1// dwarf_reader.cc -- parse dwarf2/3 debug information
2
3// Copyright (C) 2007-2017 Free Software Foundation, Inc.
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23#include "gold.h"
24
25#include <algorithm>
26#include <utility>
27#include <vector>
28
29#include "elfcpp_swap.h"
30#include "dwarf.h"
31#include "object.h"
32#include "reloc.h"
33#include "dwarf_reader.h"
34#include "int_encoding.h"
35#include "compressed_output.h"
36
37namespace gold {
38
39// Class Sized_elf_reloc_mapper
40
41// Initialize the relocation tracker for section RELOC_SHNDX.
42
43template<int size, bool big_endian>
44bool
45Sized_elf_reloc_mapper<size, big_endian>::do_initialize(
46    unsigned int reloc_shndx, unsigned int reloc_type)
47{
48  this->reloc_type_ = reloc_type;
49  return this->track_relocs_.initialize(this->object_, reloc_shndx,
50					reloc_type);
51}
52
53// Looks in the symtab to see what section a symbol is in.
54
55template<int size, bool big_endian>
56unsigned int
57Sized_elf_reloc_mapper<size, big_endian>::symbol_section(
58    unsigned int symndx, Address* value, bool* is_ordinary)
59{
60  const int symsize = elfcpp::Elf_sizes<size>::sym_size;
61  gold_assert(static_cast<off_t>((symndx + 1) * symsize) <= this->symtab_size_);
62  elfcpp::Sym<size, big_endian> elfsym(this->symtab_ + symndx * symsize);
63  *value = elfsym.get_st_value();
64  return this->object_->adjust_sym_shndx(symndx, elfsym.get_st_shndx(),
65					 is_ordinary);
66}
67
68// Return the section index and offset within the section of
69// the target of the relocation for RELOC_OFFSET.
70
71template<int size, bool big_endian>
72unsigned int
73Sized_elf_reloc_mapper<size, big_endian>::do_get_reloc_target(
74    off_t reloc_offset, off_t* target_offset)
75{
76  this->track_relocs_.advance(reloc_offset);
77  if (reloc_offset != this->track_relocs_.next_offset())
78    return 0;
79  unsigned int symndx = this->track_relocs_.next_symndx();
80  typename elfcpp::Elf_types<size>::Elf_Addr value;
81  bool is_ordinary;
82  unsigned int target_shndx = this->symbol_section(symndx, &value,
83						   &is_ordinary);
84  if (!is_ordinary)
85    return 0;
86  if (this->reloc_type_ == elfcpp::SHT_RELA)
87    value += this->track_relocs_.next_addend();
88  *target_offset = value;
89  return target_shndx;
90}
91
92static inline Elf_reloc_mapper*
93make_elf_reloc_mapper(Relobj* object, const unsigned char* symtab,
94		      off_t symtab_size)
95{
96  if (object->elfsize() == 32)
97    {
98      if (object->is_big_endian())
99        {
100#ifdef HAVE_TARGET_32_BIG
101	  return new Sized_elf_reloc_mapper<32, true>(object, symtab,
102						      symtab_size);
103#else
104	  gold_unreachable();
105#endif
106        }
107      else
108        {
109#ifdef HAVE_TARGET_32_LITTLE
110	  return new Sized_elf_reloc_mapper<32, false>(object, symtab,
111						       symtab_size);
112#else
113	  gold_unreachable();
114#endif
115        }
116    }
117  else if (object->elfsize() == 64)
118    {
119      if (object->is_big_endian())
120        {
121#ifdef HAVE_TARGET_64_BIG
122	  return new Sized_elf_reloc_mapper<64, true>(object, symtab,
123						      symtab_size);
124#else
125	  gold_unreachable();
126#endif
127        }
128      else
129        {
130#ifdef HAVE_TARGET_64_LITTLE
131	  return new Sized_elf_reloc_mapper<64, false>(object, symtab,
132						       symtab_size);
133#else
134	  gold_unreachable();
135#endif
136        }
137    }
138  else
139    gold_unreachable();
140}
141
142// class Dwarf_abbrev_table
143
144void
145Dwarf_abbrev_table::clear_abbrev_codes()
146{
147  for (unsigned int code = 0; code < this->low_abbrev_code_max_; ++code)
148    {
149      if (this->low_abbrev_codes_[code] != NULL)
150	{
151	  delete this->low_abbrev_codes_[code];
152	  this->low_abbrev_codes_[code] = NULL;
153	}
154    }
155  for (Abbrev_code_table::iterator it = this->high_abbrev_codes_.begin();
156       it != this->high_abbrev_codes_.end();
157       ++it)
158    {
159      if (it->second != NULL)
160	delete it->second;
161    }
162  this->high_abbrev_codes_.clear();
163}
164
165// Read the abbrev table from an object file.
166
167bool
168Dwarf_abbrev_table::do_read_abbrevs(
169    Relobj* object,
170    unsigned int abbrev_shndx,
171    off_t abbrev_offset)
172{
173  this->clear_abbrev_codes();
174
175  // If we don't have relocations, abbrev_shndx will be 0, and
176  // we'll have to hunt for the .debug_abbrev section.
177  if (abbrev_shndx == 0 && this->abbrev_shndx_ > 0)
178    abbrev_shndx = this->abbrev_shndx_;
179  else if (abbrev_shndx == 0)
180    {
181      for (unsigned int i = 1; i < object->shnum(); ++i)
182	{
183	  std::string name = object->section_name(i);
184	  if (name == ".debug_abbrev" || name == ".zdebug_abbrev")
185	    {
186	      abbrev_shndx = i;
187	      // Correct the offset.  For incremental update links, we have a
188	      // relocated offset that is relative to the output section, but
189	      // here we need an offset relative to the input section.
190	      abbrev_offset -= object->output_section_offset(i);
191	      break;
192	    }
193	}
194      if (abbrev_shndx == 0)
195	return false;
196    }
197
198  // Get the section contents and decompress if necessary.
199  if (abbrev_shndx != this->abbrev_shndx_)
200    {
201      if (this->owns_buffer_ && this->buffer_ != NULL)
202        {
203	  delete[] this->buffer_;
204	  this->owns_buffer_ = false;
205        }
206
207      section_size_type buffer_size;
208      this->buffer_ =
209	  object->decompressed_section_contents(abbrev_shndx,
210						&buffer_size,
211						&this->owns_buffer_);
212      this->buffer_end_ = this->buffer_ + buffer_size;
213      this->abbrev_shndx_ = abbrev_shndx;
214    }
215
216  this->buffer_pos_ = this->buffer_ + abbrev_offset;
217  return true;
218}
219
220// Lookup the abbrev code entry for CODE.  This function is called
221// only when the abbrev code is not in the direct lookup table.
222// It may be in the hash table, it may not have been read yet,
223// or it may not exist in the abbrev table.
224
225const Dwarf_abbrev_table::Abbrev_code*
226Dwarf_abbrev_table::do_get_abbrev(unsigned int code)
227{
228  // See if the abbrev code is already in the hash table.
229  Abbrev_code_table::const_iterator it = this->high_abbrev_codes_.find(code);
230  if (it != this->high_abbrev_codes_.end())
231    return it->second;
232
233  // Read and store abbrev code definitions until we find the
234  // one we're looking for.
235  for (;;)
236    {
237      // Read the abbrev code.  A zero here indicates the end of the
238      // abbrev table.
239      size_t len;
240      if (this->buffer_pos_ >= this->buffer_end_)
241	return NULL;
242      uint64_t nextcode = read_unsigned_LEB_128(this->buffer_pos_, &len);
243      if (nextcode == 0)
244	{
245	  this->buffer_pos_ = this->buffer_end_;
246	  return NULL;
247	}
248      this->buffer_pos_ += len;
249
250      // Read the tag.
251      if (this->buffer_pos_ >= this->buffer_end_)
252	return NULL;
253      uint64_t tag = read_unsigned_LEB_128(this->buffer_pos_, &len);
254      this->buffer_pos_ += len;
255
256      // Read the has_children flag.
257      if (this->buffer_pos_ >= this->buffer_end_)
258	return NULL;
259      bool has_children = *this->buffer_pos_ == elfcpp::DW_CHILDREN_yes;
260      this->buffer_pos_ += 1;
261
262      // Read the list of (attribute, form) pairs.
263      Abbrev_code* entry = new Abbrev_code(tag, has_children);
264      for (;;)
265	{
266	  // Read the attribute.
267	  if (this->buffer_pos_ >= this->buffer_end_)
268	    return NULL;
269	  uint64_t attr = read_unsigned_LEB_128(this->buffer_pos_, &len);
270	  this->buffer_pos_ += len;
271
272	  // Read the form.
273	  if (this->buffer_pos_ >= this->buffer_end_)
274	    return NULL;
275	  uint64_t form = read_unsigned_LEB_128(this->buffer_pos_, &len);
276	  this->buffer_pos_ += len;
277
278	  // A (0,0) pair terminates the list.
279	  if (attr == 0 && form == 0)
280	    break;
281
282	  if (attr == elfcpp::DW_AT_sibling)
283	    entry->has_sibling_attribute = true;
284
285	  entry->add_attribute(attr, form);
286	}
287
288      this->store_abbrev(nextcode, entry);
289      if (nextcode == code)
290	return entry;
291    }
292
293  return NULL;
294}
295
296// class Dwarf_ranges_table
297
298// Read the ranges table from an object file.
299
300bool
301Dwarf_ranges_table::read_ranges_table(
302    Relobj* object,
303    const unsigned char* symtab,
304    off_t symtab_size,
305    unsigned int ranges_shndx)
306{
307  // If we've already read this abbrev table, return immediately.
308  if (this->ranges_shndx_ > 0
309      && this->ranges_shndx_ == ranges_shndx)
310    return true;
311
312  // If we don't have relocations, ranges_shndx will be 0, and
313  // we'll have to hunt for the .debug_ranges section.
314  if (ranges_shndx == 0 && this->ranges_shndx_ > 0)
315    ranges_shndx = this->ranges_shndx_;
316  else if (ranges_shndx == 0)
317    {
318      for (unsigned int i = 1; i < object->shnum(); ++i)
319	{
320	  std::string name = object->section_name(i);
321	  if (name == ".debug_ranges" || name == ".zdebug_ranges")
322	    {
323	      ranges_shndx = i;
324	      this->output_section_offset_ = object->output_section_offset(i);
325	      break;
326	    }
327	}
328      if (ranges_shndx == 0)
329	return false;
330    }
331
332  // Get the section contents and decompress if necessary.
