1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org>
5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
6 * Copyright (c) 2004-2006 Robert N. M. Watson
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice unmodified, this list of conditions, and the following
14 *    disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31/*
32 * uma_core.c  Implementation of the Universal Memory allocator
33 *
34 * This allocator is intended to replace the multitude of similar object caches
35 * in the standard FreeBSD kernel.  The intent is to be flexible as well as
36 * efficient.  A primary design goal is to return unused memory to the rest of
37 * the system.  This will make the system as a whole more flexible due to the
38 * ability to move memory to subsystems which most need it instead of leaving
39 * pools of reserved memory unused.
40 *
41 * The basic ideas stem from similar slab/zone based allocators whose algorithms
42 * are well known.
43 *
44 */
45
46/*
47 * TODO:
48 *	- Improve memory usage for large allocations
49 *	- Investigate cache size adjustments
50 */
51
52#include <sys/cdefs.h>
53#include "opt_ddb.h"
54#include "opt_param.h"
55#include "opt_vm.h"
56
57#include <sys/param.h>
58#include <sys/systm.h>
59#include <sys/asan.h>
60#include <sys/bitset.h>
61#include <sys/domainset.h>
62#include <sys/eventhandler.h>
63#include <sys/kernel.h>
64#include <sys/types.h>
65#include <sys/limits.h>
66#include <sys/queue.h>
67#include <sys/malloc.h>
68#include <sys/ktr.h>
69#include <sys/lock.h>
70#include <sys/msan.h>
71#include <sys/mutex.h>
72#include <sys/proc.h>
73#include <sys/random.h>
74#include <sys/rwlock.h>
75#include <sys/sbuf.h>
76#include <sys/sched.h>
77#include <sys/sleepqueue.h>
78#include <sys/smp.h>
79#include <sys/smr.h>
80#include <sys/sysctl.h>
81#include <sys/taskqueue.h>
82#include <sys/vmmeter.h>
83
84#include <vm/vm.h>
85#include <vm/vm_param.h>
86#include <vm/vm_domainset.h>
87#include <vm/vm_object.h>
88#include <vm/vm_page.h>
89#include <vm/vm_pageout.h>
90#include <vm/vm_phys.h>
91#include <vm/vm_pagequeue.h>
92#include <vm/vm_map.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_extern.h>
95#include <vm/vm_dumpset.h>
96#include <vm/uma.h>
97#include <vm/uma_int.h>
98#include <vm/uma_dbg.h>
99
100#include <ddb/ddb.h>
101
102#ifdef DEBUG_MEMGUARD
103#include <vm/memguard.h>
104#endif
105
106#include <machine/md_var.h>
107
108#ifdef INVARIANTS
109#define	UMA_ALWAYS_CTORDTOR	1
110#else
111#define	UMA_ALWAYS_CTORDTOR	0
112#endif
113
114/*
115 * This is the zone and keg from which all zones are spawned.
116 */
117static uma_zone_t kegs;
118static uma_zone_t zones;
119
120/*
121 * On INVARIANTS builds, the slab contains a second bitset of the same size,
122 * "dbg_bits", which is laid out immediately after us_free.
123 */
124#ifdef INVARIANTS
125#define	SLAB_BITSETS	2
126#else
127#define	SLAB_BITSETS	1
128#endif
129
130/*
131 * These are the two zones from which all offpage uma_slab_ts are allocated.
132 *
133 * One zone is for slab headers that can represent a larger number of items,
134 * making the slabs themselves more efficient, and the other zone is for
135 * headers that are smaller and represent fewer items, making the headers more
136 * efficient.
137 */
138#define	SLABZONE_SIZE(setsize)					\
139    (sizeof(struct uma_hash_slab) + BITSET_SIZE(setsize) * SLAB_BITSETS)
140#define	SLABZONE0_SETSIZE	(PAGE_SIZE / 16)
141#define	SLABZONE1_SETSIZE	SLAB_MAX_SETSIZE
142#define	SLABZONE0_SIZE	SLABZONE_SIZE(SLABZONE0_SETSIZE)
143#define	SLABZONE1_SIZE	SLABZONE_SIZE(SLABZONE1_SETSIZE)
144static uma_zone_t slabzones[2];
145
146/*
147 * The initial hash tables come out of this zone so they can be allocated
148 * prior to malloc coming up.
149 */
150static uma_zone_t hashzone;
151
152/* The boot-time adjusted value for cache line alignment. */
153static unsigned int uma_cache_align_mask = 64 - 1;
154
155static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
156static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc");
157
158/*
159 * Are we allowed to allocate buckets?
160 */
161static int bucketdisable = 1;
162
163/* Linked list of all kegs in the system */
164static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);
165
166/* Linked list of all cache-only zones in the system */
167static LIST_HEAD(,uma_zone) uma_cachezones =
168    LIST_HEAD_INITIALIZER(uma_cachezones);
169
170/*
171 * Mutex for global lists: uma_kegs, uma_cachezones, and the per-keg list of
172 * zones.
173 */
174static struct rwlock_padalign __exclusive_cache_line uma_rwlock;
175
176static struct sx uma_reclaim_lock;
177
178/*
179 * First available virual address for boot time allocations.
180 */
181static vm_offset_t bootstart;
182static vm_offset_t bootmem;
183
184/*
185 * kmem soft limit, initialized by uma_set_limit().  Ensure that early
186 * allocations don't trigger a wakeup of the reclaim thread.
187 */
188unsigned long uma_kmem_limit = LONG_MAX;
189SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0,
190    "UMA kernel memory soft limit");
191unsigned long uma_kmem_total;
192SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0,
193    "UMA kernel memory usage");
194
195/* Is the VM done starting up? */
196static enum {
197	BOOT_COLD,
198	BOOT_KVA,
199	BOOT_PCPU,
200	BOOT_RUNNING,
201	BOOT_SHUTDOWN,
202} booted = BOOT_COLD;
203
204/*
205 * This is the handle used to schedule events that need to happen
206 * outside of the allocation fast path.
207 */
208static struct timeout_task uma_timeout_task;
209#define	UMA_TIMEOUT	20		/* Seconds for callout interval. */
210
211/*
212 * This structure is passed as the zone ctor arg so that I don't have to create
213 * a special allocation function just for zones.
214 */
215struct uma_zctor_args {
216	const char *name;
217	size_t size;
218	uma_ctor ctor;
219	uma_dtor dtor;
220	uma_init uminit;
221	uma_fini fini;
222	uma_import import;
223	uma_release release;
224	void *arg;
225	uma_keg_t keg;
226	int align;
227	uint32_t flags;
228};
229
230struct uma_kctor_args {
231	uma_zone_t zone;
232	size_t size;
233	uma_init uminit;
234	uma_fini fini;
235	int align;
236	uint32_t flags;
237};
238
239struct uma_bucket_zone {
240	uma_zone_t	ubz_zone;
241	const char	*ubz_name;
242	int		ubz_entries;	/* Number of items it can hold. */
243	int		ubz_maxsize;	/* Maximum allocation size per-item. */
244};
245
246/*
247 * Compute the actual number of bucket entries to pack them in power
248 * of two sizes for more efficient space utilization.
249 */
250#define	BUCKET_SIZE(n)						\
251    (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *))
252
253#define	BUCKET_MAX	BUCKET_SIZE(256)
254
255struct uma_bucket_zone bucket_zones[] = {
256	/* Literal bucket sizes. */
257	{ NULL, "2 Bucket", 2, 4096 },
258	{ NULL, "4 Bucket", 4, 3072 },
259	{ NULL, "8 Bucket", 8, 2048 },
260	{ NULL, "16 Bucket", 16, 1024 },
261	/* Rounded down power of 2 sizes for efficiency. */
262	{ NULL, "32 Bucket", BUCKET_SIZE(32), 512 },
263	{ NULL, "64 Bucket", BUCKET_SIZE(64), 256 },
264	{ NULL, "128 Bucket", BUCKET_SIZE(128), 128 },
265	{ NULL, "256 Bucket", BUCKET_SIZE(256), 64 },
266	{ NULL, NULL, 0}
267};
268
269/*
270 * Flags and enumerations to be passed to internal functions.
271 */
272enum zfreeskip {
273	SKIP_NONE =	0,
274	SKIP_CNT =	0x00000001,
275	SKIP_DTOR =	0x00010000,
276	SKIP_FINI =	0x00020000,
277};
278
279/* Prototypes.. */
280
281void	uma_startup1(vm_offset_t);
282void	uma_startup2(void);
283
284static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
285static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
286static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
287static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
288static void *contig_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
289static void page_free(void *, vm_size_t, uint8_t);
290static void pcpu_page_free(void *, vm_size_t, uint8_t);
291static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int);
292static void cache_drain(uma_zone_t);
293static void bucket_drain(uma_zone_t, uma_bucket_t);
294static void bucket_cache_reclaim(uma_zone_t zone, bool, int);
295static bool bucket_cache_reclaim_domain(uma_zone_t, bool, bool, int);
296static int keg_ctor(void *, int, void *, int);
297static void keg_dtor(void *, int, void *);
298static void keg_drain(uma_keg_t keg, int domain);
299static int zone_ctor(void *, int, void *, int);
300static void zone_dtor(void *, int, void *);
301static inline void item_dtor(uma_zone_t zone, void *item, int size,
302    void *udata, enum zfreeskip skip);
303static int zero_init(void *, int, int);
304static void zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata,
305    int itemdomain, bool ws);
306static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *);
307static void zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *), void *);
308static void zone_timeout(uma_zone_t zone, void *);
309static int hash_alloc(struct uma_hash *, u_int);
310static int hash_expand(struct uma_hash *, struct uma_hash *);
311static void hash_free(struct uma_hash *hash);
312static void uma_timeout(void *, int);
313static void uma_shutdown(void);
314static void *zone_alloc_item(uma_zone_t, void *, int, int);
315static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip);
316static int zone_alloc_limit(uma_zone_t zone, int count, int flags);
317static void zone_free_limit(uma_zone_t zone, int count);
318static void bucket_enable(void);
319static void bucket_init(void);
320static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int);
321static void bucket_free(uma_zone_t zone, uma_bucket_t, void *);
322static void bucket_zone_drain(int domain);
323static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int);
324static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab);
325static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item);
326static size_t slab_sizeof(int nitems);
327static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
328    uma_fini fini, int align, uint32_t flags);
329static int zone_import(void *, void **, int, int, int);
330static void zone_release(void *, void **, int);
331static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int);
332static bool cache_free(uma_zone_t, uma_cache_t, void *, int);
333
334static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
335static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
336static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS);
337static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS);
338static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS);
339static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS);
340static int sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS);
341
342static uint64_t uma_zone_get_allocs(uma_zone_t zone);
343
344static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
345    "Memory allocation debugging");
346
347#ifdef INVARIANTS
348static uint64_t uma_keg_get_allocs(uma_keg_t zone);
349static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg);
350
351static bool uma_dbg_kskip(uma_keg_t keg, void *mem);
352static bool uma_dbg_zskip(uma_zone_t zone, void *mem);
353static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item);
354static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item);
355
356static u_int dbg_divisor = 1;
357SYSCTL_UINT(_vm_debug, OID_AUTO, divisor,
358    CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0,
359    "Debug & thrash every this item in memory allocator");
360
361static counter_u64_t uma_dbg_cnt = EARLY_COUNTER;
362static counter_u64_t uma_skip_cnt = EARLY_COUNTER;
363SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD,
364    &uma_dbg_cnt, "memory items debugged");
365SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD,
366    &uma_skip_cnt, "memory items skipped, not debugged");
367#endif
368
369SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
370    "Universal Memory Allocator");
371
372SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_INT,
373    0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
374
375SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_STRUCT,
376    0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
377
378static int zone_warnings = 1;
379SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0,
380    "Warn when UMA zones becomes full");
381
382static int multipage_slabs = 1;
383TUNABLE_INT("vm.debug.uma_multipage_slabs", &multipage_slabs);
384SYSCTL_INT(_vm_debug, OID_AUTO, uma_multipage_slabs,
385    CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &multipage_slabs, 0,
386    "UMA may choose larger slab sizes for better efficiency");
387
388/*
389 * Select the slab zone for an offpage slab with the given maximum item count.
390 */
391static inline uma_zone_t
392slabzone(int ipers)
393{
394
395	return (slabzones[ipers > SLABZONE0_SETSIZE]);
396}
397
398/*
399 * This routine checks to see whether or not it's safe to enable buckets.
400 */
401static void
402bucket_enable(void)
403{
404
405	KASSERT(booted >= BOOT_KVA, ("Bucket enable before init"));
406	bucketdisable = vm_page_count_min();
407}
408
409/*
410 * Initialize bucket_zones, the array of zones of buckets of various sizes.
411 *
412 * For each zone, calculate the memory required for each bucket, consisting
413 * of the header and an array of pointers.
414 */
415static void
416bucket_init(void)
417{
418	struct uma_bucket_zone *ubz;
419	int size;
420
421	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) {
422		size = roundup(sizeof(struct uma_bucket), sizeof(void *));
423		size += sizeof(void *) * ubz->ubz_entries;
424		ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
425		    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
426		    UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET |
427		    UMA_ZONE_FIRSTTOUCH);
428	}
429}
430
431/*
432 * Given a desired number of entries for a bucket, return the zone from which
433 * to allocate the bucket.
434 */
435static struct uma_bucket_zone *
436bucket_zone_lookup(int entries)
437{
438	struct uma_bucket_zone *ubz;
439
440	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
441		if (ubz->ubz_entries >= entries)
442			return (ubz);
443	ubz--;
444	return (ubz);
445}
446
447static int
448bucket_select(int size)
449{
450	struct uma_bucket_zone *ubz;
451
452	ubz = &bucket_zones[0];
453	if (size > ubz->ubz_maxsize)
454		return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1);
455
456	for (; ubz->ubz_entries != 0; ubz++)
457		if (ubz->ubz_maxsize < size)
458			break;
459	ubz--;
460	return (ubz->ubz_entries);
461}
462
463static uma_bucket_t
464bucket_alloc(uma_zone_t zone, void *udata, int flags)
465{
466	struct uma_bucket_zone *ubz;
467	uma_bucket_t bucket;
468
469	/*
470	 * Don't allocate buckets early in boot.
471	 */
472	if (__predict_false(booted < BOOT_KVA))
473		return (NULL);
474
475	/*
476	 * To limit bucket recursion we store the original zone flags
477	 * in a cookie passed via zalloc_arg/zfree_arg.  This allows the
478	 * NOVM flag to persist even through deep recursions.  We also
479	 * store ZFLAG_BUCKET once we have recursed attempting to allocate
480	 * a bucket for a bucket zone so we do not allow infinite bucket
481	 * recursion.  This cookie will even persist to frees of unused
482	 * buckets via the allocation path or bucket allocations in the
483	 * free path.
484	 */
485	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
486		udata = (void *)(uintptr_t)zone->uz_flags;
487	else {
488		if ((uintptr_t)udata & UMA_ZFLAG_BUCKET)
489			return (NULL);
490		udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET);
491	}
492	if (((uintptr_t)udata & UMA_ZONE_VM) != 0)
493		flags |= M_NOVM;
494	ubz = bucket_zone_lookup(atomic_load_16(&zone->uz_bucket_size));
495	if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0)
496		ubz++;
497	bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags);
498	if (bucket) {
499#ifdef INVARIANTS
500		bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
501#endif
502		bucket->ub_cnt = 0;
503		bucket->ub_entries = min(ubz->ubz_entries,
504		    zone->uz_bucket_size_max);
505		bucket->ub_seq = SMR_SEQ_INVALID;
506		CTR3(KTR_UMA, "bucket_alloc: zone %s(%p) allocated bucket %p",
507		    zone->uz_name, zone, bucket);
508	}
509
510	return (bucket);
511}
512
513static void
514bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata)
515{
516	struct uma_bucket_zone *ubz;
517
518	if (bucket->ub_cnt != 0)
519		bucket_drain(zone, bucket);
520
521	KASSERT(bucket->ub_cnt == 0,
522	    ("bucket_free: Freeing a non free bucket."));
523	KASSERT(bucket->ub_seq == SMR_SEQ_INVALID,
524	    ("bucket_free: Freeing an SMR bucket."));
525	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
526		udata = (void *)(uintptr_t)zone->uz_flags;
527	ubz = bucket_zone_lookup(bucket->ub_entries);
528	uma_zfree_arg(ubz->ubz_zone, bucket, udata);
529}
530
531static void
532bucket_zone_drain(int domain)
533{
534	struct uma_bucket_zone *ubz;
535
536	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
537		uma_zone_reclaim_domain(ubz->ubz_zone, UMA_RECLAIM_DRAIN,
538		    domain);
539}
540
541#ifdef KASAN
542_Static_assert(UMA_SMALLEST_UNIT % KASAN_SHADOW_SCALE == 0,
543    "Base UMA allocation size not a multiple of the KASAN scale factor");
544
545static void
546kasan_mark_item_valid(uma_zone_t zone, void *item)
547{
548	void *pcpu_item;
549	size_t sz, rsz;
550	int i;
551
552	if ((zone->uz_flags & UMA_ZONE_NOKASAN) != 0)
553		return;
554
555	sz = zone->uz_size;
556	rsz = roundup2(sz, KASAN_SHADOW_SCALE);
557	if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) {
558		kasan_mark(item, sz, rsz, KASAN_GENERIC_REDZONE);
559	} else {
560		pcpu_item = zpcpu_base_to_offset(item);
561		for (i = 0; i <= mp_maxid; i++)
562			kasan_mark(zpcpu_get_cpu(pcpu_item, i), sz, rsz,
563			    KASAN_GENERIC_REDZONE);
564	}
565}
566
567static void
568kasan_mark_item_invalid(uma_zone_t zone, void *item)
569{
570	void *pcpu_item;
571	size_t sz;
572	int i;
573
574	if ((zone->uz_flags & UMA_ZONE_NOKASAN) != 0)
575		return;
576
577	sz = roundup2(zone->uz_size, KASAN_SHADOW_SCALE);
578	if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) {
579		kasan_mark(item, 0, sz, KASAN_UMA_FREED);
580	} else {
581		pcpu_item = zpcpu_base_to_offset(item);
582		for (i = 0; i <= mp_maxid; i++)
583			kasan_mark(zpcpu_get_cpu(pcpu_item, i), 0, sz,
584			    KASAN_UMA_FREED);
585	}
586}
587
588static void
589kasan_mark_slab_valid(uma_keg_t keg, void *mem)
590{
591	size_t sz;
592
593	if ((keg->uk_flags & UMA_ZONE_NOKASAN) == 0) {
594		sz = keg->uk_ppera * PAGE_SIZE;
595		kasan_mark(mem, sz, sz, 0);
596	}
597}
598
599static void
600kasan_mark_slab_invalid(uma_keg_t keg, void *mem)
601{
602	size_t sz;
603
604	if ((keg->uk_flags & UMA_ZONE_NOKASAN) == 0) {
605		if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0)
606			sz = keg->uk_ppera * PAGE_SIZE;
607		else
608			sz = keg->uk_pgoff;
609		kasan_mark(mem, 0, sz, KASAN_UMA_FREED);
610	}
611}
612#else /* !KASAN */
613static void
614kasan_mark_item_valid(uma_zone_t zone __unused, void *item __unused)
615{
616}
617
618static void
619kasan_mark_item_invalid(uma_zone_t zone __unused, void *item __unused)
620{
621}
622
623static void
624kasan_mark_slab_valid(uma_keg_t keg __unused, void *mem __unused)
625{
626}
627
628static void
629kasan_mark_slab_invalid(uma_keg_t keg __unused, void *mem __unused)
630{
631}
632#endif /* KASAN */
633
634#ifdef KMSAN
635static inline void
636kmsan_mark_item_uninitialized(uma_zone_t zone, void *item)
637{
638	void *pcpu_item;
639	size_t sz;
640	int i;
641
642	if ((zone->uz_flags &
643	    (UMA_ZFLAG_CACHE | UMA_ZONE_SECONDARY | UMA_ZONE_MALLOC)) != 0) {
644		/*
645		 * Cache zones should not be instrumented by default, as UMA
646		 * does not have enough information to do so correctly.
647		 * Consumers can mark items themselves if it makes sense to do
648		 * so.
649		 *
650		 * Items from secondary zones are initialized by the parent
651		 * zone and thus cannot safely be marked by UMA.
652		 *
653		 * malloc zones are handled directly by malloc(9) and friends,
654		 * since they can provide more precise origin tracking.
655		 */
656		return;
657	}
658	if (zone->uz_keg->uk_init != NULL) {
659		/*
660		 * By definition, initialized items cannot be marked.  The
661		 * best we can do is mark items from these zones after they
662		 * are freed to the keg.
663		 */
664		return;
665	}
666
667	sz = zone->uz_size;
668	if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) {
669		kmsan_orig(item, sz, KMSAN_TYPE_UMA, KMSAN_RET_ADDR);
670		kmsan_mark(item, sz, KMSAN_STATE_UNINIT);
671	} else {
672		pcpu_item = zpcpu_base_to_offset(item);
673		for (i = 0; i <= mp_maxid; i++) {
674			kmsan_orig(zpcpu_get_cpu(pcpu_item, i), sz,
675			    KMSAN_TYPE_UMA, KMSAN_RET_ADDR);
676			kmsan_mark(zpcpu_get_cpu(pcpu_item, i), sz,
677			    KMSAN_STATE_INITED);
678		}
679	}
680}
681#else /* !KMSAN */
682static inline void
683kmsan_mark_item_uninitialized(uma_zone_t zone __unused, void *item __unused)
684{
685}
686#endif /* KMSAN */
687
688/*
689 * Acquire the domain lock and record contention.
690 */
691static uma_zone_domain_t
692zone_domain_lock(uma_zone_t zone, int domain)
693{
694	uma_zone_domain_t zdom;
695	bool lockfail;
696
697	zdom = ZDOM_GET(zone, domain);
698	lockfail = false;
699	if (ZDOM_OWNED(zdom))
700		lockfail = true;
701	ZDOM_LOCK(zdom);
702	/* This is unsynchronized.  The counter does not need to be precise. */
703	if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max)
704		zone->uz_bucket_size++;
705	return (zdom);
706}
707
708/*
709 * Search for the domain with the least cached items and return it if it
710 * is out of balance with the preferred domain.
711 */
712static __noinline int
713zone_domain_lowest(uma_zone_t zone, int pref)
714{
715	long least, nitems, prefitems;
716	int domain;
717	int i;
718
719	prefitems = least = LONG_MAX;
720	domain = 0;
721	for (i = 0; i < vm_ndomains; i++) {
722		nitems = ZDOM_GET(zone, i)->uzd_nitems;
723		if (nitems < least) {
724			domain = i;
725			least = nitems;
726		}
727		if (domain == pref)
728			prefitems = nitems;
729	}
730	if (prefitems < least * 2)
731		return (pref);
732
733	return (domain);
734}
735
736/*
737 * Search for the domain with the most cached items and return it or the
738 * preferred domain if it has enough to proceed.
739 */
740static __noinline int
741zone_domain_highest(uma_zone_t zone, int pref)
742{
743	long most, nitems;
744	int domain;
745	int i;
746
747	if (ZDOM_GET(zone, pref)->uzd_nitems > BUCKET_MAX)
748		return (pref);
749
750	most = 0;
751	domain = 0;
752	for (i = 0; i < vm_ndomains; i++) {
753		nitems = ZDOM_GET(zone, i)->uzd_nitems;
754		if (nitems > most) {
755			domain = i;
756			most = nitems;
757		}
758	}
759
760	return (domain);
761}
762
763/*
764 * Set the maximum imax value.
765 */
766static void
767zone_domain_imax_set(uma_zone_domain_t zdom, int nitems)
768{
769	long old;
770
771	old = zdom->uzd_imax;
772	do {
773		if (old >= nitems)
774			return;
775	} while (atomic_fcmpset_long(&zdom->uzd_imax, &old, nitems) == 0);
776
777	/*
778	 * We are at new maximum, so do the last WSS update for the old
779	 * bimin and prepare to measure next allocation batch.
780	 */
781	if (zdom->uzd_wss < old - zdom->uzd_bimin)
782		zdom->uzd_wss = old - zdom->uzd_bimin;
783	zdom->uzd_bimin = nitems;
784}
785
786/*
787 * Attempt to satisfy an allocation by retrieving a full bucket from one of the
788 * zone's caches.  If a bucket is found the zone is not locked on return.
789 */
790static uma_bucket_t
791zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom, bool reclaim)
792{
793	uma_bucket_t bucket;
794	long cnt;
795	int i;
796	bool dtor = false;
797
798	ZDOM_LOCK_ASSERT(zdom);
799
800	if ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) == NULL)
801		return (NULL);
802
803	/* SMR Buckets can not be re-used until readers expire. */
804	if ((zone->uz_flags & UMA_ZONE_SMR) != 0 &&
805	    bucket->ub_seq != SMR_SEQ_INVALID) {
806		if (!smr_poll(zone->uz_smr, bucket->ub_seq, false))
807			return (NULL);
808		bucket->ub_seq = SMR_SEQ_INVALID;
809		dtor = (zone->uz_dtor != NULL) || UMA_ALWAYS_CTORDTOR;
810		if (STAILQ_NEXT(bucket, ub_link) != NULL)
811			zdom->uzd_seq = STAILQ_NEXT(bucket, ub_link)->ub_seq;
812	}
813	STAILQ_REMOVE_HEAD(&zdom->uzd_buckets, ub_link);
814
815	KASSERT(zdom->uzd_nitems >= bucket->ub_cnt,
816	    ("%s: item count underflow (%ld, %d)",
817	    __func__, zdom->uzd_nitems, bucket->ub_cnt));
818	KASSERT(bucket->ub_cnt > 0,
819	    ("%s: empty bucket in bucket cache", __func__));
820	zdom->uzd_nitems -= bucket->ub_cnt;
821
822	if (reclaim) {
823		/*
824		 * Shift the bounds of the current WSS interval to avoid
825		 * perturbing the estimates.
