1/* BFD back-end for Renesas H8/300 COFF binaries.
2   Copyright (C) 1990-2017 Free Software Foundation, Inc.
3   Written by Steve Chamberlain, <sac@cygnus.com>.
4
5   This file is part of BFD, the Binary File Descriptor library.
6
7   This program is free software; you can redistribute it and/or modify
8   it under the terms of the GNU General Public License as published by
9   the Free Software Foundation; either version 3 of the License, or
10   (at your option) any later version.
11
12   This program is distributed in the hope that it will be useful,
13   but WITHOUT ANY WARRANTY; without even the implied warranty of
14   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15   GNU General Public License for more details.
16
17   You should have received a copy of the GNU General Public License
18   along with this program; if not, write to the Free Software
19   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20   MA 02110-1301, USA.  */
21
22#include "sysdep.h"
23#include "bfd.h"
24#include "libbfd.h"
25#include "bfdlink.h"
26#include "genlink.h"
27#include "coff/h8300.h"
28#include "coff/internal.h"
29#include "libcoff.h"
30#include "libiberty.h"
31
32#define COFF_DEFAULT_SECTION_ALIGNMENT_POWER (1)
33
34/* We derive a hash table from the basic BFD hash table to
35   hold entries in the function vector.  Aside from the
36   info stored by the basic hash table, we need the offset
37   of a particular entry within the hash table as well as
38   the offset where we'll add the next entry.  */
39
40struct funcvec_hash_entry
41  {
42    /* The basic hash table entry.  */
43    struct bfd_hash_entry root;
44
45    /* The offset within the vectors section where
46       this entry lives.  */
47    bfd_vma offset;
48  };
49
50struct funcvec_hash_table
51  {
52    /* The basic hash table.  */
53    struct bfd_hash_table root;
54
55    bfd *abfd;
56
57    /* Offset at which we'll add the next entry.  */
58    unsigned int offset;
59  };
60
61
62/* To lookup a value in the function vector hash table.  */
63#define funcvec_hash_lookup(table, string, create, copy) \
64  ((struct funcvec_hash_entry *) \
65   bfd_hash_lookup (&(table)->root, (string), (create), (copy)))
66
67/* The derived h8300 COFF linker table.  Note it's derived from
68   the generic linker hash table, not the COFF backend linker hash
69   table!  We use this to attach additional data structures we
70   need while linking on the h8300.  */
71struct h8300_coff_link_hash_table {
72  /* The main hash table.  */
73  struct generic_link_hash_table root;
74
75  /* Section for the vectors table.  This gets attached to a
76     random input bfd, we keep it here for easy access.  */
77  asection *vectors_sec;
78
79  /* Hash table of the functions we need to enter into the function
80     vector.  */
81  struct funcvec_hash_table *funcvec_hash_table;
82};
83
84static struct bfd_link_hash_table *h8300_coff_link_hash_table_create (bfd *);
85
86/* Get the H8/300 COFF linker hash table from a link_info structure.  */
87
88#define h8300_coff_hash_table(p) \
89  ((struct h8300_coff_link_hash_table *) ((coff_hash_table (p))))
90
91/* Initialize fields within a funcvec hash table entry.  Called whenever
92   a new entry is added to the funcvec hash table.  */
93
94static struct bfd_hash_entry *
95funcvec_hash_newfunc (struct bfd_hash_entry *entry,
96		      struct bfd_hash_table *gen_table,
97		      const char *string)
98{
99  struct funcvec_hash_entry *ret;
100  struct funcvec_hash_table *table;
101
102  ret = (struct funcvec_hash_entry *) entry;
103  table = (struct funcvec_hash_table *) gen_table;
104
105  /* Allocate the structure if it has not already been allocated by a
106     subclass.  */
107  if (ret == NULL)
108    ret = ((struct funcvec_hash_entry *)
109	   bfd_hash_allocate (gen_table,
110			      sizeof (struct funcvec_hash_entry)));
111  if (ret == NULL)
112    return NULL;
113
114  /* Call the allocation method of the superclass.  */
115  ret = ((struct funcvec_hash_entry *)
116	 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, gen_table, string));
117
118  if (ret == NULL)
119    return NULL;
120
121  /* Note where this entry will reside in the function vector table.  */
122  ret->offset = table->offset;
123
124  /* Bump the offset at which we store entries in the function
125     vector.  We'd like to bump up the size of the vectors section,
126     but it's not easily available here.  */
127 switch (bfd_get_mach (table->abfd))
128   {
129   case bfd_mach_h8300:
130   case bfd_mach_h8300hn:
131   case bfd_mach_h8300sn:
132     table->offset += 2;
133     break;
134   case bfd_mach_h8300h:
135   case bfd_mach_h8300s:
136     table->offset += 4;
137     break;
138   default:
139     return NULL;
140   }
141
142  /* Everything went OK.  */
143  return (struct bfd_hash_entry *) ret;
144}
145
146/* Initialize the function vector hash table.  */
147
148static bfd_boolean
149funcvec_hash_table_init (struct funcvec_hash_table *table,
150			 bfd *abfd,
151			 struct bfd_hash_entry *(*newfunc)
152			   (struct bfd_hash_entry *,
153			    struct bfd_hash_table *,
154			    const char *),
155			 unsigned int entsize)
156{
157  /* Initialize our local fields, then call the generic initialization
158     routine.  */
159  table->offset = 0;
160  table->abfd = abfd;
161  return (bfd_hash_table_init (&table->root, newfunc, entsize));
162}
163
164/* Create the derived linker hash table.  We use a derived hash table
165   basically to hold "static" information during an H8/300 coff link
166   without using static variables.  */
167
168static struct bfd_link_hash_table *
169h8300_coff_link_hash_table_create (bfd *abfd)
170{
171  struct h8300_coff_link_hash_table *ret;
172  bfd_size_type amt = sizeof (struct h8300_coff_link_hash_table);
173
174  ret = (struct h8300_coff_link_hash_table *) bfd_zmalloc (amt);
175  if (ret == NULL)
176    return NULL;
177  if (!_bfd_link_hash_table_init (&ret->root.root, abfd,
178				  _bfd_generic_link_hash_newfunc,
179				  sizeof (struct generic_link_hash_entry)))
180    {
181      free (ret);
182      return NULL;
183    }
184
185  return &ret->root.root;
186}
187
188/* Special handling for H8/300 relocs.