333  if (ranges_shndx != this->ranges_shndx_)
334    {
335      if (this->owns_ranges_buffer_ && this->ranges_buffer_ != NULL)
336        {
337	  delete[] this->ranges_buffer_;
338	  this->owns_ranges_buffer_ = false;
339        }
340
341      section_size_type buffer_size;
342      this->ranges_buffer_ =
343	  object->decompressed_section_contents(ranges_shndx,
344						&buffer_size,
345						&this->owns_ranges_buffer_);
346      this->ranges_buffer_end_ = this->ranges_buffer_ + buffer_size;
347      this->ranges_shndx_ = ranges_shndx;
348    }
349
350  if (this->ranges_reloc_mapper_ != NULL)
351    {
352      delete this->ranges_reloc_mapper_;
353      this->ranges_reloc_mapper_ = NULL;
354    }
355
356  // For incremental objects, we have no relocations.
357  if (object->is_incremental())
358    return true;
359
360  // Find the relocation section for ".debug_ranges".
361  unsigned int reloc_shndx = 0;
362  unsigned int reloc_type = 0;
363  for (unsigned int i = 0; i < object->shnum(); ++i)
364    {
365      reloc_type = object->section_type(i);
366      if ((reloc_type == elfcpp::SHT_REL
367	   || reloc_type == elfcpp::SHT_RELA)
368	  && object->section_info(i) == ranges_shndx)
369	{
370	  reloc_shndx = i;
371	  break;
372	}
373    }
374
375  this->ranges_reloc_mapper_ = make_elf_reloc_mapper(object, symtab,
376						     symtab_size);
377  this->ranges_reloc_mapper_->initialize(reloc_shndx, reloc_type);
378  this->reloc_type_ = reloc_type;
379
380  return true;
381}
382
383// Read a range list from section RANGES_SHNDX at offset RANGES_OFFSET.
384
385Dwarf_range_list*
386Dwarf_ranges_table::read_range_list(
387    Relobj* object,
388    const unsigned char* symtab,
389    off_t symtab_size,
390    unsigned int addr_size,
391    unsigned int ranges_shndx,
392    off_t offset)
393{
394  Dwarf_range_list* ranges;
395
396  if (!this->read_ranges_table(object, symtab, symtab_size, ranges_shndx))
397    return NULL;
398
399  // Correct the offset.  For incremental update links, we have a
400  // relocated offset that is relative to the output section, but
401  // here we need an offset relative to the input section.
402  offset -= this->output_section_offset_;
403
404  // Read the range list at OFFSET.
405  ranges = new Dwarf_range_list();
406  off_t base = 0;
407  for (;
408       this->ranges_buffer_ + offset < this->ranges_buffer_end_;
409       offset += 2 * addr_size)
410    {
411      off_t start;
412      off_t end;
413
414      // Read the raw contents of the section.
415      if (addr_size == 4)
416	{
417	  start = this->dwinfo_->read_from_pointer<32>(this->ranges_buffer_
418						       + offset);
419	  end = this->dwinfo_->read_from_pointer<32>(this->ranges_buffer_
420						     + offset + 4);
421	}
422      else
423	{
424	  start = this->dwinfo_->read_from_pointer<64>(this->ranges_buffer_
425						       + offset);
426	  end = this->dwinfo_->read_from_pointer<64>(this->ranges_buffer_
427						     + offset + 8);
428	}
429
430      // Check for relocations and adjust the values.
431      unsigned int shndx1 = 0;
432      unsigned int shndx2 = 0;
433      if (this->ranges_reloc_mapper_ != NULL)
434        {
435	  shndx1 = this->lookup_reloc(offset, &start);
436	  shndx2 = this->lookup_reloc(offset + addr_size, &end);
437        }
438
439      // End of list is marked by a pair of zeroes.
440      if (shndx1 == 0 && start == 0 && end == 0)
441        break;
442
443      // A "base address selection entry" is identified by
444      // 0xffffffff for the first value of the pair.  The second
445      // value is used as a base for subsequent range list entries.
446      if (shndx1 == 0 && start == -1)
447	base = end;
448      else if (shndx1 == shndx2)
449	{
450	  if (shndx1 == 0 || object->is_section_included(shndx1))
451	    ranges->add(shndx1, base + start, base + end);
452	}
453      else
454	gold_warning(_("%s: DWARF info may be corrupt; offsets in a "
455		       "range list entry are in different sections"),
456		     object->name().c_str());
457    }
458
459  return ranges;
460}
461
462// Look for a relocation at offset OFF in the range table,
463// and return the section index and offset of the target.
464
465unsigned int
466Dwarf_ranges_table::lookup_reloc(off_t off, off_t* target_off)
467{
468  off_t value;
469  unsigned int shndx =
470      this->ranges_reloc_mapper_->get_reloc_target(off, &value);
471  if (shndx == 0)
472    return 0;
473  if (this->reloc_type_ == elfcpp::SHT_REL)
474    *target_off += value;
475  else
476    *target_off = value;
477  return shndx;
478}
479
480// class Dwarf_pubnames_table
481
482// Read the pubnames section from the object file.
483
484bool
485Dwarf_pubnames_table::read_section(Relobj* object, const unsigned char* symtab,
486                                   off_t symtab_size)
487{
488  section_size_type buffer_size;
489  unsigned int shndx = 0;
490  const char* name = this->is_pubtypes_ ? "pubtypes" : "pubnames";
491  const char* gnu_name = (this->is_pubtypes_
492			  ? "gnu_pubtypes"
493			  : "gnu_pubnames");
494
495  for (unsigned int i = 1; i < object->shnum(); ++i)
496    {
497      std::string section_name = object->section_name(i);
498      const char* section_name_suffix = section_name.c_str();
499      if (is_prefix_of(".debug_", section_name_suffix))
500	section_name_suffix += 7;
501      else if (is_prefix_of(".zdebug_", section_name_suffix))
502	section_name_suffix += 8;
503      else
504	continue;
505      if (strcmp(section_name_suffix, name) == 0)
506        {
507          shndx = i;
508          break;
509        }
510      else if (strcmp(section_name_suffix, gnu_name) == 0)
511        {
512          shndx = i;
513          this->is_gnu_style_ = true;
514          break;
515        }
516    }
517  if (shndx == 0)
518    return false;
519
520  this->buffer_ = object->decompressed_section_contents(shndx,
521							&buffer_size,
522							&this->owns_buffer_);
523  if (this->buffer_ == NULL)
524    return false;
525  this->buffer_end_ = this->buffer_ + buffer_size;
526
527  // For incremental objects, we have no relocations.
528  if (object->is_incremental())
529    return true;
530
531  // Find the relocation section
532  unsigned int reloc_shndx = 0;
533  unsigned int reloc_type = 0;
534  for (unsigned int i = 0; i < object->shnum(); ++i)
535    {
536      reloc_type = object->section_type(i);
537      if ((reloc_type == elfcpp::SHT_REL
538	   || reloc_type == elfcpp::SHT_RELA)
539	  && object->section_info(i) == shndx)
540	{
541	  reloc_shndx = i;
542	  break;
543	}
544    }
545
546  this->reloc_mapper_ = make_elf_reloc_mapper(object, symtab, symtab_size);
547  this->reloc_mapper_->initialize(reloc_shndx, reloc_type);
548  this->reloc_type_ = reloc_type;
549
550  return true;
551}
552
553// Read the header for the set at OFFSET.
554
555bool
556Dwarf_pubnames_table::read_header(off_t offset)
557{
558  // Make sure we have actually read the section.
559  gold_assert(this->buffer_ != NULL);
560
561  if (offset < 0 || offset + 14 >= this->buffer_end_ - this->buffer_)
562    return false;
563
564  const unsigned char* pinfo = this->buffer_ + offset;
565
566  // Read the unit_length field.
567  uint64_t unit_length = this->dwinfo_->read_from_pointer<32>(pinfo);
568  pinfo += 4;
569  if (unit_length == 0xffffffff)
570    {
571      unit_length = this->dwinfo_->read_from_pointer<64>(pinfo);
572      this->unit_length_ = unit_length + 12;
573      pinfo += 8;
574      this->offset_size_ = 8;
575    }
576  else
577    {
578      this->unit_length_ = unit_length + 4;
579      this->offset_size_ = 4;
580    }
581  this->end_of_table_ = pinfo + unit_length;
582
583  // If unit_length is too big, maybe we should reject the whole table,
584  // but in cases we know about, it seems OK to assume that the table
585  // is valid through the actual end of the section.
586  if (this->end_of_table_ > this->buffer_end_)
587    this->end_of_table_ = this->buffer_end_;
588
589  // Check the version.
590  unsigned int version = this->dwinfo_->read_from_pointer<16>(pinfo);
591  pinfo += 2;
592  if (version != 2)
593    return false;
594
595  this->reloc_mapper_->get_reloc_target(pinfo - this->buffer_,
596                                        &this->cu_offset_);
597
598  // Skip the debug_info_offset and debug_info_size fields.
599  pinfo += 2 * this->offset_size_;
600
601  if (pinfo >= this->buffer_end_)
602    return false;
603
604  this->pinfo_ = pinfo;
605  return true;
606}
607
608// Read the next name from the set.
609
610const char*
611Dwarf_pubnames_table::next_name(uint8_t* flag_byte)
612{
613  const unsigned char* pinfo = this->pinfo_;
614
615  // Check for end of list.  The table should be terminated by an
616  // entry containing nothing but a DIE offset of 0.
617  if (pinfo + this->offset_size_ >= this->end_of_table_)
618    return NULL;
619
620  // Skip the offset within the CU.  If this is zero, but we're not
621  // at the end of the table, then we have a real pubnames entry
622  // whose DIE offset is 0 (likely to be a GCC bug).  Since we
623  // don't actually use the DIE offset in building .gdb_index,
624  // it's harmless.
625  pinfo += this->offset_size_;
626
627  if (this->is_gnu_style_)
628    *flag_byte = *pinfo++;
629  else
630    *flag_byte = 0;
631
632  // Return a pointer to the string at the current location,
633  // and advance the pointer to the next entry.
634  const char* ret = reinterpret_cast<const char*>(pinfo);
635  while (pinfo < this->buffer_end_ && *pinfo != '\0')
636    ++pinfo;
637  if (pinfo < this->buffer_end_)
638    ++pinfo;
639
640  this->pinfo_ = pinfo;
641  return ret;
642}
643
644// class Dwarf_die
645
646Dwarf_die::Dwarf_die(
647    Dwarf_info_reader* dwinfo,
648    off_t die_offset,
649    Dwarf_die* parent)
650  : dwinfo_(dwinfo), parent_(parent), die_offset_(die_offset),
651    child_offset_(0), sibling_offset_(0), abbrev_code_(NULL), attributes_(),
652    attributes_read_(false), name_(NULL), name_off_(-1), linkage_name_(NULL),
653    linkage_name_off_(-1), string_shndx_(0), specification_(0),
654    abstract_origin_(0)
655{
656  size_t len;
657  const unsigned char* pdie = dwinfo->buffer_at_offset(die_offset);
658  if (pdie == NULL)
659    return;
660  unsigned int code = read_unsigned_LEB_128(pdie, &len);
661  if (code == 0)
662    {
663      if (parent != NULL)
664	parent->set_sibling_offset(die_offset + len);
665      return;
666    }
667  this->attr_offset_ = len;
668
669  // Lookup the abbrev code in the abbrev table.
