1/*-
2 * SPDX-License-Identifier: BSD-2-Clause AND BSD-4-Clause
3 *
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31/*-
32 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
33 * Copyright (C) 1995, 1996 TooLs GmbH.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 *    notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 *    notice, this list of conditions and the following disclaimer in the
43 *    documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 *    must display the following acknowledgement:
46 *	This product includes software developed by TooLs GmbH.
47 * 4. The name of TooLs GmbH may not be used to endorse or promote products
48 *    derived from this software without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
51 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
52 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
53 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
54 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
55 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
56 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
57 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
58 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
59 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
60 *
61 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
62 */
63/*-
64 * Copyright (C) 2001 Benno Rice.
65 * All rights reserved.
66 *
67 * Redistribution and use in source and binary forms, with or without
68 * modification, are permitted provided that the following conditions
69 * are met:
70 * 1. Redistributions of source code must retain the above copyright
71 *    notice, this list of conditions and the following disclaimer.
72 * 2. Redistributions in binary form must reproduce the above copyright
73 *    notice, this list of conditions and the following disclaimer in the
74 *    documentation and/or other materials provided with the distribution.
75 *
76 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
77 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
78 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
79 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
80 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
81 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
82 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
83 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
84 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
85 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
86 */
87
88#include <sys/cdefs.h>
89/*
90 * Manages physical address maps.
91 *
92 * Since the information managed by this module is also stored by the
93 * logical address mapping module, this module may throw away valid virtual
94 * to physical mappings at almost any time.  However, invalidations of
95 * mappings must be done as requested.
96 *
97 * In order to cope with hardware architectures which make virtual to
98 * physical map invalidates expensive, this module may delay invalidate
99 * reduced protection operations until such time as they are actually
100 * necessary.  This module is given full information as to which processors
101 * are currently using which maps, and to when physical maps must be made
102 * correct.
103 */
104
105#include "opt_kstack_pages.h"
106
107#include <sys/param.h>
108#include <sys/kernel.h>
109#include <sys/conf.h>
110#include <sys/queue.h>
111#include <sys/cpuset.h>
112#include <sys/kerneldump.h>
113#include <sys/ktr.h>
114#include <sys/lock.h>
115#include <sys/mman.h>
116#include <sys/msgbuf.h>
117#include <sys/mutex.h>
118#include <sys/proc.h>
119#include <sys/rwlock.h>
120#include <sys/sched.h>
121#include <sys/sysctl.h>
122#include <sys/systm.h>
123#include <sys/vmmeter.h>
124
125#include <dev/ofw/openfirm.h>
126
127#include <vm/vm.h>
128#include <vm/pmap.h>
129#include <vm/vm_param.h>
130#include <vm/vm_kern.h>
131#include <vm/vm_page.h>
132#include <vm/vm_map.h>
133#include <vm/vm_object.h>
134#include <vm/vm_extern.h>
135#include <vm/vm_page.h>
136#include <vm/vm_phys.h>
137#include <vm/vm_pageout.h>
138#include <vm/uma.h>
139
140#include <machine/cpu.h>
141#include <machine/platform.h>
142#include <machine/bat.h>
143#include <machine/frame.h>
144#include <machine/md_var.h>
145#include <machine/psl.h>
146#include <machine/pte.h>
147#include <machine/smp.h>
148#include <machine/sr.h>
149#include <machine/mmuvar.h>
150#include <machine/trap.h>
151
152#define	MOEA_DEBUG
153
154#define TODO	panic("%s: not implemented", __func__);
155
156#define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
157#define	VSID_TO_SR(vsid)	((vsid) & 0xf)
158#define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
159
160/* Get physical address from PVO. */
161#define PVO_PADDR(pvo)		((pvo)->pvo_pte.pte.pte_lo & PTE_RPGN)
162
163struct ofw_map {
164	vm_offset_t	om_va;
165	vm_size_t	om_len;
166	vm_offset_t	om_pa;
167	u_int		om_mode;
168};
169
170extern unsigned char _etext[];
171extern unsigned char _end[];
172
173/*
174 * Map of physical memory regions.
175 */
176static struct	mem_region *regions;
177static struct	mem_region *pregions;
178static u_int    phys_avail_count;
179static int	regions_sz, pregions_sz;
180static struct	ofw_map *translations;
181
182/*
183 * Lock for the pteg and pvo tables.
184 */
185struct mtx	moea_table_mutex;
186struct mtx	moea_vsid_mutex;
187
188/* tlbie instruction synchronization */
189static struct mtx tlbie_mtx;
190
191/*
192 * PTEG data.
193 */
194static struct	pteg *moea_pteg_table;
195u_int		moea_pteg_count;
196u_int		moea_pteg_mask;
197
198/*
199 * PVO data.
200 */
201struct	pvo_head *moea_pvo_table;		/* pvo entries by pteg index */
202struct	pvo_head moea_pvo_kunmanaged =
203    LIST_HEAD_INITIALIZER(moea_pvo_kunmanaged);	/* list of unmanaged pages */
204
205static struct rwlock_padalign pvh_global_lock;
206
207uma_zone_t	moea_upvo_zone;	/* zone for pvo entries for unmanaged pages */
208uma_zone_t	moea_mpvo_zone;	/* zone for pvo entries for managed pages */
209
210#define	BPVO_POOL_SIZE	32768
211static struct	pvo_entry *moea_bpvo_pool;
212static int	moea_bpvo_pool_index = 0;
213
214#define	VSID_NBPW	(sizeof(u_int32_t) * 8)
215static u_int	moea_vsid_bitmap[NPMAPS / VSID_NBPW];
216
217static bool	moea_initialized = false;
218
219/*
220 * Statistics.
221 */
222u_int	moea_pte_valid = 0;
223u_int	moea_pte_overflow = 0;
224u_int	moea_pte_replacements = 0;
225u_int	moea_pvo_entries = 0;
226u_int	moea_pvo_enter_calls = 0;
227u_int	moea_pvo_remove_calls = 0;
228u_int	moea_pte_spills = 0;
229SYSCTL_INT(_machdep, OID_AUTO, moea_pte_valid, CTLFLAG_RD, &moea_pte_valid,
230    0, "");
231SYSCTL_INT(_machdep, OID_AUTO, moea_pte_overflow, CTLFLAG_RD,
232    &moea_pte_overflow, 0, "");
233SYSCTL_INT(_machdep, OID_AUTO, moea_pte_replacements, CTLFLAG_RD,
234    &moea_pte_replacements, 0, "");
235SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_entries, CTLFLAG_RD, &moea_pvo_entries,
236    0, "");
237SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_enter_calls, CTLFLAG_RD,
238    &moea_pvo_enter_calls, 0, "");
239SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_remove_calls, CTLFLAG_RD,
240    &moea_pvo_remove_calls, 0, "");
241SYSCTL_INT(_machdep, OID_AUTO, moea_pte_spills, CTLFLAG_RD,
242    &moea_pte_spills, 0, "");
243
244/*
245 * Allocate physical memory for use in moea_bootstrap.
246 */
247static vm_offset_t	moea_bootstrap_alloc(vm_size_t, u_int);
248
249/*
250 * PTE calls.
251 */
252static int		moea_pte_insert(u_int, struct pte *);
253
254/*
255 * PVO calls.
256 */
257static int	moea_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
258		    vm_offset_t, vm_paddr_t, u_int, int);
259static void	moea_pvo_remove(struct pvo_entry *, int);
260static struct	pvo_entry *moea_pvo_find_va(pmap_t, vm_offset_t, int *);
261static struct	pte *moea_pvo_to_pte(const struct pvo_entry *, int);
262
263/*
264 * Utility routines.
265 */
266static int		moea_enter_locked(pmap_t, vm_offset_t, vm_page_t,
267			    vm_prot_t, u_int, int8_t);
268static void		moea_syncicache(vm_paddr_t, vm_size_t);
269static bool		moea_query_bit(vm_page_t, int);
270static u_int		moea_clear_bit(vm_page_t, int);
271static void		moea_kremove(vm_offset_t);
272int		moea_pte_spill(vm_offset_t);
273
274/*
275 * Kernel MMU interface
276 */
277void moea_clear_modify(vm_page_t);
278void moea_copy_page(vm_page_t, vm_page_t);
279void moea_copy_pages(vm_page_t *ma, vm_offset_t a_offset,
280    vm_page_t *mb, vm_offset_t b_offset, int xfersize);
281int moea_enter(pmap_t, vm_offset_t, vm_page_t, vm_prot_t, u_int,
282    int8_t);
283void moea_enter_object(pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
284    vm_prot_t);
285void moea_enter_quick(pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
286vm_paddr_t moea_extract(pmap_t, vm_offset_t);
287vm_page_t moea_extract_and_hold(pmap_t, vm_offset_t, vm_prot_t);
288void moea_init(void);
289bool moea_is_modified(vm_page_t);
290bool moea_is_prefaultable(pmap_t, vm_offset_t);
291bool moea_is_referenced(vm_page_t);
292int moea_ts_referenced(vm_page_t);
293vm_offset_t moea_map(vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
294static int moea_mincore(pmap_t, vm_offset_t, vm_paddr_t *);
295bool moea_page_exists_quick(pmap_t, vm_page_t);
296void moea_page_init(vm_page_t);
297int moea_page_wired_mappings(vm_page_t);
298int moea_pinit(pmap_t);
299void moea_pinit0(pmap_t);
300void moea_protect(pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
301void moea_qenter(vm_offset_t, vm_page_t *, int);
302void moea_qremove(vm_offset_t, int);
303void moea_release(pmap_t);
304void moea_remove(pmap_t, vm_offset_t, vm_offset_t);
305void moea_remove_all(vm_page_t);
306void moea_remove_write(vm_page_t);
307void moea_unwire(pmap_t, vm_offset_t, vm_offset_t);
308void moea_zero_page(vm_page_t);
309void moea_zero_page_area(vm_page_t, int, int);
310void moea_activate(struct thread *);
311void moea_deactivate(struct thread *);
312void moea_cpu_bootstrap(int);
313void moea_bootstrap(vm_offset_t, vm_offset_t);
314void *moea_mapdev(vm_paddr_t, vm_size_t);
315void *moea_mapdev_attr(vm_paddr_t, vm_size_t, vm_memattr_t);
316void moea_unmapdev(void *, vm_size_t);
317vm_paddr_t moea_kextract(vm_offset_t);
318void moea_kenter_attr(vm_offset_t, vm_paddr_t, vm_memattr_t);
319void moea_kenter(vm_offset_t, vm_paddr_t);
320void moea_page_set_memattr(vm_page_t m, vm_memattr_t ma);
321int moea_dev_direct_mapped(vm_paddr_t, vm_size_t);
322static void moea_sync_icache(pmap_t, vm_offset_t, vm_size_t);
323void moea_dumpsys_map(vm_paddr_t pa, size_t sz, void **va);
324void moea_scan_init(void);
325vm_offset_t moea_quick_enter_page(vm_page_t m);
326void moea_quick_remove_page(vm_offset_t addr);
327bool moea_page_is_mapped(vm_page_t m);
328bool moea_ps_enabled(pmap_t pmap);
329static int moea_map_user_ptr(pmap_t pm,
330    volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen);
331static int moea_decode_kernel_ptr(vm_offset_t addr,
332    int *is_user, vm_offset_t *decoded_addr);
333
334static struct pmap_funcs moea_methods = {
335	.clear_modify = moea_clear_modify,
336	.copy_page = moea_copy_page,
337	.copy_pages = moea_copy_pages,
338	.enter = moea_enter,
339	.enter_object = moea_enter_object,
340	.enter_quick = moea_enter_quick,
341	.extract = moea_extract,
342	.extract_and_hold = moea_extract_and_hold,
343	.init = moea_init,
344	.is_modified = moea_is_modified,
345	.is_prefaultable = moea_is_prefaultable,
346	.is_referenced = moea_is_referenced,
347	.ts_referenced = moea_ts_referenced,
348	.map =      		moea_map,
349	.page_exists_quick = moea_page_exists_quick,
350	.page_init = moea_page_init,
351	.page_wired_mappings = moea_page_wired_mappings,
352	.pinit = moea_pinit,
353	.pinit0 = moea_pinit0,
354	.protect = moea_protect,
355	.qenter = moea_qenter,
356	.qremove = moea_qremove,
357	.release = moea_release,
358	.remove = moea_remove,
359	.remove_all = moea_remove_all,
360	.mincore = moea_mincore,
361	.remove_write = moea_remove_write,
362	.sync_icache = moea_sync_icache,
363	.unwire = moea_unwire,
364	.zero_page =        	moea_zero_page,
365	.zero_page_area = moea_zero_page_area,
366	.activate = moea_activate,
367	.deactivate =       	moea_deactivate,
368	.page_set_memattr = moea_page_set_memattr,
369	.quick_enter_page =  moea_quick_enter_page,
370	.quick_remove_page =  moea_quick_remove_page,
371	.page_is_mapped = moea_page_is_mapped,
372	.ps_enabled = moea_ps_enabled,
373
374	/* Internal interfaces */
375	.bootstrap =        	moea_bootstrap,
376	.cpu_bootstrap =    	moea_cpu_bootstrap,
377	.mapdev_attr = moea_mapdev_attr,
378	.mapdev = moea_mapdev,
379	.unmapdev = moea_unmapdev,
380	.kextract = moea_kextract,
381	.kenter = moea_kenter,
382	.kenter_attr = moea_kenter_attr,
383	.dev_direct_mapped = moea_dev_direct_mapped,
384	.dumpsys_pa_init = moea_scan_init,
385	.dumpsys_map_chunk = moea_dumpsys_map,
386	.map_user_ptr = moea_map_user_ptr,
387	.decode_kernel_ptr =  moea_decode_kernel_ptr,
388};
389
390MMU_DEF(oea_mmu, MMU_TYPE_OEA, moea_methods);
391
392static __inline uint32_t
393moea_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
394{
395	uint32_t pte_lo;
396	int i;
397
398	if (ma != VM_MEMATTR_DEFAULT) {
399		switch (ma) {
400		case VM_MEMATTR_UNCACHEABLE:
401			return (PTE_I | PTE_G);
402		case VM_MEMATTR_CACHEABLE:
403			return (PTE_M);
404		case VM_MEMATTR_WRITE_COMBINING:
405		case VM_MEMATTR_WRITE_BACK:
406		case VM_MEMATTR_PREFETCHABLE:
407			return (PTE_I);
408		case VM_MEMATTR_WRITE_THROUGH:
409			return (PTE_W | PTE_M);
410		}
411	}
412
413	/*
414	 * Assume the page is cache inhibited and access is guarded unless
415	 * it's in our available memory array.