189   We only come here for pcrel stuff and return normally if not an -r link.
190   When doing -r, we can't do any arithmetic for the pcrel stuff, because
191   the code in reloc.c assumes that we can manipulate the targets of
192   the pcrel branches.  This isn't so, since the H8/300 can do relaxing,
193   which means that the gap after the instruction may not be enough to
194   contain the offset required for the branch, so we have to use only
195   the addend until the final link.  */
196
197static bfd_reloc_status_type
198special (bfd *      abfd ATTRIBUTE_UNUSED,
199	 arelent *  reloc_entry ATTRIBUTE_UNUSED,
200	 asymbol *  symbol ATTRIBUTE_UNUSED,
201	 void *     data ATTRIBUTE_UNUSED,
202	 asection * input_section ATTRIBUTE_UNUSED,
203	 bfd *      output_bfd,
204	 char **    error_message ATTRIBUTE_UNUSED)
205{
206  if (output_bfd == (bfd *) NULL)
207    return bfd_reloc_continue;
208
209  /* Adjust the reloc address to that in the output section.  */
210  reloc_entry->address += input_section->output_offset;
211  return bfd_reloc_ok;
212}
213
214static reloc_howto_type howto_table[] =
215{
216  HOWTO (R_RELBYTE, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8", FALSE, 0x000000ff, 0x000000ff, FALSE),
217  HOWTO (R_RELWORD, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
218  HOWTO (R_RELLONG, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "32", FALSE, 0xffffffff, 0xffffffff, FALSE),
219  HOWTO (R_PCRBYTE, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8", FALSE, 0x000000ff, 0x000000ff, TRUE),
220  HOWTO (R_PCRWORD, 0, 1, 16, TRUE, 0, complain_overflow_signed, special, "DISP16", FALSE, 0x0000ffff, 0x0000ffff, TRUE),
221  HOWTO (R_PCRLONG, 0, 2, 32, TRUE, 0, complain_overflow_signed, special, "DISP32", FALSE, 0xffffffff, 0xffffffff, TRUE),
222  HOWTO (R_MOV16B1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
223  HOWTO (R_MOV16B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
224  HOWTO (R_JMP1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16/pcrel", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
225  HOWTO (R_JMP2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pcrecl/16", FALSE, 0x000000ff, 0x000000ff, FALSE),
226  HOWTO (R_JMPL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "24/pcrell", FALSE, 0x00ffffff, 0x00ffffff, FALSE),
227  HOWTO (R_JMPL2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pc8/24", FALSE, 0x000000ff, 0x000000ff, FALSE),
228  HOWTO (R_MOV24B1, 0, 1, 32, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:24", FALSE, 0xffffffff, 0xffffffff, FALSE),
229  HOWTO (R_MOV24B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:24", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
230
231  /* An indirect reference to a function.  This causes the function's address
232     to be added to the function vector in lo-mem and puts the address of
233     the function vector's entry in the jsr instruction.  */
234  HOWTO (R_MEM_INDIRECT, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8/indirect", FALSE, 0x000000ff, 0x000000ff, FALSE),
235
236  /* Internal reloc for relaxing.  This is created when a 16-bit pc-relative
237     branch is turned into an 8-bit pc-relative branch.  */
238  HOWTO (R_PCRWORD_B, 0, 0, 8, TRUE, 0, complain_overflow_bitfield, special, "relaxed bCC:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
239
240  HOWTO (R_MOVL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,special, "32/24 relaxable move", FALSE, 0xffffffff, 0xffffffff, FALSE),
241
242  HOWTO (R_MOVL2, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "32/24 relaxed move", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
243
244  HOWTO (R_BCC_INV, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8 inverted", FALSE, 0x000000ff, 0x000000ff, TRUE),
245
246  HOWTO (R_JMP_DEL, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "Deleted jump", FALSE, 0x000000ff, 0x000000ff, TRUE),
247};
248
249/* Turn a howto into a reloc number.  */
250
251#define SELECT_RELOC(x,howto) \
252  { x.r_type = select_reloc (howto); }
253
254#define BADMAG(x) (H8300BADMAG (x) && H8300HBADMAG (x) && H8300SBADMAG (x) \
255				   && H8300HNBADMAG(x) && H8300SNBADMAG(x))
256#define H8300 1			/* Customize coffcode.h  */
257#define __A_MAGIC_SET__
258
259/* Code to swap in the reloc.  */
260#define SWAP_IN_RELOC_OFFSET	H_GET_32
261#define SWAP_OUT_RELOC_OFFSET	H_PUT_32
262#define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
263  dst->r_stuff[0] = 'S'; \
264  dst->r_stuff[1] = 'C';
265
266static int
267select_reloc (reloc_howto_type *howto)
268{
269  return howto->type;
270}
271
272/* Code to turn a r_type into a howto ptr, uses the above howto table.  */
273
274static void
275rtype2howto (arelent *internal, struct internal_reloc *dst)
276{
277  switch (dst->r_type)
278    {
279    case R_RELBYTE:
280      internal->howto = howto_table + 0;
281      break;
282    case R_RELWORD:
283      internal->howto = howto_table + 1;
284      break;
285    case R_RELLONG:
286      internal->howto = howto_table + 2;
287      break;
288    case R_PCRBYTE:
289      internal->howto = howto_table + 3;
290      break;
291    case R_PCRWORD:
292      internal->howto = howto_table + 4;
293      break;
294    case R_PCRLONG:
295      internal->howto = howto_table + 5;
296      break;
297    case R_MOV16B1:
298      internal->howto = howto_table + 6;
299      break;