670  this->abbrev_code_ = dwinfo->get_abbrev(code);
671}
672
673// Read all the attributes of the DIE.
674
675bool
676Dwarf_die::read_attributes()
677{
678  if (this->attributes_read_)
679    return true;
680
681  gold_assert(this->abbrev_code_ != NULL);
682
683  const unsigned char* pdie =
684      this->dwinfo_->buffer_at_offset(this->die_offset_);
685  if (pdie == NULL)
686    return false;
687  const unsigned char* pattr = pdie + this->attr_offset_;
688
689  unsigned int nattr = this->abbrev_code_->attributes.size();
690  this->attributes_.reserve(nattr);
691  for (unsigned int i = 0; i < nattr; ++i)
692    {
693      size_t len;
694      unsigned int attr = this->abbrev_code_->attributes[i].attr;
695      unsigned int form = this->abbrev_code_->attributes[i].form;
696      if (form == elfcpp::DW_FORM_indirect)
697        {
698          form = read_unsigned_LEB_128(pattr, &len);
699          pattr += len;
700        }
701      off_t attr_off = this->die_offset_ + (pattr - pdie);
702      bool ref_form = false;
703      Attribute_value attr_value;
704      attr_value.attr = attr;
705      attr_value.form = form;
706      attr_value.aux.shndx = 0;
707      switch(form)
708	{
709	  case elfcpp::DW_FORM_flag_present:
710	    attr_value.val.intval = 1;
711	    break;
712	  case elfcpp::DW_FORM_strp:
713	    {
714	      off_t str_off;
715	      if (this->dwinfo_->offset_size() == 4)
716		str_off = this->dwinfo_->read_from_pointer<32>(&pattr);
717	      else
718		str_off = this->dwinfo_->read_from_pointer<64>(&pattr);
719	      unsigned int shndx =
720		  this->dwinfo_->lookup_reloc(attr_off, &str_off);
721	      attr_value.aux.shndx = shndx;
722	      attr_value.val.refval = str_off;
723	      break;
724	    }
725	  case elfcpp::DW_FORM_sec_offset:
726	    {
727	      off_t sec_off;
728	      if (this->dwinfo_->offset_size() == 4)
729		sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
730	      else
731		sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
732	      unsigned int shndx =
733		  this->dwinfo_->lookup_reloc(attr_off, &sec_off);
734	      attr_value.aux.shndx = shndx;
735	      attr_value.val.refval = sec_off;
736	      ref_form = true;
737	      break;
738	    }
739	  case elfcpp::DW_FORM_addr:
740	  case elfcpp::DW_FORM_ref_addr:
741	    {
742	      off_t sec_off;
743	      if (this->dwinfo_->address_size() == 4)
744		sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
745	      else
746		sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
747	      unsigned int shndx =
748		  this->dwinfo_->lookup_reloc(attr_off, &sec_off);
749	      attr_value.aux.shndx = shndx;
750	      attr_value.val.refval = sec_off;
751	      ref_form = true;
752	      break;
753	    }
754	  case elfcpp::DW_FORM_block1:
755	    attr_value.aux.blocklen = *pattr++;
756	    attr_value.val.blockval = pattr;
757	    pattr += attr_value.aux.blocklen;
758	    break;
759	  case elfcpp::DW_FORM_block2:
760	    attr_value.aux.blocklen =
761		this->dwinfo_->read_from_pointer<16>(&pattr);
762	    attr_value.val.blockval = pattr;
763	    pattr += attr_value.aux.blocklen;
764	    break;
765	  case elfcpp::DW_FORM_block4:
766	    attr_value.aux.blocklen =
767		this->dwinfo_->read_from_pointer<32>(&pattr);
768	    attr_value.val.blockval = pattr;
769	    pattr += attr_value.aux.blocklen;
770	    break;
771	  case elfcpp::DW_FORM_block:
772	  case elfcpp::DW_FORM_exprloc:
773	    attr_value.aux.blocklen = read_unsigned_LEB_128(pattr, &len);
774	    attr_value.val.blockval = pattr + len;
775	    pattr += len + attr_value.aux.blocklen;
776	    break;
777	  case elfcpp::DW_FORM_data1:
778	  case elfcpp::DW_FORM_flag:
779	    attr_value.val.intval = *pattr++;
780	    break;
781	  case elfcpp::DW_FORM_ref1:
782	    attr_value.val.refval = *pattr++;
783	    ref_form = true;
784	    break;
785	  case elfcpp::DW_FORM_data2:
786	    attr_value.val.intval =
787		this->dwinfo_->read_from_pointer<16>(&pattr);
788	    break;
789	  case elfcpp::DW_FORM_ref2:
790	    attr_value.val.refval =
791		this->dwinfo_->read_from_pointer<16>(&pattr);
792	    ref_form = true;
793	    break;
794	  case elfcpp::DW_FORM_data4:
795	    {
796	      off_t sec_off;
797	      sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
798	      unsigned int shndx =
799		  this->dwinfo_->lookup_reloc(attr_off, &sec_off);
800	      attr_value.aux.shndx = shndx;
801	      attr_value.val.intval = sec_off;
802	      break;
803	    }
804	  case elfcpp::DW_FORM_ref4:
805	    {
806	      off_t sec_off;
807	      sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
808	      unsigned int shndx =
809		  this->dwinfo_->lookup_reloc(attr_off, &sec_off);
810	      attr_value.aux.shndx = shndx;
811	      attr_value.val.refval = sec_off;
812	      ref_form = true;
813	      break;
814	    }
815	  case elfcpp::DW_FORM_data8:
816	    {
817	      off_t sec_off;
818	      sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
819	      unsigned int shndx =
820		  this->dwinfo_->lookup_reloc(attr_off, &sec_off);
821	      attr_value.aux.shndx = shndx;
822	      attr_value.val.intval = sec_off;
823	      break;
824	    }
825	  case elfcpp::DW_FORM_ref_sig8:
826	    attr_value.val.uintval =
827		this->dwinfo_->read_from_pointer<64>(&pattr);
828	    break;
829	  case elfcpp::DW_FORM_ref8:
830	    {
831	      off_t sec_off;
832	      sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
833	      unsigned int shndx =
834		  this->dwinfo_->lookup_reloc(attr_off, &sec_off);
835	      attr_value.aux.shndx = shndx;
836	      attr_value.val.refval = sec_off;
837	      ref_form = true;
838	      break;
839	    }
840	  case elfcpp::DW_FORM_ref_udata:
841	    attr_value.val.refval = read_unsigned_LEB_128(pattr, &len);
842	    ref_form = true;
843	    pattr += len;
844	    break;
845	  case elfcpp::DW_FORM_udata:
846	  case elfcpp::DW_FORM_GNU_addr_index:
847	  case elfcpp::DW_FORM_GNU_str_index:
848	    attr_value.val.uintval = read_unsigned_LEB_128(pattr, &len);
849	    pattr += len;
850	    break;
851	  case elfcpp::DW_FORM_sdata:
852	    attr_value.val.intval = read_signed_LEB_128(pattr, &len);
853	    pattr += len;
854	    break;
855	  case elfcpp::DW_FORM_string:
856	    attr_value.val.stringval = reinterpret_cast<const char*>(pattr);
857	    len = strlen(attr_value.val.stringval);
858	    pattr += len + 1;
859	    break;
860	  default:
861	    return false;
862	}
863
864      // Cache the most frequently-requested attributes.
865      switch (attr)
866	{
867	  case elfcpp::DW_AT_name:
868	    if (form == elfcpp::DW_FORM_string)
869	      this->name_ = attr_value.val.stringval;
870	    else if (form == elfcpp::DW_FORM_strp)
871	      {
872		// All indirect strings should refer to the same
873		// string section, so we just save the last one seen.
874		this->string_shndx_ = attr_value.aux.shndx;
875		this->name_off_ = attr_value.val.refval;
876	      }
877	    break;
878	  case elfcpp::DW_AT_linkage_name:
879	  case elfcpp::DW_AT_MIPS_linkage_name:
880	    if (form == elfcpp::DW_FORM_string)
881	      this->linkage_name_ = attr_value.val.stringval;
882	    else if (form == elfcpp::DW_FORM_strp)
883	      {
884		// All indirect strings should refer to the same
885		// string section, so we just save the last one seen.
886		this->string_shndx_ = attr_value.aux.shndx;
887		this->linkage_name_off_ = attr_value.val.refval;
888	      }
889	    break;
890	  case elfcpp::DW_AT_specification:
891	    if (ref_form)
892	      this->specification_ = attr_value.val.refval;
893	    break;
894	  case elfcpp::DW_AT_abstract_origin:
895	    if (ref_form)
896	      this->abstract_origin_ = attr_value.val.refval;
897	    break;
898	  case elfcpp::DW_AT_sibling:
899	    if (ref_form && attr_value.aux.shndx == 0)
900	      this->sibling_offset_ = attr_value.val.refval;
901	  default:
902	    break;
903	}
904
905      this->attributes_.push_back(attr_value);
906    }
907
908  // Now that we know where the next DIE begins, record the offset
909  // to avoid later recalculation.
910  if (this->has_children())
911    this->child_offset_ = this->die_offset_ + (pattr - pdie);
912  else
913    this->sibling_offset_ = this->die_offset_ + (pattr - pdie);
914
915  this->attributes_read_ = true;
916  return true;
917}
918
919// Skip all the attributes of the DIE and return the offset of the next DIE.
