1/* SPARC-specific support for 64-bit ELF
2   Copyright (C) 1993-2017 Free Software Foundation, Inc.
3
4   This file is part of BFD, the Binary File Descriptor library.
5
6   This program is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 3 of the License, or
9   (at your option) any later version.
10
11   This program is distributed in the hope that it will be useful,
12   but WITHOUT ANY WARRANTY; without even the implied warranty of
13   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14   GNU General Public License for more details.
15
16   You should have received a copy of the GNU General Public License
17   along with this program; if not, write to the Free Software
18   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19   MA 02110-1301, USA.  */
20
21#include "sysdep.h"
22#include "bfd.h"
23#include "libbfd.h"
24#include "elf-bfd.h"
25#include "elf/sparc.h"
26#include "opcode/sparc.h"
27#include "elfxx-sparc.h"
28
29/* In case we're on a 32-bit machine, construct a 64-bit "-1" value.  */
30#define MINUS_ONE (~ (bfd_vma) 0)
31
32/* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
33   section can represent up to two relocs, we must tell the user to allocate
34   more space.  */
35
36static long
37elf64_sparc_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED, asection *sec)
38{
39  return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
40}
41
42static long
43elf64_sparc_get_dynamic_reloc_upper_bound (bfd *abfd)
44{
45  return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
46}
47
48/* Read  relocations for ASECT from REL_HDR.  There are RELOC_COUNT of
49   them.  We cannot use generic elf routines for this,  because R_SPARC_OLO10
50   has secondary addend in ELF64_R_TYPE_DATA.  We handle it as two relocations
51   for the same location,  R_SPARC_LO10 and R_SPARC_13.  */
52
53static bfd_boolean
54elf64_sparc_slurp_one_reloc_table (bfd *abfd, asection *asect,
55				   Elf_Internal_Shdr *rel_hdr,
56				   asymbol **symbols, bfd_boolean dynamic)
57{
58  void * allocated = NULL;
59  bfd_byte *native_relocs;
60  arelent *relent;
61  unsigned int i;
62  int entsize;
63  bfd_size_type count;
64  arelent *relents;
65
66  allocated = bfd_malloc (rel_hdr->sh_size);
67  if (allocated == NULL)
68    goto error_return;
69
70  if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
71      || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
72    goto error_return;
73
74  native_relocs = (bfd_byte *) allocated;
75
76  relents = asect->relocation + canon_reloc_count (asect);
77
78  entsize = rel_hdr->sh_entsize;
79  BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
80
81  count = rel_hdr->sh_size / entsize;
82
83  for (i = 0, relent = relents; i < count;
84       i++, relent++, native_relocs += entsize)
85    {
86      Elf_Internal_Rela rela;
87      unsigned int r_type;
88
89      bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
90
91      /* The address of an ELF reloc is section relative for an object
92	 file, and absolute for an executable file or shared library.
