1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2010 Fabio Checconi, Luigi Rizzo, Paolo Valente
5 * All rights reserved
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29/*
30 */
31
32#ifdef _KERNEL
33#include <sys/malloc.h>
34#include <sys/socket.h>
35#include <sys/socketvar.h>
36#include <sys/kernel.h>
37#include <sys/lock.h>
38#include <sys/mbuf.h>
39#include <sys/module.h>
40#include <sys/rwlock.h>
41#include <net/if.h>	/* IFNAMSIZ */
42#include <netinet/in.h>
43#include <netinet/ip_var.h>		/* ipfw_rule_ref */
44#include <netinet/ip_fw.h>	/* flow_id */
45#include <netinet/ip_dummynet.h>
46#include <netpfil/ipfw/ip_fw_private.h>
47#include <netpfil/ipfw/dn_heap.h>
48#include <netpfil/ipfw/ip_dn_private.h>
49#ifdef NEW_AQM
50#include <netpfil/ipfw/dn_aqm.h>
51#endif
52#include <netpfil/ipfw/dn_sched.h>
53#else
54#include <dn_test.h>
55#endif
56
57#ifdef QFQ_DEBUG
58#define _P64	unsigned long long	/* cast for printing uint64_t */
59struct qfq_sched;
60static void dump_sched(struct qfq_sched *q, const char *msg);
61#define	NO(x)	x
62#else
63#define NO(x)
64#endif
65#define DN_SCHED_QFQ	4 // XXX Where?
66typedef	unsigned long	bitmap;
67
68/*
69 * bitmaps ops are critical. Some linux versions have __fls
70 * and the bitmap ops. Some machines have ffs
71 * NOTE: fls() returns 1 for the least significant bit,
72 *       __fls() returns 0 for the same case.
73 * We use the base-0 version __fls() to match the description in
74 * the ToN QFQ paper
75 */
76#if defined(_WIN32) || (defined(__MIPSEL__) && defined(LINUX_24))
77int fls(unsigned int n)
78{
79	int i = 0;
80	for (i = 0; n > 0; n >>= 1, i++)
81		;
82	return i;
83}
84#endif
85
86#if !defined(_KERNEL) || defined( __FreeBSD__ ) || defined(_WIN32) || (defined(__MIPSEL__) && defined(LINUX_24))
87static inline unsigned long __fls(unsigned long word)
88{
89	return fls(word) - 1;
90}
91#endif
92
93#if !defined(_KERNEL) || !defined(__linux__)
94#ifdef QFQ_DEBUG
95static int test_bit(int ix, bitmap *p)
96{
97	if (ix < 0 || ix > 31)
98		D("bad index %d", ix);
99	return *p & (1<<ix);
100}
101static void __set_bit(int ix, bitmap *p)
102{
103	if (ix < 0 || ix > 31)
104		D("bad index %d", ix);
105	*p |= (1<<ix);
106}
107static void __clear_bit(int ix, bitmap *p)
108{
109	if (ix < 0 || ix > 31)
110		D("bad index %d", ix);
111	*p &= ~(1<<ix);
112}
113#else /* !QFQ_DEBUG */
114/* XXX do we have fast version, or leave it to the compiler ? */
115#define test_bit(ix, pData)	((*pData) & (1<<(ix)))
116#define __set_bit(ix, pData)	(*pData) |= (1<<(ix))
117#define __clear_bit(ix, pData)	(*pData) &= ~(1<<(ix))
118#endif /* !QFQ_DEBUG */
119#endif /* !__linux__ */
120
121#ifdef __MIPSEL__
122#define __clear_bit(ix, pData)	(*pData) &= ~(1<<(ix))
123#endif
124
125/*-------------------------------------------*/
126/*
127
128Virtual time computations.
129
130S, F and V are all computed in fixed point arithmetic with
131FRAC_BITS decimal bits.
132
133   QFQ_MAX_INDEX is the maximum index allowed for a group. We need
134  	one bit per index.