920
921off_t
922Dwarf_die::skip_attributes()
923{
924  gold_assert(this->abbrev_code_ != NULL);
925
926  const unsigned char* pdie =
927      this->dwinfo_->buffer_at_offset(this->die_offset_);
928  if (pdie == NULL)
929    return 0;
930  const unsigned char* pattr = pdie + this->attr_offset_;
931
932  for (unsigned int i = 0; i < this->abbrev_code_->attributes.size(); ++i)
933    {
934      size_t len;
935      unsigned int form = this->abbrev_code_->attributes[i].form;
936      if (form == elfcpp::DW_FORM_indirect)
937        {
938          form = read_unsigned_LEB_128(pattr, &len);
939          pattr += len;
940        }
941      switch(form)
942	{
943	  case elfcpp::DW_FORM_flag_present:
944	    break;
945	  case elfcpp::DW_FORM_strp:
946	  case elfcpp::DW_FORM_sec_offset:
947	    pattr += this->dwinfo_->offset_size();
948	    break;
949	  case elfcpp::DW_FORM_addr:
950	  case elfcpp::DW_FORM_ref_addr:
951	    pattr += this->dwinfo_->address_size();
952	    break;
953	  case elfcpp::DW_FORM_block1:
954	    pattr += 1 + *pattr;
955	    break;
956	  case elfcpp::DW_FORM_block2:
957	    {
958	      uint16_t block_size;
959	      block_size = this->dwinfo_->read_from_pointer<16>(&pattr);
960	      pattr += block_size;
961	      break;
962	    }
963	  case elfcpp::DW_FORM_block4:
964	    {
965	      uint32_t block_size;
966	      block_size = this->dwinfo_->read_from_pointer<32>(&pattr);
967	      pattr += block_size;
968	      break;
969	    }
970	  case elfcpp::DW_FORM_block:
971	  case elfcpp::DW_FORM_exprloc:
972	    {
973	      uint64_t block_size;
974	      block_size = read_unsigned_LEB_128(pattr, &len);
975	      pattr += len + block_size;
976	      break;
977	    }
978	  case elfcpp::DW_FORM_data1:
979	  case elfcpp::DW_FORM_ref1:
980	  case elfcpp::DW_FORM_flag:
981	    pattr += 1;
982	    break;
983	  case elfcpp::DW_FORM_data2:
984	  case elfcpp::DW_FORM_ref2:
985	    pattr += 2;
986	    break;
987	  case elfcpp::DW_FORM_data4:
988	  case elfcpp::DW_FORM_ref4:
989	    pattr += 4;
990	    break;
991	  case elfcpp::DW_FORM_data8:
992	  case elfcpp::DW_FORM_ref8:
993	  case elfcpp::DW_FORM_ref_sig8:
994	    pattr += 8;
995	    break;
996	  case elfcpp::DW_FORM_ref_udata:
997	  case elfcpp::DW_FORM_udata:
998	  case elfcpp::DW_FORM_GNU_addr_index:
999	  case elfcpp::DW_FORM_GNU_str_index:
1000	    read_unsigned_LEB_128(pattr, &len);
1001	    pattr += len;
1002	    break;
1003	  case elfcpp::DW_FORM_sdata:
1004	    read_signed_LEB_128(pattr, &len);
1005	    pattr += len;
1006	    break;
1007	  case elfcpp::DW_FORM_string:
1008	    len = strlen(reinterpret_cast<const char*>(pattr));
1009	    pattr += len + 1;
1010	    break;
1011	  default:
1012	    return 0;
1013	}
1014    }
1015
1016  return this->die_offset_ + (pattr - pdie);
1017}
1018
1019// Get the name of the DIE and cache it.
1020
1021void
1022Dwarf_die::set_name()
1023{
1024  if (this->name_ != NULL || !this->read_attributes())
1025    return;
1026  if (this->name_off_ != -1)
1027    this->name_ = this->dwinfo_->get_string(this->name_off_,
1028					    this->string_shndx_);
1029}
1030
1031// Get the linkage name of the DIE and cache it.
1032
1033void
1034Dwarf_die::set_linkage_name()
1035{
1036  if (this->linkage_name_ != NULL || !this->read_attributes())
1037    return;
1038  if (this->linkage_name_off_ != -1)
1039    this->linkage_name_ = this->dwinfo_->get_string(this->linkage_name_off_,
1040						    this->string_shndx_);
1041}
1042
1043// Return the value of attribute ATTR.
1044
1045const Dwarf_die::Attribute_value*
1046Dwarf_die::attribute(unsigned int attr)
1047{
1048  if (!this->read_attributes())
1049    return NULL;
1050  for (unsigned int i = 0; i < this->attributes_.size(); ++i)
1051    {
1052      if (this->attributes_[i].attr == attr)
1053        return &this->attributes_[i];
1054    }
1055  return NULL;
1056}
1057
1058const char*
1059Dwarf_die::string_attribute(unsigned int attr)
1060{
1061  const Attribute_value* attr_val = this->attribute(attr);
1062  if (attr_val == NULL)
1063    return NULL;
1064  switch (attr_val->form)
1065    {
1066      case elfcpp::DW_FORM_string:
1067        return attr_val->val.stringval;
1068      case elfcpp::DW_FORM_strp:
1069	return this->dwinfo_->get_string(attr_val->val.refval,
1070					 attr_val->aux.shndx);
1071      default:
1072        return NULL;
1073    }
1074}
1075
1076int64_t
1077Dwarf_die::int_attribute(unsigned int attr)
1078{
1079  const Attribute_value* attr_val = this->attribute(attr);
1080  if (attr_val == NULL)
1081    return 0;
1082  switch (attr_val->form)
1083    {
1084      case elfcpp::DW_FORM_flag_present:
1085      case elfcpp::DW_FORM_data1:
1086      case elfcpp::DW_FORM_flag:
1087      case elfcpp::DW_FORM_data2:
1088      case elfcpp::DW_FORM_data4:
1089      case elfcpp::DW_FORM_data8:
1090      case elfcpp::DW_FORM_sdata:
1091        return attr_val->val.intval;
1092      default:
1093        return 0;
1094    }
1095}
1096
1097uint64_t
1098Dwarf_die::uint_attribute(unsigned int attr)
1099{
1100  const Attribute_value* attr_val = this->attribute(attr);
1101  if (attr_val == NULL)
1102    return 0;
1103  switch (attr_val->form)
1104    {
1105      case elfcpp::DW_FORM_flag_present:
1106      case elfcpp::DW_FORM_data1:
1107      case elfcpp::DW_FORM_flag:
1108      case elfcpp::DW_FORM_data4:
1109      case elfcpp::DW_FORM_data8:
1110      case elfcpp::DW_FORM_ref_sig8:
1111      case elfcpp::DW_FORM_udata:
1112        return attr_val->val.uintval;
1113      default:
1114        return 0;
1115    }
1116}
1117
1118off_t
1119Dwarf_die::ref_attribute(unsigned int attr, unsigned int* shndx)
1120{
1121  const Attribute_value* attr_val = this->attribute(attr);
1122  if (attr_val == NULL)
1123    return -1;
1124  switch (attr_val->form)
1125    {
1126      case elfcpp::DW_FORM_sec_offset:
1127      case elfcpp::DW_FORM_addr:
1128      case elfcpp::DW_FORM_ref_addr:
1129      case elfcpp::DW_FORM_ref1:
1130      case elfcpp::DW_FORM_ref2:
1131      case elfcpp::DW_FORM_ref4:
1132      case elfcpp::DW_FORM_ref8:
1133      case elfcpp::DW_FORM_ref_udata:
1134        *shndx = attr_val->aux.shndx;
1135        return attr_val->val.refval;
1136      case elfcpp::DW_FORM_ref_sig8:
1137        *shndx = attr_val->aux.shndx;
1138        return attr_val->val.uintval;
1139      case elfcpp::DW_FORM_data4:
1140      case elfcpp::DW_FORM_data8:
1141        *shndx = attr_val->aux.shndx;
1142        return attr_val->val.intval;
1143      default:
1144        return -1;
1145    }
1146}
1147
1148off_t
1149Dwarf_die::address_attribute(unsigned int attr, unsigned int* shndx)
1150{
1151  const Attribute_value* attr_val = this->attribute(attr);
1152  if (attr_val == NULL || attr_val->form != elfcpp::DW_FORM_addr)
1153    return -1;
1154
1155  *shndx = attr_val->aux.shndx;
1156  return attr_val->val.refval;
1157}
1158
1159// Return the offset of this DIE's first child.
1160
1161off_t
1162Dwarf_die::child_offset()
1163{
1164  gold_assert(this->abbrev_code_ != NULL);
1165  if (!this->has_children())
1166    return 0;
1167  if (this->child_offset_ == 0)
1168    this->child_offset_ = this->skip_attributes();
1169  return this->child_offset_;
1170}
1171
1172// Return the offset of this DIE's next sibling.
1173
1174off_t
1175Dwarf_die::sibling_offset()
1176{
1177  gold_assert(this->abbrev_code_ != NULL);
1178
1179  if (this->sibling_offset_ != 0)
1180    return this->sibling_offset_;
1181
1182  if (!this->has_children())
1183    {
1184      this->sibling_offset_ = this->skip_attributes();
1185      return this->sibling_offset_;
1186    }
1187
1188  if (this->has_sibling_attribute())
1189    {
1190      if (!this->read_attributes())
1191	return 0;
1192      if (this->sibling_offset_ != 0)
1193	return this->sibling_offset_;
1194    }
1195
1196  // Skip over the children.
1197  off_t child_offset = this->child_offset();
1198  while (child_offset > 0)
1199    {
1200      Dwarf_die die(this->dwinfo_, child_offset, this);
1201      // The Dwarf_die ctor will set this DIE's sibling offset
1202      // when it reads a zero abbrev code.
1203      if (die.tag() == 0)
1204	break;
1205      child_offset = die.sibling_offset();
1206    }
1207
1208  // This should be set by now.  If not, there was a problem reading
1209  // the DWARF info, and we return 0.
1210  return this->sibling_offset_;
1211}
1212
1213// class Dwarf_info_reader
1214
1215// Begin parsing the debug info.  This calls visit_compilation_unit()
1216// or visit_type_unit() for each compilation or type unit found in the
1217// section, and visit_die() for each top-level DIE.
1218
1219void
1220Dwarf_info_reader::parse()
1221{
1222  if (this->object_->is_big_endian())
1223    {
1224#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1225      this->do_parse<true>();
1226#else
1227      gold_unreachable();
1228#endif
1229    }
1230  else
1231    {
1232#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1233      this->do_parse<false>();
1234#else
1235      gold_unreachable();
1236#endif
1237    }
1238}
1239
1240template<bool big_endian>
1241void
1242Dwarf_info_reader::do_parse()
1243{
1244  // Get the section contents and decompress if necessary.
1245  section_size_type buffer_size;
1246  bool buffer_is_new;
1247  this->buffer_ = this->object_->decompressed_section_contents(this->shndx_,
1248							       &buffer_size,
1249							       &buffer_is_new);
1250  if (this->buffer_ == NULL || buffer_size == 0)
1251    return;
1252  this->buffer_end_ = this->buffer_ + buffer_size;
1253
1254  // The offset of this input section in the output section.
1255  off_t section_offset = this->object_->output_section_offset(this->shndx_);
1256
1257  // Start tracking relocations for this section.
1258  this->reloc_mapper_ = make_elf_reloc_mapper(this->object_, this->symtab_,
1259					      this->symtab_size_);
1260  this->reloc_mapper_->initialize(this->reloc_shndx_, this->reloc_type_);
1261
1262  // Loop over compilation units (or type units).
1263  unsigned int abbrev_shndx = this->abbrev_shndx_;
1264  off_t abbrev_offset = 0;
1265  const unsigned char* pinfo = this->buffer_;
1266  while (pinfo < this->buffer_end_)
1267    {
1268      // Read the compilation (or type) unit header.
