1/*-
2 * Copyright (c) 2002-2006 Sam Leffler.  All rights reserved.
3 * Copyright (c) 2021 The FreeBSD Foundation
4 *
5 * Portions of this software were developed by Ararat River
6 * Consulting, LLC under sponsorship of the FreeBSD Foundation.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <sys/cdefs.h>
30/*
31 * Cryptographic Subsystem.
32 *
33 * This code is derived from the Openbsd Cryptographic Framework (OCF)
34 * that has the copyright shown below.  Very little of the original
35 * code remains.
36 */
37
38/*-
39 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
40 *
41 * This code was written by Angelos D. Keromytis in Athens, Greece, in
42 * February 2000. Network Security Technologies Inc. (NSTI) kindly
43 * supported the development of this code.
44 *
45 * Copyright (c) 2000, 2001 Angelos D. Keromytis
46 *
47 * Permission to use, copy, and modify this software with or without fee
48 * is hereby granted, provided that this entire notice is included in
49 * all source code copies of any software which is or includes a copy or
50 * modification of this software.
51 *
52 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
53 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
54 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
55 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
56 * PURPOSE.
57 */
58
59#include "opt_ddb.h"
60
61#include <sys/param.h>
62#include <sys/systm.h>
63#include <sys/counter.h>
64#include <sys/kernel.h>
65#include <sys/kthread.h>
66#include <sys/linker.h>
67#include <sys/lock.h>
68#include <sys/module.h>
69#include <sys/mutex.h>
70#include <sys/malloc.h>
71#include <sys/mbuf.h>
72#include <sys/proc.h>
73#include <sys/refcount.h>
74#include <sys/sdt.h>
75#include <sys/smp.h>
76#include <sys/sysctl.h>
77#include <sys/taskqueue.h>
78#include <sys/uio.h>
79
80#include <ddb/ddb.h>
81
82#include <machine/vmparam.h>
83#include <vm/uma.h>
84
85#include <crypto/intake.h>
86#include <opencrypto/cryptodev.h>
87#include <opencrypto/xform_auth.h>
88#include <opencrypto/xform_enc.h>
89
90#include <sys/kobj.h>
91#include <sys/bus.h>
92#include "cryptodev_if.h"
93
94#if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
95#include <machine/pcb.h>
96#endif
97
98SDT_PROVIDER_DEFINE(opencrypto);
99
100/*
101 * Crypto drivers register themselves by allocating a slot in the
102 * crypto_drivers table with crypto_get_driverid().
103 */
104static	struct mtx crypto_drivers_mtx;		/* lock on driver table */
105#define	CRYPTO_DRIVER_LOCK()	mtx_lock(&crypto_drivers_mtx)
106#define	CRYPTO_DRIVER_UNLOCK()	mtx_unlock(&crypto_drivers_mtx)
107#define	CRYPTO_DRIVER_ASSERT()	mtx_assert(&crypto_drivers_mtx, MA_OWNED)
108
109/*
110 * Crypto device/driver capabilities structure.
111 *
112 * Synchronization:
113 * (d) - protected by CRYPTO_DRIVER_LOCK()
114 * (q) - protected by CRYPTO_Q_LOCK()
115 * Not tagged fields are read-only.
116 */
117struct cryptocap {
118	device_t	cc_dev;
119	uint32_t	cc_hid;
120	uint32_t	cc_sessions;		/* (d) # of sessions */
121
122	int		cc_flags;		/* (d) flags */
123#define CRYPTOCAP_F_CLEANUP	0x80000000	/* needs resource cleanup */
124	int		cc_qblocked;		/* (q) symmetric q blocked */
125	size_t		cc_session_size;
126	volatile int	cc_refs;
127};
128
129static	struct cryptocap **crypto_drivers = NULL;
130static	int crypto_drivers_size = 0;
131
132struct crypto_session {
133	struct cryptocap *cap;
134	struct crypto_session_params csp;
135	uint64_t id;
136	/* Driver softc follows. */
137};
138
139static	int crp_sleep = 0;
140static	TAILQ_HEAD(cryptop_q ,cryptop) crp_q;		/* request queues */
141static	struct mtx crypto_q_mtx;
142#define	CRYPTO_Q_LOCK()		mtx_lock(&crypto_q_mtx)
143#define	CRYPTO_Q_UNLOCK()	mtx_unlock(&crypto_q_mtx)
144
145SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0,
146    "In-kernel cryptography");
147
148/*
149 * Taskqueue used to dispatch the crypto requests submitted with
150 * crypto_dispatch_async .
151 */
152static struct taskqueue *crypto_tq;
153
154/*
155 * Crypto seq numbers are operated on with modular arithmetic
156 */
157#define	CRYPTO_SEQ_GT(a,b)	((int)((a)-(b)) > 0)
158
159struct crypto_ret_worker {
160	struct mtx crypto_ret_mtx;
161
162	TAILQ_HEAD(,cryptop) crp_ordered_ret_q;	/* ordered callback queue for symetric jobs */
163	TAILQ_HEAD(,cryptop) crp_ret_q;		/* callback queue for symetric jobs */
164
165	uint32_t reorder_ops;		/* total ordered sym jobs received */
166	uint32_t reorder_cur_seq;	/* current sym job dispatched */
167
168	struct thread *td;
169};
170static struct crypto_ret_worker *crypto_ret_workers = NULL;
171
172#define CRYPTO_RETW(i)		(&crypto_ret_workers[i])
173#define CRYPTO_RETW_ID(w)	((w) - crypto_ret_workers)
174#define FOREACH_CRYPTO_RETW(w) \
175	for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w)
176
177#define	CRYPTO_RETW_LOCK(w)	mtx_lock(&w->crypto_ret_mtx)
178#define	CRYPTO_RETW_UNLOCK(w)	mtx_unlock(&w->crypto_ret_mtx)
179
180static int crypto_workers_num = 0;
181SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN,
182	   &crypto_workers_num, 0,
183	   "Number of crypto workers used to dispatch crypto jobs");
184#ifdef COMPAT_FREEBSD12
185SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN,
186	   &crypto_workers_num, 0,
187	   "Number of crypto workers used to dispatch crypto jobs");
188#endif
189
190static	uma_zone_t cryptop_zone;
191
192int	crypto_devallowsoft = 0;
193SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RWTUN,
194	   &crypto_devallowsoft, 0,
195	   "Enable use of software crypto by /dev/crypto");
196#ifdef COMPAT_FREEBSD12
197SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RWTUN,
198	   &crypto_devallowsoft, 0,
199	   "Enable/disable use of software crypto by /dev/crypto");
200#endif
201
202#ifdef DIAGNOSTIC
203bool crypto_destroyreq_check;
204SYSCTL_BOOL(_kern_crypto, OID_AUTO, destroyreq_check, CTLFLAG_RWTUN,
205	   &crypto_destroyreq_check, 0,
206	   "Enable checks when destroying a request");
207#endif
208
209MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
210
211static	void crypto_dispatch_thread(void *arg);
212static	struct thread *cryptotd;
213static	void crypto_ret_thread(void *arg);
214static	void crypto_destroy(void);
215static	int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
216static	void crypto_task_invoke(void *ctx, int pending);
217static void crypto_batch_enqueue(struct cryptop *crp);
218