826		 */
827		cnt = lmin(zdom->uzd_bimin, bucket->ub_cnt);
828		atomic_subtract_long(&zdom->uzd_imax, cnt);
829		zdom->uzd_bimin -= cnt;
830		zdom->uzd_imin -= lmin(zdom->uzd_imin, bucket->ub_cnt);
831		if (zdom->uzd_limin >= bucket->ub_cnt) {
832			zdom->uzd_limin -= bucket->ub_cnt;
833		} else {
834			zdom->uzd_limin = 0;
835			zdom->uzd_timin = 0;
836		}
837	} else if (zdom->uzd_bimin > zdom->uzd_nitems) {
838		zdom->uzd_bimin = zdom->uzd_nitems;
839		if (zdom->uzd_imin > zdom->uzd_nitems)
840			zdom->uzd_imin = zdom->uzd_nitems;
841	}
842
843	ZDOM_UNLOCK(zdom);
844	if (dtor)
845		for (i = 0; i < bucket->ub_cnt; i++)
846			item_dtor(zone, bucket->ub_bucket[i], zone->uz_size,
847			    NULL, SKIP_NONE);
848
849	return (bucket);
850}
851
852/*
853 * Insert a full bucket into the specified cache.  The "ws" parameter indicates
854 * whether the bucket's contents should be counted as part of the zone's working
855 * set.  The bucket may be freed if it exceeds the bucket limit.
856 */
857static void
858zone_put_bucket(uma_zone_t zone, int domain, uma_bucket_t bucket, void *udata,
859    const bool ws)
860{
861	uma_zone_domain_t zdom;
862
863	/* We don't cache empty buckets.  This can happen after a reclaim. */
864	if (bucket->ub_cnt == 0)
865		goto out;
866	zdom = zone_domain_lock(zone, domain);
867
868	/*
869	 * Conditionally set the maximum number of items.
870	 */
871	zdom->uzd_nitems += bucket->ub_cnt;
872	if (__predict_true(zdom->uzd_nitems < zone->uz_bucket_max)) {
873		if (ws) {
874			zone_domain_imax_set(zdom, zdom->uzd_nitems);
875		} else {
876			/*
877			 * Shift the bounds of the current WSS interval to
878			 * avoid perturbing the estimates.
879			 */
880			atomic_add_long(&zdom->uzd_imax, bucket->ub_cnt);
881			zdom->uzd_imin += bucket->ub_cnt;
882			zdom->uzd_bimin += bucket->ub_cnt;
883			zdom->uzd_limin += bucket->ub_cnt;
884		}
885		if (STAILQ_EMPTY(&zdom->uzd_buckets))
886			zdom->uzd_seq = bucket->ub_seq;
887
888		/*
889		 * Try to promote reuse of recently used items.  For items
890		 * protected by SMR, try to defer reuse to minimize polling.
891		 */
892		if (bucket->ub_seq == SMR_SEQ_INVALID)
893			STAILQ_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link);
894		else
895			STAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link);
896		ZDOM_UNLOCK(zdom);
897		return;
898	}
899	zdom->uzd_nitems -= bucket->ub_cnt;
900	ZDOM_UNLOCK(zdom);
901out:
902	bucket_free(zone, bucket, udata);
903}
904
905/* Pops an item out of a per-cpu cache bucket. */
906static inline void *
907cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket)
908{
909	void *item;
910
911	CRITICAL_ASSERT(curthread);
912
913	bucket->ucb_cnt--;
914	item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt];
915#ifdef INVARIANTS
916	bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL;
917	KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled."));
918#endif
919	cache->uc_allocs++;
920
921	return (item);
922}
923
924/* Pushes an item into a per-cpu cache bucket. */
925static inline void
926cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item)
927{
928
929	CRITICAL_ASSERT(curthread);
930	KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL,
931	    ("uma_zfree: Freeing to non free bucket index."));
932
933	bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item;
934	bucket->ucb_cnt++;
935	cache->uc_frees++;
936}
937
938/*
939 * Unload a UMA bucket from a per-cpu cache.
940 */
941static inline uma_bucket_t
942cache_bucket_unload(uma_cache_bucket_t bucket)
943{
944	uma_bucket_t b;
945
946	b = bucket->ucb_bucket;
947	if (b != NULL) {
948		MPASS(b->ub_entries == bucket->ucb_entries);
949		b->ub_cnt = bucket->ucb_cnt;
950		bucket->ucb_bucket = NULL;
951		bucket->ucb_entries = bucket->ucb_cnt = 0;
952	}
953
954	return (b);
955}
956
957static inline uma_bucket_t
958cache_bucket_unload_alloc(uma_cache_t cache)
959{
960
961	return (cache_bucket_unload(&cache->uc_allocbucket));
962}
963
964static inline uma_bucket_t
965cache_bucket_unload_free(uma_cache_t cache)
966{
967
968	return (cache_bucket_unload(&cache->uc_freebucket));
969}
970
971static inline uma_bucket_t
972cache_bucket_unload_cross(uma_cache_t cache)
973{
974
975	return (cache_bucket_unload(&cache->uc_crossbucket));
976}
977
978/*
979 * Load a bucket into a per-cpu cache bucket.
980 */
981static inline void
982cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b)
983{
984
985	CRITICAL_ASSERT(curthread);
986	MPASS(bucket->ucb_bucket == NULL);
987	MPASS(b->ub_seq == SMR_SEQ_INVALID);
988
989	bucket->ucb_bucket = b;
990	bucket->ucb_cnt = b->ub_cnt;
991	bucket->ucb_entries = b->ub_entries;
992}
993
994static inline void
995cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b)
996{
997
998	cache_bucket_load(&cache->uc_allocbucket, b);
999}
1000
1001static inline void
1002cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b)
1003{
1004
1005	cache_bucket_load(&cache->uc_freebucket, b);
1006}
1007
1008#ifdef NUMA
1009static inline void
1010cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b)
1011{
1012
1013	cache_bucket_load(&cache->uc_crossbucket, b);
1014}
1015#endif
1016
1017/*
1018 * Copy and preserve ucb_spare.
1019 */
1020static inline void
1021cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2)
1022{
1023
1024	b1->ucb_bucket = b2->ucb_bucket;
1025	b1->ucb_entries = b2->ucb_entries;
1026	b1->ucb_cnt = b2->ucb_cnt;
1027}
1028
1029/*
1030 * Swap two cache buckets.
1031 */
1032static inline void
1033cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2)
1034{
1035	struct uma_cache_bucket b3;
1036
1037	CRITICAL_ASSERT(curthread);
1038
1039	cache_bucket_copy(&b3, b1);
1040	cache_bucket_copy(b1, b2);
1041	cache_bucket_copy(b2, &b3);
1042}
1043
1044/*
1045 * Attempt to fetch a bucket from a zone on behalf of the current cpu cache.
1046 */
1047static uma_bucket_t
1048cache_fetch_bucket(uma_zone_t zone, uma_cache_t cache, int domain)
1049{
1050	uma_zone_domain_t zdom;
1051	uma_bucket_t bucket;
1052	smr_seq_t seq;
1053
1054	/*
1055	 * Avoid the lock if possible.
1056	 */
1057	zdom = ZDOM_GET(zone, domain);
1058	if (zdom->uzd_nitems == 0)
1059		return (NULL);
1060
1061	if ((cache_uz_flags(cache) & UMA_ZONE_SMR) != 0 &&
1062	    (seq = atomic_load_32(&zdom->uzd_seq)) != SMR_SEQ_INVALID &&
1063	    !smr_poll(zone->uz_smr, seq, false))
1064		return (NULL);
1065
1066	/*
1067	 * Check the zone's cache of buckets.
1068	 */
1069	zdom = zone_domain_lock(zone, domain);
1070	if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL)
1071		return (bucket);
1072	ZDOM_UNLOCK(zdom);
1073
1074	return (NULL);
1075}
1076
1077static void
1078zone_log_warning(uma_zone_t zone)
1079{
1080	static const struct timeval warninterval = { 300, 0 };
1081
1082	if (!zone_warnings || zone->uz_warning == NULL)
1083		return;
1084
1085	if (ratecheck(&zone->uz_ratecheck, &warninterval))
1086		printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning);
1087}
1088
1089static inline void
1090zone_maxaction(uma_zone_t zone)
1091{
1092
1093	if (zone->uz_maxaction.ta_func != NULL)
1094		taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction);
1095}
1096
1097/*
1098 * Routine called by timeout which is used to fire off some time interval
1099 * based calculations.  (stats, hash size, etc.)
1100 *
1101 * Arguments:
1102 *	arg   Unused
1103 *
1104 * Returns:
1105 *	Nothing
1106 */
1107static void
1108uma_timeout(void *context __unused, int pending __unused)
1109{
1110	bucket_enable();
1111	zone_foreach(zone_timeout, NULL);
1112
1113	/* Reschedule this event */
1114	taskqueue_enqueue_timeout(taskqueue_thread, &uma_timeout_task,
1115	    UMA_TIMEOUT * hz);
1116}
1117
1118/*
1119 * Update the working set size estimates for the zone's bucket cache.
1120 * The constants chosen here are somewhat arbitrary.
1121 */
1122static void
1123zone_domain_update_wss(uma_zone_domain_t zdom)
1124{
1125	long m;
1126
1127	ZDOM_LOCK_ASSERT(zdom);
1128	MPASS(zdom->uzd_imax >= zdom->uzd_nitems);
1129	MPASS(zdom->uzd_nitems >= zdom->uzd_bimin);
1130	MPASS(zdom->uzd_bimin >= zdom->uzd_imin);
1131
1132	/*
1133	 * Estimate WSS as modified moving average of biggest allocation
1134	 * batches for each period over few minutes (UMA_TIMEOUT of 20s).
1135	 */
1136	zdom->uzd_wss = lmax(zdom->uzd_wss * 3 / 4,
1137	    zdom->uzd_imax - zdom->uzd_bimin);
1138
1139	/*
1140	 * Estimate longtime minimum item count as a combination of recent
1141	 * minimum item count, adjusted by WSS for safety, and the modified
1142	 * moving average over the last several hours (UMA_TIMEOUT of 20s).
1143	 * timin measures time since limin tried to go negative, that means
1144	 * we were dangerously close to or got out of cache.
1145	 */
1146	m = zdom->uzd_imin - zdom->uzd_wss;
1147	if (m >= 0) {
1148		if (zdom->uzd_limin >= m)
1149			zdom->uzd_limin = m;
1150		else
1151			zdom->uzd_limin = (m + zdom->uzd_limin * 255) / 256;
1152		zdom->uzd_timin++;
1153	} else {
1154		zdom->uzd_limin = 0;
1155		zdom->uzd_timin = 0;
1156	}
1157
1158	/* To reduce period edge effects on WSS keep half of the imax. */
1159	atomic_subtract_long(&zdom->uzd_imax,
1160	    (zdom->uzd_imax - zdom->uzd_nitems + 1) / 2);
1161	zdom->uzd_imin = zdom->uzd_bimin = zdom->uzd_nitems;
1162}
1163
1164/*
1165 * Routine to perform timeout driven calculations.  This expands the
1166 * hashes and does per cpu statistics aggregation.
1167 *
1168 *  Returns nothing.
1169 */
1170static void
1171zone_timeout(uma_zone_t zone, void *unused)
1172{
1173	uma_keg_t keg;
1174	u_int slabs, pages;
1175
1176	if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0)
1177		goto trim;
1178
1179	keg = zone->uz_keg;
1180
1181	/*
1182	 * Hash zones are non-numa by definition so the first domain
1183	 * is the only one present.
1184	 */
1185	KEG_LOCK(keg, 0);
1186	pages = keg->uk_domain[0].ud_pages;
1187
1188	/*
1189	 * Expand the keg hash table.
1190	 *
1191	 * This is done if the number of slabs is larger than the hash size.
1192	 * What I'm trying to do here is completely reduce collisions.  This
1193	 * may be a little aggressive.  Should I allow for two collisions max?
1194	 */
1195	if ((slabs = pages / keg->uk_ppera) > keg->uk_hash.uh_hashsize) {
1196		struct uma_hash newhash;
1197		struct uma_hash oldhash;
1198		int ret;
1199
1200		/*
1201		 * This is so involved because allocating and freeing
1202		 * while the keg lock is held will lead to deadlock.
1203		 * I have to do everything in stages and check for
1204		 * races.
1205		 */
1206		KEG_UNLOCK(keg, 0);
1207		ret = hash_alloc(&newhash, 1 << fls(slabs));
1208		KEG_LOCK(keg, 0);
1209		if (ret) {
1210			if (hash_expand(&keg->uk_hash, &newhash)) {
1211				oldhash = keg->uk_hash;
1212				keg->uk_hash = newhash;
1213			} else
1214				oldhash = newhash;
1215
1216			KEG_UNLOCK(keg, 0);
1217			hash_free(&oldhash);
1218			goto trim;
1219		}
1220	}
1221	KEG_UNLOCK(keg, 0);
1222
1223trim:
1224	/* Trim caches not used for a long time. */
1225	if ((zone->uz_flags & UMA_ZONE_UNMANAGED) == 0) {
1226		for (int i = 0; i < vm_ndomains; i++) {
1227			if (bucket_cache_reclaim_domain(zone, false, false, i) &&
1228			    (zone->uz_flags & UMA_ZFLAG_CACHE) == 0)
1229				keg_drain(zone->uz_keg, i);
1230		}
1231	}
1232}
1233
1234/*
1235 * Allocate and zero fill the next sized hash table from the appropriate
1236 * backing store.
1237 *
1238 * Arguments:
1239 *	hash  A new hash structure with the old hash size in uh_hashsize
1240 *
1241 * Returns:
1242 *	1 on success and 0 on failure.
1243 */
1244static int
1245hash_alloc(struct uma_hash *hash, u_int size)
1246{
1247	size_t alloc;
1248
1249	KASSERT(powerof2(size), ("hash size must be power of 2"));
1250	if (size > UMA_HASH_SIZE_INIT)  {
1251		hash->uh_hashsize = size;
1252		alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
1253		hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT);
1254	} else {
1255		alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
1256		hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
1257		    UMA_ANYDOMAIN, M_WAITOK);
1258		hash->uh_hashsize = UMA_HASH_SIZE_INIT;
1259	}
1260	if (hash->uh_slab_hash) {
1261		bzero(hash->uh_slab_hash, alloc);
1262		hash->uh_hashmask = hash->uh_hashsize - 1;
1263		return (1);
1264	}
1265
1266	return (0);
1267}
1268
1269/*
1270 * Expands the hash table for HASH zones.  This is done from zone_timeout
1271 * to reduce collisions.  This must not be done in the regular allocation
1272 * path, otherwise, we can recurse on the vm while allocating pages.
1273 *
1274 * Arguments:
1275 *	oldhash  The hash you want to expand
1276 *	newhash  The hash structure for the new table
1277 *
1278 * Returns:
1279 *	Nothing
1280 *
1281 * Discussion:
1282 */
1283static int
1284hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
1285{
1286	uma_hash_slab_t slab;
1287	u_int hval;
1288	u_int idx;
1289
1290	if (!newhash->uh_slab_hash)
1291		return (0);
1292
1293	if (oldhash->uh_hashsize >= newhash->uh_hashsize)
1294		return (0);
1295
1296	/*
1297	 * I need to investigate hash algorithms for resizing without a
1298	 * full rehash.
1299	 */
1300
1301	for (idx = 0; idx < oldhash->uh_hashsize; idx++)
1302		while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) {
1303			slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]);
1304			LIST_REMOVE(slab, uhs_hlink);
1305			hval = UMA_HASH(newhash, slab->uhs_data);
1306			LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
1307			    slab, uhs_hlink);
1308		}
1309
1310	return (1);
1311}
1312
1313/*
1314 * Free the hash bucket to the appropriate backing store.
1315 *
1316 * Arguments:
1317 *	slab_hash  The hash bucket we're freeing
1318 *	hashsize   The number of entries in that hash bucket
1319 *
1320 * Returns:
1321 *	Nothing
1322 */
1323static void
1324hash_free(struct uma_hash *hash)
1325{
1326	if (hash->uh_slab_hash == NULL)
1327		return;
1328	if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
1329		zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE);
1330	else
1331		free(hash->uh_slab_hash, M_UMAHASH);
1332}
1333
1334/*
1335 * Frees all outstanding items in a bucket
1336 *
1337 * Arguments:
1338 *	zone   The zone to free to, must be unlocked.
1339 *	bucket The free/alloc bucket with items.
1340 *
1341 * Returns:
1342 *	Nothing
1343 */
1344static void
1345bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
1346{
1347	int i;
1348
1349	if (bucket->ub_cnt == 0)
1350		return;
1351
1352	if ((zone->uz_flags & UMA_ZONE_SMR) != 0 &&
1353	    bucket->ub_seq != SMR_SEQ_INVALID) {
1354		smr_wait(zone->uz_smr, bucket->ub_seq);
1355		bucket->ub_seq = SMR_SEQ_INVALID;
1356		for (i = 0; i < bucket->ub_cnt; i++)
1357			item_dtor(zone, bucket->ub_bucket[i],
1358			    zone->uz_size, NULL, SKIP_NONE);
1359	}
1360	if (zone->uz_fini)
1361		for (i = 0; i < bucket->ub_cnt; i++) {
1362			kasan_mark_item_valid(zone, bucket->ub_bucket[i]);
1363			zone->uz_fini(bucket->ub_bucket[i], zone->uz_size);
1364			kasan_mark_item_invalid(zone, bucket->ub_bucket[i]);
1365		}
1366	zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt);
1367	if (zone->uz_max_items > 0)
1368		zone_free_limit(zone, bucket->ub_cnt);
1369#ifdef INVARIANTS
1370	bzero(bucket->ub_bucket, sizeof(void *) * bucket->ub_cnt);
1371#endif
1372	bucket->ub_cnt = 0;
1373}
1374
1375/*
1376 * Drains the per cpu caches for a zone.
1377 *
1378 * NOTE: This may only be called while the zone is being torn down, and not
1379 * during normal operation.  This is necessary in order that we do not have
1380 * to migrate CPUs to drain the per-CPU caches.
1381 *
1382 * Arguments:
1383 *	zone     The zone to drain, must be unlocked.
1384 *
1385 * Returns:
1386 *	Nothing
1387 */
1388static void
1389cache_drain(uma_zone_t zone)
1390{
1391	uma_cache_t cache;
1392	uma_bucket_t bucket;
1393	smr_seq_t seq;
1394	int cpu;
1395
1396	/*
1397	 * XXX: It is safe to not lock the per-CPU caches, because we're
1398	 * tearing down the zone anyway.  I.e., there will be no further use
1399	 * of the caches at this point.
1400	 *
1401	 * XXX: It would good to be able to assert that the zone is being
1402	 * torn down to prevent improper use of cache_drain().
1403	 */
1404	seq = SMR_SEQ_INVALID;
1405	if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
1406		seq = smr_advance(zone->uz_smr);
1407	CPU_FOREACH(cpu) {
1408		cache = &zone->uz_cpu[cpu];
1409		bucket = cache_bucket_unload_alloc(cache);
1410		if (bucket != NULL)
1411			bucket_free(zone, bucket, NULL);
1412		bucket = cache_bucket_unload_free(cache);
1413		if (bucket != NULL) {
1414			bucket->ub_seq = seq;
1415			bucket_free(zone, bucket, NULL);
1416		}
1417		bucket = cache_bucket_unload_cross(cache);
1418		if (bucket != NULL) {
1419			bucket->ub_seq = seq;
1420			bucket_free(zone, bucket, NULL);
1421		}
1422	}
1423	bucket_cache_reclaim(zone, true, UMA_ANYDOMAIN);
1424}
1425
1426static void
1427cache_shrink(uma_zone_t zone, void *unused)
1428{
1429
1430	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
1431		return;
1432
1433	ZONE_LOCK(zone);
1434	zone->uz_bucket_size =
1435	    (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2;
1436	ZONE_UNLOCK(zone);
1437}
1438
1439static void
1440cache_drain_safe_cpu(uma_zone_t zone, void *unused)
1441{
1442	uma_cache_t cache;
1443	uma_bucket_t b1, b2, b3;
1444	int domain;
1445
1446	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
1447		return;
1448
1449	b1 = b2 = b3 = NULL;
1450	critical_enter();
1451	cache = &zone->uz_cpu[curcpu];
1452	domain = PCPU_GET(domain);
1453	b1 = cache_bucket_unload_alloc(cache);
1454
1455	/*
1456	 * Don't flush SMR zone buckets.  This leaves the zone without a
1457	 * bucket and forces every free to synchronize().
1458	 */
1459	if ((zone->uz_flags & UMA_ZONE_SMR) == 0) {
1460		b2 = cache_bucket_unload_free(cache);
1461		b3 = cache_bucket_unload_cross(cache);
1462	}
1463	critical_exit();
1464
1465	if (b1 != NULL)
1466		zone_free_bucket(zone, b1, NULL, domain, false);
1467	if (b2 != NULL)
1468		zone_free_bucket(zone, b2, NULL, domain, false);
1469	if (b3 != NULL) {
1470		/* Adjust the domain so it goes to zone_free_cross. */
1471		domain = (domain + 1) % vm_ndomains;
1472		zone_free_bucket(zone, b3, NULL, domain, false);
1473	}
1474}
1475
1476/*
1477 * Safely drain per-CPU caches of a zone(s) to alloc bucket.
1478 * This is an expensive call because it needs to bind to all CPUs
1479 * one by one and enter a critical section on each of them in order
1480 * to safely access their cache buckets.
1481 * Zone lock must not be held on call this function.
1482 */
1483static void
1484pcpu_cache_drain_safe(uma_zone_t zone)
1485{
1486	int cpu;
1487
1488	/*
1489	 * Polite bucket sizes shrinking was not enough, shrink aggressively.
1490	 */
1491	if (zone)
1492		cache_shrink(zone, NULL);
1493	else
1494		zone_foreach(cache_shrink, NULL);
1495
1496	CPU_FOREACH(cpu) {
1497		thread_lock(curthread);
1498		sched_bind(curthread, cpu);
1499		thread_unlock(curthread);
1500
1501		if (zone)
1502			cache_drain_safe_cpu(zone, NULL);
1503		else
1504			zone_foreach(cache_drain_safe_cpu, NULL);
1505	}
1506	thread_lock(curthread);
1507	sched_unbind(curthread);
1508	thread_unlock(curthread);
1509}
1510
1511/*
1512 * Reclaim cached buckets from a zone.  All buckets are reclaimed if the caller
1513 * requested a drain, otherwise the per-domain caches are trimmed to either
1514 * estimated working set size.
1515 */
1516static bool
1517bucket_cache_reclaim_domain(uma_zone_t zone, bool drain, bool trim, int domain)
1518{
1519	uma_zone_domain_t zdom;
1520	uma_bucket_t bucket;
1521	long target;
1522	bool done = false;
1523
1524	/*
1525	 * The cross bucket is partially filled and not part of
1526	 * the item count.  Reclaim it individually here.
1527	 */
1528	zdom = ZDOM_GET(zone, domain);
1529	if ((zone->uz_flags & UMA_ZONE_SMR) == 0 || drain) {
1530		ZONE_CROSS_LOCK(zone);
1531		bucket = zdom->uzd_cross;
1532		zdom->uzd_cross = NULL;
1533		ZONE_CROSS_UNLOCK(zone);
1534		if (bucket != NULL)
1535			bucket_free(zone, bucket, NULL);
1536	}
1537
1538	/*
1539	 * If we were asked to drain the zone, we are done only once
1540	 * this bucket cache is empty.  If trim, we reclaim items in
1541	 * excess of the zone's estimated working set size.  Multiple
1542	 * consecutive calls will shrink the WSS and so reclaim more.
1543	 * If neither drain nor trim, then voluntarily reclaim 1/4
1544	 * (to reduce first spike) of items not used for a long time.
1545	 */
1546	ZDOM_LOCK(zdom);
1547	zone_domain_update_wss(zdom);
1548	if (drain)
1549		target = 0;
1550	else if (trim)
1551		target = zdom->uzd_wss;
1552	else if (zdom->uzd_timin > 900 / UMA_TIMEOUT)
1553		target = zdom->uzd_nitems - zdom->uzd_limin / 4;
1554	else {
1555		ZDOM_UNLOCK(zdom);
1556		return (done);
1557	}
1558	while ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) != NULL &&
1559	    zdom->uzd_nitems >= target + bucket->ub_cnt) {
1560		bucket = zone_fetch_bucket(zone, zdom, true);
1561		if (bucket == NULL)
1562			break;
1563		bucket_free(zone, bucket, NULL);
1564		done = true;
1565		ZDOM_LOCK(zdom);
1566	}
1567	ZDOM_UNLOCK(zdom);
1568	return (done);
1569}
1570
1571static void
1572bucket_cache_reclaim(uma_zone_t zone, bool drain, int domain)
1573{
1574	int i;
1575
1576	/*
1577	 * Shrink the zone bucket size to ensure that the per-CPU caches
1578	 * don't grow too large.
