1/*-
2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3 *
4 * Copyright (c) 1991, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 * Copyright (c) 1994 John S. Dyson
7 * All rights reserved.
8 * Copyright (c) 1994 David Greenman
9 * All rights reserved.
10 *
11 *
12 * This code is derived from software contributed to Berkeley by
13 * The Mach Operating System project at Carnegie-Mellon University.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *
44 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45 * All rights reserved.
46 *
47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48 *
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
54 *
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 *
59 * Carnegie Mellon requests users of this software to return to
60 *
61 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62 *  School of Computer Science
63 *  Carnegie Mellon University
64 *  Pittsburgh PA 15213-3890
65 *
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
68 */
69
70/*
71 *	Page fault handling module.
72 */
73
74#include <sys/cdefs.h>
75#include "opt_ktrace.h"
76#include "opt_vm.h"
77
78#include <sys/param.h>
79#include <sys/systm.h>
80#include <sys/kernel.h>
81#include <sys/lock.h>
82#include <sys/mman.h>
83#include <sys/mutex.h>
84#include <sys/pctrie.h>
85#include <sys/proc.h>
86#include <sys/racct.h>
87#include <sys/refcount.h>
88#include <sys/resourcevar.h>
89#include <sys/rwlock.h>
90#include <sys/signalvar.h>
91#include <sys/sysctl.h>
92#include <sys/sysent.h>
93#include <sys/vmmeter.h>
94#include <sys/vnode.h>
95#ifdef KTRACE
96#include <sys/ktrace.h>
97#endif
98
99#include <vm/vm.h>
100#include <vm/vm_param.h>
101#include <vm/pmap.h>
102#include <vm/vm_map.h>
103#include <vm/vm_object.h>
104#include <vm/vm_page.h>
105#include <vm/vm_pageout.h>
106#include <vm/vm_kern.h>
107#include <vm/vm_pager.h>
108#include <vm/vm_extern.h>
109#include <vm/vm_reserv.h>
110
111#define PFBAK 4
112#define PFFOR 4
113
114#define	VM_FAULT_READ_DEFAULT	(1 + VM_FAULT_READ_AHEAD_INIT)
115
116#define	VM_FAULT_DONTNEED_MIN	1048576
117
118struct faultstate {
119	/* Fault parameters. */
120	vm_offset_t	vaddr;
121	vm_page_t	*m_hold;
122	vm_prot_t	fault_type;
123	vm_prot_t	prot;
124	int		fault_flags;
125	boolean_t	wired;
126
127	/* Control state. */
128	struct timeval	oom_start_time;
129	bool		oom_started;
130	int		nera;
131	bool		can_read_lock;
132
133	/* Page reference for cow. */
134	vm_page_t m_cow;
135
136	/* Current object. */
137	vm_object_t	object;
138	vm_pindex_t	pindex;
139	vm_page_t	m;
140
141	/* Top-level map object. */
142	vm_object_t	first_object;
143	vm_pindex_t	first_pindex;
144	vm_page_t	first_m;
145
146	/* Map state. */
147	vm_map_t	map;
148	vm_map_entry_t	entry;
149	int		map_generation;
150	bool		lookup_still_valid;
151
152	/* Vnode if locked. */
153	struct vnode	*vp;
154};
155
156/*
157 * Return codes for internal fault routines.
158 */
159enum fault_status {
160	FAULT_SUCCESS = 10000,	/* Return success to user. */
161	FAULT_FAILURE,		/* Return failure to user. */
162	FAULT_CONTINUE,		/* Continue faulting. */
163	FAULT_RESTART,		/* Restart fault. */
164	FAULT_OUT_OF_BOUNDS,	/* Invalid address for pager. */
165	FAULT_HARD,		/* Performed I/O. */
166	FAULT_SOFT,		/* Found valid page. */
167	FAULT_PROTECTION_FAILURE, /* Invalid access. */
168};
169
170enum fault_next_status {
171	FAULT_NEXT_GOTOBJ = 1,
172	FAULT_NEXT_NOOBJ,
173	FAULT_NEXT_RESTART,
174};
175
176static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
177	    int ahead);
178static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
179	    int backward, int forward, bool obj_locked);
180
181static int vm_pfault_oom_attempts = 3;
182SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN,
183    &vm_pfault_oom_attempts, 0,
184    "Number of page allocation attempts in page fault handler before it "
185    "triggers OOM handling");
186
187static int vm_pfault_oom_wait = 10;
188SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN,
189    &vm_pfault_oom_wait, 0,
190    "Number of seconds to wait for free pages before retrying "
191    "the page fault handler");
192
193static inline void
194vm_fault_page_release(vm_page_t *mp)
195{
196	vm_page_t m;
197
198	m = *mp;
199	if (m != NULL) {
200		/*
201		 * We are likely to loop around again and attempt to busy
202		 * this page.  Deactivating it leaves it available for
203		 * pageout while optimizing fault restarts.
204		 */
205		vm_page_deactivate(m);
206		vm_page_xunbusy(m);
207		*mp = NULL;
208	}
209}
210
211static inline void
212vm_fault_page_free(vm_page_t *mp)
213{
214	vm_page_t m;
215
216	m = *mp;
217	if (m != NULL) {
218		VM_OBJECT_ASSERT_WLOCKED(m->object);
219		if (!vm_page_wired(m))
220			vm_page_free(m);
221		else
222			vm_page_xunbusy(m);
223		*mp = NULL;
224	}
225}
226
227/*
228 * Return true if a vm_pager_get_pages() call is needed in order to check
229 * whether the pager might have a particular page, false if it can be determined
230 * immediately that the pager can not have a copy.  For swap objects, this can
231 * be checked quickly.
232 */
233static inline bool
234vm_fault_object_needs_getpages(vm_object_t object)
235{
236	VM_OBJECT_ASSERT_LOCKED(object);
237
238	return ((object->flags & OBJ_SWAP) == 0 ||
239	    !pctrie_is_empty(&object->un_pager.swp.swp_blks));
240}
241
242static inline void
243vm_fault_unlock_map(struct faultstate *fs)
244{
245
246	if (fs->lookup_still_valid) {
247		vm_map_lookup_done(fs->map, fs->entry);
248		fs->lookup_still_valid = false;
249	}
250}
251
252static void
253vm_fault_unlock_vp(struct faultstate *fs)
254{
255
256	if (fs->vp != NULL) {
257		vput(fs->vp);
258		fs->vp = NULL;
259	}
260}
261
262static void
263vm_fault_deallocate(struct faultstate *fs)
264{
265
266	vm_fault_page_release(&fs->m_cow);
267	vm_fault_page_release(&fs->m);
268	vm_object_pip_wakeup(fs->object);
269	if (fs->object != fs->first_object) {
270		VM_OBJECT_WLOCK(fs->first_object);
271		vm_fault_page_free(&fs->first_m);
272		VM_OBJECT_WUNLOCK(fs->first_object);
273		vm_object_pip_wakeup(fs->first_object);
274	}
275	vm_object_deallocate(fs->first_object);
276	vm_fault_unlock_map(fs);
277	vm_fault_unlock_vp(fs);
278}
279
280static void
281vm_fault_unlock_and_deallocate(struct faultstate *fs)
282{
283
284	VM_OBJECT_UNLOCK(fs->object);
285	vm_fault_deallocate(fs);
286}
287
288static void
289vm_fault_dirty(struct faultstate *fs, vm_page_t m)
290{
291	bool need_dirty;
292
293	if (((fs->prot & VM_PROT_WRITE) == 0 &&
294	    (fs->fault_flags & VM_FAULT_DIRTY) == 0) ||
295	    (m->oflags & VPO_UNMANAGED) != 0)
296		return;
297
298	VM_PAGE_OBJECT_BUSY_ASSERT(m);
299
300	need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 &&
301	    (fs->fault_flags & VM_FAULT_WIRE) == 0) ||
302	    (fs->fault_flags & VM_FAULT_DIRTY) != 0;
303
304	vm_object_set_writeable_dirty(m->object);
305
306	/*
307	 * If the fault is a write, we know that this page is being
308	 * written NOW so dirty it explicitly to save on
309	 * pmap_is_modified() calls later.
310	 *
311	 * Also, since the page is now dirty, we can possibly tell
312	 * the pager to release any swap backing the page.
313	 */
314	if (need_dirty && vm_page_set_dirty(m) == 0) {
315		/*
316		 * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC
317		 * if the page is already dirty to prevent data written with
318		 * the expectation of being synced from not being synced.
319		 * Likewise if this entry does not request NOSYNC then make
320		 * sure the page isn't marked NOSYNC.  Applications sharing
321		 * data should use the same flags to avoid ping ponging.
322		 */
323		if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0)
324			vm_page_aflag_set(m, PGA_NOSYNC);
325		else
326			vm_page_aflag_clear(m, PGA_NOSYNC);
327	}
328
329}
330
331/*
332 * Unlocks fs.first_object and fs.map on success.
333 */
334static enum fault_status
335vm_fault_soft_fast(struct faultstate *fs)
336{
337	vm_page_t m, m_map;
338#if VM_NRESERVLEVEL > 0
339	vm_page_t m_super;
340	int flags;
341#endif
342	int psind;
343	vm_offset_t vaddr;
344
345	MPASS(fs->vp == NULL);
346
347	/*
348	 * If we fail, vast majority of the time it is because the page is not
349	 * there to begin with. Opportunistically perform the lookup and
350	 * subsequent checks without the object lock, revalidate later.
351	 *
352	 * Note: a busy page can be mapped for read|execute access.
353	 */
354	m = vm_page_lookup_unlocked(fs->first_object, fs->first_pindex);
355	if (m == NULL || !vm_page_all_valid(m) ||
356	    ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m))) {
357		VM_OBJECT_WLOCK(fs->first_object);
358		return (FAULT_FAILURE);
359	}
360
361	vaddr = fs->vaddr;
362
363	VM_OBJECT_RLOCK(fs->first_object);
364
365	/*
366	 * Now that we stabilized the state, revalidate the page is in the shape
367	 * we encountered above.
