1// symtab.cc -- the gold symbol table
2
3// Copyright (C) 2006-2017 Free Software Foundation, Inc.
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23#include "gold.h"
24
25#include <cstring>
26#include <stdint.h>
27#include <algorithm>
28#include <set>
29#include <string>
30#include <utility>
31#include "demangle.h"
32
33#include "gc.h"
34#include "object.h"
35#include "dwarf_reader.h"
36#include "dynobj.h"
37#include "output.h"
38#include "target.h"
39#include "workqueue.h"
40#include "symtab.h"
41#include "script.h"
42#include "plugin.h"
43#include "incremental.h"
44
45namespace gold
46{
47
48// Class Symbol.
49
50// Initialize fields in Symbol.  This initializes everything except u_
51// and source_.
52
53void
54Symbol::init_fields(const char* name, const char* version,
55		    elfcpp::STT type, elfcpp::STB binding,
56		    elfcpp::STV visibility, unsigned char nonvis)
57{
58  this->name_ = name;
59  this->version_ = version;
60  this->symtab_index_ = 0;
61  this->dynsym_index_ = 0;
62  this->got_offsets_.init();
63  this->plt_offset_ = -1U;
64  this->type_ = type;
65  this->binding_ = binding;
66  this->visibility_ = visibility;
67  this->nonvis_ = nonvis;
68  this->is_def_ = false;
69  this->is_forwarder_ = false;
70  this->has_alias_ = false;
71  this->needs_dynsym_entry_ = false;
72  this->in_reg_ = false;
73  this->in_dyn_ = false;
74  this->has_warning_ = false;
75  this->is_copied_from_dynobj_ = false;
76  this->is_forced_local_ = false;
77  this->is_ordinary_shndx_ = false;
78  this->in_real_elf_ = false;
79  this->is_defined_in_discarded_section_ = false;
80  this->undef_binding_set_ = false;
81  this->undef_binding_weak_ = false;
82  this->is_predefined_ = false;
83  this->is_protected_ = false;
84}
85
86// Return the demangled version of the symbol's name, but only
87// if the --demangle flag was set.
88
89static std::string
90demangle(const char* name)
91{
92  if (!parameters->options().do_demangle())
93    return name;
94
95  // cplus_demangle allocates memory for the result it returns,
96  // and returns NULL if the name is already demangled.
97  char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
98  if (demangled_name == NULL)
99    return name;
100
101  std::string retval(demangled_name);
102  free(demangled_name);
103  return retval;
104}
105
106std::string
107Symbol::demangled_name() const
108{
109  return demangle(this->name());
110}
111
112// Initialize the fields in the base class Symbol for SYM in OBJECT.
113
114template<int size, bool big_endian>
115void
116Symbol::init_base_object(const char* name, const char* version, Object* object,
117			 const elfcpp::Sym<size, big_endian>& sym,
118			 unsigned int st_shndx, bool is_ordinary)
119{
120  this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
121		    sym.get_st_visibility(), sym.get_st_nonvis());
122  this->u_.from_object.object = object;
123  this->u_.from_object.shndx = st_shndx;
124  this->is_ordinary_shndx_ = is_ordinary;
125  this->source_ = FROM_OBJECT;
126  this->in_reg_ = !object->is_dynamic();
127  this->in_dyn_ = object->is_dynamic();
128  this->in_real_elf_ = object->pluginobj() == NULL;
129}
130
131// Initialize the fields in the base class Symbol for a symbol defined
132// in an Output_data.
133
134void
135Symbol::init_base_output_data(const char* name, const char* version,
136			      Output_data* od, elfcpp::STT type,
137			      elfcpp::STB binding, elfcpp::STV visibility,
138			      unsigned char nonvis, bool offset_is_from_end,
139			      bool is_predefined)
140{
141  this->init_fields(name, version, type, binding, visibility, nonvis);
142  this->u_.in_output_data.output_data = od;
143  this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
144  this->source_ = IN_OUTPUT_DATA;
145  this->in_reg_ = true;
146  this->in_real_elf_ = true;
147  this->is_predefined_ = is_predefined;
148}
149
150// Initialize the fields in the base class Symbol for a symbol defined
151// in an Output_segment.
152
153void
154Symbol::init_base_output_segment(const char* name, const char* version,
155				 Output_segment* os, elfcpp::STT type,
156				 elfcpp::STB binding, elfcpp::STV visibility,
157				 unsigned char nonvis,
158				 Segment_offset_base offset_base,
159				 bool is_predefined)
160{
161  this->init_fields(name, version, type, binding, visibility, nonvis);
162  this->u_.in_output_segment.output_segment = os;
163  this->u_.in_output_segment.offset_base = offset_base;
164  this->source_ = IN_OUTPUT_SEGMENT;
165  this->in_reg_ = true;
166  this->in_real_elf_ = true;
167  this->is_predefined_ = is_predefined;
168}
169
170// Initialize the fields in the base class Symbol for a symbol defined
171// as a constant.
172
173void
174Symbol::init_base_constant(const char* name, const char* version,
175			   elfcpp::STT type, elfcpp::STB binding,
176			   elfcpp::STV visibility, unsigned char nonvis,
177			   bool is_predefined)
178{
179  this->init_fields(name, version, type, binding, visibility, nonvis);
180  this->source_ = IS_CONSTANT;
181  this->in_reg_ = true;
182  this->in_real_elf_ = true;
183  this->is_predefined_ = is_predefined;
184}
185
186// Initialize the fields in the base class Symbol for an undefined
187// symbol.
188
189void
190Symbol::init_base_undefined(const char* name, const char* version,
191			    elfcpp::STT type, elfcpp::STB binding,
192			    elfcpp::STV visibility, unsigned char nonvis)
193{
194  this->init_fields(name, version, type, binding, visibility, nonvis);
195  this->dynsym_index_ = -1U;
196  this->source_ = IS_UNDEFINED;
197  this->in_reg_ = true;
198  this->in_real_elf_ = true;
199}
200
201// Allocate a common symbol in the base.
202
203void
204Symbol::allocate_base_common(Output_data* od)
205{
206  gold_assert(this->is_common());
207  this->source_ = IN_OUTPUT_DATA;
208  this->u_.in_output_data.output_data = od;
209  this->u_.in_output_data.offset_is_from_end = false;
210}
211
212// Initialize the fields in Sized_symbol for SYM in OBJECT.
213
214template<int size>
215template<bool big_endian>
216void
217Sized_symbol<size>::init_object(const char* name, const char* version,
218				Object* object,
219				const elfcpp::Sym<size, big_endian>& sym,
220				unsigned int st_shndx, bool is_ordinary)
221{
222  this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
223  this->value_ = sym.get_st_value();
224  this->symsize_ = sym.get_st_size();
225}
226
227// Initialize the fields in Sized_symbol for a symbol defined in an
228// Output_data.
229
230template<int size>
231void
232Sized_symbol<size>::init_output_data(const char* name, const char* version,
233				     Output_data* od, Value_type value,
234				     Size_type symsize, elfcpp::STT type,
235				     elfcpp::STB binding,
236				     elfcpp::STV visibility,
237				     unsigned char nonvis,
238				     bool offset_is_from_end,
239				     bool is_predefined)
240{
241  this->init_base_output_data(name, version, od, type, binding, visibility,
242			      nonvis, offset_is_from_end, is_predefined);
243  this->value_ = value;
244  this->symsize_ = symsize;
245}
246
247// Initialize the fields in Sized_symbol for a symbol defined in an
248// Output_segment.
249
250template<int size>
251void
252Sized_symbol<size>::init_output_segment(const char* name, const char* version,
253					Output_segment* os, Value_type value,
254					Size_type symsize, elfcpp::STT type,
255					elfcpp::STB binding,
256					elfcpp::STV visibility,
257					unsigned char nonvis,
258					Segment_offset_base offset_base,
259					bool is_predefined)
260{
261  this->init_base_output_segment(name, version, os, type, binding, visibility,
262				 nonvis, offset_base, is_predefined);
263  this->value_ = value;
264  this->symsize_ = symsize;
265}
266
267// Initialize the fields in Sized_symbol for a symbol defined as a
268// constant.
269
270template<int size>
271void
272Sized_symbol<size>::init_constant(const char* name, const char* version,
273				  Value_type value, Size_type symsize,
274				  elfcpp::STT type, elfcpp::STB binding,
275				  elfcpp::STV visibility, unsigned char nonvis,
276				  bool is_predefined)
277{
278  this->init_base_constant(name, version, type, binding, visibility, nonvis,
279			   is_predefined);
280  this->value_ = value;
281  this->symsize_ = symsize;
282}
283
284// Initialize the fields in Sized_symbol for an undefined symbol.
285
286template<int size>
287void
288Sized_symbol<size>::init_undefined(const char* name, const char* version,
289				   Value_type value, elfcpp::STT type,
290				   elfcpp::STB binding, elfcpp::STV visibility,
291				   unsigned char nonvis)
292{
293  this->init_base_undefined(name, version, type, binding, visibility, nonvis);
294  this->value_ = value;
295  this->symsize_ = 0;
296}
297
298// Return an allocated string holding the symbol's name as
299// name@version.  This is used for relocatable links.
300
301std::string
302Symbol::versioned_name() const
303{
304  gold_assert(this->version_ != NULL);
305  std::string ret = this->name_;
306  ret.push_back('@');
307  if (this->is_def_)
308    ret.push_back('@');
309  ret += this->version_;
310  return ret;
311}
312
313// Return true if SHNDX represents a common symbol.
314
315bool
316Symbol::is_common_shndx(unsigned int shndx)
317{
318  return (shndx == elfcpp::SHN_COMMON
319	  || shndx == parameters->target().small_common_shndx()
320	  || shndx == parameters->target().large_common_shndx());
321}
322
323// Allocate a common symbol.
324
325template<int size>
326void
327Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
328{
329  this->allocate_base_common(od);
330  this->value_ = value;
331}
332
333// The ""'s around str ensure str is a string literal, so sizeof works.
334#define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)
335
336// Return true if this symbol should be added to the dynamic symbol
337// table.
338
339bool
340Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
341{
342  // If the symbol is only present on plugin files, the plugin decided we
343  // don't need it.
344  if (!this->in_real_elf())
345    return false;
346
347  // If the symbol is used by a dynamic relocation, we need to add it.
348  if (this->needs_dynsym_entry())
349    return true;
350
351  // If this symbol's section is not added, the symbol need not be added.
352  // The section may have been GCed.  Note that export_dynamic is being
353  // overridden here.  This should not be done for shared objects.
354  if (parameters->options().gc_sections()
355      && !parameters->options().shared()
356      && this->source() == Symbol::FROM_OBJECT
357      && !this->object()->is_dynamic())
358    {
359      Relobj* relobj = static_cast<Relobj*>(this->object());
360      bool is_ordinary;
361      unsigned int shndx = this->shndx(&is_ordinary);
362      if (is_ordinary && shndx != elfcpp::SHN_UNDEF
363          && !relobj->is_section_included(shndx)
364          && !symtab->is_section_folded(relobj, shndx))
365        return false;
366    }
367
368  // If the symbol was forced dynamic in a --dynamic-list file
369  // or an --export-dynamic-symbol option, add it.
370  if (!this->is_from_dynobj()
371      && (parameters->options().in_dynamic_list(this->name())
372	  || parameters->options().is_export_dynamic_symbol(this->name())))
373    {
374      if (!this->is_forced_local())
375        return true;
376      gold_warning(_("Cannot export local symbol '%s'"),
377		   this->demangled_name().c_str());
378      return false;
379    }
380
381  // If the symbol was forced local in a version script, do not add it.
382  if (this->is_forced_local())
383    return false;
384
385  // If dynamic-list-data was specified, add any STT_OBJECT.
386  if (parameters->options().dynamic_list_data()
387      && !this->is_from_dynobj()
388      && this->type() == elfcpp::STT_OBJECT)
389    return true;
390
391  // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
392  // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
393  if ((parameters->options().dynamic_list_cpp_new()
394       || parameters->options().dynamic_list_cpp_typeinfo())
395      && !this->is_from_dynobj())
396    {
397      // TODO(csilvers): We could probably figure out if we're an operator
398      //                 new/delete or typeinfo without the need to demangle.
399      char* demangled_name = cplus_demangle(this->name(),
400                                            DMGL_ANSI | DMGL_PARAMS);
401      if (demangled_name == NULL)
402        {
403          // Not a C++ symbol, so it can't satisfy these flags
404        }
405      else if (parameters->options().dynamic_list_cpp_new()
406               && (strprefix(demangled_name, "operator new")
407                   || strprefix(demangled_name, "operator delete")))
408        {
409          free(demangled_name);
410          return true;
411        }
412      else if (parameters->options().dynamic_list_cpp_typeinfo()
413               && (strprefix(demangled_name, "typeinfo name for")
414                   || strprefix(demangled_name, "typeinfo for")))
415        {
416          free(demangled_name);
417          return true;
418        }
419      else
420        free(demangled_name);
421    }
422
423  // If exporting all symbols or building a shared library,
424  // or the symbol should be globally unique (GNU_UNIQUE),
425  // and the symbol is defined in a regular object and is
426  // externally visible, we need to add it.
427  if ((parameters->options().export_dynamic()
428       || parameters->options().shared()
429       || (parameters->options().gnu_unique()
430           && this->binding() == elfcpp::STB_GNU_UNIQUE))
431      && !this->is_from_dynobj()
432      && !this->is_undefined()
433      && this->is_externally_visible())
434    return true;
435
436  return false;
437}
438
439// Return true if the final value of this symbol is known at link
440// time.
441
442bool
443Symbol::final_value_is_known() const
444{
445  // If we are not generating an executable, then no final values are
446  // known, since they will change at runtime, with the exception of
447  // TLS symbols in a position-independent executable.
448  if ((parameters->options().output_is_position_independent()
449       || parameters->options().relocatable())
450      && !(this->type() == elfcpp::STT_TLS
451           && parameters->options().pie()))
452    return false;
453
454  // If the symbol is not from an object file, and is not undefined,
455  // then it is defined, and known.
456  if (this->source_ != FROM_OBJECT)
457    {
458      if (this->source_ != IS_UNDEFINED)
459	return true;
460    }
461  else
462    {
463      // If the symbol is from a dynamic object, then the final value
464      // is not known.
465      if (this->object()->is_dynamic())
466	return false;
467
468      // If the symbol is not undefined (it is defined or common),
469      // then the final value is known.
470      if (!this->is_undefined())
471	return true;
472    }
473
474  // If the symbol is undefined, then whether the final value is known
475  // depends on whether we are doing a static link.  If we are doing a
476  // dynamic link, then the final value could be filled in at runtime.
477  // This could reasonably be the case for a weak undefined symbol.
478  return parameters->doing_static_link();
479}
480
481// Return the output section where this symbol is defined.
482
483Output_section*
484Symbol::output_section() const
485{
486  switch (this->source_)
487    {
488    case FROM_OBJECT:
489      {
490	unsigned int shndx = this->u_.from_object.shndx;
491	if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
492	  {
493	    gold_assert(!this->u_.from_object.object->is_dynamic());
494	    gold_assert(this->u_.from_object.object->pluginobj() == NULL);
495	    Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
496	    return relobj->output_section(shndx);
497	  }
498	return NULL;
499      }
500
501    case IN_OUTPUT_DATA:
502      return this->u_.in_output_data.output_data->output_section();
503
504    case IN_OUTPUT_SEGMENT:
505    case IS_CONSTANT:
506    case IS_UNDEFINED:
507      return NULL;
508
509    default:
510      gold_unreachable();
511    }
512}
513
514// Set the symbol's output section.  This is used for symbols defined
515// in scripts.  This should only be called after the symbol table has
516// been finalized.