1579	 */
1580	if (zone->uz_bucket_size > zone->uz_bucket_size_min)
1581		zone->uz_bucket_size--;
1582
1583	if (domain != UMA_ANYDOMAIN &&
1584	    (zone->uz_flags & UMA_ZONE_ROUNDROBIN) == 0) {
1585		bucket_cache_reclaim_domain(zone, drain, true, domain);
1586	} else {
1587		for (i = 0; i < vm_ndomains; i++)
1588			bucket_cache_reclaim_domain(zone, drain, true, i);
1589	}
1590}
1591
1592static void
1593keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start)
1594{
1595	uint8_t *mem;
1596	size_t size;
1597	int i;
1598	uint8_t flags;
1599
1600	CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes",
1601	    keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera);
1602
1603	mem = slab_data(slab, keg);
1604	size = PAGE_SIZE * keg->uk_ppera;
1605
1606	kasan_mark_slab_valid(keg, mem);
1607	if (keg->uk_fini != NULL) {
1608		for (i = start - 1; i > -1; i--)
1609#ifdef INVARIANTS
1610		/*
1611		 * trash_fini implies that dtor was trash_dtor. trash_fini
1612		 * would check that memory hasn't been modified since free,
1613		 * which executed trash_dtor.
1614		 * That's why we need to run uma_dbg_kskip() check here,
1615		 * albeit we don't make skip check for other init/fini
1616		 * invocations.
1617		 */
1618		if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) ||
1619		    keg->uk_fini != trash_fini)
1620#endif
1621			keg->uk_fini(slab_item(slab, keg, i), keg->uk_size);
1622	}
1623	flags = slab->us_flags;
1624	if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) {
1625		zone_free_item(slabzone(keg->uk_ipers), slab_tohashslab(slab),
1626		    NULL, SKIP_NONE);
1627	}
1628	keg->uk_freef(mem, size, flags);
1629	uma_total_dec(size);
1630}
1631
1632static void
1633keg_drain_domain(uma_keg_t keg, int domain)
1634{
1635	struct slabhead freeslabs;
1636	uma_domain_t dom;
1637	uma_slab_t slab, tmp;
1638	uint32_t i, stofree, stokeep, partial;
1639
1640	dom = &keg->uk_domain[domain];
1641	LIST_INIT(&freeslabs);
1642
1643	CTR4(KTR_UMA, "keg_drain %s(%p) domain %d free items: %u",
1644	    keg->uk_name, keg, domain, dom->ud_free_items);
1645
1646	KEG_LOCK(keg, domain);
1647
1648	/*
1649	 * Are the free items in partially allocated slabs sufficient to meet
1650	 * the reserve? If not, compute the number of fully free slabs that must
1651	 * be kept.
1652	 */
1653	partial = dom->ud_free_items - dom->ud_free_slabs * keg->uk_ipers;
1654	if (partial < keg->uk_reserve) {
1655		stokeep = min(dom->ud_free_slabs,
1656		    howmany(keg->uk_reserve - partial, keg->uk_ipers));
1657	} else {
1658		stokeep = 0;
1659	}
1660	stofree = dom->ud_free_slabs - stokeep;
1661
1662	/*
1663	 * Partition the free slabs into two sets: those that must be kept in
1664	 * order to maintain the reserve, and those that may be released back to
1665	 * the system.  Since one set may be much larger than the other,
1666	 * populate the smaller of the two sets and swap them if necessary.
1667	 */
1668	for (i = min(stofree, stokeep); i > 0; i--) {
1669		slab = LIST_FIRST(&dom->ud_free_slab);
1670		LIST_REMOVE(slab, us_link);
1671		LIST_INSERT_HEAD(&freeslabs, slab, us_link);
1672	}
1673	if (stofree > stokeep)
1674		LIST_SWAP(&freeslabs, &dom->ud_free_slab, uma_slab, us_link);
1675
1676	if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) {
1677		LIST_FOREACH(slab, &freeslabs, us_link)
1678			UMA_HASH_REMOVE(&keg->uk_hash, slab);
1679	}
1680	dom->ud_free_items -= stofree * keg->uk_ipers;
1681	dom->ud_free_slabs -= stofree;
1682	dom->ud_pages -= stofree * keg->uk_ppera;
1683	KEG_UNLOCK(keg, domain);
1684
1685	LIST_FOREACH_SAFE(slab, &freeslabs, us_link, tmp)
1686		keg_free_slab(keg, slab, keg->uk_ipers);
1687}
1688
1689/*
1690 * Frees pages from a keg back to the system.  This is done on demand from
1691 * the pageout daemon.
1692 *
1693 * Returns nothing.
1694 */
1695static void
1696keg_drain(uma_keg_t keg, int domain)
1697{
1698	int i;
1699
1700	if ((keg->uk_flags & UMA_ZONE_NOFREE) != 0)
1701		return;
1702	if (domain != UMA_ANYDOMAIN) {
1703		keg_drain_domain(keg, domain);
1704	} else {
1705		for (i = 0; i < vm_ndomains; i++)
1706			keg_drain_domain(keg, i);
1707	}
1708}
1709
1710static void
1711zone_reclaim(uma_zone_t zone, int domain, int waitok, bool drain)
1712{
1713	/*
1714	 * Count active reclaim operations in order to interlock with
1715	 * zone_dtor(), which removes the zone from global lists before
1716	 * attempting to reclaim items itself.
1717	 *
1718	 * The zone may be destroyed while sleeping, so only zone_dtor() should
1719	 * specify M_WAITOK.
1720	 */
1721	ZONE_LOCK(zone);
1722	if (waitok == M_WAITOK) {
1723		while (zone->uz_reclaimers > 0)
1724			msleep(zone, ZONE_LOCKPTR(zone), PVM, "zonedrain", 1);
1725	}
1726	zone->uz_reclaimers++;
1727	ZONE_UNLOCK(zone);
1728	bucket_cache_reclaim(zone, drain, domain);
1729
1730	if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0)
1731		keg_drain(zone->uz_keg, domain);
1732	ZONE_LOCK(zone);
1733	zone->uz_reclaimers--;
1734	if (zone->uz_reclaimers == 0)
1735		wakeup(zone);
1736	ZONE_UNLOCK(zone);
1737}
1738
1739/*
1740 * Allocate a new slab for a keg and inserts it into the partial slab list.
1741 * The keg should be unlocked on entry.  If the allocation succeeds it will
1742 * be locked on return.
1743 *
1744 * Arguments:
1745 *	flags   Wait flags for the item initialization routine
1746 *	aflags  Wait flags for the slab allocation
1747 *
1748 * Returns:
1749 *	The slab that was allocated or NULL if there is no memory and the
1750 *	caller specified M_NOWAIT.
1751 */
1752static uma_slab_t
1753keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags,
1754    int aflags)
1755{
1756	uma_domain_t dom;
1757	uma_slab_t slab;
1758	unsigned long size;
1759	uint8_t *mem;
1760	uint8_t sflags;
1761	int i;
1762
1763	TSENTER();
1764
1765	KASSERT(domain >= 0 && domain < vm_ndomains,
1766	    ("keg_alloc_slab: domain %d out of range", domain));
1767
1768	slab = NULL;
1769	mem = NULL;
1770	if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) {
1771		uma_hash_slab_t hslab;
1772		hslab = zone_alloc_item(slabzone(keg->uk_ipers), NULL,
1773		    domain, aflags);
1774		if (hslab == NULL)
1775			goto fail;
1776		slab = &hslab->uhs_slab;
1777	}
1778
1779	/*
1780	 * This reproduces the old vm_zone behavior of zero filling pages the
1781	 * first time they are added to a zone.
1782	 *
1783	 * Malloced items are zeroed in uma_zalloc.
1784	 */
1785
1786	if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
1787		aflags |= M_ZERO;
1788	else
1789		aflags &= ~M_ZERO;
1790
1791	if (keg->uk_flags & UMA_ZONE_NODUMP)
1792		aflags |= M_NODUMP;
1793
1794	/* zone is passed for legacy reasons. */
1795	size = keg->uk_ppera * PAGE_SIZE;
1796	mem = keg->uk_allocf(zone, size, domain, &sflags, aflags);
1797	if (mem == NULL) {
1798		if (keg->uk_flags & UMA_ZFLAG_OFFPAGE)
1799			zone_free_item(slabzone(keg->uk_ipers),
1800			    slab_tohashslab(slab), NULL, SKIP_NONE);
1801		goto fail;
1802	}
1803	uma_total_inc(size);
1804
1805	/* For HASH zones all pages go to the same uma_domain. */
1806	if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0)
1807		domain = 0;
1808
1809	kmsan_mark(mem, size,
1810	    (aflags & M_ZERO) != 0 ? KMSAN_STATE_INITED : KMSAN_STATE_UNINIT);
1811
1812	/* Point the slab into the allocated memory */
1813	if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE))
1814		slab = (uma_slab_t)(mem + keg->uk_pgoff);
1815	else
1816		slab_tohashslab(slab)->uhs_data = mem;
1817
1818	if (keg->uk_flags & UMA_ZFLAG_VTOSLAB)
1819		for (i = 0; i < keg->uk_ppera; i++)
1820			vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE),
1821			    zone, slab);
1822
1823	slab->us_freecount = keg->uk_ipers;
1824	slab->us_flags = sflags;
1825	slab->us_domain = domain;
1826
1827	BIT_FILL(keg->uk_ipers, &slab->us_free);
1828#ifdef INVARIANTS
1829	BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg));
1830#endif
1831
1832	if (keg->uk_init != NULL) {
1833		for (i = 0; i < keg->uk_ipers; i++)
1834			if (keg->uk_init(slab_item(slab, keg, i),
1835			    keg->uk_size, flags) != 0)
1836				break;
1837		if (i != keg->uk_ipers) {
1838			keg_free_slab(keg, slab, i);
1839			goto fail;
1840		}
1841	}
1842	kasan_mark_slab_invalid(keg, mem);
1843	KEG_LOCK(keg, domain);
1844
1845	CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)",
1846	    slab, keg->uk_name, keg);
1847
1848	if (keg->uk_flags & UMA_ZFLAG_HASH)
1849		UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
1850
1851	/*
1852	 * If we got a slab here it's safe to mark it partially used
1853	 * and return.  We assume that the caller is going to remove
1854	 * at least one item.
1855	 */
1856	dom = &keg->uk_domain[domain];
1857	LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
1858	dom->ud_pages += keg->uk_ppera;
1859	dom->ud_free_items += keg->uk_ipers;
1860
1861	TSEXIT();
1862	return (slab);
1863
1864fail:
1865	return (NULL);
1866}
1867
1868/*
1869 * This function is intended to be used early on in place of page_alloc().  It
1870 * performs contiguous physical memory allocations and uses a bump allocator for
1871 * KVA, so is usable before the kernel map is initialized.
1872 */
1873static void *
1874startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1875    int wait)
1876{
1877	vm_paddr_t pa;
1878	vm_page_t m;
1879	int i, pages;
1880
1881	pages = howmany(bytes, PAGE_SIZE);
1882	KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__));
1883
1884	*pflag = UMA_SLAB_BOOT;
1885	m = vm_page_alloc_noobj_contig_domain(domain, malloc2vm_flags(wait) |
1886	    VM_ALLOC_WIRED, pages, (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0,
1887	    VM_MEMATTR_DEFAULT);
1888	if (m == NULL)
1889		return (NULL);
1890
1891	pa = VM_PAGE_TO_PHYS(m);
1892	for (i = 0; i < pages; i++, pa += PAGE_SIZE) {
1893#if MINIDUMP_PAGE_TRACKING && MINIDUMP_STARTUP_PAGE_TRACKING
1894		if ((wait & M_NODUMP) == 0)
1895			dump_add_page(pa);
1896#endif
1897	}
1898
1899	/* Allocate KVA and indirectly advance bootmem. */
1900	return ((void *)pmap_map(&bootmem, m->phys_addr,
1901	    m->phys_addr + (pages * PAGE_SIZE), VM_PROT_READ | VM_PROT_WRITE));
1902}
1903
1904static void
1905startup_free(void *mem, vm_size_t bytes)
1906{
1907	vm_offset_t va;
1908	vm_page_t m;
1909
1910	va = (vm_offset_t)mem;
1911	m = PHYS_TO_VM_PAGE(pmap_kextract(va));
1912
1913	/*
1914	 * startup_alloc() returns direct-mapped slabs on some platforms.  Avoid
1915	 * unmapping ranges of the direct map.
1916	 */
1917	if (va >= bootstart && va + bytes <= bootmem)
1918		pmap_remove(kernel_pmap, va, va + bytes);
1919	for (; bytes != 0; bytes -= PAGE_SIZE, m++) {
1920#if MINIDUMP_PAGE_TRACKING && MINIDUMP_STARTUP_PAGE_TRACKING
1921		dump_drop_page(VM_PAGE_TO_PHYS(m));
1922#endif
1923		vm_page_unwire_noq(m);
1924		vm_page_free(m);
1925	}
1926}
1927
1928/*
1929 * Allocates a number of pages from the system
1930 *
1931 * Arguments:
1932 *	bytes  The number of bytes requested
1933 *	wait  Shall we wait?
1934 *
1935 * Returns:
1936 *	A pointer to the alloced memory or possibly
1937 *	NULL if M_NOWAIT is set.
1938 */
1939static void *
1940page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1941    int wait)
1942{
1943	void *p;	/* Returned page */
1944
1945	*pflag = UMA_SLAB_KERNEL;
1946	p = kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait);
1947
1948	return (p);
1949}
1950
1951static void *
1952pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1953    int wait)
1954{
1955	struct pglist alloctail;
1956	vm_offset_t addr, zkva;
1957	int cpu, flags;
1958	vm_page_t p, p_next;
1959#ifdef NUMA
1960	struct pcpu *pc;
1961#endif
1962
1963	MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE);
1964
1965	TAILQ_INIT(&alloctail);
1966	flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | malloc2vm_flags(wait);
1967	*pflag = UMA_SLAB_KERNEL;
1968	for (cpu = 0; cpu <= mp_maxid; cpu++) {
1969		if (CPU_ABSENT(cpu)) {
1970			p = vm_page_alloc_noobj(flags);
1971		} else {
1972#ifndef NUMA
1973			p = vm_page_alloc_noobj(flags);
1974#else
1975			pc = pcpu_find(cpu);
1976			if (__predict_false(VM_DOMAIN_EMPTY(pc->pc_domain)))
1977				p = NULL;
1978			else
1979				p = vm_page_alloc_noobj_domain(pc->pc_domain,
1980				    flags);
1981			if (__predict_false(p == NULL))
1982				p = vm_page_alloc_noobj(flags);
1983#endif
1984		}
1985		if (__predict_false(p == NULL))
1986			goto fail;
1987		TAILQ_INSERT_TAIL(&alloctail, p, listq);
1988	}
1989	if ((addr = kva_alloc(bytes)) == 0)
1990		goto fail;
1991	zkva = addr;
1992	TAILQ_FOREACH(p, &alloctail, listq) {
1993		pmap_qenter(zkva, &p, 1);
1994		zkva += PAGE_SIZE;
1995	}
1996	return ((void*)addr);
1997fail:
1998	TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
1999		vm_page_unwire_noq(p);
2000		vm_page_free(p);
2001	}
2002	return (NULL);
2003}
2004
2005/*
2006 * Allocates a number of pages not belonging to a VM object
2007 *
2008 * Arguments:
2009 *	bytes  The number of bytes requested
2010 *	wait   Shall we wait?
2011 *
2012 * Returns:
2013 *	A pointer to the alloced memory or possibly
2014 *	NULL if M_NOWAIT is set.
2015 */
2016static void *
2017noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags,
2018    int wait)
2019{
2020	TAILQ_HEAD(, vm_page) alloctail;
2021	u_long npages;
2022	vm_offset_t retkva, zkva;
2023	vm_page_t p, p_next;
2024	uma_keg_t keg;
2025	int req;
2026
2027	TAILQ_INIT(&alloctail);
2028	keg = zone->uz_keg;
2029	req = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
2030	if ((wait & M_WAITOK) != 0)
2031		req |= VM_ALLOC_WAITOK;
2032
2033	npages = howmany(bytes, PAGE_SIZE);
2034	while (npages > 0) {
2035		p = vm_page_alloc_noobj_domain(domain, req);
2036		if (p != NULL) {
2037			/*
2038			 * Since the page does not belong to an object, its
2039			 * listq is unused.
2040			 */
2041			TAILQ_INSERT_TAIL(&alloctail, p, listq);
2042			npages--;
2043			continue;
2044		}
2045		/*
2046		 * Page allocation failed, free intermediate pages and
2047		 * exit.
2048		 */
2049		TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
2050			vm_page_unwire_noq(p);
2051			vm_page_free(p);
2052		}
2053		return (NULL);
2054	}
2055	*flags = UMA_SLAB_PRIV;
2056	zkva = keg->uk_kva +
2057	    atomic_fetchadd_long(&keg->uk_offset, round_page(bytes));
2058	retkva = zkva;
2059	TAILQ_FOREACH(p, &alloctail, listq) {
2060		pmap_qenter(zkva, &p, 1);
2061		zkva += PAGE_SIZE;
2062	}
2063
2064	return ((void *)retkva);
2065}
2066
2067/*
2068 * Allocate physically contiguous pages.
2069 */
2070static void *
2071contig_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
2072    int wait)
2073{
2074
2075	*pflag = UMA_SLAB_KERNEL;
2076	return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain),
2077	    bytes, wait, 0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT));
2078}
2079
2080#if defined(UMA_USE_DMAP) && !defined(UMA_MD_SMALL_ALLOC)
2081void *
2082uma_small_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags,
2083    int wait)
2084{
2085	vm_page_t m;
2086	vm_paddr_t pa;
2087	void *va;
2088
2089	*flags = UMA_SLAB_PRIV;
2090	m = vm_page_alloc_noobj_domain(domain,
2091	    malloc2vm_flags(wait) | VM_ALLOC_WIRED);
2092	if (m == NULL)
2093		return (NULL);
2094	pa = m->phys_addr;
2095	if ((wait & M_NODUMP) == 0)
2096		dump_add_page(pa);
2097	va = (void *)PHYS_TO_DMAP(pa);
2098	return (va);
2099}
2100#endif
2101
2102/*
2103 * Frees a number of pages to the system
2104 *
2105 * Arguments:
2106 *	mem   A pointer to the memory to be freed
2107 *	size  The size of the memory being freed
2108 *	flags The original p->us_flags field
2109 *
2110 * Returns:
2111 *	Nothing
2112 */
2113static void
2114page_free(void *mem, vm_size_t size, uint8_t flags)
2115{
2116
2117	if ((flags & UMA_SLAB_BOOT) != 0) {
2118		startup_free(mem, size);
2119		return;
2120	}
2121
2122	KASSERT((flags & UMA_SLAB_KERNEL) != 0,
2123	    ("UMA: page_free used with invalid flags %x", flags));
2124
2125	kmem_free(mem, size);
2126}
2127
2128/*
2129 * Frees pcpu zone allocations
2130 *
2131 * Arguments:
2132 *	mem   A pointer to the memory to be freed
2133 *	size  The size of the memory being freed
2134 *	flags The original p->us_flags field
2135 *
2136 * Returns:
2137 *	Nothing
2138 */
2139static void
2140pcpu_page_free(void *mem, vm_size_t size, uint8_t flags)
2141{
2142	vm_offset_t sva, curva;
2143	vm_paddr_t paddr;
2144	vm_page_t m;
2145
2146	MPASS(size == (mp_maxid+1)*PAGE_SIZE);
2147
2148	if ((flags & UMA_SLAB_BOOT) != 0) {
2149		startup_free(mem, size);
2150		return;
2151	}
2152
2153	sva = (vm_offset_t)mem;
2154	for (curva = sva; curva < sva + size; curva += PAGE_SIZE) {
2155		paddr = pmap_kextract(curva);
2156		m = PHYS_TO_VM_PAGE(paddr);
2157		vm_page_unwire_noq(m);
2158		vm_page_free(m);
2159	}
2160	pmap_qremove(sva, size >> PAGE_SHIFT);
2161	kva_free(sva, size);
2162}
2163
2164#if defined(UMA_USE_DMAP) && !defined(UMA_MD_SMALL_ALLOC)
2165void
2166uma_small_free(void *mem, vm_size_t size, uint8_t flags)
2167{
2168	vm_page_t m;
2169	vm_paddr_t pa;
2170
2171	pa = DMAP_TO_PHYS((vm_offset_t)mem);
2172	dump_drop_page(pa);
2173	m = PHYS_TO_VM_PAGE(pa);
2174	vm_page_unwire_noq(m);
2175	vm_page_free(m);
2176}
2177#endif
2178
2179/*
2180 * Zero fill initializer
2181 *
2182 * Arguments/Returns follow uma_init specifications
2183 */
2184static int
2185zero_init(void *mem, int size, int flags)
2186{
2187	bzero(mem, size);
2188	return (0);
2189}
2190
2191#ifdef INVARIANTS
2192static struct noslabbits *
2193slab_dbg_bits(uma_slab_t slab, uma_keg_t keg)
2194{
2195
2196	return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers)));
2197}
2198#endif
2199
2200/*
2201 * Actual size of embedded struct slab (!OFFPAGE).
2202 */
2203static size_t
2204slab_sizeof(int nitems)
2205{
2206	size_t s;
2207
2208	s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS;
2209	return (roundup(s, UMA_ALIGN_PTR + 1));
2210}
2211
2212#define	UMA_FIXPT_SHIFT	31
2213#define	UMA_FRAC_FIXPT(n, d)						\
2214	((uint32_t)(((uint64_t)(n) << UMA_FIXPT_SHIFT) / (d)))
2215#define	UMA_FIXPT_PCT(f)						\
2216	((u_int)(((uint64_t)100 * (f)) >> UMA_FIXPT_SHIFT))
2217#define	UMA_PCT_FIXPT(pct)	UMA_FRAC_FIXPT((pct), 100)
2218#define	UMA_MIN_EFF	UMA_PCT_FIXPT(100 - UMA_MAX_WASTE)
2219
2220/*
2221 * Compute the number of items that will fit in a slab.  If hdr is true, the
2222 * item count may be limited to provide space in the slab for an inline slab
2223 * header.  Otherwise, all slab space will be provided for item storage.
2224 */
2225static u_int
2226slab_ipers_hdr(u_int size, u_int rsize, u_int slabsize, bool hdr)
2227{
2228	u_int ipers;
2229	u_int padpi;
2230
2231	/* The padding between items is not needed after the last item. */
2232	padpi = rsize - size;
2233
2234	if (hdr) {
2235		/*
2236		 * Start with the maximum item count and remove items until
2237		 * the slab header first alongside the allocatable memory.
2238		 */
2239		for (ipers = MIN(SLAB_MAX_SETSIZE,
2240		    (slabsize + padpi - slab_sizeof(1)) / rsize);
2241		    ipers > 0 &&
2242		    ipers * rsize - padpi + slab_sizeof(ipers) > slabsize;
2243		    ipers--)
2244			continue;
2245	} else {
2246		ipers = MIN((slabsize + padpi) / rsize, SLAB_MAX_SETSIZE);
2247	}
2248
2249	return (ipers);
2250}
2251
2252struct keg_layout_result {
2253	u_int format;
2254	u_int slabsize;
2255	u_int ipers;
2256	u_int eff;
2257};
2258
2259static void
2260keg_layout_one(uma_keg_t keg, u_int rsize, u_int slabsize, u_int fmt,
2261    struct keg_layout_result *kl)
2262{
2263	u_int total;
2264
2265	kl->format = fmt;
2266	kl->slabsize = slabsize;
2267
2268	/* Handle INTERNAL as inline with an extra page. */
2269	if ((fmt & UMA_ZFLAG_INTERNAL) != 0) {
2270		kl->format &= ~UMA_ZFLAG_INTERNAL;
2271		kl->slabsize += PAGE_SIZE;
2272	}
2273
2274	kl->ipers = slab_ipers_hdr(keg->uk_size, rsize, kl->slabsize,
2275	    (fmt & UMA_ZFLAG_OFFPAGE) == 0);
2276
2277	/* Account for memory used by an offpage slab header. */
2278	total = kl->slabsize;
2279	if ((fmt & UMA_ZFLAG_OFFPAGE) != 0)
2280		total += slabzone(kl->ipers)->uz_keg->uk_rsize;
2281
2282	kl->eff = UMA_FRAC_FIXPT(kl->ipers * rsize, total);
2283}
2284
2285/*
2286 * Determine the format of a uma keg.  This determines where the slab header
2287 * will be placed (inline or offpage) and calculates ipers, rsize, and ppera.
2288 *
2289 * Arguments
2290 *	keg  The zone we should initialize
2291 *
2292 * Returns
2293 *	Nothing
2294 */
2295static void
2296keg_layout(uma_keg_t keg)
2297{
2298	struct keg_layout_result kl = {}, kl_tmp;
2299	u_int fmts[2];
2300	u_int alignsize;
2301	u_int nfmt;
2302	u_int pages;
2303	u_int rsize;
2304	u_int slabsize;
2305	u_int i, j;
2306
2307	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 ||
2308	    (keg->uk_size <= UMA_PCPU_ALLOC_SIZE &&
2309	     (keg->uk_flags & UMA_ZONE_CACHESPREAD) == 0),
2310	    ("%s: cannot configure for PCPU: keg=%s, size=%u, flags=0x%b",
2311	     __func__, keg->uk_name, keg->uk_size, keg->uk_flags,
2312	     PRINT_UMA_ZFLAGS));
2313	KASSERT((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) == 0 ||
2314	    (keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0,
2315	    ("%s: incompatible flags 0x%b", __func__, keg->uk_flags,
2316	     PRINT_UMA_ZFLAGS));
2317
2318	alignsize = keg->uk_align + 1;
2319#ifdef KASAN
2320	/*
2321	 * ASAN requires that each allocation be aligned to the shadow map
2322	 * scale factor.