93	 The address of a normal BFD reloc is always section relative,
94	 and the address of a dynamic reloc is absolute..  */
95      if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
96	relent->address = rela.r_offset;
97      else
98	relent->address = rela.r_offset - asect->vma;
99
100      if (ELF64_R_SYM (rela.r_info) == STN_UNDEF
101	  /* PR 17512: file: 996185f8.  */
102	  || ELF64_R_SYM (rela.r_info) > bfd_get_symcount (abfd))
103	relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
104      else
105	{
106	  asymbol **ps, *s;
107
108	  ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
109	  s = *ps;
110
111	  /* Canonicalize ELF section symbols.  FIXME: Why?  */
112	  if ((s->flags & BSF_SECTION_SYM) == 0)
113	    relent->sym_ptr_ptr = ps;
114	  else
115	    relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
116	}
117
118      relent->addend = rela.r_addend;
119
120      r_type = ELF64_R_TYPE_ID (rela.r_info);
121      if (r_type == R_SPARC_OLO10)
122	{
123	  relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_LO10);
124	  relent[1].address = relent->address;
125	  relent++;
126	  relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
127	  relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
128	  relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_13);
129	}
130      else
131	relent->howto = _bfd_sparc_elf_info_to_howto_ptr (r_type);
132    }
133
134  canon_reloc_count (asect) += relent - relents;
135
136  if (allocated != NULL)
137    free (allocated);
138
139  return TRUE;
140
141 error_return:
142  if (allocated != NULL)
143    free (allocated);
144  return FALSE;
145}
146
147/* Read in and swap the external relocs.  */
148
149static bfd_boolean
150elf64_sparc_slurp_reloc_table (bfd *abfd, asection *asect,
151			       asymbol **symbols, bfd_boolean dynamic)
152{
153  struct bfd_elf_section_data * const d = elf_section_data (asect);
154  Elf_Internal_Shdr *rel_hdr;
155  Elf_Internal_Shdr *rel_hdr2;
156  bfd_size_type amt;
157
158  if (asect->relocation != NULL)
159    return TRUE;
160
161  if (! dynamic)
162    {
163      if ((asect->flags & SEC_RELOC) == 0
164	  || asect->reloc_count == 0)
165	return TRUE;
166
167      rel_hdr = d->rel.hdr;
168      rel_hdr2 = d->rela.hdr;
169
170      BFD_ASSERT ((rel_hdr && asect->rel_filepos == rel_hdr->sh_offset)
171		  || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
172    }
173  else
174    {
175      /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
176	 case because relocations against this section may use the
177	 dynamic symbol table, and in that case bfd_section_from_shdr
178	 in elf.c does not update the RELOC_COUNT.  */
179      if (asect->size == 0)
180	return TRUE;
181
182      rel_hdr = &d->this_hdr;
183      asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
184      rel_hdr2 = NULL;
185    }
186
187  amt = asect->reloc_count;
188  amt *= 2 * sizeof (arelent);
189  asect->relocation = (arelent *) bfd_alloc (abfd, amt);
190  if (asect->relocation == NULL)
191    return FALSE;
192
193  /* The elf64_sparc_slurp_one_reloc_table routine increments
194     canon_reloc_count.  */
195  canon_reloc_count (asect) = 0;
196
197  if (rel_hdr
198      && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
199					     dynamic))
200    return FALSE;
201
202  if (rel_hdr2
203      && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
204					     dynamic))
205    return FALSE;
206
207  return TRUE;
208}
209
210/* Canonicalize the relocs.  */
211
212static long
213elf64_sparc_canonicalize_reloc (bfd *abfd, sec_ptr section,
214				arelent **relptr, asymbol **symbols)
215{
216  arelent *tblptr;
217  unsigned int i;
218  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
219
220  if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
221    return -1;
222
223  tblptr = section->relocation;
224  for (i = 0; i < canon_reloc_count (section); i++)
225    *relptr++ = tblptr++;
226
227  *relptr = NULL;
228
229  return canon_reloc_count (section);
230}
231
232
233/* Canonicalize the dynamic relocation entries.  Note that we return
234   the dynamic relocations as a single block, although they are
235   actually associated with particular sections; the interface, which
236   was designed for SunOS style shared libraries, expects that there