517
518void
519Symbol::set_output_section(Output_section* os)
520{
521  switch (this->source_)
522    {
523    case FROM_OBJECT:
524    case IN_OUTPUT_DATA:
525      gold_assert(this->output_section() == os);
526      break;
527    case IS_CONSTANT:
528      this->source_ = IN_OUTPUT_DATA;
529      this->u_.in_output_data.output_data = os;
530      this->u_.in_output_data.offset_is_from_end = false;
531      break;
532    case IN_OUTPUT_SEGMENT:
533    case IS_UNDEFINED:
534    default:
535      gold_unreachable();
536    }
537}
538
539// Set the symbol's output segment.  This is used for pre-defined
540// symbols whose segments aren't known until after layout is done
541// (e.g., __ehdr_start).
542
543void
544Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
545{
546  gold_assert(this->is_predefined_);
547  this->source_ = IN_OUTPUT_SEGMENT;
548  this->u_.in_output_segment.output_segment = os;
549  this->u_.in_output_segment.offset_base = base;
550}
551
552// Set the symbol to undefined.  This is used for pre-defined
553// symbols whose segments aren't known until after layout is done
554// (e.g., __ehdr_start).
555
556void
557Symbol::set_undefined()
558{
559  this->source_ = IS_UNDEFINED;
560  this->is_predefined_ = false;
561}
562
563// Class Symbol_table.
564
565Symbol_table::Symbol_table(unsigned int count,
566                           const Version_script_info& version_script)
567  : saw_undefined_(0), offset_(0), table_(count), namepool_(),
568    forwarders_(), commons_(), tls_commons_(), small_commons_(),
569    large_commons_(), forced_locals_(), warnings_(),
570    version_script_(version_script), gc_(NULL), icf_(NULL),
571    target_symbols_()
572{
573  namepool_.reserve(count);
574}
575
576Symbol_table::~Symbol_table()
577{
578}
579
580// The symbol table key equality function.  This is called with
581// Stringpool keys.
582
583inline bool
584Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
585					  const Symbol_table_key& k2) const
586{
587  return k1.first == k2.first && k1.second == k2.second;
588}
589
590bool
591Symbol_table::is_section_folded(Relobj* obj, unsigned int shndx) const
592{
593  return (parameters->options().icf_enabled()
594          && this->icf_->is_section_folded(obj, shndx));
595}
596
597// For symbols that have been listed with a -u or --export-dynamic-symbol
598// option, add them to the work list to avoid gc'ing them.
599
600void
601Symbol_table::gc_mark_undef_symbols(Layout* layout)
602{
603  for (options::String_set::const_iterator p =
604	 parameters->options().undefined_begin();
605       p != parameters->options().undefined_end();
606       ++p)
607    {
608      const char* name = p->c_str();
609      Symbol* sym = this->lookup(name);
610      gold_assert(sym != NULL);
611      if (sym->source() == Symbol::FROM_OBJECT
612          && !sym->object()->is_dynamic())
613        {
614	  this->gc_mark_symbol(sym);
615        }
616    }
617
618  for (options::String_set::const_iterator p =
619	 parameters->options().export_dynamic_symbol_begin();
620       p != parameters->options().export_dynamic_symbol_end();
621       ++p)
622    {
623      const char* name = p->c_str();
624      Symbol* sym = this->lookup(name);
625      // It's not an error if a symbol named by --export-dynamic-symbol
626      // is undefined.
627      if (sym != NULL
628	  && sym->source() == Symbol::FROM_OBJECT
629          && !sym->object()->is_dynamic())
630        {
631	  this->gc_mark_symbol(sym);
632        }
633    }
634
635  for (Script_options::referenced_const_iterator p =
636	 layout->script_options()->referenced_begin();
637       p != layout->script_options()->referenced_end();
638       ++p)
639    {
640      Symbol* sym = this->lookup(p->c_str());
641      gold_assert(sym != NULL);
642      if (sym->source() == Symbol::FROM_OBJECT
643	  && !sym->object()->is_dynamic())
644	{
645	  this->gc_mark_symbol(sym);
646	}
647    }
648}
649
650void
651Symbol_table::gc_mark_symbol(Symbol* sym)
652{
653  // Add the object and section to the work list.
654  bool is_ordinary;
655  unsigned int shndx = sym->shndx(&is_ordinary);
656  if (is_ordinary && shndx != elfcpp::SHN_UNDEF && !sym->object()->is_dynamic())
657    {
658      gold_assert(this->gc_!= NULL);
659      Relobj* relobj = static_cast<Relobj*>(sym->object());
660      this->gc_->worklist().push_back(Section_id(relobj, shndx));
661    }
662  parameters->target().gc_mark_symbol(this, sym);
663}
664
665// When doing garbage collection, keep symbols that have been seen in
666// dynamic objects.
667inline void
668Symbol_table::gc_mark_dyn_syms(Symbol* sym)
669{
670  if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
671      && !sym->object()->is_dynamic())
672    this->gc_mark_symbol(sym);
673}
674
675// Make TO a symbol which forwards to FROM.
676
677void
678Symbol_table::make_forwarder(Symbol* from, Symbol* to)
679{
680  gold_assert(from != to);
681  gold_assert(!from->is_forwarder() && !to->is_forwarder());
682  this->forwarders_[from] = to;
683  from->set_forwarder();
684}
685
686// Resolve the forwards from FROM, returning the real symbol.
687
688Symbol*
689Symbol_table::resolve_forwards(const Symbol* from) const
690{
691  gold_assert(from->is_forwarder());
692  Unordered_map<const Symbol*, Symbol*>::const_iterator p =
693    this->forwarders_.find(from);
694  gold_assert(p != this->forwarders_.end());
695  return p->second;
696}
697
698// Look up a symbol by name.
699
700Symbol*
701Symbol_table::lookup(const char* name, const char* version) const
702{
703  Stringpool::Key name_key;
704  name = this->namepool_.find(name, &name_key);
705  if (name == NULL)
706    return NULL;
707
708  Stringpool::Key version_key = 0;
709  if (version != NULL)
710    {
711      version = this->namepool_.find(version, &version_key);
712      if (version == NULL)
713	return NULL;
714    }
715
716  Symbol_table_key key(name_key, version_key);
717  Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
718  if (p == this->table_.end())
719    return NULL;
720  return p->second;
721}
722
723// Resolve a Symbol with another Symbol.  This is only used in the
724// unusual case where there are references to both an unversioned
725// symbol and a symbol with a version, and we then discover that that
726// version is the default version.  Because this is unusual, we do
727// this the slow way, by converting back to an ELF symbol.
728
729template<int size, bool big_endian>
730void
731Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
732{
733  unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
734  elfcpp::Sym_write<size, big_endian> esym(buf);
735  // We don't bother to set the st_name or the st_shndx field.
736  esym.put_st_value(from->value());
737  esym.put_st_size(from->symsize());
738  esym.put_st_info(from->binding(), from->type());
739  esym.put_st_other(from->visibility(), from->nonvis());
740  bool is_ordinary;
741  unsigned int shndx = from->shndx(&is_ordinary);
742  this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
743		from->version(), true);
744  if (from->in_reg())
745    to->set_in_reg();
746  if (from->in_dyn())
747    to->set_in_dyn();
748  if (parameters->options().gc_sections())
749    this->gc_mark_dyn_syms(to);
750}
751
752// Record that a symbol is forced to be local by a version script or
753// by visibility.
754
755void
756Symbol_table::force_local(Symbol* sym)
757{
758  if (!sym->is_defined() && !sym->is_common())
759    return;
760  if (sym->is_forced_local())
761    {
762      // We already got this one.
763      return;
764    }
765  sym->set_is_forced_local();
766  this->forced_locals_.push_back(sym);
767}
768
769// Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
770// is only called for undefined symbols, when at least one --wrap
771// option was used.
772
773const char*
774Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
775{
776  // For some targets, we need to ignore a specific character when
777  // wrapping, and add it back later.
778  char prefix = '\0';
779  if (name[0] == parameters->target().wrap_char())
780    {
781      prefix = name[0];
782      ++name;
783    }
784
785  if (parameters->options().is_wrap(name))
786    {
787      // Turn NAME into __wrap_NAME.
788      std::string s;
789      if (prefix != '\0')
790	s += prefix;
791      s += "__wrap_";
792      s += name;
793
794      // This will give us both the old and new name in NAMEPOOL_, but
795      // that is OK.  Only the versions we need will wind up in the
796      // real string table in the output file.
797      return this->namepool_.add(s.c_str(), true, name_key);
798    }
799
800  const char* const real_prefix = "__real_";
801  const size_t real_prefix_length = strlen(real_prefix);
802  if (strncmp(name, real_prefix, real_prefix_length) == 0
803      && parameters->options().is_wrap(name + real_prefix_length))
804    {
805      // Turn __real_NAME into NAME.
806      std::string s;
807      if (prefix != '\0')
808	s += prefix;
809      s += name + real_prefix_length;
810      return this->namepool_.add(s.c_str(), true, name_key);
811    }
812
813  return name;
814}
815
816// This is called when we see a symbol NAME/VERSION, and the symbol
817// already exists in the symbol table, and VERSION is marked as being
818// the default version.  SYM is the NAME/VERSION symbol we just added.
819// DEFAULT_IS_NEW is true if this is the first time we have seen the
820// symbol NAME/NULL.  PDEF points to the entry for NAME/NULL.
821
822template<int size, bool big_endian>
823void
824Symbol_table::define_default_version(Sized_symbol<size>* sym,
825				     bool default_is_new,
826				     Symbol_table_type::iterator pdef)
827{
828  if (default_is_new)
829    {
830      // This is the first time we have seen NAME/NULL.  Make
831      // NAME/NULL point to NAME/VERSION, and mark SYM as the default
832      // version.
833      pdef->second = sym;
834      sym->set_is_default();
835    }
836  else if (pdef->second == sym)
837    {
838      // NAME/NULL already points to NAME/VERSION.  Don't mark the
839      // symbol as the default if it is not already the default.
840    }
841  else
842    {
843      // This is the unfortunate case where we already have entries
844      // for both NAME/VERSION and NAME/NULL.  We now see a symbol
845      // NAME/VERSION where VERSION is the default version.  We have
846      // already resolved this new symbol with the existing
847      // NAME/VERSION symbol.
848
849      // It's possible that NAME/NULL and NAME/VERSION are both
850      // defined in regular objects.  This can only happen if one
851      // object file defines foo and another defines foo@@ver.  This
852      // is somewhat obscure, but we call it a multiple definition
853      // error.
854
855      // It's possible that NAME/NULL actually has a version, in which
856      // case it won't be the same as VERSION.  This happens with
857      // ver_test_7.so in the testsuite for the symbol t2_2.  We see
858      // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL.  We
859      // then see an unadorned t2_2 in an object file and give it
860      // version VER1 from the version script.  This looks like a
861      // default definition for VER1, so it looks like we should merge
862      // t2_2/NULL with t2_2/VER1.  That doesn't make sense, but it's
863      // not obvious that this is an error, either.  So we just punt.
864
865      // If one of the symbols has non-default visibility, and the
866      // other is defined in a shared object, then they are different
867      // symbols.
868
869      // If the two symbols are from different shared objects,
870      // they are different symbols.
871
872      // Otherwise, we just resolve the symbols as though they were
873      // the same.
874
875      if (pdef->second->version() != NULL)
876	gold_assert(pdef->second->version() != sym->version());
877      else if (sym->visibility() != elfcpp::STV_DEFAULT
878	       && pdef->second->is_from_dynobj())
879	;
880      else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
881	       && sym->is_from_dynobj())
882	;
883      else if (pdef->second->is_from_dynobj()
884	       && sym->is_from_dynobj()
885	       && pdef->second->is_defined()
886	       && pdef->second->object() != sym->object())
887        ;
888      else
889	{
890	  const Sized_symbol<size>* symdef;
891	  symdef = this->get_sized_symbol<size>(pdef->second);
892	  Symbol_table::resolve<size, big_endian>(sym, symdef);
893	  this->make_forwarder(pdef->second, sym);
894	  pdef->second = sym;
895	  sym->set_is_default();
896	}
897    }
898}
899
900// Add one symbol from OBJECT to the symbol table.  NAME is symbol
901// name and VERSION is the version; both are canonicalized.  DEF is
902// whether this is the default version.  ST_SHNDX is the symbol's
903// section index; IS_ORDINARY is whether this is a normal section
904// rather than a special code.
905
906// If IS_DEFAULT_VERSION is true, then this is the definition of a
907// default version of a symbol.  That means that any lookup of
908// NAME/NULL and any lookup of NAME/VERSION should always return the
909// same symbol.  This is obvious for references, but in particular we
910// want to do this for definitions: overriding NAME/NULL should also
911// override NAME/VERSION.  If we don't do that, it would be very hard
912// to override functions in a shared library which uses versioning.
913
914// We implement this by simply making both entries in the hash table
915// point to the same Symbol structure.  That is easy enough if this is
916// the first time we see NAME/NULL or NAME/VERSION, but it is possible
917// that we have seen both already, in which case they will both have
918// independent entries in the symbol table.  We can't simply change
919// the symbol table entry, because we have pointers to the entries
920// attached to the object files.  So we mark the entry attached to the
921// object file as a forwarder, and record it in the forwarders_ map.
922// Note that entries in the hash table will never be marked as
923// forwarders.
924//
925// ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
926// ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
927// for a special section code.  ST_SHNDX may be modified if the symbol
928// is defined in a section being discarded.
929
930template<int size, bool big_endian>
931Sized_symbol<size>*
932Symbol_table::add_from_object(Object* object,
933			      const char* name,
934			      Stringpool::Key name_key,
935			      const char* version,
936			      Stringpool::Key version_key,
937			      bool is_default_version,
938			      const elfcpp::Sym<size, big_endian>& sym,
939			      unsigned int st_shndx,
940			      bool is_ordinary,
941			      unsigned int orig_st_shndx)
942{
943  // Print a message if this symbol is being traced.
944  if (parameters->options().is_trace_symbol(name))
945    {
946      if (orig_st_shndx == elfcpp::SHN_UNDEF)
947        gold_info(_("%s: reference to %s"), object->name().c_str(), name);
948      else
949        gold_info(_("%s: definition of %s"), object->name().c_str(), name);
950    }
951
952  // For an undefined symbol, we may need to adjust the name using
953  // --wrap.
954  if (orig_st_shndx == elfcpp::SHN_UNDEF
955      && parameters->options().any_wrap())
956    {
957      const char* wrap_name = this->wrap_symbol(name, &name_key);
958      if (wrap_name != name)
959	{
960	  // If we see a reference to malloc with version GLIBC_2.0,
961	  // and we turn it into a reference to __wrap_malloc, then we
962	  // discard the version number.  Otherwise the user would be
963	  // required to specify the correct version for
964	  // __wrap_malloc.
965	  version = NULL;
966	  version_key = 0;
967	  name = wrap_name;
968	}
969    }
970
971  Symbol* const snull = NULL;
972  std::pair<typename Symbol_table_type::iterator, bool> ins =
973    this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
974				       snull));
975
976  std::pair<typename Symbol_table_type::iterator, bool> insdefault =
977    std::make_pair(this->table_.end(), false);
978  if (is_default_version)
979    {
980      const Stringpool::Key vnull_key = 0;
981      insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
982								     vnull_key),
983						      snull));
984    }
985
986  // ins.first: an iterator, which is a pointer to a pair.
987  // ins.first->first: the key (a pair of name and version).
988  // ins.first->second: the value (Symbol*).
989  // ins.second: true if new entry was inserted, false if not.
990
991  Sized_symbol<size>* ret;
992  bool was_undefined;
993  bool was_common;
994  if (!ins.second)
995    {
996      // We already have an entry for NAME/VERSION.
997      ret = this->get_sized_symbol<size>(ins.first->second);
998      gold_assert(ret != NULL);
999
1000      was_undefined = ret->is_undefined();
1001      // Commons from plugins are just placeholders.