2323	 */
2324	if (alignsize < KASAN_SHADOW_SCALE)
2325		alignsize = KASAN_SHADOW_SCALE;
2326#endif
2327
2328	/*
2329	 * Calculate the size of each allocation (rsize) according to
2330	 * alignment.  If the requested size is smaller than we have
2331	 * allocation bits for we round it up.
2332	 */
2333	rsize = MAX(keg->uk_size, UMA_SMALLEST_UNIT);
2334	rsize = roundup2(rsize, alignsize);
2335
2336	if ((keg->uk_flags & UMA_ZONE_CACHESPREAD) != 0) {
2337		/*
2338		 * We want one item to start on every align boundary in a page.
2339		 * To do this we will span pages.  We will also extend the item
2340		 * by the size of align if it is an even multiple of align.
2341		 * Otherwise, it would fall on the same boundary every time.
2342		 */
2343		if ((rsize & alignsize) == 0)
2344			rsize += alignsize;
2345		slabsize = rsize * (PAGE_SIZE / alignsize);
2346		slabsize = MIN(slabsize, rsize * SLAB_MAX_SETSIZE);
2347		slabsize = MIN(slabsize, UMA_CACHESPREAD_MAX_SIZE);
2348		slabsize = round_page(slabsize);
2349	} else {
2350		/*
2351		 * Start with a slab size of as many pages as it takes to
2352		 * represent a single item.  We will try to fit as many
2353		 * additional items into the slab as possible.
2354		 */
2355		slabsize = round_page(keg->uk_size);
2356	}
2357
2358	/* Build a list of all of the available formats for this keg. */
2359	nfmt = 0;
2360
2361	/* Evaluate an inline slab layout. */
2362	if ((keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0)
2363		fmts[nfmt++] = 0;
2364
2365	/* TODO: vm_page-embedded slab. */
2366
2367	/*
2368	 * We can't do OFFPAGE if we're internal or if we've been
2369	 * asked to not go to the VM for buckets.  If we do this we
2370	 * may end up going to the VM for slabs which we do not want
2371	 * to do if we're UMA_ZONE_VM, which clearly forbids it.
2372	 * In those cases, evaluate a pseudo-format called INTERNAL
2373	 * which has an inline slab header and one extra page to
2374	 * guarantee that it fits.
2375	 *
2376	 * Otherwise, see if using an OFFPAGE slab will improve our
2377	 * efficiency.
2378	 */
2379	if ((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) != 0)
2380		fmts[nfmt++] = UMA_ZFLAG_INTERNAL;
2381	else
2382		fmts[nfmt++] = UMA_ZFLAG_OFFPAGE;
2383
2384	/*
2385	 * Choose a slab size and format which satisfy the minimum efficiency.
2386	 * Prefer the smallest slab size that meets the constraints.
2387	 *
2388	 * Start with a minimum slab size, to accommodate CACHESPREAD.  Then,
2389	 * for small items (up to PAGE_SIZE), the iteration increment is one
2390	 * page; and for large items, the increment is one item.
2391	 */
2392	i = (slabsize + rsize - keg->uk_size) / MAX(PAGE_SIZE, rsize);
2393	KASSERT(i >= 1, ("keg %s(%p) flags=0x%b slabsize=%u, rsize=%u, i=%u",
2394	    keg->uk_name, keg, keg->uk_flags, PRINT_UMA_ZFLAGS, slabsize,
2395	    rsize, i));
2396	for ( ; ; i++) {
2397		slabsize = (rsize <= PAGE_SIZE) ? ptoa(i) :
2398		    round_page(rsize * (i - 1) + keg->uk_size);
2399
2400		for (j = 0; j < nfmt; j++) {
2401			/* Only if we have no viable format yet. */
2402			if ((fmts[j] & UMA_ZFLAG_INTERNAL) != 0 &&
2403			    kl.ipers > 0)
2404				continue;
2405
2406			keg_layout_one(keg, rsize, slabsize, fmts[j], &kl_tmp);
2407			if (kl_tmp.eff <= kl.eff)
2408				continue;
2409
2410			kl = kl_tmp;
2411
2412			CTR6(KTR_UMA, "keg %s layout: format %#x "
2413			    "(ipers %u * rsize %u) / slabsize %#x = %u%% eff",
2414			    keg->uk_name, kl.format, kl.ipers, rsize,
2415			    kl.slabsize, UMA_FIXPT_PCT(kl.eff));
2416
2417			/* Stop when we reach the minimum efficiency. */
2418			if (kl.eff >= UMA_MIN_EFF)
2419				break;
2420		}
2421
2422		if (kl.eff >= UMA_MIN_EFF || !multipage_slabs ||
2423		    slabsize >= SLAB_MAX_SETSIZE * rsize ||
2424		    (keg->uk_flags & (UMA_ZONE_PCPU | UMA_ZONE_CONTIG)) != 0)
2425			break;
2426	}
2427
2428	pages = atop(kl.slabsize);
2429	if ((keg->uk_flags & UMA_ZONE_PCPU) != 0)
2430		pages *= mp_maxid + 1;
2431
2432	keg->uk_rsize = rsize;
2433	keg->uk_ipers = kl.ipers;
2434	keg->uk_ppera = pages;
2435	keg->uk_flags |= kl.format;
2436
2437	/*
2438	 * How do we find the slab header if it is offpage or if not all item
2439	 * start addresses are in the same page?  We could solve the latter
2440	 * case with vaddr alignment, but we don't.
2441	 */
2442	if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0 ||
2443	    (keg->uk_ipers - 1) * rsize >= PAGE_SIZE) {
2444		if ((keg->uk_flags & UMA_ZONE_NOTPAGE) != 0)
2445			keg->uk_flags |= UMA_ZFLAG_HASH;
2446		else
2447			keg->uk_flags |= UMA_ZFLAG_VTOSLAB;
2448	}
2449
2450	CTR6(KTR_UMA, "%s: keg=%s, flags=%#x, rsize=%u, ipers=%u, ppera=%u",
2451	    __func__, keg->uk_name, keg->uk_flags, rsize, keg->uk_ipers,
2452	    pages);
2453	KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE,
2454	    ("%s: keg=%s, flags=0x%b, rsize=%u, ipers=%u, ppera=%u", __func__,
2455	     keg->uk_name, keg->uk_flags, PRINT_UMA_ZFLAGS, rsize,
2456	     keg->uk_ipers, pages));
2457}
2458
2459/*
2460 * Keg header ctor.  This initializes all fields, locks, etc.  And inserts
2461 * the keg onto the global keg list.
2462 *
2463 * Arguments/Returns follow uma_ctor specifications
2464 *	udata  Actually uma_kctor_args
2465 */
2466static int
2467keg_ctor(void *mem, int size, void *udata, int flags)
2468{
2469	struct uma_kctor_args *arg = udata;
2470	uma_keg_t keg = mem;
2471	uma_zone_t zone;
2472	int i;
2473
2474	bzero(keg, size);
2475	keg->uk_size = arg->size;
2476	keg->uk_init = arg->uminit;
2477	keg->uk_fini = arg->fini;
2478	keg->uk_align = arg->align;
2479	keg->uk_reserve = 0;
2480	keg->uk_flags = arg->flags;
2481
2482	/*
2483	 * We use a global round-robin policy by default.  Zones with
2484	 * UMA_ZONE_FIRSTTOUCH set will use first-touch instead, in which
2485	 * case the iterator is never run.
2486	 */
2487	keg->uk_dr.dr_policy = DOMAINSET_RR();
2488	keg->uk_dr.dr_iter = 0;
2489
2490	/*
2491	 * The primary zone is passed to us at keg-creation time.
2492	 */
2493	zone = arg->zone;
2494	keg->uk_name = zone->uz_name;
2495
2496	if (arg->flags & UMA_ZONE_ZINIT)
2497		keg->uk_init = zero_init;
2498
2499	if (arg->flags & UMA_ZONE_MALLOC)
2500		keg->uk_flags |= UMA_ZFLAG_VTOSLAB;
2501
2502#ifndef SMP
2503	keg->uk_flags &= ~UMA_ZONE_PCPU;
2504#endif
2505
2506	keg_layout(keg);
2507
2508	/*
2509	 * Use a first-touch NUMA policy for kegs that pmap_extract() will
2510	 * work on.  Use round-robin for everything else.
2511	 *
2512	 * Zones may override the default by specifying either.
2513	 */
2514#ifdef NUMA
2515	if ((keg->uk_flags &
2516	    (UMA_ZONE_ROUNDROBIN | UMA_ZFLAG_CACHE | UMA_ZONE_NOTPAGE)) == 0)
2517		keg->uk_flags |= UMA_ZONE_FIRSTTOUCH;
2518	else if ((keg->uk_flags & UMA_ZONE_FIRSTTOUCH) == 0)
2519		keg->uk_flags |= UMA_ZONE_ROUNDROBIN;
2520#endif
2521
2522	/*
2523	 * If we haven't booted yet we need allocations to go through the
2524	 * startup cache until the vm is ready.
2525	 */
2526#ifdef UMA_USE_DMAP
2527	if (keg->uk_ppera == 1)
2528		keg->uk_allocf = uma_small_alloc;
2529	else
2530#endif
2531	if (booted < BOOT_KVA)
2532		keg->uk_allocf = startup_alloc;
2533	else if (keg->uk_flags & UMA_ZONE_PCPU)
2534		keg->uk_allocf = pcpu_page_alloc;
2535	else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && keg->uk_ppera > 1)
2536		keg->uk_allocf = contig_alloc;
2537	else
2538		keg->uk_allocf = page_alloc;
2539#ifdef UMA_USE_DMAP
2540	if (keg->uk_ppera == 1)
2541		keg->uk_freef = uma_small_free;
2542	else
2543#endif
2544	if (keg->uk_flags & UMA_ZONE_PCPU)
2545		keg->uk_freef = pcpu_page_free;
2546	else
2547		keg->uk_freef = page_free;
2548
2549	/*
2550	 * Initialize keg's locks.
2551	 */
2552	for (i = 0; i < vm_ndomains; i++)
2553		KEG_LOCK_INIT(keg, i, (arg->flags & UMA_ZONE_MTXCLASS));
2554
2555	/*
2556	 * If we're putting the slab header in the actual page we need to
2557	 * figure out where in each page it goes.  See slab_sizeof
2558	 * definition.
2559	 */
2560	if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) {
2561		size_t shsize;
2562
2563		shsize = slab_sizeof(keg->uk_ipers);
2564		keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize;
2565		/*
2566		 * The only way the following is possible is if with our
2567		 * UMA_ALIGN_PTR adjustments we are now bigger than
2568		 * UMA_SLAB_SIZE.  I haven't checked whether this is
2569		 * mathematically possible for all cases, so we make
2570		 * sure here anyway.
2571		 */
2572		KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera,
2573		    ("zone %s ipers %d rsize %d size %d slab won't fit",
2574		    zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size));
2575	}
2576
2577	if (keg->uk_flags & UMA_ZFLAG_HASH)
2578		hash_alloc(&keg->uk_hash, 0);
2579
2580	CTR3(KTR_UMA, "keg_ctor %p zone %s(%p)", keg, zone->uz_name, zone);
2581
2582	LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
2583
2584	rw_wlock(&uma_rwlock);
2585	LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
2586	rw_wunlock(&uma_rwlock);
2587	return (0);
2588}
2589
2590static void
2591zone_kva_available(uma_zone_t zone, void *unused)
2592{
2593	uma_keg_t keg;
2594
2595	if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
2596		return;
2597	KEG_GET(zone, keg);
2598
2599	if (keg->uk_allocf == startup_alloc) {
2600		/* Switch to the real allocator. */
2601		if (keg->uk_flags & UMA_ZONE_PCPU)
2602			keg->uk_allocf = pcpu_page_alloc;
2603		else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 &&
2604		    keg->uk_ppera > 1)
2605			keg->uk_allocf = contig_alloc;
2606		else
2607			keg->uk_allocf = page_alloc;
2608	}
2609}
2610
2611static void
2612zone_alloc_counters(uma_zone_t zone, void *unused)
2613{
2614
2615	zone->uz_allocs = counter_u64_alloc(M_WAITOK);
2616	zone->uz_frees = counter_u64_alloc(M_WAITOK);
2617	zone->uz_fails = counter_u64_alloc(M_WAITOK);
2618	zone->uz_xdomain = counter_u64_alloc(M_WAITOK);
2619}
2620
2621static void
2622zone_alloc_sysctl(uma_zone_t zone, void *unused)
2623{
2624	uma_zone_domain_t zdom;
2625	uma_domain_t dom;
2626	uma_keg_t keg;
2627	struct sysctl_oid *oid, *domainoid;
2628	int domains, i, cnt;
2629	static const char *nokeg = "cache zone";
2630	char *c;
2631
2632	/*
2633	 * Make a sysctl safe copy of the zone name by removing
2634	 * any special characters and handling dups by appending
2635	 * an index.
2636	 */
2637	if (zone->uz_namecnt != 0) {
2638		/* Count the number of decimal digits and '_' separator. */
2639		for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++)
2640			cnt /= 10;
2641		zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1,
2642		    M_UMA, M_WAITOK);
2643		sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name,
2644		    zone->uz_namecnt);
2645	} else
2646		zone->uz_ctlname = strdup(zone->uz_name, M_UMA);
2647	for (c = zone->uz_ctlname; *c != '\0'; c++)
2648		if (strchr("./\\ -", *c) != NULL)
2649			*c = '_';
2650
2651	/*
2652	 * Basic parameters at the root.
2653	 */
2654	zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma),
2655	    OID_AUTO, zone->uz_ctlname, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2656	oid = zone->uz_oid;
2657	SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2658	    "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size");
2659	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2660	    "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE,
2661	    zone, 0, sysctl_handle_uma_zone_flags, "A",
2662	    "Allocator configuration flags");
2663	SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2664	    "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0,
2665	    "Desired per-cpu cache size");
2666	SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2667	    "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0,
2668	    "Maximum allowed per-cpu cache size");
2669
2670	/*
2671	 * keg if present.
2672	 */
2673	if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0)
2674		domains = vm_ndomains;
2675	else
2676		domains = 1;
2677	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
2678	    "keg", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2679	keg = zone->uz_keg;
2680	if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) {
2681		SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2682		    "name", CTLFLAG_RD, keg->uk_name, "Keg name");
2683		SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2684		    "rsize", CTLFLAG_RD, &keg->uk_rsize, 0,
2685		    "Real object size with alignment");
2686		SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2687		    "ppera", CTLFLAG_RD, &keg->uk_ppera, 0,
2688		    "pages per-slab allocation");
2689		SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2690		    "ipers", CTLFLAG_RD, &keg->uk_ipers, 0,
2691		    "items available per-slab");
2692		SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2693		    "align", CTLFLAG_RD, &keg->uk_align, 0,
2694		    "item alignment mask");
2695		SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2696		    "reserve", CTLFLAG_RD, &keg->uk_reserve, 0,
2697		    "number of reserved items");
2698		SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2699		    "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE,
2700		    keg, 0, sysctl_handle_uma_slab_efficiency, "I",
2701		    "Slab utilization (100 - internal fragmentation %)");
2702		domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(oid),
2703		    OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2704		for (i = 0; i < domains; i++) {
2705			dom = &keg->uk_domain[i];
2706			oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid),
2707			    OID_AUTO, VM_DOMAIN(i)->vmd_name,
2708			    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2709			SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2710			    "pages", CTLFLAG_RD, &dom->ud_pages, 0,
2711			    "Total pages currently allocated from VM");
2712			SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2713			    "free_items", CTLFLAG_RD, &dom->ud_free_items, 0,
2714			    "Items free in the slab layer");
2715			SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2716			    "free_slabs", CTLFLAG_RD, &dom->ud_free_slabs, 0,
2717			    "Unused slabs");
2718		}
2719	} else
2720		SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2721		    "name", CTLFLAG_RD, nokeg, "Keg name");
2722
2723	/*
2724	 * Information about zone limits.
2725	 */
2726	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
2727	    "limit", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2728	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2729	    "items", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
2730	    zone, 0, sysctl_handle_uma_zone_items, "QU",
2731	    "Current number of allocated items if limit is set");
2732	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2733	    "max_items", CTLFLAG_RD, &zone->uz_max_items, 0,
2734	    "Maximum number of allocated and cached items");
2735	SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2736	    "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0,
2737	    "Number of threads sleeping at limit");
2738	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2739	    "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0,
2740	    "Total zone limit sleeps");
2741	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2742	    "bucket_max", CTLFLAG_RD, &zone->uz_bucket_max, 0,
2743	    "Maximum number of items in each domain's bucket cache");
2744
2745	/*
2746	 * Per-domain zone information.
2747	 */
2748	domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid),
2749	    OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2750	for (i = 0; i < domains; i++) {
2751		zdom = ZDOM_GET(zone, i);
2752		oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid),
2753		    OID_AUTO, VM_DOMAIN(i)->vmd_name,
2754		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2755		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2756		    "nitems", CTLFLAG_RD, &zdom->uzd_nitems,
2757		    "number of items in this domain");
2758		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2759		    "imax", CTLFLAG_RD, &zdom->uzd_imax,
2760		    "maximum item count in this period");
2761		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2762		    "imin", CTLFLAG_RD, &zdom->uzd_imin,
2763		    "minimum item count in this period");
2764		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2765		    "bimin", CTLFLAG_RD, &zdom->uzd_bimin,
2766		    "Minimum item count in this batch");
2767		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2768		    "wss", CTLFLAG_RD, &zdom->uzd_wss,
2769		    "Working set size");
2770		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2771		    "limin", CTLFLAG_RD, &zdom->uzd_limin,
2772		    "Long time minimum item count");
2773		SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2774		    "timin", CTLFLAG_RD, &zdom->uzd_timin, 0,
2775		    "Time since zero long time minimum item count");
2776	}
2777
2778	/*
2779	 * General statistics.
2780	 */
2781	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
2782	    "stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2783	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2784	    "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE,
2785	    zone, 1, sysctl_handle_uma_zone_cur, "I",
2786	    "Current number of allocated items");
2787	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2788	    "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
2789	    zone, 0, sysctl_handle_uma_zone_allocs, "QU",
2790	    "Total allocation calls");
2791	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2792	    "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
2793	    zone, 0, sysctl_handle_uma_zone_frees, "QU",
2794	    "Total free calls");
2795	SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2796	    "fails", CTLFLAG_RD, &zone->uz_fails,
2797	    "Number of allocation failures");
2798	SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2799	    "xdomain", CTLFLAG_RD, &zone->uz_xdomain,
2800	    "Free calls from the wrong domain");
2801}
2802
2803struct uma_zone_count {
2804	const char	*name;
2805	int		count;
2806};
2807
2808static void
2809zone_count(uma_zone_t zone, void *arg)
2810{
2811	struct uma_zone_count *cnt;
2812
2813	cnt = arg;
2814	/*
2815	 * Some zones are rapidly created with identical names and
2816	 * destroyed out of order.  This can lead to gaps in the count.
2817	 * Use one greater than the maximum observed for this name.
2818	 */
2819	if (strcmp(zone->uz_name, cnt->name) == 0)
2820		cnt->count = MAX(cnt->count,
2821		    zone->uz_namecnt + 1);
2822}
2823
2824static void
2825zone_update_caches(uma_zone_t zone)
2826{
2827	int i;
2828
2829	for (i = 0; i <= mp_maxid; i++) {
2830		cache_set_uz_size(&zone->uz_cpu[i], zone->uz_size);
2831		cache_set_uz_flags(&zone->uz_cpu[i], zone->uz_flags);
2832	}
2833}
2834
2835/*
2836 * Zone header ctor.  This initializes all fields, locks, etc.
2837 *
2838 * Arguments/Returns follow uma_ctor specifications
2839 *	udata  Actually uma_zctor_args
2840 */
2841static int
2842zone_ctor(void *mem, int size, void *udata, int flags)
2843{
2844	struct uma_zone_count cnt;
2845	struct uma_zctor_args *arg = udata;
2846	uma_zone_domain_t zdom;
2847	uma_zone_t zone = mem;
2848	uma_zone_t z;
2849	uma_keg_t keg;
2850	int i;
2851
2852	bzero(zone, size);
2853	zone->uz_name = arg->name;
2854	zone->uz_ctor = arg->ctor;
2855	zone->uz_dtor = arg->dtor;
2856	zone->uz_init = NULL;
2857	zone->uz_fini = NULL;
2858	zone->uz_sleeps = 0;
2859	zone->uz_bucket_size = 0;
2860	zone->uz_bucket_size_min = 0;
2861	zone->uz_bucket_size_max = BUCKET_MAX;
2862	zone->uz_flags = (arg->flags & UMA_ZONE_SMR);
2863	zone->uz_warning = NULL;
2864	/* The domain structures follow the cpu structures. */
2865	zone->uz_bucket_max = ULONG_MAX;
2866	timevalclear(&zone->uz_ratecheck);
2867
2868	/* Count the number of duplicate names. */
2869	cnt.name = arg->name;
2870	cnt.count = 0;
2871	zone_foreach(zone_count, &cnt);
2872	zone->uz_namecnt = cnt.count;
2873	ZONE_CROSS_LOCK_INIT(zone);
2874
2875	for (i = 0; i < vm_ndomains; i++) {
2876		zdom = ZDOM_GET(zone, i);
2877		ZDOM_LOCK_INIT(zone, zdom, (arg->flags & UMA_ZONE_MTXCLASS));
2878		STAILQ_INIT(&zdom->uzd_buckets);
2879	}
2880
2881#if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN)
2882	if (arg->uminit == trash_init && arg->fini == trash_fini)
2883		zone->uz_flags |= UMA_ZFLAG_TRASH | UMA_ZFLAG_CTORDTOR;
2884#elif defined(KASAN)
2885	if ((arg->flags & (UMA_ZONE_NOFREE | UMA_ZFLAG_CACHE)) != 0)
2886		arg->flags |= UMA_ZONE_NOKASAN;
2887#endif
2888
2889	/*
2890	 * This is a pure cache zone, no kegs.
2891	 */
2892	if (arg->import) {
2893		KASSERT((arg->flags & UMA_ZFLAG_CACHE) != 0,
2894		    ("zone_ctor: Import specified for non-cache zone."));
2895		zone->uz_flags = arg->flags;
2896		zone->uz_size = arg->size;
2897		zone->uz_import = arg->import;
2898		zone->uz_release = arg->release;
2899		zone->uz_arg = arg->arg;
2900#ifdef NUMA
2901		/*
2902		 * Cache zones are round-robin unless a policy is
2903		 * specified because they may have incompatible
2904		 * constraints.
2905		 */
2906		if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0)
2907			zone->uz_flags |= UMA_ZONE_ROUNDROBIN;
2908#endif
2909		rw_wlock(&uma_rwlock);
2910		LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link);
2911		rw_wunlock(&uma_rwlock);
2912		goto out;
2913	}
2914
2915	/*
2916	 * Use the regular zone/keg/slab allocator.
2917	 */
2918	zone->uz_import = zone_import;
2919	zone->uz_release = zone_release;
2920	zone->uz_arg = zone;
2921	keg = arg->keg;
2922
2923	if (arg->flags & UMA_ZONE_SECONDARY) {
2924		KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
2925		    ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
2926		KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
2927		zone->uz_init = arg->uminit;
2928		zone->uz_fini = arg->fini;
2929		zone->uz_flags |= UMA_ZONE_SECONDARY;
2930		rw_wlock(&uma_rwlock);
2931		ZONE_LOCK(zone);
2932		LIST_FOREACH(z, &keg->uk_zones, uz_link) {
2933			if (LIST_NEXT(z, uz_link) == NULL) {
2934				LIST_INSERT_AFTER(z, zone, uz_link);
2935				break;
2936			}
2937		}
2938		ZONE_UNLOCK(zone);
2939		rw_wunlock(&uma_rwlock);
2940	} else if (keg == NULL) {
2941		if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
2942		    arg->align, arg->flags)) == NULL)
2943			return (ENOMEM);
2944	} else {
2945		struct uma_kctor_args karg;
2946		int error;
2947
2948		/* We should only be here from uma_startup() */
2949		karg.size = arg->size;
2950		karg.uminit = arg->uminit;
2951		karg.fini = arg->fini;
2952		karg.align = arg->align;
2953		karg.flags = (arg->flags & ~UMA_ZONE_SMR);
2954		karg.zone = zone;
2955		error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
2956		    flags);
2957		if (error)
2958			return (error);
2959	}
2960
2961	/* Inherit properties from the keg. */
2962	zone->uz_keg = keg;
2963	zone->uz_size = keg->uk_size;
2964	zone->uz_flags |= (keg->uk_flags &
2965	    (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));
2966
2967out:
2968	if (booted >= BOOT_PCPU) {
2969		zone_alloc_counters(zone, NULL);
2970		if (booted >= BOOT_RUNNING)
2971			zone_alloc_sysctl(zone, NULL);
2972	} else {
2973		zone->uz_allocs = EARLY_COUNTER;
2974		zone->uz_frees = EARLY_COUNTER;
2975		zone->uz_fails = EARLY_COUNTER;
2976	}
2977
2978	/* Caller requests a private SMR context. */
2979	if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
2980		zone->uz_smr = smr_create(zone->uz_name, 0, 0);
2981
2982	KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) !=
2983	    (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET),
2984	    ("Invalid zone flag combination"));
2985	if (arg->flags & UMA_ZFLAG_INTERNAL)
2986		zone->uz_bucket_size_max = zone->uz_bucket_size = 0;
2987	if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0)
2988		zone->uz_bucket_size = BUCKET_MAX;
2989	else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0)
2990		zone->uz_bucket_size = 0;
2991	else
2992		zone->uz_bucket_size = bucket_select(zone->uz_size);
2993	zone->uz_bucket_size_min = zone->uz_bucket_size;
2994	if (zone->uz_dtor != NULL || zone->uz_ctor != NULL)
2995		zone->uz_flags |= UMA_ZFLAG_CTORDTOR;
2996	zone_update_caches(zone);
2997
2998	return (0);
2999}
3000
3001/*
3002 * Keg header dtor.  This frees all data, destroys locks, frees the hash
3003 * table and removes the keg from the global list.