219static counter_u64_t cryptostats[sizeof(struct cryptostats) / sizeof(uint64_t)];
220SYSCTL_COUNTER_U64_ARRAY(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW,
221    cryptostats, nitems(cryptostats),
222    "Crypto system statistics");
223
224#define	CRYPTOSTAT_INC(stat) do {					\
225	counter_u64_add(						\
226	    cryptostats[offsetof(struct cryptostats, stat) / sizeof(uint64_t)],\
227	    1);								\
228} while (0)
229
230static void
231cryptostats_init(void *arg __unused)
232{
233	COUNTER_ARRAY_ALLOC(cryptostats, nitems(cryptostats), M_WAITOK);
234}
235SYSINIT(cryptostats_init, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_init, NULL);
236
237static void
238cryptostats_fini(void *arg __unused)
239{
240	COUNTER_ARRAY_FREE(cryptostats, nitems(cryptostats));
241}
242SYSUNINIT(cryptostats_fini, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_fini,
243    NULL);
244
245/* Try to avoid directly exposing the key buffer as a symbol */
246static struct keybuf *keybuf;
247
248static struct keybuf empty_keybuf = {
249        .kb_nents = 0
250};
251
252/* Obtain the key buffer from boot metadata */
253static void
254keybuf_init(void)
255{
256	caddr_t kmdp;
257
258	kmdp = preload_search_by_type("elf kernel");
259
260	if (kmdp == NULL)
261		kmdp = preload_search_by_type("elf64 kernel");
262
263	keybuf = (struct keybuf *)preload_search_info(kmdp,
264	    MODINFO_METADATA | MODINFOMD_KEYBUF);
265
266        if (keybuf == NULL)
267                keybuf = &empty_keybuf;
268}
269
270/* It'd be nice if we could store these in some kind of secure memory... */
271struct keybuf *
272get_keybuf(void)
273{
274
275        return (keybuf);
276}
277
278static struct cryptocap *
279cap_ref(struct cryptocap *cap)
280{
281
282	refcount_acquire(&cap->cc_refs);
283	return (cap);
284}
285
286static void
287cap_rele(struct cryptocap *cap)
288{
289
290	if (refcount_release(&cap->cc_refs) == 0)
291		return;
292
293	KASSERT(cap->cc_sessions == 0,
294	    ("freeing crypto driver with active sessions"));
295
296	free(cap, M_CRYPTO_DATA);
297}
298
299static int
300crypto_init(void)
301{
302	struct crypto_ret_worker *ret_worker;
303	struct proc *p;
304	int error;
305
306	mtx_init(&crypto_drivers_mtx, "crypto driver table", NULL, MTX_DEF);
307
308	TAILQ_INIT(&crp_q);
309	mtx_init(&crypto_q_mtx, "crypto op queues", NULL, MTX_DEF);
310
311	cryptop_zone = uma_zcreate("cryptop",
312	    sizeof(struct cryptop), NULL, NULL, NULL, NULL,
313	    UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
314
315	crypto_drivers_size = CRYPTO_DRIVERS_INITIAL;
316	crypto_drivers = malloc(crypto_drivers_size *
317	    sizeof(struct cryptocap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
318
319	if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus)
320		crypto_workers_num = mp_ncpus;
321
322	crypto_tq = taskqueue_create("crypto", M_WAITOK | M_ZERO,
323	    taskqueue_thread_enqueue, &crypto_tq);
324
325	taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN,
326	    "crypto");
327
328	p = NULL;
329	error = kproc_kthread_add(crypto_dispatch_thread, NULL, &p, &cryptotd,
330	    0, 0, "crypto", "crypto");
331	if (error) {
332		printf("crypto_init: cannot start crypto thread; error %d",
333			error);
334		goto bad;
335	}
336
337	crypto_ret_workers = mallocarray(crypto_workers_num,
338	    sizeof(struct crypto_ret_worker), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
339
340	FOREACH_CRYPTO_RETW(ret_worker) {
341		TAILQ_INIT(&ret_worker->crp_ordered_ret_q);
342		TAILQ_INIT(&ret_worker->crp_ret_q);
343
344		ret_worker->reorder_ops = 0;
345		ret_worker->reorder_cur_seq = 0;
346
347		mtx_init(&ret_worker->crypto_ret_mtx, "crypto return queues",
348		    NULL, MTX_DEF);
349
350		error = kthread_add(crypto_ret_thread, ret_worker, p,
351		    &ret_worker->td, 0, 0, "crypto returns %td",
352		    CRYPTO_RETW_ID(ret_worker));
353		if (error) {
354			printf("crypto_init: cannot start cryptoret thread; error %d",
355				error);
356			goto bad;
357		}
358	}
359
360	keybuf_init();
361
362	return 0;
363bad:
364	crypto_destroy();
365	return error;
366}
367
368/*
369 * Signal a crypto thread to terminate.  We use the driver
370 * table lock to synchronize the sleep/wakeups so that we
371 * are sure the threads have terminated before we release
372 * the data structures they use.  See crypto_finis below
373 * for the other half of this song-and-dance.
374 */
375static void
376crypto_terminate(struct thread **tdp, void *q)
377{
378	struct thread *td;
379
380	mtx_assert(&crypto_drivers_mtx, MA_OWNED);
381	td = *tdp;
382	*tdp = NULL;
383	if (td != NULL) {
384		wakeup_one(q);
385		mtx_sleep(td, &crypto_drivers_mtx, PWAIT, "crypto_destroy", 0);
386	}
387}
388
389static void
390hmac_init_pad(const struct auth_hash *axf, const char *key, int klen,
391    void *auth_ctx, uint8_t padval)
392{
393	uint8_t hmac_key[HMAC_MAX_BLOCK_LEN];
394	u_int i;
395
396	KASSERT(axf->blocksize <= sizeof(hmac_key),
397	    ("Invalid HMAC block size %d", axf->blocksize));
398
399	/*
400	 * If the key is larger than the block size, use the digest of
401	 * the key as the key instead.
402	 */
403	memset(hmac_key, 0, sizeof(hmac_key));
404	if (klen > axf->blocksize) {
405		axf->Init(auth_ctx);
406		axf->Update(auth_ctx, key, klen);
407		axf->Final(hmac_key, auth_ctx);
408		klen = axf->hashsize;
409	} else
410		memcpy(hmac_key, key, klen);
411
412	for (i = 0; i < axf->blocksize; i++)
413		hmac_key[i] ^= padval;
414
415	axf->Init(auth_ctx);
416	axf->Update(auth_ctx, hmac_key, axf->blocksize);
417	explicit_bzero(hmac_key, sizeof(hmac_key));
418}
419
420void
421hmac_init_ipad(const struct auth_hash *axf, const char *key, int klen,
422    void *auth_ctx)
423{
424
425	hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL);
426}
427
428void
429hmac_init_opad(const struct auth_hash *axf, const char *key, int klen,
430    void *auth_ctx)
431{
432
433	hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL);
434}
435
436static void
437crypto_destroy(void)
438{
439	struct crypto_ret_worker *ret_worker;
440	int i;
441
442	/*
443	 * Terminate any crypto threads.
444	 */
445	if (crypto_tq != NULL)
446		taskqueue_drain_all(crypto_tq);
447	CRYPTO_DRIVER_LOCK();
448	crypto_terminate(&cryptotd, &crp_q);
449	FOREACH_CRYPTO_RETW(ret_worker)
450		crypto_terminate(&ret_worker->td, &ret_worker->crp_ret_q);
451	CRYPTO_DRIVER_UNLOCK();
452
453	/* XXX flush queues??? */
454
455	/*
456	 * Reclaim dynamically allocated resources.