135   QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
136   The layout of the bits is as below:
137
138                   [ MTU_SHIFT ][      FRAC_BITS    ]
139                   [ MAX_INDEX    ][ MIN_SLOT_SHIFT ]
140  				 ^.__grp->index = 0
141  				 *.__grp->slot_shift
142
143   where MIN_SLOT_SHIFT is derived by difference from the others.
144
145The max group index corresponds to Lmax/w_min, where
146Lmax=1<<MTU_SHIFT, w_min = 1 .
147From this, and knowing how many groups (MAX_INDEX) we want,
148we can derive the shift corresponding to each group.
149
150Because we often need to compute
151	F = S + len/w_i  and V = V + len/wsum
152instead of storing w_i store the value
153	inv_w = (1<<FRAC_BITS)/w_i
154so we can do F = S + len * inv_w * wsum.
155We use W_TOT in the formulas so we can easily move between
156static and adaptive weight sum.
157
158The per-scheduler-instance data contain all the data structures
159for the scheduler: bitmaps and bucket lists.
160
161 */
162/*
163 * Maximum number of consecutive slots occupied by backlogged classes
164 * inside a group. This is approx lmax/lmin + 5.
165 * XXX check because it poses constraints on MAX_INDEX
166 */
167#define QFQ_MAX_SLOTS	32
168/*
169 * Shifts used for class<->group mapping. Class weights are
170 * in the range [1, QFQ_MAX_WEIGHT], we to map each class i to the
171 * group with the smallest index that can support the L_i / r_i
172 * configured for the class.
173 *
174 * grp->index is the index of the group; and grp->slot_shift
175 * is the shift for the corresponding (scaled) sigma_i.
176 *
177 * When computing the group index, we do (len<<FP_SHIFT)/weight,
178 * then compute an FLS (which is like a log2()), and if the result
179 * is below the MAX_INDEX region we use 0 (which is the same as
180 * using a larger len).
181 */
182#define QFQ_MAX_INDEX		19
183#define QFQ_MAX_WSHIFT		16	/* log2(max_weight) */
184
185#define	QFQ_MAX_WEIGHT		(1<<QFQ_MAX_WSHIFT)
186#define QFQ_MAX_WSUM		(2*QFQ_MAX_WEIGHT)
187
188#define FRAC_BITS		30	/* fixed point arithmetic */
189#define ONE_FP			(1UL << FRAC_BITS)
190
191#define QFQ_MTU_SHIFT		11	/* log2(max_len) */
192#define QFQ_MIN_SLOT_SHIFT	(FRAC_BITS + QFQ_MTU_SHIFT - QFQ_MAX_INDEX)
193
194/*
195 * Possible group states, also indexes for the bitmaps array in
196 * struct qfq_queue. We rely on ER, IR, EB, IB being numbered 0..3
197 */
198enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
199
200struct qfq_group;
201/*
202 * additional queue info. Some of this info should come from
203 * the flowset, we copy them here for faster processing.
204 * This is an overlay of the struct dn_queue
205 */
206struct qfq_class {
207	struct dn_queue _q;
208	uint64_t S, F;		/* flow timestamps (exact) */
209	struct qfq_class *next; /* Link for the slot list. */
210
211	/* group we belong to. In principle we would need the index,
212	 * which is log_2(lmax/weight), but we never reference it
213	 * directly, only the group.
214	 */
215	struct qfq_group *grp;
216
217	/* these are copied from the flowset. */
218	uint32_t	inv_w;	/* ONE_FP/weight */
219	uint32_t 	lmax;	/* Max packet size for this flow. */
220};
221
222/* Group descriptor, see the paper for details.