368	 */
369
370	if (m->object != fs->first_object || m->pindex != fs->first_pindex)
371		goto fail;
372
373	vm_object_busy(fs->first_object);
374
375	if (!vm_page_all_valid(m) ||
376	    ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m)))
377		goto fail_busy;
378
379	m_map = m;
380	psind = 0;
381#if VM_NRESERVLEVEL > 0
382	if ((m->flags & PG_FICTITIOUS) == 0 &&
383	    (m_super = vm_reserv_to_superpage(m)) != NULL &&
384	    rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start &&
385	    roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end &&
386	    (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) &
387	    (pagesizes[m_super->psind] - 1)) &&
388	    pmap_ps_enabled(fs->map->pmap)) {
389		flags = PS_ALL_VALID;
390		if ((fs->prot & VM_PROT_WRITE) != 0) {
391			/*
392			 * Create a superpage mapping allowing write access
393			 * only if none of the constituent pages are busy and
394			 * all of them are already dirty (except possibly for
395			 * the page that was faulted on).
396			 */
397			flags |= PS_NONE_BUSY;
398			if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
399				flags |= PS_ALL_DIRTY;
400		}
401		if (vm_page_ps_test(m_super, flags, m)) {
402			m_map = m_super;
403			psind = m_super->psind;
404			vaddr = rounddown2(vaddr, pagesizes[psind]);
405			/* Preset the modified bit for dirty superpages. */
406			if ((flags & PS_ALL_DIRTY) != 0)
407				fs->fault_type |= VM_PROT_WRITE;
408		}
409	}
410#endif
411	if (pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type |
412	    PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind) !=
413	    KERN_SUCCESS)
414		goto fail_busy;
415	if (fs->m_hold != NULL) {
416		(*fs->m_hold) = m;
417		vm_page_wire(m);
418	}
419	if (psind == 0 && !fs->wired)
420		vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
421	VM_OBJECT_RUNLOCK(fs->first_object);
422	vm_fault_dirty(fs, m);
423	vm_object_unbusy(fs->first_object);
424	vm_map_lookup_done(fs->map, fs->entry);
425	curthread->td_ru.ru_minflt++;
426	return (FAULT_SUCCESS);
427fail_busy:
428	vm_object_unbusy(fs->first_object);
429fail:
430	if (!VM_OBJECT_TRYUPGRADE(fs->first_object)) {
431		VM_OBJECT_RUNLOCK(fs->first_object);
432		VM_OBJECT_WLOCK(fs->first_object);
433	}
434	return (FAULT_FAILURE);
435}
436
437static void
438vm_fault_restore_map_lock(struct faultstate *fs)
439{
440
441	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
442	MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
443
444	if (!vm_map_trylock_read(fs->map)) {
445		VM_OBJECT_WUNLOCK(fs->first_object);
446		vm_map_lock_read(fs->map);
447		VM_OBJECT_WLOCK(fs->first_object);
448	}
449	fs->lookup_still_valid = true;
450}
451
452static void
453vm_fault_populate_check_page(vm_page_t m)
454{
455
456	/*
457	 * Check each page to ensure that the pager is obeying the
458	 * interface: the page must be installed in the object, fully
459	 * valid, and exclusively busied.
460	 */
461	MPASS(m != NULL);
462	MPASS(vm_page_all_valid(m));
463	MPASS(vm_page_xbusied(m));
464}
465
466static void
467vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
468    vm_pindex_t last)
469{
470	vm_page_t m;
471	vm_pindex_t pidx;
472
473	VM_OBJECT_ASSERT_WLOCKED(object);
474	MPASS(first <= last);
475	for (pidx = first, m = vm_page_lookup(object, pidx);
476	    pidx <= last; pidx++, m = vm_page_next(m)) {
477		vm_fault_populate_check_page(m);
478		vm_page_deactivate(m);
479		vm_page_xunbusy(m);
480	}
481}
482
483static enum fault_status
484vm_fault_populate(struct faultstate *fs)
485{
486	vm_offset_t vaddr;
487	vm_page_t m;
488	vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
489	int bdry_idx, i, npages, psind, rv;
490	enum fault_status res;
491
492	MPASS(fs->object == fs->first_object);
493	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
494	MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
495	MPASS(fs->first_object->backing_object == NULL);
496	MPASS(fs->lookup_still_valid);
497
498	pager_first = OFF_TO_IDX(fs->entry->offset);
499	pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
500	vm_fault_unlock_map(fs);
501	vm_fault_unlock_vp(fs);
502
503	res = FAULT_SUCCESS;
504
505	/*
506	 * Call the pager (driver) populate() method.
507	 *
508	 * There is no guarantee that the method will be called again
509	 * if the current fault is for read, and a future fault is
510	 * for write.  Report the entry's maximum allowed protection
511	 * to the driver.
512	 */
513	rv = vm_pager_populate(fs->first_object, fs->first_pindex,
514	    fs->fault_type, fs->entry->max_protection, &pager_first,
515	    &pager_last);
516
517	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
518	if (rv == VM_PAGER_BAD) {
519		/*
520		 * VM_PAGER_BAD is the backdoor for a pager to request
521		 * normal fault handling.
522		 */
523		vm_fault_restore_map_lock(fs);
524		if (fs->map->timestamp != fs->map_generation)
525			return (FAULT_RESTART);
526		return (FAULT_CONTINUE);
527	}
528	if (rv != VM_PAGER_OK)
529		return (FAULT_FAILURE); /* AKA SIGSEGV */
530
531	/* Ensure that the driver is obeying the interface. */
532	MPASS(pager_first <= pager_last);
533	MPASS(fs->first_pindex <= pager_last);
534	MPASS(fs->first_pindex >= pager_first);
535	MPASS(pager_last < fs->first_object->size);
536
537	vm_fault_restore_map_lock(fs);
538	bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(fs->entry);
539	if (fs->map->timestamp != fs->map_generation) {
540		if (bdry_idx == 0) {
541			vm_fault_populate_cleanup(fs->first_object, pager_first,
542			    pager_last);
543		} else {
544			m = vm_page_lookup(fs->first_object, pager_first);
545			if (m != fs->m)
546				vm_page_xunbusy(m);
547		}
548		return (FAULT_RESTART);
549	}
550
551	/*
552	 * The map is unchanged after our last unlock.  Process the fault.
553	 *
554	 * First, the special case of largepage mappings, where
555	 * populate only busies the first page in superpage run.
556	 */
557	if (bdry_idx != 0) {
558		KASSERT(PMAP_HAS_LARGEPAGES,
559		    ("missing pmap support for large pages"));
560		m = vm_page_lookup(fs->first_object, pager_first);
561		vm_fault_populate_check_page(m);
562		VM_OBJECT_WUNLOCK(fs->first_object);
563		vaddr = fs->entry->start + IDX_TO_OFF(pager_first) -
564		    fs->entry->offset;
565		/* assert alignment for entry */
566		KASSERT((vaddr & (pagesizes[bdry_idx] - 1)) == 0,
567    ("unaligned superpage start %#jx pager_first %#jx offset %#jx vaddr %#jx",
568		    (uintmax_t)fs->entry->start, (uintmax_t)pager_first,
569		    (uintmax_t)fs->entry->offset, (uintmax_t)vaddr));
570		KASSERT((VM_PAGE_TO_PHYS(m) & (pagesizes[bdry_idx] - 1)) == 0,
571		    ("unaligned superpage m %p %#jx", m,
572		    (uintmax_t)VM_PAGE_TO_PHYS(m)));
573		rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot,
574		    fs->fault_type | (fs->wired ? PMAP_ENTER_WIRED : 0) |
575		    PMAP_ENTER_LARGEPAGE, bdry_idx);
576		VM_OBJECT_WLOCK(fs->first_object);
577		vm_page_xunbusy(m);
578		if (rv != KERN_SUCCESS) {
579			res = FAULT_FAILURE;
580			goto out;
581		}
582		if ((fs->fault_flags & VM_FAULT_WIRE) != 0) {
583			for (i = 0; i < atop(pagesizes[bdry_idx]); i++)
584				vm_page_wire(m + i);
585		}
586		if (fs->m_hold != NULL) {
587			*fs->m_hold = m + (fs->first_pindex - pager_first);
588			vm_page_wire(*fs->m_hold);
589		}
590		goto out;
591	}
592
593	/*
594	 * The range [pager_first, pager_last] that is given to the
595	 * pager is only a hint.  The pager may populate any range
596	 * within the object that includes the requested page index.
597	 * In case the pager expanded the range, clip it to fit into
598	 * the map entry.
599	 */
600	map_first = OFF_TO_IDX(fs->entry->offset);
601	if (map_first > pager_first) {
602		vm_fault_populate_cleanup(fs->first_object, pager_first,
603		    map_first - 1);
604		pager_first = map_first;
605	}
606	map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
607	if (map_last < pager_last) {
608		vm_fault_populate_cleanup(fs->first_object, map_last + 1,
609		    pager_last);
610		pager_last = map_last;
611	}
612	for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
613	    pidx <= pager_last;
614	    pidx += npages, m = vm_page_next(&m[npages - 1])) {
615		vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
616
617		psind = m->psind;
618		if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
619		    pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
620		    !pmap_ps_enabled(fs->map->pmap)))
621			psind = 0;
622
623		npages = atop(pagesizes[psind]);
624		for (i = 0; i < npages; i++) {
625			vm_fault_populate_check_page(&m[i]);
626			vm_fault_dirty(fs, &m[i]);
627		}
628		VM_OBJECT_WUNLOCK(fs->first_object);
629		rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type |
630		    (fs->wired ? PMAP_ENTER_WIRED : 0), psind);
631
632		/*
633		 * pmap_enter() may fail for a superpage mapping if additional
634		 * protection policies prevent the full mapping.