300    case R_MOV16B2:
301      internal->howto = howto_table + 7;
302      break;
303    case R_JMP1:
304      internal->howto = howto_table + 8;
305      break;
306    case R_JMP2:
307      internal->howto = howto_table + 9;
308      break;
309    case R_JMPL1:
310      internal->howto = howto_table + 10;
311      break;
312    case R_JMPL2:
313      internal->howto = howto_table + 11;
314      break;
315    case R_MOV24B1:
316      internal->howto = howto_table + 12;
317      break;
318    case R_MOV24B2:
319      internal->howto = howto_table + 13;
320      break;
321    case R_MEM_INDIRECT:
322      internal->howto = howto_table + 14;
323      break;
324    case R_PCRWORD_B:
325      internal->howto = howto_table + 15;
326      break;
327    case R_MOVL1:
328      internal->howto = howto_table + 16;
329      break;
330    case R_MOVL2:
331      internal->howto = howto_table + 17;
332      break;
333    case R_BCC_INV:
334      internal->howto = howto_table + 18;
335      break;
336    case R_JMP_DEL:
337      internal->howto = howto_table + 19;
338      break;
339    default:
340      internal->howto = NULL;
341      break;
342    }
343}
344
345#define RTYPE2HOWTO(internal, relocentry) rtype2howto (internal, relocentry)
346
347/* Perform any necessary magic to the addend in a reloc entry.  */
348
349#define CALC_ADDEND(abfd, symbol, ext_reloc, cache_ptr) \
350 cache_ptr->addend = ext_reloc.r_offset;
351
352#define RELOC_PROCESSING(relent,reloc,symbols,abfd,section) \
353 reloc_processing (relent, reloc, symbols, abfd, section)
354
355static void
356reloc_processing (arelent *relent, struct internal_reloc *reloc,
357		  asymbol **symbols, bfd *abfd, asection *section)
358{
359  relent->address = reloc->r_vaddr;
360  rtype2howto (relent, reloc);
361
362  if (((int) reloc->r_symndx) > 0)
363    relent->sym_ptr_ptr = symbols + obj_convert (abfd)[reloc->r_symndx];
364  else
365    relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
366
367  relent->addend = reloc->r_offset;
368  relent->address -= section->vma;
369}
370
371static bfd_boolean
372h8300_symbol_address_p (bfd *abfd, asection *input_section, bfd_vma address)
373{
374  asymbol **s;
375
376  s = _bfd_generic_link_get_symbols (abfd);
377  BFD_ASSERT (s != (asymbol **) NULL);
378
379  /* Search all the symbols for one in INPUT_SECTION with
380     address ADDRESS.  */
381  while (*s)
382    {
383      asymbol *p = *s;
384
385      if (p->section == input_section
386	  && (input_section->output_section->vma
387	      + input_section->output_offset
388	      + p->value) == address)
389	return TRUE;
390      s++;
391    }
392  return FALSE;
393}
394
395/* If RELOC represents a relaxable instruction/reloc, change it into
396   the relaxed reloc, notify the linker that symbol addresses
397   have changed (bfd_perform_slip) and return how much the current
398   section has shrunk by.
399
400   FIXME: Much of this code has knowledge of the ordering of entries
401   in the howto table.  This needs to be fixed.  */
402
403static int
404h8300_reloc16_estimate (bfd *abfd, asection *input_section, arelent *reloc,
405			unsigned int shrink, struct bfd_link_info *link_info)
406{
407  bfd_vma value;
408  bfd_vma dot;
409  bfd_vma gap;
410  static asection *last_input_section = NULL;
411  static arelent *last_reloc = NULL;
412
413  /* The address of the thing to be relocated will have moved back by
414     the size of the shrink - but we don't change reloc->address here,
415     since we need it to know where the relocation lives in the source
416     uncooked section.  */
417  bfd_vma address = reloc->address - shrink;
418
419  if (input_section != last_input_section)
420    last_reloc = NULL;
421
422  /* Only examine the relocs which might be relaxable.  */
423  switch (reloc->howto->type)
424    {
425      /* This is the 16-/24-bit absolute branch which could become an
426	 8-bit pc-relative branch.  */
427    case R_JMP1:
428    case R_JMPL1:
429      /* Get the address of the target of this branch.  */
430      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
431
432      /* Get the address of the next instruction (not the reloc).  */
433      dot = (input_section->output_section->vma
434	     + input_section->output_offset + address);
435
436      /* Adjust for R_JMP1 vs R_JMPL1.  */
437      dot += (reloc->howto->type == R_JMP1 ? 1 : 2);
438
439      /* Compute the distance from this insn to the branch target.  */
440      gap = value - dot;
441
442      /* If the distance is within -128..+128 inclusive, then we can relax
443	 this jump.  +128 is valid since the target will move two bytes
444	 closer if we do relax this branch.  */
445      if ((int) gap >= -128 && (int) gap <= 128)
446	{
447	  bfd_byte code;
448
449	  if (!bfd_get_section_contents (abfd, input_section, & code,
450					 reloc->address, 1))
451	    break;
452	  code = bfd_get_8 (abfd, & code);
453
454	  /* It's possible we may be able to eliminate this branch entirely;
455	     if the previous instruction is a branch around this instruction,
456	     and there's no label at this instruction, then we can reverse
457	     the condition on the previous branch and eliminate this jump.
458
459	       original:			new:
460		 bCC lab1			bCC' lab2
461		 jmp lab2
462		lab1:				lab1:
463
464	     This saves 4 bytes instead of two, and should be relatively
465	     common.