223 * Basically this contains the bucket lists
224 */
225struct qfq_group {
226	uint64_t S, F;			/* group timestamps (approx). */
227	unsigned int slot_shift;	/* Slot shift. */
228	unsigned int index;		/* Group index. */
229	unsigned int front;		/* Index of the front slot. */
230	bitmap full_slots;		/* non-empty slots */
231
232	/* Array of lists of active classes. */
233	struct qfq_class *slots[QFQ_MAX_SLOTS];
234};
235
236/* scheduler instance descriptor. */
237struct qfq_sched {
238	uint64_t	V;		/* Precise virtual time. */
239	uint32_t	wsum;		/* weight sum */
240	uint32_t	iwsum;		/* inverse weight sum */
241	NO(uint32_t	i_wsum;)	/* ONE_FP/w_sum */
242	NO(uint32_t	queued;)	/* debugging */
243	NO(uint32_t	loops;)		/* debugging */
244	bitmap bitmaps[QFQ_MAX_STATE];	/* Group bitmaps. */
245	struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
246};
247
248/*---- support functions ----------------------------*/
249
250/* Generic comparison function, handling wraparound. */
251static inline int qfq_gt(uint64_t a, uint64_t b)
252{
253	return (int64_t)(a - b) > 0;
254}
255
256/* Round a precise timestamp to its slotted value. */
257static inline uint64_t qfq_round_down(uint64_t ts, unsigned int shift)
258{
259	return ts & ~((1ULL << shift) - 1);
260}
261
262/* return the pointer to the group with lowest index in the bitmap */
263static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
264					unsigned long bitmap)
265{
266	int index = ffs(bitmap) - 1; // zero-based
267	return &q->groups[index];
268}
269
270/*
271 * Calculate a flow index, given its weight and maximum packet length.
272 * index = log_2(maxlen/weight) but we need to apply the scaling.
273 * This is used only once at flow creation.
274 */
275static int qfq_calc_index(uint32_t inv_w, unsigned int maxlen)
276{
277	uint64_t slot_size = (uint64_t)maxlen *inv_w;
278	unsigned long size_map;
279	int index = 0;
280
281	size_map = (unsigned long)(slot_size >> QFQ_MIN_SLOT_SHIFT);
282	if (!size_map)
283		goto out;
284
285	index = __fls(size_map) + 1;	// basically a log_2()
286	index -= !(slot_size - (1ULL << (index + QFQ_MIN_SLOT_SHIFT - 1)));
287
288	if (index < 0)
289		index = 0;
290
291out:
292	ND("W = %d, L = %d, I = %d\n", ONE_FP/inv_w, maxlen, index);
293	return index;
294}
295/*---- end support functions ----*/
296
297/*-------- API calls --------------------------------*/
298/*
299 * Validate and copy parameters from flowset.
300 */
301static int
302qfq_new_queue(struct dn_queue *_q)
303{
304	struct qfq_sched *q = (struct qfq_sched *)(_q->_si + 1);
305	struct qfq_class *cl = (struct qfq_class *)_q;
306	int i;
307	uint32_t w;	/* approximated weight */
308
309	/* import parameters from the flowset. They should be correct
310	 * already.
311	 */
312	w = _q->fs->fs.par[0];
313	cl->lmax = _q->fs->fs.par[1];
314	if (!w || w > QFQ_MAX_WEIGHT) {
315		w = 1;
316		D("rounding weight to 1");
317	}
318	cl->inv_w = ONE_FP/w;
319	w = ONE_FP/cl->inv_w;
320	if (q->wsum + w > QFQ_MAX_WSUM)
321		return EINVAL;
322
323	i = qfq_calc_index(cl->inv_w, cl->lmax);
324	cl->grp = &q->groups[i];
325	q->wsum += w;
326	q->iwsum = ONE_FP / q->wsum; /* XXX note theory */
327	// XXX cl->S = q->V; ?