457	 */
458	for (i = 0; i < crypto_drivers_size; i++) {
459		if (crypto_drivers[i] != NULL)
460			cap_rele(crypto_drivers[i]);
461	}
462	free(crypto_drivers, M_CRYPTO_DATA);
463
464	if (cryptop_zone != NULL)
465		uma_zdestroy(cryptop_zone);
466	mtx_destroy(&crypto_q_mtx);
467	FOREACH_CRYPTO_RETW(ret_worker)
468		mtx_destroy(&ret_worker->crypto_ret_mtx);
469	free(crypto_ret_workers, M_CRYPTO_DATA);
470	if (crypto_tq != NULL)
471		taskqueue_free(crypto_tq);
472	mtx_destroy(&crypto_drivers_mtx);
473}
474
475uint32_t
476crypto_ses2hid(crypto_session_t crypto_session)
477{
478	return (crypto_session->cap->cc_hid);
479}
480
481uint32_t
482crypto_ses2caps(crypto_session_t crypto_session)
483{
484	return (crypto_session->cap->cc_flags & 0xff000000);
485}
486
487void *
488crypto_get_driver_session(crypto_session_t crypto_session)
489{
490	return (crypto_session + 1);
491}
492
493const struct crypto_session_params *
494crypto_get_params(crypto_session_t crypto_session)
495{
496	return (&crypto_session->csp);
497}
498
499const struct auth_hash *
500crypto_auth_hash(const struct crypto_session_params *csp)
501{
502
503	switch (csp->csp_auth_alg) {
504	case CRYPTO_SHA1_HMAC:
505		return (&auth_hash_hmac_sha1);
506	case CRYPTO_SHA2_224_HMAC:
507		return (&auth_hash_hmac_sha2_224);
508	case CRYPTO_SHA2_256_HMAC:
509		return (&auth_hash_hmac_sha2_256);
510	case CRYPTO_SHA2_384_HMAC:
511		return (&auth_hash_hmac_sha2_384);
512	case CRYPTO_SHA2_512_HMAC:
513		return (&auth_hash_hmac_sha2_512);
514	case CRYPTO_NULL_HMAC:
515		return (&auth_hash_null);
516	case CRYPTO_RIPEMD160_HMAC:
517		return (&auth_hash_hmac_ripemd_160);
518	case CRYPTO_RIPEMD160:
519		return (&auth_hash_ripemd_160);
520	case CRYPTO_SHA1:
521		return (&auth_hash_sha1);
522	case CRYPTO_SHA2_224:
523		return (&auth_hash_sha2_224);
524	case CRYPTO_SHA2_256:
525		return (&auth_hash_sha2_256);
526	case CRYPTO_SHA2_384:
527		return (&auth_hash_sha2_384);
528	case CRYPTO_SHA2_512:
529		return (&auth_hash_sha2_512);
530	case CRYPTO_AES_NIST_GMAC:
531		switch (csp->csp_auth_klen) {
532		case 128 / 8:
533			return (&auth_hash_nist_gmac_aes_128);
534		case 192 / 8:
535			return (&auth_hash_nist_gmac_aes_192);
536		case 256 / 8:
537			return (&auth_hash_nist_gmac_aes_256);
538		default:
539			return (NULL);
540		}
541	case CRYPTO_BLAKE2B:
542		return (&auth_hash_blake2b);
543	case CRYPTO_BLAKE2S:
544		return (&auth_hash_blake2s);
545	case CRYPTO_POLY1305:
546		return (&auth_hash_poly1305);
547	case CRYPTO_AES_CCM_CBC_MAC:
548		switch (csp->csp_auth_klen) {
549		case 128 / 8:
550			return (&auth_hash_ccm_cbc_mac_128);
551		case 192 / 8:
552			return (&auth_hash_ccm_cbc_mac_192);
553		case 256 / 8:
554			return (&auth_hash_ccm_cbc_mac_256);
555		default:
556			return (NULL);
557		}
558	default:
559		return (NULL);
560	}
561}
562
563const struct enc_xform *
564crypto_cipher(const struct crypto_session_params *csp)
565{
566
567	switch (csp->csp_cipher_alg) {
568	case CRYPTO_AES_CBC:
569		return (&enc_xform_aes_cbc);
570	case CRYPTO_AES_XTS:
571		return (&enc_xform_aes_xts);
572	case CRYPTO_AES_ICM:
573		return (&enc_xform_aes_icm);
574	case CRYPTO_AES_NIST_GCM_16:
575		return (&enc_xform_aes_nist_gcm);
576	case CRYPTO_CAMELLIA_CBC:
577		return (&enc_xform_camellia);
578	case CRYPTO_NULL_CBC:
579		return (&enc_xform_null);
580	case CRYPTO_CHACHA20:
581		return (&enc_xform_chacha20);
582	case CRYPTO_AES_CCM_16:
583		return (&enc_xform_ccm);
584	case CRYPTO_CHACHA20_POLY1305:
585		return (&enc_xform_chacha20_poly1305);
586	case CRYPTO_XCHACHA20_POLY1305:
587		return (&enc_xform_xchacha20_poly1305);
588	default:
589		return (NULL);
590	}
591}
592
593static struct cryptocap *
594crypto_checkdriver(uint32_t hid)
595{
596
597	return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]);
598}
599
600/*
601 * Select a driver for a new session that supports the specified
602 * algorithms and, optionally, is constrained according to the flags.
603 */
604static struct cryptocap *
605crypto_select_driver(const struct crypto_session_params *csp, int flags)
606{
607	struct cryptocap *cap, *best;
608	int best_match, error, hid;
609
610	CRYPTO_DRIVER_ASSERT();
611
612	best = NULL;
613	for (hid = 0; hid < crypto_drivers_size; hid++) {
614		/*
615		 * If there is no driver for this slot, or the driver
616		 * is not appropriate (hardware or software based on
617		 * match), then skip.
618		 */
619		cap = crypto_drivers[hid];
620		if (cap == NULL ||
621		    (cap->cc_flags & flags) == 0)
622			continue;
623
624		error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp);
625		if (error >= 0)
626			continue;
627
628		/*
629		 * Use the driver with the highest probe value.
630		 * Hardware drivers use a higher probe value than
631		 * software.  In case of a tie, prefer the driver with
632		 * the fewest active sessions.
633		 */
634		if (best == NULL || error > best_match ||
635		    (error == best_match &&
636		    cap->cc_sessions < best->cc_sessions)) {
637			best = cap;
638			best_match = error;
639		}
640	}
641	return best;
642}
643
644static enum alg_type {
645	ALG_NONE = 0,
646	ALG_CIPHER,
647	ALG_DIGEST,
648	ALG_KEYED_DIGEST,
649	ALG_COMPRESSION,
650	ALG_AEAD
651} alg_types[] = {
652	[CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST,
653	[CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST,
654	[CRYPTO_AES_CBC] = ALG_CIPHER,
655	[CRYPTO_SHA1] = ALG_DIGEST,
656	[CRYPTO_NULL_HMAC] = ALG_DIGEST,
657	[CRYPTO_NULL_CBC] = ALG_CIPHER,
658	[CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION,
659	[CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST,
660	[CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST,
661	[CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST,
662	[CRYPTO_CAMELLIA_CBC] = ALG_CIPHER,
663	[CRYPTO_AES_XTS] = ALG_CIPHER,
664	[CRYPTO_AES_ICM] = ALG_CIPHER,
665	[CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST,
666	[CRYPTO_AES_NIST_GCM_16] = ALG_AEAD,
667	[CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST,
668	[CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST,
669	[CRYPTO_CHACHA20] = ALG_CIPHER,
670	[CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST,
671	[CRYPTO_RIPEMD160] = ALG_DIGEST,
672	[CRYPTO_SHA2_224] = ALG_DIGEST,
673	[CRYPTO_SHA2_256] = ALG_DIGEST,
674	[CRYPTO_SHA2_384] = ALG_DIGEST,
675	[CRYPTO_SHA2_512] = ALG_DIGEST,
676	[CRYPTO_POLY1305] = ALG_KEYED_DIGEST,
677	[CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST,
678	[CRYPTO_AES_CCM_16] = ALG_AEAD,
679	[CRYPTO_CHACHA20_POLY1305] = ALG_AEAD,
680	[CRYPTO_XCHACHA20_POLY1305] = ALG_AEAD,
681};
682
683static enum alg_type
684alg_type(int alg)
685{
686
687	if (alg < nitems(alg_types))
688		return (alg_types[alg]);
689	return (ALG_NONE);
690}
691
692static bool
693alg_is_compression(int alg)
694{
695
696	return (alg_type(alg) == ALG_COMPRESSION);
697}
698
699static bool
700alg_is_cipher(int alg)
701{
702
703	return (alg_type(alg) == ALG_CIPHER);
704}
705
706static bool
707alg_is_digest(int alg)
708{
709
710	return (alg_type(alg) == ALG_DIGEST ||
711	    alg_type(alg) == ALG_KEYED_DIGEST);
712}
713
714static bool
715alg_is_keyed_digest(int alg)
716{
717
718	return (alg_type(alg) == ALG_KEYED_DIGEST);
719}
720
721static bool
722alg_is_aead(int alg)
723{
724
725	return (alg_type(alg) == ALG_AEAD);
726}
727
728static bool
729ccm_tag_length_valid(int len)
730{
731	/* RFC 3610 */
732	switch (len) {
733	case 4:
734	case 6:
735	case 8:
736	case 10:
737	case 12:
738	case 14:
739	case 16:
740		return (true);
741	default:
742		return (false);
743	}
744}
745
746#define SUPPORTED_SES (CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD | CSP_F_ESN)
747
748/* Various sanity checks on crypto session parameters. */
749static bool
750check_csp(const struct crypto_session_params *csp)
751{
752	const struct auth_hash *axf;
753
754	/* Mode-independent checks. */
755	if ((csp->csp_flags & ~(SUPPORTED_SES)) != 0)
756		return (false);
757	if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 ||
758	    csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0)
759		return (false);
760	if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0)
761		return (false);
762	if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0)
763		return (false);
764
765	switch (csp->csp_mode) {
766	case CSP_MODE_COMPRESS:
767		if (!alg_is_compression(csp->csp_cipher_alg))
768			return (false);
769		if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT)
770			return (false);
771		if (csp->csp_flags & CSP_F_SEPARATE_AAD)
772			return (false);
773		if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 ||
774		    csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
775		    csp->csp_auth_mlen != 0)
776			return (false);
777		break;
778	case CSP_MODE_CIPHER:
