1/*-
2 *
3 * SPDX-License-Identifier: BSD-3-Clause
4 *
5 * Copyright (c) 2018-2020
6 *	Netflix Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 */
30/**
31 * Author: Randall Stewart <rrs@netflix.com>
32 */
33
34#include <sys/cdefs.h>
35#include "opt_inet.h"
36#include "opt_inet6.h"
37#include "opt_ipsec.h"
38#include "opt_ratelimit.h"
39#include <sys/param.h>
40#include <sys/kernel.h>
41#include <sys/malloc.h>
42#include <sys/mbuf.h>
43#include <sys/socket.h>
44#include <sys/socketvar.h>
45#include <sys/sysctl.h>
46#include <sys/eventhandler.h>
47#include <sys/mutex.h>
48#include <sys/ck.h>
49#include <net/if.h>
50#include <net/if_var.h>
51#include <net/if_private.h>
52#include <netinet/in.h>
53#include <netinet/in_pcb.h>
54#define TCPSTATES		/* for logging */
55#include <netinet/tcp_var.h>
56#include <netinet/tcp_hpts.h>
57#include <netinet/tcp_log_buf.h>
58#include <netinet/tcp_ratelimit.h>
59#ifndef USECS_IN_SECOND
60#define USECS_IN_SECOND 1000000
61#endif
62/*
63 * For the purposes of each send, what is the size
64 * of an ethernet frame.
65 */
66MALLOC_DEFINE(M_TCPPACE, "tcp_hwpace", "TCP Hardware pacing memory");
67#ifdef RATELIMIT
68
69/*
70 * The following preferred table will seem weird to
71 * the casual viewer. Why do we not have any rates below
72 * 1Mbps? Why do we have a rate at 1.44Mbps called common?
73 * Why do the rates cluster in the 1-100Mbps range more
74 * than others? Why does the table jump around at the beginnign
75 * and then be more consistently raising?
76 *
77 * Let me try to answer those questions. A lot of
78 * this is dependant on the hardware. We have three basic
79 * supporters of rate limiting
80 *
81 * Chelsio - Supporting 16 configurable rates.
82 * Mlx  - c4 supporting 13 fixed rates.
83 * Mlx  - c5 & c6 supporting 127 configurable rates.
84 *
85 * The c4 is why we have a common rate that is available
86 * in all rate tables. This is a selected rate from the
87 * c4 table and we assure its available in all ratelimit
88 * tables. This way the tcp_ratelimit code has an assured
89 * rate it should always be able to get. This answers a
90 * couple of the questions above.
91 *
92 * So what about the rest, well the table is built to
93 * try to get the most out of a joint hardware/software
94 * pacing system.  The software pacer will always pick
95 * a rate higher than the b/w that it is estimating
96 *
97 * on the path. This is done for two reasons.
98 * a) So we can discover more b/w
99 * and
100 * b) So we can send a block of MSS's down and then
101 *    have the software timer go off after the previous
102 *    send is completely out of the hardware.
103 *
104 * But when we do <b> we don't want to have the delay
105 * between the last packet sent by the hardware be
106 * excessively long (to reach our desired rate).
107 *
108 * So let me give an example for clarity.
109 *
110 * Lets assume that the tcp stack sees that 29,110,000 bps is
111 * what the bw of the path is. The stack would select the
112 * rate 31Mbps. 31Mbps means that each send that is done
113 * by the hardware will cause a 390 micro-second gap between
114 * the packets sent at that rate. For 29,110,000 bps we
115 * would need 416 micro-seconds gap between each send.
116 *
117 * Note that are calculating a complete time for pacing
118 * which includes the ethernet, IP and TCP overhead. So
119 * a full 1514 bytes is used for the above calculations.
120 * My testing has shown that both cards are also using this
121 * as their basis i.e. full payload size of the ethernet frame.
122 * The TCP stack caller needs to be aware of this and make the
123 * appropriate overhead calculations be included in its choices.
124 *
125 * Now, continuing our example, we pick a MSS size based on the
126 * delta between the two rates (416 - 390) divided into the rate
127 * we really wish to send at rounded up.  That results in a MSS
128 * send of 17 mss's at once. The hardware then will
129 * run out of data in a single 17MSS send in 6,630 micro-seconds.