1002      was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1003
1004      this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1005		    version, is_default_version);
1006      if (parameters->options().gc_sections())
1007        this->gc_mark_dyn_syms(ret);
1008
1009      if (is_default_version)
1010	this->define_default_version<size, big_endian>(ret, insdefault.second,
1011						       insdefault.first);
1012      else
1013	{
1014	  bool dummy;
1015	  if (version != NULL
1016	      && ret->source() == Symbol::FROM_OBJECT
1017	      && ret->object() == object
1018	      && is_ordinary
1019	      && ret->shndx(&dummy) == st_shndx
1020	      && ret->is_default())
1021	    {
1022	      // We have seen NAME/VERSION already, and marked it as the
1023	      // default version, but now we see a definition for
1024	      // NAME/VERSION that is not the default version. This can
1025	      // happen when the assembler generates two symbols for
1026	      // a symbol as a result of a ".symver foo,foo@VER"
1027	      // directive. We see the first unversioned symbol and
1028	      // we may mark it as the default version (from a
1029	      // version script); then we see the second versioned
1030	      // symbol and we need to override the first.
1031	      // In any other case, the two symbols should have generated
1032	      // a multiple definition error.
1033	      // (See PR gold/18703.)
1034	      ret->set_is_not_default();
1035	      const Stringpool::Key vnull_key = 0;
1036	      this->table_.erase(std::make_pair(name_key, vnull_key));
1037	    }
1038	}
1039    }
1040  else
1041    {
1042      // This is the first time we have seen NAME/VERSION.
1043      gold_assert(ins.first->second == NULL);
1044
1045      if (is_default_version && !insdefault.second)
1046	{
1047	  // We already have an entry for NAME/NULL.  If we override
1048	  // it, then change it to NAME/VERSION.
1049	  ret = this->get_sized_symbol<size>(insdefault.first->second);
1050
1051	  was_undefined = ret->is_undefined();
1052	  // Commons from plugins are just placeholders.
1053	  was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1054
1055	  this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1056			version, is_default_version);
1057          if (parameters->options().gc_sections())
1058            this->gc_mark_dyn_syms(ret);
1059	  ins.first->second = ret;
1060	}
1061      else
1062	{
1063	  was_undefined = false;
1064	  was_common = false;
1065
1066	  Sized_target<size, big_endian>* target =
1067	    parameters->sized_target<size, big_endian>();
1068	  if (!target->has_make_symbol())
1069	    ret = new Sized_symbol<size>();
1070	  else
1071	    {
1072	      ret = target->make_symbol(name, sym.get_st_type(), object,
1073					st_shndx, sym.get_st_value());
1074	      if (ret == NULL)
1075		{
1076		  // This means that we don't want a symbol table
1077		  // entry after all.
1078		  if (!is_default_version)
1079		    this->table_.erase(ins.first);
1080		  else
1081		    {
1082		      this->table_.erase(insdefault.first);
1083		      // Inserting INSDEFAULT invalidated INS.
1084		      this->table_.erase(std::make_pair(name_key,
1085							version_key));
1086		    }
1087		  return NULL;
1088		}
1089	    }
1090
1091	  ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1092
1093	  ins.first->second = ret;
1094	  if (is_default_version)
1095	    {
1096	      // This is the first time we have seen NAME/NULL.  Point
1097	      // it at the new entry for NAME/VERSION.
1098	      gold_assert(insdefault.second);
1099	      insdefault.first->second = ret;
1100	    }
1101	}
1102
1103      if (is_default_version)
1104	ret->set_is_default();
1105    }
1106
1107  // Record every time we see a new undefined symbol, to speed up
1108  // archive groups.
1109  if (!was_undefined && ret->is_undefined())
1110    {
1111      ++this->saw_undefined_;
1112      if (parameters->options().has_plugins())
1113	parameters->options().plugins()->new_undefined_symbol(ret);
1114    }
1115
1116  // Keep track of common symbols, to speed up common symbol
1117  // allocation.  Don't record commons from plugin objects;
1118  // we need to wait until we see the real symbol in the
1119  // replacement file.
1120  if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
1121    {
1122      if (ret->type() == elfcpp::STT_TLS)
1123	this->tls_commons_.push_back(ret);
1124      else if (!is_ordinary
1125	       && st_shndx == parameters->target().small_common_shndx())
1126	this->small_commons_.push_back(ret);
1127      else if (!is_ordinary
1128	       && st_shndx == parameters->target().large_common_shndx())
1129	this->large_commons_.push_back(ret);
1130      else
1131	this->commons_.push_back(ret);
1132    }
1133
1134  // If we're not doing a relocatable link, then any symbol with
1135  // hidden or internal visibility is local.
1136  if ((ret->visibility() == elfcpp::STV_HIDDEN
1137       || ret->visibility() == elfcpp::STV_INTERNAL)
1138      && (ret->binding() == elfcpp::STB_GLOBAL
1139	  || ret->binding() == elfcpp::STB_GNU_UNIQUE
1140	  || ret->binding() == elfcpp::STB_WEAK)
1141      && !parameters->options().relocatable())
1142    this->force_local(ret);
1143
1144  return ret;
1145}
1146
1147// Add all the symbols in a relocatable object to the hash table.
1148
1149template<int size, bool big_endian>
1150void
1151Symbol_table::add_from_relobj(
1152    Sized_relobj_file<size, big_endian>* relobj,
1153    const unsigned char* syms,
1154    size_t count,
1155    size_t symndx_offset,
1156    const char* sym_names,
1157    size_t sym_name_size,
1158    typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1159    size_t* defined)
1160{
1161  *defined = 0;
1162
1163  gold_assert(size == parameters->target().get_size());
1164
1165  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1166
1167  const bool just_symbols = relobj->just_symbols();
1168
1169  const unsigned char* p = syms;
1170  for (size_t i = 0; i < count; ++i, p += sym_size)
1171    {
1172      (*sympointers)[i] = NULL;
1173
1174      elfcpp::Sym<size, big_endian> sym(p);
1175
1176      unsigned int st_name = sym.get_st_name();
1177      if (st_name >= sym_name_size)
1178	{
1179	  relobj->error(_("bad global symbol name offset %u at %zu"),
1180			st_name, i);
1181	  continue;
1182	}
1183
1184      const char* name = sym_names + st_name;
1185
1186      if (!parameters->options().relocatable()
1187	  && strcmp (name, "__gnu_lto_slim") == 0)
1188        gold_info(_("%s: plugin needed to handle lto object"),
1189		  relobj->name().c_str());
1190
1191      bool is_ordinary;
1192      unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1193						       sym.get_st_shndx(),
1194						       &is_ordinary);
1195      unsigned int orig_st_shndx = st_shndx;
1196      if (!is_ordinary)
1197	orig_st_shndx = elfcpp::SHN_UNDEF;
1198
1199      if (st_shndx != elfcpp::SHN_UNDEF)
1200	++*defined;
1201
1202      // A symbol defined in a section which we are not including must
1203      // be treated as an undefined symbol.
1204      bool is_defined_in_discarded_section = false;
1205      if (st_shndx != elfcpp::SHN_UNDEF
1206	  && is_ordinary
1207	  && !relobj->is_section_included(st_shndx)
1208          && !this->is_section_folded(relobj, st_shndx))
1209	{
1210	  st_shndx = elfcpp::SHN_UNDEF;
1211	  is_defined_in_discarded_section = true;
1212	}
1213
1214      // In an object file, an '@' in the name separates the symbol
1215      // name from the version name.  If there are two '@' characters,
1216      // this is the default version.
1217      const char* ver = strchr(name, '@');
1218      Stringpool::Key ver_key = 0;
1219      int namelen = 0;
1220      // IS_DEFAULT_VERSION: is the version default?
1221      // IS_FORCED_LOCAL: is the symbol forced local?
1222      bool is_default_version = false;
1223      bool is_forced_local = false;
1224
1225      // FIXME: For incremental links, we don't store version information,
1226      // so we need to ignore version symbols for now.
1227      if (parameters->incremental_update() && ver != NULL)
1228	{
1229	  namelen = ver - name;
1230	  ver = NULL;
1231	}
1232
1233      if (ver != NULL)
1234        {
1235          // The symbol name is of the form foo@VERSION or foo@@VERSION
1236          namelen = ver - name;
1237          ++ver;
1238	  if (*ver == '@')
1239	    {
1240	      is_default_version = true;
1241	      ++ver;
1242	    }
1243	  ver = this->namepool_.add(ver, true, &ver_key);
1244        }
1245      // We don't want to assign a version to an undefined symbol,
1246      // even if it is listed in the version script.  FIXME: What
1247      // about a common symbol?
1248      else
1249	{
1250	  namelen = strlen(name);
1251	  if (!this->version_script_.empty()
1252	      && st_shndx != elfcpp::SHN_UNDEF)
1253	    {
1254	      // The symbol name did not have a version, but the
1255	      // version script may assign a version anyway.
1256	      std::string version;
1257	      bool is_global;
1258	      if (this->version_script_.get_symbol_version(name, &version,
1259							   &is_global))
1260		{
1261		  if (!is_global)
1262		    is_forced_local = true;
1263		  else if (!version.empty())
1264		    {
1265		      ver = this->namepool_.add_with_length(version.c_str(),
1266							    version.length(),
1267							    true,
1268							    &ver_key);
1269		      is_default_version = true;
1270		    }
1271		}
1272	    }
1273	}
1274
1275      elfcpp::Sym<size, big_endian>* psym = &sym;
1276      unsigned char symbuf[sym_size];
1277      elfcpp::Sym<size, big_endian> sym2(symbuf);
1278      if (just_symbols)
1279	{
1280	  memcpy(symbuf, p, sym_size);
1281	  elfcpp::Sym_write<size, big_endian> sw(symbuf);
1282	  if (orig_st_shndx != elfcpp::SHN_UNDEF
1283	      && is_ordinary
1284	      && relobj->e_type() == elfcpp::ET_REL)
1285	    {
1286	      // Symbol values in relocatable object files are section
1287	      // relative.  This is normally what we want, but since here
1288	      // we are converting the symbol to absolute we need to add
1289	      // the section address.  The section address in an object
1290	      // file is normally zero, but people can use a linker
1291	      // script to change it.
1292	      sw.put_st_value(sym.get_st_value()
1293			      + relobj->section_address(orig_st_shndx));
1294	    }
1295	  st_shndx = elfcpp::SHN_ABS;
1296	  is_ordinary = false;
1297	  psym = &sym2;
1298	}
1299
1300      // Fix up visibility if object has no-export set.
1301      if (relobj->no_export()
1302	  && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1303        {
1304	  // We may have copied symbol already above.
1305	  if (psym != &sym2)
1306	    {
1307	      memcpy(symbuf, p, sym_size);
1308	      psym = &sym2;
1309	    }
1310
1311	  elfcpp::STV visibility = sym2.get_st_visibility();
1312	  if (visibility == elfcpp::STV_DEFAULT
1313	      || visibility == elfcpp::STV_PROTECTED)
1314	    {
1315	      elfcpp::Sym_write<size, big_endian> sw(symbuf);
1316	      unsigned char nonvis = sym2.get_st_nonvis();
1317	      sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1318	    }
1319        }
1320
1321      Stringpool::Key name_key;
1322      name = this->namepool_.add_with_length(name, namelen, true,
1323					     &name_key);
1324
1325      Sized_symbol<size>* res;
1326      res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1327				  is_default_version, *psym, st_shndx,
1328				  is_ordinary, orig_st_shndx);
1329
1330      if (res == NULL)
1331	continue;
1332
1333      if (is_forced_local)
1334	this->force_local(res);
1335
1336      // Do not treat this symbol as garbage if this symbol will be
1337      // exported to the dynamic symbol table.  This is true when
1338      // building a shared library or using --export-dynamic and
1339      // the symbol is externally visible.
1340      if (parameters->options().gc_sections()
1341	  && res->is_externally_visible()
1342	  && !res->is_from_dynobj()
1343          && (parameters->options().shared()
1344	      || parameters->options().export_dynamic()
1345	      || parameters->options().in_dynamic_list(res->name())))
1346        this->gc_mark_symbol(res);
1347
1348      if (is_defined_in_discarded_section)
1349	res->set_is_defined_in_discarded_section();
1350
1351      (*sympointers)[i] = res;
1352    }
1353}
1354
1355// Add a symbol from a plugin-claimed file.
1356
1357template<int size, bool big_endian>
1358Symbol*
1359Symbol_table::add_from_pluginobj(
1360    Sized_pluginobj<size, big_endian>* obj,
1361    const char* name,
1362    const char* ver,
1363    elfcpp::Sym<size, big_endian>* sym)
1364{
1365  unsigned int st_shndx = sym->get_st_shndx();
1366  bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1367
1368  Stringpool::Key ver_key = 0;
1369  bool is_default_version = false;
1370  bool is_forced_local = false;
1371
1372  if (ver != NULL)
1373    {
1374      ver = this->namepool_.add(ver, true, &ver_key);
1375    }
1376  // We don't want to assign a version to an undefined symbol,
1377  // even if it is listed in the version script.  FIXME: What
1378  // about a common symbol?
1379  else
1380    {
1381      if (!this->version_script_.empty()
1382          && st_shndx != elfcpp::SHN_UNDEF)
1383        {
1384          // The symbol name did not have a version, but the
1385          // version script may assign a version anyway.
1386          std::string version;
1387	  bool is_global;
1388          if (this->version_script_.get_symbol_version(name, &version,
1389						       &is_global))
1390            {
1391	      if (!is_global)
1392		is_forced_local = true;
1393	      else if (!version.empty())
1394                {
1395                  ver = this->namepool_.add_with_length(version.c_str(),
1396                                                        version.length(),
1397                                                        true,
1398                                                        &ver_key);
1399                  is_default_version = true;
1400                }
1401            }
1402        }
1403    }
1404
1405  Stringpool::Key name_key;
1406  name = this->namepool_.add(name, true, &name_key);
1407
1408  Sized_symbol<size>* res;
1409  res = this->add_from_object(obj, name, name_key, ver, ver_key,
1410		              is_default_version, *sym, st_shndx,
1411			      is_ordinary, st_shndx);
1412
1413  if (res == NULL)
1414    return NULL;
1415
1416  if (is_forced_local)
1417    this->force_local(res);
1418
1419  return res;
1420}
1421
1422// Add all the symbols in a dynamic object to the hash table.
1423
1424template<int size, bool big_endian>
1425void
1426Symbol_table::add_from_dynobj(
1427    Sized_dynobj<size, big_endian>* dynobj,
1428    const unsigned char* syms,
1429    size_t count,
1430    const char* sym_names,
1431    size_t sym_name_size,
1432    const unsigned char* versym,
1433    size_t versym_size,
1434    const std::vector<const char*>* version_map,
1435    typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1436    size_t* defined)
1437{
1438  *defined = 0;
1439
1440  gold_assert(size == parameters->target().get_size());
1441
1442  if (dynobj->just_symbols())
1443    {
1444      gold_error(_("--just-symbols does not make sense with a shared object"));
1445      return;
1446    }
1447
1448  // FIXME: For incremental links, we don't store version information,
1449  // so we need to ignore version symbols for now.
1450  if (parameters->incremental_update())
1451    versym = NULL;
1452
1453  if (versym != NULL && versym_size / 2 < count)
1454    {
1455      dynobj->error(_("too few symbol versions"));
1456      return;
1457    }
1458
1459  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1460
1461  // We keep a list of all STT_OBJECT symbols, so that we can resolve
1462  // weak aliases.  This is necessary because if the dynamic object
1463  // provides the same variable under two names, one of which is a
1464  // weak definition, and the regular object refers to the weak
1465  // definition, we have to put both the weak definition and the
1466  // strong definition into the dynamic symbol table.  Given a weak
1467  // definition, the only way that we can find the corresponding
1468  // strong definition, if any, is to search the symbol table.
1469  std::vector<Sized_symbol<size>*> object_symbols;
1470
1471  const unsigned char* p = syms;
1472  const unsigned char* vs = versym;
1473  for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1474    {
1475      elfcpp::Sym<size, big_endian> sym(p);
1476
1477      if (sympointers != NULL)
1478	(*sympointers)[i] = NULL;
1479
1480      // Ignore symbols with local binding or that have
1481      // internal or hidden visibility.