416	 */
417	pte_lo = PTE_I | PTE_G;
418	for (i = 0; i < pregions_sz; i++) {
419		if ((pa >= pregions[i].mr_start) &&
420		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
421			pte_lo = PTE_M;
422			break;
423		}
424	}
425
426	return pte_lo;
427}
428
429/*
430 * Translate OFW translations into VM attributes.
431 */
432static __inline vm_memattr_t
433moea_bootstrap_convert_wimg(uint32_t mode)
434{
435
436	switch (mode) {
437	case (PTE_I | PTE_G):
438		/* PCI device memory */
439		return VM_MEMATTR_UNCACHEABLE;
440	case (PTE_M):
441		/* Explicitly coherent */
442		return VM_MEMATTR_CACHEABLE;
443	case 0: /* Default claim */
444	case 2: /* Alternate PP bits set by OF for the original payload */
445		/* "Normal" memory. */
446		return VM_MEMATTR_DEFAULT;
447
448	default:
449		/* Err on the side of caution for unknowns */
450		/* XXX should we panic instead? */
451		return VM_MEMATTR_UNCACHEABLE;
452	}
453}
454
455static void
456tlbie(vm_offset_t va)
457{
458
459	mtx_lock_spin(&tlbie_mtx);
460	__asm __volatile("ptesync");
461	__asm __volatile("tlbie %0" :: "r"(va));
462	__asm __volatile("eieio; tlbsync; ptesync");
463	mtx_unlock_spin(&tlbie_mtx);
464}
465
466static void
467tlbia(void)
468{
469	vm_offset_t va;
470
471	for (va = 0; va < 0x00040000; va += 0x00001000) {
472		__asm __volatile("tlbie %0" :: "r"(va));
473		powerpc_sync();
474	}
475	__asm __volatile("tlbsync");
476	powerpc_sync();
477}
478
479static __inline int
480va_to_sr(u_int *sr, vm_offset_t va)
481{
482	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
483}
484
485static __inline u_int
486va_to_pteg(u_int sr, vm_offset_t addr)
487{
488	u_int hash;
489
490	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
491	    ADDR_PIDX_SHFT);
492	return (hash & moea_pteg_mask);
493}
494
495static __inline struct pvo_head *
496vm_page_to_pvoh(vm_page_t m)
497{
498
499	return (&m->md.mdpg_pvoh);
500}
501
502static __inline void
503moea_attr_clear(vm_page_t m, int ptebit)
504{
505
506	rw_assert(&pvh_global_lock, RA_WLOCKED);
507	m->md.mdpg_attrs &= ~ptebit;
508}
509
510static __inline int
511moea_attr_fetch(vm_page_t m)
512{
513
514	return (m->md.mdpg_attrs);
515}
516
517static __inline void
518moea_attr_save(vm_page_t m, int ptebit)
519{
520
521	rw_assert(&pvh_global_lock, RA_WLOCKED);
522	m->md.mdpg_attrs |= ptebit;
523}
524
525static __inline int
526moea_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
527{
528	if (pt->pte_hi == pvo_pt->pte_hi)
529		return (1);
530
531	return (0);
532}
533
534static __inline int
535moea_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
536{
537	return (pt->pte_hi & ~PTE_VALID) ==
538	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
539	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
540}
541
542static __inline void
543moea_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
544{
545
546	mtx_assert(&moea_table_mutex, MA_OWNED);
547
548	/*
549	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
550	 * set when the real pte is set in memory.
551	 *
552	 * Note: Don't set the valid bit for correct operation of tlb update.
553	 */
554	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
555	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
556	pt->pte_lo = pte_lo;
557}
558
559static __inline void
560moea_pte_synch(struct pte *pt, struct pte *pvo_pt)
561{
562
563	mtx_assert(&moea_table_mutex, MA_OWNED);
564	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
565}
566
567static __inline void
568moea_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
569{
570
571	mtx_assert(&moea_table_mutex, MA_OWNED);
572
573	/*
574	 * As shown in Section 7.6.3.2.3
575	 */
576	pt->pte_lo &= ~ptebit;
577	tlbie(va);
578}
579
580static __inline void
581moea_pte_set(struct pte *pt, struct pte *pvo_pt)
582{
583
584	mtx_assert(&moea_table_mutex, MA_OWNED);
585	pvo_pt->pte_hi |= PTE_VALID;
586
587	/*
588	 * Update the PTE as defined in section 7.6.3.1.
589	 * Note that the REF/CHG bits are from pvo_pt and thus should have
590	 * been saved so this routine can restore them (if desired).
591	 */
592	pt->pte_lo = pvo_pt->pte_lo;
593	powerpc_sync();
594	pt->pte_hi = pvo_pt->pte_hi;
595	powerpc_sync();
596	moea_pte_valid++;
597}
598
599static __inline void
600moea_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
601{
602
603	mtx_assert(&moea_table_mutex, MA_OWNED);
604	pvo_pt->pte_hi &= ~PTE_VALID;
605
606	/*
607	 * Force the reg & chg bits back into the PTEs.
608	 */
609	powerpc_sync();
610
611	/*
612	 * Invalidate the pte.
613	 */
614	pt->pte_hi &= ~PTE_VALID;
615
616	tlbie(va);
617
618	/*
619	 * Save the reg & chg bits.
620	 */
621	moea_pte_synch(pt, pvo_pt);
622	moea_pte_valid--;
623}
624
625static __inline void
626moea_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
627{
628
629	/*
630	 * Invalidate the PTE
631	 */
632	moea_pte_unset(pt, pvo_pt, va);
633	moea_pte_set(pt, pvo_pt);
634}
635
636/*
637 * Quick sort callout for comparing memory regions.
638 */
639static int	om_cmp(const void *a, const void *b);
640
641static int
642om_cmp(const void *a, const void *b)
643{
644	const struct	ofw_map *mapa;
645	const struct	ofw_map *mapb;
646
647	mapa = a;
648	mapb = b;
649	if (mapa->om_pa < mapb->om_pa)
650		return (-1);
651	else if (mapa->om_pa > mapb->om_pa)
652		return (1);
653	else
654		return (0);
655}
656
657void
658moea_cpu_bootstrap(int ap)
659{
660	u_int sdr;
661	int i;
662
663	if (ap) {
664		powerpc_sync();
665		__asm __volatile("mtdbatu 0,%0" :: "r"(battable[0].batu));
666		__asm __volatile("mtdbatl 0,%0" :: "r"(battable[0].batl));
667		isync();
668		__asm __volatile("mtibatu 0,%0" :: "r"(battable[0].batu));
669		__asm __volatile("mtibatl 0,%0" :: "r"(battable[0].batl));
670		isync();
671	}
672
673	__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
674	__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
675	isync();
676
677	__asm __volatile("mtibatu 1,%0" :: "r"(0));
678	__asm __volatile("mtdbatu 2,%0" :: "r"(0));
679	__asm __volatile("mtibatu 2,%0" :: "r"(0));
680	__asm __volatile("mtdbatu 3,%0" :: "r"(0));
681	__asm __volatile("mtibatu 3,%0" :: "r"(0));
682	isync();
683
684	for (i = 0; i < 16; i++)
685		mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]);
686	powerpc_sync();
687
688	sdr = (u_int)moea_pteg_table | (moea_pteg_mask >> 10);
689	__asm __volatile("mtsdr1 %0" :: "r"(sdr));
690	isync();
691
692	tlbia();
693}
694
695void
696moea_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
697{
698	ihandle_t	mmui;
699	phandle_t	chosen, mmu;
700	int		sz;
701	int		i, j;
702	vm_size_t	size, physsz, hwphyssz;
703	vm_offset_t	pa, va, off;
704	void		*dpcpu;
705
706	/*
707	 * Map PCI memory space.
708	 */
709	battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
710	battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
711
712	battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
713	battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
714
715	battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
716	battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
717
718	battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
719	battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
720
721	powerpc_sync();
722
723	/* map pci space */
724	__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
725	__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
726	isync();
727
728	/* set global direct map flag */
729	hw_direct_map = 1;
730
731	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
732	CTR0(KTR_PMAP, "moea_bootstrap: physical memory");
733
734	for (i = 0; i < pregions_sz; i++) {
735		vm_offset_t pa;
736		vm_offset_t end;
737
738		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
739			pregions[i].mr_start,
740			pregions[i].mr_start + pregions[i].mr_size,
741			pregions[i].mr_size);
742		/*
743		 * Install entries into the BAT table to allow all
744		 * of physmem to be convered by on-demand BAT entries.