328	return 0;
329}
330
331/* remove an empty queue */
332static int
333qfq_free_queue(struct dn_queue *_q)
334{
335	struct qfq_sched *q = (struct qfq_sched *)(_q->_si + 1);
336	struct qfq_class *cl = (struct qfq_class *)_q;
337	if (cl->inv_w) {
338		q->wsum -= ONE_FP/cl->inv_w;
339		if (q->wsum != 0)
340			q->iwsum = ONE_FP / q->wsum;
341		cl->inv_w = 0; /* reset weight to avoid run twice */
342	}
343	return 0;
344}
345
346/* Calculate a mask to mimic what would be ffs_from(). */
347static inline unsigned long
348mask_from(unsigned long bitmap, int from)
349{
350	return bitmap & ~((1UL << from) - 1);
351}
352
353/*
354 * The state computation relies on ER=0, IR=1, EB=2, IB=3
355 * First compute eligibility comparing grp->S, q->V,
356 * then check if someone is blocking us and possibly add EB
357 */
358static inline unsigned int
359qfq_calc_state(struct qfq_sched *q, struct qfq_group *grp)
360{
361	/* if S > V we are not eligible */
362	unsigned int state = qfq_gt(grp->S, q->V);
363	unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
364	struct qfq_group *next;
365
366	if (mask) {
367		next = qfq_ffs(q, mask);
368		if (qfq_gt(grp->F, next->F))
369			state |= EB;
370	}
371
372	return state;
373}
374
375/*
376 * In principle
377 *	q->bitmaps[dst] |= q->bitmaps[src] & mask;
378 *	q->bitmaps[src] &= ~mask;
379 * but we should make sure that src != dst
380 */
381static inline void
382qfq_move_groups(struct qfq_sched *q, unsigned long mask, int src, int dst)
383{
384	q->bitmaps[dst] |= q->bitmaps[src] & mask;
385	q->bitmaps[src] &= ~mask;
386}
387
388static inline void
389qfq_unblock_groups(struct qfq_sched *q, int index, uint64_t old_finish)
390{
391	unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
392	struct qfq_group *next;
393
394	if (mask) {
395		next = qfq_ffs(q, mask);
396		if (!qfq_gt(next->F, old_finish))
397			return;
398	}
399
400	mask = (1UL << index) - 1;
401	qfq_move_groups(q, mask, EB, ER);
402	qfq_move_groups(q, mask, IB, IR);
403}
404
405/*
406 * perhaps
407 *
408	old_V ^= q->V;
409	old_V >>= QFQ_MIN_SLOT_SHIFT;
410	if (old_V) {
411		...
412	}
413 *
414 */
415static inline void
416qfq_make_eligible(struct qfq_sched *q, uint64_t old_V)
417{
418	unsigned long mask, vslot, old_vslot;
419
420	vslot = q->V >> QFQ_MIN_SLOT_SHIFT;
421	old_vslot = old_V >> QFQ_MIN_SLOT_SHIFT;
422
423	if (vslot != old_vslot) {
424		/* must be 2ULL, see ToN QFQ article fig.5, we use base-0 fls */
425		mask = (2ULL << (__fls(vslot ^ old_vslot))) - 1;
426		qfq_move_groups(q, mask, IR, ER);
427		qfq_move_groups(q, mask, IB, EB);
428	}
429}
430
431/*
432 * XXX we should make sure that slot becomes less than 32.
433 * This is guaranteed by the input values.
434 * roundedS is always cl->S rounded on grp->slot_shift bits.
435 */
436static inline void
437qfq_slot_insert(struct qfq_group *grp, struct qfq_class *cl, uint64_t roundedS)
438{
439	uint64_t slot = (roundedS - grp->S) >> grp->slot_shift;
440	unsigned int i = (grp->front + slot) % QFQ_MAX_SLOTS;
441
442	cl->next = grp->slots[i];
443	grp->slots[i] = cl;
444	__set_bit(slot, &grp->full_slots);
445}
446
447/*
448 * remove the entry from the slot
449 */
450static inline void
451qfq_front_slot_remove(struct qfq_group *grp)
452{
453	struct qfq_class **h = &grp->slots[grp->front];
454
455	*h = (*h)->next;
456	if (!*h)
457		__clear_bit(0, &grp->full_slots);
458}
459
460/*
461 * Returns the first full queue in a group. As a side effect,
462 * adjust the bucket list so the first non-empty bucket is at
463 * position 0 in full_slots.