1269      const unsigned char* cu_start = pinfo;
1270      this->cu_offset_ = cu_start - this->buffer_;
1271      this->cu_length_ = this->buffer_end_ - cu_start;
1272
1273      // Read unit_length (4 or 12 bytes).
1274      if (!this->check_buffer(pinfo + 4))
1275	break;
1276      uint32_t unit_length =
1277          elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
1278      pinfo += 4;
1279      if (unit_length == 0xffffffff)
1280	{
1281	  if (!this->check_buffer(pinfo + 8))
1282	    break;
1283	  unit_length = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1284	  pinfo += 8;
1285	  this->offset_size_ = 8;
1286	}
1287      else
1288	this->offset_size_ = 4;
1289      if (!this->check_buffer(pinfo + unit_length))
1290	break;
1291      const unsigned char* cu_end = pinfo + unit_length;
1292      this->cu_length_ = cu_end - cu_start;
1293      if (!this->check_buffer(pinfo + 2 + this->offset_size_ + 1))
1294	break;
1295
1296      // Read version (2 bytes).
1297      this->cu_version_ =
1298	  elfcpp::Swap_unaligned<16, big_endian>::readval(pinfo);
1299      pinfo += 2;
1300
1301      // Read debug_abbrev_offset (4 or 8 bytes).
1302      if (this->offset_size_ == 4)
1303	abbrev_offset = elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
1304      else
1305	abbrev_offset = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1306      if (this->reloc_shndx_ > 0)
1307	{
1308	  off_t reloc_offset = pinfo - this->buffer_;
1309	  off_t value;
1310	  abbrev_shndx =
1311	      this->reloc_mapper_->get_reloc_target(reloc_offset, &value);
1312	  if (abbrev_shndx == 0)
1313	    return;
1314	  if (this->reloc_type_ == elfcpp::SHT_REL)
1315	    abbrev_offset += value;
1316	  else
1317	    abbrev_offset = value;
1318	}
1319      pinfo += this->offset_size_;
1320
1321      // Read address_size (1 byte).
1322      this->address_size_ = *pinfo++;
1323
1324      // For type units, read the two extra fields.
1325      uint64_t signature = 0;
1326      off_t type_offset = 0;
1327      if (this->is_type_unit_)
1328        {
1329	  if (!this->check_buffer(pinfo + 8 + this->offset_size_))
1330	    break;
1331
1332	  // Read type_signature (8 bytes).
1333	  signature = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1334	  pinfo += 8;
1335
1336	  // Read type_offset (4 or 8 bytes).
1337	  if (this->offset_size_ == 4)
1338	    type_offset =
1339		elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
1340	  else
1341	    type_offset =
1342		elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1343	  pinfo += this->offset_size_;
1344	}
1345
1346      // Read the .debug_abbrev table.
1347      this->abbrev_table_.read_abbrevs(this->object_, abbrev_shndx,
1348				       abbrev_offset);
1349
1350      // Visit the root DIE.
1351      Dwarf_die root_die(this,
1352			 pinfo - (this->buffer_ + this->cu_offset_),
1353			 NULL);
1354      if (root_die.tag() != 0)
1355	{
1356	  // Visit the CU or TU.
1357	  if (this->is_type_unit_)
1358	    this->visit_type_unit(section_offset + this->cu_offset_,
1359				  cu_end - cu_start, type_offset, signature,
1360				  &root_die);
1361	  else
1362	    this->visit_compilation_unit(section_offset + this->cu_offset_,
1363					 cu_end - cu_start, &root_die);
1364	}
1365
1366      // Advance to the next CU.
1367      pinfo = cu_end;
1368    }
1369
1370  if (buffer_is_new)
1371    {
1372      delete[] this->buffer_;
1373      this->buffer_ = NULL;
1374    }
1375}
1376
1377// Read the DWARF string table.
1378
1379bool
1380Dwarf_info_reader::do_read_string_table(unsigned int string_shndx)
1381{
1382  Relobj* object = this->object_;
1383
1384  // If we don't have relocations, string_shndx will be 0, and
1385  // we'll have to hunt for the .debug_str section.
1386  if (string_shndx == 0)
1387    {
1388      for (unsigned int i = 1; i < this->object_->shnum(); ++i)
1389	{
1390	  std::string name = object->section_name(i);
1391	  if (name == ".debug_str" || name == ".zdebug_str")
1392	    {
1393	      string_shndx = i;
1394	      this->string_output_section_offset_ =
1395		  object->output_section_offset(i);
1396	      break;
1397	    }
1398	}
1399      if (string_shndx == 0)
1400	return false;
1401    }
1402
1403  if (this->owns_string_buffer_ && this->string_buffer_ != NULL)
1404    {
1405      delete[] this->string_buffer_;
1406      this->owns_string_buffer_ = false;
1407    }
1408
1409  // Get the secton contents and decompress if necessary.
1410  section_size_type buffer_size;
1411  const unsigned char* buffer =
1412      object->decompressed_section_contents(string_shndx,
1413					    &buffer_size,
1414					    &this->owns_string_buffer_);
1415  this->string_buffer_ = reinterpret_cast<const char*>(buffer);
1416  this->string_buffer_end_ = this->string_buffer_ + buffer_size;
1417  this->string_shndx_ = string_shndx;
1418  return true;
1419}
1420
1421// Read a possibly unaligned integer of SIZE.
1422template <int valsize>
1423inline typename elfcpp::Valtype_base<valsize>::Valtype
1424Dwarf_info_reader::read_from_pointer(const unsigned char* source)
1425{
1426  typename elfcpp::Valtype_base<valsize>::Valtype return_value;
1427  if (this->object_->is_big_endian())
1428    return_value = elfcpp::Swap_unaligned<valsize, true>::readval(source);
1429  else
1430    return_value = elfcpp::Swap_unaligned<valsize, false>::readval(source);
1431  return return_value;
1432}
1433
1434// Read a possibly unaligned integer of SIZE.  Update SOURCE after read.
1435template <int valsize>
1436inline typename elfcpp::Valtype_base<valsize>::Valtype
1437Dwarf_info_reader::read_from_pointer(const unsigned char** source)
1438{
1439  typename elfcpp::Valtype_base<valsize>::Valtype return_value;
1440  if (this->object_->is_big_endian())
1441    return_value = elfcpp::Swap_unaligned<valsize, true>::readval(*source);
1442  else
1443    return_value = elfcpp::Swap_unaligned<valsize, false>::readval(*source);
1444  *source += valsize / 8;
1445  return return_value;
1446}
1447
1448// Look for a relocation at offset ATTR_OFF in the dwarf info,
1449// and return the section index and offset of the target.
1450
1451unsigned int
1452Dwarf_info_reader::lookup_reloc(off_t attr_off, off_t* target_off)
1453{
1454  off_t value;
1455  attr_off += this->cu_offset_;
1456  unsigned int shndx = this->reloc_mapper_->get_reloc_target(attr_off, &value);
1457  if (shndx == 0)
1458    return 0;
1459  if (this->reloc_type_ == elfcpp::SHT_REL)
1460    *target_off += value;
1461  else
1462    *target_off = value;
1463  return shndx;
1464}
1465
1466// Return a string from the DWARF string table.
1467
1468const char*
1469Dwarf_info_reader::get_string(off_t str_off, unsigned int string_shndx)
1470{
1471  if (!this->read_string_table(string_shndx))
1472    return NULL;
1473
1474  // Correct the offset.  For incremental update links, we have a
1475  // relocated offset that is relative to the output section, but
1476  // here we need an offset relative to the input section.
1477  str_off -= this->string_output_section_offset_;
1478
1479  const char* p = this->string_buffer_ + str_off;
1480
1481  if (p < this->string_buffer_ || p >= this->string_buffer_end_)
1482    return NULL;
1483
1484  return p;
1485}
1486
1487// The following are default, do-nothing, implementations of the
1488// hook methods normally provided by a derived class.  We provide
1489// default implementations rather than no implementation so that
1490// a derived class needs to implement only the hooks that it needs
1491// to use.
1492
1493// Process a compilation unit and parse its child DIE.
1494
1495void
1496Dwarf_info_reader::visit_compilation_unit(off_t, off_t, Dwarf_die*)
1497{
1498}
1499
1500// Process a type unit and parse its child DIE.
1501
1502void
1503Dwarf_info_reader::visit_type_unit(off_t, off_t, off_t, uint64_t, Dwarf_die*)
1504{
1505}
1506
1507// Print a warning about a corrupt debug section.
1508
1509void
1510Dwarf_info_reader::warn_corrupt_debug_section() const
1511{
1512  gold_warning(_("%s: corrupt debug info in %s"),
1513	       this->object_->name().c_str(),
1514	       this->object_->section_name(this->shndx_).c_str());
1515}
1516
1517// class Sized_dwarf_line_info
1518
1519struct LineStateMachine
1520{
1521  int file_num;
1522  uint64_t address;
1523  int line_num;
1524  int column_num;
1525  unsigned int shndx;    // the section address refers to
1526  bool is_stmt;          // stmt means statement.
1527  bool basic_block;
1528  bool end_sequence;
1529};
1530
1531static void
1532ResetLineStateMachine(struct LineStateMachine* lsm, bool default_is_stmt)
1533{
1534  lsm->file_num = 1;
1535  lsm->address = 0;
1536  lsm->line_num = 1;
1537  lsm->column_num = 0;
1538  lsm->shndx = -1U;
1539  lsm->is_stmt = default_is_stmt;
1540  lsm->basic_block = false;
1541  lsm->end_sequence = false;
1542}
1543
1544template<int size, bool big_endian>
1545Sized_dwarf_line_info<size, big_endian>::Sized_dwarf_line_info(
1546    Object* object,
1547    unsigned int read_shndx)
1548  : data_valid_(false), buffer_(NULL), buffer_start_(NULL),
1549    reloc_mapper_(NULL), symtab_buffer_(NULL), directories_(), files_(),
1550    current_header_index_(-1)
1551{
1552  unsigned int debug_shndx;
1553
1554  for (debug_shndx = 1; debug_shndx < object->shnum(); ++debug_shndx)
1555    {
1556      // FIXME: do this more efficiently: section_name() isn't super-fast
1557      std::string name = object->section_name(debug_shndx);
1558      if (name == ".debug_line" || name == ".zdebug_line")
1559	{
1560	  section_size_type buffer_size;
1561	  bool is_new = false;
1562	  this->buffer_ = object->decompressed_section_contents(debug_shndx,
1563								&buffer_size,
1564								&is_new);
1565	  if (is_new)
1566	    this->buffer_start_ = this->buffer_;
1567	  this->buffer_end_ = this->buffer_ + buffer_size;
1568	  break;
1569	}
1570    }
1571  if (this->buffer_ == NULL)
1572    return;
1573
1574  // Find the relocation section for ".debug_line".