466
467	     Only perform this optimisation for jumps (code 0x5a) not
468	     subroutine calls, as otherwise it could transform:
469
470			     mov.w   r0,r0
471			     beq     .L1
472			     jsr     @_bar
473		      .L1:   rts
474		      _bar:  rts
475	     into:
476			     mov.w   r0,r0
477			     bne     _bar
478			     rts
479		      _bar:  rts
480
481	     which changes the call (jsr) into a branch (bne).  */
482	  if (code == 0x5a
483	      && gap <= 126
484	      && last_reloc
485	      && last_reloc->howto->type == R_PCRBYTE)
486	    {
487	      bfd_vma last_value;
488	      last_value = bfd_coff_reloc16_get_value (last_reloc, link_info,
489						       input_section) + 1;
490
491	      if (last_value == dot + 2
492		  && last_reloc->address + 1 == reloc->address
493		  && !h8300_symbol_address_p (abfd, input_section, dot - 2))
494		{
495		  reloc->howto = howto_table + 19;
496		  last_reloc->howto = howto_table + 18;
497		  last_reloc->sym_ptr_ptr = reloc->sym_ptr_ptr;
498		  last_reloc->addend = reloc->addend;
499		  shrink += 4;
500		  bfd_perform_slip (abfd, 4, input_section, address);
501		  break;
502		}
503	    }
504
505	  /* Change the reloc type.  */
506	  reloc->howto = reloc->howto + 1;
507
508	  /* This shrinks this section by two bytes.  */
509	  shrink += 2;
510	  bfd_perform_slip (abfd, 2, input_section, address);
511	}
512      break;
513
514    /* This is the 16-bit pc-relative branch which could become an 8-bit
515       pc-relative branch.  */
516    case R_PCRWORD:
517      /* Get the address of the target of this branch, add one to the value
518	 because the addend field in PCrel jumps is off by -1.  */
519      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section) + 1;
520
521      /* Get the address of the next instruction if we were to relax.  */
522      dot = input_section->output_section->vma +
523	input_section->output_offset + address;
524
525      /* Compute the distance from this insn to the branch target.  */
526      gap = value - dot;
527
528      /* If the distance is within -128..+128 inclusive, then we can relax
529	 this jump.  +128 is valid since the target will move two bytes
530	 closer if we do relax this branch.  */
531      if ((int) gap >= -128 && (int) gap <= 128)
532	{
533	  /* Change the reloc type.  */
534	  reloc->howto = howto_table + 15;
535
536	  /* This shrinks this section by two bytes.  */
537	  shrink += 2;
538	  bfd_perform_slip (abfd, 2, input_section, address);
539	}
540      break;
541
542    /* This is a 16-bit absolute address in a mov.b insn, which can
543       become an 8-bit absolute address if it's in the right range.  */
544    case R_MOV16B1:
545      /* Get the address of the data referenced by this mov.b insn.  */
546      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
547      value = bfd_h8300_pad_address (abfd, value);
548
549      /* If the address is in the top 256 bytes of the address space
550	 then we can relax this instruction.  */
551      if (value >= 0xffffff00u)
552	{
553	  /* Change the reloc type.  */
554	  reloc->howto = reloc->howto + 1;
555
556	  /* This shrinks this section by two bytes.  */
557	  shrink += 2;
558	  bfd_perform_slip (abfd, 2, input_section, address);
559	}
560      break;
561
562    /* Similarly for a 24-bit absolute address in a mov.b.  Note that
563       if we can't relax this into an 8-bit absolute, we'll fall through
564       and try to relax it into a 16-bit absolute.  */
565    case R_MOV24B1:
566      /* Get the address of the data referenced by this mov.b insn.  */
567      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
568      value = bfd_h8300_pad_address (abfd, value);
569
570      if (value >= 0xffffff00u)
571	{
572	  /* Change the reloc type.  */
573	  reloc->howto = reloc->howto + 1;
574
575	  /* This shrinks this section by four bytes.  */
576	  shrink += 4;
577	  bfd_perform_slip (abfd, 4, input_section, address);
578
579	  /* Done with this reloc.  */
580	  break;
581	}
582      /* Fall through.  */
583
584    /* This is a 24-/32-bit absolute address in a mov insn, which can
585       become an 16-bit absolute address if it's in the right range.  */
586    case R_MOVL1:
587      /* Get the address of the data referenced by this mov insn.  */
588      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
589      value = bfd_h8300_pad_address (abfd, value);
590
591      /* If the address is a sign-extended 16-bit value then we can
592         relax this instruction.  */
593      if (value <= 0x7fff || value >= 0xffff8000u)
594	{
595	  /* Change the reloc type.  */
596	  reloc->howto = howto_table + 17;
597
598	  /* This shrinks this section by two bytes.  */
599	  shrink += 2;
600	  bfd_perform_slip (abfd, 2, input_section, address);
601	}
602      break;
603
604      /* No other reloc types represent relaxing opportunities.  */
605    default:
606      break;
607    }
608
609  last_reloc = reloc;
610  last_input_section = input_section;
611  return shrink;
612}
613
614/* Handle relocations for the H8/300, including relocs for relaxed
615   instructions.
616
617   FIXME: Not all relocations check for overflow!  */
618
619static void
620h8300_reloc16_extra_cases (bfd *abfd, struct bfd_link_info *link_info,
621			   struct bfd_link_order *link_order, arelent *reloc,
622			   bfd_byte *data, unsigned int *src_ptr,
623			   unsigned int *dst_ptr)
624{
625  unsigned int src_address = *src_ptr;
626  unsigned int dst_address = *dst_ptr;
627  asection *input_section = link_order->u.indirect.section;
628  bfd_vma value;
629  bfd_vma dot;
630  int gap, tmp;
631  unsigned char temp_code;
632
633  switch (reloc->howto->type)
634    {
635    /* Generic 8-bit pc-relative relocation.  */
636    case R_PCRBYTE:
637      /* Get the address of the target of this branch.  */
638      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
639
640      dot = (input_section->output_offset
641	     + dst_address
642	     + link_order->u.indirect.section->output_section->vma);
643
644      gap = value - dot;
645
646      /* Sanity check.  */
647      if (gap < -128 || gap > 126)
648	(*link_info->callbacks->reloc_overflow)
649	  (link_info, NULL, bfd_asymbol_name (*reloc->sym_ptr_ptr),
650	   reloc->howto->name, reloc->addend, input_section->owner,
651	   input_section, reloc->address);
652
653      /* Everything looks OK.  Apply the relocation and update the