3004 *
3005 * Arguments/Returns follow uma_dtor specifications
3006 *	udata  unused
3007 */
3008static void
3009keg_dtor(void *arg, int size, void *udata)
3010{
3011	uma_keg_t keg;
3012	uint32_t free, pages;
3013	int i;
3014
3015	keg = (uma_keg_t)arg;
3016	free = pages = 0;
3017	for (i = 0; i < vm_ndomains; i++) {
3018		free += keg->uk_domain[i].ud_free_items;
3019		pages += keg->uk_domain[i].ud_pages;
3020		KEG_LOCK_FINI(keg, i);
3021	}
3022	if (pages != 0)
3023		printf("Freed UMA keg (%s) was not empty (%u items). "
3024		    " Lost %u pages of memory.\n",
3025		    keg->uk_name ? keg->uk_name : "",
3026		    pages / keg->uk_ppera * keg->uk_ipers - free, pages);
3027
3028	hash_free(&keg->uk_hash);
3029}
3030
3031/*
3032 * Zone header dtor.
3033 *
3034 * Arguments/Returns follow uma_dtor specifications
3035 *	udata  unused
3036 */
3037static void
3038zone_dtor(void *arg, int size, void *udata)
3039{
3040	uma_zone_t zone;
3041	uma_keg_t keg;
3042	int i;
3043
3044	zone = (uma_zone_t)arg;
3045
3046	sysctl_remove_oid(zone->uz_oid, 1, 1);
3047
3048	if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
3049		cache_drain(zone);
3050
3051	rw_wlock(&uma_rwlock);
3052	LIST_REMOVE(zone, uz_link);
3053	rw_wunlock(&uma_rwlock);
3054	if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) {
3055		keg = zone->uz_keg;
3056		keg->uk_reserve = 0;
3057	}
3058	zone_reclaim(zone, UMA_ANYDOMAIN, M_WAITOK, true);
3059
3060	/*
3061	 * We only destroy kegs from non secondary/non cache zones.
3062	 */
3063	if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) {
3064		keg = zone->uz_keg;
3065		rw_wlock(&uma_rwlock);
3066		LIST_REMOVE(keg, uk_link);
3067		rw_wunlock(&uma_rwlock);
3068		zone_free_item(kegs, keg, NULL, SKIP_NONE);
3069	}
3070	counter_u64_free(zone->uz_allocs);
3071	counter_u64_free(zone->uz_frees);
3072	counter_u64_free(zone->uz_fails);
3073	counter_u64_free(zone->uz_xdomain);
3074	free(zone->uz_ctlname, M_UMA);
3075	for (i = 0; i < vm_ndomains; i++)
3076		ZDOM_LOCK_FINI(ZDOM_GET(zone, i));
3077	ZONE_CROSS_LOCK_FINI(zone);
3078}
3079
3080static void
3081zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *arg), void *arg)
3082{
3083	uma_keg_t keg;
3084	uma_zone_t zone;
3085
3086	LIST_FOREACH(keg, &uma_kegs, uk_link) {
3087		LIST_FOREACH(zone, &keg->uk_zones, uz_link)
3088			zfunc(zone, arg);
3089	}
3090	LIST_FOREACH(zone, &uma_cachezones, uz_link)
3091		zfunc(zone, arg);
3092}
3093
3094/*
3095 * Traverses every zone in the system and calls a callback
3096 *
3097 * Arguments:
3098 *	zfunc  A pointer to a function which accepts a zone
3099 *		as an argument.
3100 *
3101 * Returns:
3102 *	Nothing
3103 */
3104static void
3105zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg)
3106{
3107
3108	rw_rlock(&uma_rwlock);
3109	zone_foreach_unlocked(zfunc, arg);
3110	rw_runlock(&uma_rwlock);
3111}
3112
3113/*
3114 * Initialize the kernel memory allocator.  This is done after pages can be
3115 * allocated but before general KVA is available.
3116 */
3117void
3118uma_startup1(vm_offset_t virtual_avail)
3119{
3120	struct uma_zctor_args args;
3121	size_t ksize, zsize, size;
3122	uma_keg_t primarykeg;
3123	uintptr_t m;
3124	int domain;
3125	uint8_t pflag;
3126
3127	bootstart = bootmem = virtual_avail;
3128
3129	rw_init(&uma_rwlock, "UMA lock");
3130	sx_init(&uma_reclaim_lock, "umareclaim");
3131
3132	ksize = sizeof(struct uma_keg) +
3133	    (sizeof(struct uma_domain) * vm_ndomains);
3134	ksize = roundup(ksize, UMA_SUPER_ALIGN);
3135	zsize = sizeof(struct uma_zone) +
3136	    (sizeof(struct uma_cache) * (mp_maxid + 1)) +
3137	    (sizeof(struct uma_zone_domain) * vm_ndomains);
3138	zsize = roundup(zsize, UMA_SUPER_ALIGN);
3139
3140	/* Allocate the zone of zones, zone of kegs, and zone of zones keg. */
3141	size = (zsize * 2) + ksize;
3142	for (domain = 0; domain < vm_ndomains; domain++) {
3143		m = (uintptr_t)startup_alloc(NULL, size, domain, &pflag,
3144		    M_NOWAIT | M_ZERO);
3145		if (m != 0)
3146			break;
3147	}
3148	zones = (uma_zone_t)m;
3149	m += zsize;
3150	kegs = (uma_zone_t)m;
3151	m += zsize;
3152	primarykeg = (uma_keg_t)m;
3153
3154	/* "manually" create the initial zone */
3155	memset(&args, 0, sizeof(args));
3156	args.name = "UMA Kegs";
3157	args.size = ksize;
3158	args.ctor = keg_ctor;
3159	args.dtor = keg_dtor;
3160	args.uminit = zero_init;
3161	args.fini = NULL;
3162	args.keg = primarykeg;
3163	args.align = UMA_SUPER_ALIGN - 1;
3164	args.flags = UMA_ZFLAG_INTERNAL;
3165	zone_ctor(kegs, zsize, &args, M_WAITOK);
3166
3167	args.name = "UMA Zones";
3168	args.size = zsize;
3169	args.ctor = zone_ctor;
3170	args.dtor = zone_dtor;
3171	args.uminit = zero_init;
3172	args.fini = NULL;
3173	args.keg = NULL;
3174	args.align = UMA_SUPER_ALIGN - 1;
3175	args.flags = UMA_ZFLAG_INTERNAL;
3176	zone_ctor(zones, zsize, &args, M_WAITOK);
3177
3178	/* Now make zones for slab headers */
3179	slabzones[0] = uma_zcreate("UMA Slabs 0", SLABZONE0_SIZE,
3180	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
3181	slabzones[1] = uma_zcreate("UMA Slabs 1", SLABZONE1_SIZE,
3182	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
3183
3184	hashzone = uma_zcreate("UMA Hash",
3185	    sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
3186	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
3187
3188	bucket_init();
3189	smr_init();
3190}
3191
3192#ifndef UMA_USE_DMAP
3193extern void vm_radix_reserve_kva(void);
3194#endif
3195
3196/*
3197 * Advertise the availability of normal kva allocations and switch to
3198 * the default back-end allocator.  Marks the KVA we consumed on startup
3199 * as used in the map.
3200 */
3201void
3202uma_startup2(void)
3203{
3204
3205	if (bootstart != bootmem) {
3206		vm_map_lock(kernel_map);
3207		(void)vm_map_insert(kernel_map, NULL, 0, bootstart, bootmem,
3208		    VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
3209		vm_map_unlock(kernel_map);
3210	}
3211
3212#ifndef UMA_USE_DMAP
3213	/* Set up radix zone to use noobj_alloc. */
3214	vm_radix_reserve_kva();
3215#endif
3216
3217	booted = BOOT_KVA;
3218	zone_foreach_unlocked(zone_kva_available, NULL);
3219	bucket_enable();
3220}
3221
3222/*
3223 * Allocate counters as early as possible so that boot-time allocations are
3224 * accounted more precisely.
3225 */
3226static void
3227uma_startup_pcpu(void *arg __unused)
3228{
3229
3230	zone_foreach_unlocked(zone_alloc_counters, NULL);
3231	booted = BOOT_PCPU;
3232}
3233SYSINIT(uma_startup_pcpu, SI_SUB_COUNTER, SI_ORDER_ANY, uma_startup_pcpu, NULL);
3234
3235/*
3236 * Finish our initialization steps.
3237 */
3238static void
3239uma_startup3(void *arg __unused)
3240{
3241
3242#ifdef INVARIANTS
3243	TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor);
3244	uma_dbg_cnt = counter_u64_alloc(M_WAITOK);
3245	uma_skip_cnt = counter_u64_alloc(M_WAITOK);
3246#endif
3247	zone_foreach_unlocked(zone_alloc_sysctl, NULL);
3248	booted = BOOT_RUNNING;
3249
3250	EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL,
3251	    EVENTHANDLER_PRI_FIRST);
3252}
3253SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
3254
3255static void
3256uma_startup4(void *arg __unused)
3257{
3258	TIMEOUT_TASK_INIT(taskqueue_thread, &uma_timeout_task, 0, uma_timeout,
3259	    NULL);
3260	taskqueue_enqueue_timeout(taskqueue_thread, &uma_timeout_task,
3261	    UMA_TIMEOUT * hz);
3262}
3263SYSINIT(uma_startup4, SI_SUB_TASKQ, SI_ORDER_ANY, uma_startup4, NULL);
3264
3265static void
3266uma_shutdown(void)
3267{
3268
3269	booted = BOOT_SHUTDOWN;
3270}
3271
3272static uma_keg_t
3273uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
3274		int align, uint32_t flags)
3275{
3276	struct uma_kctor_args args;
3277
3278	args.size = size;
3279	args.uminit = uminit;
3280	args.fini = fini;
3281	args.align = align;
3282	args.flags = flags;
3283	args.zone = zone;
3284	return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK));
3285}
3286
3287
3288static void
3289check_align_mask(unsigned int mask)
3290{
3291
3292	KASSERT(powerof2(mask + 1),
3293	    ("UMA: %s: Not the mask of a power of 2 (%#x)", __func__, mask));
3294	/*
3295	 * Make sure the stored align mask doesn't have its highest bit set,
3296	 * which would cause implementation-defined behavior when passing it as
3297	 * the 'align' argument of uma_zcreate().  Such very large alignments do
3298	 * not make sense anyway.
3299	 */
3300	KASSERT(mask <= INT_MAX,
3301	    ("UMA: %s: Mask too big (%#x)", __func__, mask));
3302}
3303
3304/* Public functions */
3305/* See uma.h */
3306void
3307uma_set_cache_align_mask(unsigned int mask)
3308{
3309
3310	check_align_mask(mask);
3311	uma_cache_align_mask = mask;
3312}
3313
3314/* Returns the alignment mask to use to request cache alignment. */
3315unsigned int
3316uma_get_cache_align_mask(void)
3317{
3318	return (uma_cache_align_mask);
3319}
3320
3321/* See uma.h */
3322uma_zone_t
3323uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
3324		uma_init uminit, uma_fini fini, int align, uint32_t flags)
3325
3326{
3327	struct uma_zctor_args args;
3328	uma_zone_t res;
3329
3330	check_align_mask(align);
3331
3332	/* This stuff is essential for the zone ctor */
3333	memset(&args, 0, sizeof(args));
3334	args.name = name;
3335	args.size = size;
3336	args.ctor = ctor;
3337	args.dtor = dtor;
3338	args.uminit = uminit;
3339	args.fini = fini;
3340#if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN)
3341	/*
3342	 * Inject procedures which check for memory use after free if we are
3343	 * allowed to scramble the memory while it is not allocated.  This
3344	 * requires that: UMA is actually able to access the memory, no init
3345	 * or fini procedures, no dependency on the initial value of the
3346	 * memory, and no (legitimate) use of the memory after free.  Note,
3347	 * the ctor and dtor do not need to be empty.
3348	 */
3349	if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOTOUCH |
3350	    UMA_ZONE_NOFREE))) && uminit == NULL && fini == NULL) {
3351		args.uminit = trash_init;
3352		args.fini = trash_fini;
3353	}
3354#endif
3355	args.align = align;
3356	args.flags = flags;
3357	args.keg = NULL;
3358
3359	sx_xlock(&uma_reclaim_lock);
3360	res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK);
3361	sx_xunlock(&uma_reclaim_lock);
3362
3363	return (res);
3364}
3365
3366/* See uma.h */
3367uma_zone_t
3368uma_zsecond_create(const char *name, uma_ctor ctor, uma_dtor dtor,
3369    uma_init zinit, uma_fini zfini, uma_zone_t primary)
3370{
3371	struct uma_zctor_args args;
3372	uma_keg_t keg;
3373	uma_zone_t res;
3374
3375	keg = primary->uz_keg;
3376	memset(&args, 0, sizeof(args));
3377	args.name = name;
3378	args.size = keg->uk_size;
3379	args.ctor = ctor;
3380	args.dtor = dtor;
3381	args.uminit = zinit;
3382	args.fini = zfini;
3383	args.align = keg->uk_align;
3384	args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
3385	args.keg = keg;
3386
3387	sx_xlock(&uma_reclaim_lock);
3388	res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK);
3389	sx_xunlock(&uma_reclaim_lock);
3390
3391	return (res);
3392}
3393
3394/* See uma.h */
3395uma_zone_t
3396uma_zcache_create(const char *name, int size, uma_ctor ctor, uma_dtor dtor,
3397    uma_init zinit, uma_fini zfini, uma_import zimport, uma_release zrelease,
3398    void *arg, int flags)
3399{
3400	struct uma_zctor_args args;
3401
3402	memset(&args, 0, sizeof(args));
3403	args.name = name;
3404	args.size = size;
3405	args.ctor = ctor;
3406	args.dtor = dtor;
3407	args.uminit = zinit;
3408	args.fini = zfini;
3409	args.import = zimport;
3410	args.release = zrelease;
3411	args.arg = arg;
3412	args.align = 0;
3413	args.flags = flags | UMA_ZFLAG_CACHE;
3414
3415	return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK));
3416}
3417
3418/* See uma.h */
3419void
3420uma_zdestroy(uma_zone_t zone)
3421{
3422
3423	/*
3424	 * Large slabs are expensive to reclaim, so don't bother doing
3425	 * unnecessary work if we're shutting down.
3426	 */
3427	if (booted == BOOT_SHUTDOWN &&
3428	    zone->uz_fini == NULL && zone->uz_release == zone_release)
3429		return;
3430	sx_xlock(&uma_reclaim_lock);
3431	zone_free_item(zones, zone, NULL, SKIP_NONE);
3432	sx_xunlock(&uma_reclaim_lock);
3433}
3434
3435void
3436uma_zwait(uma_zone_t zone)
3437{
3438
3439	if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
3440		uma_zfree_smr(zone, uma_zalloc_smr(zone, M_WAITOK));
3441	else if ((zone->uz_flags & UMA_ZONE_PCPU) != 0)
3442		uma_zfree_pcpu(zone, uma_zalloc_pcpu(zone, M_WAITOK));
3443	else
3444		uma_zfree(zone, uma_zalloc(zone, M_WAITOK));
3445}
3446
3447void *
3448uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags)
3449{
3450	void *item, *pcpu_item;
3451#ifdef SMP
3452	int i;
3453
3454	MPASS(zone->uz_flags & UMA_ZONE_PCPU);
3455#endif
3456	item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO);
3457	if (item == NULL)
3458		return (NULL);
3459	pcpu_item = zpcpu_base_to_offset(item);
3460	if (flags & M_ZERO) {
3461#ifdef SMP
3462		for (i = 0; i <= mp_maxid; i++)
3463			bzero(zpcpu_get_cpu(pcpu_item, i), zone->uz_size);
3464#else
3465		bzero(item, zone->uz_size);
3466#endif
3467	}
3468	return (pcpu_item);
3469}
3470
3471/*
3472 * A stub while both regular and pcpu cases are identical.
3473 */
3474void
3475uma_zfree_pcpu_arg(uma_zone_t zone, void *pcpu_item, void *udata)
3476{
3477	void *item;
3478
3479#ifdef SMP
3480	MPASS(zone->uz_flags & UMA_ZONE_PCPU);
3481#endif
3482
3483        /* uma_zfree_pcu_*(..., NULL) does nothing, to match free(9). */
3484        if (pcpu_item == NULL)
3485                return;
3486
3487	item = zpcpu_offset_to_base(pcpu_item);
3488	uma_zfree_arg(zone, item, udata);
3489}
3490
3491static inline void *
3492item_ctor(uma_zone_t zone, int uz_flags, int size, void *udata, int flags,
3493    void *item)
3494{
3495#ifdef INVARIANTS
3496	bool skipdbg;
3497#endif
3498
3499	kasan_mark_item_valid(zone, item);
3500	kmsan_mark_item_uninitialized(zone, item);
3501
3502#ifdef INVARIANTS
3503	skipdbg = uma_dbg_zskip(zone, item);
3504	if (!skipdbg && (uz_flags & UMA_ZFLAG_TRASH) != 0 &&
3505	    zone->uz_ctor != trash_ctor)
3506		trash_ctor(item, size, zone, flags);
3507#endif
3508
3509	/* Check flags before loading ctor pointer. */
3510	if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0) &&
3511	    __predict_false(zone->uz_ctor != NULL) &&
3512	    zone->uz_ctor(item, size, udata, flags) != 0) {
3513		counter_u64_add(zone->uz_fails, 1);
3514		zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT);
3515		return (NULL);
3516	}
3517#ifdef INVARIANTS
3518	if (!skipdbg)
3519		uma_dbg_alloc(zone, NULL, item);
3520#endif
3521	if (__predict_false(flags & M_ZERO))
3522		return (memset(item, 0, size));
3523
3524	return (item);
3525}
3526
3527static inline void
3528item_dtor(uma_zone_t zone, void *item, int size, void *udata,
3529    enum zfreeskip skip)
3530{
3531#ifdef INVARIANTS
3532	bool skipdbg;
3533
3534	skipdbg = uma_dbg_zskip(zone, item);
3535	if (skip == SKIP_NONE && !skipdbg) {
3536		if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0)
3537			uma_dbg_free(zone, udata, item);
3538		else
3539			uma_dbg_free(zone, NULL, item);
3540	}
3541#endif
3542	if (__predict_true(skip < SKIP_DTOR)) {
3543		if (zone->uz_dtor != NULL)
3544			zone->uz_dtor(item, size, udata);
3545#ifdef INVARIANTS
3546		if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 &&
3547		    zone->uz_dtor != trash_dtor)
3548			trash_dtor(item, size, zone);
3549#endif
3550	}
3551	kasan_mark_item_invalid(zone, item);
3552}
3553
3554#ifdef NUMA
3555static int
3556item_domain(void *item)
3557{
3558	int domain;
3559
3560	domain = vm_phys_domain(vtophys(item));
3561	KASSERT(domain >= 0 && domain < vm_ndomains,
3562	    ("%s: unknown domain for item %p", __func__, item));
3563	return (domain);
3564}
3565#endif
3566
3567#if defined(INVARIANTS) || defined(DEBUG_MEMGUARD) || defined(WITNESS)
3568#if defined(INVARIANTS) && (defined(DDB) || defined(STACK))
3569#include <sys/stack.h>
3570#endif
3571#define	UMA_ZALLOC_DEBUG
3572static int
3573uma_zalloc_debug(uma_zone_t zone, void **itemp, void *udata, int flags)
3574{
3575	int error;
3576
3577	error = 0;
3578#ifdef WITNESS
3579	if (flags & M_WAITOK) {
3580		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
3581		    "uma_zalloc_debug: zone \"%s\"", zone->uz_name);
3582	}
3583#endif
3584
3585#ifdef INVARIANTS
3586	KASSERT((flags & M_EXEC) == 0,
3587	    ("uma_zalloc_debug: called with M_EXEC"));
3588	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
3589	    ("uma_zalloc_debug: called within spinlock or critical section"));
3590	KASSERT((zone->uz_flags & UMA_ZONE_PCPU) == 0 || (flags & M_ZERO) == 0,
3591	    ("uma_zalloc_debug: allocating from a pcpu zone with M_ZERO"));
3592
3593	_Static_assert(M_NOWAIT != 0 && M_WAITOK != 0,
3594	    "M_NOWAIT and M_WAITOK must be non-zero for this assertion:");
3595#if 0
3596	/*
3597	 * Give the #elif clause time to find problems, then remove it
3598	 * and enable this.  (Remove <sys/stack.h> above, too.)
3599	 */
3600	KASSERT((flags & (M_NOWAIT|M_WAITOK)) == M_NOWAIT ||
3601	    (flags & (M_NOWAIT|M_WAITOK)) == M_WAITOK,
3602	    ("uma_zalloc_debug: must pass one of M_NOWAIT or M_WAITOK"));
3603#elif defined(DDB) || defined(STACK)
3604	if (__predict_false((flags & (M_NOWAIT|M_WAITOK)) != M_NOWAIT &&
3605	    (flags & (M_NOWAIT|M_WAITOK)) != M_WAITOK)) {
3606		static int stack_count;
3607		struct stack st;
3608
3609		if (stack_count < 10) {
3610			++stack_count;
3611			printf("uma_zalloc* called with bad WAIT flags:\n");
3612			stack_save(&st);
3613			stack_print(&st);
3614		}
3615	}
3616#endif
3617#endif
3618
3619#ifdef DEBUG_MEMGUARD
3620	if ((zone->uz_flags & (UMA_ZONE_SMR | UMA_ZFLAG_CACHE)) == 0 &&
3621	    memguard_cmp_zone(zone)) {
3622		void *item;
3623		item = memguard_alloc(zone->uz_size, flags);
3624		if (item != NULL) {
3625			error = EJUSTRETURN;
3626			if (zone->uz_init != NULL &&
3627			    zone->uz_init(item, zone->uz_size, flags) != 0) {
3628				*itemp = NULL;
3629				return (error);
3630			}
3631			if (zone->uz_ctor != NULL &&
3632			    zone->uz_ctor(item, zone->uz_size, udata,
3633			    flags) != 0) {
3634				counter_u64_add(zone->uz_fails, 1);
3635				if (zone->uz_fini != NULL)
3636					zone->uz_fini(item, zone->uz_size);
3637				*itemp = NULL;
3638				return (error);
3639			}
3640			*itemp = item;
3641			return (error);
3642		}
3643		/* This is unfortunate but should not be fatal. */
3644	}
3645#endif
3646	return (error);
3647}
3648
3649static int
3650uma_zfree_debug(uma_zone_t zone, void *item, void *udata)
3651{
3652	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
3653	    ("uma_zfree_debug: called with spinlock or critical section held"));
3654
3655#ifdef DEBUG_MEMGUARD
3656	if ((zone->uz_flags & (UMA_ZONE_SMR | UMA_ZFLAG_CACHE)) == 0 &&
3657	    is_memguard_addr(item)) {
3658		if (zone->uz_dtor != NULL)
3659			zone->uz_dtor(item, zone->uz_size, udata);
3660		if (zone->uz_fini != NULL)
3661			zone->uz_fini(item, zone->uz_size);
3662		memguard_free(item);
3663		return (EJUSTRETURN);
3664	}
3665#endif
3666	return (0);
3667}
3668#endif
3669
3670static inline void *
3671cache_alloc_item(uma_zone_t zone, uma_cache_t cache, uma_cache_bucket_t bucket,
3672    void *udata, int flags)
3673{
3674	void *item;
3675	int size, uz_flags;
3676
3677	item = cache_bucket_pop(cache, bucket);
3678	size = cache_uz_size(cache);
3679	uz_flags = cache_uz_flags(cache);
3680	critical_exit();
3681	return (item_ctor(zone, uz_flags, size, udata, flags, item));
3682}
3683
3684static __noinline void *
3685cache_alloc_retry(uma_zone_t zone, uma_cache_t cache, void *udata, int flags)
3686{
3687	uma_cache_bucket_t bucket;
3688	int domain;
3689
3690	while (cache_alloc(zone, cache, udata, flags)) {
3691		cache = &zone->uz_cpu[curcpu];
3692		bucket = &cache->uc_allocbucket;
3693		if (__predict_false(bucket->ucb_cnt == 0))
3694			continue;
3695		return (cache_alloc_item(zone, cache, bucket, udata, flags));
3696	}
3697	critical_exit();
3698
3699	/*
3700	 * We can not get a bucket so try to return a single item.