1575  // We expect these for relobjs (.o's) but not dynobjs (.so's).
1576  unsigned int reloc_shndx = 0;
1577  for (unsigned int i = 0; i < object->shnum(); ++i)
1578    {
1579      unsigned int reloc_sh_type = object->section_type(i);
1580      if ((reloc_sh_type == elfcpp::SHT_REL
1581	   || reloc_sh_type == elfcpp::SHT_RELA)
1582	  && object->section_info(i) == debug_shndx)
1583	{
1584	  reloc_shndx = i;
1585	  this->track_relocs_type_ = reloc_sh_type;
1586	  break;
1587	}
1588    }
1589
1590  // Finally, we need the symtab section to interpret the relocs.
1591  if (reloc_shndx != 0)
1592    {
1593      unsigned int symtab_shndx;
1594      for (symtab_shndx = 0; symtab_shndx < object->shnum(); ++symtab_shndx)
1595        if (object->section_type(symtab_shndx) == elfcpp::SHT_SYMTAB)
1596          {
1597	    this->symtab_buffer_ = object->section_contents(
1598		symtab_shndx, &this->symtab_buffer_size_, false);
1599            break;
1600          }
1601      if (this->symtab_buffer_ == NULL)
1602        return;
1603    }
1604
1605  this->reloc_mapper_ =
1606      new Sized_elf_reloc_mapper<size, big_endian>(object,
1607						   this->symtab_buffer_,
1608						   this->symtab_buffer_size_);
1609  if (!this->reloc_mapper_->initialize(reloc_shndx, this->track_relocs_type_))
1610    return;
1611
1612  // Now that we have successfully read all the data, parse the debug
1613  // info.
1614  this->data_valid_ = true;
1615  this->read_line_mappings(read_shndx);
1616}
1617
1618// Read the DWARF header.
1619
1620template<int size, bool big_endian>
1621const unsigned char*
1622Sized_dwarf_line_info<size, big_endian>::read_header_prolog(
1623    const unsigned char* lineptr)
1624{
1625  uint32_t initial_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
1626  lineptr += 4;
1627
1628  // In DWARF2/3, if the initial length is all 1 bits, then the offset
1629  // size is 8 and we need to read the next 8 bytes for the real length.
1630  if (initial_length == 0xffffffff)
1631    {
1632      header_.offset_size = 8;
1633      initial_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
1634      lineptr += 8;
1635    }
1636  else
1637    header_.offset_size = 4;
1638
1639  header_.total_length = initial_length;
1640
1641  gold_assert(lineptr + header_.total_length <= buffer_end_);
1642
1643  header_.version = elfcpp::Swap_unaligned<16, big_endian>::readval(lineptr);
1644  lineptr += 2;
1645
1646  if (header_.offset_size == 4)
1647    header_.prologue_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
1648  else
1649    header_.prologue_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
1650  lineptr += header_.offset_size;
1651
1652  header_.min_insn_length = *lineptr;
1653  lineptr += 1;
1654
1655  header_.default_is_stmt = *lineptr;
1656  lineptr += 1;
1657
1658  header_.line_base = *reinterpret_cast<const signed char*>(lineptr);
1659  lineptr += 1;
1660
1661  header_.line_range = *lineptr;
1662  lineptr += 1;
1663
1664  header_.opcode_base = *lineptr;
1665  lineptr += 1;
1666
1667  header_.std_opcode_lengths.resize(header_.opcode_base + 1);
1668  header_.std_opcode_lengths[0] = 0;
1669  for (int i = 1; i < header_.opcode_base; i++)
1670    {
1671      header_.std_opcode_lengths[i] = *lineptr;
1672      lineptr += 1;
1673    }
1674
1675  return lineptr;
1676}
1677
1678// The header for a debug_line section is mildly complicated, because
1679// the line info is very tightly encoded.
1680
1681template<int size, bool big_endian>
1682const unsigned char*
1683Sized_dwarf_line_info<size, big_endian>::read_header_tables(
1684    const unsigned char* lineptr)
1685{
1686  ++this->current_header_index_;
1687
1688  // Create a new directories_ entry and a new files_ entry for our new
1689  // header.  We initialize each with a single empty element, because
1690  // dwarf indexes directory and filenames starting at 1.
1691  gold_assert(static_cast<int>(this->directories_.size())
1692	      == this->current_header_index_);
1693  gold_assert(static_cast<int>(this->files_.size())
1694	      == this->current_header_index_);
1695  this->directories_.push_back(std::vector<std::string>(1));
1696  this->files_.push_back(std::vector<std::pair<int, std::string> >(1));
1697
1698  // It is legal for the directory entry table to be empty.
1699  if (*lineptr)
1700    {
1701      int dirindex = 1;
1702      while (*lineptr)
1703        {
1704	  const char* dirname = reinterpret_cast<const char*>(lineptr);
1705          gold_assert(dirindex
1706		      == static_cast<int>(this->directories_.back().size()));
1707          this->directories_.back().push_back(dirname);
1708          lineptr += this->directories_.back().back().size() + 1;
1709          dirindex++;
1710        }
1711    }
1712  lineptr++;
1713
1714  // It is also legal for the file entry table to be empty.
1715  if (*lineptr)
1716    {
1717      int fileindex = 1;
1718      size_t len;
1719      while (*lineptr)
1720        {
1721          const char* filename = reinterpret_cast<const char*>(lineptr);
1722          lineptr += strlen(filename) + 1;
1723
1724          uint64_t dirindex = read_unsigned_LEB_128(lineptr, &len);
1725          lineptr += len;
1726
1727          if (dirindex >= this->directories_.back().size())
1728            dirindex = 0;
1729	  int dirindexi = static_cast<int>(dirindex);
1730
1731          read_unsigned_LEB_128(lineptr, &len);   // mod_time
1732          lineptr += len;
1733
1734          read_unsigned_LEB_128(lineptr, &len);   // filelength
1735          lineptr += len;
1736
1737          gold_assert(fileindex
1738		      == static_cast<int>(this->files_.back().size()));
1739          this->files_.back().push_back(std::make_pair(dirindexi, filename));
1740          fileindex++;
1741        }
1742    }
1743  lineptr++;
1744
1745  return lineptr;
1746}
1747
1748// Process a single opcode in the .debug.line structure.
1749
1750template<int size, bool big_endian>
1751bool
1752Sized_dwarf_line_info<size, big_endian>::process_one_opcode(
1753    const unsigned char* start, struct LineStateMachine* lsm, size_t* len)
1754{
1755  size_t oplen = 0;
1756  size_t templen;
1757  unsigned char opcode = *start;
1758  oplen++;
1759  start++;
1760
1761  // If the opcode is great than the opcode_base, it is a special
1762  // opcode. Most line programs consist mainly of special opcodes.
1763  if (opcode >= header_.opcode_base)
1764    {
1765      opcode -= header_.opcode_base;
1766      const int advance_address = ((opcode / header_.line_range)
1767                                   * header_.min_insn_length);
1768      lsm->address += advance_address;
1769
1770      const int advance_line = ((opcode % header_.line_range)
1771                                + header_.line_base);
1772      lsm->line_num += advance_line;
1773      lsm->basic_block = true;
1774      *len = oplen;
1775      return true;
1776    }
1777
1778  // Otherwise, we have the regular opcodes
1779  switch (opcode)
1780    {
1781    case elfcpp::DW_LNS_copy:
1782      lsm->basic_block = false;
1783      *len = oplen;
1784      return true;
1785
1786    case elfcpp::DW_LNS_advance_pc:
1787      {
1788        const uint64_t advance_address
1789            = read_unsigned_LEB_128(start, &templen);
1790        oplen += templen;
1791        lsm->address += header_.min_insn_length * advance_address;
1792      }
1793      break;
1794
1795    case elfcpp::DW_LNS_advance_line:
1796      {
1797        const uint64_t advance_line = read_signed_LEB_128(start, &templen);
1798        oplen += templen;
1799        lsm->line_num += advance_line;
1800      }
1801      break;
1802
1803    case elfcpp::DW_LNS_set_file:
1804      {
1805        const uint64_t fileno = read_unsigned_LEB_128(start, &templen);
1806        oplen += templen;
1807        lsm->file_num = fileno;
1808      }
1809      break;
1810
1811    case elfcpp::DW_LNS_set_column:
1812      {
1813        const uint64_t colno = read_unsigned_LEB_128(start, &templen);
1814        oplen += templen;
1815        lsm->column_num = colno;
1816      }
1817      break;
1818
1819    case elfcpp::DW_LNS_negate_stmt:
1820      lsm->is_stmt = !lsm->is_stmt;
1821      break;
1822
1823    case elfcpp::DW_LNS_set_basic_block:
1824      lsm->basic_block = true;
1825      break;
1826
1827    case elfcpp::DW_LNS_fixed_advance_pc:
1828      {
1829        int advance_address;
1830        advance_address = elfcpp::Swap_unaligned<16, big_endian>::readval(start);
1831        oplen += 2;
1832        lsm->address += advance_address;
1833      }
1834      break;
1835
1836    case elfcpp::DW_LNS_const_add_pc:
1837      {
1838        const int advance_address = (header_.min_insn_length
1839                                     * ((255 - header_.opcode_base)
1840                                        / header_.line_range));
1841        lsm->address += advance_address;
1842      }
1843      break;
1844
1845    case elfcpp::DW_LNS_extended_op:
1846      {
1847        const uint64_t extended_op_len
1848            = read_unsigned_LEB_128(start, &templen);
1849        start += templen;
1850        oplen += templen + extended_op_len;
1851
1852        const unsigned char extended_op = *start;
1853        start++;
1854
1855        switch (extended_op)
1856          {
1857          case elfcpp::DW_LNE_end_sequence:
1858            // This means that the current byte is the one immediately
1859            // after a set of instructions.  Record the current line
1860            // for up to one less than the current address.
1861            lsm->line_num = -1;
1862            lsm->end_sequence = true;
1863            *len = oplen;
1864            return true;
1865
1866          case elfcpp::DW_LNE_set_address:
1867            {
1868              lsm->address =
1869		elfcpp::Swap_unaligned<size, big_endian>::readval(start);
1870              typename Reloc_map::const_iterator it
1871                  = this->reloc_map_.find(start - this->buffer_);
1872              if (it != reloc_map_.end())
1873                {
1874		  // If this is a SHT_RELA section, then ignore the
1875		  // section contents.  This assumes that this is a
1876		  // straight reloc which just uses the reloc addend.
1877		  // The reloc addend has already been included in the
1878		  // symbol value.
1879		  if (this->track_relocs_type_ == elfcpp::SHT_RELA)
1880		    lsm->address = 0;
1881		  // Add in the symbol value.