464 */
465static inline struct qfq_class *
466qfq_slot_scan(struct qfq_group *grp)
467{
468	int i;
469
470	ND("grp %d full %x", grp->index, grp->full_slots);
471	if (!grp->full_slots)
472		return NULL;
473
474	i = ffs(grp->full_slots) - 1; // zero-based
475	if (i > 0) {
476		grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
477		grp->full_slots >>= i;
478	}
479
480	return grp->slots[grp->front];
481}
482
483/*
484 * adjust the bucket list. When the start time of a group decreases,
485 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
486 * move the objects. The mask of occupied slots must be shifted
487 * because we use ffs() to find the first non-empty slot.
488 * This covers decreases in the group's start time, but what about
489 * increases of the start time ?
490 * Here too we should make sure that i is less than 32
491 */
492static inline void
493qfq_slot_rotate(struct qfq_sched *q, struct qfq_group *grp, uint64_t roundedS)
494{
495	unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
496
497	(void)q;
498	grp->full_slots <<= i;
499	grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
500}
501
502static inline void
503qfq_update_eligible(struct qfq_sched *q, uint64_t old_V)
504{
505	bitmap ineligible;
506
507	ineligible = q->bitmaps[IR] | q->bitmaps[IB];
508	if (ineligible) {
509		if (!q->bitmaps[ER]) {
510			struct qfq_group *grp;
511			grp = qfq_ffs(q, ineligible);
512			if (qfq_gt(grp->S, q->V))
513				q->V = grp->S;
514		}
515		qfq_make_eligible(q, old_V);
516	}
517}
518
519/*
520 * Updates the class, returns true if also the group needs to be updated.
521 */
522static inline int
523qfq_update_class(struct qfq_sched *q, struct qfq_group *grp,
524	    struct qfq_class *cl)
525{
526
527	(void)q;
528	cl->S = cl->F;
529	if (cl->_q.mq.head == NULL)  {
530		qfq_front_slot_remove(grp);
531	} else {
532		unsigned int len;
533		uint64_t roundedS;
534
535		len = cl->_q.mq.head->m_pkthdr.len;
536		cl->F = cl->S + (uint64_t)len * cl->inv_w;
537		roundedS = qfq_round_down(cl->S, grp->slot_shift);
538		if (roundedS == grp->S)
539			return 0;
540
541		qfq_front_slot_remove(grp);
542		qfq_slot_insert(grp, cl, roundedS);
543	}
544	return 1;
545}
546
547static struct mbuf *
548qfq_dequeue(struct dn_sch_inst *si)
549{
550	struct qfq_sched *q = (struct qfq_sched *)(si + 1);
551	struct qfq_group *grp;
552	struct qfq_class *cl;
553	struct mbuf *m;
554	uint64_t old_V;
555
556	NO(q->loops++;)
557	if (!q->bitmaps[ER]) {
558		NO(if (q->queued)
559			dump_sched(q, "start dequeue");)
560		return NULL;
561	}
562
563	grp = qfq_ffs(q, q->bitmaps[ER]);
564
565	cl = grp->slots[grp->front];
566	/* extract from the first bucket in the bucket list */
567	m = dn_dequeue(&cl->_q);
568
569	if (!m) {
570		D("BUG/* non-workconserving leaf */");
571		return NULL;
572	}
573	NO(q->queued--;)
574	old_V = q->V;
575	q->V += (uint64_t)m->m_pkthdr.len * q->iwsum;
576	ND("m is %p F 0x%llx V now 0x%llx", m, cl->F, q->V);
577
578	if (qfq_update_class(q, grp, cl)) {
579		uint64_t old_F = grp->F;
580		cl = qfq_slot_scan(grp);
581		if (!cl) { /* group gone, remove from ER */
582			__clear_bit(grp->index, &q->bitmaps[ER]);
583			// grp->S = grp->F + 1; // XXX debugging only
584		} else {
585			uint64_t roundedS = qfq_round_down(cl->S, grp->slot_shift);
586			unsigned int s;
587
588			if (grp->S == roundedS)
589				goto skip_unblock;
590			grp->S = roundedS;
591			grp->F = roundedS + (2ULL << grp->slot_shift);
592			/* remove from ER and put in the new set */
593			__clear_bit(grp->index, &q->bitmaps[ER]);
594			s = qfq_calc_state(q, grp);
595			__set_bit(grp->index, &q->bitmaps[s]);
596		}
597		/* we need to unblock even if the group has gone away */
598		qfq_unblock_groups(q, grp->index, old_F);
599	}
600
601skip_unblock:
602	qfq_update_eligible(q, old_V);
603	NO(if (!q->bitmaps[ER] && q->queued)
604		dump_sched(q, "end dequeue");)
605
606	return m;
607}
608
609/*
610 * Assign a reasonable start time for a new flow k in group i.