3701	 */
3702	if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH)
3703		domain = PCPU_GET(domain);
3704	else
3705		domain = UMA_ANYDOMAIN;
3706	return (zone_alloc_item(zone, udata, domain, flags));
3707}
3708
3709/* See uma.h */
3710void *
3711uma_zalloc_smr(uma_zone_t zone, int flags)
3712{
3713	uma_cache_bucket_t bucket;
3714	uma_cache_t cache;
3715
3716	CTR3(KTR_UMA, "uma_zalloc_smr zone %s(%p) flags %d", zone->uz_name,
3717	    zone, flags);
3718
3719#ifdef UMA_ZALLOC_DEBUG
3720	void *item;
3721
3722	KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0,
3723	    ("uma_zalloc_arg: called with non-SMR zone."));
3724	if (uma_zalloc_debug(zone, &item, NULL, flags) == EJUSTRETURN)
3725		return (item);
3726#endif
3727
3728	critical_enter();
3729	cache = &zone->uz_cpu[curcpu];
3730	bucket = &cache->uc_allocbucket;
3731	if (__predict_false(bucket->ucb_cnt == 0))
3732		return (cache_alloc_retry(zone, cache, NULL, flags));
3733	return (cache_alloc_item(zone, cache, bucket, NULL, flags));
3734}
3735
3736/* See uma.h */
3737void *
3738uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
3739{
3740	uma_cache_bucket_t bucket;
3741	uma_cache_t cache;
3742
3743	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
3744	random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
3745
3746	/* This is the fast path allocation */
3747	CTR3(KTR_UMA, "uma_zalloc_arg zone %s(%p) flags %d", zone->uz_name,
3748	    zone, flags);
3749
3750#ifdef UMA_ZALLOC_DEBUG
3751	void *item;
3752
3753	KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
3754	    ("uma_zalloc_arg: called with SMR zone."));
3755	if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN)
3756		return (item);
3757#endif
3758
3759	/*
3760	 * If possible, allocate from the per-CPU cache.  There are two
3761	 * requirements for safe access to the per-CPU cache: (1) the thread
3762	 * accessing the cache must not be preempted or yield during access,
3763	 * and (2) the thread must not migrate CPUs without switching which
3764	 * cache it accesses.  We rely on a critical section to prevent
3765	 * preemption and migration.  We release the critical section in
3766	 * order to acquire the zone mutex if we are unable to allocate from
3767	 * the current cache; when we re-acquire the critical section, we
3768	 * must detect and handle migration if it has occurred.
3769	 */
3770	critical_enter();
3771	cache = &zone->uz_cpu[curcpu];
3772	bucket = &cache->uc_allocbucket;
3773	if (__predict_false(bucket->ucb_cnt == 0))
3774		return (cache_alloc_retry(zone, cache, udata, flags));
3775	return (cache_alloc_item(zone, cache, bucket, udata, flags));
3776}
3777
3778/*
3779 * Replenish an alloc bucket and possibly restore an old one.  Called in
3780 * a critical section.  Returns in a critical section.
3781 *
3782 * A false return value indicates an allocation failure.
3783 * A true return value indicates success and the caller should retry.
3784 */
3785static __noinline bool
3786cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags)
3787{
3788	uma_bucket_t bucket;
3789	int curdomain, domain;
3790	bool new;
3791
3792	CRITICAL_ASSERT(curthread);
3793
3794	/*
3795	 * If we have run out of items in our alloc bucket see
3796	 * if we can switch with the free bucket.
3797	 *
3798	 * SMR Zones can't re-use the free bucket until the sequence has
3799	 * expired.
3800	 */
3801	if ((cache_uz_flags(cache) & UMA_ZONE_SMR) == 0 &&
3802	    cache->uc_freebucket.ucb_cnt != 0) {
3803		cache_bucket_swap(&cache->uc_freebucket,
3804		    &cache->uc_allocbucket);
3805		return (true);
3806	}
3807
3808	/*
3809	 * Discard any empty allocation bucket while we hold no locks.
3810	 */
3811	bucket = cache_bucket_unload_alloc(cache);
3812	critical_exit();
3813
3814	if (bucket != NULL) {
3815		KASSERT(bucket->ub_cnt == 0,
3816		    ("cache_alloc: Entered with non-empty alloc bucket."));
3817		bucket_free(zone, bucket, udata);
3818	}
3819
3820	/*
3821	 * Attempt to retrieve the item from the per-CPU cache has failed, so
3822	 * we must go back to the zone.  This requires the zdom lock, so we
3823	 * must drop the critical section, then re-acquire it when we go back
3824	 * to the cache.  Since the critical section is released, we may be
3825	 * preempted or migrate.  As such, make sure not to maintain any
3826	 * thread-local state specific to the cache from prior to releasing
3827	 * the critical section.
3828	 */
3829	domain = PCPU_GET(domain);
3830	if ((cache_uz_flags(cache) & UMA_ZONE_ROUNDROBIN) != 0 ||
3831	    VM_DOMAIN_EMPTY(domain))
3832		domain = zone_domain_highest(zone, domain);
3833	bucket = cache_fetch_bucket(zone, cache, domain);
3834	if (bucket == NULL && zone->uz_bucket_size != 0 && !bucketdisable) {
3835		bucket = zone_alloc_bucket(zone, udata, domain, flags);
3836		new = true;
3837	} else {
3838		new = false;
3839	}
3840
3841	CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p",
3842	    zone->uz_name, zone, bucket);
3843	if (bucket == NULL) {
3844		critical_enter();
3845		return (false);
3846	}
3847
3848	/*
3849	 * See if we lost the race or were migrated.  Cache the
3850	 * initialized bucket to make this less likely or claim
3851	 * the memory directly.
3852	 */
3853	critical_enter();
3854	cache = &zone->uz_cpu[curcpu];
3855	if (cache->uc_allocbucket.ucb_bucket == NULL &&
3856	    ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) == 0 ||
3857	    (curdomain = PCPU_GET(domain)) == domain ||
3858	    VM_DOMAIN_EMPTY(curdomain))) {
3859		if (new)
3860			atomic_add_long(&ZDOM_GET(zone, domain)->uzd_imax,
3861			    bucket->ub_cnt);
3862		cache_bucket_load_alloc(cache, bucket);
3863		return (true);
3864	}
3865
3866	/*
3867	 * We lost the race, release this bucket and start over.
3868	 */
3869	critical_exit();
3870	zone_put_bucket(zone, domain, bucket, udata, !new);
3871	critical_enter();
3872
3873	return (true);
3874}
3875
3876void *
3877uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags)
3878{
3879#ifdef NUMA
3880	uma_bucket_t bucket;
3881	uma_zone_domain_t zdom;
3882	void *item;
3883#endif
3884
3885	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
3886	random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
3887
3888	/* This is the fast path allocation */
3889	CTR4(KTR_UMA, "uma_zalloc_domain zone %s(%p) domain %d flags %d",
3890	    zone->uz_name, zone, domain, flags);
3891
3892	KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
3893	    ("uma_zalloc_domain: called with SMR zone."));
3894#ifdef NUMA
3895	KASSERT((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0,
3896	    ("uma_zalloc_domain: called with non-FIRSTTOUCH zone."));
3897
3898	if (vm_ndomains == 1)
3899		return (uma_zalloc_arg(zone, udata, flags));
3900
3901#ifdef UMA_ZALLOC_DEBUG
3902	if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN)
3903		return (item);
3904#endif
3905
3906	/*
3907	 * Try to allocate from the bucket cache before falling back to the keg.
3908	 * We could try harder and attempt to allocate from per-CPU caches or
3909	 * the per-domain cross-domain buckets, but the complexity is probably
3910	 * not worth it.  It is more important that frees of previous
3911	 * cross-domain allocations do not blow up the cache.
3912	 */
3913	zdom = zone_domain_lock(zone, domain);
3914	if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) {
3915		item = bucket->ub_bucket[bucket->ub_cnt - 1];
3916#ifdef INVARIANTS
3917		bucket->ub_bucket[bucket->ub_cnt - 1] = NULL;
3918#endif
3919		bucket->ub_cnt--;
3920		zone_put_bucket(zone, domain, bucket, udata, true);
3921		item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata,
3922		    flags, item);
3923		if (item != NULL) {
3924			KASSERT(item_domain(item) == domain,
3925			    ("%s: bucket cache item %p from wrong domain",
3926			    __func__, item));
3927			counter_u64_add(zone->uz_allocs, 1);
3928		}
3929		return (item);
3930	}
3931	ZDOM_UNLOCK(zdom);
3932	return (zone_alloc_item(zone, udata, domain, flags));
3933#else
3934	return (uma_zalloc_arg(zone, udata, flags));
3935#endif
3936}
3937
3938/*
3939 * Find a slab with some space.  Prefer slabs that are partially used over those
3940 * that are totally full.  This helps to reduce fragmentation.
3941 *
3942 * If 'rr' is 1, search all domains starting from 'domain'.  Otherwise check
3943 * only 'domain'.
3944 */
3945static uma_slab_t
3946keg_first_slab(uma_keg_t keg, int domain, bool rr)
3947{
3948	uma_domain_t dom;
3949	uma_slab_t slab;
3950	int start;
3951
3952	KASSERT(domain >= 0 && domain < vm_ndomains,
3953	    ("keg_first_slab: domain %d out of range", domain));
3954	KEG_LOCK_ASSERT(keg, domain);
3955
3956	slab = NULL;
3957	start = domain;
3958	do {
3959		dom = &keg->uk_domain[domain];
3960		if ((slab = LIST_FIRST(&dom->ud_part_slab)) != NULL)
3961			return (slab);
3962		if ((slab = LIST_FIRST(&dom->ud_free_slab)) != NULL) {
3963			LIST_REMOVE(slab, us_link);
3964			dom->ud_free_slabs--;
3965			LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
3966			return (slab);
3967		}
3968		if (rr)
3969			domain = (domain + 1) % vm_ndomains;
3970	} while (domain != start);
3971
3972	return (NULL);
3973}
3974
3975/*
3976 * Fetch an existing slab from a free or partial list.  Returns with the
3977 * keg domain lock held if a slab was found or unlocked if not.
3978 */
3979static uma_slab_t
3980keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags)
3981{
3982	uma_slab_t slab;
3983	uint32_t reserve;
3984
3985	/* HASH has a single free list. */
3986	if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0)
3987		domain = 0;
3988
3989	KEG_LOCK(keg, domain);
3990	reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve;
3991	if (keg->uk_domain[domain].ud_free_items <= reserve ||
3992	    (slab = keg_first_slab(keg, domain, rr)) == NULL) {
3993		KEG_UNLOCK(keg, domain);
3994		return (NULL);
3995	}
3996	return (slab);
3997}
3998
3999static uma_slab_t
4000keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags)
4001{
4002	struct vm_domainset_iter di;
4003	uma_slab_t slab;
4004	int aflags, domain;
4005	bool rr;
4006
4007	KASSERT((flags & (M_WAITOK | M_NOVM)) != (M_WAITOK | M_NOVM),
4008	    ("%s: invalid flags %#x", __func__, flags));
4009
4010restart:
4011	/*
4012	 * Use the keg's policy if upper layers haven't already specified a
4013	 * domain (as happens with first-touch zones).
4014	 *
4015	 * To avoid races we run the iterator with the keg lock held, but that
4016	 * means that we cannot allow the vm_domainset layer to sleep.  Thus,
4017	 * clear M_WAITOK and handle low memory conditions locally.
4018	 */
4019	rr = rdomain == UMA_ANYDOMAIN;
4020	if (rr) {
4021		aflags = (flags & ~M_WAITOK) | M_NOWAIT;
4022		vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain,
4023		    &aflags);
4024	} else {
4025		aflags = flags;
4026		domain = rdomain;
4027	}
4028
4029	for (;;) {
4030		slab = keg_fetch_free_slab(keg, domain, rr, flags);
4031		if (slab != NULL)
4032			return (slab);
4033
4034		/*
4035		 * M_NOVM is used to break the recursion that can otherwise
4036		 * occur if low-level memory management routines use UMA.
4037		 */
4038		if ((flags & M_NOVM) == 0) {
4039			slab = keg_alloc_slab(keg, zone, domain, flags, aflags);
4040			if (slab != NULL)
4041				return (slab);
4042		}
4043
4044		if (!rr) {
4045			if ((flags & M_USE_RESERVE) != 0) {
4046				/*
4047				 * Drain reserves from other domains before
4048				 * giving up or sleeping.  It may be useful to
4049				 * support per-domain reserves eventually.
4050				 */
4051				rdomain = UMA_ANYDOMAIN;
4052				goto restart;
4053			}
4054			if ((flags & M_WAITOK) == 0)
4055				break;
4056			vm_wait_domain(domain);
4057		} else if (vm_domainset_iter_policy(&di, &domain) != 0) {
4058			if ((flags & M_WAITOK) != 0) {
4059				vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0);
4060				goto restart;
4061			}
4062			break;
4063		}
4064	}
4065
4066	/*
4067	 * We might not have been able to get a slab but another cpu
4068	 * could have while we were unlocked.  Check again before we
4069	 * fail.
4070	 */
4071	if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL)
4072		return (slab);
4073
4074	return (NULL);
4075}
4076
4077static void *
4078slab_alloc_item(uma_keg_t keg, uma_slab_t slab)
4079{
4080	uma_domain_t dom;
4081	void *item;
4082	int freei;
4083
4084	KEG_LOCK_ASSERT(keg, slab->us_domain);
4085
4086	dom = &keg->uk_domain[slab->us_domain];
4087	freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1;
4088	BIT_CLR(keg->uk_ipers, freei, &slab->us_free);
4089	item = slab_item(slab, keg, freei);
4090	slab->us_freecount--;
4091	dom->ud_free_items--;
4092
4093	/*
4094	 * Move this slab to the full list.  It must be on the partial list, so
4095	 * we do not need to update the free slab count.  In particular,
4096	 * keg_fetch_slab() always returns slabs on the partial list.
4097	 */
4098	if (slab->us_freecount == 0) {
4099		LIST_REMOVE(slab, us_link);
4100		LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link);
4101	}
4102
4103	return (item);
4104}
4105
4106static int
4107zone_import(void *arg, void **bucket, int max, int domain, int flags)
4108{
4109	uma_domain_t dom;
4110	uma_zone_t zone;
4111	uma_slab_t slab;
4112	uma_keg_t keg;
4113#ifdef NUMA
4114	int stripe;
4115#endif
4116	int i;
4117
4118	zone = arg;
4119	slab = NULL;
4120	keg = zone->uz_keg;
4121	/* Try to keep the buckets totally full */
4122	for (i = 0; i < max; ) {
4123		if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL)
4124			break;
4125#ifdef NUMA
4126		stripe = howmany(max, vm_ndomains);
4127#endif
4128		dom = &keg->uk_domain[slab->us_domain];
4129		do {
4130			bucket[i++] = slab_alloc_item(keg, slab);
4131			if (keg->uk_reserve > 0 &&
4132			    dom->ud_free_items <= keg->uk_reserve) {
4133				/*
4134				 * Avoid depleting the reserve after a
4135				 * successful item allocation, even if
4136				 * M_USE_RESERVE is specified.
4137				 */
4138				KEG_UNLOCK(keg, slab->us_domain);
4139				goto out;
4140			}
4141#ifdef NUMA
4142			/*
4143			 * If the zone is striped we pick a new slab for every
4144			 * N allocations.  Eliminating this conditional will
4145			 * instead pick a new domain for each bucket rather
4146			 * than stripe within each bucket.  The current option
4147			 * produces more fragmentation and requires more cpu
4148			 * time but yields better distribution.
4149			 */
4150			if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0 &&
4151			    vm_ndomains > 1 && --stripe == 0)
4152				break;
4153#endif
4154		} while (slab->us_freecount != 0 && i < max);
4155		KEG_UNLOCK(keg, slab->us_domain);
4156
4157		/* Don't block if we allocated any successfully. */
4158		flags &= ~M_WAITOK;
4159		flags |= M_NOWAIT;
4160	}
4161out:
4162	return i;
4163}
4164
4165static int
4166zone_alloc_limit_hard(uma_zone_t zone, int count, int flags)
4167{
4168	uint64_t old, new, total, max;
4169
4170	/*
4171	 * The hard case.  We're going to sleep because there were existing
4172	 * sleepers or because we ran out of items.  This routine enforces
4173	 * fairness by keeping fifo order.
4174	 *
4175	 * First release our ill gotten gains and make some noise.
4176	 */
4177	for (;;) {
4178		zone_free_limit(zone, count);
4179		zone_log_warning(zone);
4180		zone_maxaction(zone);
4181		if (flags & M_NOWAIT)
4182			return (0);
4183
4184		/*
4185		 * We need to allocate an item or set ourself as a sleeper
4186		 * while the sleepq lock is held to avoid wakeup races.  This
4187		 * is essentially a home rolled semaphore.
4188		 */
4189		sleepq_lock(&zone->uz_max_items);
4190		old = zone->uz_items;
4191		do {
4192			MPASS(UZ_ITEMS_SLEEPERS(old) < UZ_ITEMS_SLEEPERS_MAX);
4193			/* Cache the max since we will evaluate twice. */
4194			max = zone->uz_max_items;
4195			if (UZ_ITEMS_SLEEPERS(old) != 0 ||
4196			    UZ_ITEMS_COUNT(old) >= max)
4197				new = old + UZ_ITEMS_SLEEPER;
4198			else
4199				new = old + MIN(count, max - old);
4200		} while (atomic_fcmpset_64(&zone->uz_items, &old, new) == 0);
4201
4202		/* We may have successfully allocated under the sleepq lock. */
4203		if (UZ_ITEMS_SLEEPERS(new) == 0) {
4204			sleepq_release(&zone->uz_max_items);
4205			return (new - old);
4206		}
4207
4208		/*
4209		 * This is in a different cacheline from uz_items so that we
4210		 * don't constantly invalidate the fastpath cacheline when we
4211		 * adjust item counts.  This could be limited to toggling on
4212		 * transitions.
4213		 */
4214		atomic_add_32(&zone->uz_sleepers, 1);
4215		atomic_add_64(&zone->uz_sleeps, 1);
4216
4217		/*
4218		 * We have added ourselves as a sleeper.  The sleepq lock
4219		 * protects us from wakeup races.  Sleep now and then retry.
4220		 */
4221		sleepq_add(&zone->uz_max_items, NULL, "zonelimit", 0, 0);
4222		sleepq_wait(&zone->uz_max_items, PVM);
4223
4224		/*
4225		 * After wakeup, remove ourselves as a sleeper and try
4226		 * again.  We no longer have the sleepq lock for protection.
4227		 *
4228		 * Subract ourselves as a sleeper while attempting to add
4229		 * our count.
4230		 */
4231		atomic_subtract_32(&zone->uz_sleepers, 1);
4232		old = atomic_fetchadd_64(&zone->uz_items,
4233		    -(UZ_ITEMS_SLEEPER - count));
4234		/* We're no longer a sleeper. */
4235		old -= UZ_ITEMS_SLEEPER;
4236
4237		/*
4238		 * If we're still at the limit, restart.  Notably do not
4239		 * block on other sleepers.  Cache the max value to protect
4240		 * against changes via sysctl.
4241		 */
4242		total = UZ_ITEMS_COUNT(old);
4243		max = zone->uz_max_items;
4244		if (total >= max)
4245			continue;
4246		/* Truncate if necessary, otherwise wake other sleepers. */
4247		if (total + count > max) {
4248			zone_free_limit(zone, total + count - max);
4249			count = max - total;
4250		} else if (total + count < max && UZ_ITEMS_SLEEPERS(old) != 0)
4251			wakeup_one(&zone->uz_max_items);
4252
4253		return (count);
4254	}
4255}
4256
4257/*
4258 * Allocate 'count' items from our max_items limit.  Returns the number
4259 * available.  If M_NOWAIT is not specified it will sleep until at least
4260 * one item can be allocated.
4261 */
4262static int
4263zone_alloc_limit(uma_zone_t zone, int count, int flags)
4264{
4265	uint64_t old;
4266	uint64_t max;
4267
4268	max = zone->uz_max_items;
4269	MPASS(max > 0);
4270
4271	/*
4272	 * We expect normal allocations to succeed with a simple
4273	 * fetchadd.
4274	 */
4275	old = atomic_fetchadd_64(&zone->uz_items, count);
4276	if (__predict_true(old + count <= max))
4277		return (count);
4278
4279	/*
4280	 * If we had some items and no sleepers just return the
4281	 * truncated value.  We have to release the excess space
4282	 * though because that may wake sleepers who weren't woken
4283	 * because we were temporarily over the limit.
4284	 */
4285	if (old < max) {
4286		zone_free_limit(zone, (old + count) - max);
4287		return (max - old);
4288	}
4289	return (zone_alloc_limit_hard(zone, count, flags));
4290}
4291
4292/*
4293 * Free a number of items back to the limit.
4294 */
4295static void
4296zone_free_limit(uma_zone_t zone, int count)
4297{
4298	uint64_t old;
4299
4300	MPASS(count > 0);
4301
4302	/*
4303	 * In the common case we either have no sleepers or
4304	 * are still over the limit and can just return.
4305	 */
4306	old = atomic_fetchadd_64(&zone->uz_items, -count);
4307	if (__predict_true(UZ_ITEMS_SLEEPERS(old) == 0 ||
4308	   UZ_ITEMS_COUNT(old) - count >= zone->uz_max_items))
4309		return;
4310
4311	/*
4312	 * Moderate the rate of wakeups.  Sleepers will continue
4313	 * to generate wakeups if necessary.
4314	 */
4315	wakeup_one(&zone->uz_max_items);
4316}
4317
4318static uma_bucket_t
4319zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags)
4320{
4321	uma_bucket_t bucket;
4322	int error, maxbucket, cnt;
4323
4324	CTR3(KTR_UMA, "zone_alloc_bucket zone %s(%p) domain %d", zone->uz_name,
4325	    zone, domain);
4326
4327	/* Avoid allocs targeting empty domains. */
4328	if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain))
4329		domain = UMA_ANYDOMAIN;
4330	else if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0)
4331		domain = UMA_ANYDOMAIN;
4332
4333	if (zone->uz_max_items > 0)
4334		maxbucket = zone_alloc_limit(zone, zone->uz_bucket_size,
4335		    M_NOWAIT);
4336	else
4337		maxbucket = zone->uz_bucket_size;
4338	if (maxbucket == 0)
4339		return (NULL);
4340
4341	/* Don't wait for buckets, preserve caller's NOVM setting. */
4342	bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM));
4343	if (bucket == NULL) {
4344		cnt = 0;
4345		goto out;
4346	}
4347
4348	bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket,
4349	    MIN(maxbucket, bucket->ub_entries), domain, flags);
4350
4351	/*
4352	 * Initialize the memory if necessary.
4353	 */
4354	if (bucket->ub_cnt != 0 && zone->uz_init != NULL) {
4355		int i;
4356
4357		for (i = 0; i < bucket->ub_cnt; i++) {
4358			kasan_mark_item_valid(zone, bucket->ub_bucket[i]);
4359			error = zone->uz_init(bucket->ub_bucket[i],
4360			    zone->uz_size, flags);
4361			kasan_mark_item_invalid(zone, bucket->ub_bucket[i]);
4362			if (error != 0)
4363				break;
4364		}
4365
4366		/*
4367		 * If we couldn't initialize the whole bucket, put the
4368		 * rest back onto the freelist.
4369		 */
4370		if (i != bucket->ub_cnt) {
4371			zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i],
4372			    bucket->ub_cnt - i);
4373#ifdef INVARIANTS
4374			bzero(&bucket->ub_bucket[i],
4375			    sizeof(void *) * (bucket->ub_cnt - i));
4376#endif
4377			bucket->ub_cnt = i;
4378		}
4379	}
4380
4381	cnt = bucket->ub_cnt;
4382	if (bucket->ub_cnt == 0) {
4383		bucket_free(zone, bucket, udata);
4384		counter_u64_add(zone->uz_fails, 1);
4385		bucket = NULL;
4386	}
4387out:
4388	if (zone->uz_max_items > 0 && cnt < maxbucket)
4389		zone_free_limit(zone, maxbucket - cnt);
4390
4391	return (bucket);
4392}
4393
4394/*
4395 * Allocates a single item from a zone.
4396 *
4397 * Arguments
4398 *	zone   The zone to alloc for.
4399 *	udata  The data to be passed to the constructor.
4400 *	domain The domain to allocate from or UMA_ANYDOMAIN.
4401 *	flags  M_WAITOK, M_NOWAIT, M_ZERO.
4402 *
4403 * Returns
4404 *	NULL if there is no memory and M_NOWAIT is set
4405 *	An item if successful
4406 */
4407
4408static void *
4409zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags)
4410{
4411	void *item;
4412
4413	if (zone->uz_max_items > 0 && zone_alloc_limit(zone, 1, flags) == 0) {
4414		counter_u64_add(zone->uz_fails, 1);
4415		return (NULL);
4416	}
4417
4418	/* Avoid allocs targeting empty domains. */
4419	if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain))
4420		domain = UMA_ANYDOMAIN;
4421
4422	if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1)
4423		goto fail_cnt;
4424
4425	/*
4426	 * We have to call both the zone's init (not the keg's init)
4427	 * and the zone's ctor.  This is because the item is going from
4428	 * a keg slab directly to the user, and the user is expecting it
4429	 * to be both zone-init'd as well as zone-ctor'd.