745		 * The loop will sometimes set the same battable element
746		 * twice, but that's fine since they won't be used for
747		 * a while yet.
748		 */
749		pa = pregions[i].mr_start & 0xf0000000;
750		end = pregions[i].mr_start + pregions[i].mr_size;
751		do {
752                        u_int n = pa >> ADDR_SR_SHFT;
753
754			battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
755			battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
756			pa += SEGMENT_LENGTH;
757		} while (pa < end);
758	}
759
760	if (PHYS_AVAIL_ENTRIES < regions_sz)
761		panic("moea_bootstrap: phys_avail too small");
762
763	phys_avail_count = 0;
764	physsz = 0;
765	hwphyssz = 0;
766	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
767	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
768		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
769		    regions[i].mr_start + regions[i].mr_size,
770		    regions[i].mr_size);
771		if (hwphyssz != 0 &&
772		    (physsz + regions[i].mr_size) >= hwphyssz) {
773			if (physsz < hwphyssz) {
774				phys_avail[j] = regions[i].mr_start;
775				phys_avail[j + 1] = regions[i].mr_start +
776				    hwphyssz - physsz;
777				physsz = hwphyssz;
778				phys_avail_count++;
779			}
780			break;
781		}
782		phys_avail[j] = regions[i].mr_start;
783		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
784		phys_avail_count++;
785		physsz += regions[i].mr_size;
786	}
787
788	/* Check for overlap with the kernel and exception vectors */
789	for (j = 0; j < 2*phys_avail_count; j+=2) {
790		if (phys_avail[j] < EXC_LAST)
791			phys_avail[j] += EXC_LAST;
792
793		if (kernelstart >= phys_avail[j] &&
794		    kernelstart < phys_avail[j+1]) {
795			if (kernelend < phys_avail[j+1]) {
796				phys_avail[2*phys_avail_count] =
797				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
798				phys_avail[2*phys_avail_count + 1] =
799				    phys_avail[j+1];
800				phys_avail_count++;
801			}
802
803			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
804		}
805
806		if (kernelend >= phys_avail[j] &&
807		    kernelend < phys_avail[j+1]) {
808			if (kernelstart > phys_avail[j]) {
809				phys_avail[2*phys_avail_count] = phys_avail[j];
810				phys_avail[2*phys_avail_count + 1] =
811				    kernelstart & ~PAGE_MASK;
812				phys_avail_count++;
813			}
814
815			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
816		}
817	}
818
819	physmem = btoc(physsz);
820
821	/*
822	 * Allocate PTEG table.
823	 */
824#ifdef PTEGCOUNT
825	moea_pteg_count = PTEGCOUNT;
826#else
827	moea_pteg_count = 0x1000;
828
829	while (moea_pteg_count < physmem)
830		moea_pteg_count <<= 1;
831
832	moea_pteg_count >>= 1;
833#endif /* PTEGCOUNT */
834
835	size = moea_pteg_count * sizeof(struct pteg);
836	CTR2(KTR_PMAP, "moea_bootstrap: %d PTEGs, %d bytes", moea_pteg_count,
837	    size);
838	moea_pteg_table = (struct pteg *)moea_bootstrap_alloc(size, size);
839	CTR1(KTR_PMAP, "moea_bootstrap: PTEG table at %p", moea_pteg_table);
840	bzero((void *)moea_pteg_table, moea_pteg_count * sizeof(struct pteg));
841	moea_pteg_mask = moea_pteg_count - 1;
842
843	/*
844	 * Allocate pv/overflow lists.
845	 */
846	size = sizeof(struct pvo_head) * moea_pteg_count;
847	moea_pvo_table = (struct pvo_head *)moea_bootstrap_alloc(size,
848	    PAGE_SIZE);
849	CTR1(KTR_PMAP, "moea_bootstrap: PVO table at %p", moea_pvo_table);
850	for (i = 0; i < moea_pteg_count; i++)
851		LIST_INIT(&moea_pvo_table[i]);
852
853	/*
854	 * Initialize the lock that synchronizes access to the pteg and pvo
855	 * tables.
856	 */
857	mtx_init(&moea_table_mutex, "pmap table", NULL, MTX_DEF |
858	    MTX_RECURSE);
859	mtx_init(&moea_vsid_mutex, "VSID table", NULL, MTX_DEF);
860
861	mtx_init(&tlbie_mtx, "tlbie", NULL, MTX_SPIN);
862
863	/*
864	 * Initialise the unmanaged pvo pool.
865	 */
866	moea_bpvo_pool = (struct pvo_entry *)moea_bootstrap_alloc(
867		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
868	moea_bpvo_pool_index = 0;
869
870	/*
871	 * Make sure kernel vsid is allocated as well as VSID 0.
872	 */
873	moea_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
874		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
875	moea_vsid_bitmap[0] |= 1;
876
877	/*
878	 * Initialize the kernel pmap (which is statically allocated).
879	 */
880	PMAP_LOCK_INIT(kernel_pmap);
881	for (i = 0; i < 16; i++)
882		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
883	CPU_FILL(&kernel_pmap->pm_active);
884	RB_INIT(&kernel_pmap->pmap_pvo);
885
886 	/*
887	 * Initialize the global pv list lock.
888	 */
889	rw_init(&pvh_global_lock, "pmap pv global");
890
891	/*
892	 * Set up the Open Firmware mappings
893	 */
894	chosen = OF_finddevice("/chosen");
895	if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1 &&
896	    (mmu = OF_instance_to_package(mmui)) != -1 &&
897	    (sz = OF_getproplen(mmu, "translations")) != -1) {
898		translations = NULL;
899		for (i = 0; phys_avail[i] != 0; i += 2) {
900			if (phys_avail[i + 1] >= sz) {
901				translations = (struct ofw_map *)phys_avail[i];
902				break;
903			}
904		}
905		if (translations == NULL)
906			panic("moea_bootstrap: no space to copy translations");
907		bzero(translations, sz);
908		if (OF_getprop(mmu, "translations", translations, sz) == -1)
909			panic("moea_bootstrap: can't get ofw translations");
910		CTR0(KTR_PMAP, "moea_bootstrap: translations");
911		sz /= sizeof(*translations);
912		qsort(translations, sz, sizeof (*translations), om_cmp);
913		for (i = 0; i < sz; i++) {
914			CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
915			    translations[i].om_pa, translations[i].om_va,
916			    translations[i].om_len);
917
918			/*
919			 * If the mapping is 1:1, let the RAM and device
920			 * on-demand BAT tables take care of the translation.
921			 *
922			 * However, always enter mappings for segment 16,
923			 * which is mixed-protection and therefore not
924			 * compatible with a BAT entry.
925			 */
926			if ((translations[i].om_va >> ADDR_SR_SHFT) != 0xf &&
927				translations[i].om_va == translations[i].om_pa)
928					continue;
929
930			/* Enter the pages */
931			for (off = 0; off < translations[i].om_len;
932			    off += PAGE_SIZE)
933				moea_kenter_attr(translations[i].om_va + off,
934				    translations[i].om_pa + off,
935				    moea_bootstrap_convert_wimg(translations[i].om_mode));
936		}
937	}
938
939	/*
940	 * Calculate the last available physical address.
941	 */
942	for (i = 0; phys_avail[i + 2] != 0; i += 2)
943		;
944	Maxmem = powerpc_btop(phys_avail[i + 1]);
945
946	moea_cpu_bootstrap(0);
947	mtmsr(mfmsr() | PSL_DR | PSL_IR);
948	pmap_bootstrapped++;
949
950	/*
951	 * Set the start and end of kva.
952	 */
953	virtual_avail = VM_MIN_KERNEL_ADDRESS;
954	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
955
956	/*
957	 * Allocate a kernel stack with a guard page for thread0 and map it
958	 * into the kernel page map.
959	 */
960	pa = moea_bootstrap_alloc(kstack_pages * PAGE_SIZE, PAGE_SIZE);
961	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
962	virtual_avail = va + kstack_pages * PAGE_SIZE;
963	CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va);
964	thread0.td_kstack = va;
965	thread0.td_kstack_pages = kstack_pages;
966	for (i = 0; i < kstack_pages; i++) {
967		moea_kenter(va, pa);
968		pa += PAGE_SIZE;
969		va += PAGE_SIZE;
970	}
971
972	/*
973	 * Allocate virtual address space for the message buffer.
974	 */
975	pa = msgbuf_phys = moea_bootstrap_alloc(msgbufsize, PAGE_SIZE);
976	msgbufp = (struct msgbuf *)virtual_avail;
977	va = virtual_avail;
978	virtual_avail += round_page(msgbufsize);
979	while (va < virtual_avail) {
980		moea_kenter(va, pa);
981		pa += PAGE_SIZE;
982		va += PAGE_SIZE;
983	}
984
985	/*
986	 * Allocate virtual address space for the dynamic percpu area.
987	 */
988	pa = moea_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
989	dpcpu = (void *)virtual_avail;
990	va = virtual_avail;
991	virtual_avail += DPCPU_SIZE;
992	while (va < virtual_avail) {
993		moea_kenter(va, pa);
994		pa += PAGE_SIZE;
995		va += PAGE_SIZE;
996	}
997	dpcpu_init(dpcpu, 0);
998}
999
1000/*
1001 * Activate a user pmap.  The pmap must be activated before it's address
1002 * space can be accessed in any way.
1003 */
1004void
1005moea_activate(struct thread *td)
1006{
1007	pmap_t	pm, pmr;
1008
1009	/*
1010	 * Load all the data we need up front to encourage the compiler to
1011	 * not issue any loads while we have interrupts disabled below.
1012	 */
1013	pm = &td->td_proc->p_vmspace->vm_pmap;
1014	pmr = pm->pmap_phys;
1015
1016	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1017	PCPU_SET(curpmap, pmr);
1018
1019	mtsrin(USER_SR << ADDR_SR_SHFT, td->td_pcb->pcb_cpu.aim.usr_vsid);
1020}
1021
1022void
1023moea_deactivate(struct thread *td)
1024{
1025	pmap_t	pm;
1026
1027	pm = &td->td_proc->p_vmspace->vm_pmap;
1028	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1029	PCPU_SET(curpmap, NULL);
1030}
1031
1032void
1033moea_unwire(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1034{
1035	struct	pvo_entry key, *pvo;
1036
1037	PMAP_LOCK(pm);
1038	key.pvo_vaddr = sva;
1039	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1040	    pvo != NULL && PVO_VADDR(pvo) < eva;
1041	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
1042		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1043			panic("moea_unwire: pvo %p is missing PVO_WIRED", pvo);
1044		pvo->pvo_vaddr &= ~PVO_WIRED;
1045		pm->pm_stats.wired_count--;
1046	}
1047	PMAP_UNLOCK(pm);
1048}
1049
1050void
1051moea_copy_page(vm_page_t msrc, vm_page_t mdst)
1052{
1053	vm_offset_t	dst;
1054	vm_offset_t	src;
1055
1056	dst = VM_PAGE_TO_PHYS(mdst);
1057	src = VM_PAGE_TO_PHYS(msrc);
1058
1059	bcopy((void *)src, (void *)dst, PAGE_SIZE);
1060}
1061
1062void
1063moea_copy_pages(vm_page_t *ma, vm_offset_t a_offset,
1064    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1065{
1066	void *a_cp, *b_cp;
1067	vm_offset_t a_pg_offset, b_pg_offset;
1068	int cnt;
1069
1070	while (xfersize > 0) {
1071		a_pg_offset = a_offset & PAGE_MASK;
1072		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1073		a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) +
1074		    a_pg_offset;
1075		b_pg_offset = b_offset & PAGE_MASK;
1076		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1077		b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) +
1078		    b_pg_offset;
1079		bcopy(a_cp, b_cp, cnt);
1080		a_offset += cnt;
1081		b_offset += cnt;
1082		xfersize -= cnt;
1083	}
1084}
1085
1086/*
1087 * Zero a page of physical memory by temporarily mapping it into the tlb.
