = *source & 0377;
702  *dest += temp << 8;
703#  endif
704}
705
706#  ifndef EXTRACT_MACROS /* To debug the macros.  */
707#   undef EXTRACT_NUMBER
708#   define EXTRACT_NUMBER(dest, src) PREFIX(extract_number) (&dest, src)
709#  endif /* not EXTRACT_MACROS */
710
711# endif /* DEBUG */
712
713/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
714   SOURCE must be an lvalue.  */
715
716# define EXTRACT_NUMBER_AND_INCR(destination, source)			\
717  do {									\
718    EXTRACT_NUMBER (destination, source);				\
719    (source) += OFFSET_ADDRESS_SIZE; 					\
720  } while (0)
721
722# ifdef DEBUG
723static void PREFIX(extract_number_and_incr) (int *destination,
724                                             UCHAR_T **source);
725static void
726PREFIX(extract_number_and_incr) (int *destination, UCHAR_T **source)
727{
728  PREFIX(extract_number) (destination, *source);
729  *source += OFFSET_ADDRESS_SIZE;
730}
731
732#  ifndef EXTRACT_MACROS
733#   undef EXTRACT_NUMBER_AND_INCR
734#   define EXTRACT_NUMBER_AND_INCR(dest, src) \
735  PREFIX(extract_number_and_incr) (&dest, &src)
736#  endif /* not EXTRACT_MACROS */
737
738# endif /* DEBUG */
739
740
741
742/* If DEBUG is defined, Regex prints many voluminous messages about what
743   it is doing (if the variable `debug' is nonzero).  If linked with the
744   main program in `iregex.c', you can enter patterns and strings
745   interactively.  And if linked with the main program in `main.c' and
746   the other test files, you can run the already-written tests.  */
747
748# ifdef DEBUG
749
750#  ifndef DEFINED_ONCE
751
752/* We use standard I/O for debugging.  */
753#   include <stdio.h>
754
755/* It is useful to test things that ``must'' be true when debugging.  */
756#   include <assert.h>
757
758static int debug;
759
760#   define DEBUG_STATEMENT(e) e
761#   define DEBUG_PRINT1(x) if (debug) printf (x)
762#   define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
763#   define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
764#   define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
765#  endif /* not DEFINED_ONCE */
766
767#  define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) 			\
768  if (debug) PREFIX(print_partial_compiled_pattern) (s, e)
769#  define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)		\
770  if (debug) PREFIX(print_double_string) (w, s1, sz1, s2, sz2)
771
772
773/* Print the fastmap in human-readable form.  */
774
775#  ifndef DEFINED_ONCE
776void
777print_fastmap (char *fastmap)
778{
779  unsigned was_a_range = 0;
780  unsigned i = 0;
781
782  while (i < (1 << BYTEWIDTH))
783    {
784      if (fastmap[i++])
785	{
786	  was_a_range = 0;
787          putchar (i - 1);
788          while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
789            {
790              was_a_range = 1;
791              i++;
792            }
793	  if (was_a_range)
794            {
795              printf ("-");
796              putchar (i - 1);
797            }
798        }
799    }
800  putchar ('\n');
801}
802#  endif /* not DEFINED_ONCE */
803
804
805/* Print a compiled pattern string in human-readable form, starting at
806   the START pointer into it and ending just before the pointer END.  */
807
808void
809PREFIX(print_partial_compiled_pattern) (UCHAR_T *start, UCHAR_T *end)
810{
811  int mcnt, mcnt2;
812  UCHAR_T *p1;
813  UCHAR_T *p = start;
814  UCHAR_T *pend = end;
815
816  if (start == NULL)
817    {
818      printf ("(null)\n");
819      return;
820    }
821
822  /* Loop over pattern commands.  */
823  while (p < pend)
824    {
825#  ifdef _LIBC
826      printf ("%td:\t", p - start);
827#  else
828      printf ("%ld:\t", (long int) (p - start));
829#  endif
830
831      switch ((re_opcode_t) *p++)
832	{
833        case no_op:
834          printf ("/no_op");
835          break;
836
837	case exactn:
838	  mcnt = *p++;
839          printf ("/exactn/%d", mcnt);
840          do
841	    {
842              putchar ('/');
843	      PUT_CHAR (*p++);
844            }
845          while (--mcnt);
846          break;
847
848#  ifdef MBS_SUPPORT
849	case exactn_bin:
850	  mcnt = *p++;
851	  printf ("/exactn_bin/%d", mcnt);
852          do
853	    {
854	      printf("/%lx", (long int) *p++);
855            }
856          while (--mcnt);
857          break;
858#  endif /* MBS_SUPPORT */
859
860	case start_memory:
861          mcnt = *p++;
862          printf ("/start_memory/%d/%ld", mcnt, (long int) *p++);
863          break;
864
865	case stop_memory:
866          mcnt = *p++;
867	  printf ("/stop_memory/%d/%ld", mcnt, (long int) *p++);
868          break;
869
870	case duplicate:
871	  printf ("/duplicate/%ld", (long int) *p++);
872	  break;
873
874	case anychar:
875	  printf ("/anychar");
876	  break;
877
878	case charset:
879        case charset_not:
880          {
881#  ifdef WCHAR
882	    int i, length;
883	    wchar_t *workp = p;
884	    printf ("/charset [%s",
885	            (re_opcode_t) *(workp - 1) == charset_not ? "^" : "");
886	    p += 5;
887	    length = *workp++; /* the length of char_classes */
888	    for (i=0 ; i<length ; i++)
889	      printf("[:%lx:]", (long int) *p++);
890	    length = *workp++; /* the length of collating_symbol */
891	    for (i=0 ; i<length ;)
892	      {
893		printf("[.");
894		while(*p != 0)
895		  PUT_CHAR((i++,*p++));
896		i++,p++;
897		printf(".]");
898	      }
899	    length = *workp++; /* the length of equivalence_class */
900	    for (i=0 ; i<length ;)
901	      {
902		printf("[=");
903		while(*p != 0)
904		  PUT_CHAR((i++,*p++));
905		i++,p++;
906		printf("=]");
907	      }
908	    length = *workp++; /* the length of char_range */
909	    for (i=0 ; i<length ; i++)
910	      {
911		wchar_t range_start = *p++;
912		wchar_t range_end = *p++;
913		printf("%C-%C", range_start, range_end);
914	      }
915	    length = *workp++; /* the length of char */
916	    for (i=0 ; i<length ; i++)
917	      printf("%C", *p++);
918	    putchar (']');
919#  else
920            register int c, last = -100;
921	    register int in_range = 0;
922
923	    printf ("/charset [%s",
924	            (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
925
926            assert (p + *p < pend);
927
928            for (c = 0; c < 256; c++)
929	      if (c / 8 < *p
930		  && (p[1 + (c/8)] & (1 << (c % 8))))
931		{
932		  /* Are we starting a range?  */
933		  if (last + 1 == c && ! in_range)
934		    {
935		      putchar ('-');
936		      in_range = 1;
937		    }
938		  /* Have we broken a range?  */
939		  else if (last + 1 != c && in_range)
940              {
941		      putchar (last);
942		      in_range = 0;
943		    }
944
945		  if (! in_range)
946		    putchar (c);
947
948		  last = c;
949              }
950
951	    if (in_range)
952	      putchar (last);
953
954	    putchar (']');
955
956	    p += 1 + *p;
957#  endif /* WCHAR */
958	  }
959	  break;
960
961	case begline:
962	  printf ("/begline");
963          break;
964
965	case endline:
966          printf ("/endline");
967          break;
968
969	case on_failure_jump:
970          PREFIX(extract_number_and_incr) (&mcnt, &p);
971#  ifdef _LIBC
972  	  printf ("/on_failure_jump to %td", p + mcnt - start);
973#  else
974  	  printf ("/on_failure_jump to %ld", (long int) (p + mcnt - start));
975#  endif
976          break;
977
978	case on_failure_keep_string_jump:
979          PREFIX(extract_number_and_incr) (&mcnt, &p);
980#  ifdef _LIBC
981  	  printf ("/on_failure_keep_string_jump to %td", p + mcnt - start);
982#  else
983  	  printf ("/on_failure_keep_string_jump to %ld",
984		  (long int) (p + mcnt - start));
985#  endif
986          break;
987
988	case dummy_failure_jump:
989          PREFIX(extract_number_and_incr) (&mcnt, &p);
990#  ifdef _LIBC
991  	  printf ("/dummy_failure_jump to %td", p + mcnt - start);
992#  else
993  	  printf ("/dummy_failure_jump to %ld", (long int) (p + mcnt - start));
994#  endif
995          break;
996
997	case push_dummy_failure:
998          printf ("/push_dummy_failure");
999          break;
1000
1001        case maybe_pop_jump:
1002          PREFIX(extract_number_and_incr) (&mcnt, &p);
1003#  ifdef _LIBC
1004  	  printf ("/maybe_pop_jump to %td", p + mcnt - start);
1005#  else
1006  	  printf ("/maybe_pop_jump to %ld", (long int) (p + mcnt - start));
1007#  endif
1008	  break;
1009
1010        case pop_failure_jump:
1011	  PREFIX(extract_number_and_incr) (&mcnt, &p);
1012#  ifdef _LIBC
1013  	  printf ("/pop_failure_jump to %td", p + mcnt - start);
1014#  else
1015  	  printf ("/pop_failure_jump to %ld", (long int) (p + mcnt - start));
1016#  endif
1017	  break;
1018
1019        case jump_past_alt:
1020	  PREFIX(extract_number_and_incr) (&mcnt, &p);
1021#  ifdef _LIBC
1022  	  printf ("/jump_past_alt to %td", p + mcnt - start);
1023#  else
1024  	  printf ("/jump_past_alt to %ld", (long int) (p + mcnt - start));
1025#  endif
1026	  break;
1027
1028        case jump:
1029	  PREFIX(extract_number_and_incr) (&mcnt, &p);
1030#  ifdef _LIBC
1031  	  printf ("/jump to %td", p + mcnt - start);
1032#  else
1033  	  printf ("/jump to %ld", (long int) (p + mcnt - start));
1034#  endif
1035	  break;
1036
1037        case succeed_n:
1038          PREFIX(extract_number_and_incr) (&mcnt, &p);
1039	  p1 = p + mcnt;
1040          PREFIX(extract_number_and_incr) (&mcnt2, &p);
1041#  ifdef _LIBC
1042	  printf ("/succeed_n to %td, %d times", p1 - start, mcnt2);
1043#  else
1044	  printf ("/succeed_n to %ld, %d times",
1045		  (long int) (p1 - start), mcnt2);
1046#  endif
1047          break;
1048
1049        case jump_n:
1050          PREFIX(extract_number_and_incr) (&mcnt, &p);
1051	  p1 = p + mcnt;
1052          PREFIX(extract_number_and_incr) (&mcnt2, &p);
1053	  printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
1054          break;
1055
1056        case set_number_at:
1057          PREFIX(extract_number_and_incr) (&mcnt, &p);
1058	  p1 = p + mcnt;
1059          PREFIX(extract_number_and_incr) (&mcnt2, &p);
1060#  ifdef _LIBC
1061	  printf ("/set_number_at location %td to %d", p1 - start, mcnt2);
1062#  else
1063	  printf ("/set_number_at location %ld to %d",
1064		  (long int) (p1 - start), mcnt2);
1065#  endif
1066          break;
1067
1068        case wordbound:
1069	  printf ("/wordbound");
1070	  break;
1071
1072	case notwordbound:
1073	  printf ("/notwordbound");
1074          break;
1075
1076	case wordbeg:
1077	  printf ("/wordbeg");
1078	  break;
1079
1080	case wordend:
1081	  printf ("/wordend");
1082	  break;
1083
1084#  ifdef emacs
1085	case before_dot:
1086	  printf ("/before_dot");
1087          break;
1088
1089	case at_dot:
1090	  printf ("/at_dot");
1091          break;
1092
1093	case after_dot:
1094	  printf ("/after_dot");
1095          break;
1096
1097	case syntaxspec:
1098          printf ("/syntaxspec");
1099	  mcnt = *p++;
1100	  printf ("/%d", mcnt);
1101          break;
1102
1103	case notsyntaxspec:
1104          printf ("/notsyntaxspec");
1105	  mcnt = *p++;
1106	  printf ("/%d", mcnt);
1107	  break;
1108#  endif /* emacs */
1109
1110	case wordchar:
1111	  printf ("/wordchar");
1112          break;
1113
1114	case notwordchar:
1115	  printf ("/notwordchar");
1116          break;
1117
1118	case begbuf:
1119	  printf ("/begbuf");
1120          break;
1121
1122	case endbuf:
1123	  printf ("/endbuf");
1124          break;
1125
1126        default:
1127          printf ("?%ld", (long int) *(p-1));
1128	}
1129
1130      putchar ('\n');
1131    }
1132
1133#  ifdef _LIBC
1134  printf ("%td:\tend of pattern.\n", p - start);
1135#  else
1136  printf ("%ld:\tend of pattern.\n", (long int) (p - start));
1137#  endif
1138}
1139
1140
1141void
1142PREFIX(print_compiled_pattern) (struct re_pattern_buffer *bufp)
1143{
1144  UCHAR_T *buffer = (UCHAR_T*) bufp->buffer;
1145
1146  PREFIX(print_partial_compiled_pattern) (buffer, buffer
1147				  + bufp->used / sizeof(UCHAR_T));
1148  printf ("%ld bytes used/%ld bytes allocated.\n",
1149	  bufp->used, bufp->allocated);
1150
1151  if (bufp->fastmap_accurate && bufp->fastmap)
1152    {
1153      printf ("fastmap: ");
1154      print_fastmap (bufp->fastmap);
1155    }
1156
1157#  ifdef _LIBC
1158  printf ("re_nsub: %Zd\t", bufp->re_nsub);
1159#  else
1160  printf ("re_nsub: %ld\t", (long int) bufp->re_nsub);
1161#  endif
1162  printf ("regs_alloc: %d\t", bufp->regs_allocated);
1163  printf ("can_be_null: %d\t", bufp->can_be_null);
1164  printf ("newline_anchor: %d\n", bufp->newline_anchor);
1165  printf ("no_sub: %d\t", bufp->no_sub);
1166  printf ("not_bol: %d\t", bufp->not_bol);
1167  printf ("not_eol: %d\t", bufp->not_eol);
1168  printf ("syntax: %lx\n", bufp->syntax);
1169  /* Perhaps we should print the translate table?  */
1170}
1171
1172
1173void
1174PREFIX(print_double_string) (const CHAR_T *where, const CHAR_T *string1,
1175                             int size1, const CHAR_T *string2, int size2)
1176{
1177  int this_char;
1178
1179  if (where == NULL)
1180    printf ("(null)");
1181  else
1182    {
1183      int cnt;
1184
1185      if (FIRST_STRING_P (where))
1186        {
1187          for (this_char = where - string1; this_char < size1; this_char++)
1188	    PUT_CHAR (string1[this_char]);
1189
1190          where = string2;
1191        }
1192
1193      cnt = 0;
1194      for (this_char = where - string2; this_char < size2; this_char++)
1195	{
1196	  PUT_CHAR (string2[this_char]);
1197	  if (++cnt > 100)
1198	    {
1199	      fputs ("...", stdout);
1200	      break;
1201	    }
1202	}
1203    }
1204}
1205
1206#  ifndef DEFINED_ONCE
1207void
1208printchar (int c)
1209{
1210  putc (c, stderr);
1211}
1212#  endif
1213
1214# else /* not DEBUG */
1215
1216#  ifndef DEFINED_ONCE
1217#   undef assert
1218#   define assert(e)
1219
1220#   define DEBUG_STATEMENT(e)
1221#   define DEBUG_PRINT1(x)
1222#   define DEBUG_PRINT2(x1, x2)
1223#   define DEBUG_PRINT3(x1, x2, x3)
1224#   define DEBUG_PRINT4(x1, x2, x3, x4)
1225#  endif /* not DEFINED_ONCE */
1226#  define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1227#  define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1228
1229# endif /* not DEBUG */
1230
1231
1232
1233# ifdef WCHAR
1234/* This  convert a multibyte string to a wide character string.
1235   And write their correspondances to offset_buffer(see below)
1236   and write whether each wchar_t is binary data to is_binary.
1237   This assume invalid multibyte sequences as binary data.
1238   We assume offset_buffer and is_binary is already allocated
1239   enough space.  */
1240
1241static size_t convert_mbs_to_wcs (CHAR_T *dest, const unsigned char* src,
1242				  size_t len, int *offset_buffer,
1243				  char *is_binary);
1244static size_t
1245convert_mbs_to_wcs (CHAR_T *dest, const unsigned char*src, size_t len,
1246                    int *offset_buffer, char *is_binary)
1247     /* It hold correspondances between src(char string) and
1248	dest(wchar_t string) for optimization.
1249	e.g. src  = "xxxyzz"
1250             dest = {'X', 'Y', 'Z'}
1251	      (each "xxx", "y" and "zz" represent one multibyte character
1252	       corresponding to 'X', 'Y' and 'Z'.)
1253	  offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")}
1254	  	        = {0, 3, 4, 6}
1255     */
1256{
1257  wchar_t *pdest = dest;
1258  const unsigned char *psrc = src;
1259  size_t wc_count = 0;
1260
1261  mbstate_t mbs;
1262  int i, consumed;
1263  size_t mb_remain = len;
1264  size_t mb_count = 0;
1265
1266  /* Initialize the conversion state.  */
1267  memset (&mbs, 0, sizeof (mbstate_t));
1268
1269  offset_buffer[0] = 0;
1270  for( ; mb_remain > 0 ; ++wc_count, ++pdest, mb_remain -= consumed,
1271	 psrc += consumed)
1272    {
1273#ifdef _LIBC
1274      consumed = __mbrtowc (pdest, psrc, mb_remain, &mbs);
1275#else
1276      consumed = mbrtowc (pdest, psrc, mb_remain, &mbs);
1277#endif
1278
1279      if (consumed <= 0)
1280	/* failed to convert. maybe src contains binary data.
1281	   So we consume 1 byte manualy.  */
1282	{
1283	  *pdest = *psrc;
1284	  consumed = 1;
1285	  is_binary[wc_count] = TRUE;
1286	}
1287      else
1288	is_binary[wc_count] = FALSE;
1289      /* In sjis encoding, we use yen sign as escape character in
1290	 place of reverse solidus. So we convert 0x5c(yen sign in
1291	 sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse
1292	 solidus in UCS2).  */
1293      if (consumed == 1 && (int) *psrc == 0x5c && (int) *pdest == 0xa5)
1294	*pdest = (wchar_t) *psrc;
1295
1296      offset_buffer[wc_count + 1] = mb_count += consumed;
1297    }
1298
1299  /* Fill remain of the buffer with sentinel.  */
1300  for (i = wc_count + 1 ; i <= len ; i++)
1301    offset_buffer[i] = mb_count + 1;
1302
1303  return wc_count;
1304}
1305
1306# endif /* WCHAR */
1307
1308#else /* not INSIDE_RECURSION */
1309
1310/* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
1311   also be assigned to arbitrarily: each pattern buffer stores its own
1312   syntax, so it can be changed between regex compilations.  */
1313/* This has no initializer because initialized variables in Emacs
1314   become read-only after dumping.  */
1315reg_syntax_t re_syntax_options;
1316
1317
1318/* Specify the precise syntax of regexps for compilation.  This provides
1319   for compatibility for various utilities which historically have
1320   different, incompatible syntaxes.
1321
1322   The argument SYNTAX is a bit mask comprised of the various bits
1323   defined in regex.h.  We return the old syntax.  */
1324
1325reg_syntax_t
1326re_set_syntax (reg_syntax_t syntax)
1327{
1328  reg_syntax_t ret = re_syntax_options;
1329
1330  re_syntax_options = syntax;
1331# ifdef DEBUG
1332  if (syntax & RE_DEBUG)
1333    debug = 1;
1334  else if (debug) /* was on but now is not */
1335    debug = 0;
1336# endif /* DEBUG */
1337  return ret;
1338}
1339# ifdef _LIBC
1340weak_alias (__re_set_syntax, re_set_syntax)
1341# endif
1342
1343/* This table gives an error message for each of the error codes listed
1344   in regex.h.  Obviously the order here has to be same as there.
1345   POSIX doesn't require that we do anything for REG_NOERROR,
1346   but why not be nice?  */
1347
1348static const char *re_error_msgid[] =
1349  {
1350    gettext_noop ("Success"),	/* REG_NOERROR */
1351    gettext_noop ("No match"),	/* REG_NOMATCH */
1352    gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1353    gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1354    gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1355    gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1356    gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1357    gettext_noop ("Unmatched [ or [^"),	/* REG_EBRACK */
1358    gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1359    gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1360    gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1361    gettext_noop ("Invalid range end"),	/* REG_ERANGE */
1362    gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1363    gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1364    gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1365    gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1366    gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1367  };
1368
1369#endif /* INSIDE_RECURSION */
1370
1371#ifndef DEFINED_ONCE
1372/* Avoiding alloca during matching, to placate r_alloc.  */
1373
1374/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1375   searching and matching functions should not call alloca.  On some
1376   systems, alloca is implemented in terms of malloc, and if we're
1377   using the relocating allocator routines, then malloc could cause a
1378   relocation, which might (if the strings being searched are in the
1379   ralloc heap) shift the data out from underneath the regexp
1380   routines.
1381
1382   Here's another reason to avoid allocation: Emacs
1383   processes input from X in a signal handler; processing X input may
1384   call malloc; if input arrives while a matching routine is calling
1385   malloc, then we're scrod.  But Emacs can't just block input while
1386   calling matching routines; then we don't notice interrupts when
1387   they come in.  So, Emacs blocks input around all regexp calls
1388   except the matching calls, which it leaves unprotected, in the
1389   faith that they will not malloc.  */
1390
1391/* Normally, this is fine.  */
1392# define MATCH_MAY_ALLOCATE
1393
1394/* When using GNU C, we are not REALLY using the C alloca, no matter
1395   what config.h may say.  So don't take precautions for it.  */
1396# ifdef __GNUC__
1397#  undef C_ALLOCA
1398# endif
1399
1400/* The match routines may not allocate if (1) they would do it with malloc
1401   and (2) it's not safe for them to use malloc.
1402   Note that if REL_ALLOC is defined, matching would not use malloc for the
1403   failure stack, but we would still use it for the register vectors;
1404   so REL_ALLOC should not affect this.  */
1405# if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1406#  undef MATCH_MAY_ALLOCATE
1407# endif
1408#endif /* not DEFINED_ONCE */
1409
1410#ifdef INSIDE_RECURSION
1411/* Failure stack declarations and macros; both re_compile_fastmap and
1412   re_match_2 use a failure stack.  These have to be macros because of
1413   REGEX_ALLOCATE_STACK.  */
1414
1415
1416/* Number of failure points for which to initially allocate space
1417   when matching.  If this number is exceeded, we allocate more
1418   space, so it is not a hard limit.  */
1419# ifndef INIT_FAILURE_ALLOC
1420#  define INIT_FAILURE_ALLOC 5
1421# endif
1422
1423/* Roughly the maximum number of failure points on the stack.  Would be
1424   exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1425   This is a variable only so users of regex can assign to it; we never
1426   change it ourselves.  */
1427
1428# ifdef INT_IS_16BIT
1429
1430#  ifndef DEFINED_ONCE
1431#   if defined MATCH_MAY_ALLOCATE
1432/* 4400 was enough to cause a crash on Alpha OSF/1,
1433   whose default stack limit is 2mb.  */
1434long int re_max_failures = 4000;
1435#   else
1436long int re_max_failures = 2000;
1437#   endif
1438#  endif
1439
1440union PREFIX(fail_stack_elt)
1441{
1442  UCHAR_T *pointer;
1443  long int integer;
1444};
1445
1446typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1447
1448typedef struct
1449{
1450  PREFIX(fail_stack_elt_t) *stack;
1451  unsigned long int size;
1452  unsigned long int avail;		/* Offset of next open position.  */
1453} PREFIX(fail_stack_type);
1454
1455# else /* not INT_IS_16BIT */
1456
1457#  ifndef DEFINED_ONCE
1458#   if defined MATCH_MAY_ALLOCATE
1459/* 4400 was enough to cause a crash on Alpha OSF/1,
1460   whose default stack limit is 2mb.  */
1461int re_max_failures = 4000;
1462#   else
1463int re_max_failures = 2000;
1464#   endif
1465#  endif
1466
1467union PREFIX(fail_stack_elt)
1468{
1469  UCHAR_T *pointer;
1470  int integer;
1471};
1472
1473typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1474
1475typedef struct
1476{
1477  PREFIX(fail_stack_elt_t) *stack;
1478  unsigned size;
1479  unsigned avail;			/* Offset of next open position.  */
1480} PREFIX(fail_stack_type);
1481
1482# endif /* INT_IS_16BIT */
1483
1484# ifndef DEFINED_ONCE
1485#  define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
1486#  define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1487#  define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
1488# endif
1489
1490
1491/* Define macros to initialize and free the failure stack.
1492   Do `return -2' if the alloc fails.  */
1493
1494# ifdef MATCH_MAY_ALLOCATE
1495#  define INIT_FAIL_STACK()						\
1496  do {									\
1497    fail_stack.stack = (PREFIX(fail_stack_elt_t) *)		\
1498      REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (PREFIX(fail_stack_elt_t))); \
1499									\
1500    if (fail_stack.stack == NULL)				\
1501      return -2;							\
1502									\
1503    fail_stack.size = INIT_FAILURE_ALLOC;			\
1504    fail_stack.avail = 0;					\
1505  } while (0)
1506
1507#  define RESET_FAIL_STACK()  REGEX_FREE_STACK (fail_stack.stack)
1508# else
1509#  define INIT_FAIL_STACK()						\
1510  do {									\
1511    fail_stack.avail = 0;					\
1512  } while (0)
1513
1514#  define RESET_FAIL_STACK()
1515# endif
1516
1517
1518/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1519
1520   Return 1 if succeeds, and 0 if either ran out of memory
1521   allocating space for it or it was already too large.
1522
1523   REGEX_REALLOCATE_STACK requires `destination' be declared.   */
1524
1525# define DOUBLE_FAIL_STACK(fail_stack)					\
1526  ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS)	\
1527   ? 0									\
1528   : ((fail_stack).stack = (PREFIX(fail_stack_elt_t) *)			\
1529        REGEX_REALLOCATE_STACK ((fail_stack).stack, 			\
1530          (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t)),	\
1531          ((fail_stack).size << 1) * sizeof (PREFIX(fail_stack_elt_t))),\
1532									\
1533      (fail_stack).stack == NULL					\
1534      ? 0								\
1535      : ((fail_stack).size <<= 1, 					\
1536         1)))
1537
1538
1539/* Push pointer POINTER on FAIL_STACK.
1540   Return 1 if was able to do so and 0 if ran out of memory allocating
1541   space to do so.  */
1542# define PUSH_PATTERN_OP(POINTER, FAIL_STACK)				\
1543  ((FAIL_STACK_FULL ()							\
1544    && !DOUBLE_FAIL_STACK (FAIL_STACK))					\
1545   ? 0									\
1546   : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER,	\
1547      1))
1548
1549/* Push a pointer value onto the failure stack.
1550   Assumes the variable `fail_stack'.  Probably should only
1551   be called from within `PUSH_FAILURE_POINT'.  */
1552# define PUSH_FAILURE_POINTER(item)					\
1553  fail_stack.stack[fail_stack.avail++].pointer = (UCHAR_T *) (item)
1554
1555/* This pushes an integer-valued item onto the failure stack.
1556   Assumes the variable `fail_stack'.  Probably should only
1557   be called from within `PUSH_FAILURE_POINT'.  */
1558# define PUSH_FAILURE_INT(item)					\
1559  fail_stack.stack[fail_stack.avail++].integer = (item)
1560
1561/* Push a fail_stack_elt_t value onto the failure stack.
1562   Assumes the variable `fail_stack'.  Probably should only
1563   be called from within `PUSH_FAILURE_POINT'.  */
1564# define PUSH_FAILURE_ELT(item)					\
1565  fail_stack.stack[fail_stack.avail++] =  (item)
1566
1567/* These three POP... operations complement the three PUSH... operations.
1568   All assume that `fail_stack' is nonempty.  */
1569# define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1570# define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1571# define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1572
1573/* Used to omit pushing failure point id's when we're not debugging.  */
1574# ifdef DEBUG
1575#  define DEBUG_PUSH PUSH_FAILURE_INT
1576#  define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1577# else
1578#  define DEBUG_PUSH(item)
1579#  define DEBUG_POP(item_addr)
1580# endif
1581
1582
1583/* Push the information about the state we will need
1584   if we ever fail back to it.
1585
1586   Requires variables fail_stack, regstart, regend, reg_info, and
1587   num_regs_pushed be declared.  DOUBLE_FAIL_STACK requires `destination'
1588   be declared.
1589
1590   Does `return FAILURE_CODE' if runs out of memory.  */
1591
1592# define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)	\
1593  do {									\
1594    char *destination;							\
1595    /* Must be int, so when we don't save any registers, the arithmetic	\
1596       of 0 + -1 isn't done as unsigned.  */				\
1597    /* Can't be int, since there is not a shred of a guarantee that int	\
1598       is wide enough to hold a value of something to which pointer can	\
1599       be assigned */							\
1600    active_reg_t this_reg;						\
1601    									\
1602    DEBUG_STATEMENT (failure_id++);					\
1603    DEBUG_STATEMENT (nfailure_points_pushed++);				\
1604    DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);		\
1605    DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
1606    DEBUG_PRINT2 ("                     size: %d\n", (fail_stack).size);\
1607									\
1608    DEBUG_PRINT2 ("  slots needed: %ld\n", NUM_FAILURE_ITEMS);		\
1609    DEBUG_PRINT2 ("     available: %d\n", REMAINING_AVAIL_SLOTS);	\
1610									\
1611    /* Ensure we have enough space allocated for what we will push.  */	\
1612    while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)			\
1613      {									\
1614        if (!DOUBLE_FAIL_STACK (fail_stack))				\
1615          return failure_code;						\
1616									\
1617        DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",		\
1618		       (fail_stack).size);				\
1619        DEBUG_PRINT2 ("  slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1620      }									\
1621									\
1622    /* Push the info, starting with the registers.  */			\
1623    DEBUG_PRINT1 ("\n");						\
1624									\
1625    if (1)								\
1626      for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1627	   this_reg++)							\
1628	{								\
1629	  DEBUG_PRINT2 ("  Pushing reg: %lu\n", this_reg);		\
1630	  DEBUG_STATEMENT (num_regs_pushed++);				\
1631									\
1632	  DEBUG_PRINT2 ("    start: %p\n", regstart[this_reg]);		\
1633	  PUSH_FAILURE_POINTER (regstart[this_reg]);			\
1634									\
1635	  DEBUG_PRINT2 ("    end: %p\n", regend[this_reg]);		\
1636	  PUSH_FAILURE_POINTER (regend[this_reg]);			\
1637									\
1638	  DEBUG_PRINT2 ("    info: %p\n      ",				\
1639			reg_info[this_reg].word.pointer);		\
1640	  DEBUG_PRINT2 (" match_null=%d",				\
1641			REG_MATCH_NULL_STRING_P (reg_info[this_reg]));	\
1642	  DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));	\
1643	  DEBUG_PRINT2 (" matched_something=%d",			\
1644			MATCHED_SOMETHING (reg_info[this_reg]));	\
1645	  DEBUG_PRINT2 (" ever_matched=%d",				\
1646			EVER_MATCHED_SOMETHING (reg_info[this_reg]));	\
1647	  DEBUG_PRINT1 ("\n");						\
1648	  PUSH_FAILURE_ELT (reg_info[this_reg].word);			\
1649	}								\
1650									\
1651    DEBUG_PRINT2 ("  Pushing  low active reg: %ld\n", lowest_active_reg);\
1652    PUSH_FAILURE_INT (lowest_active_reg);				\
1653									\
1654    DEBUG_PRINT2 ("  Pushing high active reg: %ld\n", highest_active_reg);\
1655    PUSH_FAILURE_INT (highest_active_reg);				\
1656									\
1657    DEBUG_PRINT2 ("  Pushing pattern %p:\n", pattern_place);		\
1658    DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);		\
1659    PUSH_FAILURE_POINTER (pattern_place);				\
1660									\
1661    DEBUG_PRINT2 ("  Pushing string %p: `", string_place);		\
1662    DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,   \
1663				 size2);				\
1664    DEBUG_PRINT1 ("'\n");						\
1665    PUSH_FAILURE_POINTER (string_place);				\
1666									\
1667    DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);		\
1668    DEBUG_PUSH (failure_id);						\
1669  } while (0)
1670
1671# ifndef DEFINED_ONCE
1672/* This is the number of items that are pushed and popped on the stack
1673   for each register.  */
1674#  define NUM_REG_ITEMS  3
1675
1676/* Individual items aside from the registers.  */
1677#  ifdef DEBUG
1678#   define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
1679#  else
1680#   define NUM_NONREG_ITEMS 4
1681#  endif
1682
1683/* We push at most this many items on the stack.  */
1684/* We used to use (num_regs - 1), which is the number of registers
1685   this regexp will save; but that was changed to 5
1686   to avoid stack overflow for a regexp with lots of parens.  */
1687#  define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1688
1689/* We actually push this many items.  */
1690#  define NUM_FAILURE_ITEMS				\
1691  (((0							\
1692     ? 0 : highest_active_reg - lowest_active_reg + 1)	\
1693    * NUM_REG_ITEMS)					\
1694   + NUM_NONREG_ITEMS)
1695
1696/* How many items can still be added to the stack without overflowing it.  */
1697#  define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1698# endif /* not DEFINED_ONCE */
1699
1700
1701/* Pops what PUSH_FAIL_STACK pushes.