654	 src/dst address appropriately.  */
655      bfd_put_8 (abfd, gap, data + dst_address);
656      dst_address++;
657      src_address++;
658
659      /* All done.  */
660      break;
661
662    /* Generic 16-bit pc-relative relocation.  */
663    case R_PCRWORD:
664      /* Get the address of the target of this branch.  */
665      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
666
667      /* Get the address of the instruction (not the reloc).  */
668      dot = (input_section->output_offset
669	     + dst_address
670	     + link_order->u.indirect.section->output_section->vma + 1);
671
672      gap = value - dot;
673
674      /* Sanity check.  */
675      if (gap > 32766 || gap < -32768)
676	(*link_info->callbacks->reloc_overflow)
677	  (link_info, NULL, bfd_asymbol_name (*reloc->sym_ptr_ptr),
678	   reloc->howto->name, reloc->addend, input_section->owner,
679	   input_section, reloc->address);
680
681      /* Everything looks OK.  Apply the relocation and update the
682	 src/dst address appropriately.  */
683      bfd_put_16 (abfd, (bfd_vma) gap, data + dst_address);
684      dst_address += 2;
685      src_address += 2;
686
687      /* All done.  */
688      break;
689
690    /* Generic 8-bit absolute relocation.  */
691    case R_RELBYTE:
692      /* Get the address of the object referenced by this insn.  */
693      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
694
695      bfd_put_8 (abfd, value & 0xff, data + dst_address);
696      dst_address += 1;
697      src_address += 1;
698
699      /* All done.  */
700      break;
701
702    /* Various simple 16-bit absolute relocations.  */
703    case R_MOV16B1:
704    case R_JMP1:
705    case R_RELWORD:
706      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
707      bfd_put_16 (abfd, value, data + dst_address);
708      dst_address += 2;
709      src_address += 2;
710      break;
711
712    /* Various simple 24-/32-bit absolute relocations.  */
713    case R_MOV24B1:
714    case R_MOVL1:
715    case R_RELLONG:
716      /* Get the address of the target of this branch.  */
717      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
718      bfd_put_32 (abfd, value, data + dst_address);
719      dst_address += 4;
720      src_address += 4;
721      break;
722
723    /* Another 24-/32-bit absolute relocation.  */
724    case R_JMPL1:
725      /* Get the address of the target of this branch.  */
726      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
727
728      value = ((value & 0x00ffffff)
729	       | (bfd_get_32 (abfd, data + src_address) & 0xff000000));
730      bfd_put_32 (abfd, value, data + dst_address);
731      dst_address += 4;
732      src_address += 4;
733      break;
734
735      /* This is a 24-/32-bit absolute address in one of the following
736	 instructions:
737
738	   "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
739	   "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", "ldc.w",
740	   "stc.w" and "mov.[bwl]"
741
742	 We may relax this into an 16-bit absolute address if it's in
743	 the right range.  */
744    case R_MOVL2:
745      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
746      value = bfd_h8300_pad_address (abfd, value);
747
748      /* Sanity check.  */
749      if (value <= 0x7fff || value >= 0xffff8000u)
750	{
751	  /* Insert the 16-bit value into the proper location.  */
752	  bfd_put_16 (abfd, value, data + dst_address);
753
754	  /* Fix the opcode.  For all the instructions that belong to
755	     this relaxation, we simply need to turn off bit 0x20 in
756	     the previous byte.  */
757	  data[dst_address - 1] &= ~0x20;
758	  dst_address += 2;
759	  src_address += 4;
760	}
761      else
762	(*link_info->callbacks->reloc_overflow)
763	  (link_info, NULL, bfd_asymbol_name (*reloc->sym_ptr_ptr),
764	   reloc->howto->name, reloc->addend, input_section->owner,
765	   input_section, reloc->address);
766      break;
767
768    /* A 16-bit absolute branch that is now an 8-bit pc-relative branch.  */
769    case R_JMP2:
770      /* Get the address of the target of this branch.  */
771      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
772
773      /* Get the address of the next instruction.  */
774      dot = (input_section->output_offset
775	     + dst_address
776	     + link_order->u.indirect.section->output_section->vma + 1);
777
778      gap = value - dot;
779
780      /* Sanity check.  */
781      if (gap < -128 || gap > 126)
782	(*link_info->callbacks->reloc_overflow)
783	  (link_info, NULL, bfd_asymbol_name (*reloc->sym_ptr_ptr),
784	   reloc->howto->name, reloc->addend, input_section->owner,
785	   input_section, reloc->address);
786
787      /* Now fix the instruction itself.  */
788      switch (data[dst_address - 1])
789	{
790	case 0x5e:
791	  /* jsr -> bsr */
792	  bfd_put_8 (abfd, 0x55, data + dst_address - 1);
793	  break;
794	case 0x5a:
795	  /* jmp -> bra */
796	  bfd_put_8 (abfd, 0x40, data + dst_address - 1);
797	  break;
798
799	default:
800	  abort ();
801	}
802
803      /* Write out the 8-bit value.  */
804      bfd_put_8 (abfd, gap, data + dst_address);
805
806      dst_address += 1;
807      src_address += 3;
808
809      break;
810
811    /* A 16-bit pc-relative branch that is now an 8-bit pc-relative branch.  */
812    case R_PCRWORD_B:
813      /* Get the address of the target of this branch.  */
814      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
815
816      /* Get the address of the instruction (not the reloc).  */
817      dot = (input_section->output_offset
818	     + dst_address
819	     + link_order->u.indirect.section->output_section->vma - 1);
820
821      gap = value - dot;
822
823      /* Sanity check.  */
824      if (gap < -128 || gap > 126)
825	(*link_info->callbacks->reloc_overflow)
826	  (link_info, NULL, bfd_asymbol_name (*reloc->sym_ptr_ptr),
827	   reloc->howto->name, reloc->addend, input_section->owner,
828	   input_section, reloc->address);
829
830      /* Now fix the instruction.  */
831      switch (data[dst_address - 2])
832	{
833	case 0x58:
834	  /* bCC:16 -> bCC:8 */
835	  /* Get the second byte of the original insn, which contains
836	     the condition code.  */
837	  tmp = data[dst_address - 1];
838
839	  /* Compute the fisrt byte of the relaxed instruction.  The
840	     original sequence 0x58 0xX0 is relaxed to 0x4X, where X
841	     represents the condition code.  */
842	  tmp &= 0xf0;
843	  tmp >>= 4;
844	  tmp |= 0x40;