1088 */
1089void
1090moea_zero_page(vm_page_t m)
1091{
1092	vm_offset_t off, pa = VM_PAGE_TO_PHYS(m);
1093
1094	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1095		__asm __volatile("dcbz 0,%0" :: "r"(pa + off));
1096}
1097
1098void
1099moea_zero_page_area(vm_page_t m, int off, int size)
1100{
1101	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1102	void *va = (void *)(pa + off);
1103
1104	bzero(va, size);
1105}
1106
1107vm_offset_t
1108moea_quick_enter_page(vm_page_t m)
1109{
1110
1111	return (VM_PAGE_TO_PHYS(m));
1112}
1113
1114void
1115moea_quick_remove_page(vm_offset_t addr)
1116{
1117}
1118
1119bool
1120moea_page_is_mapped(vm_page_t m)
1121{
1122	return (!LIST_EMPTY(&(m)->md.mdpg_pvoh));
1123}
1124
1125bool
1126moea_ps_enabled(pmap_t pmap __unused)
1127{
1128	return (false);
1129}
1130
1131/*
1132 * Map the given physical page at the specified virtual address in the
1133 * target pmap with the protection requested.  If specified the page
1134 * will be wired down.
1135 */
1136int
1137moea_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1138    u_int flags, int8_t psind)
1139{
1140	int error;
1141
1142	for (;;) {
1143		rw_wlock(&pvh_global_lock);
1144		PMAP_LOCK(pmap);
1145		error = moea_enter_locked(pmap, va, m, prot, flags, psind);
1146		rw_wunlock(&pvh_global_lock);
1147		PMAP_UNLOCK(pmap);
1148		if (error != ENOMEM)
1149			return (KERN_SUCCESS);
1150		if ((flags & PMAP_ENTER_NOSLEEP) != 0)
1151			return (KERN_RESOURCE_SHORTAGE);
1152		VM_OBJECT_ASSERT_UNLOCKED(m->object);
1153		vm_wait(NULL);
1154	}
1155}
1156
1157/*
1158 * Map the given physical page at the specified virtual address in the
1159 * target pmap with the protection requested.  If specified the page
1160 * will be wired down.
1161 *
1162 * The global pvh and pmap must be locked.
1163 */
1164static int
1165moea_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1166    u_int flags, int8_t psind __unused)
1167{
1168	struct		pvo_head *pvo_head;
1169	uma_zone_t	zone;
1170	u_int		pte_lo, pvo_flags;
1171	int		error;
1172
1173	if (pmap_bootstrapped)
1174		rw_assert(&pvh_global_lock, RA_WLOCKED);
1175	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1176	if ((m->oflags & VPO_UNMANAGED) == 0) {
1177		if ((flags & PMAP_ENTER_QUICK_LOCKED) == 0)
1178			VM_PAGE_OBJECT_BUSY_ASSERT(m);
1179		else
1180			VM_OBJECT_ASSERT_LOCKED(m->object);
1181	}
1182
1183	if ((m->oflags & VPO_UNMANAGED) != 0 || !moea_initialized) {
1184		pvo_head = &moea_pvo_kunmanaged;
1185		zone = moea_upvo_zone;
1186		pvo_flags = 0;
1187	} else {
1188		pvo_head = vm_page_to_pvoh(m);
1189		zone = moea_mpvo_zone;
1190		pvo_flags = PVO_MANAGED;
1191	}
1192
1193	pte_lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1194
1195	if (prot & VM_PROT_WRITE) {
1196		pte_lo |= PTE_BW;
1197		if (pmap_bootstrapped &&
1198		    (m->oflags & VPO_UNMANAGED) == 0)
1199			vm_page_aflag_set(m, PGA_WRITEABLE);
1200	} else
1201		pte_lo |= PTE_BR;
1202
1203	if ((flags & PMAP_ENTER_WIRED) != 0)
1204		pvo_flags |= PVO_WIRED;
1205
1206	error = moea_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1207	    pte_lo, pvo_flags);
1208
1209	/*
1210	 * Flush the real page from the instruction cache. This has be done
1211	 * for all user mappings to prevent information leakage via the
1212	 * instruction cache. moea_pvo_enter() returns ENOENT for the first
1213	 * mapping for a page.
1214	 */
1215	if (pmap != kernel_pmap && error == ENOENT &&
1216	    (pte_lo & (PTE_I | PTE_G)) == 0)
1217		moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1218
1219	return (error);
1220}
1221
1222/*
1223 * Maps a sequence of resident pages belonging to the same object.
1224 * The sequence begins with the given page m_start.  This page is
1225 * mapped at the given virtual address start.  Each subsequent page is
1226 * mapped at a virtual address that is offset from start by the same
1227 * amount as the page is offset from m_start within the object.  The
1228 * last page in the sequence is the page with the largest offset from
1229 * m_start that can be mapped at a virtual address less than the given
1230 * virtual address end.  Not every virtual page between start and end
1231 * is mapped; only those for which a resident page exists with the
1232 * corresponding offset from m_start are mapped.
1233 */
1234void
1235moea_enter_object(pmap_t pm, vm_offset_t start, vm_offset_t end,
1236    vm_page_t m_start, vm_prot_t prot)
1237{
1238	vm_page_t m;
1239	vm_pindex_t diff, psize;
1240
1241	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1242
1243	psize = atop(end - start);
1244	m = m_start;
1245	rw_wlock(&pvh_global_lock);
1246	PMAP_LOCK(pm);
1247	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1248		moea_enter_locked(pm, start + ptoa(diff), m, prot &
1249		    (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_QUICK_LOCKED,
1250		    0);
1251		m = TAILQ_NEXT(m, listq);
1252	}
1253	rw_wunlock(&pvh_global_lock);
1254	PMAP_UNLOCK(pm);
1255}
1256
1257void
1258moea_enter_quick(pmap_t pm, vm_offset_t va, vm_page_t m,
1259    vm_prot_t prot)
1260{
1261
1262	rw_wlock(&pvh_global_lock);
1263	PMAP_LOCK(pm);
1264	moea_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1265	    PMAP_ENTER_QUICK_LOCKED, 0);
1266	rw_wunlock(&pvh_global_lock);
1267	PMAP_UNLOCK(pm);
1268}
1269
1270vm_paddr_t
1271moea_extract(pmap_t pm, vm_offset_t va)
1272{
1273	struct	pvo_entry *pvo;
1274	vm_paddr_t pa;
1275
1276	PMAP_LOCK(pm);
1277	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1278	if (pvo == NULL)
1279		pa = 0;
1280	else
1281		pa = PVO_PADDR(pvo) | (va & ADDR_POFF);
1282	PMAP_UNLOCK(pm);
1283	return (pa);
1284}
1285
1286/*
1287 * Atomically extract and hold the physical page with the given
1288 * pmap and virtual address pair if that mapping permits the given
1289 * protection.
1290 */
1291vm_page_t
1292moea_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1293{
1294	struct	pvo_entry *pvo;
1295	vm_page_t m;
1296
1297	m = NULL;
1298	PMAP_LOCK(pmap);
1299	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1300	if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID) &&
1301	    ((pvo->pvo_pte.pte.pte_lo & PTE_PP) == PTE_RW ||
1302	     (prot & VM_PROT_WRITE) == 0)) {
1303		m = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
1304		if (!vm_page_wire_mapped(m))
1305			m = NULL;
1306	}
1307	PMAP_UNLOCK(pmap);
1308	return (m);
1309}
1310
1311void
1312moea_init(void)
1313{
1314
1315	moea_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1316	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1317	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1318	moea_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1319	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1320	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1321	moea_initialized = true;
1322}
1323
1324bool
1325moea_is_referenced(vm_page_t m)
1326{
1327	bool rv;
1328
1329	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1330	    ("moea_is_referenced: page %p is not managed", m));
1331	rw_wlock(&pvh_global_lock);
1332	rv = moea_query_bit(m, PTE_REF);
1333	rw_wunlock(&pvh_global_lock);
1334	return (rv);
1335}
1336
1337bool
1338moea_is_modified(vm_page_t m)
1339{
1340	bool rv;
1341
1342	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1343	    ("moea_is_modified: page %p is not managed", m));
1344
1345	/*
1346	 * If the page is not busied then this check is racy.
1347	 */
1348	if (!pmap_page_is_write_mapped(m))
1349		return (false);
1350
1351	rw_wlock(&pvh_global_lock);
1352	rv = moea_query_bit(m, PTE_CHG);
1353	rw_wunlock(&pvh_global_lock);
1354	return (rv);
1355}
1356
1357bool
1358moea_is_prefaultable(pmap_t pmap, vm_offset_t va)
1359{
1360	struct pvo_entry *pvo;
1361	bool rv;
1362
1363	PMAP_LOCK(pmap);
1364	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1365	rv = pvo == NULL || (pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0;
1366	PMAP_UNLOCK(pmap);
1367	return (rv);
1368}
1369
1370void
1371moea_clear_modify(vm_page_t m)
1372{
1373
1374	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1375	    ("moea_clear_modify: page %p is not managed", m));
1376	vm_page_assert_busied(m);
1377
1378	if (!pmap_page_is_write_mapped(m))
1379		return;
1380	rw_wlock(&pvh_global_lock);
1381	moea_clear_bit(m, PTE_CHG);
1382	rw_wunlock(&pvh_global_lock);
1383}
1384
1385/*
1386 * Clear the write and modified bits in each of the given page's mappings.
1387 */
1388void
1389moea_remove_write(vm_page_t m)
1390{
1391	struct	pvo_entry *pvo;
1392	struct	pte *pt;
1393	pmap_t	pmap;
1394	u_int	lo;
1395
1396	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1397	    ("moea_remove_write: page %p is not managed", m));
1398	vm_page_assert_busied(m);
1399
1400	if (!pmap_page_is_write_mapped(m))
1401		return;
1402	rw_wlock(&pvh_global_lock);
1403	lo = moea_attr_fetch(m);
1404	powerpc_sync();
1405	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1406		pmap = pvo->pvo_pmap;
1407		PMAP_LOCK(pmap);
1408		if ((pvo->pvo_pte.pte.pte_lo & PTE_PP) != PTE_BR) {
1409			pt = moea_pvo_to_pte(pvo, -1);
1410			pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1411			pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1412			if (pt != NULL) {
1413				moea_pte_synch(pt, &pvo->pvo_pte.pte);
1414				lo |= pvo->pvo_pte.pte.pte_lo;
1415				pvo->pvo_pte.pte.pte_lo &= ~PTE_CHG;
1416				moea_pte_change(pt, &pvo->pvo_pte.pte,
1417				    pvo->pvo_vaddr);
1418				mtx_unlock(&moea_table_mutex);
1419			}
1420		}
1421		PMAP_UNLOCK(pmap);
1422	}
1423	if ((lo & PTE_CHG) != 0) {
1424		moea_attr_clear(m, PTE_CHG);
1425		vm_page_dirty(m);
1426	}
1427	vm_page_aflag_clear(m, PGA_WRITEABLE);
1428	rw_wunlock(&pvh_global_lock);
1429}
1430
1431/*
1432 *	moea_ts_referenced:
1433 *
1434 *	Return a count of reference bits for a page, clearing those bits.