1482      if (sym.get_st_bind() == elfcpp::STB_LOCAL
1483          || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1484          || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1485	continue;
1486
1487      // A protected symbol in a shared library must be treated as a
1488      // normal symbol when viewed from outside the shared library.
1489      // Implement this by overriding the visibility here.
1490      // Likewise, an IFUNC symbol in a shared library must be treated
1491      // as a normal FUNC symbol.
1492      elfcpp::Sym<size, big_endian>* psym = &sym;
1493      unsigned char symbuf[sym_size];
1494      elfcpp::Sym<size, big_endian> sym2(symbuf);
1495      if (sym.get_st_visibility() == elfcpp::STV_PROTECTED
1496	  || sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1497	{
1498	  memcpy(symbuf, p, sym_size);
1499	  elfcpp::Sym_write<size, big_endian> sw(symbuf);
1500	  if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1501	    sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1502	  if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1503	    sw.put_st_info(sym.get_st_bind(), elfcpp::STT_FUNC);
1504	  psym = &sym2;
1505	}
1506
1507      unsigned int st_name = psym->get_st_name();
1508      if (st_name >= sym_name_size)
1509	{
1510	  dynobj->error(_("bad symbol name offset %u at %zu"),
1511			st_name, i);
1512	  continue;
1513	}
1514
1515      const char* name = sym_names + st_name;
1516
1517      bool is_ordinary;
1518      unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1519						       &is_ordinary);
1520
1521      if (st_shndx != elfcpp::SHN_UNDEF)
1522	++*defined;
1523
1524      Sized_symbol<size>* res;
1525
1526      if (versym == NULL)
1527	{
1528	  Stringpool::Key name_key;
1529	  name = this->namepool_.add(name, true, &name_key);
1530	  res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1531				      false, *psym, st_shndx, is_ordinary,
1532				      st_shndx);
1533	}
1534      else
1535	{
1536	  // Read the version information.
1537
1538	  unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1539
1540	  bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1541	  v &= elfcpp::VERSYM_VERSION;
1542
1543	  // The Sun documentation says that V can be VER_NDX_LOCAL,
1544	  // or VER_NDX_GLOBAL, or a version index.  The meaning of
1545	  // VER_NDX_LOCAL is defined as "Symbol has local scope."
1546	  // The old GNU linker will happily generate VER_NDX_LOCAL
1547	  // for an undefined symbol.  I don't know what the Sun
1548	  // linker will generate.
1549
1550	  if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1551	      && st_shndx != elfcpp::SHN_UNDEF)
1552	    {
1553	      // This symbol should not be visible outside the object.
1554	      continue;
1555	    }
1556
1557	  // At this point we are definitely going to add this symbol.
1558	  Stringpool::Key name_key;
1559	  name = this->namepool_.add(name, true, &name_key);
1560
1561	  if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1562	      || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1563	    {
1564	      // This symbol does not have a version.
1565	      res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1566					  false, *psym, st_shndx, is_ordinary,
1567					  st_shndx);
1568	    }
1569	  else
1570	    {
1571	      if (v >= version_map->size())
1572		{
1573		  dynobj->error(_("versym for symbol %zu out of range: %u"),
1574				i, v);
1575		  continue;
1576		}
1577
1578	      const char* version = (*version_map)[v];
1579	      if (version == NULL)
1580		{
1581		  dynobj->error(_("versym for symbol %zu has no name: %u"),
1582				i, v);
1583		  continue;
1584		}
1585
1586	      Stringpool::Key version_key;
1587	      version = this->namepool_.add(version, true, &version_key);
1588
1589	      // If this is an absolute symbol, and the version name
1590	      // and symbol name are the same, then this is the
1591	      // version definition symbol.  These symbols exist to
1592	      // support using -u to pull in particular versions.  We
1593	      // do not want to record a version for them.
1594	      if (st_shndx == elfcpp::SHN_ABS
1595		  && !is_ordinary
1596		  && name_key == version_key)
1597		res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1598					    false, *psym, st_shndx, is_ordinary,
1599					    st_shndx);
1600	      else
1601		{
1602		  const bool is_default_version =
1603		    !hidden && st_shndx != elfcpp::SHN_UNDEF;
1604		  res = this->add_from_object(dynobj, name, name_key, version,
1605					      version_key, is_default_version,
1606					      *psym, st_shndx,
1607					      is_ordinary, st_shndx);
1608		}
1609	    }
1610	}
1611
1612      if (res == NULL)
1613	continue;
1614
1615      // Note that it is possible that RES was overridden by an
1616      // earlier object, in which case it can't be aliased here.
1617      if (st_shndx != elfcpp::SHN_UNDEF
1618	  && is_ordinary
1619	  && psym->get_st_type() == elfcpp::STT_OBJECT
1620	  && res->source() == Symbol::FROM_OBJECT
1621	  && res->object() == dynobj)
1622	object_symbols.push_back(res);
1623
1624      // If the symbol has protected visibility in the dynobj,
1625      // mark it as such if it was not overridden.
1626      if (res->source() == Symbol::FROM_OBJECT
1627          && res->object() == dynobj
1628          && sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1629        res->set_is_protected();
1630
1631      if (sympointers != NULL)
1632	(*sympointers)[i] = res;
1633    }
1634
1635  this->record_weak_aliases(&object_symbols);
1636}
1637
1638// Add a symbol from a incremental object file.
1639
1640template<int size, bool big_endian>
1641Sized_symbol<size>*
1642Symbol_table::add_from_incrobj(
1643    Object* obj,
1644    const char* name,
1645    const char* ver,
1646    elfcpp::Sym<size, big_endian>* sym)
1647{
1648  unsigned int st_shndx = sym->get_st_shndx();
1649  bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1650
1651  Stringpool::Key ver_key = 0;
1652  bool is_default_version = false;
1653
1654  Stringpool::Key name_key;
1655  name = this->namepool_.add(name, true, &name_key);
1656
1657  Sized_symbol<size>* res;
1658  res = this->add_from_object(obj, name, name_key, ver, ver_key,
1659		              is_default_version, *sym, st_shndx,
1660			      is_ordinary, st_shndx);
1661
1662  return res;
1663}
1664
1665// This is used to sort weak aliases.  We sort them first by section
1666// index, then by offset, then by weak ahead of strong.
1667
1668template<int size>
1669class Weak_alias_sorter
1670{
1671 public:
1672  bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1673};
1674
1675template<int size>
1676bool
1677Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1678				    const Sized_symbol<size>* s2) const
1679{
1680  bool is_ordinary;
1681  unsigned int s1_shndx = s1->shndx(&is_ordinary);
1682  gold_assert(is_ordinary);
1683  unsigned int s2_shndx = s2->shndx(&is_ordinary);
1684  gold_assert(is_ordinary);
1685  if (s1_shndx != s2_shndx)
1686    return s1_shndx < s2_shndx;
1687
1688  if (s1->value() != s2->value())
1689    return s1->value() < s2->value();
1690  if (s1->binding() != s2->binding())
1691    {
1692      if (s1->binding() == elfcpp::STB_WEAK)
1693	return true;
1694      if (s2->binding() == elfcpp::STB_WEAK)
1695	return false;
1696    }
1697  return std::string(s1->name()) < std::string(s2->name());
1698}
1699
1700// SYMBOLS is a list of object symbols from a dynamic object.  Look
1701// for any weak aliases, and record them so that if we add the weak
1702// alias to the dynamic symbol table, we also add the corresponding
1703// strong symbol.
1704
1705template<int size>
1706void
1707Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1708{
1709  // Sort the vector by section index, then by offset, then by weak
1710  // ahead of strong.
1711  std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1712
1713  // Walk through the vector.  For each weak definition, record
1714  // aliases.
1715  for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1716	 symbols->begin();
1717       p != symbols->end();
1718       ++p)
1719    {
1720      if ((*p)->binding() != elfcpp::STB_WEAK)
1721	continue;
1722
1723      // Build a circular list of weak aliases.  Each symbol points to
1724      // the next one in the circular list.
1725
1726      Sized_symbol<size>* from_sym = *p;
1727      typename std::vector<Sized_symbol<size>*>::const_iterator q;
1728      for (q = p + 1; q != symbols->end(); ++q)
1729	{
1730	  bool dummy;
1731	  if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1732	      || (*q)->value() != from_sym->value())
1733	    break;
1734
1735	  this->weak_aliases_[from_sym] = *q;
1736	  from_sym->set_has_alias();
1737	  from_sym = *q;
1738	}
1739
1740      if (from_sym != *p)
1741	{
1742	  this->weak_aliases_[from_sym] = *p;
1743	  from_sym->set_has_alias();
1744	}
1745
1746      p = q - 1;
1747    }
1748}
1749
1750// Create and return a specially defined symbol.  If ONLY_IF_REF is
1751// true, then only create the symbol if there is a reference to it.
1752// If this does not return NULL, it sets *POLDSYM to the existing
1753// symbol if there is one.  This sets *RESOLVE_OLDSYM if we should
1754// resolve the newly created symbol to the old one.  This
1755// canonicalizes *PNAME and *PVERSION.
1756
1757template<int size, bool big_endian>
1758Sized_symbol<size>*
1759Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1760				    bool only_if_ref,
1761                                    Sized_symbol<size>** poldsym,
1762				    bool* resolve_oldsym, bool is_forced_local)
1763{
1764  *resolve_oldsym = false;
1765  *poldsym = NULL;
1766
1767  // If the caller didn't give us a version, see if we get one from
1768  // the version script.
1769  std::string v;
1770  bool is_default_version = false;
1771  if (!is_forced_local && *pversion == NULL)
1772    {
1773      bool is_global;
1774      if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1775	{
1776	  if (is_global && !v.empty())
1777	    {
1778	      *pversion = v.c_str();
1779	      // If we get the version from a version script, then we
1780	      // are also the default version.
1781	      is_default_version = true;
1782	    }
1783	}
1784    }
1785
1786  Symbol* oldsym;
1787  Sized_symbol<size>* sym;
1788
1789  bool add_to_table = false;
1790  typename Symbol_table_type::iterator add_loc = this->table_.end();
1791  bool add_def_to_table = false;
1792  typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1793
1794  if (only_if_ref)
1795    {
1796      oldsym = this->lookup(*pname, *pversion);
1797      if (oldsym == NULL && is_default_version)
1798	oldsym = this->lookup(*pname, NULL);
1799      if (oldsym == NULL || !oldsym->is_undefined())
1800	return NULL;
1801
1802      *pname = oldsym->name();
1803      if (is_default_version)
1804	*pversion = this->namepool_.add(*pversion, true, NULL);
1805      else
1806	*pversion = oldsym->version();
1807    }
1808  else
1809    {
1810      // Canonicalize NAME and VERSION.
1811      Stringpool::Key name_key;
1812      *pname = this->namepool_.add(*pname, true, &name_key);
1813
1814      Stringpool::Key version_key = 0;
1815      if (*pversion != NULL)
1816	*pversion = this->namepool_.add(*pversion, true, &version_key);
1817
1818      Symbol* const snull = NULL;
1819      std::pair<typename Symbol_table_type::iterator, bool> ins =
1820	this->table_.insert(std::make_pair(std::make_pair(name_key,
1821							  version_key),
1822					   snull));
1823
1824      std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1825	std::make_pair(this->table_.end(), false);
1826      if (is_default_version)
1827	{
1828	  const Stringpool::Key vnull = 0;
1829	  insdefault =
1830	    this->table_.insert(std::make_pair(std::make_pair(name_key,
1831							      vnull),
1832					       snull));
1833	}
1834
1835      if (!ins.second)
1836	{
1837	  // We already have a symbol table entry for NAME/VERSION.
1838	  oldsym = ins.first->second;
1839	  gold_assert(oldsym != NULL);
1840
1841	  if (is_default_version)
1842	    {
1843	      Sized_symbol<size>* soldsym =
1844		this->get_sized_symbol<size>(oldsym);
1845	      this->define_default_version<size, big_endian>(soldsym,
1846							     insdefault.second,
1847							     insdefault.first);
1848	    }
1849	}
1850      else
1851	{
1852	  // We haven't seen this symbol before.
1853	  gold_assert(ins.first->second == NULL);
1854
1855	  add_to_table = true;
1856	  add_loc = ins.first;
1857
1858	  if (is_default_version && !insdefault.second)
1859	    {
1860	      // We are adding NAME/VERSION, and it is the default
1861	      // version.  We already have an entry for NAME/NULL.
1862	      oldsym = insdefault.first->second;
1863	      *resolve_oldsym = true;
1864	    }
1865	  else
1866	    {
1867	      oldsym = NULL;
1868
1869	      if (is_default_version)
1870		{
1871		  add_def_to_table = true;
1872		  add_def_loc = insdefault.first;
1873		}
1874	    }
1875	}
1876    }
1877
1878  const Target& target = parameters->target();
1879  if (!target.has_make_symbol())
1880    sym = new Sized_symbol<size>();
1881  else
1882    {
1883      Sized_target<size, big_endian>* sized_target =
1884	parameters->sized_target<size, big_endian>();
1885      sym = sized_target->make_symbol(*pname, elfcpp::STT_NOTYPE,
1886				      NULL, elfcpp::SHN_UNDEF, 0);
1887      if (sym == NULL)
1888        return NULL;
1889    }
1890
1891  if (add_to_table)
1892    add_loc->second = sym;
1893  else
1894    gold_assert(oldsym != NULL);
1895
1896  if (add_def_to_table)
1897    add_def_loc->second = sym;
1898
1899  *poldsym = this->get_sized_symbol<size>(oldsym);
1900
1901  return sym;
1902}
1903
1904// Define a symbol based on an Output_data.
1905
1906Symbol*
1907Symbol_table::define_in_output_data(const char* name,
1908				    const char* version,
1909				    Defined defined,
1910				    Output_data* od,
1911				    uint64_t value,
1912				    uint64_t symsize,
1913				    elfcpp::STT type,
1914				    elfcpp::STB binding,
1915				    elfcpp::STV visibility,
1916				    unsigned char nonvis,
1917				    bool offset_is_from_end,
1918				    bool only_if_ref)
1919{
1920  if (parameters->target().get_size() == 32)
1921    {
1922#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1923      return this->do_define_in_output_data<32>(name, version, defined, od,
1924                                                value, symsize, type, binding,
1925                                                visibility, nonvis,
1926                                                offset_is_from_end,
1927                                                only_if_ref);
1928#else
1929      gold_unreachable();
1930#endif
1931    }
1932  else if (parameters->target().get_size() == 64)
1933    {
1934#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1935      return this->do_define_in_output_data<64>(name, version, defined, od,
1936                                                value, symsize, type, binding,
1937                                                visibility, nonvis,
1938                                                offset_is_from_end,
1939                                                only_if_ref);
1940#else
1941      gold_unreachable();
1942#endif
1943    }
1944  else
1945    gold_unreachable();
1946}
1947
1948// Define a symbol in an Output_data, sized version.