779		if (!alg_is_cipher(csp->csp_cipher_alg))
780			return (false);
781		if (csp->csp_flags & CSP_F_SEPARATE_AAD)
782			return (false);
783		if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
784			if (csp->csp_cipher_klen == 0)
785				return (false);
786			if (csp->csp_ivlen == 0)
787				return (false);
788		}
789		if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
790			return (false);
791		if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
792		    csp->csp_auth_mlen != 0)
793			return (false);
794		break;
795	case CSP_MODE_DIGEST:
796		if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0)
797			return (false);
798
799		if (csp->csp_flags & CSP_F_SEPARATE_AAD)
800			return (false);
801
802		/* IV is optional for digests (e.g. GMAC). */
803		switch (csp->csp_auth_alg) {
804		case CRYPTO_AES_CCM_CBC_MAC:
805			if (csp->csp_ivlen < 7 || csp->csp_ivlen > 13)
806				return (false);
807			break;
808		case CRYPTO_AES_NIST_GMAC:
809			if (csp->csp_ivlen != AES_GCM_IV_LEN)
810				return (false);
811			break;
812		default:
813			if (csp->csp_ivlen != 0)
814				return (false);
815			break;
816		}
817
818		if (!alg_is_digest(csp->csp_auth_alg))
819			return (false);
820
821		/* Key is optional for BLAKE2 digests. */
822		if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
823		    csp->csp_auth_alg == CRYPTO_BLAKE2S)
824			;
825		else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
826			if (csp->csp_auth_klen == 0)
827				return (false);
828		} else {
829			if (csp->csp_auth_klen != 0)
830				return (false);
831		}
832		if (csp->csp_auth_mlen != 0) {
833			axf = crypto_auth_hash(csp);
834			if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
835				return (false);
836
837			if (csp->csp_auth_alg == CRYPTO_AES_CCM_CBC_MAC &&
838			    !ccm_tag_length_valid(csp->csp_auth_mlen))
839				return (false);
840		}
841		break;
842	case CSP_MODE_AEAD:
843		if (!alg_is_aead(csp->csp_cipher_alg))
844			return (false);
845		if (csp->csp_cipher_klen == 0)
846			return (false);
847		if (csp->csp_ivlen == 0 ||
848		    csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
849			return (false);
850		if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0)
851			return (false);
852
853		switch (csp->csp_cipher_alg) {
854		case CRYPTO_AES_CCM_16:
855			if (csp->csp_auth_mlen != 0 &&
856			    !ccm_tag_length_valid(csp->csp_auth_mlen))
857				return (false);
858
859			if (csp->csp_ivlen < 7 || csp->csp_ivlen > 13)
860				return (false);
861			break;
862		case CRYPTO_AES_NIST_GCM_16:
863			if (csp->csp_auth_mlen > AES_GMAC_HASH_LEN)
864				return (false);
865
866			if (csp->csp_ivlen != AES_GCM_IV_LEN)
867				return (false);
868			break;
869		case CRYPTO_CHACHA20_POLY1305:
870			if (csp->csp_ivlen != 8 && csp->csp_ivlen != 12)
871				return (false);
872			if (csp->csp_auth_mlen > POLY1305_HASH_LEN)
873				return (false);
874			break;
875		case CRYPTO_XCHACHA20_POLY1305:
876			if (csp->csp_ivlen != XCHACHA20_POLY1305_IV_LEN)
877				return (false);
878			if (csp->csp_auth_mlen > POLY1305_HASH_LEN)
879				return (false);
880			break;
881		}
882		break;
883	case CSP_MODE_ETA:
884		if (!alg_is_cipher(csp->csp_cipher_alg))
885			return (false);
886		if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
887			if (csp->csp_cipher_klen == 0)
888				return (false);
889			if (csp->csp_ivlen == 0)
890				return (false);
891		}
892		if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
893			return (false);
894		if (!alg_is_digest(csp->csp_auth_alg))
895			return (false);
896
897		/* Key is optional for BLAKE2 digests. */
898		if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
899		    csp->csp_auth_alg == CRYPTO_BLAKE2S)
900			;
901		else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
902			if (csp->csp_auth_klen == 0)
903				return (false);
904		} else {
905			if (csp->csp_auth_klen != 0)
906				return (false);
907		}
908		if (csp->csp_auth_mlen != 0) {
909			axf = crypto_auth_hash(csp);
910			if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
911				return (false);
912		}
913		break;
914	default:
915		return (false);
916	}
917
918	return (true);
919}
920
921/*
922 * Delete a session after it has been detached from its driver.
923 */
924static void
925crypto_deletesession(crypto_session_t cses)
926{
927	struct cryptocap *cap;
928
929	cap = cses->cap;
930
931	zfree(cses, M_CRYPTO_DATA);
932
933	CRYPTO_DRIVER_LOCK();
934	cap->cc_sessions--;
935	if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP)
936		wakeup(cap);
937	CRYPTO_DRIVER_UNLOCK();
938	cap_rele(cap);
939}
940
941/*
942 * Create a new session.  The crid argument specifies a crypto
943 * driver to use or constraints on a driver to select (hardware
944 * only, software only, either).  Whatever driver is selected
945 * must be capable of the requested crypto algorithms.
946 */
947int
948crypto_newsession(crypto_session_t *cses,
949    const struct crypto_session_params *csp, int crid)
950{
951	static uint64_t sessid = 0;
952	crypto_session_t res;
953	struct cryptocap *cap;
954	int err;
955
956	if (!check_csp(csp))
957		return (EINVAL);
958
959	res = NULL;
960
961	CRYPTO_DRIVER_LOCK();
962	if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
963		/*
964		 * Use specified driver; verify it is capable.
965		 */
966		cap = crypto_checkdriver(crid);
967		if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0)
968			cap = NULL;
969	} else {
970		/*
971		 * No requested driver; select based on crid flags.
972		 */
973		cap = crypto_select_driver(csp, crid);
974	}
975	if (cap == NULL) {
976		CRYPTO_DRIVER_UNLOCK();
977		CRYPTDEB("no driver");
978		return (EOPNOTSUPP);
979	}
980	cap_ref(cap);
981	cap->cc_sessions++;
982	CRYPTO_DRIVER_UNLOCK();
983
984	/* Allocate a single block for the generic session and driver softc. */
985	res = malloc(sizeof(*res) + cap->cc_session_size, M_CRYPTO_DATA,
986	    M_WAITOK | M_ZERO);
987	res->cap = cap;
988	res->csp = *csp;
989	res->id = atomic_fetchadd_64(&sessid, 1);
990
991	/* Call the driver initialization routine. */
992	err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp);
993	if (err != 0) {
994		CRYPTDEB("dev newsession failed: %d", err);
995		crypto_deletesession(res);
996		return (err);
997	}
998
999	*cses = res;
1000	return (0);
1001}
1002
1003/*
1004 * Delete an existing session (or a reserved session on an unregistered
1005 * driver).
1006 */
1007void
1008crypto_freesession(crypto_session_t cses)
1009{
1010	struct cryptocap *cap;
1011
1012	if (cses == NULL)
1013		return;
1014
1015	cap = cses->cap;
1016
1017	/* Call the driver cleanup routine, if available. */
1018	CRYPTODEV_FREESESSION(cap->cc_dev, cses);
1019
1020	crypto_deletesession(cses);
1021}
1022
1023/*
1024 * Return a new driver id.  Registers a driver with the system so that
1025 * it can be probed by subsequent sessions.
1026 */
1027int32_t
1028crypto_get_driverid(device_t dev, size_t sessionsize, int flags)
1029{
1030	struct cryptocap *cap, **newdrv;
1031	int i;
1032
1033	if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
1034		device_printf(dev,
1035		    "no flags specified when registering driver\n");
1036		return -1;
1037	}
1038
1039	cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1040	cap->cc_dev = dev;
1041	cap->cc_session_size = sessionsize;
1042	cap->cc_flags = flags;
1043	refcount_init(&cap->cc_refs, 1);
1044
1045	CRYPTO_DRIVER_LOCK();
1046	for (;;) {
1047		for (i = 0; i < crypto_drivers_size; i++) {
1048			if (crypto_drivers[i] == NULL)
1049				break;
1050		}
1051
1052		if (i < crypto_drivers_size)
1053			break;
1054
1055		/* Out of entries, allocate some more. */
1056
1057		if (2 * crypto_drivers_size <= crypto_drivers_size) {
1058			CRYPTO_DRIVER_UNLOCK();
1059			printf("crypto: driver count wraparound!\n");
1060			cap_rele(cap);
1061			return (-1);
1062		}
1063		CRYPTO_DRIVER_UNLOCK();
1064
1065		newdrv = malloc(2 * crypto_drivers_size *
1066		    sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1067
1068		CRYPTO_DRIVER_LOCK();
1069		memcpy(newdrv, crypto_drivers,
1070		    crypto_drivers_size * sizeof(*crypto_drivers));
1071
1072		crypto_drivers_size *= 2;
1073
1074		free(crypto_drivers, M_CRYPTO_DATA);
1075		crypto_drivers = newdrv;
1076	}
1077
1078	cap->cc_hid = i;
1079	crypto_drivers[i] = cap;
1080	CRYPTO_DRIVER_UNLOCK();
1081
1082	if (bootverbose)
1083		printf("crypto: assign %s driver id %u, flags 0x%x\n",
1084		    device_get_nameunit(dev), i, flags);
1085
1086	return i;
1087}
1088
1089/*
1090 * Lookup a driver by name.  We match against the full device
1091 * name and unit, and against just the name.  The latter gives
1092 * us a simple widlcarding by device name.  On success return the
1093 * driver/hardware identifier; otherwise return -1.