237   is only one set of dynamic relocs.  Any section that was actually
238   installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
239   the dynamic symbol table, is considered to be a dynamic reloc
240   section.  */
241
242static long
243elf64_sparc_canonicalize_dynamic_reloc (bfd *abfd, arelent **storage,
244					asymbol **syms)
245{
246  asection *s;
247  long ret;
248
249  if (elf_dynsymtab (abfd) == 0)
250    {
251      bfd_set_error (bfd_error_invalid_operation);
252      return -1;
253    }
254
255  ret = 0;
256  for (s = abfd->sections; s != NULL; s = s->next)
257    {
258      if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
259	  && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
260	{
261	  arelent *p;
262	  long count, i;
263
264	  if (! elf64_sparc_slurp_reloc_table (abfd, s, syms, TRUE))
265	    return -1;
266	  count = canon_reloc_count (s);
267	  p = s->relocation;
268	  for (i = 0; i < count; i++)
269	    *storage++ = p++;
270	  ret += count;
271	}
272    }
273
274  *storage = NULL;
275
276  return ret;
277}
278
279/* Write out the relocs.  */
280
281static void
282elf64_sparc_write_relocs (bfd *abfd, asection *sec, void * data)
283{
284  bfd_boolean *failedp = (bfd_boolean *) data;
285  Elf_Internal_Shdr *rela_hdr;
286  bfd_vma addr_offset;
287  Elf64_External_Rela *outbound_relocas, *src_rela;
288  unsigned int idx, count;
289  asymbol *last_sym = 0;
290  int last_sym_idx = 0;
291
292  /* If we have already failed, don't do anything.  */
293  if (*failedp)
294    return;
295
296  if ((sec->flags & SEC_RELOC) == 0)
297    return;
298
299  /* The linker backend writes the relocs out itself, and sets the
300     reloc_count field to zero to inhibit writing them here.  Also,
301     sometimes the SEC_RELOC flag gets set even when there aren't any
302     relocs.  */
303  if (sec->reloc_count == 0)
304    return;
305
306  /* We can combine two relocs that refer to the same address
307     into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
308     latter is R_SPARC_13 with no associated symbol.  */
309  count = 0;
310  for (idx = 0; idx < sec->reloc_count; idx++)
311    {
312      bfd_vma addr;
313
314      ++count;
315
316      addr = sec->orelocation[idx]->address;
317      if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
318	  && idx < sec->reloc_count - 1)
319	{
320	  arelent *r = sec->orelocation[idx + 1];
321
322	  if (r->howto->type == R_SPARC_13
323	      && r->address == addr
324	      && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
325	      && (*r->sym_ptr_ptr)->value == 0)
326	    ++idx;
327	}
328    }
329
330  rela_hdr = elf_section_data (sec)->rela.hdr;
331
332  rela_hdr->sh_size = rela_hdr->sh_entsize * count;
333  rela_hdr->contents = bfd_alloc (abfd, rela_hdr->sh_size);
334  if (rela_hdr->contents == NULL)
335    {
336      *failedp = TRUE;
337      return;
338    }
339
340  /* Figure out whether the relocations are RELA or REL relocations.  */
341  if (rela_hdr->sh_type != SHT_RELA)
342    abort ();
343
344  /* The address of an ELF reloc is section relative for an object
345     file, and absolute for an executable file or shared library.
346     The address of a BFD reloc is always section relative.  */
347  addr_offset = 0;
348  if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
349    addr_offset = sec->vma;
350
351  /* orelocation has the data, reloc_count has the count...  */
352  outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
353  src_rela = outbound_relocas;
354
355  for (idx = 0; idx < sec->reloc_count; idx++)
356    {
357      Elf_Internal_Rela dst_rela;
358      arelent *ptr;
359      asymbol *sym;
360      int n;
361
362      ptr = sec->orelocation[idx];
363      sym = *ptr->sym_ptr_ptr;
364      if (sym == last_sym)
365	n = last_sym_idx;
366      else if (bfd_is_abs_section (sym->section) && sym->value == 0)
367	n = STN_UNDEF;
368      else
369	{
370	  last_sym = sym;
371	  n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
372	  if (n < 0)
373	    {
374	      *failedp = TRUE;
375	      return;
376	    }
377	  last_sym_idx = n;
378	}
379
380      if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
381	  && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