1435 *	It is not necessary for every reference bit to be cleared, but it
1436 *	is necessary that 0 only be returned when there are truly no
1437 *	reference bits set.
1438 *
1439 *	XXX: The exact number of bits to check and clear is a matter that
1440 *	should be tested and standardized at some point in the future for
1441 *	optimal aging of shared pages.
1442 */
1443int
1444moea_ts_referenced(vm_page_t m)
1445{
1446	int count;
1447
1448	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1449	    ("moea_ts_referenced: page %p is not managed", m));
1450	rw_wlock(&pvh_global_lock);
1451	count = moea_clear_bit(m, PTE_REF);
1452	rw_wunlock(&pvh_global_lock);
1453	return (count);
1454}
1455
1456/*
1457 * Modify the WIMG settings of all mappings for a page.
1458 */
1459void
1460moea_page_set_memattr(vm_page_t m, vm_memattr_t ma)
1461{
1462	struct	pvo_entry *pvo;
1463	struct	pvo_head *pvo_head;
1464	struct	pte *pt;
1465	pmap_t	pmap;
1466	u_int	lo;
1467
1468	if ((m->oflags & VPO_UNMANAGED) != 0) {
1469		m->md.mdpg_cache_attrs = ma;
1470		return;
1471	}
1472
1473	rw_wlock(&pvh_global_lock);
1474	pvo_head = vm_page_to_pvoh(m);
1475	lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1476
1477	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1478		pmap = pvo->pvo_pmap;
1479		PMAP_LOCK(pmap);
1480		pt = moea_pvo_to_pte(pvo, -1);
1481		pvo->pvo_pte.pte.pte_lo &= ~PTE_WIMG;
1482		pvo->pvo_pte.pte.pte_lo |= lo;
1483		if (pt != NULL) {
1484			moea_pte_change(pt, &pvo->pvo_pte.pte,
1485			    pvo->pvo_vaddr);
1486			if (pvo->pvo_pmap == kernel_pmap)
1487				isync();
1488		}
1489		mtx_unlock(&moea_table_mutex);
1490		PMAP_UNLOCK(pmap);
1491	}
1492	m->md.mdpg_cache_attrs = ma;
1493	rw_wunlock(&pvh_global_lock);
1494}
1495
1496/*
1497 * Map a wired page into kernel virtual address space.
1498 */
1499void
1500moea_kenter(vm_offset_t va, vm_paddr_t pa)
1501{
1502
1503	moea_kenter_attr(va, pa, VM_MEMATTR_DEFAULT);
1504}
1505
1506void
1507moea_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
1508{
1509	u_int		pte_lo;
1510	int		error;
1511
1512#if 0
1513	if (va < VM_MIN_KERNEL_ADDRESS)
1514		panic("moea_kenter: attempt to enter non-kernel address %#x",
1515		    va);
1516#endif
1517
1518	pte_lo = moea_calc_wimg(pa, ma);
1519
1520	PMAP_LOCK(kernel_pmap);
1521	error = moea_pvo_enter(kernel_pmap, moea_upvo_zone,
1522	    &moea_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1523
1524	if (error != 0 && error != ENOENT)
1525		panic("moea_kenter: failed to enter va %#x pa %#x: %d", va,
1526		    pa, error);
1527
1528	PMAP_UNLOCK(kernel_pmap);
1529}
1530
1531/*
1532 * Extract the physical page address associated with the given kernel virtual
1533 * address.
1534 */
1535vm_paddr_t
1536moea_kextract(vm_offset_t va)
1537{
1538	struct		pvo_entry *pvo;
1539	vm_paddr_t pa;
1540
1541	/*
1542	 * Allow direct mappings on 32-bit OEA
1543	 */
1544	if (va < VM_MIN_KERNEL_ADDRESS) {
1545		return (va);
1546	}
1547
1548	PMAP_LOCK(kernel_pmap);
1549	pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1550	KASSERT(pvo != NULL, ("moea_kextract: no addr found"));
1551	pa = PVO_PADDR(pvo) | (va & ADDR_POFF);
1552	PMAP_UNLOCK(kernel_pmap);
1553	return (pa);
1554}
1555
1556/*
1557 * Remove a wired page from kernel virtual address space.
1558 */
1559void
1560moea_kremove(vm_offset_t va)
1561{
1562
1563	moea_remove(kernel_pmap, va, va + PAGE_SIZE);
1564}
1565
1566/*
1567 * Provide a kernel pointer corresponding to a given userland pointer.
1568 * The returned pointer is valid until the next time this function is
1569 * called in this thread. This is used internally in copyin/copyout.
1570 */
1571int
1572moea_map_user_ptr(pmap_t pm, volatile const void *uaddr,
1573    void **kaddr, size_t ulen, size_t *klen)
1574{
1575	size_t l;
1576	register_t vsid;
1577
1578	*kaddr = (char *)USER_ADDR + ((uintptr_t)uaddr & ~SEGMENT_MASK);
1579	l = ((char *)USER_ADDR + SEGMENT_LENGTH) - (char *)(*kaddr);
1580	if (l > ulen)
1581		l = ulen;
1582	if (klen)
1583		*klen = l;
1584	else if (l != ulen)
1585		return (EFAULT);
1586
1587	vsid = va_to_vsid(pm, (vm_offset_t)uaddr);
1588
1589	/* Mark segment no-execute */
1590	vsid |= SR_N;
1591
1592	/* If we have already set this VSID, we can just return */
1593	if (curthread->td_pcb->pcb_cpu.aim.usr_vsid == vsid)
1594		return (0);
1595
1596	__asm __volatile("isync");
1597	curthread->td_pcb->pcb_cpu.aim.usr_segm =
1598	    (uintptr_t)uaddr >> ADDR_SR_SHFT;
1599	curthread->td_pcb->pcb_cpu.aim.usr_vsid = vsid;
1600	__asm __volatile("mtsr %0,%1; isync" :: "n"(USER_SR), "r"(vsid));
1601
1602	return (0);
1603}
1604
1605/*
1606 * Figure out where a given kernel pointer (usually in a fault) points
1607 * to from the VM's perspective, potentially remapping into userland's
1608 * address space.
1609 */
1610static int
1611moea_decode_kernel_ptr(vm_offset_t addr, int *is_user,
1612    vm_offset_t *decoded_addr)
1613{
1614	vm_offset_t user_sr;
1615
1616	if ((addr >> ADDR_SR_SHFT) == (USER_ADDR >> ADDR_SR_SHFT)) {
1617		user_sr = curthread->td_pcb->pcb_cpu.aim.usr_segm;
1618		addr &= ADDR_PIDX | ADDR_POFF;
1619		addr |= user_sr << ADDR_SR_SHFT;
1620		*decoded_addr = addr;
1621		*is_user = 1;
1622	} else {
1623		*decoded_addr = addr;
1624		*is_user = 0;
1625	}
1626
1627	return (0);
1628}
1629
1630/*
1631 * Map a range of physical addresses into kernel virtual address space.
1632 *
1633 * The value passed in *virt is a suggested virtual address for the mapping.
1634 * Architectures which can support a direct-mapped physical to virtual region
1635 * can return the appropriate address within that region, leaving '*virt'
1636 * unchanged.  We cannot and therefore do not; *virt is updated with the
1637 * first usable address after the mapped region.
1638 */
1639vm_offset_t
1640moea_map(vm_offset_t *virt, vm_paddr_t pa_start,
1641    vm_paddr_t pa_end, int prot)
1642{
1643	vm_offset_t	sva, va;
1644
1645	sva = *virt;
1646	va = sva;
1647	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1648		moea_kenter(va, pa_start);
1649	*virt = va;
1650	return (sva);
1651}
1652
1653/*
1654 * Returns true if the pmap's pv is one of the first
1655 * 16 pvs linked to from this page.  This count may
1656 * be changed upwards or downwards in the future; it
1657 * is only necessary that true be returned for a small
1658 * subset of pmaps for proper page aging.
1659 */
1660bool
1661moea_page_exists_quick(pmap_t pmap, vm_page_t m)
1662{
1663        int loops;
1664	struct pvo_entry *pvo;
1665	bool rv;
1666
1667	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1668	    ("moea_page_exists_quick: page %p is not managed", m));
1669	loops = 0;
1670	rv = false;
1671	rw_wlock(&pvh_global_lock);
1672	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1673		if (pvo->pvo_pmap == pmap) {
1674			rv = true;
1675			break;
1676		}
1677		if (++loops >= 16)
1678			break;
1679	}
1680	rw_wunlock(&pvh_global_lock);
1681	return (rv);
1682}
1683
1684void
1685moea_page_init(vm_page_t m)
1686{
1687
1688	m->md.mdpg_attrs = 0;
1689	m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT;
1690	LIST_INIT(&m->md.mdpg_pvoh);
1691}
1692
1693/*
1694 * Return the number of managed mappings to the given physical page
1695 * that are wired.
1696 */
1697int
1698moea_page_wired_mappings(vm_page_t m)
1699{
1700	struct pvo_entry *pvo;
1701	int count;
1702
1703	count = 0;
1704	if ((m->oflags & VPO_UNMANAGED) != 0)
1705		return (count);
1706	rw_wlock(&pvh_global_lock);
1707	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1708		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1709			count++;
1710	rw_wunlock(&pvh_global_lock);
1711	return (count);
1712}
1713
1714static u_int	moea_vsidcontext;
1715
1716int
1717moea_pinit(pmap_t pmap)
1718{
1719	int	i, mask;
1720	u_int	entropy;
1721
1722	RB_INIT(&pmap->pmap_pvo);
1723
1724	entropy = 0;
1725	__asm __volatile("mftb %0" : "=r"(entropy));
1726
1727	if ((pmap->pmap_phys = (pmap_t)moea_kextract((vm_offset_t)pmap))
1728	    == NULL) {
1729		pmap->pmap_phys = pmap;
1730	}
1731
1732	mtx_lock(&moea_vsid_mutex);
1733	/*
1734	 * Allocate some segment registers for this pmap.
1735	 */
1736	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1737		u_int	hash, n;
1738
1739		/*
1740		 * Create a new value by multiplying by a prime and adding in
1741		 * entropy from the timebase register.  This is to make the
1742		 * VSID more random so that the PT hash function collides
1743		 * less often.  (Note that the prime casues gcc to do shifts
1744		 * instead of a multiply.)