1949
1950template<int size>
1951Sized_symbol<size>*
1952Symbol_table::do_define_in_output_data(
1953    const char* name,
1954    const char* version,
1955    Defined defined,
1956    Output_data* od,
1957    typename elfcpp::Elf_types<size>::Elf_Addr value,
1958    typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1959    elfcpp::STT type,
1960    elfcpp::STB binding,
1961    elfcpp::STV visibility,
1962    unsigned char nonvis,
1963    bool offset_is_from_end,
1964    bool only_if_ref)
1965{
1966  Sized_symbol<size>* sym;
1967  Sized_symbol<size>* oldsym;
1968  bool resolve_oldsym;
1969  const bool is_forced_local = binding == elfcpp::STB_LOCAL;
1970
1971  if (parameters->target().is_big_endian())
1972    {
1973#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1974      sym = this->define_special_symbol<size, true>(&name, &version,
1975						    only_if_ref, &oldsym,
1976						    &resolve_oldsym,
1977						    is_forced_local);
1978#else
1979      gold_unreachable();
1980#endif
1981    }
1982  else
1983    {
1984#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1985      sym = this->define_special_symbol<size, false>(&name, &version,
1986						     only_if_ref, &oldsym,
1987						     &resolve_oldsym,
1988						     is_forced_local);
1989#else
1990      gold_unreachable();
1991#endif
1992    }
1993
1994  if (sym == NULL)
1995    return NULL;
1996
1997  sym->init_output_data(name, version, od, value, symsize, type, binding,
1998			visibility, nonvis, offset_is_from_end,
1999			defined == PREDEFINED);
2000
2001  if (oldsym == NULL)
2002    {
2003      if (is_forced_local || this->version_script_.symbol_is_local(name))
2004	this->force_local(sym);
2005      else if (version != NULL)
2006	sym->set_is_default();
2007      return sym;
2008    }
2009
2010  if (Symbol_table::should_override_with_special(oldsym, type, defined))
2011    this->override_with_special(oldsym, sym);
2012
2013  if (resolve_oldsym)
2014    return sym;
2015  else
2016    {
2017      if (defined == PREDEFINED
2018	  && (is_forced_local || this->version_script_.symbol_is_local(name)))
2019	this->force_local(oldsym);
2020      delete sym;
2021      return oldsym;
2022    }
2023}
2024
2025// Define a symbol based on an Output_segment.
2026
2027Symbol*
2028Symbol_table::define_in_output_segment(const char* name,
2029				       const char* version,
2030				       Defined defined,
2031				       Output_segment* os,
2032				       uint64_t value,
2033				       uint64_t symsize,
2034				       elfcpp::STT type,
2035				       elfcpp::STB binding,
2036				       elfcpp::STV visibility,
2037				       unsigned char nonvis,
2038				       Symbol::Segment_offset_base offset_base,
2039				       bool only_if_ref)
2040{
2041  if (parameters->target().get_size() == 32)
2042    {
2043#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2044      return this->do_define_in_output_segment<32>(name, version, defined, os,
2045                                                   value, symsize, type,
2046                                                   binding, visibility, nonvis,
2047                                                   offset_base, only_if_ref);
2048#else
2049      gold_unreachable();
2050#endif
2051    }
2052  else if (parameters->target().get_size() == 64)
2053    {
2054#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2055      return this->do_define_in_output_segment<64>(name, version, defined, os,
2056                                                   value, symsize, type,
2057                                                   binding, visibility, nonvis,
2058                                                   offset_base, only_if_ref);
2059#else
2060      gold_unreachable();
2061#endif
2062    }
2063  else
2064    gold_unreachable();
2065}
2066
2067// Define a symbol in an Output_segment, sized version.
2068
2069template<int size>
2070Sized_symbol<size>*
2071Symbol_table::do_define_in_output_segment(
2072    const char* name,
2073    const char* version,
2074    Defined defined,
2075    Output_segment* os,
2076    typename elfcpp::Elf_types<size>::Elf_Addr value,
2077    typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2078    elfcpp::STT type,
2079    elfcpp::STB binding,
2080    elfcpp::STV visibility,
2081    unsigned char nonvis,
2082    Symbol::Segment_offset_base offset_base,
2083    bool only_if_ref)
2084{
2085  Sized_symbol<size>* sym;
2086  Sized_symbol<size>* oldsym;
2087  bool resolve_oldsym;
2088  const bool is_forced_local = binding == elfcpp::STB_LOCAL;
2089
2090  if (parameters->target().is_big_endian())
2091    {
2092#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2093      sym = this->define_special_symbol<size, true>(&name, &version,
2094						    only_if_ref, &oldsym,
2095						    &resolve_oldsym,
2096						    is_forced_local);
2097#else
2098      gold_unreachable();
2099#endif
2100    }
2101  else
2102    {
2103#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2104      sym = this->define_special_symbol<size, false>(&name, &version,
2105						     only_if_ref, &oldsym,
2106						     &resolve_oldsym,
2107						     is_forced_local);
2108#else
2109      gold_unreachable();
2110#endif
2111    }
2112
2113  if (sym == NULL)
2114    return NULL;
2115
2116  sym->init_output_segment(name, version, os, value, symsize, type, binding,
2117			   visibility, nonvis, offset_base,
2118			   defined == PREDEFINED);
2119
2120  if (oldsym == NULL)
2121    {
2122      if (is_forced_local || this->version_script_.symbol_is_local(name))
2123	this->force_local(sym);
2124      else if (version != NULL)
2125	sym->set_is_default();
2126      return sym;
2127    }
2128
2129  if (Symbol_table::should_override_with_special(oldsym, type, defined))
2130    this->override_with_special(oldsym, sym);
2131
2132  if (resolve_oldsym)
2133    return sym;
2134  else
2135    {
2136      if (is_forced_local || this->version_script_.symbol_is_local(name))
2137	this->force_local(oldsym);
2138      delete sym;
2139      return oldsym;
2140    }
2141}
2142
2143// Define a special symbol with a constant value.  It is a multiple
2144// definition error if this symbol is already defined.
2145
2146Symbol*
2147Symbol_table::define_as_constant(const char* name,
2148				 const char* version,
2149				 Defined defined,
2150				 uint64_t value,
2151				 uint64_t symsize,
2152				 elfcpp::STT type,
2153				 elfcpp::STB binding,
2154				 elfcpp::STV visibility,
2155				 unsigned char nonvis,
2156				 bool only_if_ref,
2157                                 bool force_override)
2158{
2159  if (parameters->target().get_size() == 32)
2160    {
2161#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2162      return this->do_define_as_constant<32>(name, version, defined, value,
2163                                             symsize, type, binding,
2164                                             visibility, nonvis, only_if_ref,
2165                                             force_override);
2166#else
2167      gold_unreachable();
2168#endif
2169    }
2170  else if (parameters->target().get_size() == 64)
2171    {
2172#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2173      return this->do_define_as_constant<64>(name, version, defined, value,
2174                                             symsize, type, binding,
2175                                             visibility, nonvis, only_if_ref,
2176                                             force_override);
2177#else
2178      gold_unreachable();
2179#endif
2180    }
2181  else
2182    gold_unreachable();
2183}
2184
2185// Define a symbol as a constant, sized version.
2186
2187template<int size>
2188Sized_symbol<size>*
2189Symbol_table::do_define_as_constant(
2190    const char* name,
2191    const char* version,
2192    Defined defined,
2193    typename elfcpp::Elf_types<size>::Elf_Addr value,
2194    typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2195    elfcpp::STT type,
2196    elfcpp::STB binding,
2197    elfcpp::STV visibility,
2198    unsigned char nonvis,
2199    bool only_if_ref,
2200    bool force_override)
2201{
2202  Sized_symbol<size>* sym;
2203  Sized_symbol<size>* oldsym;
2204  bool resolve_oldsym;
2205  const bool is_forced_local = binding == elfcpp::STB_LOCAL;
2206
2207  if (parameters->target().is_big_endian())
2208    {
2209#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2210      sym = this->define_special_symbol<size, true>(&name, &version,
2211						    only_if_ref, &oldsym,
2212						    &resolve_oldsym,
2213						    is_forced_local);
2214#else
2215      gold_unreachable();
2216#endif
2217    }
2218  else
2219    {
2220#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2221      sym = this->define_special_symbol<size, false>(&name, &version,
2222						     only_if_ref, &oldsym,
2223						     &resolve_oldsym,
2224						     is_forced_local);
2225#else
2226      gold_unreachable();
2227#endif
2228    }
2229
2230  if (sym == NULL)
2231    return NULL;
2232
2233  sym->init_constant(name, version, value, symsize, type, binding, visibility,
2234		     nonvis, defined == PREDEFINED);
2235
2236  if (oldsym == NULL)
2237    {
2238      // Version symbols are absolute symbols with name == version.
2239      // We don't want to force them to be local.
2240      if ((version == NULL
2241	   || name != version
2242	   || value != 0)
2243	  && (is_forced_local || this->version_script_.symbol_is_local(name)))
2244	this->force_local(sym);
2245      else if (version != NULL
2246	       && (name != version || value != 0))
2247	sym->set_is_default();
2248      return sym;
2249    }
2250
2251  if (force_override
2252      || Symbol_table::should_override_with_special(oldsym, type, defined))
2253    this->override_with_special(oldsym, sym);
2254
2255  if (resolve_oldsym)
2256    return sym;
2257  else
2258    {
2259      if (is_forced_local || this->version_script_.symbol_is_local(name))
2260	this->force_local(oldsym);
2261      delete sym;
2262      return oldsym;
2263    }
2264}
2265
2266// Define a set of symbols in output sections.
2267
2268void
2269Symbol_table::define_symbols(const Layout* layout, int count,
2270			     const Define_symbol_in_section* p,
2271			     bool only_if_ref)
2272{
2273  for (int i = 0; i < count; ++i, ++p)
2274    {
2275      Output_section* os = layout->find_output_section(p->output_section);
2276      if (os != NULL)
2277	this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2278				    p->size, p->type, p->binding,
2279				    p->visibility, p->nonvis,
2280				    p->offset_is_from_end,
2281				    only_if_ref || p->only_if_ref);
2282      else
2283	this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2284				 p->type, p->binding, p->visibility, p->nonvis,
2285				 only_if_ref || p->only_if_ref,
2286                                 false);
2287    }
2288}
2289
2290// Define a set of symbols in output segments.
2291
2292void
2293Symbol_table::define_symbols(const Layout* layout, int count,
2294			     const Define_symbol_in_segment* p,
2295			     bool only_if_ref)
2296{
2297  for (int i = 0; i < count; ++i, ++p)
2298    {
2299      Output_segment* os = layout->find_output_segment(p->segment_type,
2300						       p->segment_flags_set,
2301						       p->segment_flags_clear);
2302      if (os != NULL)
2303	this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2304				       p->size, p->type, p->binding,
2305				       p->visibility, p->nonvis,
2306				       p->offset_base,
2307				       only_if_ref || p->only_if_ref);
2308      else
2309	this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2310				 p->type, p->binding, p->visibility, p->nonvis,
2311				 only_if_ref || p->only_if_ref,
2312                                 false);
2313    }
2314}
2315
2316// Define CSYM using a COPY reloc.  POSD is the Output_data where the
2317// symbol should be defined--typically a .dyn.bss section.  VALUE is
2318// the offset within POSD.
2319
2320template<int size>
2321void
2322Symbol_table::define_with_copy_reloc(
2323    Sized_symbol<size>* csym,
2324    Output_data* posd,
2325    typename elfcpp::Elf_types<size>::Elf_Addr value)
2326{
2327  gold_assert(csym->is_from_dynobj());
2328  gold_assert(!csym->is_copied_from_dynobj());
2329  Object* object = csym->object();
2330  gold_assert(object->is_dynamic());
2331  Dynobj* dynobj = static_cast<Dynobj*>(object);
2332
2333  // Our copied variable has to override any variable in a shared
2334  // library.
2335  elfcpp::STB binding = csym->binding();
2336  if (binding == elfcpp::STB_WEAK)
2337    binding = elfcpp::STB_GLOBAL;
2338
2339  this->define_in_output_data(csym->name(), csym->version(), COPY,
2340			      posd, value, csym->symsize(),
2341			      csym->type(), binding,
2342			      csym->visibility(), csym->nonvis(),
2343			      false, false);
2344
2345  csym->set_is_copied_from_dynobj();
2346  csym->set_needs_dynsym_entry();
2347
2348  this->copied_symbol_dynobjs_[csym] = dynobj;
2349
2350  // We have now defined all aliases, but we have not entered them all
2351  // in the copied_symbol_dynobjs_ map.
2352  if (csym->has_alias())
2353    {
2354      Symbol* sym = csym;
2355      while (true)
2356	{
2357	  sym = this->weak_aliases_[sym];
2358	  if (sym == csym)
2359	    break;
2360	  gold_assert(sym->output_data() == posd);
2361
2362	  sym->set_is_copied_from_dynobj();
2363	  this->copied_symbol_dynobjs_[sym] = dynobj;
2364	}
2365    }
2366}
2367
2368// SYM is defined using a COPY reloc.  Return the dynamic object where
2369// the original definition was found.
2370
2371Dynobj*
2372Symbol_table::get_copy_source(const Symbol* sym) const
2373{
2374  gold_assert(sym->is_copied_from_dynobj());
2375  Copied_symbol_dynobjs::const_iterator p =
2376    this->copied_symbol_dynobjs_.find(sym);
2377  gold_assert(p != this->copied_symbol_dynobjs_.end());
2378  return p->second;
2379}
2380
2381// Add any undefined symbols named on the command line.
2382
2383void
2384Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2385{
2386  if (parameters->options().any_undefined()
2387      || layout->script_options()->any_unreferenced())
2388    {
2389      if (parameters->target().get_size() == 32)
2390	{
2391#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2392	  this->do_add_undefined_symbols_from_command_line<32>(layout);
2393#else
2394	  gold_unreachable();
2395#endif
2396	}
2397      else if (parameters->target().get_size() == 64)
2398	{
2399#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2400	  this->do_add_undefined_symbols_from_command_line<64>(layout);
2401#else
2402	  gold_unreachable();
2403#endif
2404	}
2405      else
2406	gold_unreachable();
2407    }
2408}
2409
2410template<int size>
2411void
2412Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2413{
2414  for (options::String_set::const_iterator p =
2415	 parameters->options().undefined_begin();
2416       p != parameters->options().undefined_end();
2417       ++p)
2418    this->add_undefined_symbol_from_command_line<size>(p->c_str());
2419
2420  for (options::String_set::const_iterator p =
2421	 parameters->options().export_dynamic_symbol_begin();
2422       p != parameters->options().export_dynamic_symbol_end();
2423       ++p)
2424    this->add_undefined_symbol_from_command_line<size>(p->c_str());
2425
2426  for (Script_options::referenced_const_iterator p =
2427	 layout->script_options()->referenced_begin();
2428       p != layout->script_options()->referenced_end();
2429       ++p)
2430    this->add_undefined_symbol_from_command_line<size>(p->c_str());
2431}
2432
2433template<int size>
2434void
2435Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2436{
2437  if (this->lookup(name) != NULL)
2438    return;
2439
2440  const char* version = NULL;
2441
2442  Sized_symbol<size>* sym;
2443  Sized_symbol<size>* oldsym;
2444  bool resolve_oldsym;
2445  if (parameters->target().is_big_endian())
2446    {
2447#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2448      sym = this->define_special_symbol<size, true>(&name, &version,
2449						    false, &oldsym,
2450						    &resolve_oldsym,
2451						    false);
2452#else
2453      gold_unreachable();
2454#endif
2455    }
2456  else
2457    {
2458#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2459      sym = this->define_special_symbol<size, false>(&name, &version,
2460						     false, &oldsym,
2461						     &resolve_oldsym,
2462						     false);
2463#else
2464      gold_unreachable();
2465#endif
2466    }
2467
2468  gold_assert(oldsym == NULL);
2469
2470  sym->init_undefined(name, version, 0, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2471		      elfcpp::STV_DEFAULT, 0);
2472  ++this->saw_undefined_;
2473}
2474
2475// Set the dynamic symbol indexes.  INDEX is the index of the first
2476// global dynamic symbol.  Pointers to the global symbols are stored
2477// into the vector SYMS.  The names are added to DYNPOOL.
2478// This returns an updated dynamic symbol index.
2479
2480unsigned int
2481Symbol_table::set_dynsym_indexes(unsigned int index,
2482				 unsigned int* pforced_local_count,
2483				 std::vector<Symbol*>* syms,
2484				 Stringpool* dynpool,
2485				 Versions* versions)
2486{
2487  std::vector<Symbol*> as_needed_sym;
2488
2489  // First process all the symbols which have been forced to be local,
2490  // as they must appear before all global symbols.