1702
1703   We restore into the parameters, all of which should be lvalues:
1704     STR -- the saved data position.
1705     PAT -- the saved pattern position.
1706     LOW_REG, HIGH_REG -- the highest and lowest active registers.
1707     REGSTART, REGEND -- arrays of string positions.
1708     REG_INFO -- array of information about each subexpression.
1709
1710   Also assumes the variables `fail_stack' and (if debugging), `bufp',
1711   `pend', `string1', `size1', `string2', and `size2'.  */
1712# define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1713{									\
1714  DEBUG_STATEMENT (unsigned failure_id;)				\
1715  active_reg_t this_reg;						\
1716  const UCHAR_T *string_temp;						\
1717									\
1718  assert (!FAIL_STACK_EMPTY ());					\
1719									\
1720  /* Remove failure points and point to how many regs pushed.  */	\
1721  DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");				\
1722  DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);	\
1723  DEBUG_PRINT2 ("                    size: %d\n", fail_stack.size);	\
1724									\
1725  assert (fail_stack.avail >= NUM_NONREG_ITEMS);			\
1726									\
1727  DEBUG_POP (&failure_id);						\
1728  DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);		\
1729									\
1730  /* If the saved string location is NULL, it came from an		\
1731     on_failure_keep_string_jump opcode, and we want to throw away the	\
1732     saved NULL, thus retaining our current position in the string.  */	\
1733  string_temp = POP_FAILURE_POINTER ();					\
1734  if (string_temp != NULL)						\
1735    str = (const CHAR_T *) string_temp;					\
1736									\
1737  DEBUG_PRINT2 ("  Popping string %p: `", str);				\
1738  DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);	\
1739  DEBUG_PRINT1 ("'\n");							\
1740									\
1741  pat = (UCHAR_T *) POP_FAILURE_POINTER ();				\
1742  DEBUG_PRINT2 ("  Popping pattern %p:\n", pat);			\
1743  DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);			\
1744									\
1745  /* Restore register info.  */						\
1746  high_reg = (active_reg_t) POP_FAILURE_INT ();				\
1747  DEBUG_PRINT2 ("  Popping high active reg: %ld\n", high_reg);		\
1748									\
1749  low_reg = (active_reg_t) POP_FAILURE_INT ();				\
1750  DEBUG_PRINT2 ("  Popping  low active reg: %ld\n", low_reg);		\
1751									\
1752  if (1)								\
1753    for (this_reg = high_reg; this_reg >= low_reg; this_reg--)		\
1754      {									\
1755	DEBUG_PRINT2 ("    Popping reg: %ld\n", this_reg);		\
1756									\
1757	reg_info[this_reg].word = POP_FAILURE_ELT ();			\
1758	DEBUG_PRINT2 ("      info: %p\n",				\
1759		      reg_info[this_reg].word.pointer);			\
1760									\
1761	regend[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER ();	\
1762	DEBUG_PRINT2 ("      end: %p\n", regend[this_reg]);		\
1763									\
1764	regstart[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER ();	\
1765	DEBUG_PRINT2 ("      start: %p\n", regstart[this_reg]);		\
1766      }									\
1767  else									\
1768    {									\
1769      for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1770	{								\
1771	  reg_info[this_reg].word.integer = 0;				\
1772	  regend[this_reg] = 0;						\
1773	  regstart[this_reg] = 0;					\
1774	}								\
1775      highest_active_reg = high_reg;					\
1776    }									\
1777									\
1778  set_regs_matched_done = 0;						\
1779  DEBUG_STATEMENT (nfailure_points_popped++);				\
1780} /* POP_FAILURE_POINT */
1781
1782/* Structure for per-register (a.k.a. per-group) information.
1783   Other register information, such as the
1784   starting and ending positions (which are addresses), and the list of
1785   inner groups (which is a bits list) are maintained in separate
1786   variables.
1787
1788   We are making a (strictly speaking) nonportable assumption here: that
1789   the compiler will pack our bit fields into something that fits into
1790   the type of `word', i.e., is something that fits into one item on the
1791   failure stack.  */
1792
1793
1794/* Declarations and macros for re_match_2.  */
1795
1796typedef union
1797{
1798  PREFIX(fail_stack_elt_t) word;
1799  struct
1800  {
1801      /* This field is one if this group can match the empty string,
1802         zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
1803# define MATCH_NULL_UNSET_VALUE 3
1804    unsigned match_null_string_p : 2;
1805    unsigned is_active : 1;
1806    unsigned matched_something : 1;
1807    unsigned ever_matched_something : 1;
1808  } bits;
1809} PREFIX(register_info_type);
1810
1811# ifndef DEFINED_ONCE
1812#  define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
1813#  define IS_ACTIVE(R)  ((R).bits.is_active)
1814#  define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
1815#  define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)
1816
1817
1818/* Call this when have matched a real character; it sets `matched' flags
1819   for the subexpressions which we are currently inside.  Also records
1820   that those subexprs have matched.  */
1821#  define SET_REGS_MATCHED()						\
1822  do									\
1823    {									\
1824      if (!set_regs_matched_done)					\
1825	{								\
1826	  active_reg_t r;						\
1827	  set_regs_matched_done = 1;					\
1828	  for (r = lowest_active_reg; r <= highest_active_reg; r++)	\
1829	    {								\
1830	      MATCHED_SOMETHING (reg_info[r])				\
1831		= EVER_MATCHED_SOMETHING (reg_info[r])			\
1832		= 1;							\
1833	    }								\
1834	}								\
1835    }									\
1836  while (0)
1837# endif /* not DEFINED_ONCE */
1838
1839/* Registers are set to a sentinel when they haven't yet matched.  */
1840static CHAR_T PREFIX(reg_unset_dummy);
1841# define REG_UNSET_VALUE (&PREFIX(reg_unset_dummy))
1842# define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1843
1844/* Subroutine declarations and macros for regex_compile.  */
1845static void PREFIX(store_op1) (re_opcode_t op, UCHAR_T *loc, int arg);
1846static void PREFIX(store_op2) (re_opcode_t op, UCHAR_T *loc,
1847                               int arg1, int arg2);
1848static void PREFIX(insert_op1) (re_opcode_t op, UCHAR_T *loc,
1849                                int arg, UCHAR_T *end);
1850static void PREFIX(insert_op2) (re_opcode_t op, UCHAR_T *loc,
1851                                int arg1, int arg2, UCHAR_T *end);
1852static boolean PREFIX(at_begline_loc_p) (const CHAR_T *pattern,
1853                                         const CHAR_T *p,
1854                                         reg_syntax_t syntax);
1855static boolean PREFIX(at_endline_loc_p) (const CHAR_T *p,
1856                                         const CHAR_T *pend,
1857                                         reg_syntax_t syntax);
1858# ifdef WCHAR
1859static reg_errcode_t wcs_compile_range (CHAR_T range_start,
1860                                        const CHAR_T **p_ptr,
1861                                        const CHAR_T *pend,
1862                                        char *translate,
1863                                        reg_syntax_t syntax,
1864                                        UCHAR_T *b,
1865                                        CHAR_T *char_set);
1866static void insert_space (int num, CHAR_T *loc, CHAR_T *end);
1867# else /* BYTE */
1868static reg_errcode_t byte_compile_range (unsigned int range_start,
1869                                         const char **p_ptr,
1870                                         const char *pend,
1871                                         char *translate,
1872                                         reg_syntax_t syntax,
1873                                         unsigned char *b);
1874# endif /* WCHAR */
1875
1876/* Fetch the next character in the uncompiled pattern---translating it
1877   if necessary.  Also cast from a signed character in the constant
1878   string passed to us by the user to an unsigned char that we can use
1879   as an array index (in, e.g., `translate').  */
1880/* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1881   because it is impossible to allocate 4GB array for some encodings
1882   which have 4 byte character_set like UCS4.  */
1883# ifndef PATFETCH
1884#  ifdef WCHAR
1885#   define PATFETCH(c)							\
1886  do {if (p == pend) return REG_EEND;					\
1887    c = (UCHAR_T) *p++;							\
1888    if (translate && (c <= 0xff)) c = (UCHAR_T) translate[c];		\
1889  } while (0)
1890#  else /* BYTE */
1891#   define PATFETCH(c)							\
1892  do {if (p == pend) return REG_EEND;					\
1893    c = (unsigned char) *p++;						\
1894    if (translate) c = (unsigned char) translate[c];			\
1895  } while (0)
1896#  endif /* WCHAR */
1897# endif
1898
1899/* Fetch the next character in the uncompiled pattern, with no
1900   translation.  */
1901# define PATFETCH_RAW(c)						\
1902  do {if (p == pend) return REG_EEND;					\
1903    c = (UCHAR_T) *p++; 	       					\
1904  } while (0)
1905
1906/* Go backwards one character in the pattern.  */
1907# define PATUNFETCH p--
1908
1909
1910/* If `translate' is non-null, return translate[D], else just D.  We
1911   cast the subscript to translate because some data is declared as
1912   `char *', to avoid warnings when a string constant is passed.  But
1913   when we use a character as a subscript we must make it unsigned.  */
1914/* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1915   because it is impossible to allocate 4GB array for some encodings
1916   which have 4 byte character_set like UCS4.  */
1917
1918# ifndef TRANSLATE
1919#  ifdef WCHAR
1920#   define TRANSLATE(d) \
1921  ((translate && ((UCHAR_T) (d)) <= 0xff) \
1922   ? (char) translate[(unsigned char) (d)] : (d))
1923# else /* BYTE */
1924#   define TRANSLATE(d) \
1925  (translate ? (char) translate[(unsigned char) (d)] : (char) (d))
1926#  endif /* WCHAR */
1927# endif
1928
1929
1930/* Macros for outputting the compiled pattern into `buffer'.  */
1931
1932/* If the buffer isn't allocated when it comes in, use this.  */
1933# define INIT_BUF_SIZE  (32 * sizeof(UCHAR_T))
1934
1935/* Make sure we have at least N more bytes of space in buffer.  */
1936# ifdef WCHAR
1937#  define GET_BUFFER_SPACE(n)						\
1938    while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR	\
1939            + (n)*sizeof(CHAR_T)) > bufp->allocated)			\
1940      EXTEND_BUFFER ()
1941# else /* BYTE */
1942#  define GET_BUFFER_SPACE(n)						\
1943    while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated)	\
1944      EXTEND_BUFFER ()
1945# endif /* WCHAR */
1946
1947/* Make sure we have one more byte of buffer space and then add C to it.  */
1948# define BUF_PUSH(c)							\
1949  do {									\
1950    GET_BUFFER_SPACE (1);						\
1951    *b++ = (UCHAR_T) (c);						\
1952  } while (0)
1953
1954
1955/* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
1956# define BUF_PUSH_2(c1, c2)						\
1957  do {									\
1958    GET_BUFFER_SPACE (2);						\
1959    *b++ = (UCHAR_T) (c1);						\
1960    *b++ = (UCHAR_T) (c2);						\
1961  } while (0)
1962
1963
1964/* As with BUF_PUSH_2, except for three bytes.  */
1965# define BUF_PUSH_3(c1, c2, c3)						\
1966  do {									\
1967    GET_BUFFER_SPACE (3);						\
1968    *b++ = (UCHAR_T) (c1);						\
1969    *b++ = (UCHAR_T) (c2);						\
1970    *b++ = (UCHAR_T) (c3);						\
1971  } while (0)
1972
1973/* Store a jump with opcode OP at LOC to location TO.  We store a
1974   relative address offset by the three bytes the jump itself occupies.  */
1975# define STORE_JUMP(op, loc, to) \
1976 PREFIX(store_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)))
1977
1978/* Likewise, for a two-argument jump.  */
1979# define STORE_JUMP2(op, loc, to, arg) \
1980  PREFIX(store_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg)
1981
1982/* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.  */
1983# define INSERT_JUMP(op, loc, to) \
1984  PREFIX(insert_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b)
1985
1986/* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
1987# define INSERT_JUMP2(op, loc, to, arg) \
1988  PREFIX(insert_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\
1989	      arg, b)
1990
1991/* This is not an arbitrary limit: the arguments which represent offsets
1992   into the pattern are two bytes long.  So if 2^16 bytes turns out to
1993   be too small, many things would have to change.  */
1994/* Any other compiler which, like MSC, has allocation limit below 2^16
1995   bytes will have to use approach similar to what was done below for
1996   MSC and drop MAX_BUF_SIZE a bit.  Otherwise you may end up
1997   reallocating to 0 bytes.  Such thing is not going to work too well.
1998   You have been warned!!  */
1999# ifndef DEFINED_ONCE
2000#  if defined _MSC_VER  && !defined WIN32
2001/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
2002   The REALLOC define eliminates a flurry of conversion warnings,
2003   but is not required. */
2004#   define MAX_BUF_SIZE  65500L
2005#   define REALLOC(p,s) realloc ((p), (size_t) (s))
2006#  else
2007#   define MAX_BUF_SIZE (1L << 16)
2008#   define REALLOC(p,s) realloc ((p), (s))
2009#  endif
2010
2011/* Extend the buffer by twice its current size via realloc and
2012   reset the pointers that pointed into the old block to point to the
2013   correct places in the new one.  If extending the buffer results in it
2014   being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
2015#  if __BOUNDED_POINTERS__
2016#   define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
2017#   define MOVE_BUFFER_POINTER(P) \
2018  (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
2019#   define ELSE_EXTEND_BUFFER_HIGH_BOUND	\
2020  else						\
2021    {						\
2022      SET_HIGH_BOUND (b);			\
2023      SET_HIGH_BOUND (begalt);			\
2024      if (fixup_alt_jump)			\
2025	SET_HIGH_BOUND (fixup_alt_jump);	\
2026      if (laststart)				\
2027	SET_HIGH_BOUND (laststart);		\
2028      if (pending_exact)			\
2029	SET_HIGH_BOUND (pending_exact);		\
2030    }
2031#  else
2032#   define MOVE_BUFFER_POINTER(P) (P) += incr
2033#   define ELSE_EXTEND_BUFFER_HIGH_BOUND
2034#  endif
2035# endif /* not DEFINED_ONCE */
2036
2037# ifdef WCHAR
2038#  define EXTEND_BUFFER()						\
2039  do {									\
2040    UCHAR_T *old_buffer = COMPILED_BUFFER_VAR;				\
2041    int wchar_count;							\
2042    if (bufp->allocated + sizeof(UCHAR_T) > MAX_BUF_SIZE)		\
2043      return REG_ESIZE;							\
2044    bufp->allocated <<= 1;						\
2045    if (bufp->allocated > MAX_BUF_SIZE)					\
2046      bufp->allocated = MAX_BUF_SIZE;					\
2047    /* How many characters the new buffer can have?  */			\
2048    wchar_count = bufp->allocated / sizeof(UCHAR_T);			\
2049    if (wchar_count == 0) wchar_count = 1;				\
2050    /* Truncate the buffer to CHAR_T align.  */				\
2051    bufp->allocated = wchar_count * sizeof(UCHAR_T);			\
2052    RETALLOC (COMPILED_BUFFER_VAR, wchar_count, UCHAR_T);		\
2053    bufp->buffer = (char*)COMPILED_BUFFER_VAR;				\
2054    if (COMPILED_BUFFER_VAR == NULL)					\
2055      return REG_ESPACE;						\
2056    /* If the buffer moved, move all the pointers into it.  */		\
2057    if (old_buffer != COMPILED_BUFFER_VAR)				\
2058      {									\
2059	PTR_INT_TYPE incr = COMPILED_BUFFER_VAR - old_buffer;		\
2060	MOVE_BUFFER_POINTER (b);					\
2061	MOVE_BUFFER_POINTER (begalt);					\
2062	if (fixup_alt_jump)						\
2063	  MOVE_BUFFER_POINTER (fixup_alt_jump);				\
2064	if (laststart)							\
2065	  MOVE_BUFFER_POINTER (laststart);				\
2066	if (pending_exact)						\
2067	  MOVE_BUFFER_POINTER (pending_exact);				\
2068      }									\
2069    ELSE_EXTEND_BUFFER_HIGH_BOUND					\
2070  } while (0)
2071# else /* BYTE */
2072#  define EXTEND_BUFFER()						\
2073  do {									\
2074    UCHAR_T *old_buffer = COMPILED_BUFFER_VAR;				\
2075    if (bufp->allocated == MAX_BUF_SIZE)				\
2076      return REG_ESIZE;							\
2077    bufp->allocated <<= 1;						\
2078    if (bufp->allocated > MAX_BUF_SIZE)					\
2079      bufp->allocated = MAX_BUF_SIZE;					\
2080    bufp->buffer = (UCHAR_T *) REALLOC (COMPILED_BUFFER_VAR,		\
2081						bufp->allocated);	\
2082    if (COMPILED_BUFFER_VAR == NULL)					\
2083      return REG_ESPACE;						\
2084    /* If the buffer moved, move all the pointers into it.  */		\
2085    if (old_buffer != COMPILED_BUFFER_VAR)				\
2086      {									\
2087	PTR_INT_TYPE incr = COMPILED_BUFFER_VAR - old_buffer;		\
2088	MOVE_BUFFER_POINTER (b);					\
2089	MOVE_BUFFER_POINTER (begalt);					\
2090	if (fixup_alt_jump)						\
2091	  MOVE_BUFFER_POINTER (fixup_alt_jump);				\
2092	if (laststart)							\
2093	  MOVE_BUFFER_POINTER (laststart);				\
2094	if (pending_exact)						\
2095	  MOVE_BUFFER_POINTER (pending_exact);				\
2096      }									\
2097    ELSE_EXTEND_BUFFER_HIGH_BOUND					\
2098  } while (0)
2099# endif /* WCHAR */
2100
2101# ifndef DEFINED_ONCE
2102/* Since we have one byte reserved for the register number argument to
2103   {start,stop}_memory, the maximum number of groups we can report
2104   things about is what fits in that byte.  */
2105#  define MAX_REGNUM 255
2106
2107/* But patterns can have more than `MAX_REGNUM' registers.  We just
2108   ignore the excess.  */
2109typedef unsigned regnum_t;
2110
2111
2112/* Macros for the compile stack.  */
2113
2114/* Since offsets can go either forwards or backwards, this type needs to
2115   be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.  */
2116/* int may be not enough when sizeof(int) == 2.  */
2117typedef long pattern_offset_t;
2118
2119typedef struct
2120{
2121  pattern_offset_t begalt_offset;
2122  pattern_offset_t fixup_alt_jump;
2123  pattern_offset_t inner_group_offset;
2124  pattern_offset_t laststart_offset;
2125  regnum_t regnum;
2126} compile_stack_elt_t;
2127
2128
2129typedef struct
2130{
2131  compile_stack_elt_t *stack;
2132  unsigned size;
2133  unsigned avail;			/* Offset of next open position.  */
2134} compile_stack_type;
2135
2136
2137#  define INIT_COMPILE_STACK_SIZE 32
2138
2139#  define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
2140#  define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)
2141
2142/* The next available element.  */
2143#  define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
2144
2145# endif /* not DEFINED_ONCE */
2146
2147/* Set the bit for character C in a list.  */
2148# ifndef DEFINED_ONCE
2149#  define SET_LIST_BIT(c)                               \
2150  (b[((unsigned char) (c)) / BYTEWIDTH]               \
2151   |= 1 << (((unsigned char) c) % BYTEWIDTH))
2152# endif /* DEFINED_ONCE */
2153
2154/* Get the next unsigned number in the uncompiled pattern.  */
2155# define GET_UNSIGNED_NUMBER(num) \
2156  {									\
2157    while (p != pend)							\
2158      {									\
2159	PATFETCH (c);							\
2160	if (c < '0' || c > '9')						\
2161	  break;							\
2162	if (num <= RE_DUP_MAX)						\
2163	  {								\
2164	    if (num < 0)						\
2165	      num = 0;							\
2166	    num = num * 10 + c - '0';					\
2167	  }								\
2168      }									\
2169  }
2170
2171# ifndef DEFINED_ONCE
2172#  if defined _LIBC || WIDE_CHAR_SUPPORT
2173/* The GNU C library provides support for user-defined character classes
2174   and the functions from ISO C amendement 1.  */
2175#   ifdef CHARCLASS_NAME_MAX
2176#    define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
2177#   else
2178/* This shouldn't happen but some implementation might still have this
2179   problem.  Use a reasonable default value.  */
2180#    define CHAR_CLASS_MAX_LENGTH 256
2181#   endif
2182
2183#   ifdef _LIBC
2184#    define IS_CHAR_CLASS(string) __wctype (string)
2185#   else
2186#    define IS_CHAR_CLASS(string) wctype (string)
2187#   endif
2188#  else
2189#   define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */
2190
2191#   define IS_CHAR_CLASS(string)					\
2192   (STREQ (string, "alpha") || STREQ (string, "upper")			\
2193    || STREQ (string, "lower") || STREQ (string, "digit")		\
2194    || STREQ (string, "alnum") || STREQ (string, "xdigit")		\
2195    || STREQ (string, "space") || STREQ (string, "print")		\
2196    || STREQ (string, "punct") || STREQ (string, "graph")		\
2197    || STREQ (string, "cntrl") || STREQ (string, "blank"))
2198#  endif
2199# endif /* DEFINED_ONCE */
2200
2201# ifndef MATCH_MAY_ALLOCATE
2202
2203/* If we cannot allocate large objects within re_match_2_internal,
2204   we make the fail stack and register vectors global.
2205   The fail stack, we grow to the maximum size when a regexp
2206   is compiled.
2207   The register vectors, we adjust in size each time we
2208   compile a regexp, according to the number of registers it needs.  */
2209
2210static PREFIX(fail_stack_type) fail_stack;
2211
2212/* Size with which the following vectors are currently allocated.
2213   That is so we can make them bigger as needed,
2214   but never make them smaller.  */
2215#  ifdef DEFINED_ONCE
2216static int regs_allocated_size;
2217
2218static const char **     regstart, **     regend;
2219static const char ** old_regstart, ** old_regend;
2220static const char **best_regstart, **best_regend;
2221static const char **reg_dummy;
2222#  endif /* DEFINED_ONCE */
2223
2224static PREFIX(register_info_type) *PREFIX(reg_info);
2225static PREFIX(register_info_type) *PREFIX(reg_info_dummy);
2226
2227/* Make the register vectors big enough for NUM_REGS registers,
2228   but don't make them smaller.  */
2229
2230static void
2231PREFIX(regex_grow_registers) (int num_regs)
2232{
2233  if (num_regs > regs_allocated_size)
2234    {
2235      RETALLOC_IF (regstart,	 num_regs, const char *);
2236      RETALLOC_IF (regend,	 num_regs, const char *);
2237      RETALLOC_IF (old_regstart, num_regs, const char *);
2238      RETALLOC_IF (old_regend,	 num_regs, const char *);
2239      RETALLOC_IF (best_regstart, num_regs, const char *);
2240      RETALLOC_IF (best_regend,	 num_regs, const char *);
2241      RETALLOC_IF (PREFIX(reg_info), num_regs, PREFIX(register_info_type));
2242      RETALLOC_IF (reg_dummy,	 num_regs, const char *);
2243      RETALLOC_IF (PREFIX(reg_info_dummy), num_regs, PREFIX(register_info_type));
2244
2245      regs_allocated_size = num_regs;
2246    }
2247}
2248
2249# endif /* not MATCH_MAY_ALLOCATE */
2250
2251# ifndef DEFINED_ONCE
2252static boolean group_in_compile_stack (compile_stack_type compile_stack,
2253                                       regnum_t regnum);
2254# endif /* not DEFINED_ONCE */
2255
2256/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2257   Returns one of error codes defined in `regex.h', or zero for success.
2258
2259   Assumes the `allocated' (and perhaps `buffer') and `translate'
2260   fields are set in BUFP on entry.
2261
2262   If it succeeds, results are put in BUFP (if it returns an error, the
2263   contents of BUFP are undefined):
2264     `buffer' is the compiled pattern;
2265     `syntax' is set to SYNTAX;
2266     `used' is set to the length of the compiled pattern;
2267     `fastmap_accurate' is zero;
2268     `re_nsub' is the number of subexpressions in PATTERN;
2269     `not_bol' and `not_eol' are zero;
2270
2271   The `fastmap' and `newline_anchor' fields are neither
2272   examined nor set.  */
2273
2274/* Return, freeing storage we allocated.  */
2275# ifdef WCHAR
2276#  define FREE_STACK_RETURN(value)		\
2277  return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value)
2278# else
2279#  define FREE_STACK_RETURN(value)		\
2280  return (free (compile_stack.stack), value)
2281# endif /* WCHAR */
2282
2283static reg_errcode_t
2284PREFIX(regex_compile) (const char *ARG_PREFIX(pattern),
2285                       size_t ARG_PREFIX(size), reg_syntax_t syntax,
2286                       struct re_pattern_buffer *bufp)
2287{
2288  /* We fetch characters from PATTERN here.  Even though PATTERN is
2289     `char *' (i.e., signed), we declare these variables as unsigned, so
2290     they can be reliably used as array indices.  */
2291  register UCHAR_T c, c1;
2292
2293#ifdef WCHAR
2294  /* A temporary space to keep wchar_t pattern and compiled pattern.  */
2295  CHAR_T *pattern, *COMPILED_BUFFER_VAR;
2296  size_t size;
2297  /* offset buffer for optimization. See convert_mbs_to_wc.  */
2298  int *mbs_offset = NULL;
2299  /* It hold whether each wchar_t is binary data or not.  */
2300  char *is_binary = NULL;
2301  /* A flag whether exactn is handling binary data or not.  */
2302  char is_exactn_bin = FALSE;
2303#endif /* WCHAR */
2304
2305  /* A random temporary spot in PATTERN.  */
2306  const CHAR_T *p1;
2307
2308  /* Points to the end of the buffer, where we should append.  */
2309  register UCHAR_T *b;
2310
2311  /* Keeps track of unclosed groups.  */
2312  compile_stack_type compile_stack;
2313
2314  /* Points to the current (ending) position in the pattern.  */
2315#ifdef WCHAR
2316  const CHAR_T *p;
2317  const CHAR_T *pend;
2318#else /* BYTE */
2319  const CHAR_T *p = pattern;
2320  const CHAR_T *pend = pattern + size;
2321#endif /* WCHAR */
2322
2323  /* How to translate the characters in the pattern.  */
2324  RE_TRANSLATE_TYPE translate = bufp->translate;
2325
2326  /* Address of the count-byte of the most recently inserted `exactn'
2327     command.  This makes it possible to tell if a new exact-match
2328     character can be added to that command or if the character requires
2329     a new `exactn' command.  */
2330  UCHAR_T *pending_exact = 0;
2331
2332  /* Address of start of the most recently finished expression.
2333     This tells, e.g., postfix * where to find the start of its
2334     operand.  Reset at the beginning of groups and alternatives.  */
2335  UCHAR_T *laststart = 0;
2336
2337  /* Address of beginning of regexp, or inside of last group.  */
2338  UCHAR_T *begalt;
2339
2340  /* Address of the place where a forward jump should go to the end of
2341     the containing expression.  Each alternative of an `or' -- except the
2342     last -- ends with a forward jump of this sort.  */
2343  UCHAR_T *fixup_alt_jump = 0;
2344
2345  /* Counts open-groups as they are encountered.  Remembered for the
2346     matching close-group on the compile stack, so the same register
2347     number is put in the stop_memory as the start_memory.  */
2348  regnum_t regnum = 0;
2349
2350#ifdef WCHAR
2351  /* Initialize the wchar_t PATTERN and offset_buffer.  */
2352  p = pend = pattern = TALLOC(csize + 1, CHAR_T);
2353  mbs_offset = TALLOC(csize + 1, int);
2354  is_binary = TALLOC(csize + 1, char);
2355  if (pattern == NULL || mbs_offset == NULL || is_binary == NULL)
2356    {
2357      free(pattern);
2358      free(mbs_offset);
2359      free(is_binary);
2360      return REG_ESPACE;
2361    }
2362  pattern[csize] = L'\0';	/* sentinel */
2363  size = convert_mbs_to_wcs(pattern, cpattern, csize, mbs_offset, is_binary);
2364  pend = p + size;
2365  if (size < 0)
2366    {
2367      free(pattern);
2368      free(mbs_offset);
2369      free(is_binary);
2370      return REG_BADPAT;
2371    }
2372#endif
2373
2374#ifdef DEBUG
2375  DEBUG_PRINT1 ("\nCompiling pattern: ");
2376  if (debug)
2377    {
2378      unsigned debug_count;
2379
2380      for (debug_count = 0; debug_count < size; debug_count++)
2381        PUT_CHAR (pattern[debug_count]);
2382      putchar ('\n');
2383    }
2384#endif /* DEBUG */
2385
2386  /* Initialize the compile stack.  */
2387  compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2388  if (compile_stack.stack == NULL)
2389    {
2390#ifdef WCHAR
2391      free(pattern);
2392      free(mbs_offset);
2393      free(is_binary);
2394#endif
2395      return REG_ESPACE;
2396    }
2397
2398  compile_stack.size = INIT_COMPILE_STACK_SIZE;
2399  compile_stack.avail = 0;
2400
2401  /* Initialize the pattern buffer.  */
2402  bufp->syntax = syntax;
2403  bufp->fastmap_accurate = 0;
2404  bufp->not_bol = bufp->not_eol = 0;
2405
2406  /* Set `used' to zero, so that if we return an error, the pattern
2407     printer (for debugging) will think there's no pattern.  We reset it
2408     at the end.  */
2409  bufp->used = 0;
2410
2411  /* Always count groups, whether or not bufp->no_sub is set.  */
2412  bufp->re_nsub = 0;
2413
2414#if !defined emacs && !defined SYNTAX_TABLE
2415  /* Initialize the syntax table.  */
2416   init_syntax_once ();
2417#endif
2418
2419  if (bufp->allocated == 0)
2420    {
2421      if (bufp->buffer)
2422	{ /* If zero allocated, but buffer is non-null, try to realloc
2423             enough space.  This loses if buffer's address is bogus, but
2424             that is the user's responsibility.  */
2425#ifdef WCHAR
2426	  /* Free bufp->buffer and allocate an array for wchar_t pattern
2427	     buffer.  */
2428          free(bufp->buffer);
2429          COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE/sizeof(UCHAR_T),
2430					UCHAR_T);
2431#else
2432          RETALLOC (COMPILED_BUFFER_VAR, INIT_BUF_SIZE, UCHAR_T);
2433#endif /* WCHAR */
2434        }
2435      else
2436        { /* Caller did not allocate a buffer.  Do it for them.  */
2437          COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE / sizeof(UCHAR_T),
2438					UCHAR_T);
2439        }
2440
2441      if (!COMPILED_BUFFER_VAR) FREE_STACK_RETURN (REG_ESPACE);
2442#ifdef WCHAR
2443      bufp->buffer = (char*)COMPILED_BUFFER_VAR;
2444#endif /* WCHAR */
2445      bufp->allocated = INIT_BUF_SIZE;
2446    }
2447#ifdef WCHAR
2448  else
2449    COMPILED_BUFFER_VAR = (UCHAR_T*) bufp->buffer;
2450#endif
2451
2452  begalt = b = COMPILED_BUFFER_VAR;
2453
2454  /* Loop through the uncompiled pattern until we're at the end.  */
2455  while (p != pend)
2456    {
2457      PATFETCH (c);
2458
2459      switch (c)
2460        {
2461        case '^':
2462          {
2463            if (   /* If at start of pattern, it's an operator.  */
2464                   p == pattern + 1
2465                   /* If context independent, it's an operator.  */
2466                || syntax & RE_CONTEXT_INDEP_ANCHORS
2467                   /* Otherwise, depends on what's come before.  */
2468                || PREFIX(at_begline_loc_p) (pattern, p, syntax))
2469              BUF_PUSH (begline);
2470            else
2471              goto normal_char;
2472          }
2473          break;
2474
2475
2476        case '$':
2477          {
2478            if (   /* If at end of pattern, it's an operator.  */
2479                   p == pend
2480                   /* If context independent, it's an operator.  */
2481                || syntax & RE_CONTEXT_INDEP_ANCHORS
2482                   /* Otherwise, depends on what's next.  */
2483                || PREFIX(at_endline_loc_p) (p, pend, syntax))
2484               BUF_PUSH (endline);
2485             else
2486               goto normal_char;
2487           }
2488           break;
2489
2490
2491	case '+':
2492        case '?':
2493          if ((syntax & RE_BK_PLUS_QM)
2494              || (syntax & RE_LIMITED_OPS))
2495            goto normal_char;
2496	  /* Fall through.  */
2497        handle_plus:
2498        case '*':
2499          /* If there is no previous pattern... */
2500          if (!laststart)
2501            {
2502              if (syntax & RE_CONTEXT_INVALID_OPS)
2503                FREE_STACK_RETURN (REG_BADRPT);
2504              else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2505                goto normal_char;
2506            }
2507
2508          {
2509            /* Are we optimizing this jump?  */
2510            boolean keep_string_p = false;
2511
2512            /* 1 means zero (many) matches is allowed.  */
2513            char zero_times_ok = 0, many_times_ok = 0;
2514
2515            /* If there is a sequence of repetition chars, collapse it
2516               down to just one (the right one).  We can't combine
2517               interval operators with these because of, e.g., `a{2}*',
2518               which should only match an even number of `a's.  */
2519
2520            for (;;)
2521              {
2522                zero_times_ok |= c != '+';
2523                many_times_ok |= c != '?';
2524
2525                if (p == pend)
2526                  break;
2527
2528                PATFETCH (c);
2529
2530                if (c == '*'
2531                    || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2532                  ;
2533
2534                else if (syntax & RE_BK_PLUS_QM  &&  c == '\\')
2535                  {
2536                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2537
2538                    PATFETCH (c1);
2539                    if (!(c1 == '+' || c1 == '?'))