130 *
131 * On the other hand the software pacer will send more data
132 * in 7,072 micro-seconds. This means that we will refill
133 * the hardware 52 microseconds after it would have sent
134 * next if it had not ran out of data. This is a win since we are
135 * only sending every 7ms or so and yet all the packets are spaced on
136 * the wire with 94% of what they should be and only
137 * the last packet is delayed extra to make up for the
138 * difference.
139 *
140 * Note that the above formula has two important caveat.
141 * If we are above (b/w wise) over 100Mbps we double the result
142 * of the MSS calculation. The second caveat is if we are 500Mbps
143 * or more we just send the maximum MSS at once i.e. 45MSS. At
144 * the higher b/w's even the cards have limits to what times (timer granularity)
145 * they can insert between packets and start to send more than one
146 * packet at a time on the wire.
147 *
148 */
149#define COMMON_RATE 180500
150const uint64_t desired_rates[] = {
151	122500,			/* 1Mbps  - rate 1 */
152	180500,			/* 1.44Mpbs - rate 2  common rate */
153	375000,			/* 3Mbps    - rate 3 */
154	625000,			/* 5Mbps    - rate 4 */
155	1250000,		/* 10Mbps   - rate 5 */
156	1875000,		/* 15Mbps   - rate 6 */
157	2500000,		/* 20Mbps   - rate 7 */
158	3125000,	       	/* 25Mbps   - rate 8 */
159	3750000,		/* 30Mbps   - rate 9 */
160	4375000,		/* 35Mbps   - rate 10 */
161	5000000,		/* 40Meg    - rate 11 */
162	6250000,		/* 50Mbps   - rate 12 */
163	12500000,		/* 100Mbps  - rate 13 */
164	25000000,		/* 200Mbps  - rate 14 */
165	50000000,		/* 400Mbps  - rate 15 */
166	100000000,		/* 800Mbps  - rate 16 */
167	5625000,		/* 45Mbps   - rate 17 */
168	6875000,		/* 55Mbps   - rate 19 */
169	7500000,		/* 60Mbps   - rate 20 */
170	8125000,		/* 65Mbps   - rate 21 */
171	8750000,		/* 70Mbps   - rate 22 */
172	9375000,		/* 75Mbps   - rate 23 */
173	10000000,		/* 80Mbps   - rate 24 */
174	10625000,		/* 85Mbps   - rate 25 */
175	11250000,		/* 90Mbps   - rate 26 */
176	11875000,		/* 95Mbps   - rate 27 */
177	12500000,		/* 100Mbps  - rate 28 */
178	13750000,		/* 110Mbps  - rate 29 */
179	15000000,		/* 120Mbps  - rate 30 */
180	16250000,		/* 130Mbps  - rate 31 */
181	17500000,		/* 140Mbps  - rate 32 */
182	18750000,		/* 150Mbps  - rate 33 */
183	20000000,		/* 160Mbps  - rate 34 */
184	21250000,		/* 170Mbps  - rate 35 */
185	22500000,		/* 180Mbps  - rate 36 */
186	23750000,		/* 190Mbps  - rate 37 */
187	26250000,		/* 210Mbps  - rate 38 */
188	27500000,		/* 220Mbps  - rate 39 */
189	28750000,		/* 230Mbps  - rate 40 */
190	30000000,	       	/* 240Mbps  - rate 41 */
191	31250000,		/* 250Mbps  - rate 42 */
192	34375000,		/* 275Mbps  - rate 43 */
193	37500000,		/* 300Mbps  - rate 44 */
194	40625000,		/* 325Mbps  - rate 45 */
195	43750000,		/* 350Mbps  - rate 46 */
196	46875000,		/* 375Mbps  - rate 47 */
197	53125000,		/* 425Mbps  - rate 48 */