1745		 */
1746		moea_vsidcontext = (moea_vsidcontext * 0x1105) + entropy;
1747		hash = moea_vsidcontext & (NPMAPS - 1);
1748		if (hash == 0)		/* 0 is special, avoid it */
1749			continue;
1750		n = hash >> 5;
1751		mask = 1 << (hash & (VSID_NBPW - 1));
1752		hash = (moea_vsidcontext & 0xfffff);
1753		if (moea_vsid_bitmap[n] & mask) {	/* collision? */
1754			/* anything free in this bucket? */
1755			if (moea_vsid_bitmap[n] == 0xffffffff) {
1756				entropy = (moea_vsidcontext >> 20);
1757				continue;
1758			}
1759			i = ffs(~moea_vsid_bitmap[n]) - 1;
1760			mask = 1 << i;
1761			hash &= rounddown2(0xfffff, VSID_NBPW);
1762			hash |= i;
1763		}
1764		KASSERT(!(moea_vsid_bitmap[n] & mask),
1765		    ("Allocating in-use VSID group %#x\n", hash));
1766		moea_vsid_bitmap[n] |= mask;
1767		for (i = 0; i < 16; i++)
1768			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1769		mtx_unlock(&moea_vsid_mutex);
1770		return (1);
1771	}
1772
1773	mtx_unlock(&moea_vsid_mutex);
1774	panic("moea_pinit: out of segments");
1775}
1776
1777/*
1778 * Initialize the pmap associated with process 0.
1779 */
1780void
1781moea_pinit0(pmap_t pm)
1782{
1783
1784	PMAP_LOCK_INIT(pm);
1785	moea_pinit(pm);
1786	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1787}
1788
1789/*
1790 * Set the physical protection on the specified range of this map as requested.
1791 */
1792void
1793moea_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1794    vm_prot_t prot)
1795{
1796	struct	pvo_entry *pvo, *tpvo, key;
1797	struct	pte *pt;
1798
1799	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1800	    ("moea_protect: non current pmap"));
1801
1802	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1803		moea_remove(pm, sva, eva);
1804		return;
1805	}
1806
1807	rw_wlock(&pvh_global_lock);
1808	PMAP_LOCK(pm);
1809	key.pvo_vaddr = sva;
1810	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1811	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1812		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1813
1814		/*
1815		 * Grab the PTE pointer before we diddle with the cached PTE
1816		 * copy.
1817		 */
1818		pt = moea_pvo_to_pte(pvo, -1);
1819		/*
1820		 * Change the protection of the page.
1821		 */
1822		pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1823		pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1824
1825		/*
1826		 * If the PVO is in the page table, update that pte as well.
1827		 */
1828		if (pt != NULL) {
1829			moea_pte_change(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
1830			mtx_unlock(&moea_table_mutex);
1831		}
1832	}
1833	rw_wunlock(&pvh_global_lock);
1834	PMAP_UNLOCK(pm);
1835}
1836
1837/*
1838 * Map a list of wired pages into kernel virtual address space.  This is
1839 * intended for temporary mappings which do not need page modification or
1840 * references recorded.  Existing mappings in the region are overwritten.
1841 */
1842void
1843moea_qenter(vm_offset_t sva, vm_page_t *m, int count)
1844{
1845	vm_offset_t va;
1846
1847	va = sva;
1848	while (count-- > 0) {
1849		moea_kenter(va, VM_PAGE_TO_PHYS(*m));
1850		va += PAGE_SIZE;
1851		m++;
1852	}
1853}
1854
1855/*
1856 * Remove page mappings from kernel virtual address space.  Intended for
1857 * temporary mappings entered by moea_qenter.
1858 */
1859void
1860moea_qremove(vm_offset_t sva, int count)
1861{
1862	vm_offset_t va;
1863
1864	va = sva;
1865	while (count-- > 0) {
1866		moea_kremove(va);
1867		va += PAGE_SIZE;
1868	}
1869}
1870
1871void
1872moea_release(pmap_t pmap)
1873{
1874        int idx, mask;
1875
1876	/*
1877	 * Free segment register's VSID
1878	 */
1879        if (pmap->pm_sr[0] == 0)
1880                panic("moea_release");
1881
1882	mtx_lock(&moea_vsid_mutex);
1883        idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1884        mask = 1 << (idx % VSID_NBPW);
1885        idx /= VSID_NBPW;
1886        moea_vsid_bitmap[idx] &= ~mask;
1887	mtx_unlock(&moea_vsid_mutex);
1888}
1889
1890/*
1891 * Remove the given range of addresses from the specified map.
1892 */
1893void
1894moea_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1895{
1896	struct	pvo_entry *pvo, *tpvo, key;
1897
1898	rw_wlock(&pvh_global_lock);
1899	PMAP_LOCK(pm);
1900	key.pvo_vaddr = sva;
1901	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1902	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1903		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1904		moea_pvo_remove(pvo, -1);
1905	}
1906	PMAP_UNLOCK(pm);
1907	rw_wunlock(&pvh_global_lock);
1908}
1909
1910/*
1911 * Remove physical page from all pmaps in which it resides. moea_pvo_remove()
1912 * will reflect changes in pte's back to the vm_page.
1913 */
1914void
1915moea_remove_all(vm_page_t m)
1916{
1917	struct  pvo_head *pvo_head;
1918	struct	pvo_entry *pvo, *next_pvo;
1919	pmap_t	pmap;
1920
1921	rw_wlock(&pvh_global_lock);
1922	pvo_head = vm_page_to_pvoh(m);
1923	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1924		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1925
1926		pmap = pvo->pvo_pmap;
1927		PMAP_LOCK(pmap);
1928		moea_pvo_remove(pvo, -1);
1929		PMAP_UNLOCK(pmap);
1930	}
1931	if ((m->a.flags & PGA_WRITEABLE) && moea_query_bit(m, PTE_CHG)) {
1932		moea_attr_clear(m, PTE_CHG);
1933		vm_page_dirty(m);
1934	}
1935	vm_page_aflag_clear(m, PGA_WRITEABLE);
1936	rw_wunlock(&pvh_global_lock);
1937}
1938
1939static int
1940moea_mincore(pmap_t pm, vm_offset_t va, vm_paddr_t *pap)
1941{
1942	struct pvo_entry *pvo;
1943	vm_paddr_t pa;
1944	vm_page_t m;
1945	int val;
1946	bool managed;
1947
1948	PMAP_LOCK(pm);
1949
1950	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1951	if (pvo != NULL) {
1952		pa = PVO_PADDR(pvo);
1953		m = PHYS_TO_VM_PAGE(pa);
1954		managed = (pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED;
1955		val = MINCORE_INCORE;
1956	} else {
1957		PMAP_UNLOCK(pm);
1958		return (0);
1959	}
1960
1961	PMAP_UNLOCK(pm);
1962
1963	if (m == NULL)
1964		return (0);
1965
1966	if (managed) {
1967		if (moea_is_modified(m))
1968			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
1969
1970		if (moea_is_referenced(m))
1971			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
1972	}
1973
1974	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
1975	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
1976	    managed) {
1977		*pap = pa;
1978	}
1979
1980	return (val);
1981}
1982
1983/*
1984 * Allocate a physical page of memory directly from the phys_avail map.
1985 * Can only be called from moea_bootstrap before avail start and end are
1986 * calculated.
1987 */
1988static vm_offset_t
1989moea_bootstrap_alloc(vm_size_t size, u_int align)
1990{
1991	vm_offset_t	s, e;
1992	int		i, j;
1993
1994	size = round_page(size);
1995	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1996		if (align != 0)
1997			s = roundup2(phys_avail[i], align);
1998		else
1999			s = phys_avail[i];
2000		e = s + size;
2001
2002		if (s < phys_avail[i] || e > phys_avail[i + 1])
2003			continue;
2004
2005		if (s == phys_avail[i]) {
2006			phys_avail[i] += size;
2007		} else if (e == phys_avail[i + 1]) {
2008			phys_avail[i + 1] -= size;
2009		} else {
2010			for (j = phys_avail_count * 2; j > i; j -= 2) {
2011				phys_avail[j] = phys_avail[j - 2];
2012				phys_avail[j + 1] = phys_avail[j - 1];
2013			}
2014
2015			phys_avail[i + 3] = phys_avail[i + 1];
2016			phys_avail[i + 1] = s;
2017			phys_avail[i + 2] = e;
2018			phys_avail_count++;
2019		}
2020
2021		return (s);
2022	}
2023	panic("moea_bootstrap_alloc: could not allocate memory");
2024}
2025
2026static void
2027moea_syncicache(vm_paddr_t pa, vm_size_t len)
2028{
2029	__syncicache((void *)pa, len);
2030}
2031
2032static int
2033moea_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
2034    vm_offset_t va, vm_paddr_t pa, u_int pte_lo, int flags)
2035{
2036	struct	pvo_entry *pvo;
2037	u_int	sr;
2038	int	first;
2039	u_int	ptegidx;
2040	int	i;
2041	int     bootstrap;
2042
2043	moea_pvo_enter_calls++;
2044	first = 0;
2045	bootstrap = 0;
2046
2047	/*
2048	 * Compute the PTE Group index.
2049	 */
2050	va &= ~ADDR_POFF;
2051	sr = va_to_sr(pm->pm_sr, va);
2052	ptegidx = va_to_pteg(sr, va);
2053
2054	/*
2055	 * Remove any existing mapping for this page.  Reuse the pvo entry if
2056	 * there is a mapping.
2057	 */
2058	mtx_lock(&moea_table_mutex);
2059	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2060		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2061			if (PVO_PADDR(pvo) == pa &&
2062			    (pvo->pvo_pte.pte.pte_lo & PTE_PP) ==
2063			    (pte_lo & PTE_PP)) {
2064				/*
2065				 * The PTE is not changing.  Instead, this may
2066				 * be a request to change the mapping's wired
2067				 * attribute.
2068				 */
2069				mtx_unlock(&moea_table_mutex);
2070				if ((flags & PVO_WIRED) != 0 &&
2071				    (pvo->pvo_vaddr & PVO_WIRED) == 0) {
2072					pvo->pvo_vaddr |= PVO_WIRED;
2073					pm->pm_stats.wired_count++;
2074				} else if ((flags & PVO_WIRED) == 0 &&
2075				    (pvo->pvo_vaddr & PVO_WIRED) != 0) {
2076					pvo->pvo_vaddr &= ~PVO_WIRED;
2077					pm->pm_stats.wired_count--;
2078				}
2079				return (0);
2080			}
2081			moea_pvo_remove(pvo, -1);
2082			break;
2083		}
2084	}
2085
2086	/*
2087	 * If we aren't overwriting a mapping, try to allocate.
2088	 */
2089	if (moea_initialized) {
2090		pvo = uma_zalloc(zone, M_NOWAIT);
2091	} else {
2092		if (moea_bpvo_pool_index >= BPVO_POOL_SIZE) {
2093			panic("moea_enter: bpvo pool exhausted, %d, %d, %d",
2094			      moea_bpvo_pool_index, BPVO_POOL_SIZE,
2095			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
2096		}
2097		pvo = &moea_bpvo_pool[moea_bpvo_pool_index];
2098		moea_bpvo_pool_index++;
2099		bootstrap = 1;
2100	}
2101
2102	if (pvo == NULL) {
2103		mtx_unlock(&moea_table_mutex);
2104		return (ENOMEM);
2105	}
2106
2107	moea_pvo_entries++;
2108	pvo->pvo_vaddr = va;
2109	pvo->pvo_pmap = pm;
2110	LIST_INSERT_HEAD(&moea_pvo_table[ptegidx], pvo, pvo_olink);
2111	pvo->pvo_vaddr &= ~ADDR_POFF;
2112	if (flags & PVO_WIRED)
2113		pvo->pvo_vaddr |= PVO_WIRED;
2114	if (pvo_head != &moea_pvo_kunmanaged)
2115		pvo->pvo_vaddr |= PVO_MANAGED;
2116	if (bootstrap)
2117		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
2118
2119	moea_pte_create(&pvo->pvo_pte.pte, sr, va, pa | pte_lo);
2120
2121	/*
2122	 * Add to pmap list
2123	 */
2124	RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo);
2125
2126	/*
2127	 * Remember if the list was empty and therefore will be the first
2128	 * item.