845
846	  /* Write it.  */
847	  bfd_put_8 (abfd, tmp, data + dst_address - 2);
848	  break;
849
850	case 0x5c:
851	  /* bsr:16 -> bsr:8 */
852	  bfd_put_8 (abfd, 0x55, data + dst_address - 2);
853	  break;
854
855	default:
856	  abort ();
857	}
858
859      /* Output the target.  */
860      bfd_put_8 (abfd, gap, data + dst_address - 1);
861
862      /* We don't advance dst_address -- the 8-bit reloc is applied at
863	 dst_address - 1, so the next insn should begin at dst_address.  */
864      src_address += 2;
865
866      break;
867
868    /* Similarly for a 24-bit absolute that is now 8 bits.  */
869    case R_JMPL2:
870      /* Get the address of the target of this branch.  */
871      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
872
873      /* Get the address of the instruction (not the reloc).  */
874      dot = (input_section->output_offset
875	     + dst_address
876	     + link_order->u.indirect.section->output_section->vma + 2);
877
878      gap = value - dot;
879
880      /* Fix the instruction.  */
881      switch (data[src_address])
882	{
883	case 0x5e:
884	  /* jsr -> bsr */
885	  bfd_put_8 (abfd, 0x55, data + dst_address);
886	  break;
887	case 0x5a:
888	  /* jmp ->bra */
889	  bfd_put_8 (abfd, 0x40, data + dst_address);
890	  break;
891	default:
892	  abort ();
893	}
894
895      bfd_put_8 (abfd, gap, data + dst_address + 1);
896      dst_address += 2;
897      src_address += 4;
898
899      break;
900
901      /* This is a 16-bit absolute address in one of the following
902	 instructions:
903
904	   "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
905	   "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", and
906	   "mov.b"
907
908	 We may relax this into an 8-bit absolute address if it's in
909	 the right range.  */
910    case R_MOV16B2:
911      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
912
913      /* All instructions with R_H8_DIR16B2 start with 0x6a.  */
914      if (data[dst_address - 2] != 0x6a)
915	abort ();
916
917      temp_code = data[src_address - 1];
918
919      /* If this is a mov.b instruction, clear the lower nibble, which
920	 contains the source/destination register number.  */
921      if ((temp_code & 0x10) != 0x10)
922	temp_code &= 0xf0;
923
924      /* Fix up the opcode.  */
925      switch (temp_code)
926	{
927	case 0x00:
928	  /* This is mov.b @aa:16,Rd.  */
929	  data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
930	  break;
931	case 0x80:
932	  /* This is mov.b Rs,@aa:16.  */
933	  data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
934	  break;
935	case 0x18:
936	  /* This is a bit-maniputation instruction that stores one
937	     bit into memory, one of "bclr", "bist", "bnot", "bset",
938	     and "bst".  */
939	  data[dst_address - 2] = 0x7f;
940	  break;
941	case 0x10:
942	  /* This is a bit-maniputation instruction that loads one bit
943	     from memory, one of "band", "biand", "bild", "bior",
944	     "bixor", "bld", "bor", "btst", and "bxor".  */
945	  data[dst_address - 2] = 0x7e;
946	  break;
947	default:
948	  abort ();
949	}
950
951      bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
952      src_address += 2;
953      break;
954
955      /* This is a 24-bit absolute address in one of the following
956	 instructions:
957
958	   "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
959	   "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", and
960	   "mov.b"
961
962	 We may relax this into an 8-bit absolute address if it's in
963	 the right range.  */
964    case R_MOV24B2:
965      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
966
967      /* All instructions with R_MOV24B2 start with 0x6a.  */
968      if (data[dst_address - 2] != 0x6a)
969	abort ();
970
971      temp_code = data[src_address - 1];
972
973      /* If this is a mov.b instruction, clear the lower nibble, which
974	 contains the source/destination register number.  */
975      if ((temp_code & 0x30) != 0x30)
976	temp_code &= 0xf0;
977
978      /* Fix up the opcode.  */
979      switch (temp_code)
980	{
981	case 0x20:
982	  /* This is mov.b @aa:24/32,Rd.  */
983	  data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
984	  break;
985	case 0xa0:
986	  /* This is mov.b Rs,@aa:24/32.  */
987	  data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
988	  break;
989	case 0x38:
990	  /* This is a bit-maniputation instruction that stores one
991	     bit into memory, one of "bclr", "bist", "bnot", "bset",
992	     and "bst".  */
993	  data[dst_address - 2] = 0x7f;
994	  break;
995	case 0x30:
996	  /* This is a bit-maniputation instruction that loads one bit
997	     from memory, one of "band", "biand", "bild", "bior",
998	     "bixor", "bld", "bor", "btst", and "bxor".  */
999	  data[dst_address - 2] = 0x7e;
1000	  break;
1001	default:
1002	  abort ();
1003	}
1004
1005      bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
1006      src_address += 4;
1007      break;
1008
1009    case R_BCC_INV:
1010      /* Get the address of the target of this branch.  */
1011      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1012
1013      dot = (input_section->output_offset
1014	     + dst_address
1015	     + link_order->u.indirect.section->output_section->vma) + 1;
1016
1017      gap = value - dot;
1018
1019      /* Sanity check.  */
1020      if (gap < -128 || gap > 126)
1021	(*link_info->callbacks->reloc_overflow)
1022	  (link_info, NULL, bfd_asymbol_name (*reloc->sym_ptr_ptr),
1023	   reloc->howto->name, reloc->addend, input_section->owner,
1024	   input_section, reloc->address);
1025
1026      /* Everything looks OK.  Fix the condition in the instruction, apply
1027	 the relocation, and update the src/dst address appropriately.  */
1028
1029      bfd_put_8 (abfd, bfd_get_8 (abfd, data + dst_address - 1) ^ 1,
1030		 data + dst_address - 1);
1031      bfd_put_8 (abfd, gap, data + dst_address);
1032      dst_address++;
1033      src_address++;
1034
1035      /* All done.  */
1036      break;
1037
1038    case R_JMP_DEL:
1039      src_address += 4;
1040      break;
1041
1042    /* An 8-bit memory indirect instruction (jmp/jsr).
1043
1044       There's several things that need to be done to handle
1045       this relocation.
1046
1047       If this is a reloc against the absolute symbol, then
1048       we should handle it just R_RELBYTE.  Likewise if it's
1049       for a symbol with a value ge 0 and le 0xff.