382	  && ! _bfd_elf_validate_reloc (abfd, ptr))
383	{
384	  *failedp = TRUE;
385	  return;
386	}
387
388      if (ptr->howto->type == R_SPARC_LO10
389	  && idx < sec->reloc_count - 1)
390	{
391	  arelent *r = sec->orelocation[idx + 1];
392
393	  if (r->howto->type == R_SPARC_13
394	      && r->address == ptr->address
395	      && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
396	      && (*r->sym_ptr_ptr)->value == 0)
397	    {
398	      idx++;
399	      dst_rela.r_info
400		= ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
401						      R_SPARC_OLO10));
402	    }
403	  else
404	    dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
405	}
406      else
407	dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
408
409      dst_rela.r_offset = ptr->address + addr_offset;
410      dst_rela.r_addend = ptr->addend;
411
412      bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
413      ++src_rela;
414    }
415}
416
417/* Hook called by the linker routine which adds symbols from an object
418   file.  We use it for STT_REGISTER symbols.  */
419
420static bfd_boolean
421elf64_sparc_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
422			     Elf_Internal_Sym *sym, const char **namep,
423			     flagword *flagsp ATTRIBUTE_UNUSED,
424			     asection **secp ATTRIBUTE_UNUSED,
425			     bfd_vma *valp ATTRIBUTE_UNUSED)
426{
427  static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
428
429  if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
430      && (abfd->flags & DYNAMIC) == 0
431      && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
432    elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_ifunc;
433
434  if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
435    {
436      int reg;
437      struct _bfd_sparc_elf_app_reg *p;
438
439      reg = (int)sym->st_value;
440      switch (reg & ~1)
441	{
442	case 2: reg -= 2; break;
443	case 6: reg -= 4; break;
444	default:
445	  _bfd_error_handler
446            (_("%B: Only registers %%g[2367] can be declared using STT_REGISTER"),
447             abfd);
448	  return FALSE;
449	}
450
451      if (info->output_bfd->xvec != abfd->xvec
452	  || (abfd->flags & DYNAMIC) != 0)
453        {
454	  /* STT_REGISTER only works when linking an elf64_sparc object.
455	     If STT_REGISTER comes from a dynamic object, don't put it into
456	     the output bfd.  The dynamic linker will recheck it.  */
457	  *namep = NULL;
458	  return TRUE;
459        }
460
461      p = _bfd_sparc_elf_hash_table(info)->app_regs + reg;
462
463      if (p->name != NULL && strcmp (p->name, *namep))
464	{
465	  _bfd_error_handler
466	    /* xgettext:c-format */
467            (_("Register %%g%d used incompatibly: %s in %B, previously %s in %B"),
468             abfd, p->abfd, (int) sym->st_value,
469             **namep ? *namep : "#scratch",
470             *p->name ? p->name : "#scratch");
471	  return FALSE;
472	}
473
474      if (p->name == NULL)
475	{
476	  if (**namep)
477	    {
478	      struct elf_link_hash_entry *h;
479
480	      h = (struct elf_link_hash_entry *)
481		bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
482
483	      if (h != NULL)
484		{
485		  unsigned char type = h->type;
486
487		  if (type > STT_FUNC)
488		    type = 0;
489		  _bfd_error_handler
490		    /* xgettext:c-format */
491		    (_("Symbol `%s' has differing types: REGISTER in %B, previously %s in %B"),
492		     abfd, p->abfd, *namep, stt_types[type]);
493		  return FALSE;
494		}
495
496	      p->name = bfd_hash_allocate (&info->hash->table,
497					   strlen (*namep) + 1);
498	      if (!p->name)
499		return FALSE;
500
501	      strcpy (p->name, *namep);
502	    }
503	  else
504	    p->name = "";
505	  p->bind = ELF_ST_BIND (sym->st_info);
506	  p->abfd = abfd;
507	  p->shndx = sym->st_shndx;
508	}
509      else
510	{
511	  if (p->bind == STB_WEAK
512	      && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
513	    {
514	      p->bind = STB_GLOBAL;
515	      p->abfd = abfd;
516	    }
517	}
518      *namep = NULL;
519      return TRUE;
520    }
521  else if (*namep && **namep
522	   && info->output_bfd->xvec == abfd->xvec)
523    {
524      int i;
525      struct _bfd_sparc_elf_app_reg *p;
526
527      p = _bfd_sparc_elf_hash_table(info)->app_regs;
528      for (i = 0; i < 4; i++, p++)