1882		  lsm->address += it->second.second;
1883                  lsm->shndx = it->second.first;
1884                }
1885              else
1886                {
1887                  // If we're a normal .o file, with relocs, every
1888                  // set_address should have an associated relocation.
1889		  if (this->input_is_relobj())
1890                    this->data_valid_ = false;
1891                }
1892              break;
1893            }
1894          case elfcpp::DW_LNE_define_file:
1895            {
1896              const char* filename  = reinterpret_cast<const char*>(start);
1897              templen = strlen(filename) + 1;
1898              start += templen;
1899
1900              uint64_t dirindex = read_unsigned_LEB_128(start, &templen);
1901
1902              if (dirindex >= this->directories_.back().size())
1903                dirindex = 0;
1904	      int dirindexi = static_cast<int>(dirindex);
1905
1906              // This opcode takes two additional ULEB128 parameters
1907              // (mod_time and filelength), but we don't use those
1908              // values.  Because OPLEN already tells us how far to
1909              // skip to the next opcode, we don't need to read
1910              // them at all.
1911
1912              this->files_.back().push_back(std::make_pair(dirindexi,
1913							   filename));
1914            }
1915            break;
1916          }
1917      }
1918      break;
1919
1920    default:
1921      {
1922        // Ignore unknown opcode  silently
1923        for (int i = 0; i < header_.std_opcode_lengths[opcode]; i++)
1924          {
1925            size_t templen;
1926            read_unsigned_LEB_128(start, &templen);
1927            start += templen;
1928            oplen += templen;
1929          }
1930      }
1931      break;
1932  }
1933  *len = oplen;
1934  return false;
1935}
1936
1937// Read the debug information at LINEPTR and store it in the line
1938// number map.
1939
1940template<int size, bool big_endian>
1941unsigned const char*
1942Sized_dwarf_line_info<size, big_endian>::read_lines(unsigned const char* lineptr,
1943                                                    unsigned int shndx)
1944{
1945  struct LineStateMachine lsm;
1946
1947  // LENGTHSTART is the place the length field is based on.  It is the
1948  // point in the header after the initial length field.
1949  const unsigned char* lengthstart = buffer_;
1950
1951  // In 64 bit dwarf, the initial length is 12 bytes, because of the
1952  // 0xffffffff at the start.
1953  if (header_.offset_size == 8)
1954    lengthstart += 12;
1955  else
1956    lengthstart += 4;
1957
1958  while (lineptr < lengthstart + header_.total_length)
1959    {
1960      ResetLineStateMachine(&lsm, header_.default_is_stmt);
1961      while (!lsm.end_sequence)
1962        {
1963          size_t oplength;
1964          bool add_line = this->process_one_opcode(lineptr, &lsm, &oplength);
1965          if (add_line
1966              && (shndx == -1U || lsm.shndx == -1U || shndx == lsm.shndx))
1967            {
1968              Offset_to_lineno_entry entry
1969                  = { static_cast<off_t>(lsm.address),
1970		      this->current_header_index_,
1971		      static_cast<unsigned int>(lsm.file_num),
1972		      true, lsm.line_num };
1973	      std::vector<Offset_to_lineno_entry>&
1974		map(this->line_number_map_[lsm.shndx]);
1975	      // If we see two consecutive entries with the same
1976	      // offset and a real line number, then mark the first
1977	      // one as non-canonical.
1978	      if (!map.empty()
1979		  && (map.back().offset == static_cast<off_t>(lsm.address))
1980		  && lsm.line_num != -1
1981		  && map.back().line_num != -1)
1982		map.back().last_line_for_offset = false;
1983	      map.push_back(entry);
1984            }
1985          lineptr += oplength;
1986        }
1987    }
1988
1989  return lengthstart + header_.total_length;
1990}
1991
1992// Read the relocations into a Reloc_map.
1993
1994template<int size, bool big_endian>
1995void
1996Sized_dwarf_line_info<size, big_endian>::read_relocs()
1997{
1998  if (this->symtab_buffer_ == NULL)
1999    return;
2000
2001  off_t value;
2002  off_t reloc_offset;
2003  while ((reloc_offset = this->reloc_mapper_->next_offset()) != -1)
2004    {
2005      const unsigned int shndx =
2006          this->reloc_mapper_->get_reloc_target(reloc_offset, &value);
2007
2008      // There is no reason to record non-ordinary section indexes, or
2009      // SHN_UNDEF, because they will never match the real section.
2010      if (shndx != 0)
2011	this->reloc_map_[reloc_offset] = std::make_pair(shndx, value);
2012
2013      this->reloc_mapper_->advance(reloc_offset + 1);
2014    }
2015}
2016
2017// Read the line number info.
2018
2019template<int size, bool big_endian>
2020void
2021Sized_dwarf_line_info<size, big_endian>::read_line_mappings(unsigned int shndx)
2022{
2023  gold_assert(this->data_valid_ == true);
2024
2025  this->read_relocs();
2026  while (this->buffer_ < this->buffer_end_)
2027    {
2028      const unsigned char* lineptr = this->buffer_;
2029      lineptr = this->read_header_prolog(lineptr);
2030      lineptr = this->read_header_tables(lineptr);
2031      lineptr = this->read_lines(lineptr, shndx);
2032      this->buffer_ = lineptr;
2033    }
2034
2035  // Sort the lines numbers, so addr2line can use binary search.
2036  for (typename Lineno_map::iterator it = line_number_map_.begin();
2037       it != line_number_map_.end();
2038       ++it)
2039    // Each vector needs to be sorted by offset.
2040    std::sort(it->second.begin(), it->second.end());
2041}
2042
2043// Some processing depends on whether the input is a .o file or not.
2044// For instance, .o files have relocs, and have .debug_lines
2045// information on a per section basis.  .so files, on the other hand,
2046// lack relocs, and offsets are unique, so we can ignore the section
2047// information.
2048
2049template<int size, bool big_endian>
2050bool
2051Sized_dwarf_line_info<size, big_endian>::input_is_relobj()
2052{
2053  // Only .o files have relocs and the symtab buffer that goes with them.
2054  return this->symtab_buffer_ != NULL;
2055}
2056
2057// Given an Offset_to_lineno_entry vector, and an offset, figure out
2058// if the offset points into a function according to the vector (see
2059// comments below for the algorithm).  If it does, return an iterator
2060// into the vector that points to the line-number that contains that
2061// offset.  If not, it returns vector::end().
2062
2063static std::vector<Offset_to_lineno_entry>::const_iterator
2064offset_to_iterator(const std::vector<Offset_to_lineno_entry>* offsets,
2065                   off_t offset)
2066{
2067  const Offset_to_lineno_entry lookup_key = { offset, 0, 0, true, 0 };
2068
2069  // lower_bound() returns the smallest offset which is >= lookup_key.
2070  // If no offset in offsets is >= lookup_key, returns end().
2071  std::vector<Offset_to_lineno_entry>::const_iterator it
2072      = std::lower_bound(offsets->begin(), offsets->end(), lookup_key);
2073
2074  // This code is easiest to understand with a concrete example.
2075  // Here's a possible offsets array:
2076  // {{offset = 3211, header_num = 0, file_num = 1, last, line_num = 16},  // 0
2077  //  {offset = 3224, header_num = 0, file_num = 1, last, line_num = 20},  // 1
2078  //  {offset = 3226, header_num = 0, file_num = 1, last, line_num = 22},  // 2
2079  //  {offset = 3231, header_num = 0, file_num = 1, last, line_num = 25},  // 3
2080  //  {offset = 3232, header_num = 0, file_num = 1, last, line_num = -1},  // 4
2081  //  {offset = 3232, header_num = 0, file_num = 1, last, line_num = 65},  // 5
2082  //  {offset = 3235, header_num = 0, file_num = 1, last, line_num = 66},  // 6
2083  //  {offset = 3236, header_num = 0, file_num = 1, last, line_num = -1},  // 7
2084  //  {offset = 5764, header_num = 0, file_num = 1, last, line_num = 48},  // 8
2085  //  {offset = 5764, header_num = 0, file_num = 1,!last, line_num = 47},  // 9
2086  //  {offset = 5765, header_num = 0, file_num = 1, last, line_num = 49},  // 10
2087  //  {offset = 5767, header_num = 0, file_num = 1, last, line_num = 50},  // 11
2088  //  {offset = 5768, header_num = 0, file_num = 1, last, line_num = 51},  // 12
2089  //  {offset = 5773, header_num = 0, file_num = 1, last, line_num = -1},  // 13
2090  //  {offset = 5787, header_num = 1, file_num = 1, last, line_num = 19},  // 14
2091  //  {offset = 5790, header_num = 1, file_num = 1, last, line_num = 20},  // 15
2092  //  {offset = 5793, header_num = 1, file_num = 1, last, line_num = 67},  // 16
2093  //  {offset = 5793, header_num = 1, file_num = 1, last, line_num = -1},  // 17
2094  //  {offset = 5793, header_num = 1, file_num = 1,!last, line_num = 66},  // 18
2095  //  {offset = 5795, header_num = 1, file_num = 1, last, line_num = 68},  // 19
2096  //  {offset = 5798, header_num = 1, file_num = 1, last, line_num = -1},  // 20
2097  // The entries with line_num == -1 mark the end of a function: the
2098  // associated offset is one past the last instruction in the
2099  // function.  This can correspond to the beginning of the next
2100  // function (as is true for offset 3232); alternately, there can be
2101  // a gap between the end of one function and the start of the next
2102  // (as is true for some others, most obviously from 3236->5764).
2103  //
2104  // Case 1: lookup_key has offset == 10.  lower_bound returns
2105  //         offsets[0].  Since it's not an exact match and we're
2106  //         at the beginning of offsets, we return end() (invalid).
2107  // Case 2: lookup_key has offset 10000.  lower_bound returns
2108  //         offset[21] (end()).  We return end() (invalid).
2109  // Case 3: lookup_key has offset == 3211.  lower_bound matches
2110  //         offsets[0] exactly, and that's the entry we return.
2111  // Case 4: lookup_key has offset == 3232.  lower_bound returns
2112  //         offsets[4].  That's an exact match, but indicates
2113  //         end-of-function.  We check if offsets[5] is also an
2114  //         exact match but not end-of-function.  It is, so we
2115  //         return offsets[5].
2116  // Case 5: lookup_key has offset == 3214.  lower_bound returns
2117  //         offsets[1].  Since it's not an exact match, we back
2118  //         up to the offset that's < lookup_key, offsets[0].
2119  //         We note offsets[0] is a valid entry (not end-of-function),
2120  //         so that's the entry we return.
2121  // Case 6: lookup_key has offset == 4000.  lower_bound returns
2122  //         offsets[8].  Since it's not an exact match, we back
2123  //         up to offsets[7].  Since offsets[7] indicates
2124  //         end-of-function, we know lookup_key is between
2125  //         functions, so we return end() (not a valid offset).