1094 */
1095int
1096crypto_find_driver(const char *match)
1097{
1098	struct cryptocap *cap;
1099	int i, len = strlen(match);
1100
1101	CRYPTO_DRIVER_LOCK();
1102	for (i = 0; i < crypto_drivers_size; i++) {
1103		if (crypto_drivers[i] == NULL)
1104			continue;
1105		cap = crypto_drivers[i];
1106		if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 ||
1107		    strncmp(match, device_get_name(cap->cc_dev), len) == 0) {
1108			CRYPTO_DRIVER_UNLOCK();
1109			return (i);
1110		}
1111	}
1112	CRYPTO_DRIVER_UNLOCK();
1113	return (-1);
1114}
1115
1116/*
1117 * Return the device_t for the specified driver or NULL
1118 * if the driver identifier is invalid.
1119 */
1120device_t
1121crypto_find_device_byhid(int hid)
1122{
1123	struct cryptocap *cap;
1124	device_t dev;
1125
1126	dev = NULL;
1127	CRYPTO_DRIVER_LOCK();
1128	cap = crypto_checkdriver(hid);
1129	if (cap != NULL)
1130		dev = cap->cc_dev;
1131	CRYPTO_DRIVER_UNLOCK();
1132	return (dev);
1133}
1134
1135/*
1136 * Return the device/driver capabilities.
1137 */
1138int
1139crypto_getcaps(int hid)
1140{
1141	struct cryptocap *cap;
1142	int flags;
1143
1144	flags = 0;
1145	CRYPTO_DRIVER_LOCK();
1146	cap = crypto_checkdriver(hid);
1147	if (cap != NULL)
1148		flags = cap->cc_flags;
1149	CRYPTO_DRIVER_UNLOCK();
1150	return (flags);
1151}
1152
1153/*
1154 * Unregister all algorithms associated with a crypto driver.
1155 * If there are pending sessions using it, leave enough information
1156 * around so that subsequent calls using those sessions will
1157 * correctly detect the driver has been unregistered and reroute
1158 * requests.
1159 */
1160int
1161crypto_unregister_all(uint32_t driverid)
1162{
1163	struct cryptocap *cap;
1164
1165	CRYPTO_DRIVER_LOCK();
1166	cap = crypto_checkdriver(driverid);
1167	if (cap == NULL) {
1168		CRYPTO_DRIVER_UNLOCK();
1169		return (EINVAL);
1170	}
1171
1172	cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
1173	crypto_drivers[driverid] = NULL;
1174
1175	/*
1176	 * XXX: This doesn't do anything to kick sessions that
1177	 * have no pending operations.
1178	 */
1179	while (cap->cc_sessions != 0)
1180		mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0);
1181	CRYPTO_DRIVER_UNLOCK();
1182	cap_rele(cap);
1183
1184	return (0);
1185}
1186
1187/*
1188 * Clear blockage on a driver.  The what parameter indicates whether
1189 * the driver is now ready for cryptop's and/or cryptokop's.
1190 */
1191int
1192crypto_unblock(uint32_t driverid, int what)
1193{
1194	struct cryptocap *cap;
1195	int err;
1196
1197	CRYPTO_Q_LOCK();
1198	cap = crypto_checkdriver(driverid);
1199	if (cap != NULL) {
1200		if (what & CRYPTO_SYMQ)
1201			cap->cc_qblocked = 0;
1202		if (crp_sleep)
1203			wakeup_one(&crp_q);
1204		err = 0;
1205	} else
1206		err = EINVAL;
1207	CRYPTO_Q_UNLOCK();
1208
1209	return err;
1210}
1211
1212size_t
1213crypto_buffer_len(struct crypto_buffer *cb)
1214{
1215	switch (cb->cb_type) {
1216	case CRYPTO_BUF_CONTIG:
1217		return (cb->cb_buf_len);
1218	case CRYPTO_BUF_MBUF:
1219		if (cb->cb_mbuf->m_flags & M_PKTHDR)
1220			return (cb->cb_mbuf->m_pkthdr.len);
1221		return (m_length(cb->cb_mbuf, NULL));
1222	case CRYPTO_BUF_SINGLE_MBUF:
1223		return (cb->cb_mbuf->m_len);
1224	case CRYPTO_BUF_VMPAGE:
1225		return (cb->cb_vm_page_len);
1226	case CRYPTO_BUF_UIO:
1227		return (cb->cb_uio->uio_resid);
1228	default:
1229		return (0);
1230	}
1231}
1232
1233#ifdef INVARIANTS
1234/* Various sanity checks on crypto requests. */
1235static void
1236cb_sanity(struct crypto_buffer *cb, const char *name)
1237{
1238	KASSERT(cb->cb_type > CRYPTO_BUF_NONE && cb->cb_type <= CRYPTO_BUF_LAST,
1239	    ("incoming crp with invalid %s buffer type", name));
1240	switch (cb->cb_type) {
1241	case CRYPTO_BUF_CONTIG:
1242		KASSERT(cb->cb_buf_len >= 0,
1243		    ("incoming crp with -ve %s buffer length", name));
1244		break;
1245	case CRYPTO_BUF_VMPAGE:
1246		KASSERT(CRYPTO_HAS_VMPAGE,
1247		    ("incoming crp uses dmap on supported arch"));
1248		KASSERT(cb->cb_vm_page_len >= 0,
1249		    ("incoming crp with -ve %s buffer length", name));
1250		KASSERT(cb->cb_vm_page_offset >= 0,
1251		    ("incoming crp with -ve %s buffer offset", name));
1252		KASSERT(cb->cb_vm_page_offset < PAGE_SIZE,
1253		    ("incoming crp with %s buffer offset greater than page size"
1254		     , name));
1255		break;
1256	default:
1257		break;
1258	}
1259}
1260
1261static void
1262crp_sanity(struct cryptop *crp)
1263{
1264	struct crypto_session_params *csp;
1265	struct crypto_buffer *out;
1266	size_t ilen, len, olen;
1267
1268	KASSERT(crp->crp_session != NULL, ("incoming crp without a session"));
1269	KASSERT(crp->crp_obuf.cb_type >= CRYPTO_BUF_NONE &&
1270	    crp->crp_obuf.cb_type <= CRYPTO_BUF_LAST,
1271	    ("incoming crp with invalid output buffer type"));
1272	KASSERT(crp->crp_etype == 0, ("incoming crp with error"));
1273	KASSERT(!(crp->crp_flags & CRYPTO_F_DONE),
1274	    ("incoming crp already done"));
1275
1276	csp = &crp->crp_session->csp;
1277	cb_sanity(&crp->crp_buf, "input");
1278	ilen = crypto_buffer_len(&crp->crp_buf);
1279	olen = ilen;
1280	out = NULL;
1281	if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) {
1282		if (crp->crp_obuf.cb_type != CRYPTO_BUF_NONE) {
1283			cb_sanity(&crp->crp_obuf, "output");
1284			out = &crp->crp_obuf;
1285			olen = crypto_buffer_len(out);
1286		}
1287	} else
1288		KASSERT(crp->crp_obuf.cb_type == CRYPTO_BUF_NONE,
1289		    ("incoming crp with separate output buffer "
1290		    "but no session support"));
1291
1292	switch (csp->csp_mode) {
1293	case CSP_MODE_COMPRESS:
1294		KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS ||
1295		    crp->crp_op == CRYPTO_OP_DECOMPRESS,
1296		    ("invalid compression op %x", crp->crp_op));
1297		break;
1298	case CSP_MODE_CIPHER:
1299		KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT ||
1300		    crp->crp_op == CRYPTO_OP_DECRYPT,
1301		    ("invalid cipher op %x", crp->crp_op));
1302		break;
1303	case CSP_MODE_DIGEST:
1304		KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST ||
1305		    crp->crp_op == CRYPTO_OP_VERIFY_DIGEST,
1306		    ("invalid digest op %x", crp->crp_op));
1307		break;
1308	case CSP_MODE_AEAD:
1309		KASSERT(crp->crp_op ==
1310		    (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1311		    crp->crp_op ==
1312		    (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1313		    ("invalid AEAD op %x", crp->crp_op));
1314		KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
1315		    ("AEAD without a separate IV"));
1316		break;
1317	case CSP_MODE_ETA:
1318		KASSERT(crp->crp_op ==
1319		    (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1320		    crp->crp_op ==