529	if (p->name != NULL && ! strcmp (p->name, *namep))
530	  {
531	    unsigned char type = ELF_ST_TYPE (sym->st_info);
532
533	    if (type > STT_FUNC)
534	      type = 0;
535	    _bfd_error_handler
536	      /* xgettext:c-format */
537	      (_("Symbol `%s' has differing types: %s in %B, previously REGISTER in %B"),
538	       abfd, p->abfd, *namep, stt_types[type]);
539	    return FALSE;
540	  }
541    }
542  return TRUE;
543}
544
545/* This function takes care of emitting STT_REGISTER symbols
546   which we cannot easily keep in the symbol hash table.  */
547
548static bfd_boolean
549elf64_sparc_output_arch_syms (bfd *output_bfd ATTRIBUTE_UNUSED,
550			      struct bfd_link_info *info,
551			      void * flaginfo,
552			      int (*func) (void *, const char *,
553					   Elf_Internal_Sym *,
554					   asection *,
555					   struct elf_link_hash_entry *))
556{
557  int reg;
558  struct _bfd_sparc_elf_app_reg *app_regs =
559    _bfd_sparc_elf_hash_table(info)->app_regs;
560  Elf_Internal_Sym sym;
561
562  /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
563     at the end of the dynlocal list, so they came at the end of the local
564     symbols in the symtab.  Except that they aren't STB_LOCAL, so we need
565     to back up symtab->sh_info.  */
566  if (elf_hash_table (info)->dynlocal)
567    {
568      bfd * dynobj = elf_hash_table (info)->dynobj;
569      asection *dynsymsec = bfd_get_linker_section (dynobj, ".dynsym");
570      struct elf_link_local_dynamic_entry *e;
571
572      for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
573	if (e->input_indx == -1)
574	  break;
575      if (e)
576	{
577	  elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
578	    = e->dynindx;
579	}
580    }
581
582  if (info->strip == strip_all)
583    return TRUE;
584
585  for (reg = 0; reg < 4; reg++)
586    if (app_regs [reg].name != NULL)
587      {
588	if (info->strip == strip_some
589	    && bfd_hash_lookup (info->keep_hash,
590				app_regs [reg].name,
591				FALSE, FALSE) == NULL)
592	  continue;
593
594	sym.st_value = reg < 2 ? reg + 2 : reg + 4;
595	sym.st_size = 0;
596	sym.st_other = 0;
597	sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
598	sym.st_shndx = app_regs [reg].shndx;
599	sym.st_target_internal = 0;
600	if ((*func) (flaginfo, app_regs [reg].name, &sym,
601		     sym.st_shndx == SHN_ABS
602		     ? bfd_abs_section_ptr : bfd_und_section_ptr,
603		     NULL) != 1)
604	  return FALSE;
605      }
606
607  return TRUE;
608}
609
610static int
611elf64_sparc_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
612{
613  if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
614    return STT_REGISTER;
615  else
616    return type;
617}
618
619/* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
620   even in SHN_UNDEF section.  */
621
622static void
623elf64_sparc_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
624{
625  elf_symbol_type *elfsym;
626
627  elfsym = (elf_symbol_type *) asym;
628  if (elfsym->internal_elf_sym.st_info
629      == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
630    {
631      asym->flags |= BSF_GLOBAL;
632    }
633}
634
635
636/* Functions for dealing with the e_flags field.  */
637
638/* Merge backend specific data from an object file to the output
639   object file when linking.  */
640
641static bfd_boolean
642elf64_sparc_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
643{
644  bfd *obfd = info->output_bfd;
645  bfd_boolean error;
646  flagword new_flags, old_flags;
647  int new_mm, old_mm;
648
649  if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
650      || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
651    return TRUE;
652
653  new_flags = elf_elfheader (ibfd)->e_flags;
654  old_flags = elf_elfheader (obfd)->e_flags;
655
656  if (!elf_flags_init (obfd))   /* First call, no flags set */
657    {
658      elf_flags_init (obfd) = TRUE;
659      elf_elfheader (obfd)->e_flags = new_flags;
660    }
661
662  else if (new_flags == old_flags)      /* Compatible flags are ok */
663    ;
664
665  else                                  /* Incompatible flags */
666    {
667      error = FALSE;
668
669#define EF_SPARC_ISA_EXTENSIONS \
670  (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
671
672      if ((ibfd->flags & DYNAMIC) != 0)