635		 * For example, this will happen on amd64 if the entire
636		 * address range does not share the same userspace protection
637		 * key.  Revert to single-page mappings if this happens.
638		 */
639		MPASS(rv == KERN_SUCCESS ||
640		    (psind > 0 && rv == KERN_PROTECTION_FAILURE));
641		if (__predict_false(psind > 0 &&
642		    rv == KERN_PROTECTION_FAILURE)) {
643			MPASS(!fs->wired);
644			for (i = 0; i < npages; i++) {
645				rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
646				    &m[i], fs->prot, fs->fault_type, 0);
647				MPASS(rv == KERN_SUCCESS);
648			}
649		}
650
651		VM_OBJECT_WLOCK(fs->first_object);
652		for (i = 0; i < npages; i++) {
653			if ((fs->fault_flags & VM_FAULT_WIRE) != 0 &&
654			    m[i].pindex == fs->first_pindex)
655				vm_page_wire(&m[i]);
656			else
657				vm_page_activate(&m[i]);
658			if (fs->m_hold != NULL &&
659			    m[i].pindex == fs->first_pindex) {
660				(*fs->m_hold) = &m[i];
661				vm_page_wire(&m[i]);
662			}
663			vm_page_xunbusy(&m[i]);
664		}
665	}
666out:
667	curthread->td_ru.ru_majflt++;
668	return (res);
669}
670
671static int prot_fault_translation;
672SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN,
673    &prot_fault_translation, 0,
674    "Control signal to deliver on protection fault");
675
676/* compat definition to keep common code for signal translation */
677#define	UCODE_PAGEFLT	12
678#ifdef T_PAGEFLT
679_Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT");
680#endif
681
682/*
683 *	vm_fault_trap:
684 *
685 *	Handle a page fault occurring at the given address,
686 *	requiring the given permissions, in the map specified.
687 *	If successful, the page is inserted into the
688 *	associated physical map.
689 *
690 *	NOTE: the given address should be truncated to the
691 *	proper page address.
692 *
693 *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
694 *	a standard error specifying why the fault is fatal is returned.
695 *
696 *	The map in question must be referenced, and remains so.
697 *	Caller may hold no locks.
698 */
699int
700vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
701    int fault_flags, int *signo, int *ucode)
702{
703	int result;
704
705	MPASS(signo == NULL || ucode != NULL);
706#ifdef KTRACE
707	if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT))
708		ktrfault(vaddr, fault_type);
709#endif
710	result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags,
711	    NULL);
712	KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE ||
713	    result == KERN_INVALID_ADDRESS ||
714	    result == KERN_RESOURCE_SHORTAGE ||
715	    result == KERN_PROTECTION_FAILURE ||
716	    result == KERN_OUT_OF_BOUNDS,
717	    ("Unexpected Mach error %d from vm_fault()", result));
718#ifdef KTRACE
719	if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND))
720		ktrfaultend(result);
721#endif
722	if (result != KERN_SUCCESS && signo != NULL) {
723		switch (result) {
724		case KERN_FAILURE:
725		case KERN_INVALID_ADDRESS:
726			*signo = SIGSEGV;
727			*ucode = SEGV_MAPERR;
728			break;
729		case KERN_RESOURCE_SHORTAGE:
730			*signo = SIGBUS;
731			*ucode = BUS_OOMERR;
732			break;
733		case KERN_OUT_OF_BOUNDS:
734			*signo = SIGBUS;
735			*ucode = BUS_OBJERR;
736			break;
737		case KERN_PROTECTION_FAILURE:
738			if (prot_fault_translation == 0) {
739				/*
740				 * Autodetect.  This check also covers
741				 * the images without the ABI-tag ELF
742				 * note.
743				 */
744				if (SV_CURPROC_ABI() == SV_ABI_FREEBSD &&
745				    curproc->p_osrel >= P_OSREL_SIGSEGV) {
746					*signo = SIGSEGV;
747					*ucode = SEGV_ACCERR;
748				} else {
749					*signo = SIGBUS;
750					*ucode = UCODE_PAGEFLT;
751				}
752			} else if (prot_fault_translation == 1) {
753				/* Always compat mode. */
754				*signo = SIGBUS;
755				*ucode = UCODE_PAGEFLT;
756			} else {
757				/* Always SIGSEGV mode. */
758				*signo = SIGSEGV;
759				*ucode = SEGV_ACCERR;
760			}
761			break;
762		default:
763			KASSERT(0, ("Unexpected Mach error %d from vm_fault()",
764			    result));
765			break;
766		}
767	}
768	return (result);
769}
770
771static bool
772vm_fault_object_ensure_wlocked(struct faultstate *fs)
773{
774	if (fs->object == fs->first_object)
775		VM_OBJECT_ASSERT_WLOCKED(fs->object);
776
777	if (!fs->can_read_lock)  {
778		VM_OBJECT_ASSERT_WLOCKED(fs->object);
779		return (true);
780	}
781
782	if (VM_OBJECT_WOWNED(fs->object))
783		return (true);
784
785	if (VM_OBJECT_TRYUPGRADE(fs->object))
786		return (true);
787
788	return (false);
789}
790
791static enum fault_status
792vm_fault_lock_vnode(struct faultstate *fs, bool objlocked)
793{
794	struct vnode *vp;
795	int error, locked;
796
797	if (fs->object->type != OBJT_VNODE)
798		return (FAULT_CONTINUE);
799	vp = fs->object->handle;
800	if (vp == fs->vp) {
801		ASSERT_VOP_LOCKED(vp, "saved vnode is not locked");
802		return (FAULT_CONTINUE);
803	}
804
805	/*
806	 * Perform an unlock in case the desired vnode changed while
807	 * the map was unlocked during a retry.
808	 */
809	vm_fault_unlock_vp(fs);
810
811	locked = VOP_ISLOCKED(vp);
812	if (locked != LK_EXCLUSIVE)
813		locked = LK_SHARED;
814
815	/*
816	 * We must not sleep acquiring the vnode lock while we have
817	 * the page exclusive busied or the object's
818	 * paging-in-progress count incremented.  Otherwise, we could
819	 * deadlock.
820	 */
821	error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT);
822	if (error == 0) {
823		fs->vp = vp;
824		return (FAULT_CONTINUE);
825	}
826
827	vhold(vp);
828	if (objlocked)
829		vm_fault_unlock_and_deallocate(fs);
830	else
831		vm_fault_deallocate(fs);
832	error = vget(vp, locked | LK_RETRY | LK_CANRECURSE);
833	vdrop(vp);
834	fs->vp = vp;
835	KASSERT(error == 0, ("vm_fault: vget failed %d", error));
836	return (FAULT_RESTART);
837}
838
839/*
840 * Calculate the desired readahead.  Handle drop-behind.
841 *
842 * Returns the number of readahead blocks to pass to the pager.
843 */
844static int
845vm_fault_readahead(struct faultstate *fs)
846{
847	int era, nera;
848	u_char behavior;
849
850	KASSERT(fs->lookup_still_valid, ("map unlocked"));
851	era = fs->entry->read_ahead;
852	behavior = vm_map_entry_behavior(fs->entry);
853	if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
854		nera = 0;
855	} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
856		nera = VM_FAULT_READ_AHEAD_MAX;
857		if (fs->vaddr == fs->entry->next_read)
858			vm_fault_dontneed(fs, fs->vaddr, nera);
859	} else if (fs->vaddr == fs->entry->next_read) {
860		/*
861		 * This is a sequential fault.  Arithmetically
862		 * increase the requested number of pages in
863		 * the read-ahead window.  The requested
864		 * number of pages is "# of sequential faults
865		 * x (read ahead min + 1) + read ahead min"
866		 */
867		nera = VM_FAULT_READ_AHEAD_MIN;
868		if (era > 0) {
869			nera += era + 1;
870			if (nera > VM_FAULT_READ_AHEAD_MAX)
871				nera = VM_FAULT_READ_AHEAD_MAX;
872		}
873		if (era == VM_FAULT_READ_AHEAD_MAX)
874			vm_fault_dontneed(fs, fs->vaddr, nera);
875	} else {
876		/*
877		 * This is a non-sequential fault.
878		 */
879		nera = 0;
880	}
881	if (era != nera) {
882		/*
883		 * A read lock on the map suffices to update
884		 * the read ahead count safely.
885		 */
886		fs->entry->read_ahead = nera;
887	}
888
889	return (nera);
890}
891
892static int
893vm_fault_lookup(struct faultstate *fs)
894{
895	int result;
896
897	KASSERT(!fs->lookup_still_valid,
898	   ("vm_fault_lookup: Map already locked."));
899	result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type |
900	    VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object,
901	    &fs->first_pindex, &fs->prot, &fs->wired);
902	if (result != KERN_SUCCESS) {
903		vm_fault_unlock_vp(fs);
904		return (result);
905	}
906
907	fs->map_generation = fs->map->timestamp;
908
909	if (fs->entry->eflags & MAP_ENTRY_NOFAULT) {
910		panic("%s: fault on nofault entry, addr: %#lx",
911		    __func__, (u_long)fs->vaddr);
912	}
913
914	if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION &&
915	    fs->entry->wiring_thread != curthread) {
916		vm_map_unlock_read(fs->map);
917		vm_map_lock(fs->map);
918		if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) &&
919		    (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
920			vm_fault_unlock_vp(fs);
921			fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
922			vm_map_unlock_and_wait(fs->map, 0);
923		} else
924			vm_map_unlock(fs->map);
925		return (KERN_RESOURCE_SHORTAGE);
926	}
927
928	MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0);
929
930	if (fs->wired)
931		fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY);
932	else
933		KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0,
934		    ("!fs->wired && VM_FAULT_WIRE"));
935	fs->lookup_still_valid = true;
936
937	return (KERN_SUCCESS);
938}
939
940static int
941vm_fault_relookup(struct faultstate *fs)
942{
943	vm_object_t retry_object;
944	vm_pindex_t retry_pindex;
945	vm_prot_t retry_prot;
946	int result;
947
948	if (!vm_map_trylock_read(fs->map))
949		return (KERN_RESTART);
950
951	fs->lookup_still_valid = true;
952	if (fs->map->timestamp == fs->map_generation)
953		return (KERN_SUCCESS);
954
955	result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type,
956	    &fs->entry, &retry_object, &retry_pindex, &retry_prot,
957	    &fs->wired);
958	if (result != KERN_SUCCESS) {
959		/*
960		 * If retry of map lookup would have blocked then
961		 * retry fault from start.