198	56250000,		/* 450Mbps  - rate 49 */
199	59375000,		/* 475Mbps  - rate 50 */
200	62500000,		/* 500Mbps  - rate 51 */
201	68750000,		/* 550Mbps  - rate 52 */
202	75000000,		/* 600Mbps  - rate 53 */
203	81250000,		/* 650Mbps  - rate 54 */
204	87500000,		/* 700Mbps  - rate 55 */
205	93750000,		/* 750Mbps  - rate 56 */
206	106250000,		/* 850Mbps  - rate 57 */
207	112500000,		/* 900Mbps  - rate 58 */
208	125000000,		/* 1Gbps    - rate 59 */
209	156250000,		/* 1.25Gps  - rate 60 */
210	187500000,		/* 1.5Gps   - rate 61 */
211	218750000,		/* 1.75Gps  - rate 62 */
212	250000000,		/* 2Gbps    - rate 63 */
213	281250000,		/* 2.25Gps  - rate 64 */
214	312500000,		/* 2.5Gbps  - rate 65 */
215	343750000,		/* 2.75Gbps - rate 66 */
216	375000000,		/* 3Gbps    - rate 67 */
217	500000000,		/* 4Gbps    - rate 68 */
218	625000000,		/* 5Gbps    - rate 69 */
219	750000000,		/* 6Gbps    - rate 70 */
220	875000000,		/* 7Gbps    - rate 71 */
221	1000000000,		/* 8Gbps    - rate 72 */
222	1125000000,		/* 9Gbps    - rate 73 */
223	1250000000,		/* 10Gbps   - rate 74 */
224	1875000000,		/* 15Gbps   - rate 75 */
225	2500000000		/* 20Gbps   - rate 76 */
226};
227
228#define MAX_HDWR_RATES (sizeof(desired_rates)/sizeof(uint64_t))
229#define RS_ORDERED_COUNT 16	/*
230				 * Number that are in order
231				 * at the beginning of the table,
232				 * over this a sort is required.
233				 */
234#define RS_NEXT_ORDER_GROUP 16	/*
235				 * The point in our table where
236				 * we come fill in a second ordered
237				 * group (index wise means -1).
238				 */
239#define ALL_HARDWARE_RATES 1004 /*
240				 * 1Meg - 1Gig in 1 Meg steps
241				 * plus 100, 200k  and 500k and
242				 * 10Gig
243				 */
244
245#define RS_ONE_MEGABIT_PERSEC 1000000
246#define RS_ONE_GIGABIT_PERSEC 1000000000
247#define RS_TEN_GIGABIT_PERSEC 10000000000
248
249static struct head_tcp_rate_set int_rs;
250static struct mtx rs_mtx;
251uint32_t rs_number_alive;
252uint32_t rs_number_dead;
253static uint32_t rs_floor_mss = 0;
254static uint32_t wait_time_floor = 8000;	/* 8 ms */
255static uint32_t rs_hw_floor_mss = 16;
256static uint32_t num_of_waits_allowed = 1; /* How many time blocks are we willing to wait */
257
258static uint32_t mss_divisor = RL_DEFAULT_DIVISOR;
259static uint32_t even_num_segs = 1;
260static uint32_t even_threshold = 4;
261
262SYSCTL_NODE(_net_inet_tcp, OID_AUTO, rl, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
263    "TCP Ratelimit stats");
264SYSCTL_UINT(_net_inet_tcp_rl, OID_AUTO, alive, CTLFLAG_RW,
265    &rs_number_alive, 0,
266    "Number of interfaces initialized for ratelimiting");
267SYSCTL_UINT(_net_inet_tcp_rl, OID_AUTO, dead, CTLFLAG_RW,
268    &rs_number_dead, 0,
269    "Number of interfaces departing from ratelimiting");
270SYSCTL_UINT(_net_inet_tcp_rl, OID_AUTO, floor_mss, CTLFLAG_RW,
271    &rs_floor_mss, 0,
272    "Number of MSS that will override the normal minimums (0 means don't enforce)");