1321		    (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1322		    ("invalid ETA op %x", crp->crp_op));
1323		break;
1324	}
1325	if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1326		if (crp->crp_aad == NULL) {
1327			KASSERT(crp->crp_aad_start == 0 ||
1328			    crp->crp_aad_start < ilen,
1329			    ("invalid AAD start"));
1330			KASSERT(crp->crp_aad_length != 0 ||
1331			    crp->crp_aad_start == 0,
1332			    ("AAD with zero length and non-zero start"));
1333			KASSERT(crp->crp_aad_length == 0 ||
1334			    crp->crp_aad_start + crp->crp_aad_length <= ilen,
1335			    ("AAD outside input length"));
1336		} else {
1337			KASSERT(csp->csp_flags & CSP_F_SEPARATE_AAD,
1338			    ("session doesn't support separate AAD buffer"));
1339			KASSERT(crp->crp_aad_start == 0,
1340			    ("separate AAD buffer with non-zero AAD start"));
1341			KASSERT(crp->crp_aad_length != 0,
1342			    ("separate AAD buffer with zero length"));
1343		}
1344	} else {
1345		KASSERT(crp->crp_aad == NULL && crp->crp_aad_start == 0 &&
1346		    crp->crp_aad_length == 0,
1347		    ("AAD region in request not supporting AAD"));
1348	}
1349	if (csp->csp_ivlen == 0) {
1350		KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0,
1351		    ("IV_SEPARATE set when IV isn't used"));
1352		KASSERT(crp->crp_iv_start == 0,
1353		    ("crp_iv_start set when IV isn't used"));
1354	} else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) {
1355		KASSERT(crp->crp_iv_start == 0,
1356		    ("IV_SEPARATE used with non-zero IV start"));
1357	} else {
1358		KASSERT(crp->crp_iv_start < ilen,
1359		    ("invalid IV start"));
1360		KASSERT(crp->crp_iv_start + csp->csp_ivlen <= ilen,
1361		    ("IV outside buffer length"));
1362	}
1363	/* XXX: payload_start of 0 should always be < ilen? */
1364	KASSERT(crp->crp_payload_start == 0 ||
1365	    crp->crp_payload_start < ilen,
1366	    ("invalid payload start"));
1367	KASSERT(crp->crp_payload_start + crp->crp_payload_length <=
1368	    ilen, ("payload outside input buffer"));
1369	if (out == NULL) {
1370		KASSERT(crp->crp_payload_output_start == 0,
1371		    ("payload output start non-zero without output buffer"));
1372	} else if (csp->csp_mode == CSP_MODE_DIGEST) {
1373		KASSERT(!(crp->crp_op & CRYPTO_OP_VERIFY_DIGEST),
1374		    ("digest verify with separate output buffer"));
1375		KASSERT(crp->crp_payload_output_start == 0,
1376		    ("digest operation with non-zero payload output start"));
1377	} else {
1378		KASSERT(crp->crp_payload_output_start == 0 ||
1379		    crp->crp_payload_output_start < olen,
1380		    ("invalid payload output start"));
1381		KASSERT(crp->crp_payload_output_start +
1382		    crp->crp_payload_length <= olen,
1383		    ("payload outside output buffer"));
1384	}
1385	if (csp->csp_mode == CSP_MODE_DIGEST ||
1386	    csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1387		if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST)
1388			len = ilen;
1389		else
1390			len = olen;
1391		KASSERT(crp->crp_digest_start == 0 ||
1392		    crp->crp_digest_start < len,
1393		    ("invalid digest start"));
1394		/* XXX: For the mlen == 0 case this check isn't perfect. */
1395		KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= len,
1396		    ("digest outside buffer"));
1397	} else {
1398		KASSERT(crp->crp_digest_start == 0,
1399		    ("non-zero digest start for request without a digest"));
1400	}
1401	if (csp->csp_cipher_klen != 0)
1402		KASSERT(csp->csp_cipher_key != NULL ||
1403		    crp->crp_cipher_key != NULL,
1404		    ("cipher request without a key"));
1405	if (csp->csp_auth_klen != 0)
1406		KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL,
1407		    ("auth request without a key"));
1408	KASSERT(crp->crp_callback != NULL, ("incoming crp without callback"));
1409}
1410#endif
1411
1412static int
1413crypto_dispatch_one(struct cryptop *crp, int hint)
1414{
1415	struct cryptocap *cap;
1416	int result;
1417
1418#ifdef INVARIANTS
1419	crp_sanity(crp);
1420#endif
1421	CRYPTOSTAT_INC(cs_ops);
1422
1423	crp->crp_retw_id = crp->crp_session->id % crypto_workers_num;
1424
1425	/*
1426	 * Caller marked the request to be processed immediately; dispatch it
1427	 * directly to the driver unless the driver is currently blocked, in
1428	 * which case it is queued for deferred dispatch.
1429	 */
1430	cap = crp->crp_session->cap;
1431	if (!atomic_load_int(&cap->cc_qblocked)) {
1432		result = crypto_invoke(cap, crp, hint);
1433		if (result != ERESTART)
1434			return (result);
1435
1436		/*
1437		 * The driver ran out of resources, put the request on the
1438		 * queue.
1439		 */
1440	}
1441	crypto_batch_enqueue(crp);
1442	return (0);
1443}
1444
1445int
1446crypto_dispatch(struct cryptop *crp)
1447{
1448	return (crypto_dispatch_one(crp, 0));
1449}
1450
1451int
1452crypto_dispatch_async(struct cryptop *crp, int flags)
1453{
1454	struct crypto_ret_worker *ret_worker;
1455
1456	if (!CRYPTO_SESS_SYNC(crp->crp_session)) {
1457		/*
1458		 * The driver issues completions asynchonously, don't bother
1459		 * deferring dispatch to a worker thread.
1460		 */
1461		return (crypto_dispatch(crp));
1462	}
1463
1464#ifdef INVARIANTS
1465	crp_sanity(crp);
1466#endif
1467	CRYPTOSTAT_INC(cs_ops);
1468
1469	crp->crp_retw_id = crp->crp_session->id % crypto_workers_num;
1470	if ((flags & CRYPTO_ASYNC_ORDERED) != 0) {
1471		crp->crp_flags |= CRYPTO_F_ASYNC_ORDERED;
1472		ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1473		CRYPTO_RETW_LOCK(ret_worker);
1474		crp->crp_seq = ret_worker->reorder_ops++;
1475		CRYPTO_RETW_UNLOCK(ret_worker);
1476	}
1477	TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp);
1478	taskqueue_enqueue(crypto_tq, &crp->crp_task);
1479	return (0);
1480}
1481
1482void
1483crypto_dispatch_batch(struct cryptopq *crpq, int flags)
1484{
1485	struct cryptop *crp;
1486	int hint;
1487
1488	while ((crp = TAILQ_FIRST(crpq)) != NULL) {
1489		hint = TAILQ_NEXT(crp, crp_next) != NULL ? CRYPTO_HINT_MORE : 0;
1490		TAILQ_REMOVE(crpq, crp, crp_next);
1491		if (crypto_dispatch_one(crp, hint) != 0)
1492			crypto_batch_enqueue(crp);
1493	}
1494}
1495
1496static void
1497crypto_batch_enqueue(struct cryptop *crp)
1498{
1499
1500	CRYPTO_Q_LOCK();
1501	TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
1502	if (crp_sleep)
1503		wakeup_one(&crp_q);
1504	CRYPTO_Q_UNLOCK();
1505}
1506
1507static void
1508crypto_task_invoke(void *ctx, int pending)
1509{
1510	struct cryptocap *cap;
1511	struct cryptop *crp;
1512	int result;
1513
1514	crp = (struct cryptop *)ctx;
1515	cap = crp->crp_session->cap;
1516	result = crypto_invoke(cap, crp, 0);
1517	if (result == ERESTART)
1518		crypto_batch_enqueue(crp);
1519}
1520
1521/*
1522 * Dispatch a crypto request to the appropriate crypto devices.