2491  unsigned int forced_local_count = 0;
2492  for (Forced_locals::iterator p = this->forced_locals_.begin();
2493       p != this->forced_locals_.end();
2494       ++p)
2495    {
2496      Symbol* sym = *p;
2497      gold_assert(sym->is_forced_local());
2498      if (sym->has_dynsym_index())
2499        continue;
2500      if (!sym->should_add_dynsym_entry(this))
2501	sym->set_dynsym_index(-1U);
2502      else
2503        {
2504          sym->set_dynsym_index(index);
2505          ++index;
2506          ++forced_local_count;
2507	  dynpool->add(sym->name(), false, NULL);
2508        }
2509    }
2510  *pforced_local_count = forced_local_count;
2511
2512  // Allow a target to set dynsym indexes.
2513  if (parameters->target().has_custom_set_dynsym_indexes())
2514    {
2515      std::vector<Symbol*> dyn_symbols;
2516      for (Symbol_table_type::iterator p = this->table_.begin();
2517           p != this->table_.end();
2518           ++p)
2519        {
2520          Symbol* sym = p->second;
2521          if (sym->is_forced_local())
2522	    continue;
2523          if (!sym->should_add_dynsym_entry(this))
2524            sym->set_dynsym_index(-1U);
2525          else
2526            dyn_symbols.push_back(sym);
2527        }
2528
2529      return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2530                                                     dynpool, versions, this);
2531    }
2532
2533  for (Symbol_table_type::iterator p = this->table_.begin();
2534       p != this->table_.end();
2535       ++p)
2536    {
2537      Symbol* sym = p->second;
2538
2539      if (sym->is_forced_local())
2540        continue;
2541
2542      // Note that SYM may already have a dynamic symbol index, since
2543      // some symbols appear more than once in the symbol table, with
2544      // and without a version.
2545
2546      if (!sym->should_add_dynsym_entry(this))
2547	sym->set_dynsym_index(-1U);
2548      else if (!sym->has_dynsym_index())
2549	{
2550	  sym->set_dynsym_index(index);
2551	  ++index;
2552	  syms->push_back(sym);
2553	  dynpool->add(sym->name(), false, NULL);
2554
2555	  // If the symbol is defined in a dynamic object and is
2556	  // referenced strongly in a regular object, then mark the
2557	  // dynamic object as needed.  This is used to implement
2558	  // --as-needed.
2559	  if (sym->is_from_dynobj()
2560	      && sym->in_reg()
2561	      && !sym->is_undef_binding_weak())
2562	    sym->object()->set_is_needed();
2563
2564	  // Record any version information, except those from
2565	  // as-needed libraries not seen to be needed.  Note that the
2566	  // is_needed state for such libraries can change in this loop.
2567	  if (sym->version() != NULL)
2568	    {
2569	      if (!sym->is_from_dynobj()
2570		  || !sym->object()->as_needed()
2571		  || sym->object()->is_needed())
2572		versions->record_version(this, dynpool, sym);
2573	      else
2574		as_needed_sym.push_back(sym);
2575	    }
2576	}
2577    }
2578
2579  // Process version information for symbols from as-needed libraries.
2580  for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2581       p != as_needed_sym.end();
2582       ++p)
2583    {
2584      Symbol* sym = *p;
2585
2586      if (sym->object()->is_needed())
2587	versions->record_version(this, dynpool, sym);
2588      else
2589	sym->clear_version();
2590    }
2591
2592  // Finish up the versions.  In some cases this may add new dynamic
2593  // symbols.
2594  index = versions->finalize(this, index, syms);
2595
2596  // Process target-specific symbols.
2597  for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2598       p != this->target_symbols_.end();
2599       ++p)
2600    {
2601      (*p)->set_dynsym_index(index);
2602      ++index;
2603      syms->push_back(*p);
2604      dynpool->add((*p)->name(), false, NULL);
2605    }
2606
2607  return index;
2608}
2609
2610// Set the final values for all the symbols.  The index of the first
2611// global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
2612// file offset OFF.  Add their names to POOL.  Return the new file
2613// offset.  Update *PLOCAL_SYMCOUNT if necessary.  DYNOFF and
2614// DYN_GLOBAL_INDEX refer to the start of the symbols that will be
2615// written from the global symbol table in Symtab::write_globals(),
2616// which will include forced-local symbols.  DYN_GLOBAL_INDEX is
2617// not necessarily the same as the sh_info field for the .dynsym
2618// section, which will point to the first real global symbol.
2619
2620off_t
2621Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2622		       size_t dyncount, Stringpool* pool,
2623		       unsigned int* plocal_symcount)
2624{
2625  off_t ret;
2626
2627  gold_assert(*plocal_symcount != 0);
2628  this->first_global_index_ = *plocal_symcount;
2629
2630  this->dynamic_offset_ = dynoff;
2631  this->first_dynamic_global_index_ = dyn_global_index;
2632  this->dynamic_count_ = dyncount;
2633
2634  if (parameters->target().get_size() == 32)
2635    {
2636#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2637      ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2638#else
2639      gold_unreachable();
2640#endif
2641    }
2642  else if (parameters->target().get_size() == 64)
2643    {
2644#if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2645      ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2646#else
2647      gold_unreachable();
2648#endif
2649    }
2650  else
2651    gold_unreachable();
2652
2653  // Now that we have the final symbol table, we can reliably note
2654  // which symbols should get warnings.
2655  this->warnings_.note_warnings(this);
2656
2657  return ret;
2658}
2659
2660// SYM is going into the symbol table at *PINDEX.  Add the name to
2661// POOL, update *PINDEX and *POFF.
2662
2663template<int size>
2664void
2665Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2666				  unsigned int* pindex, off_t* poff)
2667{
2668  sym->set_symtab_index(*pindex);
2669  if (sym->version() == NULL || !parameters->options().relocatable())
2670    pool->add(sym->name(), false, NULL);
2671  else
2672    pool->add(sym->versioned_name(), true, NULL);
2673  ++*pindex;
2674  *poff += elfcpp::Elf_sizes<size>::sym_size;
2675}
2676
2677// Set the final value for all the symbols.  This is called after
2678// Layout::finalize, so all the output sections have their final
2679// address.
2680
2681template<int size>
2682off_t
2683Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2684			     unsigned int* plocal_symcount)
2685{
2686  off = align_address(off, size >> 3);
2687  this->offset_ = off;
2688
2689  unsigned int index = *plocal_symcount;
2690  const unsigned int orig_index = index;
2691
2692  // First do all the symbols which have been forced to be local, as
2693  // they must appear before all global symbols.
2694  for (Forced_locals::iterator p = this->forced_locals_.begin();
2695       p != this->forced_locals_.end();
2696       ++p)
2697    {
2698      Symbol* sym = *p;
2699      gold_assert(sym->is_forced_local());
2700      if (this->sized_finalize_symbol<size>(sym))
2701	{
2702	  this->add_to_final_symtab<size>(sym, pool, &index, &off);
2703	  ++*plocal_symcount;
2704	}
2705    }
2706
2707  // Now do all the remaining symbols.
2708  for (Symbol_table_type::iterator p = this->table_.begin();
2709       p != this->table_.end();
2710       ++p)
2711    {
2712      Symbol* sym = p->second;
2713      if (this->sized_finalize_symbol<size>(sym))
2714	this->add_to_final_symtab<size>(sym, pool, &index, &off);
2715    }
2716
2717  // Now do target-specific symbols.
2718  for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2719       p != this->target_symbols_.end();
2720       ++p)
2721    {
2722      this->add_to_final_symtab<size>(*p, pool, &index, &off);
2723    }
2724
2725  this->output_count_ = index - orig_index;
2726
2727  return off;
2728}
2729
2730// Compute the final value of SYM and store status in location PSTATUS.
2731// During relaxation, this may be called multiple times for a symbol to
2732// compute its would-be final value in each relaxation pass.
2733
2734template<int size>
2735typename Sized_symbol<size>::Value_type
2736Symbol_table::compute_final_value(
2737    const Sized_symbol<size>* sym,
2738    Compute_final_value_status* pstatus) const
2739{
2740  typedef typename Sized_symbol<size>::Value_type Value_type;
2741  Value_type value;
2742
2743  switch (sym->source())
2744    {
2745    case Symbol::FROM_OBJECT:
2746      {
2747	bool is_ordinary;
2748	unsigned int shndx = sym->shndx(&is_ordinary);
2749
2750	if (!is_ordinary
2751	    && shndx != elfcpp::SHN_ABS
2752	    && !Symbol::is_common_shndx(shndx))
2753	  {
2754	    *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2755	    return 0;
2756	  }
2757
2758	Object* symobj = sym->object();
2759	if (symobj->is_dynamic())
2760	  {
2761	    value = 0;
2762	    shndx = elfcpp::SHN_UNDEF;
2763	  }
2764	else if (symobj->pluginobj() != NULL)
2765	  {
2766	    value = 0;
2767	    shndx = elfcpp::SHN_UNDEF;
2768	  }
2769	else if (shndx == elfcpp::SHN_UNDEF)
2770	  value = 0;
2771	else if (!is_ordinary
2772		 && (shndx == elfcpp::SHN_ABS
2773		     || Symbol::is_common_shndx(shndx)))
2774	  value = sym->value();
2775	else
2776	  {
2777	    Relobj* relobj = static_cast<Relobj*>(symobj);
2778	    Output_section* os = relobj->output_section(shndx);
2779
2780            if (this->is_section_folded(relobj, shndx))
2781              {
2782                gold_assert(os == NULL);
2783                // Get the os of the section it is folded onto.
2784                Section_id folded = this->icf_->get_folded_section(relobj,
2785                                                                   shndx);
2786                gold_assert(folded.first != NULL);
2787                Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2788		unsigned folded_shndx = folded.second;
2789
2790                os = folded_obj->output_section(folded_shndx);
2791                gold_assert(os != NULL);
2792
2793		// Replace (relobj, shndx) with canonical ICF input section.
2794		shndx = folded_shndx;
2795		relobj = folded_obj;
2796              }
2797
2798            uint64_t secoff64 = relobj->output_section_offset(shndx);
2799 	    if (os == NULL)
2800	      {
2801                bool static_or_reloc = (parameters->doing_static_link() ||
2802                                        parameters->options().relocatable());
2803                gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2804
2805		*pstatus = CFVS_NO_OUTPUT_SECTION;
2806		return 0;
2807	      }
2808
2809            if (secoff64 == -1ULL)
2810              {
2811                // The section needs special handling (e.g., a merge section).
2812
2813	        value = os->output_address(relobj, shndx, sym->value());
2814	      }
2815            else
2816              {
2817                Value_type secoff =
2818                  convert_types<Value_type, uint64_t>(secoff64);
2819	        if (sym->type() == elfcpp::STT_TLS)
2820	          value = sym->value() + os->tls_offset() + secoff;
2821	        else
2822	          value = sym->value() + os->address() + secoff;
2823	      }
2824	  }
2825      }
2826      break;
2827
2828    case Symbol::IN_OUTPUT_DATA:
2829      {
2830	Output_data* od = sym->output_data();
2831	value = sym->value();
2832	if (sym->type() != elfcpp::STT_TLS)
2833	  value += od->address();
2834	else
2835	  {
2836	    Output_section* os = od->output_section();
2837	    gold_assert(os != NULL);
2838	    value += os->tls_offset() + (od->address() - os->address());
2839	  }
2840	if (sym->offset_is_from_end())
2841	  value += od->data_size();
2842      }
2843      break;
2844
2845    case Symbol::IN_OUTPUT_SEGMENT:
2846      {
2847	Output_segment* os = sym->output_segment();
2848	value = sym->value();
2849        if (sym->type() != elfcpp::STT_TLS)
2850	  value += os->vaddr();
2851	switch (sym->offset_base())
2852	  {
2853	  case Symbol::SEGMENT_START:
2854	    break;
2855	  case Symbol::SEGMENT_END:
2856	    value += os->memsz();
2857	    break;
2858	  case Symbol::SEGMENT_BSS:
2859	    value += os->filesz();
2860	    break;
2861	  default:
2862	    gold_unreachable();
2863	  }
2864      }
2865      break;
2866
2867    case Symbol::IS_CONSTANT:
2868      value = sym->value();
2869      break;
2870
2871    case Symbol::IS_UNDEFINED:
2872      value = 0;
2873      break;
2874
2875    default:
2876      gold_unreachable();
2877    }
2878
2879  *pstatus = CFVS_OK;
2880  return value;
2881}
2882
2883// Finalize the symbol SYM.  This returns true if the symbol should be
2884// added to the symbol table, false otherwise.
2885
2886template<int size>
2887bool
2888Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2889{
2890  typedef typename Sized_symbol<size>::Value_type Value_type;
2891
2892  Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2893
2894  // The default version of a symbol may appear twice in the symbol
2895  // table.  We only need to finalize it once.
2896  if (sym->has_symtab_index())
2897    return false;
2898
2899  if (!sym->in_reg())
2900    {
2901      gold_assert(!sym->has_symtab_index());
2902      sym->set_symtab_index(-1U);
2903      gold_assert(sym->dynsym_index() == -1U);
2904      return false;
2905    }
2906
2907  // If the symbol is only present on plugin files, the plugin decided we
2908  // don't need it.
2909  if (!sym->in_real_elf())
2910    {
2911      gold_assert(!sym->has_symtab_index());
2912      sym->set_symtab_index(-1U);
2913      return false;
2914    }
2915
2916  // Compute final symbol value.
2917  Compute_final_value_status status;
2918  Value_type value = this->compute_final_value(sym, &status);
2919
2920  switch (status)
2921    {
2922    case CFVS_OK:
2923      break;
2924    case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2925      {
2926	bool is_ordinary;
2927	unsigned int shndx = sym->shndx(&is_ordinary);
2928	gold_error(_("%s: unsupported symbol section 0x%x"),
2929		   sym->demangled_name().c_str(), shndx);
2930      }
2931      break;
2932    case CFVS_NO_OUTPUT_SECTION:
2933      sym->set_symtab_index(-1U);
2934      return false;
2935    default:
2936      gold_unreachable();
2937    }
2938
2939  sym->set_value(value);
2940
2941  if (parameters->options().strip_all()
2942      || !parameters->options().should_retain_symbol(sym->name()))
2943    {
2944      sym->set_symtab_index(-1U);
2945      return false;
2946    }
2947
2948  return true;
2949}
2950
2951// Write out the global symbols.
2952
2953void
2954Symbol_table::write_globals(const Stringpool* sympool,
2955			    const Stringpool* dynpool,
2956			    Output_symtab_xindex* symtab_xindex,
2957			    Output_symtab_xindex* dynsym_xindex,
2958			    Output_file* of) const
2959{
2960  switch (parameters->size_and_endianness())
2961    {
2962#ifdef HAVE_TARGET_32_LITTLE
2963    case Parameters::TARGET_32_LITTLE:
2964      this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2965					   dynsym_xindex, of);
2966      break;
2967#endif
2968#ifdef HAVE_TARGET_32_BIG
2969    case Parameters::TARGET_32_BIG:
2970      this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2971					  dynsym_xindex, of);
2972      break;
2973#endif
2974#ifdef HAVE_TARGET_64_LITTLE
2975    case Parameters::TARGET_64_LITTLE:
2976      this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2977					   dynsym_xindex, of);
2978      break;
2979#endif
2980#ifdef HAVE_TARGET_64_BIG
2981    case Parameters::TARGET_64_BIG:
2982      this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2983					  dynsym_xindex, of);
2984      break;
2985#endif
2986    default:
2987      gold_unreachable();
2988    }
2989}
2990
2991// Write out the global symbols.
2992
2993template<int size, bool big_endian>
2994void
2995Symbol_table::sized_write_globals(const Stringpool* sympool,
2996				  const Stringpool* dynpool,
2997				  Output_symtab_xindex* symtab_xindex,
2998				  Output_symtab_xindex* dynsym_xindex,
2999				  Output_file* of) const
3000{
3001  const Target& target = parameters->target();
3002
3003  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3004
3005  const unsigned int output_count = this->output_count_;
3006  const section_size_type oview_size = output_count * sym_size;
3007  const unsigned int first_global_index = this->first_global_index_;
3008  unsigned char* psyms;
3009  if (this->offset_ == 0 || output_count == 0)
3010    psyms = NULL;
3011  else
3012    psyms = of->get_output_view(this->offset_, oview_size);
3013
3014  const unsigned int dynamic_count = this->dynamic_count_;
3015  const section_size_type dynamic_size = dynamic_count * sym_size;
3016  const unsigned int first_dynamic_global_index =
3017    this->first_dynamic_global_index_;
3018  unsigned char* dynamic_view;
3019  if (this->dynamic_offset_ == 0 || dynamic_count == 0)
3020    dynamic_view = NULL;
3021  else
3022    dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
3023
3024  for (Symbol_table_type::const_iterator p = this->table_.begin();
3025       p != this->table_.end();
3026       ++p)
3027    {
3028      Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
3029
3030      // Possibly warn about unresolved symbols in shared libraries.