673	{
674	  /* We don't want dynamic objects memory ordering and
675	     architecture to have any role. That's what dynamic linker
676	     should do.  */
677	  new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
678	  new_flags |= (old_flags
679			& (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
680	}
681      else
682	{
683	  /* Choose the highest architecture requirements.  */
684	  old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
685	  new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
686	  if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
687	      && (old_flags & EF_SPARC_HAL_R1))
688	    {
689	      error = TRUE;
690	      _bfd_error_handler
691		(_("%B: linking UltraSPARC specific with HAL specific code"),
692		 ibfd);
693	    }
694	  /* Choose the most restrictive memory ordering.  */
695	  old_mm = (old_flags & EF_SPARCV9_MM);
696	  new_mm = (new_flags & EF_SPARCV9_MM);
697	  old_flags &= ~EF_SPARCV9_MM;
698	  new_flags &= ~EF_SPARCV9_MM;
699	  if (new_mm < old_mm)
700	    old_mm = new_mm;
701	  old_flags |= old_mm;
702	  new_flags |= old_mm;
703	}
704
705      /* Warn about any other mismatches */
706      if (new_flags != old_flags)
707        {
708          error = TRUE;
709	  _bfd_error_handler
710	    /* xgettext:c-format */
711            (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
712             ibfd, (long) new_flags, (long) old_flags);
713        }
714
715      elf_elfheader (obfd)->e_flags = old_flags;
716
717      if (error)
718        {
719          bfd_set_error (bfd_error_bad_value);
720          return FALSE;
721        }
722    }
723  return _bfd_sparc_elf_merge_private_bfd_data (ibfd, info);
724}
725
726/* MARCO: Set the correct entry size for the .stab section.  */
727
728static bfd_boolean
729elf64_sparc_fake_sections (bfd *abfd ATTRIBUTE_UNUSED,
730			   Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED,
731			   asection *sec)
732{
733  const char *name;
734
735  name = bfd_get_section_name (abfd, sec);
736
737  if (strcmp (name, ".stab") == 0)
738    {
739      /* Even in the 64bit case the stab entries are only 12 bytes long.  */
740      elf_section_data (sec)->this_hdr.sh_entsize = 12;
741    }
742
743  return TRUE;
744}
745
746/* Print a STT_REGISTER symbol to file FILE.  */
747
748static const char *
749elf64_sparc_print_symbol_all (bfd *abfd ATTRIBUTE_UNUSED, void * filep,
750			      asymbol *symbol)
751{
752  FILE *file = (FILE *) filep;
753  int reg, type;
754
755  if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
756      != STT_REGISTER)
757    return NULL;
758
759  reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
760  type = symbol->flags;
761  fprintf (file, "REG_%c%c%11s%c%c    R", "GOLI" [reg / 8], '0' + (reg & 7), "",
762		 ((type & BSF_LOCAL)
763		  ? (type & BSF_GLOBAL) ? '!' : 'l'
764	          : (type & BSF_GLOBAL) ? 'g' : ' '),
765	         (type & BSF_WEAK) ? 'w' : ' ');
766  if (symbol->name == NULL || symbol->name [0] == '\0')
767    return "#scratch";
768  else
769    return symbol->name;
770}
771
772static enum elf_reloc_type_class
773elf64_sparc_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
774			      const asection *rel_sec ATTRIBUTE_UNUSED,
775			      const Elf_Internal_Rela *rela)
776{
777  switch ((int) ELF64_R_TYPE (rela->r_info))
778    {
779    case R_SPARC_RELATIVE:
780      return reloc_class_relative;
781    case R_SPARC_JMP_SLOT:
782      return reloc_class_plt;
783    case R_SPARC_COPY:
784      return reloc_class_copy;
785    default:
786      return reloc_class_normal;
787    }
788}
789
790/* Relocations in the 64 bit SPARC ELF ABI are more complex than in
791   standard ELF, because R_SPARC_OLO10 has secondary addend in
792   ELF64_R_TYPE_DATA field.  This structure is used to redirect the
793   relocation handling routines.  */
794
795const struct elf_size_info elf64_sparc_size_info =
796{
797  sizeof (Elf64_External_Ehdr),
798  sizeof (Elf64_External_Phdr),
799  sizeof (Elf64_External_Shdr),
800  sizeof (Elf64_External_Rel),
801  sizeof (Elf64_External_Rela),
802  sizeof (Elf64_External_Sym),
803  sizeof (Elf64_External_Dyn),
804  sizeof (Elf_External_Note),
805  4,		/* hash-table entry size.  */
806  /* Internal relocations per external relocations.