2129	 */
2130	if (LIST_FIRST(pvo_head) == NULL)
2131		first = 1;
2132	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2133
2134	if (pvo->pvo_vaddr & PVO_WIRED)
2135		pm->pm_stats.wired_count++;
2136	pm->pm_stats.resident_count++;
2137
2138	i = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2139	KASSERT(i < 8, ("Invalid PTE index"));
2140	if (i >= 0) {
2141		PVO_PTEGIDX_SET(pvo, i);
2142	} else {
2143		panic("moea_pvo_enter: overflow");
2144		moea_pte_overflow++;
2145	}
2146	mtx_unlock(&moea_table_mutex);
2147
2148	return (first ? ENOENT : 0);
2149}
2150
2151static void
2152moea_pvo_remove(struct pvo_entry *pvo, int pteidx)
2153{
2154	struct	pte *pt;
2155
2156	/*
2157	 * If there is an active pte entry, we need to deactivate it (and
2158	 * save the ref & cfg bits).
2159	 */
2160	pt = moea_pvo_to_pte(pvo, pteidx);
2161	if (pt != NULL) {
2162		moea_pte_unset(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
2163		mtx_unlock(&moea_table_mutex);
2164		PVO_PTEGIDX_CLR(pvo);
2165	} else {
2166		moea_pte_overflow--;
2167	}
2168
2169	/*
2170	 * Update our statistics.
2171	 */
2172	pvo->pvo_pmap->pm_stats.resident_count--;
2173	if (pvo->pvo_vaddr & PVO_WIRED)
2174		pvo->pvo_pmap->pm_stats.wired_count--;
2175
2176	/*
2177	 * Remove this PVO from the PV and pmap lists.
2178	 */
2179	LIST_REMOVE(pvo, pvo_vlink);
2180	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2181
2182	/*
2183	 * Save the REF/CHG bits into their cache if the page is managed.
2184	 * Clear PGA_WRITEABLE if all mappings of the page have been removed.
2185	 */
2186	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED) {
2187		struct vm_page *pg;
2188
2189		pg = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
2190		if (pg != NULL) {
2191			moea_attr_save(pg, pvo->pvo_pte.pte.pte_lo &
2192			    (PTE_REF | PTE_CHG));
2193			if (LIST_EMPTY(&pg->md.mdpg_pvoh))
2194				vm_page_aflag_clear(pg, PGA_WRITEABLE);
2195		}
2196	}
2197
2198	/*
2199	 * Remove this from the overflow list and return it to the pool
2200	 * if we aren't going to reuse it.
2201	 */
2202	LIST_REMOVE(pvo, pvo_olink);
2203	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2204		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? moea_mpvo_zone :
2205		    moea_upvo_zone, pvo);
2206	moea_pvo_entries--;
2207	moea_pvo_remove_calls++;
2208}
2209
2210static __inline int
2211moea_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
2212{
2213	int	pteidx;
2214
2215	/*
2216	 * We can find the actual pte entry without searching by grabbing
2217	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
2218	 * noticing the HID bit.
2219	 */
2220	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
2221	if (pvo->pvo_pte.pte.pte_hi & PTE_HID)
2222		pteidx ^= moea_pteg_mask * 8;
2223
2224	return (pteidx);
2225}
2226
2227static struct pvo_entry *
2228moea_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
2229{
2230	struct	pvo_entry *pvo;
2231	int	ptegidx;
2232	u_int	sr;
2233
2234	va &= ~ADDR_POFF;
2235	sr = va_to_sr(pm->pm_sr, va);
2236	ptegidx = va_to_pteg(sr, va);
2237
2238	mtx_lock(&moea_table_mutex);
2239	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2240		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2241			if (pteidx_p)
2242				*pteidx_p = moea_pvo_pte_index(pvo, ptegidx);
2243			break;
2244		}
2245	}
2246	mtx_unlock(&moea_table_mutex);
2247
2248	return (pvo);
2249}
2250
2251static struct pte *
2252moea_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
2253{
2254	struct	pte *pt;
2255
2256	/*
2257	 * If we haven't been supplied the ptegidx, calculate it.
2258	 */
2259	if (pteidx == -1) {
2260		int	ptegidx;
2261		u_int	sr;
2262
2263		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
2264		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
2265		pteidx = moea_pvo_pte_index(pvo, ptegidx);
2266	}
2267
2268	pt = &moea_pteg_table[pteidx >> 3].pt[pteidx & 7];
2269	mtx_lock(&moea_table_mutex);
2270
2271	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
2272		panic("moea_pvo_to_pte: pvo %p has valid pte in pvo but no "
2273		    "valid pte index", pvo);
2274	}
2275
2276	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
2277		panic("moea_pvo_to_pte: pvo %p has valid pte index in pvo "
2278		    "pvo but no valid pte", pvo);
2279	}
2280
2281	if ((pt->pte_hi ^ (pvo->pvo_pte.pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
2282		if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0) {
2283			panic("moea_pvo_to_pte: pvo %p has valid pte in "
2284			    "moea_pteg_table %p but invalid in pvo", pvo, pt);
2285		}
2286
2287		if (((pt->pte_lo ^ pvo->pvo_pte.pte.pte_lo) & ~(PTE_CHG|PTE_REF))
2288		    != 0) {
2289			panic("moea_pvo_to_pte: pvo %p pte does not match "
2290			    "pte %p in moea_pteg_table", pvo, pt);
2291		}
2292
2293		mtx_assert(&moea_table_mutex, MA_OWNED);
2294		return (pt);
2295	}
2296
2297	if (pvo->pvo_pte.pte.pte_hi & PTE_VALID) {
2298		panic("moea_pvo_to_pte: pvo %p has invalid pte %p in "
2299		    "moea_pteg_table but valid in pvo: %8x, %8x", pvo, pt, pvo->pvo_pte.pte.pte_hi, pt->pte_hi);
2300	}
2301
2302	mtx_unlock(&moea_table_mutex);
2303	return (NULL);
2304}
2305
2306/*
2307 * XXX: THIS STUFF SHOULD BE IN pte.c?
2308 */
2309int
2310moea_pte_spill(vm_offset_t addr)
2311{
2312	struct	pvo_entry *source_pvo, *victim_pvo;
2313	struct	pvo_entry *pvo;
2314	int	ptegidx, i, j;
2315	u_int	sr;
2316	struct	pteg *pteg;
2317	struct	pte *pt;
2318
2319	moea_pte_spills++;
2320
2321	sr = mfsrin(addr);
2322	ptegidx = va_to_pteg(sr, addr);
2323
2324	/*
2325	 * Have to substitute some entry.  Use the primary hash for this.
2326	 * Use low bits of timebase as random generator.
2327	 */
2328	pteg = &moea_pteg_table[ptegidx];
2329	mtx_lock(&moea_table_mutex);
2330	__asm __volatile("mftb %0" : "=r"(i));
2331	i &= 7;
2332	pt = &pteg->pt[i];
2333
2334	source_pvo = NULL;
2335	victim_pvo = NULL;
2336	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2337		/*
2338		 * We need to find a pvo entry for this address.
2339		 */
2340		if (source_pvo == NULL &&
2341		    moea_pte_match(&pvo->pvo_pte.pte, sr, addr,
2342		    pvo->pvo_pte.pte.pte_hi & PTE_HID)) {
2343			/*
2344			 * Now found an entry to be spilled into the pteg.
2345			 * The PTE is now valid, so we know it's active.
2346			 */
2347			j = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2348
2349			if (j >= 0) {
2350				PVO_PTEGIDX_SET(pvo, j);
2351				moea_pte_overflow--;
2352				mtx_unlock(&moea_table_mutex);
2353				return (1);
2354			}
2355
2356			source_pvo = pvo;
2357
2358			if (victim_pvo != NULL)
2359				break;
2360		}
2361
2362		/*
2363		 * We also need the pvo entry of the victim we are replacing
2364		 * so save the R & C bits of the PTE.
2365		 */
2366		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2367		    moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2368			victim_pvo = pvo;
2369			if (source_pvo != NULL)
2370				break;
2371		}
2372	}
2373
2374	if (source_pvo == NULL) {
2375		mtx_unlock(&moea_table_mutex);
2376		return (0);
2377	}
2378
2379	if (victim_pvo == NULL) {
2380		if ((pt->pte_hi & PTE_HID) == 0)
2381			panic("moea_pte_spill: victim p-pte (%p) has no pvo"
2382			    "entry", pt);
2383
2384		/*
2385		 * If this is a secondary PTE, we need to search it's primary
2386		 * pvo bucket for the matching PVO.
2387		 */
2388		LIST_FOREACH(pvo, &moea_pvo_table[ptegidx ^ moea_pteg_mask],
2389		    pvo_olink) {
2390			/*
2391			 * We also need the pvo entry of the victim we are
2392			 * replacing so save the R & C bits of the PTE.
2393			 */
2394			if (moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2395				victim_pvo = pvo;
2396				break;
2397			}
2398		}
2399
2400		if (victim_pvo == NULL)
2401			panic("moea_pte_spill: victim s-pte (%p) has no pvo"
2402			    "entry", pt);
2403	}
2404
2405	/*
2406	 * We are invalidating the TLB entry for the EA we are replacing even
2407	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2408	 * contained in the TLB entry.
2409	 */
2410	source_pvo->pvo_pte.pte.pte_hi &= ~PTE_HID;
2411
2412	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2413	moea_pte_set(pt, &source_pvo->pvo_pte.pte);
2414
2415	PVO_PTEGIDX_CLR(victim_pvo);
2416	PVO_PTEGIDX_SET(source_pvo, i);
2417	moea_pte_replacements++;
2418
2419	mtx_unlock(&moea_table_mutex);
2420	return (1);
2421}
2422
2423static __inline struct pvo_entry *
2424moea_pte_spillable_ident(u_int ptegidx)
2425{
2426	struct	pte *pt;
2427	struct	pvo_entry *pvo_walk, *pvo = NULL;
2428
2429	LIST_FOREACH(pvo_walk, &moea_pvo_table[ptegidx], pvo_olink) {
2430		if (pvo_walk->pvo_vaddr & PVO_WIRED)
2431			continue;
2432
2433		if (!(pvo_walk->pvo_pte.pte.pte_hi & PTE_VALID))
2434			continue;
2435
2436		pt = moea_pvo_to_pte(pvo_walk, -1);
2437
2438		if (pt == NULL)
2439			continue;
2440
2441		pvo = pvo_walk;
2442
2443		mtx_unlock(&moea_table_mutex);
2444		if (!(pt->pte_lo & PTE_REF))
2445			return (pvo_walk);
2446	}
2447
2448	return (pvo);
2449}
2450
2451static int
2452moea_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2453{
2454	struct	pte *pt;
2455	struct	pvo_entry *victim_pvo;
2456	int	i;
2457	int	victim_idx;
2458	u_int	pteg_bkpidx = ptegidx;
2459
2460	mtx_assert(&moea_table_mutex, MA_OWNED);
2461
2462	/*
2463	 * First try primary hash.
2464	 */
2465	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2466		if ((pt->pte_hi & PTE_VALID) == 0) {
2467			pvo_pt->pte_hi &= ~PTE_HID;
2468			moea_pte_set(pt, pvo_pt);
2469			return (i);
2470		}
2471	}
2472
2473	/*
2474	 * Now try secondary hash.