3031      this->warn_about_undefined_dynobj_symbol(sym);
3032
3033      unsigned int sym_index = sym->symtab_index();
3034      unsigned int dynsym_index;
3035      if (dynamic_view == NULL)
3036	dynsym_index = -1U;
3037      else
3038	dynsym_index = sym->dynsym_index();
3039
3040      if (sym_index == -1U && dynsym_index == -1U)
3041	{
3042	  // This symbol is not included in the output file.
3043	  continue;
3044	}
3045
3046      unsigned int shndx;
3047      typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
3048      typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
3049      elfcpp::STB binding = sym->binding();
3050
3051      // If --weak-unresolved-symbols is set, change binding of unresolved
3052      // global symbols to STB_WEAK.
3053      if (parameters->options().weak_unresolved_symbols()
3054	  && binding == elfcpp::STB_GLOBAL
3055	  && sym->is_undefined())
3056	binding = elfcpp::STB_WEAK;
3057
3058      // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
3059      if (binding == elfcpp::STB_GNU_UNIQUE
3060	  && !parameters->options().gnu_unique())
3061	binding = elfcpp::STB_GLOBAL;
3062
3063      switch (sym->source())
3064	{
3065	case Symbol::FROM_OBJECT:
3066	  {
3067	    bool is_ordinary;
3068	    unsigned int in_shndx = sym->shndx(&is_ordinary);
3069
3070	    if (!is_ordinary
3071		&& in_shndx != elfcpp::SHN_ABS
3072		&& !Symbol::is_common_shndx(in_shndx))
3073	      {
3074		gold_error(_("%s: unsupported symbol section 0x%x"),
3075			   sym->demangled_name().c_str(), in_shndx);
3076		shndx = in_shndx;
3077	      }
3078	    else
3079	      {
3080		Object* symobj = sym->object();
3081		if (symobj->is_dynamic())
3082		  {
3083		    if (sym->needs_dynsym_value())
3084		      dynsym_value = target.dynsym_value(sym);
3085		    shndx = elfcpp::SHN_UNDEF;
3086		    if (sym->is_undef_binding_weak())
3087		      binding = elfcpp::STB_WEAK;
3088		    else
3089		      binding = elfcpp::STB_GLOBAL;
3090		  }
3091		else if (symobj->pluginobj() != NULL)
3092		  shndx = elfcpp::SHN_UNDEF;
3093		else if (in_shndx == elfcpp::SHN_UNDEF
3094			 || (!is_ordinary
3095			     && (in_shndx == elfcpp::SHN_ABS
3096				 || Symbol::is_common_shndx(in_shndx))))
3097		  shndx = in_shndx;
3098		else
3099		  {
3100		    Relobj* relobj = static_cast<Relobj*>(symobj);
3101		    Output_section* os = relobj->output_section(in_shndx);
3102                    if (this->is_section_folded(relobj, in_shndx))
3103                      {
3104                        // This global symbol must be written out even though
3105                        // it is folded.
3106                        // Get the os of the section it is folded onto.
3107                        Section_id folded =
3108                             this->icf_->get_folded_section(relobj, in_shndx);
3109                        gold_assert(folded.first !=NULL);
3110                        Relobj* folded_obj =
3111                          reinterpret_cast<Relobj*>(folded.first);
3112                        os = folded_obj->output_section(folded.second);
3113                        gold_assert(os != NULL);
3114                      }
3115		    gold_assert(os != NULL);
3116		    shndx = os->out_shndx();
3117
3118		    if (shndx >= elfcpp::SHN_LORESERVE)
3119		      {
3120			if (sym_index != -1U)
3121			  symtab_xindex->add(sym_index, shndx);
3122			if (dynsym_index != -1U)
3123			  dynsym_xindex->add(dynsym_index, shndx);
3124			shndx = elfcpp::SHN_XINDEX;
3125		      }
3126
3127		    // In object files symbol values are section
3128		    // relative.
3129		    if (parameters->options().relocatable())
3130		      sym_value -= os->address();
3131		  }
3132	      }
3133	  }
3134	  break;
3135
3136	case Symbol::IN_OUTPUT_DATA:
3137	  {
3138	    Output_data* od = sym->output_data();
3139
3140	    shndx = od->out_shndx();
3141	    if (shndx >= elfcpp::SHN_LORESERVE)
3142	      {
3143		if (sym_index != -1U)
3144		  symtab_xindex->add(sym_index, shndx);
3145		if (dynsym_index != -1U)
3146		  dynsym_xindex->add(dynsym_index, shndx);
3147		shndx = elfcpp::SHN_XINDEX;
3148	      }
3149
3150	    // In object files symbol values are section
3151	    // relative.
3152	    if (parameters->options().relocatable())
3153	      {
3154		Output_section* os = od->output_section();
3155		gold_assert(os != NULL);
3156		sym_value -= os->address();
3157	      }
3158	  }
3159	  break;
3160
3161	case Symbol::IN_OUTPUT_SEGMENT:
3162	  {
3163	    Output_segment* oseg = sym->output_segment();
3164	    Output_section* osect = oseg->first_section();
3165	    if (osect == NULL)
3166	      shndx = elfcpp::SHN_ABS;
3167	    else
3168	      shndx = osect->out_shndx();
3169	  }
3170	  break;
3171
3172	case Symbol::IS_CONSTANT:
3173	  shndx = elfcpp::SHN_ABS;
3174	  break;
3175
3176	case Symbol::IS_UNDEFINED:
3177	  shndx = elfcpp::SHN_UNDEF;
3178	  break;
3179
3180	default:
3181	  gold_unreachable();
3182	}
3183
3184      if (sym_index != -1U)
3185	{
3186	  sym_index -= first_global_index;
3187	  gold_assert(sym_index < output_count);
3188	  unsigned char* ps = psyms + (sym_index * sym_size);
3189	  this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3190						     binding, sympool, ps);
3191	}
3192
3193      if (dynsym_index != -1U)
3194	{
3195	  dynsym_index -= first_dynamic_global_index;
3196	  gold_assert(dynsym_index < dynamic_count);
3197	  unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3198	  this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3199						     binding, dynpool, pd);
3200          // Allow a target to adjust dynamic symbol value.
3201          parameters->target().adjust_dyn_symbol(sym, pd);
3202	}
3203    }
3204
3205  // Write the target-specific symbols.
3206  for (std::vector<Symbol*>::const_iterator p = this->target_symbols_.begin();
3207       p != this->target_symbols_.end();
3208       ++p)
3209    {
3210      Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(*p);
3211
3212      unsigned int sym_index = sym->symtab_index();
3213      unsigned int dynsym_index;
3214      if (dynamic_view == NULL)
3215	dynsym_index = -1U;
3216      else
3217	dynsym_index = sym->dynsym_index();
3218
3219      unsigned int shndx;
3220      switch (sym->source())
3221	{
3222	case Symbol::IS_CONSTANT:
3223	  shndx = elfcpp::SHN_ABS;
3224	  break;
3225	case Symbol::IS_UNDEFINED:
3226	  shndx = elfcpp::SHN_UNDEF;
3227	  break;
3228	default:
3229	  gold_unreachable();
3230	}
3231
3232      if (sym_index != -1U)
3233	{
3234	  sym_index -= first_global_index;
3235	  gold_assert(sym_index < output_count);
3236	  unsigned char* ps = psyms + (sym_index * sym_size);
3237	  this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3238						     sym->binding(), sympool,
3239						     ps);
3240	}
3241
3242      if (dynsym_index != -1U)
3243	{
3244	  dynsym_index -= first_dynamic_global_index;
3245	  gold_assert(dynsym_index < dynamic_count);
3246	  unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3247	  this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3248						     sym->binding(), dynpool,
3249						     pd);
3250	}
3251    }
3252
3253  of->write_output_view(this->offset_, oview_size, psyms);
3254  if (dynamic_view != NULL)
3255    of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3256}
3257
3258// Write out the symbol SYM, in section SHNDX, to P.  POOL is the
3259// strtab holding the name.
3260
3261template<int size, bool big_endian>
3262void
3263Symbol_table::sized_write_symbol(
3264    Sized_symbol<size>* sym,
3265    typename elfcpp::Elf_types<size>::Elf_Addr value,
3266    unsigned int shndx,
3267    elfcpp::STB binding,
3268    const Stringpool* pool,
3269    unsigned char* p) const
3270{
3271  elfcpp::Sym_write<size, big_endian> osym(p);
3272  if (sym->version() == NULL || !parameters->options().relocatable())
3273    osym.put_st_name(pool->get_offset(sym->name()));
3274  else
3275    osym.put_st_name(pool->get_offset(sym->versioned_name()));
3276  osym.put_st_value(value);
3277  // Use a symbol size of zero for undefined symbols from shared libraries.
3278  if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3279    osym.put_st_size(0);
3280  else
3281    osym.put_st_size(sym->symsize());
3282  elfcpp::STT type = sym->type();
3283  gold_assert(type != elfcpp::STT_GNU_IFUNC || !sym->is_from_dynobj());
3284  // A version script may have overridden the default binding.
3285  if (sym->is_forced_local())
3286    osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3287  else
3288    osym.put_st_info(elfcpp::elf_st_info(binding, type));
3289  osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3290  osym.put_st_shndx(shndx);
3291}
3292
3293// Check for unresolved symbols in shared libraries.  This is
3294// controlled by the --allow-shlib-undefined option.
3295
3296// We only warn about libraries for which we have seen all the
3297// DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
3298// which were not seen in this link.  If we didn't see a DT_NEEDED
3299// entry, we aren't going to be able to reliably report whether the
3300// symbol is undefined.
3301
3302// We also don't warn about libraries found in a system library
3303// directory (e.g., /lib or /usr/lib); we assume that those libraries
3304// are OK.  This heuristic avoids problems on GNU/Linux, in which -ldl
3305// can have undefined references satisfied by ld-linux.so.
3306
3307inline void
3308Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3309{
3310  bool dummy;
3311  if (sym->source() == Symbol::FROM_OBJECT
3312      && sym->object()->is_dynamic()
3313      && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3314      && sym->binding() != elfcpp::STB_WEAK
3315      && !parameters->options().allow_shlib_undefined()
3316      && !parameters->target().is_defined_by_abi(sym)
3317      && !sym->object()->is_in_system_directory())
3318    {
3319      // A very ugly cast.
3320      Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3321      if (!dynobj->has_unknown_needed_entries())
3322        gold_undefined_symbol(sym);
3323    }
3324}
3325
3326// Write out a section symbol.  Return the update offset.
3327
3328void
3329Symbol_table::write_section_symbol(const Output_section* os,
3330				   Output_symtab_xindex* symtab_xindex,
3331				   Output_file* of,
3332				   off_t offset) const
3333{
3334  switch (parameters->size_and_endianness())
3335    {
3336#ifdef HAVE_TARGET_32_LITTLE
3337    case Parameters::TARGET_32_LITTLE:
3338      this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3339						  offset);
3340      break;
3341#endif
3342#ifdef HAVE_TARGET_32_BIG
3343    case Parameters::TARGET_32_BIG:
3344      this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3345						 offset);
3346      break;
3347#endif
3348#ifdef HAVE_TARGET_64_LITTLE
3349    case Parameters::TARGET_64_LITTLE:
3350      this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3351						  offset);
3352      break;
3353#endif
3354#ifdef HAVE_TARGET_64_BIG
3355    case Parameters::TARGET_64_BIG:
3356      this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3357						 offset);
3358      break;
3359#endif
3360    default:
3361      gold_unreachable();
3362    }
3363}
3364
3365// Write out a section symbol, specialized for size and endianness.
3366
3367template<int size, bool big_endian>
3368void
3369Symbol_table::sized_write_section_symbol(const Output_section* os,
3370					 Output_symtab_xindex* symtab_xindex,
3371					 Output_file* of,
3372					 off_t offset) const
3373{
3374  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3375
3376  unsigned char* pov = of->get_output_view(offset, sym_size);
3377
3378  elfcpp::Sym_write<size, big_endian> osym(pov);
3379  osym.put_st_name(0);
3380  if (parameters->options().relocatable())
3381    osym.put_st_value(0);
3382  else
3383    osym.put_st_value(os->address());
3384  osym.put_st_size(0);
3385  osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3386				       elfcpp::STT_SECTION));
3387  osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3388
3389  unsigned int shndx = os->out_shndx();
3390  if (shndx >= elfcpp::SHN_LORESERVE)
3391    {
3392      symtab_xindex->add(os->symtab_index(), shndx);
3393      shndx = elfcpp::SHN_XINDEX;
3394    }
3395  osym.put_st_shndx(shndx);
3396
3397  of->write_output_view(offset, sym_size, pov);
3398}
3399
3400// Print statistical information to stderr.  This is used for --stats.
3401
3402void
3403Symbol_table::print_stats() const
3404{
3405#if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3406  fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3407	  program_name, this->table_.size(), this->table_.bucket_count());
3408#else
3409  fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3410	  program_name, this->table_.size());
3411#endif
3412  this->namepool_.print_stats("symbol table stringpool");
3413}
3414
3415// We check for ODR violations by looking for symbols with the same
3416// name for which the debugging information reports that they were
3417// defined in disjoint source locations.  When comparing the source
3418// location, we consider instances with the same base filename to be
3419// the same.  This is because different object files/shared libraries
3420// can include the same header file using different paths, and
3421// different optimization settings can make the line number appear to
3422// be a couple lines off, and we don't want to report an ODR violation
3423// in those cases.
3424
3425// This struct is used to compare line information, as returned by
3426// Dwarf_line_info::one_addr2line.  It implements a < comparison
3427// operator used with std::sort.
3428
3429struct Odr_violation_compare
3430{
3431  bool
3432  operator()(const std::string& s1, const std::string& s2) const
3433  {
3434    // Inputs should be of the form "dirname/filename:linenum" where
3435    // "dirname/" is optional.  We want to compare just the filename:linenum.
3436
3437    // Find the last '/' in each string.
3438    std::string::size_type s1begin = s1.rfind('/');
3439    std::string::size_type s2begin = s2.rfind('/');
3440    // If there was no '/' in a string, start at the beginning.
3441    if (s1begin == std::string::npos)
3442      s1begin = 0;
3443    if (s2begin == std::string::npos)
3444      s2begin = 0;
3445    return s1.compare(s1begin, std::string::npos,
3446		      s2, s2begin, std::string::npos) < 0;
3447  }
3448};
3449
3450// Returns all of the lines attached to LOC, not just the one the
3451// instruction actually came from.
3452std::vector<std::string>
3453Symbol_table::linenos_from_loc(const Task* task,
3454                               const Symbol_location& loc)
3455{
3456  // We need to lock the object in order to read it.  This
3457  // means that we have to run in a singleton Task.  If we
3458  // want to run this in a general Task for better
3459  // performance, we will need one Task for object, plus
3460  // appropriate locking to ensure that we don't conflict with
3461  // other uses of the object.  Also note, one_addr2line is not
3462  // currently thread-safe.
3463  Task_lock_obj<Object> tl(task, loc.object);
3464
3465  std::vector<std::string> result;
3466  Symbol_location code_loc = loc;
3467  parameters->target().function_location(&code_loc);
3468  // 16 is the size of the object-cache that one_addr2line should use.