1050
1051       Otherwise it's a jump/call through the function vector,
1052       and the linker is expected to set up the function vector
1053       and put the right value into the jump/call instruction.  */
1054    case R_MEM_INDIRECT:
1055      {
1056	/* We need to find the symbol so we can determine it's
1057	   address in the function vector table.  */
1058	asymbol *symbol;
1059	const char *name;
1060	struct funcvec_hash_table *ftab;
1061	struct funcvec_hash_entry *h;
1062	struct h8300_coff_link_hash_table *htab;
1063	asection *vectors_sec;
1064
1065	if (link_info->output_bfd->xvec != abfd->xvec)
1066	  {
1067	    _bfd_error_handler
1068	      (_("cannot handle R_MEM_INDIRECT reloc when using %s output"),
1069	       link_info->output_bfd->xvec->name);
1070
1071	    /* What else can we do?  This function doesn't allow return
1072	       of an error, and we don't want to call abort as that
1073	       indicates an internal error.  */
1074#ifndef EXIT_FAILURE
1075#define EXIT_FAILURE 1
1076#endif
1077	    xexit (EXIT_FAILURE);
1078	  }
1079	htab = h8300_coff_hash_table (link_info);
1080	vectors_sec = htab->vectors_sec;
1081
1082	/* First see if this is a reloc against the absolute symbol
1083	   or against a symbol with a nonnegative value <= 0xff.  */
1084	symbol = *(reloc->sym_ptr_ptr);
1085	value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1086	if (symbol == bfd_abs_section_ptr->symbol
1087	    || value <= 0xff)
1088	  {
1089	    /* This should be handled in a manner very similar to
1090	       R_RELBYTES.   If the value is in range, then just slam
1091	       the value into the right location.  Else trigger a
1092	       reloc overflow callback.  */
1093	    if (value <= 0xff)
1094	      {
1095		bfd_put_8 (abfd, value, data + dst_address);
1096		dst_address += 1;
1097		src_address += 1;
1098	      }
1099	    else
1100	      (*link_info->callbacks->reloc_overflow)
1101		(link_info, NULL, bfd_asymbol_name (*reloc->sym_ptr_ptr),
1102		 reloc->howto->name, reloc->addend, input_section->owner,
1103		 input_section, reloc->address);
1104	    break;
1105	  }
1106
1107	/* This is a jump/call through a function vector, and we're
1108	   expected to create the function vector ourselves.
1109
1110	   First look up this symbol in the linker hash table -- we need
1111	   the derived linker symbol which holds this symbol's index
1112	   in the function vector.  */
1113	name = symbol->name;
1114	if (symbol->flags & BSF_LOCAL)
1115	  {
1116	    char *new_name = bfd_malloc ((bfd_size_type) strlen (name) + 10);
1117
1118	    if (new_name == NULL)
1119	      abort ();
1120
1121	    sprintf (new_name, "%s_%08x", name, symbol->section->id);
1122	    name = new_name;
1123	  }
1124
1125	ftab = htab->funcvec_hash_table;
1126	h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);
1127
1128	/* This shouldn't ever happen.  If it does that means we've got
1129	   data corruption of some kind.  Aborting seems like a reasonable
1130	   thing to do here.  */
1131	if (h == NULL || vectors_sec == NULL)
1132	  abort ();
1133
1134	/* Place the address of the function vector entry into the
1135	   reloc's address.  */
1136	bfd_put_8 (abfd,
1137		   vectors_sec->output_offset + h->offset,
1138		   data + dst_address);
1139
1140	dst_address++;
1141	src_address++;
1142
1143	/* Now create an entry in the function vector itself.  */
1144	switch (bfd_get_mach (input_section->owner))
1145	  {
1146	  case bfd_mach_h8300:
1147	  case bfd_mach_h8300hn:
1148	  case bfd_mach_h8300sn:
1149	    bfd_put_16 (abfd,
1150			bfd_coff_reloc16_get_value (reloc,
1151						    link_info,
1152						    input_section),
1153			vectors_sec->contents + h->offset);
1154	    break;
1155	  case bfd_mach_h8300h:
1156	  case bfd_mach_h8300s:
1157	    bfd_put_32 (abfd,
1158			bfd_coff_reloc16_get_value (reloc,
1159						    link_info,
1160						    input_section),
1161			vectors_sec->contents + h->offset);
1162	    break;
1163	  default:
1164	    abort ();
1165	  }
1166
1167	/* Gross.  We've already written the contents of the vector section
1168	   before we get here...  So we write it again with the new data.  */
1169	bfd_set_section_contents (vectors_sec->output_section->owner,
1170				  vectors_sec->output_section,
1171				  vectors_sec->contents,
1172				  (file_ptr) vectors_sec->output_offset,
1173				  vectors_sec->size);
1174	break;
1175      }
1176
1177    default:
1178      abort ();
1179      break;
1180
1181    }
1182
1183  *src_ptr = src_address;
1184  *dst_ptr = dst_address;
1185}
1186
1187/* Routine for the h8300 linker.
1188
1189   This routine is necessary to handle the special R_MEM_INDIRECT
1190   relocs on the h8300.  It's responsible for generating a vectors
1191   section and attaching it to an input bfd as well as sizing
1192   the vectors section.  It also creates our vectors hash table.