2475	 */
2476	ptegidx ^= moea_pteg_mask;
2477
2478	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2479		if ((pt->pte_hi & PTE_VALID) == 0) {
2480			pvo_pt->pte_hi |= PTE_HID;
2481			moea_pte_set(pt, pvo_pt);
2482			return (i);
2483		}
2484	}
2485
2486	/* Try again, but this time try to force a PTE out. */
2487	ptegidx = pteg_bkpidx;
2488
2489	victim_pvo = moea_pte_spillable_ident(ptegidx);
2490	if (victim_pvo == NULL) {
2491		ptegidx ^= moea_pteg_mask;
2492		victim_pvo = moea_pte_spillable_ident(ptegidx);
2493	}
2494
2495	if (victim_pvo == NULL) {
2496		panic("moea_pte_insert: overflow");
2497		return (-1);
2498	}
2499
2500	victim_idx = moea_pvo_pte_index(victim_pvo, ptegidx);
2501
2502	if (pteg_bkpidx == ptegidx)
2503		pvo_pt->pte_hi &= ~PTE_HID;
2504	else
2505		pvo_pt->pte_hi |= PTE_HID;
2506
2507	/*
2508	 * Synchronize the sacrifice PTE with its PVO, then mark both
2509	 * invalid. The PVO will be reused when/if the VM system comes
2510	 * here after a fault.
2511	 */
2512	pt = &moea_pteg_table[victim_idx >> 3].pt[victim_idx & 7];
2513
2514	if (pt->pte_hi != victim_pvo->pvo_pte.pte.pte_hi)
2515	    panic("Victim PVO doesn't match PTE! PVO: %8x, PTE: %8x", victim_pvo->pvo_pte.pte.pte_hi, pt->pte_hi);
2516
2517	/*
2518	 * Set the new PTE.
2519	 */
2520	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2521	PVO_PTEGIDX_CLR(victim_pvo);
2522	moea_pte_overflow++;
2523	moea_pte_set(pt, pvo_pt);
2524
2525	return (victim_idx & 7);
2526}
2527
2528static bool
2529moea_query_bit(vm_page_t m, int ptebit)
2530{
2531	struct	pvo_entry *pvo;
2532	struct	pte *pt;
2533
2534	rw_assert(&pvh_global_lock, RA_WLOCKED);
2535	if (moea_attr_fetch(m) & ptebit)
2536		return (true);
2537
2538	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2539		/*
2540		 * See if we saved the bit off.  If so, cache it and return
2541		 * success.
2542		 */
2543		if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2544			moea_attr_save(m, ptebit);
2545			return (true);
2546		}
2547	}
2548
2549	/*
2550	 * No luck, now go through the hard part of looking at the PTEs
2551	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2552	 * the PTEs.
2553	 */
2554	powerpc_sync();
2555	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2556		/*
2557		 * See if this pvo has a valid PTE.  if so, fetch the
2558		 * REF/CHG bits from the valid PTE.  If the appropriate
2559		 * ptebit is set, cache it and return success.
2560		 */
2561		pt = moea_pvo_to_pte(pvo, -1);
2562		if (pt != NULL) {
2563			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2564			mtx_unlock(&moea_table_mutex);
2565			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2566				moea_attr_save(m, ptebit);
2567				return (true);
2568			}
2569		}
2570	}
2571
2572	return (false);
2573}
2574
2575static u_int
2576moea_clear_bit(vm_page_t m, int ptebit)
2577{
2578	u_int	count;
2579	struct	pvo_entry *pvo;
2580	struct	pte *pt;
2581
2582	rw_assert(&pvh_global_lock, RA_WLOCKED);
2583
2584	/*
2585	 * Clear the cached value.
2586	 */
2587	moea_attr_clear(m, ptebit);
2588
2589	/*
2590	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2591	 * we can reset the right ones).  note that since the pvo entries and
2592	 * list heads are accessed via BAT0 and are never placed in the page
2593	 * table, we don't have to worry about further accesses setting the
2594	 * REF/CHG bits.
2595	 */
2596	powerpc_sync();
2597
2598	/*
2599	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2600	 * valid pte clear the ptebit from the valid pte.
2601	 */
2602	count = 0;
2603	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2604		pt = moea_pvo_to_pte(pvo, -1);
2605		if (pt != NULL) {
2606			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2607			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2608				count++;
2609				moea_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2610			}
2611			mtx_unlock(&moea_table_mutex);
2612		}
2613		pvo->pvo_pte.pte.pte_lo &= ~ptebit;
2614	}
2615
2616	return (count);
2617}
2618
2619/*
2620 * Return true if the physical range is encompassed by the battable[idx]
2621 */
2622static int
2623moea_bat_mapped(int idx, vm_paddr_t pa, vm_size_t size)
2624{
2625	u_int prot;
2626	u_int32_t start;
2627	u_int32_t end;
2628	u_int32_t bat_ble;
2629
2630	/*
2631	 * Return immediately if not a valid mapping
2632	 */
2633	if (!(battable[idx].batu & BAT_Vs))
2634		return (EINVAL);
2635
2636	/*
2637	 * The BAT entry must be cache-inhibited, guarded, and r/w
2638	 * so it can function as an i/o page
2639	 */
2640	prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
2641	if (prot != (BAT_I|BAT_G|BAT_PP_RW))
2642		return (EPERM);
2643
2644	/*
2645	 * The address should be within the BAT range. Assume that the
2646	 * start address in the BAT has the correct alignment (thus
2647	 * not requiring masking)
2648	 */
2649	start = battable[idx].batl & BAT_PBS;
2650	bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
2651	end = start | (bat_ble << 15) | 0x7fff;
2652
2653	if ((pa < start) || ((pa + size) > end))
2654		return (ERANGE);
2655
2656	return (0);
2657}
2658
2659int
2660moea_dev_direct_mapped(vm_paddr_t pa, vm_size_t size)
2661{
2662	int i;
2663
2664	/*
2665	 * This currently does not work for entries that
2666	 * overlap 256M BAT segments.
2667	 */
2668
2669	for(i = 0; i < 16; i++)
2670		if (moea_bat_mapped(i, pa, size) == 0)
2671			return (0);
2672
2673	return (EFAULT);
2674}
2675
2676/*
2677 * Map a set of physical memory pages into the kernel virtual
2678 * address space. Return a pointer to where it is mapped. This
2679 * routine is intended to be used for mapping device memory,
2680 * NOT real memory.
2681 */
2682void *
2683moea_mapdev(vm_paddr_t pa, vm_size_t size)
2684{
2685
2686	return (moea_mapdev_attr(pa, size, VM_MEMATTR_DEFAULT));
2687}
2688
2689void *
2690moea_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
2691{
2692	vm_offset_t va, tmpva, ppa, offset;
2693	int i;
2694
2695	ppa = trunc_page(pa);
2696	offset = pa & PAGE_MASK;
2697	size = roundup(offset + size, PAGE_SIZE);
2698
2699	/*
2700	 * If the physical address lies within a valid BAT table entry,
2701	 * return the 1:1 mapping. This currently doesn't work
2702	 * for regions that overlap 256M BAT segments.
2703	 */
2704	for (i = 0; i < 16; i++) {
2705		if (moea_bat_mapped(i, pa, size) == 0)
2706			return ((void *) pa);
2707	}
2708
2709	va = kva_alloc(size);
2710	if (!va)
2711		panic("moea_mapdev: Couldn't alloc kernel virtual memory");
2712
2713	for (tmpva = va; size > 0;) {
2714		moea_kenter_attr(tmpva, ppa, ma);
2715		tlbie(tmpva);
2716		size -= PAGE_SIZE;
2717		tmpva += PAGE_SIZE;
2718		ppa += PAGE_SIZE;
2719	}
2720
2721	return ((void *)(va + offset));
2722}
2723
2724void
2725moea_unmapdev(void *p, vm_size_t size)
2726{
2727	vm_offset_t base, offset, va;
2728
2729	/*
2730	 * If this is outside kernel virtual space, then it's a
2731	 * battable entry and doesn't require unmapping
2732	 */
2733	va = (vm_offset_t)p;
2734	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= virtual_end)) {
2735		base = trunc_page(va);
2736		offset = va & PAGE_MASK;
2737		size = roundup(offset + size, PAGE_SIZE);
2738		moea_qremove(base, atop(size));
2739		kva_free(base, size);
2740	}
2741}
2742
2743static void
2744moea_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
2745{
2746	struct pvo_entry *pvo;
2747	vm_offset_t lim;
2748	vm_paddr_t pa;
2749	vm_size_t len;
2750
2751	PMAP_LOCK(pm);
2752	while (sz > 0) {
2753		lim = round_page(va + 1);
2754		len = MIN(lim - va, sz);
2755		pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2756		if (pvo != NULL) {
2757			pa = PVO_PADDR(pvo) | (va & ADDR_POFF);
2758			moea_syncicache(pa, len);
2759		}
2760		va += len;
2761		sz -= len;
2762	}
2763	PMAP_UNLOCK(pm);
2764}
2765
2766void
2767moea_dumpsys_map(vm_paddr_t pa, size_t sz, void **va)
2768{
2769
2770	*va = (void *)pa;
2771}
2772
2773extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
2774
2775void
2776moea_scan_init(void)
2777{
2778	struct pvo_entry *pvo;
2779	vm_offset_t va;
2780	int i;
2781
2782	if (!do_minidump) {
2783		/* Initialize phys. segments for dumpsys(). */
2784		memset(&dump_map, 0, sizeof(dump_map));
2785		mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
2786		for (i = 0; i < pregions_sz; i++) {
2787			dump_map[i].pa_start = pregions[i].mr_start;
2788			dump_map[i].pa_size = pregions[i].mr_size;
2789		}
2790		return;
2791	}
2792
2793	/* Virtual segments for minidumps: */
2794	memset(&dump_map, 0, sizeof(dump_map));
2795
2796	/* 1st: kernel .data and .bss. */
2797	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
2798	dump_map[0].pa_size =
2799	    round_page((uintptr_t)_end) - dump_map[0].pa_start;
2800
2801	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2802	dump_map[1].pa_start = (vm_paddr_t)msgbufp->msg_ptr;
2803	dump_map[1].pa_size = round_page(msgbufp->msg_size);
2804
2805	/* 3rd: kernel VM. */
2806	va = dump_map[1].pa_start + dump_map[1].pa_size;
2807	/* Find start of next chunk (from va). */
2808	while (va < virtual_end) {
2809		/* Don't dump the buffer cache. */
2810		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
2811			va = kmi.buffer_eva;
2812			continue;
2813		}
2814		pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
2815		if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID))
2816			break;
2817		va += PAGE_SIZE;
2818	}
2819	if (va < virtual_end) {
2820		dump_map[2].pa_start = va;
2821		va += PAGE_SIZE;
2822		/* Find last page in chunk. */
2823		while (va < virtual_end) {
2824			/* Don't run into the buffer cache. */
2825			if (va == kmi.buffer_sva)
2826				break;
2827			pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF,
2828			    NULL);
2829			if (pvo == NULL ||
2830			    !(pvo->pvo_pte.pte.pte_hi & PTE_VALID))
2831				break;
2832			va += PAGE_SIZE;
2833		}
2834		dump_map[2].pa_size = va - dump_map[2].pa_start;
2835	}
2836}
2837