962		 */
963		if (result == KERN_FAILURE)
964			return (KERN_RESTART);
965		return (result);
966	}
967	if (retry_object != fs->first_object ||
968	    retry_pindex != fs->first_pindex)
969		return (KERN_RESTART);
970
971	/*
972	 * Check whether the protection has changed or the object has
973	 * been copied while we left the map unlocked. Changing from
974	 * read to write permission is OK - we leave the page
975	 * write-protected, and catch the write fault. Changing from
976	 * write to read permission means that we can't mark the page
977	 * write-enabled after all.
978	 */
979	fs->prot &= retry_prot;
980	fs->fault_type &= retry_prot;
981	if (fs->prot == 0)
982		return (KERN_RESTART);
983
984	/* Reassert because wired may have changed. */
985	KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0,
986	    ("!wired && VM_FAULT_WIRE"));
987
988	return (KERN_SUCCESS);
989}
990
991static void
992vm_fault_cow(struct faultstate *fs)
993{
994	bool is_first_object_locked;
995
996	KASSERT(fs->object != fs->first_object,
997	    ("source and target COW objects are identical"));
998
999	/*
1000	 * This allows pages to be virtually copied from a backing_object
1001	 * into the first_object, where the backing object has no other
1002	 * refs to it, and cannot gain any more refs.  Instead of a bcopy,
1003	 * we just move the page from the backing object to the first
1004	 * object.  Note that we must mark the page dirty in the first
1005	 * object so that it will go out to swap when needed.
1006	 */
1007	is_first_object_locked = false;
1008	if (
1009	    /*
1010	     * Only one shadow object and no other refs.
1011	     */
1012	    fs->object->shadow_count == 1 && fs->object->ref_count == 1 &&
1013	    /*
1014	     * No other ways to look the object up
1015	     */
1016	    fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0 &&
1017	    /*
1018	     * We don't chase down the shadow chain and we can acquire locks.
1019	     */
1020	    (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object)) &&
1021	    fs->object == fs->first_object->backing_object &&
1022	    VM_OBJECT_TRYWLOCK(fs->object)) {
1023		/*
1024		 * Remove but keep xbusy for replace.  fs->m is moved into
1025		 * fs->first_object and left busy while fs->first_m is
1026		 * conditionally freed.
1027		 */
1028		vm_page_remove_xbusy(fs->m);
1029		vm_page_replace(fs->m, fs->first_object, fs->first_pindex,
1030		    fs->first_m);
1031		vm_page_dirty(fs->m);
1032#if VM_NRESERVLEVEL > 0
1033		/*
1034		 * Rename the reservation.
1035		 */
1036		vm_reserv_rename(fs->m, fs->first_object, fs->object,
1037		    OFF_TO_IDX(fs->first_object->backing_object_offset));
1038#endif
1039		VM_OBJECT_WUNLOCK(fs->object);
1040		VM_OBJECT_WUNLOCK(fs->first_object);
1041		fs->first_m = fs->m;
1042		fs->m = NULL;
1043		VM_CNT_INC(v_cow_optim);
1044	} else {
1045		if (is_first_object_locked)
1046			VM_OBJECT_WUNLOCK(fs->first_object);
1047		/*
1048		 * Oh, well, lets copy it.
1049		 */
1050		pmap_copy_page(fs->m, fs->first_m);
1051		vm_page_valid(fs->first_m);
1052		if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) {
1053			vm_page_wire(fs->first_m);
1054			vm_page_unwire(fs->m, PQ_INACTIVE);
1055		}
1056		/*
1057		 * Save the cow page to be released after
1058		 * pmap_enter is complete.
1059		 */
1060		fs->m_cow = fs->m;
1061		fs->m = NULL;
1062
1063		/*
1064		 * Typically, the shadow object is either private to this
1065		 * address space (OBJ_ONEMAPPING) or its pages are read only.
1066		 * In the highly unusual case where the pages of a shadow object
1067		 * are read/write shared between this and other address spaces,
1068		 * we need to ensure that any pmap-level mappings to the
1069		 * original, copy-on-write page from the backing object are
1070		 * removed from those other address spaces.
1071		 *
1072		 * The flag check is racy, but this is tolerable: if
1073		 * OBJ_ONEMAPPING is cleared after the check, the busy state
1074		 * ensures that new mappings of m_cow can't be created.
1075		 * pmap_enter() will replace an existing mapping in the current
1076		 * address space.  If OBJ_ONEMAPPING is set after the check,
1077		 * removing mappings will at worse trigger some unnecessary page
1078		 * faults.
1079		 */
1080		vm_page_assert_xbusied(fs->m_cow);
1081		if ((fs->first_object->flags & OBJ_ONEMAPPING) == 0)
1082			pmap_remove_all(fs->m_cow);
1083	}
1084
1085	vm_object_pip_wakeup(fs->object);
1086
1087	/*
1088	 * Only use the new page below...
1089	 */
1090	fs->object = fs->first_object;
1091	fs->pindex = fs->first_pindex;
1092	fs->m = fs->first_m;
1093	VM_CNT_INC(v_cow_faults);
1094	curthread->td_cow++;
1095}
1096
1097static enum fault_next_status
1098vm_fault_next(struct faultstate *fs)
1099{
1100	vm_object_t next_object;
1101
1102	if (fs->object == fs->first_object || !fs->can_read_lock)
1103		VM_OBJECT_ASSERT_WLOCKED(fs->object);
1104	else
1105		VM_OBJECT_ASSERT_LOCKED(fs->object);
1106
1107	/*
1108	 * The requested page does not exist at this object/
1109	 * offset.  Remove the invalid page from the object,
1110	 * waking up anyone waiting for it, and continue on to
1111	 * the next object.  However, if this is the top-level
1112	 * object, we must leave the busy page in place to
1113	 * prevent another process from rushing past us, and
1114	 * inserting the page in that object at the same time
1115	 * that we are.
1116	 */
1117	if (fs->object == fs->first_object) {
1118		fs->first_m = fs->m;
1119		fs->m = NULL;
1120	} else if (fs->m != NULL) {
1121		if (!vm_fault_object_ensure_wlocked(fs)) {
1122			fs->can_read_lock = false;
1123			vm_fault_unlock_and_deallocate(fs);
1124			return (FAULT_NEXT_RESTART);
1125		}
1126		vm_fault_page_free(&fs->m);
1127	}
1128
1129	/*
1130	 * Move on to the next object.  Lock the next object before
1131	 * unlocking the current one.
1132	 */
1133	next_object = fs->object->backing_object;
1134	if (next_object == NULL)
1135		return (FAULT_NEXT_NOOBJ);
1136	MPASS(fs->first_m != NULL);
1137	KASSERT(fs->object != next_object, ("object loop %p", next_object));
1138	if (fs->can_read_lock)
1139		VM_OBJECT_RLOCK(next_object);
1140	else
1141		VM_OBJECT_WLOCK(next_object);
1142	vm_object_pip_add(next_object, 1);
1143	if (fs->object != fs->first_object)
1144		vm_object_pip_wakeup(fs->object);
1145	fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1146	VM_OBJECT_UNLOCK(fs->object);
1147	fs->object = next_object;
1148
1149	return (FAULT_NEXT_GOTOBJ);
1150}
1151
1152static void
1153vm_fault_zerofill(struct faultstate *fs)
1154{
1155
1156	/*
1157	 * If there's no object left, fill the page in the top
1158	 * object with zeros.
1159	 */
1160	if (fs->object != fs->first_object) {
1161		vm_object_pip_wakeup(fs->object);
1162		fs->object = fs->first_object;
1163		fs->pindex = fs->first_pindex;
1164	}
1165	MPASS(fs->first_m != NULL);
1166	MPASS(fs->m == NULL);
1167	fs->m = fs->first_m;
1168	fs->first_m = NULL;
1169
1170	/*
1171	 * Zero the page if necessary and mark it valid.
1172	 */
1173	if ((fs->m->flags & PG_ZERO) == 0) {
1174		pmap_zero_page(fs->m);
1175	} else {
1176		VM_CNT_INC(v_ozfod);
1177	}
1178	VM_CNT_INC(v_zfod);
1179	vm_page_valid(fs->m);
1180}
1181
1182/*
1183 * Initiate page fault after timeout.  Returns true if caller should
1184 * do vm_waitpfault() after the call.
1185 */
1186static bool
1187vm_fault_allocate_oom(struct faultstate *fs)
1188{
1189	struct timeval now;
1190
1191	vm_fault_unlock_and_deallocate(fs);
1192	if (vm_pfault_oom_attempts < 0)
1193		return (true);
1194	if (!fs->oom_started) {
1195		fs->oom_started = true;
1196		getmicrotime(&fs->oom_start_time);
1197		return (true);
1198	}
1199
1200	getmicrotime(&now);
1201	timevalsub(&now, &fs->oom_start_time);
1202	if (now.tv_sec < vm_pfault_oom_attempts * vm_pfault_oom_wait)
1203		return (true);
1204
1205	if (bootverbose)
1206		printf(
1207	    "proc %d (%s) failed to alloc page on fault, starting OOM\n",
1208		    curproc->p_pid, curproc->p_comm);
1209	vm_pageout_oom(VM_OOM_MEM_PF);
1210	fs->oom_started = false;
1211	return (false);
1212}
1213
1214/*
1215 * Allocate a page directly or via the object populate method.