2540                      {
2541                        PATUNFETCH;
2542                        PATUNFETCH;
2543                        break;
2544                      }
2545
2546                    c = c1;
2547                  }
2548                else
2549                  {
2550                    PATUNFETCH;
2551                    break;
2552                  }
2553
2554                /* If we get here, we found another repeat character.  */
2555               }
2556
2557            /* Star, etc. applied to an empty pattern is equivalent
2558               to an empty pattern.  */
2559            if (!laststart)
2560              break;
2561
2562            /* Now we know whether or not zero matches is allowed
2563               and also whether or not two or more matches is allowed.  */
2564            if (many_times_ok)
2565              { /* More than one repetition is allowed, so put in at the
2566                   end a backward relative jump from `b' to before the next
2567                   jump we're going to put in below (which jumps from
2568                   laststart to after this jump).
2569
2570                   But if we are at the `*' in the exact sequence `.*\n',
2571                   insert an unconditional jump backwards to the .,
2572                   instead of the beginning of the loop.  This way we only
2573                   push a failure point once, instead of every time
2574                   through the loop.  */
2575                assert (p - 1 > pattern);
2576
2577                /* Allocate the space for the jump.  */
2578                GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2579
2580                /* We know we are not at the first character of the pattern,
2581                   because laststart was nonzero.  And we've already
2582                   incremented `p', by the way, to be the character after
2583                   the `*'.  Do we have to do something analogous here
2584                   for null bytes, because of RE_DOT_NOT_NULL?  */
2585                if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2586		    && zero_times_ok
2587                    && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2588                    && !(syntax & RE_DOT_NEWLINE))
2589                  { /* We have .*\n.  */
2590                    STORE_JUMP (jump, b, laststart);
2591                    keep_string_p = true;
2592                  }
2593                else
2594                  /* Anything else.  */
2595                  STORE_JUMP (maybe_pop_jump, b, laststart -
2596			      (1 + OFFSET_ADDRESS_SIZE));
2597
2598                /* We've added more stuff to the buffer.  */
2599                b += 1 + OFFSET_ADDRESS_SIZE;
2600              }
2601
2602            /* On failure, jump from laststart to b + 3, which will be the
2603               end of the buffer after this jump is inserted.  */
2604	    /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of
2605	       'b + 3'.  */
2606            GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2607            INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2608                                       : on_failure_jump,
2609                         laststart, b + 1 + OFFSET_ADDRESS_SIZE);
2610            pending_exact = 0;
2611            b += 1 + OFFSET_ADDRESS_SIZE;
2612
2613            if (!zero_times_ok)
2614              {
2615                /* At least one repetition is required, so insert a
2616                   `dummy_failure_jump' before the initial
2617                   `on_failure_jump' instruction of the loop. This
2618                   effects a skip over that instruction the first time
2619                   we hit that loop.  */
2620                GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2621                INSERT_JUMP (dummy_failure_jump, laststart, laststart +
2622			     2 + 2 * OFFSET_ADDRESS_SIZE);
2623                b += 1 + OFFSET_ADDRESS_SIZE;
2624              }
2625            }
2626	  break;
2627
2628
2629	case '.':
2630          laststart = b;
2631          BUF_PUSH (anychar);
2632          break;
2633
2634
2635        case '[':
2636          {
2637            boolean had_char_class = false;
2638#ifdef WCHAR
2639	    CHAR_T range_start = 0xffffffff;
2640#else
2641	    unsigned int range_start = 0xffffffff;
2642#endif
2643            if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2644
2645#ifdef WCHAR
2646	    /* We assume a charset(_not) structure as a wchar_t array.
2647	       charset[0] = (re_opcode_t) charset(_not)
2648               charset[1] = l (= length of char_classes)
2649               charset[2] = m (= length of collating_symbols)
2650               charset[3] = n (= length of equivalence_classes)
2651	       charset[4] = o (= length of char_ranges)
2652	       charset[5] = p (= length of chars)
2653
2654               charset[6] = char_class (wctype_t)
2655               charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t)
2656                         ...
2657               charset[l+5]  = char_class (wctype_t)
2658
2659               charset[l+6]  = collating_symbol (wchar_t)
2660                            ...
2661               charset[l+m+5]  = collating_symbol (wchar_t)
2662					ifdef _LIBC we use the index if
2663					_NL_COLLATE_SYMB_EXTRAMB instead of
2664					wchar_t string.
2665
2666               charset[l+m+6]  = equivalence_classes (wchar_t)
2667                              ...
2668               charset[l+m+n+5]  = equivalence_classes (wchar_t)
2669					ifdef _LIBC we use the index in
2670					_NL_COLLATE_WEIGHT instead of
2671					wchar_t string.
2672
2673	       charset[l+m+n+6] = range_start
2674	       charset[l+m+n+7] = range_end
2675	                       ...
2676	       charset[l+m+n+2o+4] = range_start
2677	       charset[l+m+n+2o+5] = range_end
2678					ifdef _LIBC we use the value looked up
2679					in _NL_COLLATE_COLLSEQ instead of
2680					wchar_t character.
2681
2682	       charset[l+m+n+2o+6] = char
2683	                          ...
2684	       charset[l+m+n+2o+p+5] = char
2685
2686	     */
2687
2688	    /* We need at least 6 spaces: the opcode, the length of
2689               char_classes, the length of collating_symbols, the length of
2690               equivalence_classes, the length of char_ranges, the length of
2691               chars.  */
2692	    GET_BUFFER_SPACE (6);
2693
2694	    /* Save b as laststart. And We use laststart as the pointer
2695	       to the first element of the charset here.
2696	       In other words, laststart[i] indicates charset[i].  */
2697            laststart = b;
2698
2699            /* We test `*p == '^' twice, instead of using an if
2700               statement, so we only need one BUF_PUSH.  */
2701            BUF_PUSH (*p == '^' ? charset_not : charset);
2702            if (*p == '^')
2703              p++;
2704
2705            /* Push the length of char_classes, the length of
2706               collating_symbols, the length of equivalence_classes, the
2707               length of char_ranges and the length of chars.  */
2708            BUF_PUSH_3 (0, 0, 0);
2709            BUF_PUSH_2 (0, 0);
2710
2711            /* Remember the first position in the bracket expression.  */
2712            p1 = p;
2713
2714            /* charset_not matches newline according to a syntax bit.  */
2715            if ((re_opcode_t) b[-6] == charset_not
2716                && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2717	      {
2718		BUF_PUSH('\n');
2719		laststart[5]++; /* Update the length of characters  */
2720	      }
2721
2722            /* Read in characters and ranges, setting map bits.  */
2723            for (;;)
2724              {
2725                if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2726
2727                PATFETCH (c);
2728
2729                /* \ might escape characters inside [...] and [^...].  */
2730                if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2731                  {
2732                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2733
2734                    PATFETCH (c1);
2735		    BUF_PUSH(c1);
2736		    laststart[5]++; /* Update the length of chars  */
2737		    range_start = c1;
2738                    continue;
2739                  }
2740
2741                /* Could be the end of the bracket expression.  If it's
2742                   not (i.e., when the bracket expression is `[]' so
2743                   far), the ']' character bit gets set way below.  */
2744                if (c == ']' && p != p1 + 1)
2745                  break;
2746
2747                /* Look ahead to see if it's a range when the last thing
2748                   was a character class.  */
2749                if (had_char_class && c == '-' && *p != ']')
2750                  FREE_STACK_RETURN (REG_ERANGE);
2751
2752                /* Look ahead to see if it's a range when the last thing
2753                   was a character: if this is a hyphen not at the
2754                   beginning or the end of a list, then it's the range
2755                   operator.  */
2756                if (c == '-'
2757                    && !(p - 2 >= pattern && p[-2] == '[')
2758                    && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2759                    && *p != ']')
2760                  {
2761                    reg_errcode_t ret;
2762		    /* Allocate the space for range_start and range_end.  */
2763		    GET_BUFFER_SPACE (2);
2764		    /* Update the pointer to indicate end of buffer.  */
2765                    b += 2;
2766                    ret = wcs_compile_range (range_start, &p, pend, translate,
2767                                         syntax, b, laststart);
2768                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2769                    range_start = 0xffffffff;
2770                  }
2771                else if (p[0] == '-' && p[1] != ']')
2772                  { /* This handles ranges made up of characters only.  */
2773                    reg_errcode_t ret;
2774
2775		    /* Move past the `-'.  */
2776                    PATFETCH (c1);
2777		    /* Allocate the space for range_start and range_end.  */
2778		    GET_BUFFER_SPACE (2);
2779		    /* Update the pointer to indicate end of buffer.  */
2780                    b += 2;
2781                    ret = wcs_compile_range (c, &p, pend, translate, syntax, b,
2782                                         laststart);
2783                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2784		    range_start = 0xffffffff;
2785                  }
2786
2787                /* See if we're at the beginning of a possible character
2788                   class.  */
2789                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2790                  { /* Leave room for the null.  */
2791                    char str[CHAR_CLASS_MAX_LENGTH + 1];
2792
2793                    PATFETCH (c);
2794                    c1 = 0;
2795
2796                    /* If pattern is `[[:'.  */
2797                    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2798
2799                    for (;;)
2800                      {
2801                        PATFETCH (c);
2802                        if ((c == ':' && *p == ']') || p == pend)
2803                          break;
2804			if (c1 < CHAR_CLASS_MAX_LENGTH)
2805			  str[c1++] = c;
2806			else
2807			  /* This is in any case an invalid class name.  */
2808			  str[0] = '\0';
2809                      }
2810                    str[c1] = '\0';
2811
2812                    /* If isn't a word bracketed by `[:' and `:]':
2813                       undo the ending character, the letters, and leave
2814                       the leading `:' and `[' (but store them as character).  */
2815                    if (c == ':' && *p == ']')
2816                      {
2817			wctype_t wt;
2818			uintptr_t alignedp;
2819
2820			/* Query the character class as wctype_t.  */
2821			wt = IS_CHAR_CLASS (str);
2822			if (wt == 0)
2823			  FREE_STACK_RETURN (REG_ECTYPE);
2824
2825                        /* Throw away the ] at the end of the character
2826                           class.  */
2827                        PATFETCH (c);
2828
2829                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2830
2831			/* Allocate the space for character class.  */
2832                        GET_BUFFER_SPACE(CHAR_CLASS_SIZE);
2833			/* Update the pointer to indicate end of buffer.  */
2834                        b += CHAR_CLASS_SIZE;
2835			/* Move data which follow character classes
2836			    not to violate the data.  */
2837                        insert_space(CHAR_CLASS_SIZE,
2838				     laststart + 6 + laststart[1],
2839				     b - 1);
2840			alignedp = ((uintptr_t)(laststart + 6 + laststart[1])
2841				    + __alignof__(wctype_t) - 1)
2842			  	    & ~(uintptr_t)(__alignof__(wctype_t) - 1);
2843			/* Store the character class.  */
2844                        *((wctype_t*)alignedp) = wt;
2845                        /* Update length of char_classes */
2846                        laststart[1] += CHAR_CLASS_SIZE;
2847
2848                        had_char_class = true;
2849                      }
2850                    else
2851                      {
2852                        c1++;
2853                        while (c1--)
2854                          PATUNFETCH;
2855                        BUF_PUSH ('[');
2856                        BUF_PUSH (':');
2857                        laststart[5] += 2; /* Update the length of characters  */
2858			range_start = ':';
2859                        had_char_class = false;
2860                      }
2861                  }
2862                else if (syntax & RE_CHAR_CLASSES && c == '[' && (*p == '='
2863							  || *p == '.'))
2864		  {
2865		    CHAR_T str[128];	/* Should be large enough.  */
2866		    CHAR_T delim = *p; /* '=' or '.'  */
2867# ifdef _LIBC
2868		    uint32_t nrules =
2869		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
2870# endif
2871		    PATFETCH (c);
2872		    c1 = 0;
2873
2874		    /* If pattern is `[[=' or '[[.'.  */
2875		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2876
2877		    for (;;)
2878		      {
2879			PATFETCH (c);
2880			if ((c == delim && *p == ']') || p == pend)
2881			  break;
2882			if (c1 < sizeof (str) - 1)
2883			  str[c1++] = c;
2884			else
2885			  /* This is in any case an invalid class name.  */
2886			  str[0] = '\0';
2887                      }
2888		    str[c1] = '\0';
2889
2890		    if (c == delim && *p == ']' && str[0] != '\0')
2891		      {
2892                        unsigned int i, offset;
2893			/* If we have no collation data we use the default
2894			   collation in which each character is in a class
2895			   by itself.  It also means that ASCII is the
2896			   character set and therefore we cannot have character
2897			   with more than one byte in the multibyte
2898			   representation.  */
2899
2900                        /* If not defined _LIBC, we push the name and
2901			   `\0' for the sake of matching performance.  */
2902			int datasize = c1 + 1;
2903
2904# ifdef _LIBC
2905			int32_t idx = 0;
2906			if (nrules == 0)
2907# endif
2908			  {
2909			    if (c1 != 1)
2910			      FREE_STACK_RETURN (REG_ECOLLATE);
2911			  }
2912# ifdef _LIBC
2913			else
2914			  {
2915			    const int32_t *table;
2916			    const int32_t *weights;
2917			    const int32_t *extra;
2918			    const int32_t *indirect;
2919			    wint_t *cp;
2920
2921			    /* This #include defines a local function!  */
2922#  include <locale/weightwc.h>
2923
2924			    if(delim == '=')
2925			      {
2926				/* We push the index for equivalence class.  */
2927				cp = (wint_t*)str;
2928
2929				table = (const int32_t *)
2930				  _NL_CURRENT (LC_COLLATE,
2931					       _NL_COLLATE_TABLEWC);
2932				weights = (const int32_t *)
2933				  _NL_CURRENT (LC_COLLATE,
2934					       _NL_COLLATE_WEIGHTWC);
2935				extra = (const int32_t *)
2936				  _NL_CURRENT (LC_COLLATE,
2937					       _NL_COLLATE_EXTRAWC);
2938				indirect = (const int32_t *)
2939				  _NL_CURRENT (LC_COLLATE,
2940					       _NL_COLLATE_INDIRECTWC);
2941
2942				idx = findidx ((const wint_t**)&cp);
2943				if (idx == 0 || cp < (wint_t*) str + c1)
2944				  /* This is no valid character.  */
2945				  FREE_STACK_RETURN (REG_ECOLLATE);
2946
2947				str[0] = (wchar_t)idx;
2948			      }
2949			    else /* delim == '.' */
2950			      {
2951				/* We push collation sequence value
2952				   for collating symbol.  */
2953				int32_t table_size;
2954				const int32_t *symb_table;
2955				const unsigned char *extra;
2956				int32_t idx;
2957				int32_t elem;
2958				int32_t second;
2959				int32_t hash;
2960				char char_str[c1];
2961
2962				/* We have to convert the name to a single-byte
2963				   string.  This is possible since the names
2964				   consist of ASCII characters and the internal
2965				   representation is UCS4.  */
2966				for (i = 0; i < c1; ++i)
2967				  char_str[i] = str[i];
2968
2969				table_size =
2970				  _NL_CURRENT_WORD (LC_COLLATE,
2971						    _NL_COLLATE_SYMB_HASH_SIZEMB);
2972				symb_table = (const int32_t *)
2973				  _NL_CURRENT (LC_COLLATE,
2974					       _NL_COLLATE_SYMB_TABLEMB);
2975				extra = (const unsigned char *)
2976				  _NL_CURRENT (LC_COLLATE,
2977					       _NL_COLLATE_SYMB_EXTRAMB);
2978
2979				/* Locate the character in the hashing table.  */
2980				hash = elem_hash (char_str, c1);
2981
2982				idx = 0;
2983				elem = hash % table_size;
2984				second = hash % (table_size - 2);
2985				while (symb_table[2 * elem] != 0)
2986				  {
2987				    /* First compare the hashing value.  */
2988				    if (symb_table[2 * elem] == hash
2989					&& c1 == extra[symb_table[2 * elem + 1]]
2990					&& memcmp (char_str,
2991						   &extra[symb_table[2 * elem + 1]
2992							 + 1], c1) == 0)
2993				      {
2994					/* Yep, this is the entry.  */
2995					idx = symb_table[2 * elem + 1];
2996					idx += 1 + extra[idx];
2997					break;
2998				      }
2999
3000				    /* Next entry.  */
3001				    elem += second;
3002				  }
3003
3004				if (symb_table[2 * elem] != 0)
3005				  {
3006				    /* Compute the index of the byte sequence
3007				       in the table.  */
3008				    idx += 1 + extra[idx];
3009				    /* Adjust for the alignment.  */
3010				    idx = (idx + 3) & ~3;
3011
3012				    str[0] = (wchar_t) idx + 4;
3013				  }
3014				else if (symb_table[2 * elem] == 0 && c1 == 1)
3015				  {
3016				    /* No valid character.  Match it as a
3017				       single byte character.  */
3018				    had_char_class = false;
3019				    BUF_PUSH(str[0]);
3020				    /* Update the length of characters  */
3021				    laststart[5]++;
3022				    range_start = str[0];
3023
3024				    /* Throw away the ] at the end of the
3025				       collating symbol.  */
3026				    PATFETCH (c);
3027				    /* exit from the switch block.  */
3028				    continue;
3029				  }
3030				else
3031				  FREE_STACK_RETURN (REG_ECOLLATE);
3032			      }
3033			    datasize = 1;
3034			  }
3035# endif
3036                        /* Throw away the ] at the end of the equivalence
3037                           class (or collating symbol).  */
3038                        PATFETCH (c);
3039
3040			/* Allocate the space for the equivalence class
3041			   (or collating symbol) (and '\0' if needed).  */
3042                        GET_BUFFER_SPACE(datasize);
3043			/* Update the pointer to indicate end of buffer.  */
3044                        b += datasize;
3045
3046			if (delim == '=')
3047			  { /* equivalence class  */
3048			    /* Calculate the offset of char_ranges,
3049			       which is next to equivalence_classes.  */
3050			    offset = laststart[1] + laststart[2]
3051			      + laststart[3] +6;
3052			    /* Insert space.  */
3053			    insert_space(datasize, laststart + offset, b - 1);
3054
3055			    /* Write the equivalence_class and \0.  */
3056			    for (i = 0 ; i < datasize ; i++)
3057			      laststart[offset + i] = str[i];
3058
3059			    /* Update the length of equivalence_classes.  */
3060			    laststart[3] += datasize;
3061			    had_char_class = true;
3062			  }
3063			else /* delim == '.' */
3064			  { /* collating symbol  */
3065			    /* Calculate the offset of the equivalence_classes,
3066			       which is next to collating_symbols.  */
3067			    offset = laststart[1] + laststart[2] + 6;
3068			    /* Insert space and write the collationg_symbol
3069			       and \0.  */
3070			    insert_space(datasize, laststart + offset, b-1);
3071			    for (i = 0 ; i < datasize ; i++)
3072			      laststart[offset + i] = str[i];
3073
3074			    /* In re_match_2_internal if range_start < -1, we
3075			       assume -range_start is the offset of the
3076			       collating symbol which is specified as
3077			       the character of the range start.  So we assign
3078			       -(laststart[1] + laststart[2] + 6) to
3079			       range_start.  */
3080			    range_start = -(laststart[1] + laststart[2] + 6);
3081			    /* Update the length of collating_symbol.  */
3082			    laststart[2] += datasize;
3083			    had_char_class = false;
3084			  }
3085		      }
3086                    else
3087                      {
3088                        c1++;
3089                        while (c1--)
3090                          PATUNFETCH;
3091                        BUF_PUSH ('[');
3092                        BUF_PUSH (delim);
3093                        laststart[5] += 2; /* Update the length of characters  */
3094			range_start = delim;
3095                        had_char_class = false;
3096                      }
3097		  }
3098                else
3099                  {
3100                    had_char_class = false;
3101		    BUF_PUSH(c);
3102		    laststart[5]++;  /* Update the length of characters  */
3103		    range_start = c;
3104                  }
3105	      }
3106
3107#else /* BYTE */
3108            /* Ensure that we have enough space to push a charset: the
3109               opcode, the length count, and the bitset; 34 bytes in all.  */
3110	    GET_BUFFER_SPACE (34);
3111
3112            laststart = b;
3113
3114            /* We test `*p == '^' twice, instead of using an if
3115               statement, so we only need one BUF_PUSH.  */
3116            BUF_PUSH (*p == '^' ? charset_not : charset);
3117            if (*p == '^')
3118              p++;
3119
3120            /* Remember the first position in the bracket expression.  */
3121            p1 = p;
3122
3123            /* Push the number of bytes in the bitmap.  */
3124            BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
3125
3126            /* Clear the whole map.  */
3127            bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
3128
3129            /* charset_not matches newline according to a syntax bit.  */
3130            if ((re_opcode_t) b[-2] == charset_not
3131                && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
3132              SET_LIST_BIT ('\n');
3133
3134            /* Read in characters and ranges, setting map bits.  */
3135            for (;;)
3136              {
3137                if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3138
3139                PATFETCH (c);
3140
3141                /* \ might escape characters inside [...] and [^...].  */
3142                if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
3143                  {
3144                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3145
3146                    PATFETCH (c1);
3147                    SET_LIST_BIT (c1);
3148		    range_start = c1;
3149                    continue;
3150                  }
3151
3152                /* Could be the end of the bracket expression.  If it's
3153                   not (i.e., when the bracket expression is `[]' so
3154                   far), the ']' character bit gets set way below.  */
3155                if (c == ']' && p != p1 + 1)
3156                  break;
3157
3158                /* Look ahead to see if it's a range when the last thing
3159                   was a character class.  */
3160                if (had_char_class && c == '-' && *p != ']')
3161                  FREE_STACK_RETURN (REG_ERANGE);
3162
3163                /* Look ahead to see if it's a range when the last thing
3164                   was a character: if this is a hyphen not at the
3165                   beginning or the end of a list, then it's the range
3166                   operator.  */
3167                if (c == '-'
3168                    && !(p - 2 >= pattern && p[-2] == '[')
3169                    && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
3170                    && *p != ']')
3171                  {
3172                    reg_errcode_t ret
3173                      = byte_compile_range (range_start, &p, pend, translate,
3174					    syntax, b);
3175                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3176		    range_start = 0xffffffff;
3177                  }
3178
3179                else if (p[0] == '-' && p[1] != ']')
3180                  { /* This handles ranges made up of characters only.  */
3181                    reg_errcode_t ret;
3182
3183		    /* Move past the `-'.  */
3184                    PATFETCH (c1);
3185
3186                    ret = byte_compile_range (c, &p, pend, translate, syntax, b);
3187                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3188		    range_start = 0xffffffff;
3189                  }
3190
3191                /* See if we're at the beginning of a possible character
3192                   class.  */
3193
3194                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
3195                  { /* Leave room for the null.  */
3196                    char str[CHAR_CLASS_MAX_LENGTH + 1];
3197
3198                    PATFETCH (c);
3199                    c1 = 0;
3200
3201                    /* If pattern is `[[:'.  */
3202                    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3203
3204                    for (;;)
3205                      {
3206                        PATFETCH (c);
3207                        if ((c == ':' && *p == ']') || p == pend)
3208                          break;
3209			if (c1 < CHAR_CLASS_MAX_LENGTH)
3210			  str[c1++] = c;
3211			else
3212			  /* This is in any case an invalid class name.  */
3213			  str[0] = '\0';
3214                      }
3215                    str[c1] = '\0';
3216
3217                    /* If isn't a word bracketed by `[:' and `:]':
3218                       undo the ending character, the letters, and leave
3219                       the leading `:' and `[' (but set bits for them).  */
3220                    if (c == ':' && *p == ']')
3221                      {
3222# if defined _LIBC || WIDE_CHAR_SUPPORT
3223                        boolean is_lower = STREQ (str, "lower");
3224                        boolean is_upper = STREQ (str, "upper");
3225			wctype_t wt;
3226                        int ch;
3227
3228			wt = IS_CHAR_CLASS (str);
3229			if (wt == 0)
3230			  FREE_STACK_RETURN (REG_ECTYPE);
3231
3232                        /* Throw away the ] at the end of the character
3233                           class.  */
3234                        PATFETCH (c);
3235
3236                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3237
3238                        for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
3239			  {
3240#  ifdef _LIBC
3241			    if (__iswctype (__btowc (ch), wt))
3242			      SET_LIST_BIT (ch);
3243#  else
3244			    if (iswctype (btowc (ch), wt))
3245			      SET_LIST_BIT (ch);
3246#  endif
3247
3248			    if (translate && (is_upper || is_lower)
3249				&& (ISUPPER (ch) || ISLOWER (ch)))
3250			      SET_LIST_BIT (ch);
3251			  }
3252
3253                        had_char_class = true;
3254# else
3255                        int ch;
3256                        boolean is_alnum = STREQ (str, "alnum");
3257                        boolean is_alpha = STREQ (str, "alpha");
3258                        boolean is_blank = STREQ (str, "blank");
3259                        boolean is_cntrl = STREQ (str, "cntrl");
3260                        boolean is_digit = STREQ (str, "digit");
3261                        boolean is_graph = STREQ (str, "graph");
3262                        boolean is_lower = STREQ (str, "lower");
3263                        boolean is_print = STREQ (str, "print");
3264                        boolean is_punct = STREQ (str, "punct");
3265                        boolean is_space = STREQ (str, "space");
3266                        boolean is_upper = STREQ (str, "upper");
3267                        boolean is_xdigit = STREQ (str, "xdigit");
3268
3269                        if (!IS_CHAR_CLASS (str))
3270			  FREE_STACK_RETURN (REG_ECTYPE);
3271
3272                        /* Throw away the ] at the end of the character
3273                           class.  */
3274                        PATFETCH (c);
3275
3276                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3277
3278                        for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
3279                          {
3280			    /* This was split into 3 if's to
3281			       avoid an arbitrary limit in some compiler.  */
3282                            if (   (is_alnum  && ISALNUM (ch))
3283                                || (is_alpha  && ISALPHA (ch))
3284                                || (is_blank  && ISBLANK (ch))
3285                                || (is_cntrl  && ISCNTRL (ch)))
3286			      SET_LIST_BIT (ch);
3287			    if (   (is_digit  && ISDIGIT (ch))
3288                                || (is_graph  && ISGRAPH (ch))
3289                                || (is_lower  && ISLOWER (ch))
3290                                || (is_print  && ISPRINT (ch)))
3291			      SET_LIST_BIT (ch);
3292			    if (   (is_punct  && ISPUNCT (ch))
3293                                || (is_space  && ISSPACE (ch))
3294                                || (is_upper  && ISUPPER (ch))
3295                                || (is_xdigit && ISXDIGIT (ch)))
3296			      SET_LIST_BIT (ch);
3297			    if (   translate && (is_upper || is_lower)
3298				&& (ISUPPER (ch) || ISLOWER (ch)))
3299			      SET_LIST_BIT (ch);
3300                          }
3301                        had_char_class = true;
3302# endif	/* libc || wctype.h */
3303                      }
3304                    else
3305                      {
3306                        c1++;
3307                        while (c1--)
3308                          PATUNFETCH;
3309                        SET_LIST_BIT ('[');
3310                        SET_LIST_BIT (':');
3311			range_start = ':';
3312                        had_char_class = false;
3313                      }
3314                  }
3315                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '=')
3316		  {
3317		    unsigned char str[MB_LEN_MAX + 1];
3318# ifdef _LIBC
3319		    uint32_t nrules =
3320		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3321# endif
3322
3323		    PATFETCH (c);
3324		    c1 = 0;
3325
3326		    /* If pattern is `[[='.  */
3327		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3328
3329		    for (;;)
3330		      {
3331			PATFETCH (c);
3332			if ((c == '=' && *p == ']') || p == pend)
3333			  break;
3334			if (c1 < MB_LEN_MAX)
3335			  str[c1++] = c;
3336			else
3337			  /* This is in any case an invalid class name.  */
3338			  str[0] = '\0';
3339                      }
3340		    str[c1] = '\0';
3341
3342		    if (c == '=' && *p == ']' && str[0] != '\0')
3343		      {
3344			/* If we have no collation data we use the default
3345			   collation in which each character is in a class
3346			   by itself.  It also means that ASCII is the
3347			   character set and therefore we cannot have character
3348			   with more than one byte in the multibyte
3349			   representation.  */
3350# ifdef _LIBC
3351			if (nrules == 0)
3352# endif
3353			  {
3354			    if (c1 != 1)
3355			      FREE_STACK_RETURN (REG_ECOLLATE);
3356
3357			    /* Throw away the ] at the end of the equivalence
3358			       class.  */
3359			    PATFETCH (c);
3360
3361			    /* Set the bit for the character.  */
3362			    SET_LIST_BIT (str[0]);
3363			  }
3364# ifdef _LIBC
3365			else
3366			  {
3367			    /* Try to match the byte sequence in `str' against
3368			       those known to the collate implementation.
3369			       First find out whether the bytes in `str' are
3370			       actually from exactly one character.  */
3371			    const int32_t *table;
3372			    const unsigned char *weights;
3373			    const unsigned char *extra;
3374			    const int32_t *indirect;
3375			    int32_t idx;
3376			    const unsigned char *cp = str;
3377			    int ch;
3378
3379			    /* This #include defines a local function!  */
3380#  include <locale/weight.h>
3381
3382			    table = (const int32_t *)
3383			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
3384			    weights = (const unsigned char *)
3385			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
3386			    extra = (const unsigned char *)
3387			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
3388			    indirect = (const int32_t *)
3389			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
3390
3391			    idx = findidx (&cp);
3392			    if (idx == 0 || cp < str + c1)
3393			      /* This is no valid character.  */
3394			      FREE_STACK_RETURN (REG_ECOLLATE);
3395
3396			    /* Throw away the ] at the end of the equivalence
3397			       class.  */
3398			    PATFETCH (c);
3399
3400			    /* Now we have to go through the whole table
3401			       and find all characters which have the same
3402			       first level weight.