273SYSCTL_UINT(_net_inet_tcp_rl, OID_AUTO, wait_floor, CTLFLAG_RW,
274    &wait_time_floor, 2000,
275    "Has b/w increases what is the wait floor we are willing to wait at the end?");
276SYSCTL_UINT(_net_inet_tcp_rl, OID_AUTO, time_blocks, CTLFLAG_RW,
277    &num_of_waits_allowed, 1,
278    "How many time blocks on the end should software pacing be willing to wait?");
279
280SYSCTL_UINT(_net_inet_tcp_rl, OID_AUTO, hw_floor_mss, CTLFLAG_RW,
281    &rs_hw_floor_mss, 16,
282    "Number of mss that are a minum for hardware pacing?");
283
284SYSCTL_INT(_net_inet_tcp_rl, OID_AUTO, divisor, CTLFLAG_RW,
285    &mss_divisor, RL_DEFAULT_DIVISOR,
286    "The value divided into bytes per second to help establish mss size");
287SYSCTL_INT(_net_inet_tcp_rl, OID_AUTO, even, CTLFLAG_RW,
288    &even_num_segs, 1,
289    "Do we round mss size up to an even number of segments for delayed ack");
290SYSCTL_INT(_net_inet_tcp_rl, OID_AUTO, eventhresh, CTLFLAG_RW,
291    &even_threshold, 4,
292    "At what number of mss do we start rounding up to an even number of mss?");
293
294static void
295rl_add_syctl_entries(struct sysctl_oid *rl_sysctl_root, struct tcp_rate_set *rs)
296{
297	/*
298	 * Add sysctl entries for thus interface.
299	 */
300	if (rs->rs_flags & RS_INTF_NO_SUP) {
301		SYSCTL_ADD_S32(&rs->sysctl_ctx,
302		   SYSCTL_CHILDREN(rl_sysctl_root),
303		   OID_AUTO, "disable", CTLFLAG_RD,
304		   &rs->rs_disable, 0,
305		   "Disable this interface from new hdwr limiting?");
306	} else {
307		SYSCTL_ADD_S32(&rs->sysctl_ctx,
308		   SYSCTL_CHILDREN(rl_sysctl_root),
309		   OID_AUTO, "disable", CTLFLAG_RW,
310		   &rs->rs_disable, 0,
311		   "Disable this interface from new hdwr limiting?");
312	}
313	SYSCTL_ADD_S32(&rs->sysctl_ctx,
314	    SYSCTL_CHILDREN(rl_sysctl_root),
315	    OID_AUTO, "minseg", CTLFLAG_RW,
316	    &rs->rs_min_seg, 0,
317	    "What is the minimum we need to send on this interface?");
318	SYSCTL_ADD_U64(&rs->sysctl_ctx,
319	    SYSCTL_CHILDREN(rl_sysctl_root),
320	    OID_AUTO, "flow_limit", CTLFLAG_RW,
321	    &rs->rs_flow_limit, 0,
322	    "What is the limit for number of flows (0=unlimited)?");
323	SYSCTL_ADD_S32(&rs->sysctl_ctx,
324	    SYSCTL_CHILDREN(rl_sysctl_root),
325	    OID_AUTO, "highest", CTLFLAG_RD,
326	    &rs->rs_highest_valid, 0,
327	    "Highest valid rate");
328	SYSCTL_ADD_S32(&rs->sysctl_ctx,
329	    SYSCTL_CHILDREN(rl_sysctl_root),
330	    OID_AUTO, "lowest", CTLFLAG_RD,
331	    &rs->rs_lowest_valid, 0,
332	    "Lowest valid rate");
333	SYSCTL_ADD_S32(&rs->sysctl_ctx,
334	    SYSCTL_CHILDREN(rl_sysctl_root),
335	    OID_AUTO, "flags", CTLFLAG_RD,
336	    &rs->rs_flags, 0,
337	    "What lags are on the entry?");
338	SYSCTL_ADD_S32(&rs->sysctl_ctx,
339	    SYSCTL_CHILDREN(rl_sysctl_root),
340	    OID_AUTO, "numrates", CTLFLAG_RD,
341	    &rs->rs_rate_cnt, 0,
342	    "How many rates re there?");
343	SYSCTL_ADD_U64(&rs->sysctl_ctx,