1216 */
1217static enum fault_status
1218vm_fault_allocate(struct faultstate *fs)
1219{
1220	struct domainset *dset;
1221	enum fault_status res;
1222
1223	if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) {
1224		res = vm_fault_lock_vnode(fs, true);
1225		MPASS(res == FAULT_CONTINUE || res == FAULT_RESTART);
1226		if (res == FAULT_RESTART)
1227			return (res);
1228	}
1229
1230	if (fs->pindex >= fs->object->size) {
1231		vm_fault_unlock_and_deallocate(fs);
1232		return (FAULT_OUT_OF_BOUNDS);
1233	}
1234
1235	if (fs->object == fs->first_object &&
1236	    (fs->first_object->flags & OBJ_POPULATE) != 0 &&
1237	    fs->first_object->shadow_count == 0) {
1238		res = vm_fault_populate(fs);
1239		switch (res) {
1240		case FAULT_SUCCESS:
1241		case FAULT_FAILURE:
1242		case FAULT_RESTART:
1243			vm_fault_unlock_and_deallocate(fs);
1244			return (res);
1245		case FAULT_CONTINUE:
1246			/*
1247			 * Pager's populate() method
1248			 * returned VM_PAGER_BAD.
1249			 */
1250			break;
1251		default:
1252			panic("inconsistent return codes");
1253		}
1254	}
1255
1256	/*
1257	 * Allocate a new page for this object/offset pair.
1258	 *
1259	 * If the process has a fatal signal pending, prioritize the allocation
1260	 * with the expectation that the process will exit shortly and free some
1261	 * pages.  In particular, the signal may have been posted by the page
1262	 * daemon in an attempt to resolve an out-of-memory condition.
1263	 *
1264	 * The unlocked read of the p_flag is harmless.  At worst, the P_KILLED
1265	 * might be not observed here, and allocation fails, causing a restart
1266	 * and new reading of the p_flag.
1267	 */
1268	dset = fs->object->domain.dr_policy;
1269	if (dset == NULL)
1270		dset = curthread->td_domain.dr_policy;
1271	if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) {
1272#if VM_NRESERVLEVEL > 0
1273		vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex);
1274#endif
1275		if (!vm_pager_can_alloc_page(fs->object, fs->pindex)) {
1276			vm_fault_unlock_and_deallocate(fs);
1277			return (FAULT_FAILURE);
1278		}
1279		fs->m = vm_page_alloc(fs->object, fs->pindex,
1280		    P_KILLED(curproc) ? VM_ALLOC_SYSTEM : 0);
1281	}
1282	if (fs->m == NULL) {
1283		if (vm_fault_allocate_oom(fs))
1284			vm_waitpfault(dset, vm_pfault_oom_wait * hz);
1285		return (FAULT_RESTART);
1286	}
1287	fs->oom_started = false;
1288
1289	return (FAULT_CONTINUE);
1290}
1291
1292/*
1293 * Call the pager to retrieve the page if there is a chance
1294 * that the pager has it, and potentially retrieve additional
1295 * pages at the same time.
1296 */
1297static enum fault_status
1298vm_fault_getpages(struct faultstate *fs, int *behindp, int *aheadp)
1299{
1300	vm_offset_t e_end, e_start;
1301	int ahead, behind, cluster_offset, rv;
1302	enum fault_status status;
1303	u_char behavior;
1304
1305	/*
1306	 * Prepare for unlocking the map.  Save the map
1307	 * entry's start and end addresses, which are used to
1308	 * optimize the size of the pager operation below.
1309	 * Even if the map entry's addresses change after
1310	 * unlocking the map, using the saved addresses is
1311	 * safe.
1312	 */
1313	e_start = fs->entry->start;
1314	e_end = fs->entry->end;
1315	behavior = vm_map_entry_behavior(fs->entry);
1316
1317	/*
1318	 * If the pager for the current object might have
1319	 * the page, then determine the number of additional
1320	 * pages to read and potentially reprioritize
1321	 * previously read pages for earlier reclamation.
1322	 * These operations should only be performed once per
1323	 * page fault.  Even if the current pager doesn't
1324	 * have the page, the number of additional pages to
1325	 * read will apply to subsequent objects in the
1326	 * shadow chain.
1327	 */
1328	if (fs->nera == -1 && !P_KILLED(curproc))
1329		fs->nera = vm_fault_readahead(fs);
1330
1331	/*
1332	 * Release the map lock before locking the vnode or
1333	 * sleeping in the pager.  (If the current object has
1334	 * a shadow, then an earlier iteration of this loop
1335	 * may have already unlocked the map.)
1336	 */
1337	vm_fault_unlock_map(fs);
1338
1339	status = vm_fault_lock_vnode(fs, false);
1340	MPASS(status == FAULT_CONTINUE || status == FAULT_RESTART);
1341	if (status == FAULT_RESTART)
1342		return (status);
1343	KASSERT(fs->vp == NULL || !fs->map->system_map,
1344	    ("vm_fault: vnode-backed object mapped by system map"));
1345
1346	/*
1347	 * Page in the requested page and hint the pager,
1348	 * that it may bring up surrounding pages.
1349	 */
1350	if (fs->nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
1351	    P_KILLED(curproc)) {
1352		behind = 0;
1353		ahead = 0;
1354	} else {
1355		/* Is this a sequential fault? */
1356		if (fs->nera > 0) {
1357			behind = 0;
1358			ahead = fs->nera;
1359		} else {
1360			/*
1361			 * Request a cluster of pages that is
1362			 * aligned to a VM_FAULT_READ_DEFAULT
1363			 * page offset boundary within the
1364			 * object.  Alignment to a page offset
1365			 * boundary is more likely to coincide
1366			 * with the underlying file system
1367			 * block than alignment to a virtual
1368			 * address boundary.
1369			 */
1370			cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT;
1371			behind = ulmin(cluster_offset,
1372			    atop(fs->vaddr - e_start));
1373			ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset;
1374		}
1375		ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1);
1376	}
1377	*behindp = behind;
1378	*aheadp = ahead;
1379	rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp);
1380	if (rv == VM_PAGER_OK)
1381		return (FAULT_HARD);
1382	if (rv == VM_PAGER_ERROR)
1383		printf("vm_fault: pager read error, pid %d (%s)\n",
1384		    curproc->p_pid, curproc->p_comm);
1385	/*
1386	 * If an I/O error occurred or the requested page was
1387	 * outside the range of the pager, clean up and return
1388	 * an error.
1389	 */
1390	if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
1391		VM_OBJECT_WLOCK(fs->object);
1392		vm_fault_page_free(&fs->m);
1393		vm_fault_unlock_and_deallocate(fs);
1394		return (FAULT_OUT_OF_BOUNDS);
1395	}
1396	KASSERT(rv == VM_PAGER_FAIL,
1397	    ("%s: unexpected pager error %d", __func__, rv));
1398	return (FAULT_CONTINUE);
1399}
1400
1401/*
1402 * Wait/Retry if the page is busy.  We have to do this if the page is
1403 * either exclusive or shared busy because the vm_pager may be using
1404 * read busy for pageouts (and even pageins if it is the vnode pager),
1405 * and we could end up trying to pagein and pageout the same page
1406 * simultaneously.
1407 *
1408 * We can theoretically allow the busy case on a read fault if the page
1409 * is marked valid, but since such pages are typically already pmap'd,
1410 * putting that special case in might be more effort then it is worth.
1411 * We cannot under any circumstances mess around with a shared busied
1412 * page except, perhaps, to pmap it.
1413 */
1414static void
1415vm_fault_busy_sleep(struct faultstate *fs)
1416{
1417	/*
1418	 * Reference the page before unlocking and
1419	 * sleeping so that the page daemon is less
1420	 * likely to reclaim it.
1421	 */
1422	vm_page_aflag_set(fs->m, PGA_REFERENCED);
1423	if (fs->object != fs->first_object) {
1424		vm_fault_page_release(&fs->first_m);
1425		vm_object_pip_wakeup(fs->first_object);
1426	}
1427	vm_object_pip_wakeup(fs->object);
1428	vm_fault_unlock_map(fs);
1429	if (fs->m != vm_page_lookup(fs->object, fs->pindex) ||
1430	    !vm_page_busy_sleep(fs->m, "vmpfw", 0))
1431		VM_OBJECT_UNLOCK(fs->object);
1432	VM_CNT_INC(v_intrans);
1433	vm_object_deallocate(fs->first_object);
1434}
1435
1436/*
1437 * Handle page lookup, populate, allocate, page-in for the current
1438 * object.
1439 *
1440 * The object is locked on entry and will remain locked with a return
1441 * code of FAULT_CONTINUE so that fault may follow the shadow chain.
1442 * Otherwise, the object will be unlocked upon return.
1443 */
1444static enum fault_status
1445vm_fault_object(struct faultstate *fs, int *behindp, int *aheadp)
1446{
1447	enum fault_status res;
1448	bool dead;
1449
1450	if (fs->object == fs->first_object || !fs->can_read_lock)
1451		VM_OBJECT_ASSERT_WLOCKED(fs->object);
1452	else
1453		VM_OBJECT_ASSERT_LOCKED(fs->object);
1454
1455	/*
1456	 * If the object is marked for imminent termination, we retry
1457	 * here, since the collapse pass has raced with us.  Otherwise,
1458	 * if we see terminally dead object, return fail.
1459	 */
1460	if ((fs->object->flags & OBJ_DEAD) != 0) {
1461		dead = fs->object->type == OBJT_DEAD;
1462		vm_fault_unlock_and_deallocate(fs);
1463		if (dead)
1464			return (FAULT_PROTECTION_FAILURE);
1465		pause("vmf_de", 1);
1466		return (FAULT_RESTART);
1467	}
1468
1469	/*
1470	 * See if the page is resident.