611 * Admissible values for \hat(F) are multiples of \sigma_i
612 * no greater than V+\sigma_i . Larger values mean that
613 * we had a wraparound so we consider the timestamp to be stale.
614 *
615 * If F is not stale and F >= V then we set S = F.
616 * Otherwise we should assign S = V, but this may violate
617 * the ordering in ER. So, if we have groups in ER, set S to
618 * the F_j of the first group j which would be blocking us.
619 * We are guaranteed not to move S backward because
620 * otherwise our group i would still be blocked.
621 */
622static inline void
623qfq_update_start(struct qfq_sched *q, struct qfq_class *cl)
624{
625	unsigned long mask;
626	uint64_t limit, roundedF;
627	int slot_shift = cl->grp->slot_shift;
628
629	roundedF = qfq_round_down(cl->F, slot_shift);
630	limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
631
632	if (!qfq_gt(cl->F, q->V) || qfq_gt(roundedF, limit)) {
633		/* timestamp was stale */
634		mask = mask_from(q->bitmaps[ER], cl->grp->index);
635		if (mask) {
636			struct qfq_group *next = qfq_ffs(q, mask);
637			if (qfq_gt(roundedF, next->F)) {
638				/* from pv 71261956973ba9e0637848a5adb4a5819b4bae83 */
639				if (qfq_gt(limit, next->F))
640					cl->S = next->F;
641				else /* preserve timestamp correctness */
642					cl->S = limit;
643				return;
644			}
645		}
646		cl->S = q->V;
647	} else { /* timestamp is not stale */
648		cl->S = cl->F;
649	}
650}
651
652static int
653qfq_enqueue(struct dn_sch_inst *si, struct dn_queue *_q, struct mbuf *m)
654{
655	struct qfq_sched *q = (struct qfq_sched *)(si + 1);
656	struct qfq_group *grp;
657	struct qfq_class *cl = (struct qfq_class *)_q;
658	uint64_t roundedS;
659	int s;
660
661	NO(q->loops++;)
662	DX(4, "len %d flow %p inv_w 0x%x grp %d", m->m_pkthdr.len,
663		_q, cl->inv_w, cl->grp->index);
664	/* XXX verify that the packet obeys the parameters */
665	if (m != _q->mq.head) {
666		if (dn_enqueue(_q, m, 0)) /* packet was dropped */
667			return 1;
668		NO(q->queued++;)
669		if (m != _q->mq.head)
670			return 0;
671	}
672	/* If reach this point, queue q was idle */
673	grp = cl->grp;
674	qfq_update_start(q, cl); /* adjust start time */
675	/* compute new finish time and rounded start. */
676	cl->F = cl->S + (uint64_t)(m->m_pkthdr.len) * cl->inv_w;
677	roundedS = qfq_round_down(cl->S, grp->slot_shift);
678
679	/*
680	 * insert cl in the correct bucket.
681	 * If cl->S >= grp->S we don't need to adjust the
682	 * bucket list and simply go to the insertion phase.