3403
3404			       XXX Note that this is not entirely correct.
3405			       we would have to match multibyte sequences
3406			       but this is not possible with the current
3407			       implementation.  */
3408			    for (ch = 1; ch < 256; ++ch)
3409			      /* XXX This test would have to be changed if we
3410				 would allow matching multibyte sequences.  */
3411			      if (table[ch] > 0)
3412				{
3413				  int32_t idx2 = table[ch];
3414				  size_t len = weights[idx2];
3415
3416				  /* Test whether the lenghts match.  */
3417				  if (weights[idx] == len)
3418				    {
3419				      /* They do.  New compare the bytes of
3420					 the weight.  */
3421				      size_t cnt = 0;
3422
3423				      while (cnt < len
3424					     && (weights[idx + 1 + cnt]
3425						 == weights[idx2 + 1 + cnt]))
3426					++cnt;
3427
3428				      if (cnt == len)
3429					/* They match.  Mark the character as
3430					   acceptable.  */
3431					SET_LIST_BIT (ch);
3432				    }
3433				}
3434			  }
3435# endif
3436			had_char_class = true;
3437		      }
3438                    else
3439                      {
3440                        c1++;
3441                        while (c1--)
3442                          PATUNFETCH;
3443                        SET_LIST_BIT ('[');
3444                        SET_LIST_BIT ('=');
3445			range_start = '=';
3446                        had_char_class = false;
3447                      }
3448		  }
3449                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '.')
3450		  {
3451		    unsigned char str[128];	/* Should be large enough.  */
3452# ifdef _LIBC
3453		    uint32_t nrules =
3454		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3455# endif
3456
3457		    PATFETCH (c);
3458		    c1 = 0;
3459
3460		    /* If pattern is `[[.'.  */
3461		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3462
3463		    for (;;)
3464		      {
3465			PATFETCH (c);
3466			if ((c == '.' && *p == ']') || p == pend)
3467			  break;
3468			if (c1 < sizeof (str))
3469			  str[c1++] = c;
3470			else
3471			  /* This is in any case an invalid class name.  */
3472			  str[0] = '\0';
3473                      }
3474		    str[c1] = '\0';
3475
3476		    if (c == '.' && *p == ']' && str[0] != '\0')
3477		      {
3478			/* If we have no collation data we use the default
3479			   collation in which each character is the name
3480			   for its own class which contains only the one
3481			   character.  It also means that ASCII is the
3482			   character set and therefore we cannot have character
3483			   with more than one byte in the multibyte
3484			   representation.  */
3485# ifdef _LIBC
3486			if (nrules == 0)
3487# endif
3488			  {
3489			    if (c1 != 1)
3490			      FREE_STACK_RETURN (REG_ECOLLATE);
3491
3492			    /* Throw away the ] at the end of the equivalence
3493			       class.  */
3494			    PATFETCH (c);
3495
3496			    /* Set the bit for the character.  */
3497			    SET_LIST_BIT (str[0]);
3498			    range_start = ((const unsigned char *) str)[0];
3499			  }
3500# ifdef _LIBC
3501			else
3502			  {
3503			    /* Try to match the byte sequence in `str' against
3504			       those known to the collate implementation.
3505			       First find out whether the bytes in `str' are
3506			       actually from exactly one character.  */
3507			    int32_t table_size;
3508			    const int32_t *symb_table;
3509			    const unsigned char *extra;
3510			    int32_t idx;
3511			    int32_t elem;
3512			    int32_t second;
3513			    int32_t hash;
3514
3515			    table_size =
3516			      _NL_CURRENT_WORD (LC_COLLATE,
3517						_NL_COLLATE_SYMB_HASH_SIZEMB);
3518			    symb_table = (const int32_t *)
3519			      _NL_CURRENT (LC_COLLATE,
3520					   _NL_COLLATE_SYMB_TABLEMB);
3521			    extra = (const unsigned char *)
3522			      _NL_CURRENT (LC_COLLATE,
3523					   _NL_COLLATE_SYMB_EXTRAMB);
3524
3525			    /* Locate the character in the hashing table.  */
3526			    hash = elem_hash (str, c1);
3527
3528			    idx = 0;
3529			    elem = hash % table_size;
3530			    second = hash % (table_size - 2);
3531			    while (symb_table[2 * elem] != 0)
3532			      {
3533				/* First compare the hashing value.  */
3534				if (symb_table[2 * elem] == hash
3535				    && c1 == extra[symb_table[2 * elem + 1]]
3536				    && memcmp (str,
3537					       &extra[symb_table[2 * elem + 1]
3538						     + 1],
3539					       c1) == 0)
3540				  {
3541				    /* Yep, this is the entry.  */
3542				    idx = symb_table[2 * elem + 1];
3543				    idx += 1 + extra[idx];
3544				    break;
3545				  }
3546
3547				/* Next entry.  */
3548				elem += second;
3549			      }
3550
3551			    if (symb_table[2 * elem] == 0)
3552			      /* This is no valid character.  */
3553			      FREE_STACK_RETURN (REG_ECOLLATE);
3554
3555			    /* Throw away the ] at the end of the equivalence
3556			       class.  */
3557			    PATFETCH (c);
3558
3559			    /* Now add the multibyte character(s) we found
3560			       to the accept list.
3561
3562			       XXX Note that this is not entirely correct.
3563			       we would have to match multibyte sequences
3564			       but this is not possible with the current
3565			       implementation.  Also, we have to match
3566			       collating symbols, which expand to more than
3567			       one file, as a whole and not allow the
3568			       individual bytes.  */
3569			    c1 = extra[idx++];
3570			    if (c1 == 1)
3571			      range_start = extra[idx];
3572			    while (c1-- > 0)
3573			      {
3574				SET_LIST_BIT (extra[idx]);
3575				++idx;
3576			      }
3577			  }
3578# endif
3579			had_char_class = false;
3580		      }
3581                    else
3582                      {
3583                        c1++;
3584                        while (c1--)
3585                          PATUNFETCH;
3586                        SET_LIST_BIT ('[');
3587                        SET_LIST_BIT ('.');
3588			range_start = '.';
3589                        had_char_class = false;
3590                      }
3591		  }
3592                else
3593                  {
3594                    had_char_class = false;
3595                    SET_LIST_BIT (c);
3596		    range_start = c;
3597                  }
3598              }
3599
3600            /* Discard any (non)matching list bytes that are all 0 at the
3601               end of the map.  Decrease the map-length byte too.  */
3602            while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3603              b[-1]--;
3604            b += b[-1];
3605#endif /* WCHAR */
3606          }
3607          break;
3608
3609
3610	case '(':
3611          if (syntax & RE_NO_BK_PARENS)
3612            goto handle_open;
3613          else
3614            goto normal_char;
3615
3616
3617        case ')':
3618          if (syntax & RE_NO_BK_PARENS)
3619            goto handle_close;
3620          else
3621            goto normal_char;
3622
3623
3624        case '\n':
3625          if (syntax & RE_NEWLINE_ALT)
3626            goto handle_alt;
3627          else
3628            goto normal_char;
3629
3630
3631	case '|':
3632          if (syntax & RE_NO_BK_VBAR)
3633            goto handle_alt;
3634          else
3635            goto normal_char;
3636
3637
3638        case '{':
3639           if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3640             goto handle_interval;
3641           else
3642             goto normal_char;
3643
3644
3645        case '\\':
3646          if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3647
3648          /* Do not translate the character after the \, so that we can
3649             distinguish, e.g., \B from \b, even if we normally would
3650             translate, e.g., B to b.  */
3651          PATFETCH_RAW (c);
3652
3653          switch (c)
3654            {
3655            case '(':
3656              if (syntax & RE_NO_BK_PARENS)
3657                goto normal_backslash;
3658
3659            handle_open:
3660              bufp->re_nsub++;
3661              regnum++;
3662
3663              if (COMPILE_STACK_FULL)
3664                {
3665                  RETALLOC (compile_stack.stack, compile_stack.size << 1,
3666                            compile_stack_elt_t);
3667                  if (compile_stack.stack == NULL) return REG_ESPACE;
3668
3669                  compile_stack.size <<= 1;
3670                }
3671
3672              /* These are the values to restore when we hit end of this
3673                 group.  They are all relative offsets, so that if the
3674                 whole pattern moves because of realloc, they will still
3675                 be valid.  */
3676              COMPILE_STACK_TOP.begalt_offset = begalt - COMPILED_BUFFER_VAR;
3677              COMPILE_STACK_TOP.fixup_alt_jump
3678                = fixup_alt_jump ? fixup_alt_jump - COMPILED_BUFFER_VAR + 1 : 0;
3679              COMPILE_STACK_TOP.laststart_offset = b - COMPILED_BUFFER_VAR;
3680              COMPILE_STACK_TOP.regnum = regnum;
3681
3682              /* We will eventually replace the 0 with the number of
3683                 groups inner to this one.  But do not push a
3684                 start_memory for groups beyond the last one we can
3685                 represent in the compiled pattern.  */
3686              if (regnum <= MAX_REGNUM)
3687                {
3688                  COMPILE_STACK_TOP.inner_group_offset = b
3689		    - COMPILED_BUFFER_VAR + 2;
3690                  BUF_PUSH_3 (start_memory, regnum, 0);
3691                }
3692
3693              compile_stack.avail++;
3694
3695              fixup_alt_jump = 0;
3696              laststart = 0;
3697              begalt = b;
3698	      /* If we've reached MAX_REGNUM groups, then this open
3699		 won't actually generate any code, so we'll have to
3700		 clear pending_exact explicitly.  */
3701	      pending_exact = 0;
3702              break;
3703
3704
3705            case ')':
3706              if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3707
3708              if (COMPILE_STACK_EMPTY)
3709		{
3710		  if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3711		    goto normal_backslash;
3712		  else
3713		    FREE_STACK_RETURN (REG_ERPAREN);
3714		}
3715
3716            handle_close:
3717              if (fixup_alt_jump)
3718                { /* Push a dummy failure point at the end of the
3719                     alternative for a possible future
3720                     `pop_failure_jump' to pop.  See comments at
3721                     `push_dummy_failure' in `re_match_2'.  */
3722                  BUF_PUSH (push_dummy_failure);
3723
3724                  /* We allocated space for this jump when we assigned
3725                     to `fixup_alt_jump', in the `handle_alt' case below.  */
3726                  STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
3727                }
3728
3729              /* See similar code for backslashed left paren above.  */
3730              if (COMPILE_STACK_EMPTY)
3731		{
3732		  if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3733		    goto normal_char;
3734		  else
3735		    FREE_STACK_RETURN (REG_ERPAREN);
3736		}
3737
3738              /* Since we just checked for an empty stack above, this
3739                 ``can't happen''.  */
3740              assert (compile_stack.avail != 0);
3741              {
3742                /* We don't just want to restore into `regnum', because
3743                   later groups should continue to be numbered higher,
3744                   as in `(ab)c(de)' -- the second group is #2.  */
3745                regnum_t this_group_regnum;
3746
3747                compile_stack.avail--;
3748                begalt = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.begalt_offset;
3749                fixup_alt_jump
3750                  = COMPILE_STACK_TOP.fixup_alt_jump
3751                    ? COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.fixup_alt_jump - 1
3752                    : 0;
3753                laststart = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.laststart_offset;
3754                this_group_regnum = COMPILE_STACK_TOP.regnum;
3755		/* If we've reached MAX_REGNUM groups, then this open
3756		   won't actually generate any code, so we'll have to
3757		   clear pending_exact explicitly.  */
3758		pending_exact = 0;
3759
3760                /* We're at the end of the group, so now we know how many
3761                   groups were inside this one.  */
3762                if (this_group_regnum <= MAX_REGNUM)
3763                  {
3764		    UCHAR_T *inner_group_loc
3765                      = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.inner_group_offset;
3766
3767                    *inner_group_loc = regnum - this_group_regnum;
3768                    BUF_PUSH_3 (stop_memory, this_group_regnum,
3769                                regnum - this_group_regnum);
3770                  }
3771              }
3772              break;
3773
3774
3775            case '|':					/* `\|'.  */
3776              if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3777                goto normal_backslash;
3778            handle_alt:
3779              if (syntax & RE_LIMITED_OPS)
3780                goto normal_char;
3781
3782              /* Insert before the previous alternative a jump which
3783                 jumps to this alternative if the former fails.  */
3784              GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3785              INSERT_JUMP (on_failure_jump, begalt,
3786			   b + 2 + 2 * OFFSET_ADDRESS_SIZE);
3787              pending_exact = 0;
3788              b += 1 + OFFSET_ADDRESS_SIZE;
3789
3790              /* The alternative before this one has a jump after it
3791                 which gets executed if it gets matched.  Adjust that
3792                 jump so it will jump to this alternative's analogous
3793                 jump (put in below, which in turn will jump to the next
3794                 (if any) alternative's such jump, etc.).  The last such
3795                 jump jumps to the correct final destination.  A picture:
3796                          _____ _____
3797                          |   | |   |
3798                          |   v |   v
3799                         a | b   | c
3800
3801                 If we are at `b', then fixup_alt_jump right now points to a
3802                 three-byte space after `a'.  We'll put in the jump, set
3803                 fixup_alt_jump to right after `b', and leave behind three
3804                 bytes which we'll fill in when we get to after `c'.  */
3805
3806              if (fixup_alt_jump)
3807                STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
3808
3809              /* Mark and leave space for a jump after this alternative,
3810                 to be filled in later either by next alternative or
3811                 when know we're at the end of a series of alternatives.  */
3812              fixup_alt_jump = b;
3813              GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3814              b += 1 + OFFSET_ADDRESS_SIZE;
3815
3816              laststart = 0;
3817              begalt = b;
3818              break;
3819
3820
3821            case '{':
3822              /* If \{ is a literal.  */
3823              if (!(syntax & RE_INTERVALS)
3824                     /* If we're at `\{' and it's not the open-interval
3825                        operator.  */
3826		  || (syntax & RE_NO_BK_BRACES))
3827                goto normal_backslash;
3828
3829            handle_interval:
3830              {
3831                /* If got here, then the syntax allows intervals.  */
3832
3833                /* At least (most) this many matches must be made.  */
3834                int lower_bound = -1, upper_bound = -1;
3835
3836		/* Place in the uncompiled pattern (i.e., just after
3837		   the '{') to go back to if the interval is invalid.  */
3838		const CHAR_T *beg_interval = p;
3839
3840                if (p == pend)
3841		  goto invalid_interval;
3842
3843                GET_UNSIGNED_NUMBER (lower_bound);
3844
3845                if (c == ',')
3846                  {
3847                    GET_UNSIGNED_NUMBER (upper_bound);
3848		    if (upper_bound < 0)
3849		      upper_bound = RE_DUP_MAX;
3850                  }
3851                else
3852                  /* Interval such as `{1}' => match exactly once. */
3853                  upper_bound = lower_bound;
3854
3855                if (! (0 <= lower_bound && lower_bound <= upper_bound))
3856		  goto invalid_interval;
3857
3858                if (!(syntax & RE_NO_BK_BRACES))
3859                  {
3860		    if (c != '\\' || p == pend)
3861		      goto invalid_interval;
3862                    PATFETCH (c);
3863                  }
3864
3865                if (c != '}')
3866		  goto invalid_interval;
3867
3868                /* If it's invalid to have no preceding re.  */
3869                if (!laststart)
3870                  {
3871		    if (syntax & RE_CONTEXT_INVALID_OPS
3872			&& !(syntax & RE_INVALID_INTERVAL_ORD))
3873                      FREE_STACK_RETURN (REG_BADRPT);
3874                    else if (syntax & RE_CONTEXT_INDEP_OPS)
3875                      laststart = b;
3876                    else
3877                      goto unfetch_interval;
3878                  }
3879
3880                /* We just parsed a valid interval.  */
3881
3882                if (RE_DUP_MAX < upper_bound)
3883		  FREE_STACK_RETURN (REG_BADBR);
3884
3885                /* If the upper bound is zero, don't want to succeed at
3886                   all; jump from `laststart' to `b + 3', which will be
3887		   the end of the buffer after we insert the jump.  */
3888		/* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE'
3889		   instead of 'b + 3'.  */
3890                 if (upper_bound == 0)
3891                   {
3892                     GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3893                     INSERT_JUMP (jump, laststart, b + 1
3894				  + OFFSET_ADDRESS_SIZE);
3895                     b += 1 + OFFSET_ADDRESS_SIZE;
3896                   }
3897
3898                 /* Otherwise, we have a nontrivial interval.  When
3899                    we're all done, the pattern will look like:
3900                      set_number_at <jump count> <upper bound>
3901                      set_number_at <succeed_n count> <lower bound>
3902                      succeed_n <after jump addr> <succeed_n count>
3903                      <body of loop>
3904                      jump_n <succeed_n addr> <jump count>
3905                    (The upper bound and `jump_n' are omitted if
3906                    `upper_bound' is 1, though.)  */
3907                 else
3908                   { /* If the upper bound is > 1, we need to insert
3909                        more at the end of the loop.  */
3910                     unsigned nbytes = 2 + 4 * OFFSET_ADDRESS_SIZE +
3911		       (upper_bound > 1) * (2 + 4 * OFFSET_ADDRESS_SIZE);
3912
3913                     GET_BUFFER_SPACE (nbytes);
3914
3915                     /* Initialize lower bound of the `succeed_n', even
3916                        though it will be set during matching by its
3917                        attendant `set_number_at' (inserted next),
3918                        because `re_compile_fastmap' needs to know.
3919                        Jump to the `jump_n' we might insert below.  */
3920                     INSERT_JUMP2 (succeed_n, laststart,
3921                                   b + 1 + 2 * OFFSET_ADDRESS_SIZE
3922				   + (upper_bound > 1) * (1 + 2 * OFFSET_ADDRESS_SIZE)
3923				   , lower_bound);
3924                     b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3925
3926                     /* Code to initialize the lower bound.  Insert
3927                        before the `succeed_n'.  The `5' is the last two
3928                        bytes of this `set_number_at', plus 3 bytes of
3929                        the following `succeed_n'.  */
3930		     /* ifdef WCHAR, The '1+2*OFFSET_ADDRESS_SIZE'
3931			is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE'
3932			of the following `succeed_n'.  */
3933                     PREFIX(insert_op2) (set_number_at, laststart, 1
3934				 + 2 * OFFSET_ADDRESS_SIZE, lower_bound, b);
3935                     b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3936
3937                     if (upper_bound > 1)
3938                       { /* More than one repetition is allowed, so
3939                            append a backward jump to the `succeed_n'
3940                            that starts this interval.
3941
3942                            When we've reached this during matching,
3943                            we'll have matched the interval once, so
3944                            jump back only `upper_bound - 1' times.  */
3945                         STORE_JUMP2 (jump_n, b, laststart
3946				      + 2 * OFFSET_ADDRESS_SIZE + 1,
3947                                      upper_bound - 1);
3948                         b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3949
3950                         /* The location we want to set is the second
3951                            parameter of the `jump_n'; that is `b-2' as
3952                            an absolute address.  `laststart' will be
3953                            the `set_number_at' we're about to insert;
3954                            `laststart+3' the number to set, the source
3955                            for the relative address.  But we are
3956                            inserting into the middle of the pattern --
3957                            so everything is getting moved up by 5.
3958                            Conclusion: (b - 2) - (laststart + 3) + 5,
3959                            i.e., b - laststart.
3960
3961                            We insert this at the beginning of the loop
3962                            so that if we fail during matching, we'll
3963                            reinitialize the bounds.  */
3964                         PREFIX(insert_op2) (set_number_at, laststart,
3965					     b - laststart,
3966					     upper_bound - 1, b);
3967                         b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3968                       }
3969                   }
3970                pending_exact = 0;
3971		break;
3972
3973	      invalid_interval:
3974		if (!(syntax & RE_INVALID_INTERVAL_ORD))
3975		  FREE_STACK_RETURN (p == pend ? REG_EBRACE : REG_BADBR);
3976	      unfetch_interval:
3977		/* Match the characters as literals.  */
3978		p = beg_interval;
3979		c = '{';
3980		if (syntax & RE_NO_BK_BRACES)
3981		  goto normal_char;
3982		else
3983		  goto normal_backslash;
3984	      }
3985
3986#ifdef emacs
3987            /* There is no way to specify the before_dot and after_dot
3988               operators.  rms says this is ok.  --karl  */
3989            case '=':
3990              BUF_PUSH (at_dot);
3991              break;
3992
3993            case 's':
3994              laststart = b;
3995              PATFETCH (c);
3996              BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3997              break;
3998
3999            case 'S':
4000              laststart = b;
4001              PATFETCH (c);
4002              BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
4003              break;
4004#endif /* emacs */
4005
4006
4007            case 'w':
4008	      if (syntax & RE_NO_GNU_OPS)
4009		goto normal_char;
4010              laststart = b;
4011              BUF_PUSH (wordchar);
4012              break;
4013
4014
4015            case 'W':
4016	      if (syntax & RE_NO_GNU_OPS)
4017		goto normal_char;
4018              laststart = b;
4019              BUF_PUSH (notwordchar);
4020              break;
4021
4022
4023            case '<':
4024	      if (syntax & RE_NO_GNU_OPS)
4025		goto normal_char;
4026              BUF_PUSH (wordbeg);
4027              break;
4028
4029            case '>':
4030	      if (syntax & RE_NO_GNU_OPS)
4031		goto normal_char;
4032              BUF_PUSH (wordend);
4033              break;
4034
4035            case 'b':
4036	      if (syntax & RE_NO_GNU_OPS)
4037		goto normal_char;
4038              BUF_PUSH (wordbound);
4039              break;
4040
4041            case 'B':
4042	      if (syntax & RE_NO_GNU_OPS)
4043		goto normal_char;
4044              BUF_PUSH (notwordbound);
4045              break;
4046
4047            case '`':
4048	      if (syntax & RE_NO_GNU_OPS)
4049		goto normal_char;
4050              BUF_PUSH (begbuf);
4051              break;
4052
4053            case '\'':
4054	      if (syntax & RE_NO_GNU_OPS)
4055		goto normal_char;
4056              BUF_PUSH (endbuf);
4057              break;
4058
4059            case '1': case '2': case '3': case '4': case '5':
4060            case '6': case '7': case '8': case '9':
4061              if (syntax & RE_NO_BK_REFS)
4062                goto normal_char;
4063
4064              c1 = c - '0';
4065
4066              if (c1 > regnum)
4067                FREE_STACK_RETURN (REG_ESUBREG);
4068
4069              /* Can't back reference to a subexpression if inside of it.  */
4070              if (group_in_compile_stack (compile_stack, (regnum_t) c1))
4071                goto normal_char;
4072
4073              laststart = b;
4074              BUF_PUSH_2 (duplicate, c1);
4075              break;
4076
4077
4078            case '+':
4079            case '?':
4080              if (syntax & RE_BK_PLUS_QM)
4081                goto handle_plus;
4082              else
4083                goto normal_backslash;
4084
4085            default:
4086            normal_backslash:
4087              /* You might think it would be useful for \ to mean
4088                 not to translate; but if we don't translate it
4089                 it will never match anything.  */
4090              c = TRANSLATE (c);
4091              goto normal_char;
4092            }
4093          break;
4094
4095
4096	default:
4097        /* Expects the character in `c'.  */
4098	normal_char:
4099	      /* If no exactn currently being built.  */
4100          if (!pending_exact
4101#ifdef WCHAR
4102	      /* If last exactn handle binary(or character) and
4103		 new exactn handle character(or binary).  */
4104	      || is_exactn_bin != is_binary[p - 1 - pattern]
4105#endif /* WCHAR */
4106
4107              /* If last exactn not at current position.  */
4108              || pending_exact + *pending_exact + 1 != b
4109
4110              /* We have only one byte following the exactn for the count.  */
4111	      || *pending_exact == (1 << BYTEWIDTH) - 1
4112
4113              /* If followed by a repetition operator.  */
4114              || *p == '*' || *p == '^'
4115	      || ((syntax & RE_BK_PLUS_QM)
4116		  ? *p == '\\' && (p[1] == '+' || p[1] == '?')
4117		  : (*p == '+' || *p == '?'))
4118	      || ((syntax & RE_INTERVALS)
4119                  && ((syntax & RE_NO_BK_BRACES)
4120		      ? *p == '{'
4121                      : (p[0] == '\\' && p[1] == '{'))))
4122	    {
4123	      /* Start building a new exactn.  */
4124
4125              laststart = b;
4126
4127#ifdef WCHAR
4128	      /* Is this exactn binary data or character? */
4129	      is_exactn_bin = is_binary[p - 1 - pattern];
4130	      if (is_exactn_bin)
4131		  BUF_PUSH_2 (exactn_bin, 0);
4132	      else
4133		  BUF_PUSH_2 (exactn, 0);
4134#else
4135	      BUF_PUSH_2 (exactn, 0);
4136#endif /* WCHAR */
4137	      pending_exact = b - 1;
4138            }
4139
4140	  BUF_PUSH (c);
4141          (*pending_exact)++;
4142	  break;
4143        } /* switch (c) */
4144    } /* while p != pend */
4145
4146
4147  /* Through the pattern now.  */
4148
4149  if (fixup_alt_jump)
4150    STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
4151
4152  if (!COMPILE_STACK_EMPTY)
4153    FREE_STACK_RETURN (REG_EPAREN);
4154
4155  /* If we don't want backtracking, force success
4156     the first time we reach the end of the compiled pattern.  */
4157  if (syntax & RE_NO_POSIX_BACKTRACKING)
4158    BUF_PUSH (succeed);
4159
4160#ifdef WCHAR
4161  free (pattern);
4162  free (mbs_offset);
4163  free (is_binary);
4164#endif
4165  free (compile_stack.stack);
4166
4167  /* We have succeeded; set the length of the buffer.  */
4168#ifdef WCHAR
4169  bufp->used = (uintptr_t) b - (uintptr_t) COMPILED_BUFFER_VAR;
4170#else
4171  bufp->used = b - bufp->buffer;
4172#endif
4173
4174#ifdef DEBUG
4175  if (debug)
4176    {
4177      DEBUG_PRINT1 ("\nCompiled pattern: \n");
4178      PREFIX(print_compiled_pattern) (bufp);
4179    }
4180#endif /* DEBUG */
4181
4182#ifndef MATCH_MAY_ALLOCATE
4183  /* Initialize the failure stack to the largest possible stack.  This
4184     isn't necessary unless we're trying to avoid calling alloca in
4185     the search and match routines.  */
4186  {
4187    int num_regs = bufp->re_nsub + 1;
4188
4189    /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
4190       is strictly greater than re_max_failures, the largest possible stack
4191       is 2 * re_max_failures failure points.  */
4192    if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
4193      {
4194	fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
4195
4196# ifdef emacs
4197	if (! fail_stack.stack)
4198	  fail_stack.stack
4199	    = (PREFIX(fail_stack_elt_t) *) xmalloc (fail_stack.size
4200				    * sizeof (PREFIX(fail_stack_elt_t)));
4201	else
4202	  fail_stack.stack
4203	    = (PREFIX(fail_stack_elt_t) *) xrealloc (fail_stack.stack,
4204				     (fail_stack.size
4205				      * sizeof (PREFIX(fail_stack_elt_t))));
4206# else /* not emacs */
4207	if (! fail_stack.stack)
4208	  fail_stack.stack
4209	    = (PREFIX(fail_stack_elt_t) *) malloc (fail_stack.size
4210				   * sizeof (PREFIX(fail_stack_elt_t)));
4211	else
4212	  fail_stack.stack
4213	    = (PREFIX(fail_stack_elt_t) *) realloc (fail_stack.stack,
4214					    (fail_stack.size
4215				     * sizeof (PREFIX(fail_stack_elt_t))));
4216# endif /* not emacs */
4217      }
4218
4219   PREFIX(regex_grow_registers) (num_regs);
4220  }
4221#endif /* not MATCH_MAY_ALLOCATE */
4222
4223  return REG_NOERROR;
4224} /* regex_compile */
4225
4226/* Subroutines for `regex_compile'.  */
4227
4228/* Store OP at LOC followed by two-byte integer parameter ARG.  */
4229/* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4230
4231static void
4232PREFIX(store_op1) (re_opcode_t op, UCHAR_T *loc, int arg)
4233{
4234  *loc = (UCHAR_T) op;
4235  STORE_NUMBER (loc + 1, arg);
4236}
4237
4238
4239/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
4240/* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4241
4242static void
4243PREFIX(store_op2) (re_opcode_t op, UCHAR_T *loc, int arg1, int arg2)
4244{
4245  *loc = (UCHAR_T) op;
4246  STORE_NUMBER (loc + 1, arg1);
4247  STORE_NUMBER (loc + 1 + OFFSET_ADDRESS_SIZE, arg2);
4248}
4249
4250
4251/* Copy the bytes from LOC to END to open up three bytes of space at LOC
4252   for OP followed by two-byte integer parameter ARG.  */
4253/* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4254
4255static void
4256PREFIX(insert_op1) (re_opcode_t op, UCHAR_T *loc, int arg, UCHAR_T *end)
4257{
4258  register UCHAR_T *pfrom = end;
4259  register UCHAR_T *pto = end + 1 + OFFSET_ADDRESS_SIZE;
4260
4261  while (pfrom != loc)
4262    *--pto = *--pfrom;
4263
4264  PREFIX(store_op1) (op, loc, arg);
4265}
4266
4267
4268/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
4269/* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4270
4271static void
4272PREFIX(insert_op2) (re_opcode_t op, UCHAR_T *loc, int arg1,
4273                    int arg2, UCHAR_T *end)
4274{
4275  register UCHAR_T *pfrom = end;
4276  register UCHAR_T *pto = end + 1 + 2 * OFFSET_ADDRESS_SIZE;
4277
4278  while (pfrom != loc)
4279    *--pto = *--pfrom;
4280
4281  PREFIX(store_op2) (op, loc, arg1, arg2);
4282}
4283
4284
4285/* P points to just after a ^ in PATTERN.  Return true if that ^ comes
4286   after an alternative or a begin-subexpression.  We assume there is at
4287   least one character before the ^.  */
4288
4289static boolean
4290PREFIX(at_begline_loc_p) (const CHAR_T *pattern, const CHAR_T *p,
4291                          reg_syntax_t syntax)
4292{
4293  const CHAR_T *prev = p - 2;
4294  boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
4295
4296  return
4297       /* After a subexpression?  */
4298       (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
4299       /* After an alternative?  */
4300    || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
4301}
4302
4303
4304/* The dual of at_begline_loc_p.  This one is for $.  We assume there is
4305   at least one character after the $, i.e., `P < PEND'.  */
4306
4307static boolean
4308PREFIX(at_endline_loc_p) (const CHAR_T *p, const CHAR_T *pend,
4309                          reg_syntax_t syntax)
4310{
4311  const CHAR_T *next = p;
4312  boolean next_backslash = *next == '\\';
4313  const CHAR_T *next_next = p + 1 < pend ? p + 1 : 0;
4314
4315  return
4316       /* Before a subexpression?  */
4317       (syntax & RE_NO_BK_PARENS ? *next == ')'
4318        : next_backslash && next_next && *next_next == ')')
4319       /* Before an alternative?  */
4320    || (syntax & RE_NO_BK_VBAR ? *next == '|'
4321        : next_backslash && next_next && *next_next == '|');
4322}
4323
4324#else /* not INSIDE_RECURSION */
4325
4326/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
4327   false if it's not.  */
4328
4329static boolean
4330group_in_compile_stack (compile_stack_type compile_stack, regnum_t regnum)
4331{
4332  int this_element;
4333
4334  for (this_element = compile_stack.avail - 1;
4335       this_element >= 0;
4336       this_element--)
4337    if (compile_stack.stack[this_element].regnum == regnum)
4338      return true;
4339
4340  return false;
4341}
4342#endif /* not INSIDE_RECURSION */
4343
4344#ifdef INSIDE_RECURSION
4345
4346#ifdef WCHAR
4347/* This insert space, which size is "num", into the pattern at "loc".