1471	 */
1472	fs->m = vm_page_lookup(fs->object, fs->pindex);
1473	if (fs->m != NULL) {
1474		if (!vm_page_tryxbusy(fs->m)) {
1475			vm_fault_busy_sleep(fs);
1476			return (FAULT_RESTART);
1477		}
1478
1479		/*
1480		 * The page is marked busy for other processes and the
1481		 * pagedaemon.  If it is still completely valid we are
1482		 * done.
1483		 */
1484		if (vm_page_all_valid(fs->m)) {
1485			VM_OBJECT_UNLOCK(fs->object);
1486			return (FAULT_SOFT);
1487		}
1488	}
1489
1490	/*
1491	 * Page is not resident.  If the pager might contain the page
1492	 * or this is the beginning of the search, allocate a new
1493	 * page.
1494	 */
1495	if (fs->m == NULL && (vm_fault_object_needs_getpages(fs->object) ||
1496	    fs->object == fs->first_object)) {
1497		if (!vm_fault_object_ensure_wlocked(fs)) {
1498			fs->can_read_lock = false;
1499			vm_fault_unlock_and_deallocate(fs);
1500			return (FAULT_RESTART);
1501		}
1502		res = vm_fault_allocate(fs);
1503		if (res != FAULT_CONTINUE)
1504			return (res);
1505	}
1506
1507	/*
1508	 * Check to see if the pager can possibly satisfy this fault.
1509	 * If not, skip to the next object without dropping the lock to
1510	 * preserve atomicity of shadow faults.
1511	 */
1512	if (vm_fault_object_needs_getpages(fs->object)) {
1513		/*
1514		 * At this point, we have either allocated a new page
1515		 * or found an existing page that is only partially
1516		 * valid.
1517		 *
1518		 * We hold a reference on the current object and the
1519		 * page is exclusive busied.  The exclusive busy
1520		 * prevents simultaneous faults and collapses while
1521		 * the object lock is dropped.
1522		 */
1523		VM_OBJECT_UNLOCK(fs->object);
1524		res = vm_fault_getpages(fs, behindp, aheadp);
1525		if (res == FAULT_CONTINUE)
1526			VM_OBJECT_WLOCK(fs->object);
1527	} else {
1528		res = FAULT_CONTINUE;
1529	}
1530	return (res);
1531}
1532
1533int
1534vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
1535    int fault_flags, vm_page_t *m_hold)
1536{
1537	struct faultstate fs;
1538	int ahead, behind, faultcount, rv;
1539	enum fault_status res;
1540	enum fault_next_status res_next;
1541	bool hardfault;
1542
1543	VM_CNT_INC(v_vm_faults);
1544
1545	if ((curthread->td_pflags & TDP_NOFAULTING) != 0)
1546		return (KERN_PROTECTION_FAILURE);
1547
1548	fs.vp = NULL;
1549	fs.vaddr = vaddr;
1550	fs.m_hold = m_hold;
1551	fs.fault_flags = fault_flags;
1552	fs.map = map;
1553	fs.lookup_still_valid = false;
1554	fs.oom_started = false;
1555	fs.nera = -1;
1556	fs.can_read_lock = true;
1557	faultcount = 0;
1558	hardfault = false;
1559
1560RetryFault:
1561	fs.fault_type = fault_type;
1562
1563	/*
1564	 * Find the backing store object and offset into it to begin the
1565	 * search.
1566	 */
1567	rv = vm_fault_lookup(&fs);
1568	if (rv != KERN_SUCCESS) {
1569		if (rv == KERN_RESOURCE_SHORTAGE)
1570			goto RetryFault;
1571		return (rv);
1572	}
1573
1574	/*
1575	 * Try to avoid lock contention on the top-level object through
1576	 * special-case handling of some types of page faults, specifically,
1577	 * those that are mapping an existing page from the top-level object.
1578	 * Under this condition, a read lock on the object suffices, allowing
1579	 * multiple page faults of a similar type to run in parallel.
1580	 */
1581	if (fs.vp == NULL /* avoid locked vnode leak */ &&
1582	    (fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) == 0 &&
1583	    (fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) {
1584		res = vm_fault_soft_fast(&fs);
1585		if (res == FAULT_SUCCESS) {
1586			VM_OBJECT_ASSERT_UNLOCKED(fs.first_object);
1587			return (KERN_SUCCESS);
1588		}
1589		VM_OBJECT_ASSERT_WLOCKED(fs.first_object);
1590	} else {
1591		VM_OBJECT_WLOCK(fs.first_object);
1592	}
1593
1594	/*
1595	 * Make a reference to this object to prevent its disposal while we
1596	 * are messing with it.  Once we have the reference, the map is free
1597	 * to be diddled.  Since objects reference their shadows (and copies),
1598	 * they will stay around as well.
1599	 *
1600	 * Bump the paging-in-progress count to prevent size changes (e.g.
1601	 * truncation operations) during I/O.
1602	 */
1603	vm_object_reference_locked(fs.first_object);
1604	vm_object_pip_add(fs.first_object, 1);
1605
1606	fs.m_cow = fs.m = fs.first_m = NULL;
1607
1608	/*
1609	 * Search for the page at object/offset.
1610	 */
1611	fs.object = fs.first_object;
1612	fs.pindex = fs.first_pindex;
1613
1614	if ((fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) {
1615		res = vm_fault_allocate(&fs);
1616		switch (res) {
1617		case FAULT_RESTART:
1618			goto RetryFault;
1619		case FAULT_SUCCESS:
1620			return (KERN_SUCCESS);
1621		case FAULT_FAILURE:
1622			return (KERN_FAILURE);
1623		case FAULT_OUT_OF_BOUNDS:
1624			return (KERN_OUT_OF_BOUNDS);
1625		case FAULT_CONTINUE:
1626			break;
1627		default:
1628			panic("vm_fault: Unhandled status %d", res);
1629		}
1630	}
1631
1632	while (TRUE) {
1633		KASSERT(fs.m == NULL,
1634		    ("page still set %p at loop start", fs.m));
1635
1636		res = vm_fault_object(&fs, &behind, &ahead);
1637		switch (res) {
1638		case FAULT_SOFT:
1639			goto found;
1640		case FAULT_HARD:
1641			faultcount = behind + 1 + ahead;
1642			hardfault = true;
1643			goto found;
1644		case FAULT_RESTART:
1645			goto RetryFault;
1646		case FAULT_SUCCESS:
1647			return (KERN_SUCCESS);
1648		case FAULT_FAILURE:
1649			return (KERN_FAILURE);
1650		case FAULT_OUT_OF_BOUNDS:
1651			return (KERN_OUT_OF_BOUNDS);
1652		case FAULT_PROTECTION_FAILURE:
1653			return (KERN_PROTECTION_FAILURE);
1654		case FAULT_CONTINUE:
1655			break;
1656		default:
1657			panic("vm_fault: Unhandled status %d", res);
1658		}
1659
1660		/*
1661		 * The page was not found in the current object.  Try to
1662		 * traverse into a backing object or zero fill if none is
1663		 * found.
1664		 */
1665		res_next = vm_fault_next(&fs);
1666		if (res_next == FAULT_NEXT_RESTART)
1667			goto RetryFault;
1668		else if (res_next == FAULT_NEXT_GOTOBJ)
1669			continue;
1670		MPASS(res_next == FAULT_NEXT_NOOBJ);
1671		if ((fs.fault_flags & VM_FAULT_NOFILL) != 0) {
1672			if (fs.first_object == fs.object)
1673				vm_fault_page_free(&fs.first_m);
1674			vm_fault_unlock_and_deallocate(&fs);
1675			return (KERN_OUT_OF_BOUNDS);
1676		}
1677		VM_OBJECT_UNLOCK(fs.object);
1678		vm_fault_zerofill(&fs);
1679		/* Don't try to prefault neighboring pages. */
1680		faultcount = 1;
1681		break;
1682	}
1683
1684found:
1685	/*
1686	 * A valid page has been found and exclusively busied.  The
1687	 * object lock must no longer be held.
1688	 */
1689	vm_page_assert_xbusied(fs.m);
1690	VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1691
1692	/*
1693	 * If the page is being written, but isn't already owned by the
1694	 * top-level object, we have to copy it into a new page owned by the
1695	 * top-level object.
1696	 */
1697	if (fs.object != fs.first_object) {
1698		/*
1699		 * We only really need to copy if we want to write it.
1700		 */
1701		if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1702			vm_fault_cow(&fs);
1703			/*
1704			 * We only try to prefault read-only mappings to the
1705			 * neighboring pages when this copy-on-write fault is
1706			 * a hard fault.  In other cases, trying to prefault
1707			 * is typically wasted effort.
1708			 */
1709			if (faultcount == 0)
1710				faultcount = 1;
1711
1712		} else {
1713			fs.prot &= ~VM_PROT_WRITE;
1714		}
1715	}
1716
1717	/*
1718	 * We must verify that the maps have not changed since our last
1719	 * lookup.
1720	 */
1721	if (!fs.lookup_still_valid) {
1722		rv = vm_fault_relookup(&fs);
1723		if (rv != KERN_SUCCESS) {
1724			vm_fault_deallocate(&fs);
1725			if (rv == KERN_RESTART)
1726				goto RetryFault;
1727			return (rv);
1728		}
1729	}
1730	VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1731
1732	/*
1733	 * If the page was filled by a pager, save the virtual address that
1734	 * should be faulted on next under a sequential access pattern to the
1735	 * map entry.  A read lock on the map suffices to update this address
1736	 * safely.
1737	 */
1738	if (hardfault)
1739		fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1740
1741	/*
1742	 * Page must be completely valid or it is not fit to
1743	 * map into user space.  vm_pager_get_pages() ensures this.