344	    SYSCTL_CHILDREN(rl_sysctl_root),
345	    OID_AUTO, "flows_using", CTLFLAG_RD,
346	    &rs->rs_flows_using, 0,
347	    "How many flows are using this interface now?");
348#ifdef DETAILED_RATELIMIT_SYSCTL
349	if (rs->rs_rlt && rs->rs_rate_cnt > 0) {
350		/*  Lets display the rates */
351		int i;
352		struct sysctl_oid *rl_rates;
353		struct sysctl_oid *rl_rate_num;
354		char rate_num[16];
355		rl_rates = SYSCTL_ADD_NODE(&rs->sysctl_ctx,
356					    SYSCTL_CHILDREN(rl_sysctl_root),
357					    OID_AUTO,
358					    "rate",
359					    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
360					    "Ratelist");
361		for( i = 0; i < rs->rs_rate_cnt; i++) {
362			sprintf(rate_num, "%d", i);
363			rl_rate_num = SYSCTL_ADD_NODE(&rs->sysctl_ctx,
364					    SYSCTL_CHILDREN(rl_rates),
365					    OID_AUTO,
366					    rate_num,
367					    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
368					    "Individual Rate");
369			SYSCTL_ADD_U32(&rs->sysctl_ctx,
370				       SYSCTL_CHILDREN(rl_rate_num),
371				       OID_AUTO, "flags", CTLFLAG_RD,
372				       &rs->rs_rlt[i].flags, 0,
373				       "Flags on this rate");
374			SYSCTL_ADD_U32(&rs->sysctl_ctx,
375				       SYSCTL_CHILDREN(rl_rate_num),
376				       OID_AUTO, "pacetime", CTLFLAG_RD,
377				       &rs->rs_rlt[i].time_between, 0,
378				       "Time hardware inserts between 1500 byte sends");
379			SYSCTL_ADD_LONG(&rs->sysctl_ctx,
380				       SYSCTL_CHILDREN(rl_rate_num),
381				       OID_AUTO, "rate", CTLFLAG_RD,
382				       &rs->rs_rlt[i].rate,
383				       "Rate in bytes per second");
384			SYSCTL_ADD_LONG(&rs->sysctl_ctx,
385				       SYSCTL_CHILDREN(rl_rate_num),
386				       OID_AUTO, "using", CTLFLAG_RD,
387				       &rs->rs_rlt[i].using,
388				       "Number of flows using");
389			SYSCTL_ADD_LONG(&rs->sysctl_ctx,
390				       SYSCTL_CHILDREN(rl_rate_num),
391				       OID_AUTO, "enobufs", CTLFLAG_RD,
392				       &rs->rs_rlt[i].rs_num_enobufs,
393				       "Number of enobufs logged on this rate");
394
395		}
396	}
397#endif
398}
399
400static void
401rs_destroy(epoch_context_t ctx)
402{
403	struct tcp_rate_set *rs;
404	bool do_free_rs;
405
406	rs = __containerof(ctx, struct tcp_rate_set, rs_epoch_ctx);
407
408	mtx_lock(&rs_mtx);
409	rs->rs_flags &= ~RS_FUNERAL_SCHD;
410	/*
411	 * In theory its possible (but unlikely)
412	 * that while the delete was occuring
413	 * and we were applying the DEAD flag
414	 * someone slipped in and found the
415	 * interface in a lookup. While we
416	 * decided rs_flows_using were 0 and
417	 * scheduling the epoch_call, the other
418	 * thread incremented rs_flow_using. This
419	 * is because users have a pointer and
420	 * we only use the rs_flows_using in an
421	 * atomic fashion, i.e. the other entities
422	 * are not protected. To assure this did
423	 * not occur, we check rs_flows_using here
424	 * before deleting.