2126  // Case 7: lookup_key has offset == 5794.  lower_bound returns
2127  //         offsets[19].  Since it's not an exact match, we back
2128  //         up to offsets[16].  Note we back up to the *first*
2129  //         entry with offset 5793, not just offsets[19-1].
2130  //         We note offsets[16] is a valid entry, so we return it.
2131  //         If offsets[16] had had line_num == -1, we would have
2132  //         checked offsets[17].  The reason for this is that
2133  //         16 and 17 can be in an arbitrary order, since we sort
2134  //         only by offset and last_line_for_offset.  (Note it
2135  //         doesn't help to use line_number as a tertiary sort key,
2136  //         since sometimes we want the -1 to be first and sometimes
2137  //         we want it to be last.)
2138
2139  // This deals with cases (1) and (2).
2140  if ((it == offsets->begin() && offset < it->offset)
2141      || it == offsets->end())
2142    return offsets->end();
2143
2144  // This deals with cases (3) and (4).
2145  if (offset == it->offset)
2146    {
2147      while (it != offsets->end()
2148             && it->offset == offset
2149             && it->line_num == -1)
2150        ++it;
2151      if (it == offsets->end() || it->offset != offset)
2152        return offsets->end();
2153      else
2154        return it;
2155    }
2156
2157  // This handles the first part of case (7) -- we back up to the
2158  // *first* entry that has the offset that's behind us.
2159  gold_assert(it != offsets->begin());
2160  std::vector<Offset_to_lineno_entry>::const_iterator range_end = it;
2161  --it;
2162  const off_t range_value = it->offset;
2163  while (it != offsets->begin() && (it-1)->offset == range_value)
2164    --it;
2165
2166  // This handles cases (5), (6), and (7): if any entry in the
2167  // equal_range [it, range_end) has a line_num != -1, it's a valid
2168  // match.  If not, we're not in a function.  The line number we saw
2169  // last for an offset will be sorted first, so it'll get returned if
2170  // it's present.
2171  for (; it != range_end; ++it)
2172    if (it->line_num != -1)
2173      return it;
2174  return offsets->end();
2175}
2176
2177// Returns the canonical filename:lineno for the address passed in.
2178// If other_lines is not NULL, appends the non-canonical lines
2179// assigned to the same address.
2180
2181template<int size, bool big_endian>
2182std::string
2183Sized_dwarf_line_info<size, big_endian>::do_addr2line(
2184    unsigned int shndx,
2185    off_t offset,
2186    std::vector<std::string>* other_lines)
2187{
2188  if (this->data_valid_ == false)
2189    return "";
2190
2191  const std::vector<Offset_to_lineno_entry>* offsets;
2192  // If we do not have reloc information, then our input is a .so or
2193  // some similar data structure where all the information is held in
2194  // the offset.  In that case, we ignore the input shndx.
2195  if (this->input_is_relobj())
2196    offsets = &this->line_number_map_[shndx];
2197  else
2198    offsets = &this->line_number_map_[-1U];
2199  if (offsets->empty())
2200    return "";
2201
2202  typename std::vector<Offset_to_lineno_entry>::const_iterator it
2203      = offset_to_iterator(offsets, offset);
2204  if (it == offsets->end())
2205    return "";
2206
2207  std::string result = this->format_file_lineno(*it);
2208  gold_debug(DEBUG_LOCATION, "do_addr2line: canonical result: %s",
2209	     result.c_str());
2210  if (other_lines != NULL)
2211    {
2212      unsigned int last_file_num = it->file_num;
2213      int last_line_num = it->line_num;
2214      // Return up to 4 more locations from the beginning of the function
2215      // for fuzzy matching.
2216      for (++it; it != offsets->end(); ++it)
2217	{
2218	  if (it->offset == offset && it->line_num == -1)
2219	    continue;  // The end of a previous function.
2220	  if (it->line_num == -1)
2221	    break;  // The end of the current function.
2222	  if (it->file_num != last_file_num || it->line_num != last_line_num)
2223	    {
2224	      other_lines->push_back(this->format_file_lineno(*it));
2225	      gold_debug(DEBUG_LOCATION, "do_addr2line: other: %s",
2226			 other_lines->back().c_str());
2227	      last_file_num = it->file_num;
2228	      last_line_num = it->line_num;
2229	    }
2230	  if (it->offset > offset && other_lines->size() >= 4)
2231	    break;
2232	}
2233    }
2234
2235  return result;
2236}
2237
2238// Convert the file_num + line_num into a string.
2239
2240template<int size, bool big_endian>
2241std::string
2242Sized_dwarf_line_info<size, big_endian>::format_file_lineno(
2243    const Offset_to_lineno_entry& loc) const
2244{
2245  std::string ret;
2246
2247  gold_assert(loc.header_num < static_cast<int>(this->files_.size()));
2248  gold_assert(loc.file_num
2249	      < static_cast<unsigned int>(this->files_[loc.header_num].size()));
2250  const std::pair<int, std::string>& filename_pair
2251      = this->files_[loc.header_num][loc.file_num];
2252  const std::string& filename = filename_pair.second;
2253
2254  gold_assert(loc.header_num < static_cast<int>(this->directories_.size()));
2255  gold_assert(filename_pair.first
2256              < static_cast<int>(this->directories_[loc.header_num].size()));
2257  const std::string& dirname
2258      = this->directories_[loc.header_num][filename_pair.first];
2259
2260  if (!dirname.empty())
2261    {
2262      ret += dirname;
2263      ret += "/";
2264    }
2265  ret += filename;
2266  if (ret.empty())
2267    ret = "(unknown)";
2268
2269  char buffer[64];   // enough to hold a line number
2270  snprintf(buffer, sizeof(buffer), "%d", loc.line_num);
2271  ret += ":";
2272  ret += buffer;
2273
2274  return ret;
2275}
2276
2277// Dwarf_line_info routines.
2278
2279static unsigned int next_generation_count = 0;
2280
2281struct Addr2line_cache_entry
2282{
2283  Object* object;
2284  unsigned int shndx;
2285  Dwarf_line_info* dwarf_line_info;
2286  unsigned int generation_count;
2287  unsigned int access_count;
2288
2289  Addr2line_cache_entry(Object* o, unsigned int s, Dwarf_line_info* d)
2290      : object(o), shndx(s), dwarf_line_info(d),
2291        generation_count(next_generation_count), access_count(0)
2292  {
2293    if (next_generation_count < (1U << 31))
2294      ++next_generation_count;
2295  }
2296};
2297// We expect this cache to be small, so don't bother with a hashtable
2298// or priority queue or anything: just use a simple vector.
2299static std::vector<Addr2line_cache_entry> addr2line_cache;
2300
2301std::string
2302Dwarf_line_info::one_addr2line(Object* object,
2303                               unsigned int shndx, off_t offset,
2304                               size_t cache_size,
2305                               std::vector<std::string>* other_lines)
2306{
2307  Dwarf_line_info* lineinfo = NULL;
2308  std::vector<Addr2line_cache_entry>::iterator it;
2309
2310  // First, check the cache.  If we hit, update the counts.
2311  for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
2312    {
2313      if (it->object == object && it->shndx == shndx)
2314        {
2315          lineinfo = it->dwarf_line_info;
2316          it->generation_count = next_generation_count;
2317          // We cap generation_count at 2^31 -1 to avoid overflow.
2318          if (next_generation_count < (1U << 31))
2319            ++next_generation_count;
2320          // We cap access_count at 31 so 2^access_count doesn't overflow
2321          if (it->access_count < 31)
2322            ++it->access_count;
2323          break;
2324        }
2325    }
2326
2327  // If we don't hit the cache, create a new object and insert into the
2328  // cache.
2329  if (lineinfo == NULL)
2330  {
2331    switch (parameters->size_and_endianness())
2332      {
2333#ifdef HAVE_TARGET_32_LITTLE
2334        case Parameters::TARGET_32_LITTLE:
2335          lineinfo = new Sized_dwarf_line_info<32, false>(object, shndx); break;
2336#endif
2337#ifdef HAVE_TARGET_32_BIG
2338        case Parameters::TARGET_32_BIG:
2339          lineinfo = new Sized_dwarf_line_info<32, true>(object, shndx); break;
2340#endif
2341#ifdef HAVE_TARGET_64_LITTLE
2342        case Parameters::TARGET_64_LITTLE:
2343          lineinfo = new Sized_dwarf_line_info<64, false>(object, shndx); break;
2344#endif
2345#ifdef HAVE_TARGET_64_BIG
2346        case Parameters::TARGET_64_BIG:
2347          lineinfo = new Sized_dwarf_line_info<64, true>(object, shndx); break;
2348#endif
2349        default:
2350          gold_unreachable();
2351      }
2352    addr2line_cache.push_back(Addr2line_cache_entry(object, shndx, lineinfo));
2353  }
2354
2355  // Now that we have our object, figure out the answer
2356  std::string retval = lineinfo->addr2line(shndx, offset, other_lines);
2357
2358  // Finally, if our cache has grown too big, delete old objects.  We
2359  // assume the common (probably only) case is deleting only one object.
2360  // We use a pretty simple scheme to evict: function of LRU and MFU.
2361  while (addr2line_cache.size() > cache_size)
2362    {
2363      unsigned int lowest_score = ~0U;
2364      std::vector<Addr2line_cache_entry>::iterator lowest
2365          = addr2line_cache.end();
2366      for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
2367        {
2368          const unsigned int score = (it->generation_count
2369                                      + (1U << it->access_count));
2370          if (score < lowest_score)
2371            {
2372              lowest_score = score;
2373              lowest = it;
2374            }
2375        }
2376      if (lowest != addr2line_cache.end())
2377        {
2378          delete lowest->dwarf_line_info;
2379          addr2line_cache.erase(lowest);
2380        }
2381    }
2382
2383  return retval;
2384}
2385
2386void
2387Dwarf_line_info::clear_addr2line_cache()
2388{
2389  for (std::vector<Addr2line_cache_entry>::iterator it = addr2line_cache.begin();
2390       it != addr2line_cache.end();
2391       ++it)
2392    delete it->dwarf_line_info;
2393  addr2line_cache.clear();
2394}
2395
2396#ifdef HAVE_TARGET_32_LITTLE
2397template
2398class Sized_dwarf_line_info<32, false>;
2399#endif
2400
2401#ifdef HAVE_TARGET_32_BIG
2402template
2403class Sized_dwarf_line_info<32, true>;
2404#endif
2405
2406#ifdef HAVE_TARGET_64_LITTLE
2407template
2408class Sized_dwarf_line_info<64, false>;
2409#endif
2410
2411#ifdef HAVE_TARGET_64_BIG
2412template
2413class Sized_dwarf_line_info<64, true>;
2414#endif
2415
2416} // End namespace gold.
2417