1193
1194   It uses the generic linker routines to actually add the symbols.
1195   from this BFD to the bfd linker hash table.  It may add a few
1196   selected static symbols to the bfd linker hash table.  */
1197
1198static bfd_boolean
1199h8300_bfd_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
1200{
1201  asection *sec;
1202  struct funcvec_hash_table *funcvec_hash_table;
1203  bfd_size_type amt;
1204  struct h8300_coff_link_hash_table *htab;
1205
1206  /* Add the symbols using the generic code.  */
1207  _bfd_generic_link_add_symbols (abfd, info);
1208
1209  if (info->output_bfd->xvec != abfd->xvec)
1210    return TRUE;
1211
1212  htab = h8300_coff_hash_table (info);
1213
1214  /* If we haven't created a vectors section, do so now.  */
1215  if (!htab->vectors_sec)
1216    {
1217      flagword flags;
1218
1219      /* Make sure the appropriate flags are set, including SEC_IN_MEMORY.  */
1220      flags = (SEC_ALLOC | SEC_LOAD
1221	       | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_READONLY);
1222      htab->vectors_sec = bfd_make_section_with_flags (abfd, ".vectors",
1223						       flags);
1224
1225      /* If the section wasn't created, or we couldn't set the flags,
1226	 quit quickly now, rather than dying a painful death later.  */
1227      if (!htab->vectors_sec)
1228	return FALSE;
1229
1230      /* Also create the vector hash table.  */
1231      amt = sizeof (struct funcvec_hash_table);
1232      funcvec_hash_table = (struct funcvec_hash_table *) bfd_alloc (abfd, amt);
1233
1234      if (!funcvec_hash_table)
1235	return FALSE;
1236
1237      /* And initialize the funcvec hash table.  */
1238      if (!funcvec_hash_table_init (funcvec_hash_table, abfd,
1239				    funcvec_hash_newfunc,
1240				    sizeof (struct funcvec_hash_entry)))
1241	{
1242	  bfd_release (abfd, funcvec_hash_table);
1243	  return FALSE;
1244	}
1245
1246      /* Store away a pointer to the funcvec hash table.  */
1247      htab->funcvec_hash_table = funcvec_hash_table;
1248    }
1249
1250  /* Load up the function vector hash table.  */
1251  funcvec_hash_table = htab->funcvec_hash_table;
1252
1253  /* Now scan the relocs for all the sections in this bfd; create
1254     additional space in the .vectors section as needed.  */
1255  for (sec = abfd->sections; sec; sec = sec->next)
1256    {
1257      long reloc_size, reloc_count, i;
1258      asymbol **symbols;
1259      arelent **relocs;
1260
1261      /* Suck in the relocs, symbols & canonicalize them.  */
1262      reloc_size = bfd_get_reloc_upper_bound (abfd, sec);
1263      if (reloc_size <= 0)
1264	continue;
1265
1266      relocs = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
1267      if (!relocs)
1268	return FALSE;
1269
1270      /* The symbols should have been read in by _bfd_generic link_add_symbols
1271	 call abovec, so we can cheat and use the pointer to them that was
1272	 saved in the above call.  */
1273      symbols = _bfd_generic_link_get_symbols(abfd);
1274      reloc_count = bfd_canonicalize_reloc (abfd, sec, relocs, symbols);
1275      if (reloc_count <= 0)
1276	{
1277	  free (relocs);
1278	  continue;
1279	}
1280
1281      /* Now walk through all the relocations in this section.  */
1282      for (i = 0; i < reloc_count; i++)
1283	{
1284	  arelent *reloc = relocs[i];
1285	  asymbol *symbol = *(reloc->sym_ptr_ptr);
1286	  const char *name;
1287
1288	  /* We've got an indirect reloc.  See if we need to add it
1289	     to the function vector table.   At this point, we have
1290	     to add a new entry for each unique symbol referenced
1291	     by an R_MEM_INDIRECT relocation except for a reloc
1292	     against the absolute section symbol.  */
1293	  if (reloc->howto->type == R_MEM_INDIRECT
1294	      && symbol != bfd_abs_section_ptr->symbol)
1295
1296	    {
1297	      struct funcvec_hash_table *ftab;
1298	      struct funcvec_hash_entry *h;
1299
1300	      name = symbol->name;
1301	      if (symbol->flags & BSF_LOCAL)
1302		{
1303		  char *new_name;
1304
1305		  new_name = bfd_malloc ((bfd_size_type) strlen (name) + 10);
1306		  if (new_name == NULL)
1307		    abort ();
1308
1309		  sprintf (new_name, "%s_%08x", name, symbol->section->id);
1310		  name = new_name;
1311		}
1312
1313	      /* Look this symbol up in the function vector hash table.  */
1314	      ftab = htab->funcvec_hash_table;
1315	      h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);
1316
1317	      /* If this symbol isn't already in the hash table, add
1318		 it and bump up the size of the hash table.  */
1319	      if (h == NULL)
1320		{
1321		  h = funcvec_hash_lookup (ftab, name, TRUE, TRUE);
1322		  if (h == NULL)
1323		    {
1324		      free (relocs);
1325		      return FALSE;
1326		    }
1327
1328		  /* Bump the size of the vectors section.  Each vector
1329		     takes 2 bytes on the h8300 and 4 bytes on the h8300h.  */
1330		  switch (bfd_get_mach (abfd))
1331		    {
1332		    case bfd_mach_h8300:
1333		    case bfd_mach_h8300hn:
1334		    case bfd_mach_h8300sn:
1335		      htab->vectors_sec->size += 2;
1336		      break;
1337		    case bfd_mach_h8300h:
1338		    case bfd_mach_h8300s:
1339		      htab->vectors_sec->size += 4;
1340		      break;
1341		    default:
1342		      abort ();
1343		    }
1344		}
1345	    }
1346	}
1347
1348      /* We're done with the relocations, release them.  */
1349      free (relocs);
1350    }
1351
1352  /* Now actually allocate some space for the function vector.  It's
1353     wasteful to do this more than once, but this is easier.  */
1354  sec = htab->vectors_sec;
1355  if (sec->size != 0)
1356    {
1357      /* Free the old contents.  */
1358      if (sec->contents)
1359	free (sec->contents);
1360
1361      /* Allocate new contents.  */
1362      sec->contents = bfd_malloc (sec->size);
1363    }
1364
1365  return TRUE;
1366}
1367
1368#define coff_reloc16_extra_cases h8300_reloc16_extra_cases
1369#define coff_reloc16_estimate h8300_reloc16_estimate
1370#define coff_bfd_link_add_symbols h8300_bfd_link_add_symbols
1371#define coff_bfd_link_hash_table_create h8300_coff_link_hash_table_create
1372
1373#define COFF_LONG_FILENAMES
1374
1375#ifndef bfd_pe_print_pdata
1376#define bfd_pe_print_pdata	NULL
1377#endif
1378
1379#include "coffcode.h"
1380
1381#undef coff_bfd_get_relocated_section_contents
1382#undef coff_bfd_relax_section
1383#define coff_bfd_get_relocated_section_contents \
1384  bfd_coff_reloc16_get_relocated_section_contents
1385#define coff_bfd_relax_section bfd_coff_reloc16_relax_section
1386
1387CREATE_BIG_COFF_TARGET_VEC (h8300_coff_vec, "coff-h8300", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE)
1388