4430	 */
4431	if (zone->uz_init != NULL) {
4432		int error;
4433
4434		kasan_mark_item_valid(zone, item);
4435		error = zone->uz_init(item, zone->uz_size, flags);
4436		kasan_mark_item_invalid(zone, item);
4437		if (error != 0) {
4438			zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT);
4439			goto fail_cnt;
4440		}
4441	}
4442	item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, flags,
4443	    item);
4444	if (item == NULL)
4445		goto fail;
4446
4447	counter_u64_add(zone->uz_allocs, 1);
4448	CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item,
4449	    zone->uz_name, zone);
4450
4451	return (item);
4452
4453fail_cnt:
4454	counter_u64_add(zone->uz_fails, 1);
4455fail:
4456	if (zone->uz_max_items > 0)
4457		zone_free_limit(zone, 1);
4458	CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)",
4459	    zone->uz_name, zone);
4460
4461	return (NULL);
4462}
4463
4464/* See uma.h */
4465void
4466uma_zfree_smr(uma_zone_t zone, void *item)
4467{
4468	uma_cache_t cache;
4469	uma_cache_bucket_t bucket;
4470	int itemdomain;
4471#ifdef NUMA
4472	int uz_flags;
4473#endif
4474
4475	CTR3(KTR_UMA, "uma_zfree_smr zone %s(%p) item %p",
4476	    zone->uz_name, zone, item);
4477
4478#ifdef UMA_ZALLOC_DEBUG
4479	KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0,
4480	    ("uma_zfree_smr: called with non-SMR zone."));
4481	KASSERT(item != NULL, ("uma_zfree_smr: Called with NULL pointer."));
4482	SMR_ASSERT_NOT_ENTERED(zone->uz_smr);
4483	if (uma_zfree_debug(zone, item, NULL) == EJUSTRETURN)
4484		return;
4485#endif
4486	cache = &zone->uz_cpu[curcpu];
4487	itemdomain = 0;
4488#ifdef NUMA
4489	uz_flags = cache_uz_flags(cache);
4490	if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0)
4491		itemdomain = item_domain(item);
4492#endif
4493	critical_enter();
4494	do {
4495		cache = &zone->uz_cpu[curcpu];
4496		/* SMR Zones must free to the free bucket. */
4497		bucket = &cache->uc_freebucket;
4498#ifdef NUMA
4499		if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 &&
4500		    PCPU_GET(domain) != itemdomain) {
4501			bucket = &cache->uc_crossbucket;
4502		}
4503#endif
4504		if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) {
4505			cache_bucket_push(cache, bucket, item);
4506			critical_exit();
4507			return;
4508		}
4509	} while (cache_free(zone, cache, NULL, itemdomain));
4510	critical_exit();
4511
4512	/*
4513	 * If nothing else caught this, we'll just do an internal free.
4514	 */
4515	zone_free_item(zone, item, NULL, SKIP_NONE);
4516}
4517
4518/* See uma.h */
4519void
4520uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
4521{
4522	uma_cache_t cache;
4523	uma_cache_bucket_t bucket;
4524	int itemdomain, uz_flags;
4525
4526	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
4527	random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
4528
4529	CTR3(KTR_UMA, "uma_zfree_arg zone %s(%p) item %p",
4530	    zone->uz_name, zone, item);
4531
4532#ifdef UMA_ZALLOC_DEBUG
4533	KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
4534	    ("uma_zfree_arg: called with SMR zone."));
4535	if (uma_zfree_debug(zone, item, udata) == EJUSTRETURN)
4536		return;
4537#endif
4538        /* uma_zfree(..., NULL) does nothing, to match free(9). */
4539        if (item == NULL)
4540                return;
4541
4542	/*
4543	 * We are accessing the per-cpu cache without a critical section to
4544	 * fetch size and flags.  This is acceptable, if we are preempted we
4545	 * will simply read another cpu's line.
4546	 */
4547	cache = &zone->uz_cpu[curcpu];
4548	uz_flags = cache_uz_flags(cache);
4549	if (UMA_ALWAYS_CTORDTOR ||
4550	    __predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0))
4551		item_dtor(zone, item, cache_uz_size(cache), udata, SKIP_NONE);
4552
4553	/*
4554	 * The race here is acceptable.  If we miss it we'll just have to wait
4555	 * a little longer for the limits to be reset.
4556	 */
4557	if (__predict_false(uz_flags & UMA_ZFLAG_LIMIT)) {
4558		if (atomic_load_32(&zone->uz_sleepers) > 0)
4559			goto zfree_item;
4560	}
4561
4562	/*
4563	 * If possible, free to the per-CPU cache.  There are two
4564	 * requirements for safe access to the per-CPU cache: (1) the thread
4565	 * accessing the cache must not be preempted or yield during access,
4566	 * and (2) the thread must not migrate CPUs without switching which
4567	 * cache it accesses.  We rely on a critical section to prevent
4568	 * preemption and migration.  We release the critical section in
4569	 * order to acquire the zone mutex if we are unable to free to the
4570	 * current cache; when we re-acquire the critical section, we must
4571	 * detect and handle migration if it has occurred.
4572	 */
4573	itemdomain = 0;
4574#ifdef NUMA
4575	if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0)
4576		itemdomain = item_domain(item);
4577#endif
4578	critical_enter();
4579	do {
4580		cache = &zone->uz_cpu[curcpu];
4581		/*
4582		 * Try to free into the allocbucket first to give LIFO
4583		 * ordering for cache-hot datastructures.  Spill over
4584		 * into the freebucket if necessary.  Alloc will swap
4585		 * them if one runs dry.
4586		 */
4587		bucket = &cache->uc_allocbucket;
4588#ifdef NUMA
4589		if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 &&
4590		    PCPU_GET(domain) != itemdomain) {
4591			bucket = &cache->uc_crossbucket;
4592		} else
4593#endif
4594		if (bucket->ucb_cnt == bucket->ucb_entries &&
4595		   cache->uc_freebucket.ucb_cnt <
4596		   cache->uc_freebucket.ucb_entries)
4597			cache_bucket_swap(&cache->uc_freebucket,
4598			    &cache->uc_allocbucket);
4599		if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) {
4600			cache_bucket_push(cache, bucket, item);
4601			critical_exit();
4602			return;
4603		}
4604	} while (cache_free(zone, cache, udata, itemdomain));
4605	critical_exit();
4606
4607	/*
4608	 * If nothing else caught this, we'll just do an internal free.
4609	 */
4610zfree_item:
4611	zone_free_item(zone, item, udata, SKIP_DTOR);
4612}
4613
4614#ifdef NUMA
4615/*
4616 * sort crossdomain free buckets to domain correct buckets and cache
4617 * them.
4618 */
4619static void
4620zone_free_cross(uma_zone_t zone, uma_bucket_t bucket, void *udata)
4621{
4622	struct uma_bucketlist emptybuckets, fullbuckets;
4623	uma_zone_domain_t zdom;
4624	uma_bucket_t b;
4625	smr_seq_t seq;
4626	void *item;
4627	int domain;
4628
4629	CTR3(KTR_UMA,
4630	    "uma_zfree: zone %s(%p) draining cross bucket %p",
4631	    zone->uz_name, zone, bucket);
4632
4633	/*
4634	 * It is possible for buckets to arrive here out of order so we fetch
4635	 * the current smr seq rather than accepting the bucket's.
4636	 */
4637	seq = SMR_SEQ_INVALID;
4638	if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
4639		seq = smr_advance(zone->uz_smr);
4640
4641	/*
4642	 * To avoid having ndomain * ndomain buckets for sorting we have a
4643	 * lock on the current crossfree bucket.  A full matrix with
4644	 * per-domain locking could be used if necessary.
4645	 */
4646	STAILQ_INIT(&emptybuckets);
4647	STAILQ_INIT(&fullbuckets);
4648	ZONE_CROSS_LOCK(zone);
4649	for (; bucket->ub_cnt > 0; bucket->ub_cnt--) {
4650		item = bucket->ub_bucket[bucket->ub_cnt - 1];
4651		domain = item_domain(item);
4652		zdom = ZDOM_GET(zone, domain);
4653		if (zdom->uzd_cross == NULL) {
4654			if ((b = STAILQ_FIRST(&emptybuckets)) != NULL) {
4655				STAILQ_REMOVE_HEAD(&emptybuckets, ub_link);
4656				zdom->uzd_cross = b;
4657			} else {
4658				/*
4659				 * Avoid allocating a bucket with the cross lock
4660				 * held, since allocation can trigger a
4661				 * cross-domain free and bucket zones may
4662				 * allocate from each other.
4663				 */
4664				ZONE_CROSS_UNLOCK(zone);
4665				b = bucket_alloc(zone, udata, M_NOWAIT);
4666				if (b == NULL)
4667					goto out;
4668				ZONE_CROSS_LOCK(zone);
4669				if (zdom->uzd_cross != NULL) {
4670					STAILQ_INSERT_HEAD(&emptybuckets, b,
4671					    ub_link);
4672				} else {
4673					zdom->uzd_cross = b;
4674				}
4675			}
4676		}
4677		b = zdom->uzd_cross;
4678		b->ub_bucket[b->ub_cnt++] = item;
4679		b->ub_seq = seq;
4680		if (b->ub_cnt == b->ub_entries) {
4681			STAILQ_INSERT_HEAD(&fullbuckets, b, ub_link);
4682			if ((b = STAILQ_FIRST(&emptybuckets)) != NULL)
4683				STAILQ_REMOVE_HEAD(&emptybuckets, ub_link);
4684			zdom->uzd_cross = b;
4685		}
4686	}
4687	ZONE_CROSS_UNLOCK(zone);
4688out:
4689	if (bucket->ub_cnt == 0)
4690		bucket->ub_seq = SMR_SEQ_INVALID;
4691	bucket_free(zone, bucket, udata);
4692
4693	while ((b = STAILQ_FIRST(&emptybuckets)) != NULL) {
4694		STAILQ_REMOVE_HEAD(&emptybuckets, ub_link);
4695		bucket_free(zone, b, udata);
4696	}
4697	while ((b = STAILQ_FIRST(&fullbuckets)) != NULL) {
4698		STAILQ_REMOVE_HEAD(&fullbuckets, ub_link);
4699		domain = item_domain(b->ub_bucket[0]);
4700		zone_put_bucket(zone, domain, b, udata, true);
4701	}
4702}
4703#endif
4704
4705static void
4706zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata,
4707    int itemdomain, bool ws)
4708{
4709
4710#ifdef NUMA
4711	/*
4712	 * Buckets coming from the wrong domain will be entirely for the
4713	 * only other domain on two domain systems.  In this case we can
4714	 * simply cache them.  Otherwise we need to sort them back to
4715	 * correct domains.
4716	 */
4717	if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 &&
4718	    vm_ndomains > 2 && PCPU_GET(domain) != itemdomain) {
4719		zone_free_cross(zone, bucket, udata);
4720		return;
4721	}
4722#endif
4723
4724	/*
4725	 * Attempt to save the bucket in the zone's domain bucket cache.
4726	 */
4727	CTR3(KTR_UMA,
4728	    "uma_zfree: zone %s(%p) putting bucket %p on free list",
4729	    zone->uz_name, zone, bucket);
4730	/* ub_cnt is pointing to the last free item */
4731	if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0)
4732		itemdomain = zone_domain_lowest(zone, itemdomain);
4733	zone_put_bucket(zone, itemdomain, bucket, udata, ws);
4734}
4735
4736/*
4737 * Populate a free or cross bucket for the current cpu cache.  Free any
4738 * existing full bucket either to the zone cache or back to the slab layer.
4739 *
4740 * Enters and returns in a critical section.  false return indicates that
4741 * we can not satisfy this free in the cache layer.  true indicates that
4742 * the caller should retry.
4743 */
4744static __noinline bool
4745cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, int itemdomain)
4746{
4747	uma_cache_bucket_t cbucket;
4748	uma_bucket_t newbucket, bucket;
4749
4750	CRITICAL_ASSERT(curthread);
4751
4752	if (zone->uz_bucket_size == 0)
4753		return false;
4754
4755	cache = &zone->uz_cpu[curcpu];
4756	newbucket = NULL;
4757
4758	/*
4759	 * FIRSTTOUCH domains need to free to the correct zdom.  When
4760	 * enabled this is the zdom of the item.   The bucket is the
4761	 * cross bucket if the current domain and itemdomain do not match.
4762	 */
4763	cbucket = &cache->uc_freebucket;
4764#ifdef NUMA
4765	if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) {
4766		if (PCPU_GET(domain) != itemdomain) {
4767			cbucket = &cache->uc_crossbucket;
4768			if (cbucket->ucb_cnt != 0)
4769				counter_u64_add(zone->uz_xdomain,
4770				    cbucket->ucb_cnt);
4771		}
4772	}
4773#endif
4774	bucket = cache_bucket_unload(cbucket);
4775	KASSERT(bucket == NULL || bucket->ub_cnt == bucket->ub_entries,
4776	    ("cache_free: Entered with non-full free bucket."));
4777
4778	/* We are no longer associated with this CPU. */
4779	critical_exit();
4780
4781	/*
4782	 * Don't let SMR zones operate without a free bucket.  Force
4783	 * a synchronize and re-use this one.  We will only degrade
4784	 * to a synchronize every bucket_size items rather than every
4785	 * item if we fail to allocate a bucket.
4786	 */
4787	if ((zone->uz_flags & UMA_ZONE_SMR) != 0) {
4788		if (bucket != NULL)
4789			bucket->ub_seq = smr_advance(zone->uz_smr);
4790		newbucket = bucket_alloc(zone, udata, M_NOWAIT);
4791		if (newbucket == NULL && bucket != NULL) {
4792			bucket_drain(zone, bucket);
4793			newbucket = bucket;
4794			bucket = NULL;
4795		}
4796	} else if (!bucketdisable)
4797		newbucket = bucket_alloc(zone, udata, M_NOWAIT);
4798
4799	if (bucket != NULL)
4800		zone_free_bucket(zone, bucket, udata, itemdomain, true);
4801
4802	critical_enter();
4803	if ((bucket = newbucket) == NULL)
4804		return (false);
4805	cache = &zone->uz_cpu[curcpu];
4806#ifdef NUMA
4807	/*
4808	 * Check to see if we should be populating the cross bucket.  If it
4809	 * is already populated we will fall through and attempt to populate
4810	 * the free bucket.
4811	 */
4812	if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) {
4813		if (PCPU_GET(domain) != itemdomain &&
4814		    cache->uc_crossbucket.ucb_bucket == NULL) {
4815			cache_bucket_load_cross(cache, bucket);
4816			return (true);
4817		}
4818	}
4819#endif
4820	/*
4821	 * We may have lost the race to fill the bucket or switched CPUs.
4822	 */
4823	if (cache->uc_freebucket.ucb_bucket != NULL) {
4824		critical_exit();
4825		bucket_free(zone, bucket, udata);
4826		critical_enter();
4827	} else
4828		cache_bucket_load_free(cache, bucket);
4829
4830	return (true);
4831}
4832
4833static void
4834slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item)
4835{
4836	uma_keg_t keg;
4837	uma_domain_t dom;
4838	int freei;
4839
4840	keg = zone->uz_keg;
4841	KEG_LOCK_ASSERT(keg, slab->us_domain);
4842
4843	/* Do we need to remove from any lists? */
4844	dom = &keg->uk_domain[slab->us_domain];
4845	if (slab->us_freecount + 1 == keg->uk_ipers) {
4846		LIST_REMOVE(slab, us_link);
4847		LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link);
4848		dom->ud_free_slabs++;
4849	} else if (slab->us_freecount == 0) {
4850		LIST_REMOVE(slab, us_link);
4851		LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
4852	}
4853
4854	/* Slab management. */
4855	freei = slab_item_index(slab, keg, item);
4856	BIT_SET(keg->uk_ipers, freei, &slab->us_free);
4857	slab->us_freecount++;
4858
4859	/* Keg statistics. */
4860	dom->ud_free_items++;
4861}
4862
4863static void
4864zone_release(void *arg, void **bucket, int cnt)
4865{
4866	struct mtx *lock;
4867	uma_zone_t zone;
4868	uma_slab_t slab;
4869	uma_keg_t keg;
4870	uint8_t *mem;
4871	void *item;
4872	int i;
4873
4874	zone = arg;
4875	keg = zone->uz_keg;
4876	lock = NULL;
4877	if (__predict_false((zone->uz_flags & UMA_ZFLAG_HASH) != 0))
4878		lock = KEG_LOCK(keg, 0);
4879	for (i = 0; i < cnt; i++) {
4880		item = bucket[i];
4881		if (__predict_true((zone->uz_flags & UMA_ZFLAG_VTOSLAB) != 0)) {
4882			slab = vtoslab((vm_offset_t)item);
4883		} else {
4884			mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
4885			if ((zone->uz_flags & UMA_ZFLAG_HASH) != 0)
4886				slab = hash_sfind(&keg->uk_hash, mem);
4887			else
4888				slab = (uma_slab_t)(mem + keg->uk_pgoff);
4889		}
4890		if (lock != KEG_LOCKPTR(keg, slab->us_domain)) {
4891			if (lock != NULL)
4892				mtx_unlock(lock);
4893			lock = KEG_LOCK(keg, slab->us_domain);
4894		}
4895		slab_free_item(zone, slab, item);
4896	}
4897	if (lock != NULL)
4898		mtx_unlock(lock);
4899}
4900
4901/*
4902 * Frees a single item to any zone.
4903 *
4904 * Arguments:
4905 *	zone   The zone to free to
4906 *	item   The item we're freeing
4907 *	udata  User supplied data for the dtor
4908 *	skip   Skip dtors and finis
4909 */
4910static __noinline void
4911zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip)
4912{
4913
4914	/*
4915	 * If a free is sent directly to an SMR zone we have to
4916	 * synchronize immediately because the item can instantly
4917	 * be reallocated. This should only happen in degenerate
4918	 * cases when no memory is available for per-cpu caches.
4919	 */
4920	if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && skip == SKIP_NONE)
4921		smr_synchronize(zone->uz_smr);
4922
4923	item_dtor(zone, item, zone->uz_size, udata, skip);
4924
4925	if (skip < SKIP_FINI && zone->uz_fini) {
4926		kasan_mark_item_valid(zone, item);
4927		zone->uz_fini(item, zone->uz_size);
4928		kasan_mark_item_invalid(zone, item);
4929	}
4930
4931	zone->uz_release(zone->uz_arg, &item, 1);
4932
4933	if (skip & SKIP_CNT)
4934		return;
4935
4936	counter_u64_add(zone->uz_frees, 1);
4937
4938	if (zone->uz_max_items > 0)
4939		zone_free_limit(zone, 1);
4940}
4941
4942/* See uma.h */
4943int
4944uma_zone_set_max(uma_zone_t zone, int nitems)
4945{
4946
4947	/*
4948	 * If the limit is small, we may need to constrain the maximum per-CPU
4949	 * cache size, or disable caching entirely.
4950	 */
4951	uma_zone_set_maxcache(zone, nitems);
4952
4953	/*
4954	 * XXX This can misbehave if the zone has any allocations with
4955	 * no limit and a limit is imposed.  There is currently no
4956	 * way to clear a limit.
4957	 */
4958	ZONE_LOCK(zone);
4959	if (zone->uz_max_items == 0)
4960		ZONE_ASSERT_COLD(zone);
4961	zone->uz_max_items = nitems;
4962	zone->uz_flags |= UMA_ZFLAG_LIMIT;
4963	zone_update_caches(zone);
4964	/* We may need to wake waiters. */
4965	wakeup(&zone->uz_max_items);
4966	ZONE_UNLOCK(zone);
4967
4968	return (nitems);
4969}
4970
4971/* See uma.h */
4972void
4973uma_zone_set_maxcache(uma_zone_t zone, int nitems)
4974{
4975	int bpcpu, bpdom, bsize, nb;
4976
4977	ZONE_LOCK(zone);
4978
4979	/*
4980	 * Compute a lower bound on the number of items that may be cached in
4981	 * the zone.  Each CPU gets at least two buckets, and for cross-domain
4982	 * frees we use an additional bucket per CPU and per domain.  Select the
4983	 * largest bucket size that does not exceed half of the requested limit,
4984	 * with the left over space given to the full bucket cache.
4985	 */
4986	bpdom = 0;
4987	bpcpu = 2;
4988#ifdef NUMA
4989	if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && vm_ndomains > 1) {
4990		bpcpu++;
4991		bpdom++;
4992	}
4993#endif
4994	nb = bpcpu * mp_ncpus + bpdom * vm_ndomains;
4995	bsize = nitems / nb / 2;
4996	if (bsize > BUCKET_MAX)
4997		bsize = BUCKET_MAX;
4998	else if (bsize == 0 && nitems / nb > 0)
4999		bsize = 1;
5000	zone->uz_bucket_size_max = zone->uz_bucket_size = bsize;
5001	if (zone->uz_bucket_size_min > zone->uz_bucket_size_max)
5002		zone->uz_bucket_size_min = zone->uz_bucket_size_max;
5003	zone->uz_bucket_max = nitems - nb * bsize;
5004	ZONE_UNLOCK(zone);
5005}
5006
5007/* See uma.h */
5008int
5009uma_zone_get_max(uma_zone_t zone)
5010{
5011	int nitems;
5012
5013	nitems = atomic_load_64(&zone->uz_max_items);
5014
5015	return (nitems);
5016}
5017
5018/* See uma.h */
5019void
5020uma_zone_set_warning(uma_zone_t zone, const char *warning)
5021{
5022
5023	ZONE_ASSERT_COLD(zone);
5024	zone->uz_warning = warning;
5025}
5026
5027/* See uma.h */
5028void
5029uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction)
5030{
5031
5032	ZONE_ASSERT_COLD(zone);
5033	TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone);
5034}
5035
5036/* See uma.h */
5037int
5038uma_zone_get_cur(uma_zone_t zone)
5039{
5040	int64_t nitems;
5041	u_int i;
5042
5043	nitems = 0;
5044	if (zone->uz_allocs != EARLY_COUNTER && zone->uz_frees != EARLY_COUNTER)
5045		nitems = counter_u64_fetch(zone->uz_allocs) -
5046		    counter_u64_fetch(zone->uz_frees);
5047	CPU_FOREACH(i)
5048		nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs) -
5049		    atomic_load_64(&zone->uz_cpu[i].uc_frees);
5050
5051	return (nitems < 0 ? 0 : nitems);
5052}
5053
5054static uint64_t
5055uma_zone_get_allocs(uma_zone_t zone)
5056{
5057	uint64_t nitems;
5058	u_int i;
5059
5060	nitems = 0;
5061	if (zone->uz_allocs != EARLY_COUNTER)
5062		nitems = counter_u64_fetch(zone->uz_allocs);
5063	CPU_FOREACH(i)
5064		nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs);
5065
5066	return (nitems);
5067}
5068
5069static uint64_t
5070uma_zone_get_frees(uma_zone_t zone)
5071{
5072	uint64_t nitems;
5073	u_int i;
5074
5075	nitems = 0;
5076	if (zone->uz_frees != EARLY_COUNTER)
5077		nitems = counter_u64_fetch(zone->uz_frees);
5078	CPU_FOREACH(i)
5079		nitems += atomic_load_64(&zone->uz_cpu[i].uc_frees);
5080
5081	return (nitems);
5082}
5083
5084#ifdef INVARIANTS
5085/* Used only for KEG_ASSERT_COLD(). */
5086static uint64_t
5087uma_keg_get_allocs(uma_keg_t keg)
5088{
5089	uma_zone_t z;
5090	uint64_t nitems;
5091
5092	nitems = 0;
5093	LIST_FOREACH(z, &keg->uk_zones, uz_link)
5094		nitems += uma_zone_get_allocs(z);
5095
5096	return (nitems);
5097}
5098#endif
5099
5100/* See uma.h */
5101void
5102uma_zone_set_init(uma_zone_t zone, uma_init uminit)
5103{
5104	uma_keg_t keg;
5105
5106	KEG_GET(zone, keg);
5107	KEG_ASSERT_COLD(keg);
5108	keg->uk_init = uminit;
5109}
5110
5111/* See uma.h */
5112void
5113uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
5114{
5115	uma_keg_t keg;
5116
5117	KEG_GET(zone, keg);
5118	KEG_ASSERT_COLD(keg);
5119	keg->uk_fini = fini;
5120}
5121
5122/* See uma.h */
5123void
5124uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
5125{
5126
5127	ZONE_ASSERT_COLD(zone);
5128	zone->uz_init = zinit;
5129}
5130
5131/* See uma.h */
5132void
5133uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
5134{
5135
5136	ZONE_ASSERT_COLD(zone);
5137	zone->uz_fini = zfini;
5138}
5139
5140/* See uma.h */
5141void
5142uma_zone_set_freef(uma_zone_t zone, uma_free freef)
5143{
5144	uma_keg_t keg;
5145
5146	KEG_GET(zone, keg);
5147	KEG_ASSERT_COLD(keg);
5148	keg->uk_freef = freef;
5149}
5150
5151/* See uma.h */
5152void
5153uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
5154{
5155	uma_keg_t keg;
5156
5157	KEG_GET(zone, keg);
5158	KEG_ASSERT_COLD(keg);
5159	keg->uk_allocf = allocf;
5160}
5161
5162/* See uma.h */
5163void
5164uma_zone_set_smr(uma_zone_t zone, smr_t smr)
5165{
5166
5167	ZONE_ASSERT_COLD(zone);
5168
5169	KASSERT(smr != NULL, ("Got NULL smr"));
5170	KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
5171	    ("zone %p (%s) already uses SMR", zone, zone->uz_name));
5172	zone->uz_flags |= UMA_ZONE_SMR;
5173	zone->uz_smr = smr;
5174	zone_update_caches(zone);
5175}
5176
5177smr_t
5178uma_zone_get_smr(uma_zone_t zone)
5179{
5180
5181	return (zone->uz_smr);
5182}
5183
5184/* See uma.h */
5185void
5186uma_zone_reserve(uma_zone_t zone, int items)
5187{
5188	uma_keg_t keg;
5189
5190	KEG_GET(zone, keg);
5191	KEG_ASSERT_COLD(keg);
5192	keg->uk_reserve = items;
5193}
5194
5195/* See uma.h */
5196int
5197uma_zone_reserve_kva(uma_zone_t zone, int count)
5198{
5199	uma_keg_t keg;
5200	vm_offset_t kva;
5201	u_int pages;
5202
5203	KEG_GET(zone, keg);
5204	KEG_ASSERT_COLD(keg);
5205	ZONE_ASSERT_COLD(zone);
5206
5207	pages = howmany(count, keg->uk_ipers) * keg->uk_ppera;
5208
5209#ifdef UMA_USE_DMAP
5210	if (keg->uk_ppera > 1) {
5211#else
5212	if (1) {
5213#endif
5214		kva = kva_alloc((vm_size_t)pages * PAGE_SIZE);
5215		if (kva == 0)
5216			return (0);
5217	} else
5218		kva = 0;
5219
5220	MPASS(keg->uk_kva == 0);
5221	keg->uk_kva = kva;
5222	keg->uk_offset = 0;
5223	zone->uz_max_items = pages * keg->uk_ipers;
5224#ifdef UMA_USE_DMAP
5225	keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc;
5226#else
5227	keg->uk_allocf = noobj_alloc;
5228#endif
5229	keg->uk_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE;
5230	zone->uz_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE;
5231	zone_update_caches(zone);
5232
5233	return (1);
5234}
5235
5236/* See uma.h */
5237void
5238uma_prealloc(uma_zone_t zone, int items)
5239{
5240	struct vm_domainset_iter di;
5241	uma_domain_t dom;
5242	uma_slab_t slab;
5243	uma_keg_t keg;
5244	int aflags, domain, slabs;
5245
5246	KEG_GET(zone, keg);
5247	slabs = howmany(items, keg->uk_ipers);
5248	while (slabs-- > 0) {
5249		aflags = M_NOWAIT;
5250		vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain,
5251		    &aflags);
5252		for (;;) {
5253			slab = keg_alloc_slab(keg, zone, domain, M_WAITOK,
5254			    aflags);
5255			if (slab != NULL) {
5256				dom = &keg->uk_domain[slab->us_domain];
5257				/*
5258				 * keg_alloc_slab() always returns a slab on the
5259				 * partial list.