683	 * Otherwise grp->S is decreasing, we must make room
684	 * in the bucket list, and also recompute the group state.
685	 * Finally, if there were no flows in this group and nobody
686	 * was in ER make sure to adjust V.
687	 */
688	if (grp->full_slots) {
689		if (!qfq_gt(grp->S, cl->S))
690			goto skip_update;
691		/* create a slot for this cl->S */
692		qfq_slot_rotate(q, grp, roundedS);
693		/* group was surely ineligible, remove */
694		__clear_bit(grp->index, &q->bitmaps[IR]);
695		__clear_bit(grp->index, &q->bitmaps[IB]);
696	} else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V))
697		q->V = roundedS;
698
699	grp->S = roundedS;
700	grp->F = roundedS + (2ULL << grp->slot_shift); // i.e. 2\sigma_i
701	s = qfq_calc_state(q, grp);
702	__set_bit(grp->index, &q->bitmaps[s]);
703	ND("new state %d 0x%x", s, q->bitmaps[s]);
704	ND("S %llx F %llx V %llx", cl->S, cl->F, q->V);
705skip_update:
706	qfq_slot_insert(grp, cl, roundedS);
707
708	return 0;
709}
710
711#if 0
712static inline void
713qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
714	struct qfq_class *cl, struct qfq_class **pprev)
715{
716	unsigned int i, offset;
717	uint64_t roundedS;
718
719	roundedS = qfq_round_down(cl->S, grp->slot_shift);
720	offset = (roundedS - grp->S) >> grp->slot_shift;
721	i = (grp->front + offset) % QFQ_MAX_SLOTS;
722
723#ifdef notyet
724	if (!pprev) {
725		pprev = &grp->slots[i];
726		while (*pprev && *pprev != cl)
727			pprev = &(*pprev)->next;
728	}
729#endif
730
731	*pprev = cl->next;
732	if (!grp->slots[i])
733		__clear_bit(offset, &grp->full_slots);
734}
735
736/*
737 * called to forcibly destroy a queue.
738 * If the queue is not in the front bucket, or if it has
739 * other queues in the front bucket, we can simply remove
740 * the queue with no other side effects.
741 * Otherwise we must propagate the event up.
742 * XXX description to be completed.
743 */
744static void
745qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl,
746				 struct qfq_class **pprev)
747{
748	struct qfq_group *grp = &q->groups[cl->index];
749	unsigned long mask;
750	uint64_t roundedS;
751	int s;
752
753	cl->F = cl->S;	// not needed if the class goes away.
754	qfq_slot_remove(q, grp, cl, pprev);
755
756	if (!grp->full_slots) {
757		/* nothing left in the group, remove from all sets.
758		 * Do ER last because if we were blocking other groups
759		 * we must unblock them.
760		 */
761		__clear_bit(grp->index, &q->bitmaps[IR]);
762		__clear_bit(grp->index, &q->bitmaps[EB]);
763		__clear_bit(grp->index, &q->bitmaps[IB]);
764
765		if (test_bit(grp->index, &q->bitmaps[ER]) &&
766		    !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
767			mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
768			if (mask)
769				mask = ~((1UL << __fls(mask)) - 1);
770			else
771				mask = ~0UL;
772			qfq_move_groups(q, mask, EB, ER);
773			qfq_move_groups(q, mask, IB, IR);
774		}
775		__clear_bit(grp->index, &q->bitmaps[ER]);
776	} else if (!grp->slots[grp->front]) {