4348   "end" must point the end of the allocated buffer.  */
4349static void
4350insert_space (int num, CHAR_T *loc, CHAR_T *end)
4351{
4352  register CHAR_T *pto = end;
4353  register CHAR_T *pfrom = end - num;
4354
4355  while (pfrom >= loc)
4356    *pto-- = *pfrom--;
4357}
4358#endif /* WCHAR */
4359
4360#ifdef WCHAR
4361static reg_errcode_t
4362wcs_compile_range (CHAR_T range_start_char, const CHAR_T **p_ptr,
4363                   const CHAR_T *pend, RE_TRANSLATE_TYPE translate,
4364                   reg_syntax_t syntax, CHAR_T *b, CHAR_T *char_set)
4365{
4366  const CHAR_T *p = *p_ptr;
4367  CHAR_T range_start, range_end;
4368  reg_errcode_t ret;
4369# ifdef _LIBC
4370  uint32_t nrules;
4371  uint32_t start_val, end_val;
4372# endif
4373  if (p == pend)
4374    return REG_ERANGE;
4375
4376# ifdef _LIBC
4377  nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
4378  if (nrules != 0)
4379    {
4380      const char *collseq = (const char *) _NL_CURRENT(LC_COLLATE,
4381						       _NL_COLLATE_COLLSEQWC);
4382      const unsigned char *extra = (const unsigned char *)
4383	_NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
4384
4385      if (range_start_char < -1)
4386	{
4387	  /* range_start is a collating symbol.  */
4388	  int32_t *wextra;
4389	  /* Retreive the index and get collation sequence value.  */
4390	  wextra = (int32_t*)(extra + char_set[-range_start_char]);
4391	  start_val = wextra[1 + *wextra];
4392	}
4393      else
4394	start_val = collseq_table_lookup(collseq, TRANSLATE(range_start_char));
4395
4396      end_val = collseq_table_lookup (collseq, TRANSLATE (p[0]));
4397
4398      /* Report an error if the range is empty and the syntax prohibits
4399	 this.  */
4400      ret = ((syntax & RE_NO_EMPTY_RANGES)
4401	     && (start_val > end_val))? REG_ERANGE : REG_NOERROR;
4402
4403      /* Insert space to the end of the char_ranges.  */
4404      insert_space(2, b - char_set[5] - 2, b - 1);
4405      *(b - char_set[5] - 2) = (wchar_t)start_val;
4406      *(b - char_set[5] - 1) = (wchar_t)end_val;
4407      char_set[4]++; /* ranges_index */
4408    }
4409  else
4410# endif
4411    {
4412      range_start = (range_start_char >= 0)? TRANSLATE (range_start_char):
4413	range_start_char;
4414      range_end = TRANSLATE (p[0]);
4415      /* Report an error if the range is empty and the syntax prohibits
4416	 this.  */
4417      ret = ((syntax & RE_NO_EMPTY_RANGES)
4418	     && (range_start > range_end))? REG_ERANGE : REG_NOERROR;
4419
4420      /* Insert space to the end of the char_ranges.  */
4421      insert_space(2, b - char_set[5] - 2, b - 1);
4422      *(b - char_set[5] - 2) = range_start;
4423      *(b - char_set[5] - 1) = range_end;
4424      char_set[4]++; /* ranges_index */
4425    }
4426  /* Have to increment the pointer into the pattern string, so the
4427     caller isn't still at the ending character.  */
4428  (*p_ptr)++;
4429
4430  return ret;
4431}
4432#else /* BYTE */
4433/* Read the ending character of a range (in a bracket expression) from the
4434   uncompiled pattern *P_PTR (which ends at PEND).  We assume the
4435   starting character is in `P[-2]'.  (`P[-1]' is the character `-'.)
4436   Then we set the translation of all bits between the starting and
4437   ending characters (inclusive) in the compiled pattern B.
4438
4439   Return an error code.
4440
4441   We use these short variable names so we can use the same macros as
4442   `regex_compile' itself.  */
4443
4444static reg_errcode_t
4445byte_compile_range (unsigned int range_start_char, const char **p_ptr,
4446                    const char *pend, RE_TRANSLATE_TYPE translate,
4447                    reg_syntax_t syntax, unsigned char *b)
4448{
4449  unsigned this_char;
4450  const char *p = *p_ptr;
4451  reg_errcode_t ret;
4452# if _LIBC
4453  const unsigned char *collseq;
4454  unsigned int start_colseq;
4455  unsigned int end_colseq;
4456# else
4457  unsigned end_char;
4458# endif
4459
4460  if (p == pend)
4461    return REG_ERANGE;
4462
4463  /* Have to increment the pointer into the pattern string, so the
4464     caller isn't still at the ending character.  */
4465  (*p_ptr)++;
4466
4467  /* Report an error if the range is empty and the syntax prohibits this.  */
4468  ret = syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
4469
4470# if _LIBC
4471  collseq = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
4472						 _NL_COLLATE_COLLSEQMB);
4473
4474  start_colseq = collseq[(unsigned char) TRANSLATE (range_start_char)];
4475  end_colseq = collseq[(unsigned char) TRANSLATE (p[0])];
4476  for (this_char = 0; this_char <= (unsigned char) -1; ++this_char)
4477    {
4478      unsigned int this_colseq = collseq[(unsigned char) TRANSLATE (this_char)];
4479
4480      if (start_colseq <= this_colseq && this_colseq <= end_colseq)
4481	{
4482	  SET_LIST_BIT (TRANSLATE (this_char));
4483	  ret = REG_NOERROR;
4484	}
4485    }
4486# else
4487  /* Here we see why `this_char' has to be larger than an `unsigned
4488     char' -- we would otherwise go into an infinite loop, since all
4489     characters <= 0xff.  */
4490  range_start_char = TRANSLATE (range_start_char);
4491  /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE,
4492     and some compilers cast it to int implicitly, so following for_loop
4493     may fall to (almost) infinite loop.
4494     e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff.
4495     To avoid this, we cast p[0] to unsigned int and truncate it.  */
4496  end_char = ((unsigned)TRANSLATE(p[0]) & ((1 << BYTEWIDTH) - 1));
4497
4498  for (this_char = range_start_char; this_char <= end_char; ++this_char)
4499    {
4500      SET_LIST_BIT (TRANSLATE (this_char));
4501      ret = REG_NOERROR;
4502    }
4503# endif
4504
4505  return ret;
4506}
4507#endif /* WCHAR */
4508
4509/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4510   BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
4511   characters can start a string that matches the pattern.  This fastmap
4512   is used by re_search to skip quickly over impossible starting points.
4513
4514   The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4515   area as BUFP->fastmap.
4516
4517   We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4518   the pattern buffer.
4519
4520   Returns 0 if we succeed, -2 if an internal error.   */
4521
4522#ifdef WCHAR
4523/* local function for re_compile_fastmap.
4524   truncate wchar_t character to char.  */
4525static unsigned char truncate_wchar (CHAR_T c);
4526
4527static unsigned char
4528truncate_wchar (CHAR_T c)
4529{
4530  unsigned char buf[MB_CUR_MAX];
4531  mbstate_t state;
4532  int retval;
4533  memset (&state, '\0', sizeof (state));
4534# ifdef _LIBC
4535  retval = __wcrtomb (buf, c, &state);
4536# else
4537  retval = wcrtomb (buf, c, &state);
4538# endif
4539  return retval > 0 ? buf[0] : (unsigned char) c;
4540}
4541#endif /* WCHAR */
4542
4543static int
4544PREFIX(re_compile_fastmap) (struct re_pattern_buffer *bufp)
4545{
4546  int j, k;
4547#ifdef MATCH_MAY_ALLOCATE
4548  PREFIX(fail_stack_type) fail_stack;
4549#endif
4550#ifndef REGEX_MALLOC
4551  char *destination;
4552#endif
4553
4554  register char *fastmap = bufp->fastmap;
4555
4556#ifdef WCHAR
4557  /* We need to cast pattern to (wchar_t*), because we casted this compiled
4558     pattern to (char*) in regex_compile.  */
4559  UCHAR_T *pattern = (UCHAR_T*)bufp->buffer;
4560  register UCHAR_T *pend = (UCHAR_T*) (bufp->buffer + bufp->used);
4561#else /* BYTE */
4562  UCHAR_T *pattern = bufp->buffer;
4563  register UCHAR_T *pend = pattern + bufp->used;
4564#endif /* WCHAR */
4565  UCHAR_T *p = pattern;
4566
4567#ifdef REL_ALLOC
4568  /* This holds the pointer to the failure stack, when
4569     it is allocated relocatably.  */
4570  fail_stack_elt_t *failure_stack_ptr;
4571#endif
4572
4573  /* Assume that each path through the pattern can be null until
4574     proven otherwise.  We set this false at the bottom of switch
4575     statement, to which we get only if a particular path doesn't
4576     match the empty string.  */
4577  boolean path_can_be_null = true;
4578
4579  /* We aren't doing a `succeed_n' to begin with.  */
4580  boolean succeed_n_p = false;
4581
4582  assert (fastmap != NULL && p != NULL);
4583
4584  INIT_FAIL_STACK ();
4585  bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.  */
4586  bufp->fastmap_accurate = 1;	    /* It will be when we're done.  */
4587  bufp->can_be_null = 0;
4588
4589  while (1)
4590    {
4591      if (p == pend || *p == (UCHAR_T) succeed)
4592	{
4593	  /* We have reached the (effective) end of pattern.  */
4594	  if (!FAIL_STACK_EMPTY ())
4595	    {
4596	      bufp->can_be_null |= path_can_be_null;
4597
4598	      /* Reset for next path.  */
4599	      path_can_be_null = true;
4600
4601	      p = fail_stack.stack[--fail_stack.avail].pointer;
4602
4603	      continue;
4604	    }
4605	  else
4606	    break;
4607	}
4608
4609      /* We should never be about to go beyond the end of the pattern.  */
4610      assert (p < pend);
4611
4612      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4613	{
4614
4615        /* I guess the idea here is to simply not bother with a fastmap
4616           if a backreference is used, since it's too hard to figure out
4617           the fastmap for the corresponding group.  Setting
4618           `can_be_null' stops `re_search_2' from using the fastmap, so
4619           that is all we do.  */
4620	case duplicate:
4621	  bufp->can_be_null = 1;
4622          goto done;
4623
4624
4625      /* Following are the cases which match a character.  These end
4626         with `break'.  */
4627
4628#ifdef WCHAR
4629	case exactn:
4630          fastmap[truncate_wchar(p[1])] = 1;
4631	  break;
4632#else /* BYTE */
4633	case exactn:
4634          fastmap[p[1]] = 1;
4635	  break;
4636#endif /* WCHAR */
4637#ifdef MBS_SUPPORT
4638	case exactn_bin:
4639	  fastmap[p[1]] = 1;
4640	  break;
4641#endif
4642
4643#ifdef WCHAR
4644        /* It is hard to distinguish fastmap from (multi byte) characters
4645           which depends on current locale.  */
4646        case charset:
4647	case charset_not:
4648	case wordchar:
4649	case notwordchar:
4650          bufp->can_be_null = 1;
4651          goto done;
4652#else /* BYTE */
4653        case charset:
4654          for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4655	    if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
4656              fastmap[j] = 1;
4657	  break;
4658
4659
4660	case charset_not:
4661	  /* Chars beyond end of map must be allowed.  */
4662	  for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
4663            fastmap[j] = 1;
4664
4665	  for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4666	    if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
4667              fastmap[j] = 1;
4668          break;
4669
4670
4671	case wordchar:
4672	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4673	    if (SYNTAX (j) == Sword)
4674	      fastmap[j] = 1;
4675	  break;
4676
4677
4678	case notwordchar:
4679	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4680	    if (SYNTAX (j) != Sword)
4681	      fastmap[j] = 1;
4682	  break;
4683#endif /* WCHAR */
4684
4685        case anychar:
4686	  {
4687	    int fastmap_newline = fastmap['\n'];
4688
4689	    /* `.' matches anything ...  */
4690	    for (j = 0; j < (1 << BYTEWIDTH); j++)
4691	      fastmap[j] = 1;
4692
4693	    /* ... except perhaps newline.  */
4694	    if (!(bufp->syntax & RE_DOT_NEWLINE))
4695	      fastmap['\n'] = fastmap_newline;
4696
4697	    /* Return if we have already set `can_be_null'; if we have,
4698	       then the fastmap is irrelevant.  Something's wrong here.  */
4699	    else if (bufp->can_be_null)
4700	      goto done;
4701
4702	    /* Otherwise, have to check alternative paths.  */
4703	    break;
4704	  }
4705
4706#ifdef emacs
4707        case syntaxspec:
4708	  k = *p++;
4709	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4710	    if (SYNTAX (j) == (enum syntaxcode) k)
4711	      fastmap[j] = 1;
4712	  break;
4713
4714
4715	case notsyntaxspec:
4716	  k = *p++;
4717	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4718	    if (SYNTAX (j) != (enum syntaxcode) k)
4719	      fastmap[j] = 1;
4720	  break;
4721
4722
4723      /* All cases after this match the empty string.  These end with
4724         `continue'.  */
4725
4726
4727	case before_dot:
4728	case at_dot:
4729	case after_dot:
4730          continue;
4731#endif /* emacs */
4732
4733
4734        case no_op:
4735        case begline:
4736        case endline:
4737	case begbuf:
4738	case endbuf:
4739	case wordbound:
4740	case notwordbound:
4741	case wordbeg:
4742	case wordend:
4743        case push_dummy_failure:
4744          continue;
4745
4746
4747	case jump_n:
4748        case pop_failure_jump:
4749	case maybe_pop_jump:
4750	case jump:
4751        case jump_past_alt:
4752	case dummy_failure_jump:
4753          EXTRACT_NUMBER_AND_INCR (j, p);
4754	  p += j;
4755	  if (j > 0)
4756	    continue;
4757
4758          /* Jump backward implies we just went through the body of a
4759             loop and matched nothing.  Opcode jumped to should be
4760             `on_failure_jump' or `succeed_n'.  Just treat it like an
4761             ordinary jump.  For a * loop, it has pushed its failure
4762             point already; if so, discard that as redundant.  */
4763          if ((re_opcode_t) *p != on_failure_jump
4764	      && (re_opcode_t) *p != succeed_n)
4765	    continue;
4766
4767          p++;
4768          EXTRACT_NUMBER_AND_INCR (j, p);
4769          p += j;
4770
4771          /* If what's on the stack is where we are now, pop it.  */
4772          if (!FAIL_STACK_EMPTY ()
4773	      && fail_stack.stack[fail_stack.avail - 1].pointer == p)
4774            fail_stack.avail--;
4775
4776          continue;
4777
4778
4779        case on_failure_jump:
4780        case on_failure_keep_string_jump:
4781	handle_on_failure_jump:
4782          EXTRACT_NUMBER_AND_INCR (j, p);
4783
4784          /* For some patterns, e.g., `(a?)?', `p+j' here points to the
4785             end of the pattern.  We don't want to push such a point,
4786             since when we restore it above, entering the switch will
4787             increment `p' past the end of the pattern.  We don't need
4788             to push such a point since we obviously won't find any more
4789             fastmap entries beyond `pend'.  Such a pattern can match
4790             the null string, though.  */
4791          if (p + j < pend)
4792            {
4793              if (!PUSH_PATTERN_OP (p + j, fail_stack))
4794		{
4795		  RESET_FAIL_STACK ();
4796		  return -2;
4797		}
4798            }
4799          else
4800            bufp->can_be_null = 1;
4801
4802          if (succeed_n_p)
4803            {
4804              EXTRACT_NUMBER_AND_INCR (k, p);	/* Skip the n.  */
4805              succeed_n_p = false;
4806	    }
4807
4808          continue;
4809
4810
4811	case succeed_n:
4812          /* Get to the number of times to succeed.  */
4813          p += OFFSET_ADDRESS_SIZE;
4814
4815          /* Increment p past the n for when k != 0.  */
4816          EXTRACT_NUMBER_AND_INCR (k, p);
4817          if (k == 0)
4818	    {
4819              p -= 2 * OFFSET_ADDRESS_SIZE;
4820  	      succeed_n_p = true;  /* Spaghetti code alert.  */
4821              goto handle_on_failure_jump;
4822            }
4823          continue;
4824
4825
4826	case set_number_at:
4827          p += 2 * OFFSET_ADDRESS_SIZE;
4828          continue;
4829
4830
4831	case start_memory:
4832        case stop_memory:
4833	  p += 2;
4834	  continue;
4835
4836
4837	default:
4838          abort (); /* We have listed all the cases.  */
4839        } /* switch *p++ */
4840
4841      /* Getting here means we have found the possible starting
4842         characters for one path of the pattern -- and that the empty
4843         string does not match.  We need not follow this path further.
4844         Instead, look at the next alternative (remembered on the
4845         stack), or quit if no more.  The test at the top of the loop
4846         does these things.  */
4847      path_can_be_null = false;
4848      p = pend;
4849    } /* while p */
4850
4851  /* Set `can_be_null' for the last path (also the first path, if the
4852     pattern is empty).  */
4853  bufp->can_be_null |= path_can_be_null;
4854
4855 done:
4856  RESET_FAIL_STACK ();
4857  return 0;
4858}
4859
4860#else /* not INSIDE_RECURSION */
4861
4862int
4863re_compile_fastmap (struct re_pattern_buffer *bufp)
4864{
4865# ifdef MBS_SUPPORT
4866  if (MB_CUR_MAX != 1)
4867    return wcs_re_compile_fastmap(bufp);
4868  else
4869# endif
4870    return byte_re_compile_fastmap(bufp);
4871} /* re_compile_fastmap */
4872#ifdef _LIBC
4873weak_alias (__re_compile_fastmap, re_compile_fastmap)
4874#endif
4875
4876
4877/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4878   ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
4879   this memory for recording register information.  STARTS and ENDS
4880   must be allocated using the malloc library routine, and must each
4881   be at least NUM_REGS * sizeof (regoff_t) bytes long.
4882
4883   If NUM_REGS == 0, then subsequent matches should allocate their own
4884   register data.
4885
4886   Unless this function is called, the first search or match using
4887   PATTERN_BUFFER will allocate its own register data, without
4888   freeing the old data.  */
4889
4890void
4891re_set_registers (struct re_pattern_buffer *bufp,
4892                  struct re_registers *regs, unsigned num_regs,
4893                  regoff_t *starts, regoff_t *ends)
4894{
4895  if (num_regs)
4896    {
4897      bufp->regs_allocated = REGS_REALLOCATE;
4898      regs->num_regs = num_regs;
4899      regs->start = starts;
4900      regs->end = ends;
4901    }
4902  else
4903    {
4904      bufp->regs_allocated = REGS_UNALLOCATED;
4905      regs->num_regs = 0;
4906      regs->start = regs->end = (regoff_t *) 0;
4907    }
4908}
4909#ifdef _LIBC
4910weak_alias (__re_set_registers, re_set_registers)
4911#endif
4912
4913/* Searching routines.  */
4914
4915/* Like re_search_2, below, but only one string is specified, and
4916   doesn't let you say where to stop matching.  */
4917
4918int
4919re_search (struct re_pattern_buffer *bufp, const char *string, int size,
4920           int startpos, int range, struct re_registers *regs)
4921{
4922  return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
4923		      regs, size);
4924}
4925#ifdef _LIBC
4926weak_alias (__re_search, re_search)
4927#endif
4928
4929
4930/* Using the compiled pattern in BUFP->buffer, first tries to match the
4931   virtual concatenation of STRING1 and STRING2, starting first at index
4932   STARTPOS, then at STARTPOS + 1, and so on.
4933
4934   STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4935
4936   RANGE is how far to scan while trying to match.  RANGE = 0 means try
4937   only at STARTPOS; in general, the last start tried is STARTPOS +
4938   RANGE.
4939
4940   In REGS, return the indices of the virtual concatenation of STRING1
4941   and STRING2 that matched the entire BUFP->buffer and its contained
4942   subexpressions.
4943
4944   Do not consider matching one past the index STOP in the virtual
4945   concatenation of STRING1 and STRING2.
4946
4947   We return either the position in the strings at which the match was
4948   found, -1 if no match, or -2 if error (such as failure
4949   stack overflow).  */
4950
4951int
4952re_search_2 (struct re_pattern_buffer *bufp, const char *string1, int size1,
4953             const char *string2, int size2, int startpos, int range,
4954             struct re_registers *regs, int stop)
4955{
4956# ifdef MBS_SUPPORT
4957  if (MB_CUR_MAX != 1)
4958    return wcs_re_search_2 (bufp, string1, size1, string2, size2, startpos,
4959			    range, regs, stop);
4960  else
4961# endif
4962    return byte_re_search_2 (bufp, string1, size1, string2, size2, startpos,
4963			     range, regs, stop);
4964} /* re_search_2 */
4965#ifdef _LIBC
4966weak_alias (__re_search_2, re_search_2)
4967#endif
4968
4969#endif /* not INSIDE_RECURSION */
4970
4971#ifdef INSIDE_RECURSION
4972
4973#ifdef MATCH_MAY_ALLOCATE
4974# define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
4975#else
4976# define FREE_VAR(var) free (var); var = NULL
4977#endif
4978
4979#ifdef WCHAR
4980# define MAX_ALLOCA_SIZE	2000
4981
4982# define FREE_WCS_BUFFERS() \
4983  do {									      \
4984    if (size1 > MAX_ALLOCA_SIZE)					      \
4985      {									      \
4986	free (wcs_string1);						      \
4987	free (mbs_offset1);						      \
4988      }									      \
4989    else								      \
4990      {									      \
4991	FREE_VAR (wcs_string1);						      \
4992	FREE_VAR (mbs_offset1);						      \
4993      }									      \
4994    if (size2 > MAX_ALLOCA_SIZE) 					      \
4995      {									      \
4996	free (wcs_string2);						      \
4997	free (mbs_offset2);						      \
4998      }									      \
4999    else								      \
5000      {									      \
5001	FREE_VAR (wcs_string2);						      \
5002	FREE_VAR (mbs_offset2);						      \
5003      }									      \
5004  } while (0)
5005
5006#endif
5007
5008
5009static int
5010PREFIX(re_search_2) (struct re_pattern_buffer *bufp, const char *string1,
5011                     int size1, const char *string2, int size2,
5012                     int startpos, int range,
5013                     struct re_registers *regs, int stop)
5014{
5015  int val;
5016  register char *fastmap = bufp->fastmap;
5017  register RE_TRANSLATE_TYPE translate = bufp->translate;
5018  int total_size = size1 + size2;
5019  int endpos = startpos + range;
5020#ifdef WCHAR
5021  /* We need wchar_t* buffers correspond to cstring1, cstring2.  */
5022  wchar_t *wcs_string1 = NULL, *wcs_string2 = NULL;
5023  /* We need the size of wchar_t buffers correspond to csize1, csize2.  */
5024  int wcs_size1 = 0, wcs_size2 = 0;
5025  /* offset buffer for optimizatoin. See convert_mbs_to_wc.  */
5026  int *mbs_offset1 = NULL, *mbs_offset2 = NULL;
5027  /* They hold whether each wchar_t is binary data or not.  */
5028  char *is_binary = NULL;
5029#endif /* WCHAR */
5030
5031  /* Check for out-of-range STARTPOS.  */
5032  if (startpos < 0 || startpos > total_size)
5033    return -1;
5034
5035  /* Fix up RANGE if it might eventually take us outside
5036     the virtual concatenation of STRING1 and STRING2.
5037     Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE.  */
5038  if (endpos < 0)
5039    range = 0 - startpos;
5040  else if (endpos > total_size)
5041    range = total_size - startpos;
5042
5043  /* If the search isn't to be a backwards one, don't waste time in a
5044     search for a pattern that must be anchored.  */
5045  if (bufp->used > 0 && range > 0
5046      && ((re_opcode_t) bufp->buffer[0] == begbuf
5047	  /* `begline' is like `begbuf' if it cannot match at newlines.  */
5048	  || ((re_opcode_t) bufp->buffer[0] == begline
5049	      && !bufp->newline_anchor)))
5050    {
5051      if (startpos > 0)
5052	return -1;
5053      else
5054	range = 1;
5055    }
5056
5057#ifdef emacs
5058  /* In a forward search for something that starts with \=.
5059     don't keep searching past point.  */
5060  if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
5061    {
5062      range = PT - startpos;
5063      if (range <= 0)
5064	return -1;
5065    }
5066#endif /* emacs */
5067
5068  /* Update the fastmap now if not correct already.  */
5069  if (fastmap && !bufp->fastmap_accurate)
5070    if (re_compile_fastmap (bufp) == -2)
5071      return -2;
5072
5073#ifdef WCHAR
5074  /* Allocate wchar_t array for wcs_string1 and wcs_string2 and
5075     fill them with converted string.  */
5076  if (size1 != 0)
5077    {
5078      if (size1 > MAX_ALLOCA_SIZE)
5079	{
5080	  wcs_string1 = TALLOC (size1 + 1, CHAR_T);
5081	  mbs_offset1 = TALLOC (size1 + 1, int);
5082	  is_binary = TALLOC (size1 + 1, char);
5083	}
5084      else
5085	{
5086	  wcs_string1 = REGEX_TALLOC (size1 + 1, CHAR_T);
5087	  mbs_offset1 = REGEX_TALLOC (size1 + 1, int);
5088	  is_binary = REGEX_TALLOC (size1 + 1, char);
5089	}
5090      if (!wcs_string1 || !mbs_offset1 || !is_binary)
5091	{
5092	  if (size1 > MAX_ALLOCA_SIZE)
5093	    {
5094	      free (wcs_string1);
5095	      free (mbs_offset1);
5096	      free (is_binary);
5097	    }
5098	  else
5099	    {
5100	      FREE_VAR (wcs_string1);
5101	      FREE_VAR (mbs_offset1);
5102	      FREE_VAR (is_binary);
5103	    }
5104	  return -2;
5105	}
5106      wcs_size1 = convert_mbs_to_wcs(wcs_string1, string1, size1,
5107				     mbs_offset1, is_binary);
5108      wcs_string1[wcs_size1] = L'\0'; /* for a sentinel  */
5109      if (size1 > MAX_ALLOCA_SIZE)
5110	free (is_binary);
5111      else
5112	FREE_VAR (is_binary);
5113    }
5114  if (size2 != 0)
5115    {
5116      if (size2 > MAX_ALLOCA_SIZE)
5117	{
5118	  wcs_string2 = TALLOC (size2 + 1, CHAR_T);
5119	  mbs_offset2 = TALLOC (size2 + 1, int);
5120	  is_binary = TALLOC (size2 + 1, char);
5121	}
5122      else
5123	{
5124	  wcs_string2 = REGEX_TALLOC (size2 + 1, CHAR_T);
5125	  mbs_offset2 = REGEX_TALLOC (size2 + 1, int);
5126	  is_binary = REGEX_TALLOC (size2 + 1, char);
5127	}
5128      if (!wcs_string2 || !mbs_offset2 || !is_binary)
5129	{
5130	  FREE_WCS_BUFFERS ();
5131	  if (size2 > MAX_ALLOCA_SIZE)
5132	    free (is_binary);
5133	  else
5134	    FREE_VAR (is_binary);
5135	  return -2;
5136	}
5137      wcs_size2 = convert_mbs_to_wcs(wcs_string2, string2, size2,
5138				     mbs_offset2, is_binary);
5139      wcs_string2[wcs_size2] = L'\0'; /* for a sentinel  */
5140      if (size2 > MAX_ALLOCA_SIZE)
5141	free (is_binary);
5142      else
5143	FREE_VAR (is_binary);
5144    }
5145#endif /* WCHAR */
5146
5147
5148  /* Loop through the string, looking for a place to start matching.  */
5149  for (;;)
5150    {
5151      /* If a fastmap is supplied, skip quickly over characters that
5152         cannot be the start of a match.  If the pattern can match the
5153         null string, however, we don't need to skip characters; we want
5154         the first null string.  */
5155      if (fastmap && startpos < total_size && !bufp->can_be_null)
5156	{
5157	  if (range > 0)	/* Searching forwards.  */
5158	    {
5159	      register const char *d;
5160	      register int lim = 0;
5161	      int irange = range;
5162
5163              if (startpos < size1 && startpos + range >= size1)
5164                lim = range - (size1 - startpos);
5165
5166	      d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
5167
5168              /* Written out as an if-else to avoid testing `translate'
5169                 inside the loop.  */
5170	      if (translate)
5171                while (range > lim
5172                       && !fastmap[(unsigned char)
5173				   translate[(unsigned char) *d++]])
5174                  range--;
5175	      else
5176                while (range > lim && !fastmap[(unsigned char) *d++])
5177                  range--;
5178
5179	      startpos += irange - range;
5180	    }
5181	  else				/* Searching backwards.  */
5182	    {
5183	      register CHAR_T c = (size1 == 0 || startpos >= size1
5184				      ? string2[startpos - size1]
5185				      : string1[startpos]);
5186
5187	      if (!fastmap[(unsigned char) TRANSLATE (c)])
5188		goto advance;
5189	    }
5190	}
5191
5192      /* If can't match the null string, and that's all we have left, fail.  */
5193      if (range >= 0 && startpos == total_size && fastmap
5194          && !bufp->can_be_null)
5195       {
5196#ifdef WCHAR
5197         FREE_WCS_BUFFERS ();
5198#endif
5199         return -1;
5200       }
5201
5202#ifdef WCHAR
5203      val = wcs_re_match_2_internal (bufp, string1, size1, string2,
5204				     size2, startpos, regs, stop,
5205				     wcs_string1, wcs_size1,
5206				     wcs_string2, wcs_size2,
5207				     mbs_offset1, mbs_offset2);
5208#else /* BYTE */
5209      val = byte_re_match_2_internal (bufp, string1, size1, string2,
5210				      size2, startpos, regs, stop);
5211#endif /* BYTE */
5212
5213#ifndef REGEX_MALLOC
5214# ifdef C_ALLOCA
5215      alloca (0);
5216# endif
5217#endif
5218
5219      if (val >= 0)
5220	{
5221#ifdef WCHAR
5222	  FREE_WCS_BUFFERS ();
5223#endif
5224	  return startpos;
5225	}
5226
5227      if (val == -2)
5228	{
5229#ifdef WCHAR
5230	  FREE_WCS_BUFFERS ();
5231#endif
5232	  return -2;
5233	}
5234
5235    advance:
5236      if (!range)
5237        break;
5238      else if (range > 0)
5239        {
5240          range--;
5241          startpos++;
5242        }
5243      else
5244        {
5245          range++;
5246          startpos--;
5247        }
5248    }
5249#ifdef WCHAR
5250  FREE_WCS_BUFFERS ();
5251#endif
5252  return -1;
5253}
5254
5255#ifdef WCHAR
5256/* This converts PTR, a pointer into one of the search wchar_t strings
5257   `string1' and `string2' into an multibyte string offset from the
5258   beginning of that string. We use mbs_offset to optimize.