1744	 */
1745	vm_page_assert_xbusied(fs.m);
1746	KASSERT(vm_page_all_valid(fs.m),
1747	    ("vm_fault: page %p partially invalid", fs.m));
1748
1749	vm_fault_dirty(&fs, fs.m);
1750
1751	/*
1752	 * Put this page into the physical map.  We had to do the unlock above
1753	 * because pmap_enter() may sleep.  We don't put the page
1754	 * back on the active queue until later so that the pageout daemon
1755	 * won't find it (yet).
1756	 */
1757	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot,
1758	    fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0);
1759	if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 &&
1760	    fs.wired == 0)
1761		vm_fault_prefault(&fs, vaddr,
1762		    faultcount > 0 ? behind : PFBAK,
1763		    faultcount > 0 ? ahead : PFFOR, false);
1764
1765	/*
1766	 * If the page is not wired down, then put it where the pageout daemon
1767	 * can find it.
1768	 */
1769	if ((fs.fault_flags & VM_FAULT_WIRE) != 0)
1770		vm_page_wire(fs.m);
1771	else
1772		vm_page_activate(fs.m);
1773	if (fs.m_hold != NULL) {
1774		(*fs.m_hold) = fs.m;
1775		vm_page_wire(fs.m);
1776	}
1777	vm_page_xunbusy(fs.m);
1778	fs.m = NULL;
1779
1780	/*
1781	 * Unlock everything, and return
1782	 */
1783	vm_fault_deallocate(&fs);
1784	if (hardfault) {
1785		VM_CNT_INC(v_io_faults);
1786		curthread->td_ru.ru_majflt++;
1787#ifdef RACCT
1788		if (racct_enable && fs.object->type == OBJT_VNODE) {
1789			PROC_LOCK(curproc);
1790			if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1791				racct_add_force(curproc, RACCT_WRITEBPS,
1792				    PAGE_SIZE + behind * PAGE_SIZE);
1793				racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1794			} else {
1795				racct_add_force(curproc, RACCT_READBPS,
1796				    PAGE_SIZE + ahead * PAGE_SIZE);
1797				racct_add_force(curproc, RACCT_READIOPS, 1);
1798			}
1799			PROC_UNLOCK(curproc);
1800		}
1801#endif
1802	} else
1803		curthread->td_ru.ru_minflt++;
1804
1805	return (KERN_SUCCESS);
1806}
1807
1808/*
1809 * Speed up the reclamation of pages that precede the faulting pindex within
1810 * the first object of the shadow chain.  Essentially, perform the equivalent
1811 * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1812 * the faulting pindex by the cluster size when the pages read by vm_fault()
1813 * cross a cluster-size boundary.  The cluster size is the greater of the
1814 * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1815 *
1816 * When "fs->first_object" is a shadow object, the pages in the backing object
1817 * that precede the faulting pindex are deactivated by vm_fault().  So, this
1818 * function must only be concerned with pages in the first object.
1819 */
1820static void
1821vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1822{
1823	vm_map_entry_t entry;
1824	vm_object_t first_object;
1825	vm_offset_t end, start;
1826	vm_page_t m, m_next;
1827	vm_pindex_t pend, pstart;
1828	vm_size_t size;
1829
1830	VM_OBJECT_ASSERT_UNLOCKED(fs->object);
1831	first_object = fs->first_object;
1832	/* Neither fictitious nor unmanaged pages can be reclaimed. */
1833	if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1834		VM_OBJECT_RLOCK(first_object);
1835		size = VM_FAULT_DONTNEED_MIN;
1836		if (MAXPAGESIZES > 1 && size < pagesizes[1])
1837			size = pagesizes[1];
1838		end = rounddown2(vaddr, size);
1839		if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1840		    (entry = fs->entry)->start < end) {
1841			if (end - entry->start < size)
1842				start = entry->start;
1843			else
1844				start = end - size;
1845			pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1846			pstart = OFF_TO_IDX(entry->offset) + atop(start -
1847			    entry->start);
1848			m_next = vm_page_find_least(first_object, pstart);
1849			pend = OFF_TO_IDX(entry->offset) + atop(end -
1850			    entry->start);
1851			while ((m = m_next) != NULL && m->pindex < pend) {
1852				m_next = TAILQ_NEXT(m, listq);
1853				if (!vm_page_all_valid(m) ||
1854				    vm_page_busied(m))
1855					continue;
1856
1857				/*
1858				 * Don't clear PGA_REFERENCED, since it would
1859				 * likely represent a reference by a different
1860				 * process.
1861				 *
1862				 * Typically, at this point, prefetched pages
1863				 * are still in the inactive queue.  Only
1864				 * pages that triggered page faults are in the
1865				 * active queue.  The test for whether the page
1866				 * is in the inactive queue is racy; in the
1867				 * worst case we will requeue the page
1868				 * unnecessarily.
1869				 */
1870				if (!vm_page_inactive(m))
1871					vm_page_deactivate(m);
1872			}
1873		}
1874		VM_OBJECT_RUNLOCK(first_object);
1875	}
1876}
1877
1878/*
1879 * vm_fault_prefault provides a quick way of clustering
1880 * pagefaults into a processes address space.  It is a "cousin"
1881 * of vm_map_pmap_enter, except it runs at page fault time instead
1882 * of mmap time.
1883 */
1884static void
1885vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1886    int backward, int forward, bool obj_locked)
1887{
1888	pmap_t pmap;
1889	vm_map_entry_t entry;
1890	vm_object_t backing_object, lobject;
1891	vm_offset_t addr, starta;
1892	vm_pindex_t pindex;
1893	vm_page_t m;
1894	vm_prot_t prot;
1895	int i;
1896
1897	pmap = fs->map->pmap;
1898	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1899		return;
1900
1901	entry = fs->entry;
1902
1903	if (addra < backward * PAGE_SIZE) {
1904		starta = entry->start;
1905	} else {
1906		starta = addra - backward * PAGE_SIZE;
1907		if (starta < entry->start)
1908			starta = entry->start;
1909	}
1910	prot = entry->protection;
1911
1912	/*
1913	 * If pmap_enter() has enabled write access on a nearby mapping, then
1914	 * don't attempt promotion, because it will fail.
1915	 */
1916	if ((fs->prot & VM_PROT_WRITE) != 0)
1917		prot |= VM_PROT_NO_PROMOTE;
1918
1919	/*
1920	 * Generate the sequence of virtual addresses that are candidates for
1921	 * prefaulting in an outward spiral from the faulting virtual address,
1922	 * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1923	 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1924	 * If the candidate address doesn't have a backing physical page, then
1925	 * the loop immediately terminates.
1926	 */
1927	for (i = 0; i < 2 * imax(backward, forward); i++) {
1928		addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1929		    PAGE_SIZE);
1930		if (addr > addra + forward * PAGE_SIZE)
1931			addr = 0;
1932
1933		if (addr < starta || addr >= entry->end)
1934			continue;
1935
1936		if (!pmap_is_prefaultable(pmap, addr))
1937			continue;
1938
1939		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1940		lobject = entry->object.vm_object;
1941		if (!obj_locked)
1942			VM_OBJECT_RLOCK(lobject);
1943		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1944		    !vm_fault_object_needs_getpages(lobject) &&
1945		    (backing_object = lobject->backing_object) != NULL) {
1946			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1947			    0, ("vm_fault_prefault: unaligned object offset"));
1948			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1949			VM_OBJECT_RLOCK(backing_object);
1950			if (!obj_locked || lobject != entry->object.vm_object)
1951				VM_OBJECT_RUNLOCK(lobject);
1952			lobject = backing_object;
1953		}
1954		if (m == NULL) {
1955			if (!obj_locked || lobject != entry->object.vm_object)
1956				VM_OBJECT_RUNLOCK(lobject);
1957			break;
1958		}
1959		if (vm_page_all_valid(m) &&
1960		    (m->flags & PG_FICTITIOUS) == 0)
1961			pmap_enter_quick(pmap, addr, m, prot);
1962		if (!obj_locked || lobject != entry->object.vm_object)
1963			VM_OBJECT_RUNLOCK(lobject);
1964	}
1965}
1966
1967/*
1968 * Hold each of the physical pages that are mapped by the specified range of
1969 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1970 * and allow the specified types of access, "prot".  If all of the implied
1971 * pages are successfully held, then the number of held pages is returned
1972 * together with pointers to those pages in the array "ma".  However, if any
1973 * of the pages cannot be held, -1 is returned.
1974 */
1975int
1976vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1977    vm_prot_t prot, vm_page_t *ma, int max_count)
1978{
1979	vm_offset_t end, va;
1980	vm_page_t *mp;
1981	int count;
1982	boolean_t pmap_failed;
1983
1984	if (len == 0)
1985		return (0);
1986	end = round_page(addr + len);
1987	addr = trunc_page(addr);
1988
1989	if (!vm_map_range_valid(map, addr, end))
1990		return (-1);
1991
1992	if (atop(end - addr) > max_count)
1993		panic("vm_fault_quick_hold_pages: count > max_count");
1994	count = atop(end - addr);
1995
1996	/*
1997	 * Most likely, the physical pages are resident in the pmap, so it is
1998	 * faster to try pmap_extract_and_hold() first.
1999	 */
2000	pmap_failed = FALSE;
2001	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
2002		*mp = pmap_extract_and_hold(map->pmap, va, prot);
2003		if (*mp == NULL)
2004			pmap_failed = TRUE;
2005		else if ((prot & VM_PROT_WRITE) != 0 &&
2006		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
2007			/*
2008			 * Explicitly dirty the physical page.  Otherwise, the
2009			 * caller's changes may go unnoticed because they are
2010			 * performed through an unmanaged mapping or by a DMA
2011			 * operation.
2012			 *
2013			 * The object lock is not held here.
2014			 * See vm_page_clear_dirty_mask().