3469  std::string canonical_result = Dwarf_line_info::one_addr2line(
3470      code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3471  if (!canonical_result.empty())
3472    result.push_back(canonical_result);
3473  return result;
3474}
3475
3476// OutputIterator that records if it was ever assigned to.  This
3477// allows it to be used with std::set_intersection() to check for
3478// intersection rather than computing the intersection.
3479struct Check_intersection
3480{
3481  Check_intersection()
3482    : value_(false)
3483  {}
3484
3485  bool had_intersection() const
3486  { return this->value_; }
3487
3488  Check_intersection& operator++()
3489  { return *this; }
3490
3491  Check_intersection& operator*()
3492  { return *this; }
3493
3494  template<typename T>
3495  Check_intersection& operator=(const T&)
3496  {
3497    this->value_ = true;
3498    return *this;
3499  }
3500
3501 private:
3502  bool value_;
3503};
3504
3505// Check candidate_odr_violations_ to find symbols with the same name
3506// but apparently different definitions (different source-file/line-no
3507// for each line assigned to the first instruction).
3508
3509void
3510Symbol_table::detect_odr_violations(const Task* task,
3511				    const char* output_file_name) const
3512{
3513  for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3514       it != candidate_odr_violations_.end();
3515       ++it)
3516    {
3517      const char* const symbol_name = it->first;
3518
3519      std::string first_object_name;
3520      std::vector<std::string> first_object_linenos;
3521
3522      Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3523          locs = it->second.begin();
3524      const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3525          locs_end = it->second.end();
3526      for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3527        {
3528          // Save the line numbers from the first definition to
3529          // compare to the other definitions.  Ideally, we'd compare
3530          // every definition to every other, but we don't want to
3531          // take O(N^2) time to do this.  This shortcut may cause
3532          // false negatives that appear or disappear depending on the
3533          // link order, but it won't cause false positives.
3534          first_object_name = locs->object->name();
3535          first_object_linenos = this->linenos_from_loc(task, *locs);
3536        }
3537      if (first_object_linenos.empty())
3538	continue;
3539
3540      // Sort by Odr_violation_compare to make std::set_intersection work.
3541      std::string first_object_canonical_result = first_object_linenos.back();
3542      std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3543                Odr_violation_compare());
3544
3545      for (; locs != locs_end; ++locs)
3546        {
3547          std::vector<std::string> linenos =
3548              this->linenos_from_loc(task, *locs);
3549          // linenos will be empty if we couldn't parse the debug info.
3550          if (linenos.empty())
3551            continue;
3552          // Sort by Odr_violation_compare to make std::set_intersection work.
3553          gold_assert(!linenos.empty());
3554          std::string second_object_canonical_result = linenos.back();
3555          std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3556
3557          Check_intersection intersection_result =
3558              std::set_intersection(first_object_linenos.begin(),
3559                                    first_object_linenos.end(),
3560                                    linenos.begin(),
3561                                    linenos.end(),
3562                                    Check_intersection(),
3563                                    Odr_violation_compare());
3564          if (!intersection_result.had_intersection())
3565            {
3566              gold_warning(_("while linking %s: symbol '%s' defined in "
3567                             "multiple places (possible ODR violation):"),
3568                           output_file_name, demangle(symbol_name).c_str());
3569              // This only prints one location from each definition,
3570              // which may not be the location we expect to intersect
3571              // with another definition.  We could print the whole
3572              // set of locations, but that seems too verbose.
3573              fprintf(stderr, _("  %s from %s\n"),
3574                      first_object_canonical_result.c_str(),
3575                      first_object_name.c_str());
3576              fprintf(stderr, _("  %s from %s\n"),
3577                      second_object_canonical_result.c_str(),
3578                      locs->object->name().c_str());
3579              // Only print one broken pair, to avoid needing to
3580              // compare against a list of the disjoint definition
3581              // locations we've found so far.  (If we kept comparing
3582              // against just the first one, we'd get a lot of
3583              // redundant complaints about the second definition
3584              // location.)
3585              break;
3586            }
3587        }
3588    }
3589  // We only call one_addr2line() in this function, so we can clear its cache.
3590  Dwarf_line_info::clear_addr2line_cache();
3591}
3592
3593// Warnings functions.
3594
3595// Add a new warning.
3596
3597void
3598Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3599		      const std::string& warning)
3600{
3601  name = symtab->canonicalize_name(name);
3602  this->warnings_[name].set(obj, warning);
3603}
3604
3605// Look through the warnings and mark the symbols for which we should
3606// warn.  This is called during Layout::finalize when we know the
3607// sources for all the symbols.
3608
3609void
3610Warnings::note_warnings(Symbol_table* symtab)
3611{
3612  for (Warning_table::iterator p = this->warnings_.begin();
3613       p != this->warnings_.end();
3614       ++p)
3615    {
3616      Symbol* sym = symtab->lookup(p->first, NULL);
3617      if (sym != NULL
3618	  && sym->source() == Symbol::FROM_OBJECT
3619	  && sym->object() == p->second.object)
3620	sym->set_has_warning();
3621    }
3622}
3623
3624// Issue a warning.  This is called when we see a relocation against a
3625// symbol for which has a warning.
3626
3627template<int size, bool big_endian>
3628void
3629Warnings::issue_warning(const Symbol* sym,
3630			const Relocate_info<size, big_endian>* relinfo,
3631			size_t relnum, off_t reloffset) const
3632{
3633  gold_assert(sym->has_warning());
3634
3635  // We don't want to issue a warning for a relocation against the
3636  // symbol in the same object file in which the symbol is defined.
3637  if (sym->object() == relinfo->object)
3638    return;
3639
3640  Warning_table::const_iterator p = this->warnings_.find(sym->name());
3641  gold_assert(p != this->warnings_.end());
3642  gold_warning_at_location(relinfo, relnum, reloffset,
3643			   "%s", p->second.text.c_str());
3644}
3645
3646// Instantiate the templates we need.  We could use the configure
3647// script to restrict this to only the ones needed for implemented
3648// targets.
3649
3650#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3651template
3652void
3653Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3654#endif
3655
3656#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3657template
3658void
3659Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3660#endif
3661
3662#ifdef HAVE_TARGET_32_LITTLE
3663template
3664void
3665Symbol_table::add_from_relobj<32, false>(
3666    Sized_relobj_file<32, false>* relobj,
3667    const unsigned char* syms,
3668    size_t count,
3669    size_t symndx_offset,
3670    const char* sym_names,
3671    size_t sym_name_size,
3672    Sized_relobj_file<32, false>::Symbols* sympointers,
3673    size_t* defined);
3674#endif
3675
3676#ifdef HAVE_TARGET_32_BIG
3677template
3678void
3679Symbol_table::add_from_relobj<32, true>(
3680    Sized_relobj_file<32, true>* relobj,
3681    const unsigned char* syms,
3682    size_t count,
3683    size_t symndx_offset,
3684    const char* sym_names,
3685    size_t sym_name_size,
3686    Sized_relobj_file<32, true>::Symbols* sympointers,
3687    size_t* defined);
3688#endif
3689
3690#ifdef HAVE_TARGET_64_LITTLE
3691template
3692void
3693Symbol_table::add_from_relobj<64, false>(
3694    Sized_relobj_file<64, false>* relobj,
3695    const unsigned char* syms,
3696    size_t count,
3697    size_t symndx_offset,
3698    const char* sym_names,
3699    size_t sym_name_size,
3700    Sized_relobj_file<64, false>::Symbols* sympointers,
3701    size_t* defined);
3702#endif
3703
3704#ifdef HAVE_TARGET_64_BIG
3705template
3706void
3707Symbol_table::add_from_relobj<64, true>(
3708    Sized_relobj_file<64, true>* relobj,
3709    const unsigned char* syms,
3710    size_t count,
3711    size_t symndx_offset,
3712    const char* sym_names,
3713    size_t sym_name_size,
3714    Sized_relobj_file<64, true>::Symbols* sympointers,
3715    size_t* defined);
3716#endif
3717
3718#ifdef HAVE_TARGET_32_LITTLE
3719template
3720Symbol*
3721Symbol_table::add_from_pluginobj<32, false>(
3722    Sized_pluginobj<32, false>* obj,
3723    const char* name,
3724    const char* ver,
3725    elfcpp::Sym<32, false>* sym);
3726#endif
3727
3728#ifdef HAVE_TARGET_32_BIG
3729template
3730Symbol*
3731Symbol_table::add_from_pluginobj<32, true>(
3732    Sized_pluginobj<32, true>* obj,
3733    const char* name,
3734    const char* ver,
3735    elfcpp::Sym<32, true>* sym);
3736#endif
3737
3738#ifdef HAVE_TARGET_64_LITTLE
3739template
3740Symbol*
3741Symbol_table::add_from_pluginobj<64, false>(
3742    Sized_pluginobj<64, false>* obj,
3743    const char* name,
3744    const char* ver,
3745    elfcpp::Sym<64, false>* sym);
3746#endif
3747
3748#ifdef HAVE_TARGET_64_BIG
3749template
3750Symbol*
3751Symbol_table::add_from_pluginobj<64, true>(
3752    Sized_pluginobj<64, true>* obj,
3753    const char* name,
3754    const char* ver,
3755    elfcpp::Sym<64, true>* sym);
3756#endif
3757
3758#ifdef HAVE_TARGET_32_LITTLE
3759template
3760void
3761Symbol_table::add_from_dynobj<32, false>(
3762    Sized_dynobj<32, false>* dynobj,
3763    const unsigned char* syms,
3764    size_t count,
3765    const char* sym_names,
3766    size_t sym_name_size,
3767    const unsigned char* versym,
3768    size_t versym_size,
3769    const std::vector<const char*>* version_map,
3770    Sized_relobj_file<32, false>::Symbols* sympointers,
3771    size_t* defined);
3772#endif
3773
3774#ifdef HAVE_TARGET_32_BIG
3775template
3776void
3777Symbol_table::add_from_dynobj<32, true>(
3778    Sized_dynobj<32, true>* dynobj,
3779    const unsigned char* syms,
3780    size_t count,
3781    const char* sym_names,
3782    size_t sym_name_size,
3783    const unsigned char* versym,
3784    size_t versym_size,
3785    const std::vector<const char*>* version_map,
3786    Sized_relobj_file<32, true>::Symbols* sympointers,
3787    size_t* defined);
3788#endif
3789
3790#ifdef HAVE_TARGET_64_LITTLE
3791template
3792void
3793Symbol_table::add_from_dynobj<64, false>(
3794    Sized_dynobj<64, false>* dynobj,
3795    const unsigned char* syms,
3796    size_t count,
3797    const char* sym_names,
3798    size_t sym_name_size,
3799    const unsigned char* versym,
3800    size_t versym_size,
3801    const std::vector<const char*>* version_map,
3802    Sized_relobj_file<64, false>::Symbols* sympointers,
3803    size_t* defined);
3804#endif
3805
3806#ifdef HAVE_TARGET_64_BIG
3807template
3808void
3809Symbol_table::add_from_dynobj<64, true>(
3810    Sized_dynobj<64, true>* dynobj,
3811    const unsigned char* syms,
3812    size_t count,
3813    const char* sym_names,
3814    size_t sym_name_size,
3815    const unsigned char* versym,
3816    size_t versym_size,
3817    const std::vector<const char*>* version_map,
3818    Sized_relobj_file<64, true>::Symbols* sympointers,
3819    size_t* defined);
3820#endif
3821
3822#ifdef HAVE_TARGET_32_LITTLE
3823template
3824Sized_symbol<32>*
3825Symbol_table::add_from_incrobj(
3826    Object* obj,
3827    const char* name,
3828    const char* ver,
3829    elfcpp::Sym<32, false>* sym);
3830#endif
3831
3832#ifdef HAVE_TARGET_32_BIG
3833template
3834Sized_symbol<32>*
3835Symbol_table::add_from_incrobj(
3836    Object* obj,
3837    const char* name,
3838    const char* ver,
3839    elfcpp::Sym<32, true>* sym);
3840#endif
3841
3842#ifdef HAVE_TARGET_64_LITTLE
3843template
3844Sized_symbol<64>*
3845Symbol_table::add_from_incrobj(
3846    Object* obj,
3847    const char* name,
3848    const char* ver,
3849    elfcpp::Sym<64, false>* sym);
3850#endif
3851
3852#ifdef HAVE_TARGET_64_BIG
3853template
3854Sized_symbol<64>*
3855Symbol_table::add_from_incrobj(
3856    Object* obj,
3857    const char* name,
3858    const char* ver,
3859    elfcpp::Sym<64, true>* sym);
3860#endif
3861
3862#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3863template
3864void
3865Symbol_table::define_with_copy_reloc<32>(
3866    Sized_symbol<32>* sym,
3867    Output_data* posd,
3868    elfcpp::Elf_types<32>::Elf_Addr value);
3869#endif
3870
3871#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3872template
3873void
3874Symbol_table::define_with_copy_reloc<64>(
3875    Sized_symbol<64>* sym,
3876    Output_data* posd,
3877    elfcpp::Elf_types<64>::Elf_Addr value);
3878#endif
3879
3880#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3881template
3882void
3883Sized_symbol<32>::init_output_data(const char* name, const char* version,
3884				   Output_data* od, Value_type value,
3885				   Size_type symsize, elfcpp::STT type,
3886				   elfcpp::STB binding,
3887				   elfcpp::STV visibility,
3888				   unsigned char nonvis,
3889				   bool offset_is_from_end,
3890				   bool is_predefined);
3891
3892template
3893void
3894Sized_symbol<32>::init_constant(const char* name, const char* version,
3895				Value_type value, Size_type symsize,
3896				elfcpp::STT type, elfcpp::STB binding,
3897				elfcpp::STV visibility, unsigned char nonvis,
3898				bool is_predefined);
3899
3900template
3901void
3902Sized_symbol<32>::init_undefined(const char* name, const char* version,
3903				 Value_type value, elfcpp::STT type,
3904				 elfcpp::STB binding, elfcpp::STV visibility,
3905				 unsigned char nonvis);
3906#endif
3907
3908#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3909template
3910void
3911Sized_symbol<64>::init_output_data(const char* name, const char* version,
3912				   Output_data* od, Value_type value,
3913				   Size_type symsize, elfcpp::STT type,
3914				   elfcpp::STB binding,
3915				   elfcpp::STV visibility,
3916				   unsigned char nonvis,
3917				   bool offset_is_from_end,
3918				   bool is_predefined);
3919
3920template
3921void
3922Sized_symbol<64>::init_constant(const char* name, const char* version,
3923				Value_type value, Size_type symsize,
3924				elfcpp::STT type, elfcpp::STB binding,
3925				elfcpp::STV visibility, unsigned char nonvis,
3926				bool is_predefined);
3927
3928template
3929void
3930Sized_symbol<64>::init_undefined(const char* name, const char* version,
3931				 Value_type value, elfcpp::STT type,
3932				 elfcpp::STB binding, elfcpp::STV visibility,
3933				 unsigned char nonvis);
3934#endif
3935
3936#ifdef HAVE_TARGET_32_LITTLE
3937template
3938void
3939Warnings::issue_warning<32, false>(const Symbol* sym,
3940				   const Relocate_info<32, false>* relinfo,
3941				   size_t relnum, off_t reloffset) const;
3942#endif
3943
3944#ifdef HAVE_TARGET_32_BIG
3945template
3946void
3947Warnings::issue_warning<32, true>(const Symbol* sym,
3948				  const Relocate_info<32, true>* relinfo,
3949				  size_t relnum, off_t reloffset) const;
3950#endif
3951
3952#ifdef HAVE_TARGET_64_LITTLE
3953template
3954void
3955Warnings::issue_warning<64, false>(const Symbol* sym,
3956				   const Relocate_info<64, false>* relinfo,
3957				   size_t relnum, off_t reloffset) const;
3958#endif
3959
3960#ifdef HAVE_TARGET_64_BIG
3961template
3962void
3963Warnings::issue_warning<64, true>(const Symbol* sym,
3964				  const Relocate_info<64, true>* relinfo,
3965				  size_t relnum, off_t reloffset) const;
3966#endif
3967
3968} // End namespace gold.
3969