5259   See convert_mbs_to_wcs.  */
5260# define POINTER_TO_OFFSET(ptr)						\
5261  (FIRST_STRING_P (ptr)							\
5262   ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0))	\
5263   : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0)	\
5264		 + csize1)))
5265#else /* BYTE */
5266/* This converts PTR, a pointer into one of the search strings `string1'
5267   and `string2' into an offset from the beginning of that string.  */
5268# define POINTER_TO_OFFSET(ptr)			\
5269  (FIRST_STRING_P (ptr)				\
5270   ? ((regoff_t) ((ptr) - string1))		\
5271   : ((regoff_t) ((ptr) - string2 + size1)))
5272#endif /* WCHAR */
5273
5274/* Macros for dealing with the split strings in re_match_2.  */
5275
5276#define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
5277
5278/* Call before fetching a character with *d.  This switches over to
5279   string2 if necessary.  */
5280#define PREFETCH()							\
5281  while (d == dend)						    	\
5282    {									\
5283      /* End of string2 => fail.  */					\
5284      if (dend == end_match_2) 						\
5285        goto fail;							\
5286      /* End of string1 => advance to string2.  */ 			\
5287      d = string2;						        \
5288      dend = end_match_2;						\
5289    }
5290
5291/* Test if at very beginning or at very end of the virtual concatenation
5292   of `string1' and `string2'.  If only one string, it's `string2'.  */
5293#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5294#define AT_STRINGS_END(d) ((d) == end2)
5295
5296
5297/* Test if D points to a character which is word-constituent.  We have
5298   two special cases to check for: if past the end of string1, look at
5299   the first character in string2; and if before the beginning of
5300   string2, look at the last character in string1.  */
5301#ifdef WCHAR
5302/* Use internationalized API instead of SYNTAX.  */
5303# define WORDCHAR_P(d)							\
5304  (iswalnum ((wint_t)((d) == end1 ? *string2				\
5305           : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0		\
5306   || ((d) == end1 ? *string2						\
5307       : (d) == string2 - 1 ? *(end1 - 1) : *(d)) == L'_')
5308#else /* BYTE */
5309# define WORDCHAR_P(d)							\
5310  (SYNTAX ((d) == end1 ? *string2					\
5311           : (d) == string2 - 1 ? *(end1 - 1) : *(d))			\
5312   == Sword)
5313#endif /* WCHAR */
5314
5315/* Disabled due to a compiler bug -- see comment at case wordbound */
5316#if 0
5317/* Test if the character before D and the one at D differ with respect
5318   to being word-constituent.  */
5319#define AT_WORD_BOUNDARY(d)						\
5320  (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)				\
5321   || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
5322#endif
5323
5324/* Free everything we malloc.  */
5325#ifdef MATCH_MAY_ALLOCATE
5326# ifdef WCHAR
5327#  define FREE_VARIABLES()						\
5328  do {									\
5329    REGEX_FREE_STACK (fail_stack.stack);				\
5330    FREE_VAR (regstart);						\
5331    FREE_VAR (regend);							\
5332    FREE_VAR (old_regstart);						\
5333    FREE_VAR (old_regend);						\
5334    FREE_VAR (best_regstart);						\
5335    FREE_VAR (best_regend);						\
5336    FREE_VAR (reg_info);						\
5337    FREE_VAR (reg_dummy);						\
5338    FREE_VAR (reg_info_dummy);						\
5339    if (!cant_free_wcs_buf)						\
5340      {									\
5341        FREE_VAR (string1);						\
5342        FREE_VAR (string2);						\
5343        FREE_VAR (mbs_offset1);						\
5344        FREE_VAR (mbs_offset2);						\
5345      }									\
5346  } while (0)
5347# else /* BYTE */
5348#  define FREE_VARIABLES()						\
5349  do {									\
5350    REGEX_FREE_STACK (fail_stack.stack);				\
5351    FREE_VAR (regstart);						\
5352    FREE_VAR (regend);							\
5353    FREE_VAR (old_regstart);						\
5354    FREE_VAR (old_regend);						\
5355    FREE_VAR (best_regstart);						\
5356    FREE_VAR (best_regend);						\
5357    FREE_VAR (reg_info);						\
5358    FREE_VAR (reg_dummy);						\
5359    FREE_VAR (reg_info_dummy);						\
5360  } while (0)
5361# endif /* WCHAR */
5362#else
5363# ifdef WCHAR
5364#  define FREE_VARIABLES()						\
5365  do {									\
5366    if (!cant_free_wcs_buf)						\
5367      {									\
5368        FREE_VAR (string1);						\
5369        FREE_VAR (string2);						\
5370        FREE_VAR (mbs_offset1);						\
5371        FREE_VAR (mbs_offset2);						\
5372      }									\
5373  } while (0)
5374# else /* BYTE */
5375#  define FREE_VARIABLES() ((void)0) /* Do nothing!  But inhibit gcc warning. */
5376# endif /* WCHAR */
5377#endif /* not MATCH_MAY_ALLOCATE */
5378
5379/* These values must meet several constraints.  They must not be valid
5380   register values; since we have a limit of 255 registers (because
5381   we use only one byte in the pattern for the register number), we can
5382   use numbers larger than 255.  They must differ by 1, because of
5383   NUM_FAILURE_ITEMS above.  And the value for the lowest register must
5384   be larger than the value for the highest register, so we do not try
5385   to actually save any registers when none are active.  */
5386#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
5387#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
5388
5389#else /* not INSIDE_RECURSION */
5390/* Matching routines.  */
5391
5392#ifndef emacs   /* Emacs never uses this.  */
5393/* re_match is like re_match_2 except it takes only a single string.  */
5394
5395int
5396re_match (struct re_pattern_buffer *bufp, const char *string,
5397          int size, int pos, struct re_registers *regs)
5398{
5399  int result;
5400# ifdef MBS_SUPPORT
5401  if (MB_CUR_MAX != 1)
5402    result = wcs_re_match_2_internal (bufp, NULL, 0, string, size,
5403				      pos, regs, size,
5404				      NULL, 0, NULL, 0, NULL, NULL);
5405  else
5406# endif
5407    result = byte_re_match_2_internal (bufp, NULL, 0, string, size,
5408				  pos, regs, size);
5409# ifndef REGEX_MALLOC
5410#  ifdef C_ALLOCA
5411  alloca (0);
5412#  endif
5413# endif
5414  return result;
5415}
5416# ifdef _LIBC
5417weak_alias (__re_match, re_match)
5418# endif
5419#endif /* not emacs */
5420
5421#endif /* not INSIDE_RECURSION */
5422
5423#ifdef INSIDE_RECURSION
5424static boolean PREFIX(group_match_null_string_p) (UCHAR_T **p,
5425                                                  UCHAR_T *end,
5426					PREFIX(register_info_type) *reg_info);
5427static boolean PREFIX(alt_match_null_string_p) (UCHAR_T *p,
5428                                                UCHAR_T *end,
5429					PREFIX(register_info_type) *reg_info);
5430static boolean PREFIX(common_op_match_null_string_p) (UCHAR_T **p,
5431                                                      UCHAR_T *end,
5432					PREFIX(register_info_type) *reg_info);
5433static int PREFIX(bcmp_translate) (const CHAR_T *s1, const CHAR_T *s2,
5434                                   int len, char *translate);
5435#else /* not INSIDE_RECURSION */
5436
5437/* re_match_2 matches the compiled pattern in BUFP against the
5438   the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5439   and SIZE2, respectively).  We start matching at POS, and stop
5440   matching at STOP.
5441
5442   If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5443   store offsets for the substring each group matched in REGS.  See the
5444   documentation for exactly how many groups we fill.
5445
5446   We return -1 if no match, -2 if an internal error (such as the
5447   failure stack overflowing).  Otherwise, we return the length of the
5448   matched substring.  */
5449
5450int
5451re_match_2 (struct re_pattern_buffer *bufp, const char *string1, int size1,
5452            const char *string2, int size2, int pos,
5453            struct re_registers *regs, int stop)
5454{
5455  int result;
5456# ifdef MBS_SUPPORT
5457  if (MB_CUR_MAX != 1)
5458    result = wcs_re_match_2_internal (bufp, string1, size1, string2, size2,
5459				      pos, regs, stop,
5460				      NULL, 0, NULL, 0, NULL, NULL);
5461  else
5462# endif
5463    result = byte_re_match_2_internal (bufp, string1, size1, string2, size2,
5464				  pos, regs, stop);
5465
5466#ifndef REGEX_MALLOC
5467# ifdef C_ALLOCA
5468  alloca (0);
5469# endif
5470#endif
5471  return result;
5472}
5473#ifdef _LIBC
5474weak_alias (__re_match_2, re_match_2)
5475#endif
5476
5477#endif /* not INSIDE_RECURSION */
5478
5479#ifdef INSIDE_RECURSION
5480
5481#ifdef WCHAR
5482static int count_mbs_length (int *, int);
5483
5484/* This check the substring (from 0, to length) of the multibyte string,
5485   to which offset_buffer correspond. And count how many wchar_t_characters
5486   the substring occupy. We use offset_buffer to optimization.
5487   See convert_mbs_to_wcs.  */
5488
5489static int
5490count_mbs_length(int *offset_buffer, int length)
5491{
5492  int upper, lower;
5493
5494  /* Check whether the size is valid.  */
5495  if (length < 0)
5496    return -1;
5497
5498  if (offset_buffer == NULL)
5499    return 0;
5500
5501  /* If there are no multibyte character, offset_buffer[i] == i.
5502   Optmize for this case.  */
5503  if (offset_buffer[length] == length)
5504    return length;
5505
5506  /* Set up upper with length. (because for all i, offset_buffer[i] >= i)  */
5507  upper = length;
5508  lower = 0;
5509
5510  while (true)
5511    {
5512      int middle = (lower + upper) / 2;
5513      if (middle == lower || middle == upper)
5514	break;
5515      if (offset_buffer[middle] > length)
5516	upper = middle;
5517      else if (offset_buffer[middle] < length)
5518	lower = middle;
5519      else
5520	return middle;
5521    }
5522
5523  return -1;
5524}
5525#endif /* WCHAR */
5526
5527/* This is a separate function so that we can force an alloca cleanup
5528   afterwards.  */
5529#ifdef WCHAR
5530static int
5531wcs_re_match_2_internal (struct re_pattern_buffer *bufp,
5532                         const char *cstring1, int csize1,
5533                         const char *cstring2, int csize2,
5534                         int pos,
5535			 struct re_registers *regs,
5536                         int stop,
5537     /* string1 == string2 == NULL means string1/2, size1/2 and
5538	mbs_offset1/2 need seting up in this function.  */
5539     /* We need wchar_t* buffers correspond to cstring1, cstring2.  */
5540                         wchar_t *string1, int size1,
5541                         wchar_t *string2, int size2,
5542     /* offset buffer for optimizatoin. See convert_mbs_to_wc.  */
5543			 int *mbs_offset1, int *mbs_offset2)
5544#else /* BYTE */
5545static int
5546byte_re_match_2_internal (struct re_pattern_buffer *bufp,
5547                          const char *string1, int size1,
5548                          const char *string2, int size2,
5549                          int pos,
5550			  struct re_registers *regs, int stop)
5551#endif /* BYTE */
5552{
5553  /* General temporaries.  */
5554  int mcnt;
5555  UCHAR_T *p1;
5556#ifdef WCHAR
5557  /* They hold whether each wchar_t is binary data or not.  */
5558  char *is_binary = NULL;
5559  /* If true, we can't free string1/2, mbs_offset1/2.  */
5560  int cant_free_wcs_buf = 1;
5561#endif /* WCHAR */
5562
5563  /* Just past the end of the corresponding string.  */
5564  const CHAR_T *end1, *end2;
5565
5566  /* Pointers into string1 and string2, just past the last characters in
5567     each to consider matching.  */
5568  const CHAR_T *end_match_1, *end_match_2;
5569
5570  /* Where we are in the data, and the end of the current string.  */
5571  const CHAR_T *d, *dend;
5572
5573  /* Where we are in the pattern, and the end of the pattern.  */
5574#ifdef WCHAR
5575  UCHAR_T *pattern, *p;
5576  register UCHAR_T *pend;
5577#else /* BYTE */
5578  UCHAR_T *p = bufp->buffer;
5579  register UCHAR_T *pend = p + bufp->used;
5580#endif /* WCHAR */
5581
5582  /* Mark the opcode just after a start_memory, so we can test for an
5583     empty subpattern when we get to the stop_memory.  */
5584  UCHAR_T *just_past_start_mem = 0;
5585
5586  /* We use this to map every character in the string.  */
5587  RE_TRANSLATE_TYPE translate = bufp->translate;
5588
5589  /* Failure point stack.  Each place that can handle a failure further
5590     down the line pushes a failure point on this stack.  It consists of
5591     restart, regend, and reg_info for all registers corresponding to
5592     the subexpressions we're currently inside, plus the number of such
5593     registers, and, finally, two char *'s.  The first char * is where
5594     to resume scanning the pattern; the second one is where to resume
5595     scanning the strings.  If the latter is zero, the failure point is
5596     a ``dummy''; if a failure happens and the failure point is a dummy,
5597     it gets discarded and the next next one is tried.  */
5598#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
5599  PREFIX(fail_stack_type) fail_stack;
5600#endif
5601#ifdef DEBUG
5602  static unsigned failure_id;
5603  unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5604#endif
5605
5606#ifdef REL_ALLOC
5607  /* This holds the pointer to the failure stack, when
5608     it is allocated relocatably.  */
5609  fail_stack_elt_t *failure_stack_ptr;
5610#endif
5611
5612  /* We fill all the registers internally, independent of what we
5613     return, for use in backreferences.  The number here includes
5614     an element for register zero.  */
5615  size_t num_regs = bufp->re_nsub + 1;
5616
5617  /* The currently active registers.  */
5618  active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
5619  active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
5620
5621  /* Information on the contents of registers. These are pointers into
5622     the input strings; they record just what was matched (on this
5623     attempt) by a subexpression part of the pattern, that is, the
5624     regnum-th regstart pointer points to where in the pattern we began
5625     matching and the regnum-th regend points to right after where we
5626     stopped matching the regnum-th subexpression.  (The zeroth register
5627     keeps track of what the whole pattern matches.)  */
5628#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5629  const CHAR_T **regstart, **regend;
5630#endif
5631
5632  /* If a group that's operated upon by a repetition operator fails to
5633     match anything, then the register for its start will need to be
5634     restored because it will have been set to wherever in the string we
5635     are when we last see its open-group operator.  Similarly for a
5636     register's end.  */
5637#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5638  const CHAR_T **old_regstart, **old_regend;
5639#endif
5640
5641  /* The is_active field of reg_info helps us keep track of which (possibly
5642     nested) subexpressions we are currently in. The matched_something
5643     field of reg_info[reg_num] helps us tell whether or not we have
5644     matched any of the pattern so far this time through the reg_num-th
5645     subexpression.  These two fields get reset each time through any
5646     loop their register is in.  */
5647#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
5648  PREFIX(register_info_type) *reg_info;
5649#endif
5650
5651  /* The following record the register info as found in the above
5652     variables when we find a match better than any we've seen before.
5653     This happens as we backtrack through the failure points, which in
5654     turn happens only if we have not yet matched the entire string. */
5655  unsigned best_regs_set = false;
5656#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5657  const CHAR_T **best_regstart, **best_regend;
5658#endif
5659
5660  /* Logically, this is `best_regend[0]'.  But we don't want to have to
5661     allocate space for that if we're not allocating space for anything
5662     else (see below).  Also, we never need info about register 0 for
5663     any of the other register vectors, and it seems rather a kludge to
5664     treat `best_regend' differently than the rest.  So we keep track of
5665     the end of the best match so far in a separate variable.  We
5666     initialize this to NULL so that when we backtrack the first time
5667     and need to test it, it's not garbage.  */
5668  const CHAR_T *match_end = NULL;
5669
5670  /* This helps SET_REGS_MATCHED avoid doing redundant work.  */
5671  int set_regs_matched_done = 0;
5672
5673  /* Used when we pop values we don't care about.  */
5674#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5675  const CHAR_T **reg_dummy;
5676  PREFIX(register_info_type) *reg_info_dummy;
5677#endif
5678
5679#ifdef DEBUG
5680  /* Counts the total number of registers pushed.  */
5681  unsigned num_regs_pushed = 0;
5682#endif
5683
5684  DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5685
5686  INIT_FAIL_STACK ();
5687
5688#ifdef MATCH_MAY_ALLOCATE
5689  /* Do not bother to initialize all the register variables if there are
5690     no groups in the pattern, as it takes a fair amount of time.  If
5691     there are groups, we include space for register 0 (the whole
5692     pattern), even though we never use it, since it simplifies the
5693     array indexing.  We should fix this.  */
5694  if (bufp->re_nsub)
5695    {
5696      regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5697      regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5698      old_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5699      old_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5700      best_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5701      best_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5702      reg_info = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5703      reg_dummy = REGEX_TALLOC (num_regs, const CHAR_T *);
5704      reg_info_dummy = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5705
5706      if (!(regstart && regend && old_regstart && old_regend && reg_info
5707            && best_regstart && best_regend && reg_dummy && reg_info_dummy))
5708        {
5709          FREE_VARIABLES ();
5710          return -2;
5711        }
5712    }
5713  else
5714    {
5715      /* We must initialize all our variables to NULL, so that
5716         `FREE_VARIABLES' doesn't try to free them.  */
5717      regstart = regend = old_regstart = old_regend = best_regstart
5718        = best_regend = reg_dummy = NULL;
5719      reg_info = reg_info_dummy = (PREFIX(register_info_type) *) NULL;
5720    }
5721#endif /* MATCH_MAY_ALLOCATE */
5722
5723  /* The starting position is bogus.  */
5724#ifdef WCHAR
5725  if (pos < 0 || pos > csize1 + csize2)
5726#else /* BYTE */
5727  if (pos < 0 || pos > size1 + size2)
5728#endif
5729    {
5730      FREE_VARIABLES ();
5731      return -1;
5732    }
5733
5734#ifdef WCHAR
5735  /* Allocate wchar_t array for string1 and string2 and
5736     fill them with converted string.  */
5737  if (string1 == NULL && string2 == NULL)
5738    {
5739      /* We need seting up buffers here.  */
5740
5741      /* We must free wcs buffers in this function.  */
5742      cant_free_wcs_buf = 0;
5743
5744      if (csize1 != 0)
5745	{
5746	  string1 = REGEX_TALLOC (csize1 + 1, CHAR_T);
5747	  mbs_offset1 = REGEX_TALLOC (csize1 + 1, int);
5748	  is_binary = REGEX_TALLOC (csize1 + 1, char);
5749	  if (!string1 || !mbs_offset1 || !is_binary)
5750	    {
5751	      FREE_VAR (string1);
5752	      FREE_VAR (mbs_offset1);
5753	      FREE_VAR (is_binary);
5754	      return -2;
5755	    }
5756	}
5757      if (csize2 != 0)
5758	{
5759	  string2 = REGEX_TALLOC (csize2 + 1, CHAR_T);
5760	  mbs_offset2 = REGEX_TALLOC (csize2 + 1, int);
5761	  is_binary = REGEX_TALLOC (csize2 + 1, char);
5762	  if (!string2 || !mbs_offset2 || !is_binary)
5763	    {
5764	      FREE_VAR (string1);
5765	      FREE_VAR (mbs_offset1);
5766	      FREE_VAR (string2);
5767	      FREE_VAR (mbs_offset2);
5768	      FREE_VAR (is_binary);
5769	      return -2;
5770	    }
5771	  size2 = convert_mbs_to_wcs(string2, cstring2, csize2,
5772				     mbs_offset2, is_binary);
5773	  string2[size2] = L'\0'; /* for a sentinel  */
5774	  FREE_VAR (is_binary);
5775	}
5776    }
5777
5778  /* We need to cast pattern to (wchar_t*), because we casted this compiled
5779     pattern to (char*) in regex_compile.  */
5780  p = pattern = (CHAR_T*)bufp->buffer;
5781  pend = (CHAR_T*)(bufp->buffer + bufp->used);
5782
5783#endif /* WCHAR */
5784
5785  /* Initialize subexpression text positions to -1 to mark ones that no
5786     start_memory/stop_memory has been seen for. Also initialize the
5787     register information struct.  */
5788  for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5789    {
5790      regstart[mcnt] = regend[mcnt]
5791        = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
5792
5793      REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
5794      IS_ACTIVE (reg_info[mcnt]) = 0;
5795      MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5796      EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5797    }
5798
5799  /* We move `string1' into `string2' if the latter's empty -- but not if
5800     `string1' is null.  */
5801  if (size2 == 0 && string1 != NULL)
5802    {
5803      string2 = string1;
5804      size2 = size1;
5805      string1 = 0;
5806      size1 = 0;
5807#ifdef WCHAR
5808      mbs_offset2 = mbs_offset1;
5809      csize2 = csize1;
5810      mbs_offset1 = NULL;
5811      csize1 = 0;
5812#endif
5813    }
5814  end1 = string1 + size1;
5815  end2 = string2 + size2;
5816
5817  /* Compute where to stop matching, within the two strings.  */
5818#ifdef WCHAR
5819  if (stop <= csize1)
5820    {
5821      mcnt = count_mbs_length(mbs_offset1, stop);
5822      end_match_1 = string1 + mcnt;
5823      end_match_2 = string2;
5824    }
5825  else
5826    {
5827      if (stop > csize1 + csize2)
5828	stop = csize1 + csize2;
5829      end_match_1 = end1;
5830      mcnt = count_mbs_length(mbs_offset2, stop-csize1);
5831      end_match_2 = string2 + mcnt;
5832    }
5833  if (mcnt < 0)
5834    { /* count_mbs_length return error.  */
5835      FREE_VARIABLES ();
5836      return -1;
5837    }
5838#else
5839  if (stop <= size1)
5840    {
5841      end_match_1 = string1 + stop;
5842      end_match_2 = string2;
5843    }
5844  else
5845    {
5846      end_match_1 = end1;
5847      end_match_2 = string2 + stop - size1;
5848    }
5849#endif /* WCHAR */
5850
5851  /* `p' scans through the pattern as `d' scans through the data.
5852     `dend' is the end of the input string that `d' points within.  `d'
5853     is advanced into the following input string whenever necessary, but
5854     this happens before fetching; therefore, at the beginning of the
5855     loop, `d' can be pointing at the end of a string, but it cannot
5856     equal `string2'.  */
5857#ifdef WCHAR
5858  if (size1 > 0 && pos <= csize1)
5859    {
5860      mcnt = count_mbs_length(mbs_offset1, pos);
5861      d = string1 + mcnt;
5862      dend = end_match_1;
5863    }
5864  else
5865    {
5866      mcnt = count_mbs_length(mbs_offset2, pos-csize1);
5867      d = string2 + mcnt;
5868      dend = end_match_2;
5869    }
5870
5871  if (mcnt < 0)
5872    { /* count_mbs_length return error.  */
5873      FREE_VARIABLES ();
5874      return -1;
5875    }
5876#else
5877  if (size1 > 0 && pos <= size1)
5878    {
5879      d = string1 + pos;
5880      dend = end_match_1;
5881    }
5882  else
5883    {
5884      d = string2 + pos - size1;
5885      dend = end_match_2;
5886    }
5887#endif /* WCHAR */
5888
5889  DEBUG_PRINT1 ("The compiled pattern is:\n");
5890  DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5891  DEBUG_PRINT1 ("The string to match is: `");
5892  DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5893  DEBUG_PRINT1 ("'\n");
5894
5895  /* This loops over pattern commands.  It exits by returning from the
5896     function if the match is complete, or it drops through if the match
5897     fails at this starting point in the input data.  */
5898  for (;;)
5899    {
5900#ifdef _LIBC
5901      DEBUG_PRINT2 ("\n%p: ", p);
5902#else
5903      DEBUG_PRINT2 ("\n0x%x: ", p);
5904#endif
5905
5906      if (p == pend)
5907	{ /* End of pattern means we might have succeeded.  */
5908          DEBUG_PRINT1 ("end of pattern ... ");
5909
5910	  /* If we haven't matched the entire string, and we want the
5911             longest match, try backtracking.  */
5912          if (d != end_match_2)
5913	    {
5914	      /* 1 if this match ends in the same string (string1 or string2)
5915		 as the best previous match.  */
5916	      boolean same_str_p;
5917
5918	      /* 1 if this match is the best seen so far.  */
5919	      boolean best_match_p;
5920
5921              same_str_p = (FIRST_STRING_P (match_end)
5922                            == MATCHING_IN_FIRST_STRING);
5923
5924	      /* AIX compiler got confused when this was combined
5925		 with the previous declaration.  */
5926	      if (same_str_p)
5927		best_match_p = d > match_end;
5928	      else
5929		best_match_p = !MATCHING_IN_FIRST_STRING;
5930
5931              DEBUG_PRINT1 ("backtracking.\n");
5932
5933              if (!FAIL_STACK_EMPTY ())
5934                { /* More failure points to try.  */
5935
5936                  /* If exceeds best match so far, save it.  */
5937                  if (!best_regs_set || best_match_p)
5938                    {
5939                      best_regs_set = true;
5940                      match_end = d;
5941
5942                      DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5943
5944                      for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5945                        {
5946                          best_regstart[mcnt] = regstart[mcnt];
5947                          best_regend[mcnt] = regend[mcnt];
5948                        }
5949                    }
5950                  goto fail;
5951                }
5952
5953              /* If no failure points, don't restore garbage.  And if
5954                 last match is real best match, don't restore second
5955                 best one. */
5956              else if (best_regs_set && !best_match_p)
5957                {
5958  	        restore_best_regs:
5959                  /* Restore best match.  It may happen that `dend ==
5960                     end_match_1' while the restored d is in string2.
5961                     For example, the pattern `x.*y.*z' against the
5962                     strings `x-' and `y-z-', if the two strings are
5963                     not consecutive in memory.  */
5964                  DEBUG_PRINT1 ("Restoring best registers.\n");
5965
5966                  d = match_end;
5967                  dend = ((d >= string1 && d <= end1)
5968		           ? end_match_1 : end_match_2);
5969
5970		  for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5971		    {
5972		      regstart[mcnt] = best_regstart[mcnt];
5973		      regend[mcnt] = best_regend[mcnt];
5974		    }
5975                }
5976            } /* d != end_match_2 */
5977
5978	succeed_label:
5979          DEBUG_PRINT1 ("Accepting match.\n");
5980          /* If caller wants register contents data back, do it.  */
5981          if (regs && !bufp->no_sub)
5982	    {
5983	      /* Have the register data arrays been allocated?  */
5984              if (bufp->regs_allocated == REGS_UNALLOCATED)
5985                { /* No.  So allocate them with malloc.  We need one
5986                     extra element beyond `num_regs' for the `-1' marker
5987                     GNU code uses.  */
5988                  regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5989                  regs->start = TALLOC (regs->num_regs, regoff_t);
5990                  regs->end = TALLOC (regs->num_regs, regoff_t);
5991                  if (regs->start == NULL || regs->end == NULL)
5992		    {
5993		      FREE_VARIABLES ();
5994		      return -2;
5995		    }
5996                  bufp->regs_allocated = REGS_REALLOCATE;
5997                }
5998              else if (bufp->regs_allocated == REGS_REALLOCATE)
5999                { /* Yes.  If we need more elements than were already
6000                     allocated, reallocate them.  If we need fewer, just
6001                     leave it alone.  */
6002                  if (regs->num_regs < num_regs + 1)
6003                    {
6004                      regs->num_regs = num_regs + 1;
6005                      RETALLOC (regs->start, regs->num_regs, regoff_t);
6006                      RETALLOC (regs->end, regs->num_regs, regoff_t);
6007                      if (regs->start == NULL || regs->end == NULL)
6008			{
6009			  FREE_VARIABLES ();
6010			  return -2;
6011			}
6012                    }
6013                }
6014              else
6015		{
6016		  /* These braces fend off a "empty body in an else-statement"
6017		     warning under GCC when assert expands to nothing.  */
6018		  assert (bufp->regs_allocated == REGS_FIXED);
6019		}
6020
6021              /* Convert the pointer data in `regstart' and `regend' to
6022                 indices.  Register zero has to be set differently,
6023                 since we haven't kept track of any info for it.  */
6024              if (regs->num_regs > 0)
6025                {
6026                  regs->start[0] = pos;
6027#ifdef WCHAR
6028		  if (MATCHING_IN_FIRST_STRING)
6029		    regs->end[0] = mbs_offset1 != NULL ?
6030					mbs_offset1[d-string1] : 0;
6031		  else
6032		    regs->end[0] = csize1 + (mbs_offset2 != NULL ?
6033					     mbs_offset2[d-string2] : 0);
6034#else
6035                  regs->end[0] = (MATCHING_IN_FIRST_STRING
6036				  ? ((regoff_t) (d - string1))
6037			          : ((regoff_t) (d - string2 + size1)));
6038#endif /* WCHAR */
6039                }
6040
6041              /* Go through the first `min (num_regs, regs->num_regs)'
6042                 registers, since that is all we initialized.  */
6043	      for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
6044		   mcnt++)
6045		{
6046                  if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
6047                    regs->start[mcnt] = regs->end[mcnt] = -1;
6048                  else
6049                    {
6050		      regs->start[mcnt]
6051			= (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
6052                      regs->end[mcnt]
6053			= (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
6054                    }
6055		}
6056
6057              /* If the regs structure we return has more elements than
6058                 were in the pattern, set the extra elements to -1.  If
6059                 we (re)allocated the registers, this is the case,
6060                 because we always allocate enough to have at least one
6061                 -1 at the end.  */
6062              for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
6063                regs->start[mcnt] = regs->end[mcnt] = -1;
6064	    } /* regs && !bufp->no_sub */
6065
6066          DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
6067                        nfailure_points_pushed, nfailure_points_popped,
6068                        nfailure_points_pushed - nfailure_points_popped);
6069          DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
6070
6071#ifdef WCHAR
6072	  if (MATCHING_IN_FIRST_STRING)
6073	    mcnt = mbs_offset1 != NULL ? mbs_offset1[d-string1] : 0;
6074	  else
6075	    mcnt = (mbs_offset2 != NULL ? mbs_offset2[d-string2] : 0) +
6076			csize1;
6077          mcnt -= pos;
6078#else
6079          mcnt = d - pos - (MATCHING_IN_FIRST_STRING
6080			    ? string1
6081			    : string2 - size1);
6082#endif /* WCHAR */
6083
6084          DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
6085
6086          FREE_VARIABLES ();
6087          return mcnt;
6088        }
6089
6090      /* Otherwise match next pattern command.  */
6091      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
6092	{
6093        /* Ignore these.  Used to ignore the n of succeed_n's which
6094           currently have n == 0.  */
6095        case no_op:
6096          DEBUG_PRINT1 ("EXECUTING no_op.\n");
6097          break;
6098
6099	case succeed:
6100          DEBUG_PRINT1 ("EXECUTING succeed.\n");
6101	  goto succeed_label;
6102
6103        /* Match the next n pattern characters exactly.  The following
6104           byte in the pattern defines n, and the n bytes after that
6105           are the characters to match.  */
6106	case exactn:
6107#ifdef MBS_SUPPORT
6108	case exactn_bin:
6109#endif
6110	  mcnt = *p++;
6111          DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
6112
6113          /* This is written out as an if-else so we don't waste time
6114             testing `translate' inside the loop.  */
6115          if (translate)
6116	    {
6117	      do
6118		{
6119		  PREFETCH ();
6120#ifdef WCHAR
6121		  if (*d <= 0xff)
6122		    {
6123		      if ((UCHAR_T) translate[(unsigned char) *d++]
6124			  != (UCHAR_T) *p++)
6125			goto fail;
6126		    }
6127		  else
6128		    {
6129		      if (*d++ != (CHAR_T) *p++)
6130			goto fail;
6131		    }
6132#else
6133		  if ((UCHAR_T) translate[(unsigned char) *d++]
6134		      != (UCHAR_T) *p++)
6135                    goto fail;
6136#endif /* WCHAR */
6137		}
6138	      while (--mcnt);
6139	    }
6140	  else
6141	    {
6142	      do
6143		{
6144		  PREFETCH ();
6145		  if (*d++ != (CHAR_T) *p++) goto fail;
6146		}
6147	      while (--mcnt);
6148	    }
6149	  SET_REGS_MATCHED ();
6150          break;
6151
6152
6153        /* Match any character except possibly a newline or a null.  */
6154	case anychar:
6155          DEBUG_PRINT1 ("EXECUTING anychar.\n");
6156
6157          PREFETCH ();
6158
6159          if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
6160              || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
6161	    goto fail;
6162
6163          SET_REGS_MATCHED ();
6164          DEBUG_PRINT2 ("  Matched `%ld'.\n", (long int) *d);
6165          d++;
6166	  break;
6167
6168
6169	case charset:
6170	case charset_not:
6171	  {
6172	    register UCHAR_T c;
6173#ifdef WCHAR
6174	    unsigned int i, char_class_length, coll_symbol_length,
6175              equiv_class_length, ranges_length, chars_length, length;
6176	    CHAR_T *workp, *workp2, *charset_top;
6177#define WORK_BUFFER_SIZE 128
6178            CHAR_T str_buf[WORK_BUFFER_SIZE];
6179# ifdef _LIBC
6180	    uint32_t nrules;
6181# endif /* _LIBC */
6182#endif /* WCHAR */
6183	    boolean negate = (re_opcode_t) *(p - 1) == charset_not;
6184
6185            DEBUG_PRINT2 ("EXECUTING charset%s.\n", negate ? "_not" : "");
6186	    PREFETCH ();
6187	    c = TRANSLATE (*d); /* The character to match.  */
6188#ifdef WCHAR
6189# ifdef _LIBC
6190	    nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
6191# endif /* _LIBC */
6192	    charset_top = p - 1;
6193	    char_class_length = *p++;
6194	    coll_symbol_length = *p++;
6195	    equiv_class_length = *p++;
6196	    ranges_length = *p++;
6197	    chars_length = *p++;
6198	    /* p points charset[6], so the address of the next instruction
6199	       (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'],
6200	       where l=length of char_classes, m=length of collating_symbol,
6201	       n=equivalence_class, o=length of char_range,
6202	       p'=length of character.  */
6203	    workp = p;
6204	    /* Update p to indicate the next instruction.  */
6205	    p += char_class_length + coll_symbol_length+ equiv_class_length +
6206              2*ranges_length + chars_length;
6207
6208            /* match with char_class?  */
6209	    for (i = 0; i < char_class_length ; i += CHAR_CLASS_SIZE)
6210	      {
6211		wctype_t wctype;
6212		uintptr_t alignedp = ((uintptr_t)workp
6213				      + __alignof__(wctype_t) - 1)
6214		  		      & ~(uintptr_t)(__alignof__(wctype_t) - 1);
6215		wctype = *((wctype_t*)alignedp);
6216		workp += CHAR_CLASS_SIZE;
6217# ifdef _LIBC
6218		if (__iswctype((wint_t)c, wctype))
6219		  goto char_set_matched;
6220# else
6221		if (iswctype((wint_t)c, wctype))
6222		  goto char_set_matched;
6223# endif
6224	      }
6225
6226            /* match with collating_symbol?  */
6227# ifdef _LIBC
6228	    if (nrules != 0)
6229	      {
6230		const unsigned char *extra = (const unsigned char *)
6231		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
6232
6233		for (workp2 = workp + coll_symbol_length ; workp < workp2 ;
6234		     workp++)
6235		  {
6236		    int32_t *wextra;
6237		    wextra = (int32_t*)(extra + *workp++);
6238		    for (i = 0; i < *wextra; ++i)
6239		      if (TRANSLATE(d[i]) != wextra[1 + i])
6240			break;
6241
6242		    if (i == *wextra)
6243		      {
6244			/* Update d, however d will be incremented at
6245			   char_set_matched:, we decrement d here.  */
6246			d += i - 1;
6247			goto char_set_matched;
6248		      }
6249		  }
6250	      }
6251	    else /* (nrules == 0) */
6252# endif
6253	      /* If we can't look up collation data, we use wcscoll
6254		 instead.  */
6255	      {
6256		for (workp2 = workp + coll_symbol_length ; workp < workp2 ;)
6257		  {
6258		    const CHAR_T *backup_d = d, *backup_dend = dend;
6259# ifdef _LIBC
6260		    length = __wcslen (workp);
6261# else
6262		    length = wcslen (workp);
6263# endif
6264
6265		    /* If wcscoll(the collating symbol, whole string) > 0,
6266		       any substring of the string never match with the
6267		       collating symbol.  */
6268# ifdef _LIBC
6269		    if (__wcscoll (workp, d) > 0)
6270# else
6271		    if (wcscoll (workp, d) > 0)
6272# endif
6273		      {
6274			workp += length + 1;
6275			continue;
6276		      }
6277
6278		    /* First, we compare the collating symbol with
6279		       the first character of the string.