1523 */
1524static int
1525crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1526{
1527	int error;
1528
1529	KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1530	KASSERT(crp->crp_callback != NULL,
1531	    ("%s: crp->crp_callback == NULL", __func__));
1532	KASSERT(crp->crp_session != NULL,
1533	    ("%s: crp->crp_session == NULL", __func__));
1534
1535	if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1536		struct crypto_session_params csp;
1537		crypto_session_t nses;
1538
1539		/*
1540		 * Driver has unregistered; migrate the session and return
1541		 * an error to the caller so they'll resubmit the op.
1542		 *
1543		 * XXX: What if there are more already queued requests for this
1544		 *      session?
1545		 *
1546		 * XXX: Real solution is to make sessions refcounted
1547		 * and force callers to hold a reference when
1548		 * assigning to crp_session.  Could maybe change
1549		 * crypto_getreq to accept a session pointer to make
1550		 * that work.  Alternatively, we could abandon the
1551		 * notion of rewriting crp_session in requests forcing
1552		 * the caller to deal with allocating a new session.
1553		 * Perhaps provide a method to allow a crp's session to
1554		 * be swapped that callers could use.
1555		 */
1556		csp = crp->crp_session->csp;
1557		crypto_freesession(crp->crp_session);
1558
1559		/*
1560		 * XXX: Key pointers may no longer be valid.  If we
1561		 * really want to support this we need to define the
1562		 * KPI such that 'csp' is required to be valid for the
1563		 * duration of a session by the caller perhaps.
1564		 *
1565		 * XXX: If the keys have been changed this will reuse
1566		 * the old keys.  This probably suggests making
1567		 * rekeying more explicit and updating the key
1568		 * pointers in 'csp' when the keys change.
1569		 */
1570		if (crypto_newsession(&nses, &csp,
1571		    CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1572			crp->crp_session = nses;
1573
1574		crp->crp_etype = EAGAIN;
1575		crypto_done(crp);
1576		error = 0;
1577	} else {
1578		/*
1579		 * Invoke the driver to process the request.  Errors are
1580		 * signaled by setting crp_etype before invoking the completion
1581		 * callback.
1582		 */
1583		error = CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1584		KASSERT(error == 0 || error == ERESTART,
1585		    ("%s: invalid error %d from CRYPTODEV_PROCESS",
1586		    __func__, error));
1587	}
1588	return (error);
1589}
1590
1591void
1592crypto_destroyreq(struct cryptop *crp)
1593{
1594#ifdef DIAGNOSTIC
1595	{
1596		struct cryptop *crp2;
1597		struct crypto_ret_worker *ret_worker;
1598
1599		if (!crypto_destroyreq_check)
1600			return;
1601
1602		CRYPTO_Q_LOCK();
1603		TAILQ_FOREACH(crp2, &crp_q, crp_next) {
1604			KASSERT(crp2 != crp,
1605			    ("Freeing cryptop from the crypto queue (%p).",
1606			    crp));
1607		}
1608		CRYPTO_Q_UNLOCK();
1609
1610		FOREACH_CRYPTO_RETW(ret_worker) {
1611			CRYPTO_RETW_LOCK(ret_worker);
1612			TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) {
1613				KASSERT(crp2 != crp,
1614				    ("Freeing cryptop from the return queue (%p).",
1615				    crp));
1616			}
1617			CRYPTO_RETW_UNLOCK(ret_worker);
1618		}
1619	}
1620#endif
1621}
1622
1623void
1624crypto_freereq(struct cryptop *crp)
1625{
1626	if (crp == NULL)
1627		return;
1628
1629	crypto_destroyreq(crp);
1630	uma_zfree(cryptop_zone, crp);
1631}
1632
1633void
1634crypto_initreq(struct cryptop *crp, crypto_session_t cses)
1635{
1636	memset(crp, 0, sizeof(*crp));
1637	crp->crp_session = cses;
1638}
1639
1640struct cryptop *
1641crypto_getreq(crypto_session_t cses, int how)
1642{
1643	struct cryptop *crp;
1644
1645	MPASS(how == M_WAITOK || how == M_NOWAIT);
1646	crp = uma_zalloc(cryptop_zone, how);
1647	if (crp != NULL)
1648		crypto_initreq(crp, cses);
1649	return (crp);
1650}
1651
1652/*
1653 * Clone a crypto request, but associate it with the specified session
1654 * rather than inheriting the session from the original request.  The
1655 * fields describing the request buffers are copied, but not the
1656 * opaque field or callback function.
1657 */
1658struct cryptop *
1659crypto_clonereq(struct cryptop *crp, crypto_session_t cses, int how)
1660{
1661	struct cryptop *new;
1662
1663	MPASS((crp->crp_flags & CRYPTO_F_DONE) == 0);
1664	new = crypto_getreq(cses, how);
1665	if (new == NULL)
1666		return (NULL);
1667
1668	memcpy(&new->crp_startcopy, &crp->crp_startcopy,
1669	    __rangeof(struct cryptop, crp_startcopy, crp_endcopy));
1670	return (new);
1671}
1672
1673/*
1674 * Invoke the callback on behalf of the driver.
1675 */
1676void
1677crypto_done(struct cryptop *crp)
1678{
1679	KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
1680		("crypto_done: op already done, flags 0x%x", crp->crp_flags));
1681	crp->crp_flags |= CRYPTO_F_DONE;
1682	if (crp->crp_etype != 0)
1683		CRYPTOSTAT_INC(cs_errs);
1684
1685	/*
1686	 * CBIMM means unconditionally do the callback immediately;
1687	 * CBIFSYNC means do the callback immediately only if the
1688	 * operation was done synchronously.  Both are used to avoid
1689	 * doing extraneous context switches; the latter is mostly
1690	 * used with the software crypto driver.
1691	 */
1692	if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) == 0 &&
1693	    ((crp->crp_flags & CRYPTO_F_CBIMM) != 0 ||
1694	    ((crp->crp_flags & CRYPTO_F_CBIFSYNC) != 0 &&
1695	    CRYPTO_SESS_SYNC(crp->crp_session)))) {
1696		/*
1697		 * Do the callback directly.  This is ok when the
1698		 * callback routine does very little (e.g. the
1699		 * /dev/crypto callback method just does a wakeup).
1700		 */
1701		crp->crp_callback(crp);
1702	} else {
1703		struct crypto_ret_worker *ret_worker;
1704		bool wake;
1705
1706		ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1707
1708		/*
1709		 * Normal case; queue the callback for the thread.
1710		 */
1711		CRYPTO_RETW_LOCK(ret_worker);
1712		if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) != 0) {
1713			struct cryptop *tmp;
1714
1715			TAILQ_FOREACH_REVERSE(tmp,
1716			    &ret_worker->crp_ordered_ret_q, cryptop_q,
1717			    crp_next) {
1718				if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) {
1719					TAILQ_INSERT_AFTER(
1720					    &ret_worker->crp_ordered_ret_q, tmp,
1721					    crp, crp_next);
1722					break;
1723				}
1724			}
1725			if (tmp == NULL) {
1726				TAILQ_INSERT_HEAD(
1727				    &ret_worker->crp_ordered_ret_q, crp,
1728				    crp_next);
1729			}
1730
1731			wake = crp->crp_seq == ret_worker->reorder_cur_seq;
1732		} else {
1733			wake = TAILQ_EMPTY(&ret_worker->crp_ret_q);
1734			TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp,
1735			    crp_next);
1736		}
1737
1738		if (wake)
1739			wakeup_one(&ret_worker->crp_ret_q);	/* shared wait channel */
1740		CRYPTO_RETW_UNLOCK(ret_worker);
1741	}
1742}
1743
1744/*
1745 * Terminate a thread at module unload.  The process that
1746 * initiated this is waiting for us to signal that we're gone;
1747 * wake it up and exit.  We use the driver table lock to insure
1748 * we don't do the wakeup before they're waiting.  There is no
1749 * race here because the waiter sleeps on the proc lock for the
1750 * thread so it gets notified at the right time because of an
1751 * extra wakeup that's done in exit1().
1752 */
1753static void
1754crypto_finis(void *chan)
1755{
1756	CRYPTO_DRIVER_LOCK();
1757	wakeup_one(chan);
1758	CRYPTO_DRIVER_UNLOCK();
1759	kthread_exit();
1760}
1761
1762/*
1763 * Crypto thread, dispatches crypto requests.