2015			 */
2016			vm_page_dirty(*mp);
2017		}
2018	}
2019	if (pmap_failed) {
2020		/*
2021		 * One or more pages could not be held by the pmap.  Either no
2022		 * page was mapped at the specified virtual address or that
2023		 * mapping had insufficient permissions.  Attempt to fault in
2024		 * and hold these pages.
2025		 *
2026		 * If vm_fault_disable_pagefaults() was called,
2027		 * i.e., TDP_NOFAULTING is set, we must not sleep nor
2028		 * acquire MD VM locks, which means we must not call
2029		 * vm_fault().  Some (out of tree) callers mark
2030		 * too wide a code area with vm_fault_disable_pagefaults()
2031		 * already, use the VM_PROT_QUICK_NOFAULT flag to request
2032		 * the proper behaviour explicitly.
2033		 */
2034		if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
2035		    (curthread->td_pflags & TDP_NOFAULTING) != 0)
2036			goto error;
2037		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
2038			if (*mp == NULL && vm_fault(map, va, prot,
2039			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
2040				goto error;
2041	}
2042	return (count);
2043error:
2044	for (mp = ma; mp < ma + count; mp++)
2045		if (*mp != NULL)
2046			vm_page_unwire(*mp, PQ_INACTIVE);
2047	return (-1);
2048}
2049
2050/*
2051 *	Routine:
2052 *		vm_fault_copy_entry
2053 *	Function:
2054 *		Create new object backing dst_entry with private copy of all
2055 *		underlying pages. When src_entry is equal to dst_entry, function
2056 *		implements COW for wired-down map entry. Otherwise, it forks
2057 *		wired entry into dst_map.
2058 *
2059 *	In/out conditions:
2060 *		The source and destination maps must be locked for write.
2061 *		The source map entry must be wired down (or be a sharing map
2062 *		entry corresponding to a main map entry that is wired down).
2063 */
2064void
2065vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map __unused,
2066    vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
2067    vm_ooffset_t *fork_charge)
2068{
2069	vm_object_t backing_object, dst_object, object, src_object;
2070	vm_pindex_t dst_pindex, pindex, src_pindex;
2071	vm_prot_t access, prot;
2072	vm_offset_t vaddr;
2073	vm_page_t dst_m;
2074	vm_page_t src_m;
2075	bool upgrade;
2076
2077	upgrade = src_entry == dst_entry;
2078	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
2079	    ("vm_fault_copy_entry: vm_object not NULL"));
2080
2081	/*
2082	 * If not an upgrade, then enter the mappings in the pmap as
2083	 * read and/or execute accesses.  Otherwise, enter them as
2084	 * write accesses.
2085	 *
2086	 * A writeable large page mapping is only created if all of
2087	 * the constituent small page mappings are modified. Marking
2088	 * PTEs as modified on inception allows promotion to happen
2089	 * without taking potentially large number of soft faults.
2090	 */
2091	access = prot = dst_entry->protection;
2092	if (!upgrade)
2093		access &= ~VM_PROT_WRITE;
2094
2095	src_object = src_entry->object.vm_object;
2096	src_pindex = OFF_TO_IDX(src_entry->offset);
2097
2098	if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2099		dst_object = src_object;
2100		vm_object_reference(dst_object);
2101	} else {
2102		/*
2103		 * Create the top-level object for the destination entry.
2104		 * Doesn't actually shadow anything - we copy the pages
2105		 * directly.
2106		 */
2107		dst_object = vm_object_allocate_anon(atop(dst_entry->end -
2108		    dst_entry->start), NULL, NULL, 0);
2109#if VM_NRESERVLEVEL > 0
2110		dst_object->flags |= OBJ_COLORED;
2111		dst_object->pg_color = atop(dst_entry->start);
2112#endif
2113		dst_object->domain = src_object->domain;
2114		dst_object->charge = dst_entry->end - dst_entry->start;
2115
2116		dst_entry->object.vm_object = dst_object;
2117		dst_entry->offset = 0;
2118		dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC;
2119	}
2120
2121	VM_OBJECT_WLOCK(dst_object);
2122	if (fork_charge != NULL) {
2123		KASSERT(dst_entry->cred == NULL,
2124		    ("vm_fault_copy_entry: leaked swp charge"));
2125		dst_object->cred = curthread->td_ucred;
2126		crhold(dst_object->cred);
2127		*fork_charge += dst_object->charge;
2128	} else if ((dst_object->flags & OBJ_SWAP) != 0 &&
2129	    dst_object->cred == NULL) {
2130		KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
2131		    dst_entry));
2132		dst_object->cred = dst_entry->cred;
2133		dst_entry->cred = NULL;
2134	}
2135
2136	/*
2137	 * Loop through all of the virtual pages within the entry's
2138	 * range, copying each page from the source object to the
2139	 * destination object.  Since the source is wired, those pages
2140	 * must exist.  In contrast, the destination is pageable.
2141	 * Since the destination object doesn't share any backing storage
2142	 * with the source object, all of its pages must be dirtied,
2143	 * regardless of whether they can be written.
2144	 */
2145	for (vaddr = dst_entry->start, dst_pindex = 0;
2146	    vaddr < dst_entry->end;
2147	    vaddr += PAGE_SIZE, dst_pindex++) {
2148again:
2149		/*
2150		 * Find the page in the source object, and copy it in.
2151		 * Because the source is wired down, the page will be
2152		 * in memory.
2153		 */
2154		if (src_object != dst_object)
2155			VM_OBJECT_RLOCK(src_object);
2156		object = src_object;
2157		pindex = src_pindex + dst_pindex;
2158		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
2159		    (backing_object = object->backing_object) != NULL) {
2160			/*
2161			 * Unless the source mapping is read-only or
2162			 * it is presently being upgraded from
2163			 * read-only, the first object in the shadow
2164			 * chain should provide all of the pages.  In
2165			 * other words, this loop body should never be
2166			 * executed when the source mapping is already
2167			 * read/write.
2168			 */
2169			KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
2170			    upgrade,
2171			    ("vm_fault_copy_entry: main object missing page"));
2172
2173			VM_OBJECT_RLOCK(backing_object);
2174			pindex += OFF_TO_IDX(object->backing_object_offset);
2175			if (object != dst_object)
2176				VM_OBJECT_RUNLOCK(object);
2177			object = backing_object;
2178		}
2179		KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
2180
2181		if (object != dst_object) {
2182			/*
2183			 * Allocate a page in the destination object.
2184			 */
2185			dst_m = vm_page_alloc(dst_object, (src_object ==
2186			    dst_object ? src_pindex : 0) + dst_pindex,
2187			    VM_ALLOC_NORMAL);
2188			if (dst_m == NULL) {
2189				VM_OBJECT_WUNLOCK(dst_object);
2190				VM_OBJECT_RUNLOCK(object);
2191				vm_wait(dst_object);
2192				VM_OBJECT_WLOCK(dst_object);
2193				goto again;
2194			}
2195
2196			/*
2197			 * See the comment in vm_fault_cow().
2198			 */
2199			if (src_object == dst_object &&
2200			    (object->flags & OBJ_ONEMAPPING) == 0)
2201				pmap_remove_all(src_m);
2202			pmap_copy_page(src_m, dst_m);
2203
2204			/*
2205			 * The object lock does not guarantee that "src_m" will
2206			 * transition from invalid to valid, but it does ensure
2207			 * that "src_m" will not transition from valid to
2208			 * invalid.
2209			 */
2210			dst_m->dirty = dst_m->valid = src_m->valid;
2211			VM_OBJECT_RUNLOCK(object);
2212		} else {
2213			dst_m = src_m;
2214			if (vm_page_busy_acquire(dst_m, VM_ALLOC_WAITFAIL) == 0)
2215				goto again;
2216			if (dst_m->pindex >= dst_object->size) {
2217				/*
2218				 * We are upgrading.  Index can occur
2219				 * out of bounds if the object type is
2220				 * vnode and the file was truncated.
2221				 */
2222				vm_page_xunbusy(dst_m);
2223				break;
2224			}
2225		}
2226
2227		/*
2228		 * Enter it in the pmap. If a wired, copy-on-write
2229		 * mapping is being replaced by a write-enabled
2230		 * mapping, then wire that new mapping.
2231		 *
2232		 * The page can be invalid if the user called
2233		 * msync(MS_INVALIDATE) or truncated the backing vnode
2234		 * or shared memory object.  In this case, do not
2235		 * insert it into pmap, but still do the copy so that
2236		 * all copies of the wired map entry have similar
2237		 * backing pages.
2238		 */
2239		if (vm_page_all_valid(dst_m)) {
2240			VM_OBJECT_WUNLOCK(dst_object);
2241			pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
2242			    access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
2243			VM_OBJECT_WLOCK(dst_object);
2244		}
2245
2246		/*
2247		 * Mark it no longer busy, and put it on the active list.
2248		 */
2249		if (upgrade) {
2250			if (src_m != dst_m) {
2251				vm_page_unwire(src_m, PQ_INACTIVE);
2252				vm_page_wire(dst_m);
2253			} else {
2254				KASSERT(vm_page_wired(dst_m),
2255				    ("dst_m %p is not wired", dst_m));
2256			}
2257		} else {
2258			vm_page_activate(dst_m);
2259		}
2260		vm_page_xunbusy(dst_m);
2261	}
2262	VM_OBJECT_WUNLOCK(dst_object);
2263	if (upgrade) {
2264		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
2265		vm_object_deallocate(src_object);
2266	}
2267}
2268
2269/*
2270 * Block entry into the machine-independent layer's page fault handler by
2271 * the calling thread.  Subsequent calls to vm_fault() by that thread will
2272 * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
2273 * spurious page faults.
2274 */
2275int
2276vm_fault_disable_pagefaults(void)
2277{
2278
2279	return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
2280}
2281
2282void
2283vm_fault_enable_pagefaults(int save)
2284{
2285
2286	curthread_pflags_restore(save);
2287}
2288