6280		       If it don't match, we add the next character to
6281		       the compare buffer in turn.  */
6282		    for (i = 0 ; i < WORK_BUFFER_SIZE-1 ; i++, d++)
6283		      {
6284			int match;
6285			if (d == dend)
6286			  {
6287			    if (dend == end_match_2)
6288			      break;
6289			    d = string2;
6290			    dend = end_match_2;
6291			  }
6292
6293			/* add next character to the compare buffer.  */
6294			str_buf[i] = TRANSLATE(*d);
6295			str_buf[i+1] = '\0';
6296
6297# ifdef _LIBC
6298			match = __wcscoll (workp, str_buf);
6299# else
6300			match = wcscoll (workp, str_buf);
6301# endif
6302			if (match == 0)
6303			  goto char_set_matched;
6304
6305			if (match < 0)
6306			  /* (str_buf > workp) indicate (str_buf + X > workp),
6307			     because for all X (str_buf + X > str_buf).
6308			     So we don't need continue this loop.  */
6309			  break;
6310
6311			/* Otherwise(str_buf < workp),
6312			   (str_buf+next_character) may equals (workp).
6313			   So we continue this loop.  */
6314		      }
6315		    /* not matched */
6316		    d = backup_d;
6317		    dend = backup_dend;
6318		    workp += length + 1;
6319		  }
6320              }
6321            /* match with equivalence_class?  */
6322# ifdef _LIBC
6323	    if (nrules != 0)
6324	      {
6325                const CHAR_T *backup_d = d, *backup_dend = dend;
6326		/* Try to match the equivalence class against
6327		   those known to the collate implementation.  */
6328		const int32_t *table;
6329		const int32_t *weights;
6330		const int32_t *extra;
6331		const int32_t *indirect;
6332		int32_t idx, idx2;
6333		wint_t *cp;
6334		size_t len;
6335
6336		/* This #include defines a local function!  */
6337#  include <locale/weightwc.h>
6338
6339		table = (const int32_t *)
6340		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEWC);
6341		weights = (const wint_t *)
6342		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTWC);
6343		extra = (const wint_t *)
6344		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAWC);
6345		indirect = (const int32_t *)
6346		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTWC);
6347
6348		/* Write 1 collating element to str_buf, and
6349		   get its index.  */
6350		idx2 = 0;
6351
6352		for (i = 0 ; idx2 == 0 && i < WORK_BUFFER_SIZE - 1; i++)
6353		  {
6354		    cp = (wint_t*)str_buf;
6355		    if (d == dend)
6356		      {
6357			if (dend == end_match_2)
6358			  break;
6359			d = string2;
6360			dend = end_match_2;
6361		      }
6362		    str_buf[i] = TRANSLATE(*(d+i));
6363		    str_buf[i+1] = '\0'; /* sentinel */
6364		    idx2 = findidx ((const wint_t**)&cp);
6365		  }
6366
6367		/* Update d, however d will be incremented at
6368		   char_set_matched:, we decrement d here.  */
6369		d = backup_d + ((wchar_t*)cp - (wchar_t*)str_buf - 1);
6370		if (d >= dend)
6371		  {
6372		    if (dend == end_match_2)
6373			d = dend;
6374		    else
6375		      {
6376			d = string2;
6377			dend = end_match_2;
6378		      }
6379		  }
6380
6381		len = weights[idx2];
6382
6383		for (workp2 = workp + equiv_class_length ; workp < workp2 ;
6384		     workp++)
6385		  {
6386		    idx = (int32_t)*workp;
6387		    /* We already checked idx != 0 in regex_compile. */
6388
6389		    if (idx2 != 0 && len == weights[idx])
6390		      {
6391			int cnt = 0;
6392			while (cnt < len && (weights[idx + 1 + cnt]
6393					     == weights[idx2 + 1 + cnt]))
6394			  ++cnt;
6395
6396			if (cnt == len)
6397			  goto char_set_matched;
6398		      }
6399		  }
6400		/* not matched */
6401                d = backup_d;
6402                dend = backup_dend;
6403	      }
6404	    else /* (nrules == 0) */
6405# endif
6406	      /* If we can't look up collation data, we use wcscoll
6407		 instead.  */
6408	      {
6409		for (workp2 = workp + equiv_class_length ; workp < workp2 ;)
6410		  {
6411		    const CHAR_T *backup_d = d, *backup_dend = dend;
6412# ifdef _LIBC
6413		    length = __wcslen (workp);
6414# else
6415		    length = wcslen (workp);
6416# endif
6417
6418		    /* If wcscoll(the collating symbol, whole string) > 0,
6419		       any substring of the string never match with the
6420		       collating symbol.  */
6421# ifdef _LIBC
6422		    if (__wcscoll (workp, d) > 0)
6423# else
6424		    if (wcscoll (workp, d) > 0)
6425# endif
6426		      {
6427			workp += length + 1;
6428			break;
6429		      }
6430
6431		    /* First, we compare the equivalence class with
6432		       the first character of the string.
6433		       If it don't match, we add the next character to
6434		       the compare buffer in turn.  */
6435		    for (i = 0 ; i < WORK_BUFFER_SIZE - 1 ; i++, d++)
6436		      {
6437			int match;
6438			if (d == dend)
6439			  {
6440			    if (dend == end_match_2)
6441			      break;
6442			    d = string2;
6443			    dend = end_match_2;
6444			  }
6445
6446			/* add next character to the compare buffer.  */
6447			str_buf[i] = TRANSLATE(*d);
6448			str_buf[i+1] = '\0';
6449
6450# ifdef _LIBC
6451			match = __wcscoll (workp, str_buf);
6452# else
6453			match = wcscoll (workp, str_buf);
6454# endif
6455
6456			if (match == 0)
6457			  goto char_set_matched;
6458
6459			if (match < 0)
6460			/* (str_buf > workp) indicate (str_buf + X > workp),
6461			   because for all X (str_buf + X > str_buf).
6462			   So we don't need continue this loop.  */
6463			  break;
6464
6465			/* Otherwise(str_buf < workp),
6466			   (str_buf+next_character) may equals (workp).
6467			   So we continue this loop.  */
6468		      }
6469		    /* not matched */
6470		    d = backup_d;
6471		    dend = backup_dend;
6472		    workp += length + 1;
6473		  }
6474	      }
6475
6476            /* match with char_range?  */
6477# ifdef _LIBC
6478	    if (nrules != 0)
6479	      {
6480		uint32_t collseqval;
6481		const char *collseq = (const char *)
6482		  _NL_CURRENT(LC_COLLATE, _NL_COLLATE_COLLSEQWC);
6483
6484		collseqval = collseq_table_lookup (collseq, c);
6485
6486		for (; workp < p - chars_length ;)
6487		  {
6488		    uint32_t start_val, end_val;
6489
6490		    /* We already compute the collation sequence value
6491		       of the characters (or collating symbols).  */
6492		    start_val = (uint32_t) *workp++; /* range_start */
6493		    end_val = (uint32_t) *workp++; /* range_end */
6494
6495		    if (start_val <= collseqval && collseqval <= end_val)
6496		      goto char_set_matched;
6497		  }
6498	      }
6499	    else
6500# endif
6501	      {
6502		/* We set range_start_char at str_buf[0], range_end_char
6503		   at str_buf[4], and compared char at str_buf[2].  */
6504		str_buf[1] = 0;
6505		str_buf[2] = c;
6506		str_buf[3] = 0;
6507		str_buf[5] = 0;
6508		for (; workp < p - chars_length ;)
6509		  {
6510		    wchar_t *range_start_char, *range_end_char;
6511
6512		    /* match if (range_start_char <= c <= range_end_char).  */
6513
6514		    /* If range_start(or end) < 0, we assume -range_start(end)
6515		       is the offset of the collating symbol which is specified
6516		       as the character of the range start(end).  */
6517
6518		    /* range_start */
6519		    if (*workp < 0)
6520		      range_start_char = charset_top - (*workp++);
6521		    else
6522		      {
6523			str_buf[0] = *workp++;
6524			range_start_char = str_buf;
6525		      }
6526
6527		    /* range_end */
6528		    if (*workp < 0)
6529		      range_end_char = charset_top - (*workp++);
6530		    else
6531		      {
6532			str_buf[4] = *workp++;
6533			range_end_char = str_buf + 4;
6534		      }
6535
6536# ifdef _LIBC
6537		    if (__wcscoll (range_start_char, str_buf+2) <= 0
6538			&& __wcscoll (str_buf+2, range_end_char) <= 0)
6539# else
6540		    if (wcscoll (range_start_char, str_buf+2) <= 0
6541			&& wcscoll (str_buf+2, range_end_char) <= 0)
6542# endif
6543		      goto char_set_matched;
6544		  }
6545	      }
6546
6547            /* match with char?  */
6548	    for (; workp < p ; workp++)
6549	      if (c == *workp)
6550		goto char_set_matched;
6551
6552	    negate = !negate;
6553
6554	  char_set_matched:
6555	    if (negate) goto fail;
6556#else
6557            /* Cast to `unsigned' instead of `unsigned char' in case the
6558               bit list is a full 32 bytes long.  */
6559	    if (c < (unsigned) (*p * BYTEWIDTH)
6560		&& p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
6561	      negate = !negate;
6562
6563	    p += 1 + *p;
6564
6565	    if (!negate) goto fail;
6566#undef WORK_BUFFER_SIZE
6567#endif /* WCHAR */
6568	    SET_REGS_MATCHED ();
6569            d++;
6570	    break;
6571	  }
6572
6573
6574        /* The beginning of a group is represented by start_memory.
6575           The arguments are the register number in the next byte, and the
6576           number of groups inner to this one in the next.  The text
6577           matched within the group is recorded (in the internal
6578           registers data structure) under the register number.  */
6579        case start_memory:
6580	  DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n",
6581			(long int) *p, (long int) p[1]);
6582
6583          /* Find out if this group can match the empty string.  */
6584	  p1 = p;		/* To send to group_match_null_string_p.  */
6585
6586          if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
6587            REG_MATCH_NULL_STRING_P (reg_info[*p])
6588              = PREFIX(group_match_null_string_p) (&p1, pend, reg_info);
6589
6590          /* Save the position in the string where we were the last time
6591             we were at this open-group operator in case the group is
6592             operated upon by a repetition operator, e.g., with `(a*)*b'
6593             against `ab'; then we want to ignore where we are now in
6594             the string in case this attempt to match fails.  */
6595          old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6596                             ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
6597                             : regstart[*p];
6598	  DEBUG_PRINT2 ("  old_regstart: %d\n",
6599			 POINTER_TO_OFFSET (old_regstart[*p]));
6600
6601          regstart[*p] = d;
6602	  DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
6603
6604          IS_ACTIVE (reg_info[*p]) = 1;
6605          MATCHED_SOMETHING (reg_info[*p]) = 0;
6606
6607	  /* Clear this whenever we change the register activity status.  */
6608	  set_regs_matched_done = 0;
6609
6610          /* This is the new highest active register.  */
6611          highest_active_reg = *p;
6612
6613          /* If nothing was active before, this is the new lowest active
6614             register.  */
6615          if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6616            lowest_active_reg = *p;
6617
6618          /* Move past the register number and inner group count.  */
6619          p += 2;
6620	  just_past_start_mem = p;
6621
6622          break;
6623
6624
6625        /* The stop_memory opcode represents the end of a group.  Its
6626           arguments are the same as start_memory's: the register
6627           number, and the number of inner groups.  */
6628	case stop_memory:
6629	  DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n",
6630			(long int) *p, (long int) p[1]);
6631
6632          /* We need to save the string position the last time we were at
6633             this close-group operator in case the group is operated
6634             upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
6635             against `aba'; then we want to ignore where we are now in
6636             the string in case this attempt to match fails.  */
6637          old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6638                           ? REG_UNSET (regend[*p]) ? d : regend[*p]
6639			   : regend[*p];
6640	  DEBUG_PRINT2 ("      old_regend: %d\n",
6641			 POINTER_TO_OFFSET (old_regend[*p]));
6642
6643          regend[*p] = d;
6644	  DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
6645
6646          /* This register isn't active anymore.  */
6647          IS_ACTIVE (reg_info[*p]) = 0;
6648
6649	  /* Clear this whenever we change the register activity status.  */
6650	  set_regs_matched_done = 0;
6651
6652          /* If this was the only register active, nothing is active
6653             anymore.  */
6654          if (lowest_active_reg == highest_active_reg)
6655            {
6656              lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6657              highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6658            }
6659          else
6660            { /* We must scan for the new highest active register, since
6661                 it isn't necessarily one less than now: consider
6662                 (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
6663                 new highest active register is 1.  */
6664              UCHAR_T r = *p - 1;
6665              while (r > 0 && !IS_ACTIVE (reg_info[r]))
6666                r--;
6667
6668              /* If we end up at register zero, that means that we saved
6669                 the registers as the result of an `on_failure_jump', not
6670                 a `start_memory', and we jumped to past the innermost
6671                 `stop_memory'.  For example, in ((.)*) we save
6672                 registers 1 and 2 as a result of the *, but when we pop
6673                 back to the second ), we are at the stop_memory 1.
6674                 Thus, nothing is active.  */
6675	      if (r == 0)
6676                {
6677                  lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6678                  highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6679                }
6680              else
6681                highest_active_reg = r;
6682            }
6683
6684          /* If just failed to match something this time around with a
6685             group that's operated on by a repetition operator, try to
6686             force exit from the ``loop'', and restore the register
6687             information for this group that we had before trying this
6688             last match.  */
6689          if ((!MATCHED_SOMETHING (reg_info[*p])
6690               || just_past_start_mem == p - 1)
6691	      && (p + 2) < pend)
6692            {
6693              boolean is_a_jump_n = false;
6694
6695              p1 = p + 2;
6696              mcnt = 0;
6697              switch ((re_opcode_t) *p1++)
6698                {
6699                  case jump_n:
6700		    is_a_jump_n = true;
6701		    /* Fall through.  */
6702                  case pop_failure_jump:
6703		  case maybe_pop_jump:
6704		  case jump:
6705		  case dummy_failure_jump:
6706                    EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6707		    if (is_a_jump_n)
6708		      p1 += OFFSET_ADDRESS_SIZE;
6709                    break;
6710
6711                  default:
6712                    /* do nothing */ ;
6713                }
6714	      p1 += mcnt;
6715
6716              /* If the next operation is a jump backwards in the pattern
6717	         to an on_failure_jump right before the start_memory
6718                 corresponding to this stop_memory, exit from the loop
6719                 by forcing a failure after pushing on the stack the
6720                 on_failure_jump's jump in the pattern, and d.  */
6721              if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
6722                  && (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == start_memory
6723		  && p1[2+OFFSET_ADDRESS_SIZE] == *p)
6724		{
6725                  /* If this group ever matched anything, then restore
6726                     what its registers were before trying this last
6727                     failed match, e.g., with `(a*)*b' against `ab' for
6728                     regstart[1], and, e.g., with `((a*)*(b*)*)*'
6729                     against `aba' for regend[3].
6730
6731                     Also restore the registers for inner groups for,
6732                     e.g., `((a*)(b*))*' against `aba' (register 3 would
6733                     otherwise get trashed).  */
6734
6735                  if (EVER_MATCHED_SOMETHING (reg_info[*p]))
6736		    {
6737		      unsigned r;
6738
6739                      EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
6740
6741		      /* Restore this and inner groups' (if any) registers.  */
6742                      for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
6743			   r++)
6744                        {
6745                          regstart[r] = old_regstart[r];
6746
6747                          /* xx why this test?  */
6748                          if (old_regend[r] >= regstart[r])
6749                            regend[r] = old_regend[r];
6750                        }
6751                    }
6752		  p1++;
6753                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6754                  PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
6755
6756                  goto fail;
6757                }
6758            }
6759
6760          /* Move past the register number and the inner group count.  */
6761          p += 2;
6762          break;
6763
6764
6765	/* \<digit> has been turned into a `duplicate' command which is
6766           followed by the numeric value of <digit> as the register number.  */
6767        case duplicate:
6768	  {
6769	    register const CHAR_T *d2, *dend2;
6770	    int regno = *p++;   /* Get which register to match against.  */
6771	    DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
6772
6773	    /* Can't back reference a group which we've never matched.  */
6774            if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
6775              goto fail;
6776
6777            /* Where in input to try to start matching.  */
6778            d2 = regstart[regno];
6779
6780            /* Where to stop matching; if both the place to start and
6781               the place to stop matching are in the same string, then
6782               set to the place to stop, otherwise, for now have to use
6783               the end of the first string.  */
6784
6785            dend2 = ((FIRST_STRING_P (regstart[regno])
6786		      == FIRST_STRING_P (regend[regno]))
6787		     ? regend[regno] : end_match_1);
6788	    for (;;)
6789	      {
6790		/* If necessary, advance to next segment in register
6791                   contents.  */
6792		while (d2 == dend2)
6793		  {
6794		    if (dend2 == end_match_2) break;
6795		    if (dend2 == regend[regno]) break;
6796
6797                    /* End of string1 => advance to string2. */
6798                    d2 = string2;
6799                    dend2 = regend[regno];
6800		  }
6801		/* At end of register contents => success */
6802		if (d2 == dend2) break;
6803
6804		/* If necessary, advance to next segment in data.  */
6805		PREFETCH ();
6806
6807		/* How many characters left in this segment to match.  */
6808		mcnt = dend - d;
6809
6810		/* Want how many consecutive characters we can match in
6811                   one shot, so, if necessary, adjust the count.  */
6812                if (mcnt > dend2 - d2)
6813		  mcnt = dend2 - d2;
6814
6815		/* Compare that many; failure if mismatch, else move
6816                   past them.  */
6817		if (translate
6818                    ? PREFIX(bcmp_translate) (d, d2, mcnt, translate)
6819                    : memcmp (d, d2, mcnt*sizeof(UCHAR_T)))
6820		  goto fail;
6821		d += mcnt, d2 += mcnt;
6822
6823		/* Do this because we've match some characters.  */
6824		SET_REGS_MATCHED ();
6825	      }
6826	  }
6827	  break;
6828
6829
6830        /* begline matches the empty string at the beginning of the string
6831           (unless `not_bol' is set in `bufp'), and, if
6832           `newline_anchor' is set, after newlines.  */
6833	case begline:
6834          DEBUG_PRINT1 ("EXECUTING begline.\n");
6835
6836          if (AT_STRINGS_BEG (d))
6837            {
6838              if (!bufp->not_bol) break;
6839            }
6840          else if (d[-1] == '\n' && bufp->newline_anchor)
6841            {
6842              break;
6843            }
6844          /* In all other cases, we fail.  */
6845          goto fail;
6846
6847
6848        /* endline is the dual of begline.  */
6849	case endline:
6850          DEBUG_PRINT1 ("EXECUTING endline.\n");
6851
6852          if (AT_STRINGS_END (d))
6853            {
6854              if (!bufp->not_eol) break;
6855            }
6856
6857          /* We have to ``prefetch'' the next character.  */
6858          else if ((d == end1 ? *string2 : *d) == '\n'
6859                   && bufp->newline_anchor)
6860            {
6861              break;
6862            }
6863          goto fail;
6864
6865
6866	/* Match at the very beginning of the data.  */
6867        case begbuf:
6868          DEBUG_PRINT1 ("EXECUTING begbuf.\n");
6869          if (AT_STRINGS_BEG (d))
6870            break;
6871          goto fail;
6872
6873
6874	/* Match at the very end of the data.  */
6875        case endbuf:
6876          DEBUG_PRINT1 ("EXECUTING endbuf.\n");
6877	  if (AT_STRINGS_END (d))
6878	    break;
6879          goto fail;
6880
6881
6882        /* on_failure_keep_string_jump is used to optimize `.*\n'.  It
6883           pushes NULL as the value for the string on the stack.  Then
6884           `pop_failure_point' will keep the current value for the
6885           string, instead of restoring it.  To see why, consider
6886           matching `foo\nbar' against `.*\n'.  The .* matches the foo;
6887           then the . fails against the \n.  But the next thing we want
6888           to do is match the \n against the \n; if we restored the
6889           string value, we would be back at the foo.
6890
6891           Because this is used only in specific cases, we don't need to
6892           check all the things that `on_failure_jump' does, to make
6893           sure the right things get saved on the stack.  Hence we don't
6894           share its code.  The only reason to push anything on the
6895           stack at all is that otherwise we would have to change
6896           `anychar's code to do something besides goto fail in this
6897           case; that seems worse than this.  */
6898        case on_failure_keep_string_jump:
6899          DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
6900
6901          EXTRACT_NUMBER_AND_INCR (mcnt, p);
6902#ifdef _LIBC
6903          DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
6904#else
6905          DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
6906#endif
6907
6908          PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
6909          break;
6910
6911
6912	/* Uses of on_failure_jump:
6913
6914           Each alternative starts with an on_failure_jump that points
6915           to the beginning of the next alternative.  Each alternative
6916           except the last ends with a jump that in effect jumps past
6917           the rest of the alternatives.  (They really jump to the
6918           ending jump of the following alternative, because tensioning
6919           these jumps is a hassle.)
6920
6921           Repeats start with an on_failure_jump that points past both
6922           the repetition text and either the following jump or
6923           pop_failure_jump back to this on_failure_jump.  */
6924	case on_failure_jump:
6925        on_failure:
6926          DEBUG_PRINT1 ("EXECUTING on_failure_jump");
6927
6928          EXTRACT_NUMBER_AND_INCR (mcnt, p);
6929#ifdef _LIBC
6930          DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
6931#else
6932          DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
6933#endif
6934
6935          /* If this on_failure_jump comes right before a group (i.e.,
6936             the original * applied to a group), save the information
6937             for that group and all inner ones, so that if we fail back
6938             to this point, the group's information will be correct.
6939             For example, in \(a*\)*\1, we need the preceding group,
6940             and in \(zz\(a*\)b*\)\2, we need the inner group.  */
6941
6942          /* We can't use `p' to check ahead because we push
6943             a failure point to `p + mcnt' after we do this.  */
6944          p1 = p;
6945
6946          /* We need to skip no_op's before we look for the
6947             start_memory in case this on_failure_jump is happening as
6948             the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
6949             against aba.  */
6950          while (p1 < pend && (re_opcode_t) *p1 == no_op)
6951            p1++;
6952
6953          if (p1 < pend && (re_opcode_t) *p1 == start_memory)
6954            {
6955              /* We have a new highest active register now.  This will
6956                 get reset at the start_memory we are about to get to,
6957                 but we will have saved all the registers relevant to
6958                 this repetition op, as described above.  */
6959              highest_active_reg = *(p1 + 1) + *(p1 + 2);
6960              if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6961                lowest_active_reg = *(p1 + 1);
6962            }
6963
6964          DEBUG_PRINT1 (":\n");
6965          PUSH_FAILURE_POINT (p + mcnt, d, -2);
6966          break;
6967
6968
6969        /* A smart repeat ends with `maybe_pop_jump'.
6970	   We change it to either `pop_failure_jump' or `jump'.  */
6971        case maybe_pop_jump:
6972          EXTRACT_NUMBER_AND_INCR (mcnt, p);
6973          DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
6974          {
6975	    register UCHAR_T *p2 = p;
6976
6977            /* Compare the beginning of the repeat with what in the
6978               pattern follows its end. If we can establish that there
6979               is nothing that they would both match, i.e., that we
6980               would have to backtrack because of (as in, e.g., `a*a')
6981               then we can change to pop_failure_jump, because we'll
6982               never have to backtrack.
6983
6984               This is not true in the case of alternatives: in
6985               `(a|ab)*' we do need to backtrack to the `ab' alternative
6986               (e.g., if the string was `ab').  But instead of trying to
6987               detect that here, the alternative has put on a dummy
6988               failure point which is what we will end up popping.  */
6989
6990	    /* Skip over open/close-group commands.
6991	       If what follows this loop is a ...+ construct,
6992	       look at what begins its body, since we will have to
6993	       match at least one of that.  */
6994	    while (1)
6995	      {
6996		if (p2 + 2 < pend
6997		    && ((re_opcode_t) *p2 == stop_memory
6998			|| (re_opcode_t) *p2 == start_memory))
6999		  p2 += 3;
7000		else if (p2 + 2 + 2 * OFFSET_ADDRESS_SIZE < pend
7001			 && (re_opcode_t) *p2 == dummy_failure_jump)
7002		  p2 += 2 + 2 * OFFSET_ADDRESS_SIZE;
7003		else
7004		  break;
7005	      }
7006
7007	    p1 = p + mcnt;
7008	    /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
7009	       to the `maybe_finalize_jump' of this case.  Examine what
7010	       follows.  */
7011
7012            /* If we're at the end of the pattern, we can change.  */
7013            if (p2 == pend)
7014	      {
7015		/* Consider what happens when matching ":\(.*\)"
7016		   against ":/".  I don't really understand this code
7017		   yet.  */
7018  	        p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7019		  pop_failure_jump;
7020                DEBUG_PRINT1
7021                  ("  End of pattern: change to `pop_failure_jump'.\n");
7022              }
7023
7024            else if ((re_opcode_t) *p2 == exactn
7025#ifdef MBS_SUPPORT
7026		     || (re_opcode_t) *p2 == exactn_bin
7027#endif
7028		     || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
7029	      {
7030		register UCHAR_T c
7031                  = *p2 == (UCHAR_T) endline ? '\n' : p2[2];
7032
7033                if (((re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn
7034#ifdef MBS_SUPPORT
7035		     || (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn_bin
7036#endif
7037		    ) && p1[3+OFFSET_ADDRESS_SIZE] != c)
7038                  {
7039  		    p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7040		      pop_failure_jump;
7041#ifdef WCHAR
7042		      DEBUG_PRINT3 ("  %C != %C => pop_failure_jump.\n",
7043				    (wint_t) c,
7044				    (wint_t) p1[3+OFFSET_ADDRESS_SIZE]);
7045#else
7046		      DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
7047				    (char) c,
7048				    (char) p1[3+OFFSET_ADDRESS_SIZE]);
7049#endif
7050                  }
7051
7052#ifndef WCHAR
7053		else if ((re_opcode_t) p1[3] == charset
7054			 || (re_opcode_t) p1[3] == charset_not)
7055		  {
7056		    int negate = (re_opcode_t) p1[3] == charset_not;
7057
7058		    if (c < (unsigned) (p1[4] * BYTEWIDTH)
7059			&& p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
7060		      negate = !negate;
7061
7062                    /* `negate' is equal to 1 if c would match, which means
7063                        that we can't change to pop_failure_jump.  */
7064		    if (!negate)
7065                      {
7066  		        p[-3] = (unsigned char) pop_failure_jump;
7067                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7068                      }
7069		  }
7070#endif /* not WCHAR */
7071	      }
7072#ifndef WCHAR
7073            else if ((re_opcode_t) *p2 == charset)
7074	      {
7075		/* We win if the first character of the loop is not part
7076                   of the charset.  */
7077                if ((re_opcode_t) p1[3] == exactn
7078 		    && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
7079 			  && (p2[2 + p1[5] / BYTEWIDTH]
7080 			      & (1 << (p1[5] % BYTEWIDTH)))))
7081		  {
7082		    p[-3] = (unsigned char) pop_failure_jump;
7083		    DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7084                  }
7085
7086		else if ((re_opcode_t) p1[3] == charset_not)
7087		  {
7088		    int idx;
7089		    /* We win if the charset_not inside the loop
7090		       lists every character listed in the charset after.  */
7091		    for (idx = 0; idx < (int) p2[1]; idx++)
7092		      if (! (p2[2 + idx] == 0
7093			     || (idx < (int) p1[4]
7094				 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
7095			break;
7096
7097		    if (idx == p2[1])
7098                      {
7099  		        p[-3] = (unsigned char) pop_failure_jump;
7100                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7101                      }
7102		  }
7103		else if ((re_opcode_t) p1[3] == charset)
7104		  {
7105		    int idx;
7106		    /* We win if the charset inside the loop
7107		       has no overlap with the one after the loop.  */
7108		    for (idx = 0;
7109			 idx < (int) p2[1] && idx < (int) p1[4];
7110			 idx++)
7111		      if ((p2[2 + idx] & p1[5 + idx]) != 0)
7112			break;
7113
7114		    if (idx == p2[1] || idx == p1[4])
7115                      {
7116  		        p[-3] = (unsigned char) pop_failure_jump;
7117                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7118                      }
7119		  }
7120	      }
7121#endif /* not WCHAR */
7122	  }
7123	  p -= OFFSET_ADDRESS_SIZE;	/* Point at relative address again.  */
7124	  if ((re_opcode_t) p[-1] != pop_failure_jump)
7125	    {
7126	      p[-1] = (UCHAR_T) jump;
7127              DEBUG_PRINT1 ("  Match => jump.\n");
7128	      goto unconditional_jump;
7129	    }
7130        /* Fall through.  */
7131
7132
7133	/* The end of a simple repeat has a pop_failure_jump back to
7134           its matching on_failure_jump, where the latter will push a
7135           failure point.  The pop_failure_jump takes off failure
7136           points put on by this pop_failure_jump's matching
7137           on_failure_jump; we got through the pattern to here from the
7138           matching on_failure_jump, so didn't fail.  */
7139        case pop_failure_jump:
7140          {
7141            /* We need to pass separate storage for the lowest and
7142               highest registers, even though we don't care about the
7143               actual values.  Otherwise, we will restore only one
7144               register from the stack, since lowest will == highest in
7145               `pop_failure_point'.  */
7146            active_reg_t dummy_low_reg, dummy_high_reg;
7147            UCHAR_T *pdummy ATTRIBUTE_UNUSED = NULL;
7148            const CHAR_T *sdummy ATTRIBUTE_UNUSED = NULL;
7149
7150            DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
7151            POP_FAILURE_POINT (sdummy, pdummy,
7152                               dummy_low_reg, dummy_high_reg,
7153                               reg_dummy, reg_dummy, reg_info_dummy);
7154          }
7155	  /* Fall through.  */
7156
7157	unconditional_jump:
7158#ifdef _LIBC
7159	  DEBUG_PRINT2 ("\n%p: ", p);
7160#else
7161	  DEBUG_PRINT2 ("\n0x%x: ", p);
7162#endif
7163          /* Note fall through.  */
7164
7165        /* Unconditionally jump (without popping any failure points).  */
7166        case jump:
7167	  EXTRACT_NUMBER_AND_INCR (mcnt, p);	/* Get the amount to jump.  */
7168          DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
7169	  p += mcnt;				/* Do the jump.  */
7170#ifdef _LIBC
7171          DEBUG_PRINT2 ("(to %p).\n", p);
7172#else
7173          DEBUG_PRINT2 ("(to 0x%x).\n", p);
7174#endif
7175	  break;
7176
7177
7178        /* We need this opcode so we can detect where alternatives end
7179           in `group_match_null_string_p' et al.  */
7180        case jump_past_alt:
7181          DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
7182          goto unconditional_jump;
7183
7184
7185        /* Normally, the on_failure_jump pushes a failure point, which
7186           then gets popped at pop_failure_jump.  We will end up at
7187           pop_failure_jump, also, and with a pattern of, say, `a+', we
7188           are skipping over the on_failure_jump, so we have to push
7189           something meaningless for pop_failure_jump to pop.  */
7190        case dummy_failure_jump:
7191          DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
7192          /* It doesn't matter what we push for the string here.  What
7193             the code at `fail' tests is the value for the pattern.  */
7194          PUSH_FAILURE_POINT (NULL, NULL, -2);
7195          goto unconditional_jump;
7196
7197
7198        /* At the end of an alternative, we need to push a dummy failure
7199           point in case we are followed by a `pop_failure_jump', because
7200           we don't want the failure point for the alternative to be
7201           popped.  For example, matching `(a|ab)*' against `aab'
7202           requires that we match the `ab' alternative.  */
7203        case push_dummy_failure:
7204          DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
7205          /* See comments just above at `dummy_failure_jump' about the
7206             two zeroes.  */
7207          PUSH_FAILURE_POINT (NULL, NULL, -2);
7208          break;
7209
7210        /* Have to succeed matching what follows at least n times.