1764 */
1765static void
1766crypto_dispatch_thread(void *arg __unused)
1767{
1768	struct cryptop *crp, *submit;
1769	struct cryptocap *cap;
1770	int result, hint;
1771
1772#if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1773	fpu_kern_thread(FPU_KERN_NORMAL);
1774#endif
1775
1776	CRYPTO_Q_LOCK();
1777	for (;;) {
1778		/*
1779		 * Find the first element in the queue that can be
1780		 * processed and look-ahead to see if multiple ops
1781		 * are ready for the same driver.
1782		 */
1783		submit = NULL;
1784		hint = 0;
1785		TAILQ_FOREACH(crp, &crp_q, crp_next) {
1786			cap = crp->crp_session->cap;
1787			/*
1788			 * Driver cannot disappeared when there is an active
1789			 * session.
1790			 */
1791			KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1792			    __func__, __LINE__));
1793			if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1794				/* Op needs to be migrated, process it. */
1795				if (submit == NULL)
1796					submit = crp;
1797				break;
1798			}
1799			if (!cap->cc_qblocked) {
1800				if (submit != NULL) {
1801					/*
1802					 * We stop on finding another op,
1803					 * regardless whether its for the same
1804					 * driver or not.  We could keep
1805					 * searching the queue but it might be
1806					 * better to just use a per-driver
1807					 * queue instead.
1808					 */
1809					if (submit->crp_session->cap == cap)
1810						hint = CRYPTO_HINT_MORE;
1811				} else {
1812					submit = crp;
1813				}
1814				break;
1815			}
1816		}
1817		if (submit != NULL) {
1818			TAILQ_REMOVE(&crp_q, submit, crp_next);
1819			cap = submit->crp_session->cap;
1820			KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1821			    __func__, __LINE__));
1822			CRYPTO_Q_UNLOCK();
1823			result = crypto_invoke(cap, submit, hint);
1824			CRYPTO_Q_LOCK();
1825			if (result == ERESTART) {
1826				/*
1827				 * The driver ran out of resources, mark the
1828				 * driver ``blocked'' for cryptop's and put
1829				 * the request back in the queue.  It would
1830				 * best to put the request back where we got
1831				 * it but that's hard so for now we put it
1832				 * at the front.  This should be ok; putting
1833				 * it at the end does not work.
1834				 */
1835				cap->cc_qblocked = 1;
1836				TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1837				CRYPTOSTAT_INC(cs_blocks);
1838			}
1839		} else {
1840			/*
1841			 * Nothing more to be processed.  Sleep until we're
1842			 * woken because there are more ops to process.
1843			 * This happens either by submission or by a driver
1844			 * becoming unblocked and notifying us through
1845			 * crypto_unblock.  Note that when we wakeup we
1846			 * start processing each queue again from the
1847			 * front. It's not clear that it's important to
1848			 * preserve this ordering since ops may finish
1849			 * out of order if dispatched to different devices
1850			 * and some become blocked while others do not.
1851			 */
1852			crp_sleep = 1;
1853			msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0);
1854			crp_sleep = 0;
1855			if (cryptotd == NULL)
1856				break;
1857			CRYPTOSTAT_INC(cs_intrs);
1858		}
1859	}
1860	CRYPTO_Q_UNLOCK();
1861
1862	crypto_finis(&crp_q);
1863}
1864
1865/*
1866 * Crypto returns thread, does callbacks for processed crypto requests.
1867 * Callbacks are done here, rather than in the crypto drivers, because
1868 * callbacks typically are expensive and would slow interrupt handling.
1869 */
1870static void
1871crypto_ret_thread(void *arg)
1872{
1873	struct crypto_ret_worker *ret_worker = arg;
1874	struct cryptop *crpt;
1875
1876	CRYPTO_RETW_LOCK(ret_worker);
1877	for (;;) {
1878		/* Harvest return q's for completed ops */
1879		crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q);
1880		if (crpt != NULL) {
1881			if (crpt->crp_seq == ret_worker->reorder_cur_seq) {
1882				TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next);
1883				ret_worker->reorder_cur_seq++;
1884			} else {
1885				crpt = NULL;
1886			}
1887		}
1888
1889		if (crpt == NULL) {
1890			crpt = TAILQ_FIRST(&ret_worker->crp_ret_q);
1891			if (crpt != NULL)
1892				TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next);
1893		}
1894
1895		if (crpt != NULL) {
1896			CRYPTO_RETW_UNLOCK(ret_worker);
1897			/*
1898			 * Run callbacks unlocked.
1899			 */
1900			if (crpt != NULL)
1901				crpt->crp_callback(crpt);
1902			CRYPTO_RETW_LOCK(ret_worker);
1903		} else {
1904			/*
1905			 * Nothing more to be processed.  Sleep until we're
1906			 * woken because there are more returns to process.
1907			 */
1908			msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT,
1909				"crypto_ret_wait", 0);
1910			if (ret_worker->td == NULL)
1911				break;
1912			CRYPTOSTAT_INC(cs_rets);
1913		}
1914	}
1915	CRYPTO_RETW_UNLOCK(ret_worker);
1916
1917	crypto_finis(&ret_worker->crp_ret_q);
1918}
1919
1920#ifdef DDB
1921static void
1922db_show_drivers(void)
1923{
1924	int hid;
1925
1926	db_printf("%12s %4s %8s %2s\n"
1927		, "Device"
1928		, "Ses"
1929		, "Flags"
1930		, "QB"
1931	);
1932	for (hid = 0; hid < crypto_drivers_size; hid++) {
1933		const struct cryptocap *cap = crypto_drivers[hid];
1934		if (cap == NULL)
1935			continue;
1936		db_printf("%-12s %4u %08x %2u\n"
1937		    , device_get_nameunit(cap->cc_dev)
1938		    , cap->cc_sessions
1939		    , cap->cc_flags
1940		    , cap->cc_qblocked
1941		);
1942	}
1943}
1944
1945DB_SHOW_COMMAND_FLAGS(crypto, db_show_crypto, DB_CMD_MEMSAFE)
1946{
1947	struct cryptop *crp;
1948	struct crypto_ret_worker *ret_worker;
1949
1950	db_show_drivers();
1951	db_printf("\n");
1952
1953	db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
1954	    "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
1955	    "Device", "Callback");
1956	TAILQ_FOREACH(crp, &crp_q, crp_next) {
1957		db_printf("%4u %08x %4u %4u %04x %8p %8p\n"
1958		    , crp->crp_session->cap->cc_hid
1959		    , (int) crypto_ses2caps(crp->crp_session)
1960		    , crp->crp_olen
1961		    , crp->crp_etype
1962		    , crp->crp_flags
1963		    , device_get_nameunit(crp->crp_session->cap->cc_dev)
1964		    , crp->crp_callback
1965		);
1966	}
1967	FOREACH_CRYPTO_RETW(ret_worker) {
1968		db_printf("\n%8s %4s %4s %4s %8s\n",
1969		    "ret_worker", "HID", "Etype", "Flags", "Callback");
1970		if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
1971			TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) {
1972				db_printf("%8td %4u %4u %04x %8p\n"
1973				    , CRYPTO_RETW_ID(ret_worker)
1974				    , crp->crp_session->cap->cc_hid
1975				    , crp->crp_etype
1976				    , crp->crp_flags
1977				    , crp->crp_callback
1978				);
1979			}
1980		}
1981	}
1982}
1983#endif
1984
1985int crypto_modevent(module_t mod, int type, void *unused);
1986
1987/*
1988 * Initialization code, both for static and dynamic loading.
1989 * Note this is not invoked with the usual MODULE_DECLARE
1990 * mechanism but instead is listed as a dependency by the
1991 * cryptosoft driver.  This guarantees proper ordering of
1992 * calls on module load/unload.
1993 */
1994int
1995crypto_modevent(module_t mod, int type, void *unused)
1996{
1997	int error = EINVAL;
1998
1999	switch (type) {
2000	case MOD_LOAD:
2001		error = crypto_init();
2002		if (error == 0 && bootverbose)
2003			printf("crypto: <crypto core>\n");
2004		break;
2005	case MOD_UNLOAD:
2006		/*XXX disallow if active sessions */
2007		error = 0;
2008		crypto_destroy();
2009		return 0;
2010	}
2011	return error;
2012}
2013MODULE_VERSION(crypto, 1);
2014MODULE_DEPEND(crypto, zlib, 1, 1, 1);
2015