807     For link purposes we use just 1 internal per
808     1 external, for assembly and slurp symbol table
809     we use 2.  */
810  1,
811  64,		/* arch_size.  */
812  3,		/* log_file_align.  */
813  ELFCLASS64,
814  EV_CURRENT,
815  bfd_elf64_write_out_phdrs,
816  bfd_elf64_write_shdrs_and_ehdr,
817  bfd_elf64_checksum_contents,
818  elf64_sparc_write_relocs,
819  bfd_elf64_swap_symbol_in,
820  bfd_elf64_swap_symbol_out,
821  elf64_sparc_slurp_reloc_table,
822  bfd_elf64_slurp_symbol_table,
823  bfd_elf64_swap_dyn_in,
824  bfd_elf64_swap_dyn_out,
825  bfd_elf64_swap_reloc_in,
826  bfd_elf64_swap_reloc_out,
827  bfd_elf64_swap_reloca_in,
828  bfd_elf64_swap_reloca_out
829};
830
831#define TARGET_BIG_SYM	sparc_elf64_vec
832#define TARGET_BIG_NAME	"elf64-sparc"
833#define ELF_ARCH	bfd_arch_sparc
834#define ELF_MAXPAGESIZE 0x100000
835#define ELF_COMMONPAGESIZE 0x2000
836
837/* This is the official ABI value.  */
838#define ELF_MACHINE_CODE EM_SPARCV9
839
840/* This is the value that we used before the ABI was released.  */
841#define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
842
843#define elf_backend_reloc_type_class \
844  elf64_sparc_reloc_type_class
845#define bfd_elf64_get_reloc_upper_bound \
846  elf64_sparc_get_reloc_upper_bound
847#define bfd_elf64_get_dynamic_reloc_upper_bound \
848  elf64_sparc_get_dynamic_reloc_upper_bound
849#define bfd_elf64_canonicalize_reloc \
850  elf64_sparc_canonicalize_reloc
851#define bfd_elf64_canonicalize_dynamic_reloc \
852  elf64_sparc_canonicalize_dynamic_reloc
853#define elf_backend_add_symbol_hook \
854  elf64_sparc_add_symbol_hook
855#define elf_backend_get_symbol_type \
856  elf64_sparc_get_symbol_type
857#define elf_backend_symbol_processing \
858  elf64_sparc_symbol_processing
859#define elf_backend_print_symbol_all \
860  elf64_sparc_print_symbol_all
861#define elf_backend_output_arch_syms \
862  elf64_sparc_output_arch_syms
863#define bfd_elf64_bfd_merge_private_bfd_data \
864  elf64_sparc_merge_private_bfd_data
865#define elf_backend_fake_sections \
866  elf64_sparc_fake_sections
867#define elf_backend_size_info \
868  elf64_sparc_size_info
869
870#define elf_backend_plt_sym_val	\
871  _bfd_sparc_elf_plt_sym_val
872#define bfd_elf64_bfd_link_hash_table_create \
873  _bfd_sparc_elf_link_hash_table_create
874#define elf_info_to_howto \
875  _bfd_sparc_elf_info_to_howto
876#define elf_backend_copy_indirect_symbol \
877  _bfd_sparc_elf_copy_indirect_symbol
878#define bfd_elf64_bfd_reloc_type_lookup \
879  _bfd_sparc_elf_reloc_type_lookup
880#define bfd_elf64_bfd_reloc_name_lookup \
881  _bfd_sparc_elf_reloc_name_lookup