7211           After that, handle like `on_failure_jump'.  */
7212        case succeed_n:
7213          EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7214          DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
7215
7216          assert (mcnt >= 0);
7217          /* Originally, this is how many times we HAVE to succeed.  */
7218          if (mcnt > 0)
7219            {
7220               mcnt--;
7221	       p += OFFSET_ADDRESS_SIZE;
7222               STORE_NUMBER_AND_INCR (p, mcnt);
7223#ifdef _LIBC
7224               DEBUG_PRINT3 ("  Setting %p to %d.\n", p - OFFSET_ADDRESS_SIZE
7225			     , mcnt);
7226#else
7227               DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p - OFFSET_ADDRESS_SIZE
7228			     , mcnt);
7229#endif
7230            }
7231	  else if (mcnt == 0)
7232            {
7233#ifdef _LIBC
7234              DEBUG_PRINT2 ("  Setting two bytes from %p to no_op.\n",
7235			    p + OFFSET_ADDRESS_SIZE);
7236#else
7237              DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n",
7238			    p + OFFSET_ADDRESS_SIZE);
7239#endif /* _LIBC */
7240
7241#ifdef WCHAR
7242	      p[1] = (UCHAR_T) no_op;
7243#else
7244	      p[2] = (UCHAR_T) no_op;
7245              p[3] = (UCHAR_T) no_op;
7246#endif /* WCHAR */
7247              goto on_failure;
7248            }
7249          break;
7250
7251        case jump_n:
7252          EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7253          DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
7254
7255          /* Originally, this is how many times we CAN jump.  */
7256          if (mcnt)
7257            {
7258               mcnt--;
7259               STORE_NUMBER (p + OFFSET_ADDRESS_SIZE, mcnt);
7260
7261#ifdef _LIBC
7262               DEBUG_PRINT3 ("  Setting %p to %d.\n", p + OFFSET_ADDRESS_SIZE,
7263			     mcnt);
7264#else
7265               DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p + OFFSET_ADDRESS_SIZE,
7266			     mcnt);
7267#endif /* _LIBC */
7268	       goto unconditional_jump;
7269            }
7270          /* If don't have to jump any more, skip over the rest of command.  */
7271	  else
7272	    p += 2 * OFFSET_ADDRESS_SIZE;
7273          break;
7274
7275	case set_number_at:
7276	  {
7277            DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
7278
7279            EXTRACT_NUMBER_AND_INCR (mcnt, p);
7280            p1 = p + mcnt;
7281            EXTRACT_NUMBER_AND_INCR (mcnt, p);
7282#ifdef _LIBC
7283            DEBUG_PRINT3 ("  Setting %p to %d.\n", p1, mcnt);
7284#else
7285            DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt);
7286#endif
7287	    STORE_NUMBER (p1, mcnt);
7288            break;
7289          }
7290
7291#if 0
7292	/* The DEC Alpha C compiler 3.x generates incorrect code for the
7293	   test  WORDCHAR_P (d - 1) != WORDCHAR_P (d)  in the expansion of
7294	   AT_WORD_BOUNDARY, so this code is disabled.  Expanding the
7295	   macro and introducing temporary variables works around the bug.  */
7296
7297	case wordbound:
7298	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7299	  if (AT_WORD_BOUNDARY (d))
7300	    break;
7301	  goto fail;
7302
7303	case notwordbound:
7304	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7305	  if (AT_WORD_BOUNDARY (d))
7306	    goto fail;
7307	  break;
7308#else
7309	case wordbound:
7310	{
7311	  boolean prevchar, thischar;
7312
7313	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7314	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7315	    break;
7316
7317	  prevchar = WORDCHAR_P (d - 1);
7318	  thischar = WORDCHAR_P (d);
7319	  if (prevchar != thischar)
7320	    break;
7321	  goto fail;
7322	}
7323
7324      case notwordbound:
7325	{
7326	  boolean prevchar, thischar;
7327
7328	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7329	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7330	    goto fail;
7331
7332	  prevchar = WORDCHAR_P (d - 1);
7333	  thischar = WORDCHAR_P (d);
7334	  if (prevchar != thischar)
7335	    goto fail;
7336	  break;
7337	}
7338#endif
7339
7340	case wordbeg:
7341          DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
7342	  if (!AT_STRINGS_END (d) && WORDCHAR_P (d)
7343	      && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
7344	    break;
7345          goto fail;
7346
7347	case wordend:
7348          DEBUG_PRINT1 ("EXECUTING wordend.\n");
7349	  if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
7350              && (AT_STRINGS_END (d) || !WORDCHAR_P (d)))
7351	    break;
7352          goto fail;
7353
7354#ifdef emacs
7355  	case before_dot:
7356          DEBUG_PRINT1 ("EXECUTING before_dot.\n");
7357 	  if (PTR_CHAR_POS ((unsigned char *) d) >= point)
7358  	    goto fail;
7359  	  break;
7360
7361  	case at_dot:
7362          DEBUG_PRINT1 ("EXECUTING at_dot.\n");
7363 	  if (PTR_CHAR_POS ((unsigned char *) d) != point)
7364  	    goto fail;
7365  	  break;
7366
7367  	case after_dot:
7368          DEBUG_PRINT1 ("EXECUTING after_dot.\n");
7369          if (PTR_CHAR_POS ((unsigned char *) d) <= point)
7370  	    goto fail;
7371  	  break;
7372
7373	case syntaxspec:
7374          DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
7375	  mcnt = *p++;
7376	  goto matchsyntax;
7377
7378        case wordchar:
7379          DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
7380	  mcnt = (int) Sword;
7381        matchsyntax:
7382	  PREFETCH ();
7383	  /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
7384	  d++;
7385	  if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
7386	    goto fail;
7387          SET_REGS_MATCHED ();
7388	  break;
7389
7390	case notsyntaxspec:
7391          DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
7392	  mcnt = *p++;
7393	  goto matchnotsyntax;
7394
7395        case notwordchar:
7396          DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
7397	  mcnt = (int) Sword;
7398        matchnotsyntax:
7399	  PREFETCH ();
7400	  /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
7401	  d++;
7402	  if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
7403	    goto fail;
7404	  SET_REGS_MATCHED ();
7405          break;
7406
7407#else /* not emacs */
7408	case wordchar:
7409          DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
7410	  PREFETCH ();
7411          if (!WORDCHAR_P (d))
7412            goto fail;
7413	  SET_REGS_MATCHED ();
7414          d++;
7415	  break;
7416
7417	case notwordchar:
7418          DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
7419	  PREFETCH ();
7420	  if (WORDCHAR_P (d))
7421            goto fail;
7422          SET_REGS_MATCHED ();
7423          d++;
7424	  break;
7425#endif /* not emacs */
7426
7427        default:
7428          abort ();
7429	}
7430      continue;  /* Successfully executed one pattern command; keep going.  */
7431
7432
7433    /* We goto here if a matching operation fails. */
7434    fail:
7435      if (!FAIL_STACK_EMPTY ())
7436	{ /* A restart point is known.  Restore to that state.  */
7437          DEBUG_PRINT1 ("\nFAIL:\n");
7438          POP_FAILURE_POINT (d, p,
7439                             lowest_active_reg, highest_active_reg,
7440                             regstart, regend, reg_info);
7441
7442          /* If this failure point is a dummy, try the next one.  */
7443          if (!p)
7444	    goto fail;
7445
7446          /* If we failed to the end of the pattern, don't examine *p.  */
7447	  assert (p <= pend);
7448          if (p < pend)
7449            {
7450              boolean is_a_jump_n = false;
7451
7452              /* If failed to a backwards jump that's part of a repetition
7453                 loop, need to pop this failure point and use the next one.  */
7454              switch ((re_opcode_t) *p)
7455                {
7456                case jump_n:
7457                  is_a_jump_n = true;
7458		  /* Fall through.  */
7459                case maybe_pop_jump:
7460                case pop_failure_jump:
7461                case jump:
7462                  p1 = p + 1;
7463                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7464                  p1 += mcnt;
7465
7466                  if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
7467                      || (!is_a_jump_n
7468                          && (re_opcode_t) *p1 == on_failure_jump))
7469                    goto fail;
7470                  break;
7471                default:
7472                  /* do nothing */ ;
7473                }
7474            }
7475
7476          if (d >= string1 && d <= end1)
7477	    dend = end_match_1;
7478        }
7479      else
7480        break;   /* Matching at this starting point really fails.  */
7481    } /* for (;;) */
7482
7483  if (best_regs_set)
7484    goto restore_best_regs;
7485
7486  FREE_VARIABLES ();
7487
7488  return -1;         			/* Failure to match.  */
7489} /* re_match_2 */
7490
7491/* Subroutine definitions for re_match_2.  */
7492
7493
7494/* We are passed P pointing to a register number after a start_memory.
7495
7496   Return true if the pattern up to the corresponding stop_memory can
7497   match the empty string, and false otherwise.
7498
7499   If we find the matching stop_memory, sets P to point to one past its number.
7500   Otherwise, sets P to an undefined byte less than or equal to END.
7501
7502   We don't handle duplicates properly (yet).  */
7503
7504static boolean
7505PREFIX(group_match_null_string_p) (UCHAR_T **p, UCHAR_T *end,
7506                                   PREFIX(register_info_type) *reg_info)
7507{
7508  int mcnt;
7509  /* Point to after the args to the start_memory.  */
7510  UCHAR_T *p1 = *p + 2;
7511
7512  while (p1 < end)
7513    {
7514      /* Skip over opcodes that can match nothing, and return true or
7515	 false, as appropriate, when we get to one that can't, or to the
7516         matching stop_memory.  */
7517
7518      switch ((re_opcode_t) *p1)
7519        {
7520        /* Could be either a loop or a series of alternatives.  */
7521        case on_failure_jump:
7522          p1++;
7523          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7524
7525          /* If the next operation is not a jump backwards in the
7526	     pattern.  */
7527
7528	  if (mcnt >= 0)
7529	    {
7530              /* Go through the on_failure_jumps of the alternatives,
7531                 seeing if any of the alternatives cannot match nothing.
7532                 The last alternative starts with only a jump,
7533                 whereas the rest start with on_failure_jump and end
7534                 with a jump, e.g., here is the pattern for `a|b|c':
7535
7536                 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
7537                 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
7538                 /exactn/1/c
7539
7540                 So, we have to first go through the first (n-1)
7541                 alternatives and then deal with the last one separately.  */
7542
7543
7544              /* Deal with the first (n-1) alternatives, which start
7545                 with an on_failure_jump (see above) that jumps to right
7546                 past a jump_past_alt.  */
7547
7548              while ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] ==
7549		     jump_past_alt)
7550                {
7551                  /* `mcnt' holds how many bytes long the alternative
7552                     is, including the ending `jump_past_alt' and
7553                     its number.  */
7554
7555                  if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt -
7556						(1 + OFFSET_ADDRESS_SIZE),
7557						reg_info))
7558                    return false;
7559
7560                  /* Move to right after this alternative, including the
7561		     jump_past_alt.  */
7562                  p1 += mcnt;
7563
7564                  /* Break if it's the beginning of an n-th alternative
7565                     that doesn't begin with an on_failure_jump.  */
7566                  if ((re_opcode_t) *p1 != on_failure_jump)
7567                    break;
7568
7569		  /* Still have to check that it's not an n-th
7570		     alternative that starts with an on_failure_jump.  */
7571		  p1++;
7572                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7573                  if ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] !=
7574		      jump_past_alt)
7575                    {
7576		      /* Get to the beginning of the n-th alternative.  */
7577                      p1 -= 1 + OFFSET_ADDRESS_SIZE;
7578                      break;
7579                    }
7580                }
7581
7582              /* Deal with the last alternative: go back and get number
7583                 of the `jump_past_alt' just before it.  `mcnt' contains
7584                 the length of the alternative.  */
7585              EXTRACT_NUMBER (mcnt, p1 - OFFSET_ADDRESS_SIZE);
7586
7587              if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt, reg_info))
7588                return false;
7589
7590              p1 += mcnt;	/* Get past the n-th alternative.  */
7591            } /* if mcnt > 0 */
7592          break;
7593
7594
7595        case stop_memory:
7596	  assert (p1[1] == **p);
7597          *p = p1 + 2;
7598          return true;
7599
7600
7601        default:
7602          if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7603            return false;
7604        }
7605    } /* while p1 < end */
7606
7607  return false;
7608} /* group_match_null_string_p */
7609
7610
7611/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
7612   It expects P to be the first byte of a single alternative and END one
7613   byte past the last. The alternative can contain groups.  */
7614
7615static boolean
7616PREFIX(alt_match_null_string_p) (UCHAR_T *p, UCHAR_T *end,
7617                                 PREFIX(register_info_type) *reg_info)
7618{
7619  int mcnt;
7620  UCHAR_T *p1 = p;
7621
7622  while (p1 < end)
7623    {
7624      /* Skip over opcodes that can match nothing, and break when we get
7625         to one that can't.  */
7626
7627      switch ((re_opcode_t) *p1)
7628        {
7629	/* It's a loop.  */
7630        case on_failure_jump:
7631          p1++;
7632          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7633          p1 += mcnt;
7634          break;
7635
7636	default:
7637          if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7638            return false;
7639        }
7640    }  /* while p1 < end */
7641
7642  return true;
7643} /* alt_match_null_string_p */
7644
7645
7646/* Deals with the ops common to group_match_null_string_p and
7647   alt_match_null_string_p.
7648
7649   Sets P to one after the op and its arguments, if any.  */
7650
7651static boolean
7652PREFIX(common_op_match_null_string_p) (UCHAR_T **p, UCHAR_T *end,
7653                                       PREFIX(register_info_type) *reg_info)
7654{
7655  int mcnt;
7656  boolean ret;
7657  int reg_no;
7658  UCHAR_T *p1 = *p;
7659
7660  switch ((re_opcode_t) *p1++)
7661    {
7662    case no_op:
7663    case begline:
7664    case endline:
7665    case begbuf:
7666    case endbuf:
7667    case wordbeg:
7668    case wordend:
7669    case wordbound:
7670    case notwordbound:
7671#ifdef emacs
7672    case before_dot:
7673    case at_dot:
7674    case after_dot:
7675#endif
7676      break;
7677
7678    case start_memory:
7679      reg_no = *p1;
7680      assert (reg_no > 0 && reg_no <= MAX_REGNUM);
7681      ret = PREFIX(group_match_null_string_p) (&p1, end, reg_info);
7682
7683      /* Have to set this here in case we're checking a group which
7684         contains a group and a back reference to it.  */
7685
7686      if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
7687        REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
7688
7689      if (!ret)
7690        return false;
7691      break;
7692
7693    /* If this is an optimized succeed_n for zero times, make the jump.  */
7694    case jump:
7695      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7696      if (mcnt >= 0)
7697        p1 += mcnt;
7698      else
7699        return false;
7700      break;
7701
7702    case succeed_n:
7703      /* Get to the number of times to succeed.  */
7704      p1 += OFFSET_ADDRESS_SIZE;
7705      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7706
7707      if (mcnt == 0)
7708        {
7709          p1 -= 2 * OFFSET_ADDRESS_SIZE;
7710          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7711          p1 += mcnt;
7712        }
7713      else
7714        return false;
7715      break;
7716
7717    case duplicate:
7718      if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
7719        return false;
7720      break;
7721
7722    case set_number_at:
7723      p1 += 2 * OFFSET_ADDRESS_SIZE;
7724      return false;
7725
7726    default:
7727      /* All other opcodes mean we cannot match the empty string.  */
7728      return false;
7729  }
7730
7731  *p = p1;
7732  return true;
7733} /* common_op_match_null_string_p */
7734
7735
7736/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
7737   bytes; nonzero otherwise.  */
7738
7739static int
7740PREFIX(bcmp_translate) (const CHAR_T *s1, const CHAR_T *s2, register int len,
7741                        RE_TRANSLATE_TYPE translate)
7742{
7743  register const UCHAR_T *p1 = (const UCHAR_T *) s1;
7744  register const UCHAR_T *p2 = (const UCHAR_T *) s2;
7745  while (len)
7746    {
7747#ifdef WCHAR
7748      if (((*p1<=0xff)?translate[*p1++]:*p1++)
7749	  != ((*p2<=0xff)?translate[*p2++]:*p2++))
7750	return 1;
7751#else /* BYTE */
7752      if (translate[*p1++] != translate[*p2++]) return 1;
7753#endif /* WCHAR */
7754      len--;
7755    }
7756  return 0;
7757}
7758
7759
7760#else /* not INSIDE_RECURSION */
7761
7762/* Entry points for GNU code.  */
7763
7764/* re_compile_pattern is the GNU regular expression compiler: it
7765   compiles PATTERN (of length SIZE) and puts the result in BUFP.
7766   Returns 0 if the pattern was valid, otherwise an error string.
7767
7768   Assumes the `allocated' (and perhaps `buffer') and `translate' fields
7769   are set in BUFP on entry.
7770
7771   We call regex_compile to do the actual compilation.  */
7772
7773const char *
7774re_compile_pattern (const char *pattern, size_t length,
7775                    struct re_pattern_buffer *bufp)
7776{
7777  reg_errcode_t ret;
7778
7779  /* GNU code is written to assume at least RE_NREGS registers will be set
7780     (and at least one extra will be -1).  */
7781  bufp->regs_allocated = REGS_UNALLOCATED;
7782
7783  /* And GNU code determines whether or not to get register information
7784     by passing null for the REGS argument to re_match, etc., not by
7785     setting no_sub.  */
7786  bufp->no_sub = 0;
7787
7788  /* Match anchors at newline.  */
7789  bufp->newline_anchor = 1;
7790
7791# ifdef MBS_SUPPORT
7792  if (MB_CUR_MAX != 1)
7793    ret = wcs_regex_compile (pattern, length, re_syntax_options, bufp);
7794  else
7795# endif
7796    ret = byte_regex_compile (pattern, length, re_syntax_options, bufp);
7797
7798  if (!ret)
7799    return NULL;
7800  return gettext (re_error_msgid[(int) ret]);
7801}
7802#ifdef _LIBC
7803weak_alias (__re_compile_pattern, re_compile_pattern)
7804#endif
7805
7806/* Entry points compatible with 4.2 BSD regex library.  We don't define
7807   them unless specifically requested.  */
7808
7809#if defined _REGEX_RE_COMP || defined _LIBC
7810
7811/* BSD has one and only one pattern buffer.  */
7812static struct re_pattern_buffer re_comp_buf;
7813
7814char *
7815#ifdef _LIBC
7816/* Make these definitions weak in libc, so POSIX programs can redefine
7817   these names if they don't use our functions, and still use
7818   regcomp/regexec below without link errors.  */
7819weak_function
7820#endif
7821re_comp (const char *s)
7822{
7823  reg_errcode_t ret;
7824
7825  if (!s)
7826    {
7827      if (!re_comp_buf.buffer)
7828	return (char *) gettext ("No previous regular expression");
7829      return 0;
7830    }
7831
7832  if (!re_comp_buf.buffer)
7833    {
7834      re_comp_buf.buffer = (unsigned char *) malloc (200);
7835      if (re_comp_buf.buffer == NULL)
7836        return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
7837      re_comp_buf.allocated = 200;
7838
7839      re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
7840      if (re_comp_buf.fastmap == NULL)
7841	return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
7842    }
7843
7844  /* Since `re_exec' always passes NULL for the `regs' argument, we
7845     don't need to initialize the pattern buffer fields which affect it.  */
7846
7847  /* Match anchors at newlines.  */
7848  re_comp_buf.newline_anchor = 1;
7849
7850# ifdef MBS_SUPPORT
7851  if (MB_CUR_MAX != 1)
7852    ret = wcs_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7853  else
7854# endif
7855    ret = byte_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7856
7857  if (!ret)
7858    return NULL;
7859
7860  /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
7861  return (char *) gettext (re_error_msgid[(int) ret]);
7862}
7863
7864
7865int
7866#ifdef _LIBC
7867weak_function
7868#endif
7869re_exec (const char *s)
7870{
7871  const int len = strlen (s);
7872  return
7873    0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
7874}
7875
7876#endif /* _REGEX_RE_COMP */
7877
7878/* POSIX.2 functions.  Don't define these for Emacs.  */
7879
7880#ifndef emacs
7881
7882/* regcomp takes a regular expression as a string and compiles it.
7883
7884   PREG is a regex_t *.  We do not expect any fields to be initialized,
7885   since POSIX says we shouldn't.  Thus, we set
7886
7887     `buffer' to the compiled pattern;
7888     `used' to the length of the compiled pattern;
7889     `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
7890       REG_EXTENDED bit in CFLAGS is set; otherwise, to
7891       RE_SYNTAX_POSIX_BASIC;
7892     `newline_anchor' to REG_NEWLINE being set in CFLAGS;
7893     `fastmap' to an allocated space for the fastmap;
7894     `fastmap_accurate' to zero;
7895     `re_nsub' to the number of subexpressions in PATTERN.
7896
7897   PATTERN is the address of the pattern string.
7898
7899   CFLAGS is a series of bits which affect compilation.
7900
7901     If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
7902     use POSIX basic syntax.
7903
7904     If REG_NEWLINE is set, then . and [^...] don't match newline.
7905     Also, regexec will try a match beginning after every newline.
7906
7907     If REG_ICASE is set, then we considers upper- and lowercase
7908     versions of letters to be equivalent when matching.
7909
7910     If REG_NOSUB is set, then when PREG is passed to regexec, that
7911     routine will report only success or failure, and nothing about the
7912     registers.
7913
7914   It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
7915   the return codes and their meanings.)  */
7916
7917int
7918regcomp (regex_t *preg, const char *pattern, int cflags)
7919{
7920  reg_errcode_t ret;
7921  reg_syntax_t syntax
7922    = (cflags & REG_EXTENDED) ?
7923      RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
7924
7925  /* regex_compile will allocate the space for the compiled pattern.  */
7926  preg->buffer = 0;
7927  preg->allocated = 0;
7928  preg->used = 0;
7929
7930  /* Try to allocate space for the fastmap.  */
7931  preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
7932
7933  if (cflags & REG_ICASE)
7934    {
7935      int i;
7936
7937      preg->translate
7938	= (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
7939				      * sizeof (*(RE_TRANSLATE_TYPE)0));
7940      if (preg->translate == NULL)
7941        return (int) REG_ESPACE;
7942
7943      /* Map uppercase characters to corresponding lowercase ones.  */
7944      for (i = 0; i < CHAR_SET_SIZE; i++)
7945        preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
7946    }
7947  else
7948    preg->translate = NULL;
7949
7950  /* If REG_NEWLINE is set, newlines are treated differently.  */
7951  if (cflags & REG_NEWLINE)
7952    { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
7953      syntax &= ~RE_DOT_NEWLINE;
7954      syntax |= RE_HAT_LISTS_NOT_NEWLINE;
7955      /* It also changes the matching behavior.  */
7956      preg->newline_anchor = 1;
7957    }
7958  else
7959    preg->newline_anchor = 0;
7960
7961  preg->no_sub = !!(cflags & REG_NOSUB);
7962
7963  /* POSIX says a null character in the pattern terminates it, so we
7964     can use strlen here in compiling the pattern.  */
7965# ifdef MBS_SUPPORT
7966  if (MB_CUR_MAX != 1)
7967    ret = wcs_regex_compile (pattern, strlen (pattern), syntax, preg);
7968  else
7969# endif
7970    ret = byte_regex_compile (pattern, strlen (pattern), syntax, preg);
7971
7972  /* POSIX doesn't distinguish between an unmatched open-group and an
7973     unmatched close-group: both are REG_EPAREN.  */
7974  if (ret == REG_ERPAREN) ret = REG_EPAREN;
7975
7976  if (ret == REG_NOERROR && preg->fastmap)
7977    {
7978      /* Compute the fastmap now, since regexec cannot modify the pattern
7979	 buffer.  */
7980      if (re_compile_fastmap (preg) == -2)
7981	{
7982	  /* Some error occurred while computing the fastmap, just forget
7983	     about it.  */
7984	  free (preg->fastmap);
7985	  preg->fastmap = NULL;
7986	}
7987    }
7988
7989  return (int) ret;
7990}
7991#ifdef _LIBC
7992weak_alias (__regcomp, regcomp)
7993#endif
7994
7995
7996/* regexec searches for a given pattern, specified by PREG, in the
7997   string STRING.
7998
7999   If NMATCH is zero or REG_NOSUB was set in the cflags argument to
8000   `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
8001   least NMATCH elements, and we set them to the offsets of the
8002   corresponding matched substrings.
8003
8004   EFLAGS specifies `execution flags' which affect matching: if
8005   REG_NOTBOL is set, then ^ does not match at the beginning of the
8006   string; if REG_NOTEOL is set, then $ does not match at the end.
8007
8008   We return 0 if we find a match and REG_NOMATCH if not.  */
8009
8010int
8011regexec (const regex_t *preg, const char *string, size_t nmatch,
8012         regmatch_t pmatch[], int eflags)
8013{
8014  int ret;
8015  struct re_registers regs;
8016  regex_t private_preg;
8017  int len = strlen (string);
8018  boolean want_reg_info = !preg->no_sub && nmatch > 0;
8019
8020  private_preg = *preg;
8021
8022  private_preg.not_bol = !!(eflags & REG_NOTBOL);
8023  private_preg.not_eol = !!(eflags & REG_NOTEOL);
8024
8025  /* The user has told us exactly how many registers to return
8026     information about, via `nmatch'.  We have to pass that on to the
8027     matching routines.  */
8028  private_preg.regs_allocated = REGS_FIXED;
8029
8030  if (want_reg_info)
8031    {
8032      regs.num_regs = nmatch;
8033      regs.start = TALLOC (nmatch * 2, regoff_t);
8034      if (regs.start == NULL)
8035        return (int) REG_NOMATCH;
8036      regs.end = regs.start + nmatch;
8037    }
8038
8039  /* Perform the searching operation.  */
8040  ret = re_search (&private_preg, string, len,
8041                   /* start: */ 0, /* range: */ len,
8042                   want_reg_info ? &regs : (struct re_registers *) 0);
8043
8044  /* Copy the register information to the POSIX structure.  */
8045  if (want_reg_info)
8046    {
8047      if (ret >= 0)
8048        {
8049          unsigned r;
8050
8051          for (r = 0; r < nmatch; r++)
8052            {
8053              pmatch[r].rm_so = regs.start[r];
8054              pmatch[r].rm_eo = regs.end[r];
8055            }
8056        }
8057
8058      /* If we needed the temporary register info, free the space now.  */
8059      free (regs.start);
8060    }
8061
8062  /* We want zero return to mean success, unlike `re_search'.  */
8063  return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
8064}
8065#ifdef _LIBC
8066weak_alias (__regexec, regexec)
8067#endif
8068
8069
8070/* Returns a message corresponding to an error code, ERRCODE, returned
8071   from either regcomp or regexec.   We don't use PREG here.  */
8072
8073size_t
8074regerror (int errcode, const regex_t *preg ATTRIBUTE_UNUSED,
8075          char *errbuf, size_t errbuf_size)
8076{
8077  const char *msg;
8078  size_t msg_size;
8079
8080  if (errcode < 0
8081      || errcode >= (int) (sizeof (re_error_msgid)
8082			   / sizeof (re_error_msgid[0])))
8083    /* Only error codes returned by the rest of the code should be passed
8084       to this routine.  If we are given anything else, or if other regex
8085       code generates an invalid error code, then the program has a bug.
8086       Dump core so we can fix it.  */
8087    abort ();
8088
8089  msg = gettext (re_error_msgid[errcode]);
8090
8091  msg_size = strlen (msg) + 1; /* Includes the null.  */
8092
8093  if (errbuf_size != 0)
8094    {
8095      if (msg_size > errbuf_size)
8096        {
8097#if defined HAVE_MEMPCPY || defined _LIBC
8098	  *((char *) mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
8099#else
8100          (void) memcpy (errbuf, msg, errbuf_size - 1);
8101          errbuf[errbuf_size - 1] = 0;
8102#endif
8103        }
8104      else
8105        (void) memcpy (errbuf, msg, msg_size);
8106    }
8107
8108  return msg_size;
8109}
8110#ifdef _LIBC
8111weak_alias (__regerror, regerror)
8112#endif
8113
8114
8115/* Free dynamically allocated space used by PREG.  */
8116
8117void
8118regfree (regex_t *preg)
8119{
8120  free (preg->buffer);
8121  preg->buffer = NULL;
8122
8123  preg->allocated = 0;
8124  preg->used = 0;
8125
8126  free (preg->fastmap);
8127  preg->fastmap = NULL;
8128  preg->fastmap_accurate = 0;
8129
8130  free (preg->translate);
8131  preg->translate = NULL;
8132}
8133#ifdef _LIBC
8134weak_alias (__regfree, regfree)
8135#endif
8136
8137#endif /* not emacs  */
8138
8139#endif /* not INSIDE_RECURSION */
8140
8141
8142#undef STORE_NUMBER
8143#undef STORE_NUMBER_AND_INCR
8144#undef EXTRACT_NUMBER
8145#undef EXTRACT_NUMBER_AND_INCR
8146
8147#undef DEBUG_PRINT_COMPILED_PATTERN
8148#undef DEBUG_PRINT_DOUBLE_STRING
8149
8150#undef INIT_FAIL_STACK
8151#undef RESET_FAIL_STACK
8152#undef DOUBLE_FAIL_STACK
8153#undef PUSH_PATTERN_OP
8154#undef PUSH_FAILURE_POINTER
8155#undef PUSH_FAILURE_INT
8156#undef PUSH_FAILURE_ELT
8157#undef POP_FAILURE_POINTER
8158#undef POP_FAILURE_INT
8159#undef POP_FAILURE_ELT
8160#undef DEBUG_PUSH
8161#undef DEBUG_POP
8162#undef PUSH_FAILURE_POINT
8163#undef POP_FAILURE_POINT
8164
8165#undef REG_UNSET_VALUE
8166#undef REG_UNSET
8167
8168#undef PATFETCH
8169#undef PATFETCH_RAW
8170#undef PATUNFETCH
8171#undef TRANSLATE
8172
8173#undef INIT_BUF_SIZE
8174#undef GET_BUFFER_SPACE
8175#undef BUF_PUSH
8176#undef BUF_PUSH_2
8177#undef BUF_PUSH_3
8178#undef STORE_JUMP
8179#undef STORE_JUMP2
8180#undef INSERT_JUMP
8181#undef INSERT_JUMP2
8182#undef EXTEND_BUFFER
8183#undef GET_UNSIGNED_NUMBER
8184#undef FREE_STACK_RETURN
8185
8186# undef POINTER_TO_OFFSET
8187# undef MATCHING_IN_FRST_STRING
8188# undef PREFETCH
8189# undef AT_STRINGS_BEG
8190# undef AT_STRINGS_END
8191# undef WORDCHAR_P
8192# undef FREE_VAR
8193# undef FREE_VARIABLES
8194# undef NO_HIGHEST_ACTIVE_REG
8195# undef NO_LOWEST_ACTIVE_REG
8196
8197# undef CHAR_T
8198# undef UCHAR_T
8199# undef COMPILED_BUFFER_VAR
8200# undef OFFSET_ADDRESS_SIZE
8201# undef CHAR_CLASS_SIZE
8202# undef PREFIX
8203# undef ARG_PREFIX
8204# undef PUT_CHAR
8205# undef BYTE
8206# undef WCHAR
8207
8208# define DEFINED_ONCE
8209