777		cl = qfq_slot_scan(grp);
778		roundedS = qfq_round_down(cl->S, grp->slot_shift);
779		if (grp->S != roundedS) {
780			__clear_bit(grp->index, &q->bitmaps[ER]);
781			__clear_bit(grp->index, &q->bitmaps[IR]);
782			__clear_bit(grp->index, &q->bitmaps[EB]);
783			__clear_bit(grp->index, &q->bitmaps[IB]);
784			grp->S = roundedS;
785			grp->F = roundedS + (2ULL << grp->slot_shift);
786			s = qfq_calc_state(q, grp);
787			__set_bit(grp->index, &q->bitmaps[s]);
788		}
789	}
790	qfq_update_eligible(q, q->V);
791}
792#endif
793
794static int
795qfq_new_fsk(struct dn_fsk *f)
796{
797	ipdn_bound_var(&f->fs.par[0], 1, 1, QFQ_MAX_WEIGHT, "qfq weight");
798	ipdn_bound_var(&f->fs.par[1], 1500, 1, 2000, "qfq maxlen");
799	ND("weight %d len %d\n", f->fs.par[0], f->fs.par[1]);
800	return 0;
801}
802
803/*
804 * initialize a new scheduler instance
805 */
806static int
807qfq_new_sched(struct dn_sch_inst *si)
808{
809	struct qfq_sched *q = (struct qfq_sched *)(si + 1);
810	struct qfq_group *grp;
811	int i;
812
813	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
814		grp = &q->groups[i];
815		grp->index = i;
816		grp->slot_shift = QFQ_MTU_SHIFT + FRAC_BITS -
817					(QFQ_MAX_INDEX - i);
818	}
819	return 0;
820}
821
822/*
823 * QFQ scheduler descriptor
824 */
825static struct dn_alg qfq_desc = {
826	_SI( .type = ) DN_SCHED_QFQ,
827	_SI( .name = ) "QFQ",
828	_SI( .flags = ) DN_MULTIQUEUE,
829
830	_SI( .schk_datalen = ) 0,
831	_SI( .si_datalen = ) sizeof(struct qfq_sched),
832	_SI( .q_datalen = ) sizeof(struct qfq_class) - sizeof(struct dn_queue),
833
834	_SI( .enqueue = ) qfq_enqueue,
835	_SI( .dequeue = ) qfq_dequeue,
836
837	_SI( .config = )  NULL,
838	_SI( .destroy = )  NULL,
839	_SI( .new_sched = ) qfq_new_sched,
840	_SI( .free_sched = )  NULL,
841	_SI( .new_fsk = ) qfq_new_fsk,
842	_SI( .free_fsk = )  NULL,
843	_SI( .new_queue = ) qfq_new_queue,
844	_SI( .free_queue = ) qfq_free_queue,
845#ifdef NEW_AQM
846	_SI( .getconfig = )  NULL,
847#endif
848};
849
850DECLARE_DNSCHED_MODULE(dn_qfq, &qfq_desc);
851
852#ifdef QFQ_DEBUG
853static void
854dump_groups(struct qfq_sched *q, uint32_t mask)
855{
856	int i, j;
857
858	for (i = 0; i < QFQ_MAX_INDEX + 1; i++) {
859		struct qfq_group *g = &q->groups[i];
860
861		if (0 == (mask & (1<<i)))
862			continue;
863		for (j = 0; j < QFQ_MAX_SLOTS; j++) {
864			if (g->slots[j])
865				D("    bucket %d %p", j, g->slots[j]);
866		}
867		D("full_slots 0x%llx", (_P64)g->full_slots);
868		D("        %2d S 0x%20llx F 0x%llx %c", i,
869			(_P64)g->S, (_P64)g->F,
870			mask & (1<<i) ? '1' : '0');
871	}
872}
873
874static void
875dump_sched(struct qfq_sched *q, const char *msg)
876{
877	D("--- in %s: ---", msg);
878	D("loops %d queued %d V 0x%llx", q->loops, q->queued, (_P64)q->V);
879	D("    ER 0x%08x", (unsigned)q->bitmaps[ER]);
880	D("    EB 0x%08x", (unsigned)q->bitmaps[EB]);
881	D("    IR 0x%08x", (unsigned)q->bitmaps[IR]);
882	D("    IB 0x%08x", (unsigned)q->bitmaps[IB]);
883	dump_groups(q, 0xffffffff);
884};
885#endif /* QFQ_DEBUG */
886