882#define bfd_elf64_bfd_relax_section \
883  _bfd_sparc_elf_relax_section
884#define bfd_elf64_new_section_hook \
885  _bfd_sparc_elf_new_section_hook
886
887#define elf_backend_create_dynamic_sections \
888  _bfd_sparc_elf_create_dynamic_sections
889#define elf_backend_relocs_compatible \
890  _bfd_elf_relocs_compatible
891#define elf_backend_check_relocs \
892  _bfd_sparc_elf_check_relocs
893#define elf_backend_adjust_dynamic_symbol \
894  _bfd_sparc_elf_adjust_dynamic_symbol
895#define elf_backend_omit_section_dynsym \
896  _bfd_sparc_elf_omit_section_dynsym
897#define elf_backend_size_dynamic_sections \
898  _bfd_sparc_elf_size_dynamic_sections
899#define elf_backend_relocate_section \
900  _bfd_sparc_elf_relocate_section
901#define elf_backend_finish_dynamic_symbol \
902  _bfd_sparc_elf_finish_dynamic_symbol
903#define elf_backend_finish_dynamic_sections \
904  _bfd_sparc_elf_finish_dynamic_sections
905
906#define bfd_elf64_mkobject \
907  _bfd_sparc_elf_mkobject
908#define elf_backend_object_p \
909  _bfd_sparc_elf_object_p
910#define elf_backend_gc_mark_hook \
911  _bfd_sparc_elf_gc_mark_hook
912#define elf_backend_gc_sweep_hook \
913  _bfd_sparc_elf_gc_sweep_hook
914#define elf_backend_init_index_section \
915  _bfd_elf_init_1_index_section
916
917#define elf_backend_can_gc_sections 1
918#define elf_backend_can_refcount 1
919#define elf_backend_want_got_plt 0
920#define elf_backend_plt_readonly 0
921#define elf_backend_want_plt_sym 1
922#define elf_backend_got_header_size 8
923#define elf_backend_want_dynrelro 1
924#define elf_backend_rela_normal 1
925
926/* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table.  */
927#define elf_backend_plt_alignment 8
928
929#include "elf64-target.h"
930
931/* FreeBSD support */
932#undef  TARGET_BIG_SYM
933#define TARGET_BIG_SYM sparc_elf64_fbsd_vec
934#undef  TARGET_BIG_NAME
935#define TARGET_BIG_NAME "elf64-sparc-freebsd"
936#undef	ELF_OSABI
937#define	ELF_OSABI ELFOSABI_FREEBSD
938
939#undef  elf64_bed
940#define elf64_bed				elf64_sparc_fbsd_bed
941
942#include "elf64-target.h"
943
944/* Solaris 2.  */
945
946#undef	TARGET_BIG_SYM
947#define	TARGET_BIG_SYM				sparc_elf64_sol2_vec
948#undef	TARGET_BIG_NAME
949#define	TARGET_BIG_NAME				"elf64-sparc-sol2"
950
951/* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
952   objects won't be recognized.  */
953#undef	ELF_OSABI
954
955#undef elf64_bed
956#define elf64_bed				elf64_sparc_sol2_bed
957
958/* The 64-bit static TLS arena size is rounded to the nearest 16-byte
959   boundary.  */
960#undef elf_backend_static_tls_alignment
961#define elf_backend_static_tls_alignment	16
962
963#include "elf64-target.h"
964