5260				 */
5261				LIST_REMOVE(slab, us_link);
5262				LIST_INSERT_HEAD(&dom->ud_free_slab, slab,
5263				    us_link);
5264				dom->ud_free_slabs++;
5265				KEG_UNLOCK(keg, slab->us_domain);
5266				break;
5267			}
5268			if (vm_domainset_iter_policy(&di, &domain) != 0)
5269				vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0);
5270		}
5271	}
5272}
5273
5274/*
5275 * Returns a snapshot of memory consumption in bytes.
5276 */
5277size_t
5278uma_zone_memory(uma_zone_t zone)
5279{
5280	size_t sz;
5281	int i;
5282
5283	sz = 0;
5284	if (zone->uz_flags & UMA_ZFLAG_CACHE) {
5285		for (i = 0; i < vm_ndomains; i++)
5286			sz += ZDOM_GET(zone, i)->uzd_nitems;
5287		return (sz * zone->uz_size);
5288	}
5289	for (i = 0; i < vm_ndomains; i++)
5290		sz += zone->uz_keg->uk_domain[i].ud_pages;
5291
5292	return (sz * PAGE_SIZE);
5293}
5294
5295struct uma_reclaim_args {
5296	int	domain;
5297	int	req;
5298};
5299
5300static void
5301uma_reclaim_domain_cb(uma_zone_t zone, void *arg)
5302{
5303	struct uma_reclaim_args *args;
5304
5305	args = arg;
5306	if ((zone->uz_flags & UMA_ZONE_UNMANAGED) == 0)
5307		uma_zone_reclaim_domain(zone, args->req, args->domain);
5308}
5309
5310/* See uma.h */
5311void
5312uma_reclaim(int req)
5313{
5314	uma_reclaim_domain(req, UMA_ANYDOMAIN);
5315}
5316
5317void
5318uma_reclaim_domain(int req, int domain)
5319{
5320	struct uma_reclaim_args args;
5321
5322	bucket_enable();
5323
5324	args.domain = domain;
5325	args.req = req;
5326
5327	sx_slock(&uma_reclaim_lock);
5328	switch (req) {
5329	case UMA_RECLAIM_TRIM:
5330	case UMA_RECLAIM_DRAIN:
5331		zone_foreach(uma_reclaim_domain_cb, &args);
5332		break;
5333	case UMA_RECLAIM_DRAIN_CPU:
5334		zone_foreach(uma_reclaim_domain_cb, &args);
5335		pcpu_cache_drain_safe(NULL);
5336		zone_foreach(uma_reclaim_domain_cb, &args);
5337		break;
5338	default:
5339		panic("unhandled reclamation request %d", req);
5340	}
5341
5342	/*
5343	 * Some slabs may have been freed but this zone will be visited early
5344	 * we visit again so that we can free pages that are empty once other
5345	 * zones are drained.  We have to do the same for buckets.
5346	 */
5347	uma_zone_reclaim_domain(slabzones[0], UMA_RECLAIM_DRAIN, domain);
5348	uma_zone_reclaim_domain(slabzones[1], UMA_RECLAIM_DRAIN, domain);
5349	bucket_zone_drain(domain);
5350	sx_sunlock(&uma_reclaim_lock);
5351}
5352
5353static volatile int uma_reclaim_needed;
5354
5355void
5356uma_reclaim_wakeup(void)
5357{
5358
5359	if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0)
5360		wakeup(uma_reclaim);
5361}
5362
5363void
5364uma_reclaim_worker(void *arg __unused)
5365{
5366
5367	for (;;) {
5368		sx_xlock(&uma_reclaim_lock);
5369		while (atomic_load_int(&uma_reclaim_needed) == 0)
5370			sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl",
5371			    hz);
5372		sx_xunlock(&uma_reclaim_lock);
5373		EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM);
5374		uma_reclaim(UMA_RECLAIM_DRAIN_CPU);
5375		atomic_store_int(&uma_reclaim_needed, 0);
5376		/* Don't fire more than once per-second. */
5377		pause("umarclslp", hz);
5378	}
5379}
5380
5381/* See uma.h */
5382void
5383uma_zone_reclaim(uma_zone_t zone, int req)
5384{
5385	uma_zone_reclaim_domain(zone, req, UMA_ANYDOMAIN);
5386}
5387
5388void
5389uma_zone_reclaim_domain(uma_zone_t zone, int req, int domain)
5390{
5391	switch (req) {
5392	case UMA_RECLAIM_TRIM:
5393		zone_reclaim(zone, domain, M_NOWAIT, false);
5394		break;
5395	case UMA_RECLAIM_DRAIN:
5396		zone_reclaim(zone, domain, M_NOWAIT, true);
5397		break;
5398	case UMA_RECLAIM_DRAIN_CPU:
5399		pcpu_cache_drain_safe(zone);
5400		zone_reclaim(zone, domain, M_NOWAIT, true);
5401		break;
5402	default:
5403		panic("unhandled reclamation request %d", req);
5404	}
5405}
5406
5407/* See uma.h */
5408int
5409uma_zone_exhausted(uma_zone_t zone)
5410{
5411
5412	return (atomic_load_32(&zone->uz_sleepers) > 0);
5413}
5414
5415unsigned long
5416uma_limit(void)
5417{
5418
5419	return (uma_kmem_limit);
5420}
5421
5422void
5423uma_set_limit(unsigned long limit)
5424{
5425
5426	uma_kmem_limit = limit;
5427}
5428
5429unsigned long
5430uma_size(void)
5431{
5432
5433	return (atomic_load_long(&uma_kmem_total));
5434}
5435
5436long
5437uma_avail(void)
5438{
5439
5440	return (uma_kmem_limit - uma_size());
5441}
5442
5443#ifdef DDB
5444/*
5445 * Generate statistics across both the zone and its per-cpu cache's.  Return
5446 * desired statistics if the pointer is non-NULL for that statistic.
5447 *
5448 * Note: does not update the zone statistics, as it can't safely clear the
5449 * per-CPU cache statistic.
5450 *
5451 */
5452static void
5453uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp,
5454    uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp)
5455{
5456	uma_cache_t cache;
5457	uint64_t allocs, frees, sleeps, xdomain;
5458	int cachefree, cpu;
5459
5460	allocs = frees = sleeps = xdomain = 0;
5461	cachefree = 0;
5462	CPU_FOREACH(cpu) {
5463		cache = &z->uz_cpu[cpu];
5464		cachefree += cache->uc_allocbucket.ucb_cnt;
5465		cachefree += cache->uc_freebucket.ucb_cnt;
5466		xdomain += cache->uc_crossbucket.ucb_cnt;
5467		cachefree += cache->uc_crossbucket.ucb_cnt;
5468		allocs += cache->uc_allocs;
5469		frees += cache->uc_frees;
5470	}
5471	allocs += counter_u64_fetch(z->uz_allocs);
5472	frees += counter_u64_fetch(z->uz_frees);
5473	xdomain += counter_u64_fetch(z->uz_xdomain);
5474	sleeps += z->uz_sleeps;
5475	if (cachefreep != NULL)
5476		*cachefreep = cachefree;
5477	if (allocsp != NULL)
5478		*allocsp = allocs;
5479	if (freesp != NULL)
5480		*freesp = frees;
5481	if (sleepsp != NULL)
5482		*sleepsp = sleeps;
5483	if (xdomainp != NULL)
5484		*xdomainp = xdomain;
5485}
5486#endif /* DDB */
5487
5488static int
5489sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
5490{
5491	uma_keg_t kz;
5492	uma_zone_t z;
5493	int count;
5494
5495	count = 0;
5496	rw_rlock(&uma_rwlock);
5497	LIST_FOREACH(kz, &uma_kegs, uk_link) {
5498		LIST_FOREACH(z, &kz->uk_zones, uz_link)
5499			count++;
5500	}
5501	LIST_FOREACH(z, &uma_cachezones, uz_link)
5502		count++;
5503
5504	rw_runlock(&uma_rwlock);
5505	return (sysctl_handle_int(oidp, &count, 0, req));
5506}
5507
5508static void
5509uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf,
5510    struct uma_percpu_stat *ups, bool internal)
5511{
5512	uma_zone_domain_t zdom;
5513	uma_cache_t cache;
5514	int i;
5515
5516	for (i = 0; i < vm_ndomains; i++) {
5517		zdom = ZDOM_GET(z, i);
5518		uth->uth_zone_free += zdom->uzd_nitems;
5519	}
5520	uth->uth_allocs = counter_u64_fetch(z->uz_allocs);
5521	uth->uth_frees = counter_u64_fetch(z->uz_frees);
5522	uth->uth_fails = counter_u64_fetch(z->uz_fails);
5523	uth->uth_xdomain = counter_u64_fetch(z->uz_xdomain);
5524	uth->uth_sleeps = z->uz_sleeps;
5525
5526	for (i = 0; i < mp_maxid + 1; i++) {
5527		bzero(&ups[i], sizeof(*ups));
5528		if (internal || CPU_ABSENT(i))
5529			continue;
5530		cache = &z->uz_cpu[i];
5531		ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt;
5532		ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt;
5533		ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt;
5534		ups[i].ups_allocs = cache->uc_allocs;
5535		ups[i].ups_frees = cache->uc_frees;
5536	}
5537}
5538
5539static int
5540sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
5541{
5542	struct uma_stream_header ush;
5543	struct uma_type_header uth;
5544	struct uma_percpu_stat *ups;
5545	struct sbuf sbuf;
5546	uma_keg_t kz;
5547	uma_zone_t z;
5548	uint64_t items;
5549	uint32_t kfree, pages;
5550	int count, error, i;
5551
5552	error = sysctl_wire_old_buffer(req, 0);
5553	if (error != 0)
5554		return (error);
5555	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
5556	sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
5557	ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK);
5558
5559	count = 0;
5560	rw_rlock(&uma_rwlock);
5561	LIST_FOREACH(kz, &uma_kegs, uk_link) {
5562		LIST_FOREACH(z, &kz->uk_zones, uz_link)
5563			count++;
5564	}
5565
5566	LIST_FOREACH(z, &uma_cachezones, uz_link)
5567		count++;
5568
5569	/*
5570	 * Insert stream header.
5571	 */
5572	bzero(&ush, sizeof(ush));
5573	ush.ush_version = UMA_STREAM_VERSION;
5574	ush.ush_maxcpus = (mp_maxid + 1);
5575	ush.ush_count = count;
5576	(void)sbuf_bcat(&sbuf, &ush, sizeof(ush));
5577
5578	LIST_FOREACH(kz, &uma_kegs, uk_link) {
5579		kfree = pages = 0;
5580		for (i = 0; i < vm_ndomains; i++) {
5581			kfree += kz->uk_domain[i].ud_free_items;
5582			pages += kz->uk_domain[i].ud_pages;
5583		}
5584		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
5585			bzero(&uth, sizeof(uth));
5586			strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
5587			uth.uth_align = kz->uk_align;
5588			uth.uth_size = kz->uk_size;
5589			uth.uth_rsize = kz->uk_rsize;
5590			if (z->uz_max_items > 0) {
5591				items = UZ_ITEMS_COUNT(z->uz_items);
5592				uth.uth_pages = (items / kz->uk_ipers) *
5593					kz->uk_ppera;
5594			} else
5595				uth.uth_pages = pages;
5596			uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) *
5597			    kz->uk_ppera;
5598			uth.uth_limit = z->uz_max_items;
5599			uth.uth_keg_free = kfree;
5600
5601			/*
5602			 * A zone is secondary is it is not the first entry
5603			 * on the keg's zone list.
5604			 */
5605			if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
5606			    (LIST_FIRST(&kz->uk_zones) != z))
5607				uth.uth_zone_flags = UTH_ZONE_SECONDARY;
5608			uma_vm_zone_stats(&uth, z, &sbuf, ups,
5609			    kz->uk_flags & UMA_ZFLAG_INTERNAL);
5610			(void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
5611			for (i = 0; i < mp_maxid + 1; i++)
5612				(void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i]));
5613		}
5614	}
5615	LIST_FOREACH(z, &uma_cachezones, uz_link) {
5616		bzero(&uth, sizeof(uth));
5617		strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
5618		uth.uth_size = z->uz_size;
5619		uma_vm_zone_stats(&uth, z, &sbuf, ups, false);
5620		(void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
5621		for (i = 0; i < mp_maxid + 1; i++)
5622			(void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i]));
5623	}
5624
5625	rw_runlock(&uma_rwlock);
5626	error = sbuf_finish(&sbuf);
5627	sbuf_delete(&sbuf);
5628	free(ups, M_TEMP);
5629	return (error);
5630}
5631
5632int
5633sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS)
5634{
5635	uma_zone_t zone = *(uma_zone_t *)arg1;
5636	int error, max;
5637
5638	max = uma_zone_get_max(zone);
5639	error = sysctl_handle_int(oidp, &max, 0, req);
5640	if (error || !req->newptr)
5641		return (error);
5642
5643	uma_zone_set_max(zone, max);
5644
5645	return (0);
5646}
5647
5648int
5649sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS)
5650{
5651	uma_zone_t zone;
5652	int cur;
5653
5654	/*
5655	 * Some callers want to add sysctls for global zones that
5656	 * may not yet exist so they pass a pointer to a pointer.
5657	 */
5658	if (arg2 == 0)
5659		zone = *(uma_zone_t *)arg1;
5660	else
5661		zone = arg1;
5662	cur = uma_zone_get_cur(zone);
5663	return (sysctl_handle_int(oidp, &cur, 0, req));
5664}
5665
5666static int
5667sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS)
5668{
5669	uma_zone_t zone = arg1;
5670	uint64_t cur;
5671
5672	cur = uma_zone_get_allocs(zone);
5673	return (sysctl_handle_64(oidp, &cur, 0, req));
5674}
5675
5676static int
5677sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS)
5678{
5679	uma_zone_t zone = arg1;
5680	uint64_t cur;
5681
5682	cur = uma_zone_get_frees(zone);
5683	return (sysctl_handle_64(oidp, &cur, 0, req));
5684}
5685
5686static int
5687sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS)
5688{
5689	struct sbuf sbuf;
5690	uma_zone_t zone = arg1;
5691	int error;
5692
5693	sbuf_new_for_sysctl(&sbuf, NULL, 0, req);
5694	if (zone->uz_flags != 0)
5695		sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS);
5696	else
5697		sbuf_printf(&sbuf, "0");
5698	error = sbuf_finish(&sbuf);
5699	sbuf_delete(&sbuf);
5700
5701	return (error);
5702}
5703
5704static int
5705sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS)
5706{
5707	uma_keg_t keg = arg1;
5708	int avail, effpct, total;
5709
5710	total = keg->uk_ppera * PAGE_SIZE;
5711	if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0)
5712		total += slabzone(keg->uk_ipers)->uz_keg->uk_rsize;
5713	/*
5714	 * We consider the client's requested size and alignment here, not the
5715	 * real size determination uk_rsize, because we also adjust the real
5716	 * size for internal implementation reasons (max bitset size).
5717	 */
5718	avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1);
5719	if ((keg->uk_flags & UMA_ZONE_PCPU) != 0)
5720		avail *= mp_maxid + 1;
5721	effpct = 100 * avail / total;
5722	return (sysctl_handle_int(oidp, &effpct, 0, req));
5723}
5724
5725static int
5726sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS)
5727{
5728	uma_zone_t zone = arg1;
5729	uint64_t cur;
5730
5731	cur = UZ_ITEMS_COUNT(atomic_load_64(&zone->uz_items));
5732	return (sysctl_handle_64(oidp, &cur, 0, req));
5733}
5734
5735#ifdef INVARIANTS
5736static uma_slab_t
5737uma_dbg_getslab(uma_zone_t zone, void *item)
5738{
5739	uma_slab_t slab;
5740	uma_keg_t keg;
5741	uint8_t *mem;
5742
5743	/*
5744	 * It is safe to return the slab here even though the
5745	 * zone is unlocked because the item's allocation state
5746	 * essentially holds a reference.
5747	 */
5748	mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
5749	if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
5750		return (NULL);
5751	if (zone->uz_flags & UMA_ZFLAG_VTOSLAB)
5752		return (vtoslab((vm_offset_t)mem));
5753	keg = zone->uz_keg;
5754	if ((keg->uk_flags & UMA_ZFLAG_HASH) == 0)
5755		return ((uma_slab_t)(mem + keg->uk_pgoff));
5756	KEG_LOCK(keg, 0);
5757	slab = hash_sfind(&keg->uk_hash, mem);
5758	KEG_UNLOCK(keg, 0);
5759
5760	return (slab);
5761}
5762
5763static bool
5764uma_dbg_zskip(uma_zone_t zone, void *mem)
5765{
5766
5767	if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
5768		return (true);
5769
5770	return (uma_dbg_kskip(zone->uz_keg, mem));
5771}
5772
5773static bool
5774uma_dbg_kskip(uma_keg_t keg, void *mem)
5775{
5776	uintptr_t idx;
5777
5778	if (dbg_divisor == 0)
5779		return (true);
5780
5781	if (dbg_divisor == 1)
5782		return (false);
5783
5784	idx = (uintptr_t)mem >> PAGE_SHIFT;
5785	if (keg->uk_ipers > 1) {
5786		idx *= keg->uk_ipers;
5787		idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize;
5788	}
5789
5790	if ((idx / dbg_divisor) * dbg_divisor != idx) {
5791		counter_u64_add(uma_skip_cnt, 1);
5792		return (true);
5793	}
5794	counter_u64_add(uma_dbg_cnt, 1);
5795
5796	return (false);
5797}
5798
5799/*
5800 * Set up the slab's freei data such that uma_dbg_free can function.
5801 *
5802 */
5803static void
5804uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item)
5805{
5806	uma_keg_t keg;
5807	int freei;
5808
5809	if (slab == NULL) {
5810		slab = uma_dbg_getslab(zone, item);
5811		if (slab == NULL)
5812			panic("uma: item %p did not belong to zone %s",
5813			    item, zone->uz_name);
5814	}
5815	keg = zone->uz_keg;
5816	freei = slab_item_index(slab, keg, item);
5817
5818	if (BIT_TEST_SET_ATOMIC(keg->uk_ipers, freei,
5819	    slab_dbg_bits(slab, keg)))
5820		panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)",
5821		    item, zone, zone->uz_name, slab, freei);
5822}
5823
5824/*
5825 * Verifies freed addresses.  Checks for alignment, valid slab membership
5826 * and duplicate frees.
5827 *
5828 */
5829static void
5830uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item)
5831{
5832	uma_keg_t keg;
5833	int freei;
5834
5835	if (slab == NULL) {
5836		slab = uma_dbg_getslab(zone, item);
5837		if (slab == NULL)
5838			panic("uma: Freed item %p did not belong to zone %s",
5839			    item, zone->uz_name);
5840	}
5841	keg = zone->uz_keg;
5842	freei = slab_item_index(slab, keg, item);
5843
5844	if (freei >= keg->uk_ipers)
5845		panic("Invalid free of %p from zone %p(%s) slab %p(%d)",
5846		    item, zone, zone->uz_name, slab, freei);
5847
5848	if (slab_item(slab, keg, freei) != item)
5849		panic("Unaligned free of %p from zone %p(%s) slab %p(%d)",
5850		    item, zone, zone->uz_name, slab, freei);
5851
5852	if (!BIT_TEST_CLR_ATOMIC(keg->uk_ipers, freei,
5853	    slab_dbg_bits(slab, keg)))
5854		panic("Duplicate free of %p from zone %p(%s) slab %p(%d)",
5855		    item, zone, zone->uz_name, slab, freei);
5856}
5857#endif /* INVARIANTS */
5858
5859#ifdef DDB
5860static int64_t
5861get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used,
5862    uint64_t *sleeps, long *cachefree, uint64_t *xdomain)
5863{
5864	uint64_t frees;
5865	int i;
5866
5867	if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
5868		*allocs = counter_u64_fetch(z->uz_allocs);
5869		frees = counter_u64_fetch(z->uz_frees);
5870		*sleeps = z->uz_sleeps;
5871		*cachefree = 0;
5872		*xdomain = 0;
5873	} else
5874		uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps,
5875		    xdomain);
5876	for (i = 0; i < vm_ndomains; i++) {
5877		*cachefree += ZDOM_GET(z, i)->uzd_nitems;
5878		if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
5879		    (LIST_FIRST(&kz->uk_zones) != z)))
5880			*cachefree += kz->uk_domain[i].ud_free_items;
5881	}
5882	*used = *allocs - frees;
5883	return (((int64_t)*used + *cachefree) * kz->uk_size);
5884}
5885
5886DB_SHOW_COMMAND_FLAGS(uma, db_show_uma, DB_CMD_MEMSAFE)
5887{
5888	const char *fmt_hdr, *fmt_entry;
5889	uma_keg_t kz;
5890	uma_zone_t z;
5891	uint64_t allocs, used, sleeps, xdomain;
5892	long cachefree;
5893	/* variables for sorting */
5894	uma_keg_t cur_keg;
5895	uma_zone_t cur_zone, last_zone;
5896	int64_t cur_size, last_size, size;
5897	int ties;
5898
5899	/* /i option produces machine-parseable CSV output */
5900	if (modif[0] == 'i') {
5901		fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n";
5902		fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n";
5903	} else {
5904		fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n";
5905		fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n";
5906	}
5907
5908	db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests",
5909	    "Sleeps", "Bucket", "Total Mem", "XFree");
5910
5911	/* Sort the zones with largest size first. */
5912	last_zone = NULL;
5913	last_size = INT64_MAX;
5914	for (;;) {
5915		cur_zone = NULL;
5916		cur_size = -1;
5917		ties = 0;
5918		LIST_FOREACH(kz, &uma_kegs, uk_link) {
5919			LIST_FOREACH(z, &kz->uk_zones, uz_link) {
5920				/*
5921				 * In the case of size ties, print out zones
5922				 * in the order they are encountered.  That is,
5923				 * when we encounter the most recently output
5924				 * zone, we have already printed all preceding
5925				 * ties, and we must print all following ties.
5926				 */
5927				if (z == last_zone) {
5928					ties = 1;
5929					continue;
5930				}
5931				size = get_uma_stats(kz, z, &allocs, &used,
5932				    &sleeps, &cachefree, &xdomain);
5933				if (size > cur_size && size < last_size + ties)
5934				{
5935					cur_size = size;
5936					cur_zone = z;
5937					cur_keg = kz;
5938				}
5939			}
5940		}
5941		if (cur_zone == NULL)
5942			break;
5943
5944		size = get_uma_stats(cur_keg, cur_zone, &allocs, &used,
5945		    &sleeps, &cachefree, &xdomain);
5946		db_printf(fmt_entry, cur_zone->uz_name,
5947		    (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree,
5948		    (uintmax_t)allocs, (uintmax_t)sleeps,
5949		    (unsigned)cur_zone->uz_bucket_size, (intmax_t)size,
5950		    xdomain);
5951
5952		if (db_pager_quit)
5953			return;
5954		last_zone = cur_zone;
5955		last_size = cur_size;
5956	}
5957}
5958
5959DB_SHOW_COMMAND_FLAGS(umacache, db_show_umacache, DB_CMD_MEMSAFE)
5960{
5961	uma_zone_t z;
5962	uint64_t allocs, frees;
5963	long cachefree;
5964	int i;
5965
5966	db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free",
5967	    "Requests", "Bucket");
5968	LIST_FOREACH(z, &uma_cachezones, uz_link) {
5969		uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL);
5970		for (i = 0; i < vm_ndomains; i++)
5971			cachefree += ZDOM_GET(z, i)->uzd_nitems;
5972		db_printf("%18s %8ju %8jd %8ld %12ju %8u\n",
5973		    z->uz_name, (uintmax_t)z->uz_size,
5974		    (intmax_t)(allocs - frees), cachefree,
5975		    (uintmax_t)allocs, z->uz_bucket_size);
5976		if (db_pager_quit)
5977			return;
5978	}
5979}
5980#endif	/* DDB */
5981