425	 */
426	do_free_rs = (rs->rs_flows_using == 0);
427	rs_number_dead--;
428	mtx_unlock(&rs_mtx);
429
430	if (do_free_rs) {
431		sysctl_ctx_free(&rs->sysctl_ctx);
432		free(rs->rs_rlt, M_TCPPACE);
433		free(rs, M_TCPPACE);
434	}
435}
436
437static void
438rs_defer_destroy(struct tcp_rate_set *rs)
439{
440
441	mtx_assert(&rs_mtx, MA_OWNED);
442
443	/* Check if already pending. */
444	if (rs->rs_flags & RS_FUNERAL_SCHD)
445		return;
446
447	rs_number_dead++;
448
449	/* Set flag to only defer once. */
450	rs->rs_flags |= RS_FUNERAL_SCHD;
451	NET_EPOCH_CALL(rs_destroy, &rs->rs_epoch_ctx);
452}
453
454#ifdef INET
455extern counter_u64_t rate_limit_new;
456extern counter_u64_t rate_limit_chg;
457extern counter_u64_t rate_limit_set_ok;
458extern counter_u64_t rate_limit_active;
459extern counter_u64_t rate_limit_alloc_fail;
460#endif
461
462static int
463rl_attach_txrtlmt(struct ifnet *ifp,
464    uint32_t flowtype,
465    int flowid,
466    uint64_t cfg_rate,
467    struct m_snd_tag **tag)
468{
469	int error;
470	union if_snd_tag_alloc_params params = {
471		.rate_limit.hdr.type = IF_SND_TAG_TYPE_RATE_LIMIT,
472		.rate_limit.hdr.flowid = flowid,
473		.rate_limit.hdr.flowtype = flowtype,
474		.rate_limit.max_rate = cfg_rate,
475		.rate_limit.flags = M_NOWAIT,
476	};
477
478	error = m_snd_tag_alloc(ifp, &params, tag);
479#ifdef INET
480	if (error == 0) {
481		counter_u64_add(rate_limit_set_ok, 1);
482		counter_u64_add(rate_limit_active, 1);
483	} else if (error != EOPNOTSUPP)
484		counter_u64_add(rate_limit_alloc_fail, 1);
485#endif
486	return (error);
487}
488
489static void
490populate_canned_table(struct tcp_rate_set *rs, const uint64_t *rate_table_act)
491{
492	/*
493	 * The internal table is "special", it
494	 * is two seperate ordered tables that
495	 * must be merged. We get here when the
496	 * adapter specifies a number of rates that
497	 * covers both ranges in the table in some
498	 * form.
499	 */
500	int i, at_low, at_high;
501	uint8_t low_disabled = 0, high_disabled = 0;
502
503	for(i = 0, at_low = 0, at_high = RS_NEXT_ORDER_GROUP; i < rs->rs_rate_cnt; i++) {
504		rs->rs_rlt[i].flags = 0;
505		rs->rs_rlt[i].time_between = 0;
506		if ((low_disabled == 0) &&
507		    (high_disabled ||
508		     (rate_table_act[at_low] < rate_table_act[at_high]))) {
509			rs->rs_rlt[i].rate = rate_table_act[at_low];
510			at_low++;
511			if (at_low == RS_NEXT_ORDER_GROUP)
512				low_disabled = 1;
513		} else if (high_disabled == 0) {
514			rs->rs_rlt[i].rate = rate_table_act[at_high];
515			at_high++;
516			if (at_high == MAX_HDWR_RATES)
517				high_disabled = 1;
518		}
519	}
520}
521
522static struct tcp_rate_set *
523rt_setup_new_rs(struct ifnet *ifp, int *error)
524{
525	struct tcp_rate_set *rs;
526	const uint64_t *rate_table_act;
527	uint64_t lentim, res;
528	size_t sz;
529	uint32_t hash_type;
530	int i;
531	struct if_ratelimit_query_results rl;
532	struct sysctl_oid *rl_sysctl_root;
533	struct epoch_tracker et;
534	/*
535	 * We expect to enter with the
536	 * mutex locked.
537	 */
538
539	if (ifp->if_ratelimit_query == NULL) {
540		/*
541		 * We can do nothing if we cannot
542		 * get a query back from the driver.
543		 */
544		printf("Warning:No query functions for %s:%d-- failed\n",
545		       ifp->if_dname, ifp->if_dunit);
546		return (NULL);
547	}
548	rs = malloc(sizeof(struct tcp_rate_set), M_TCPPACE, M_NOWAIT | M_ZERO);
549	if (rs == NULL) {
550		if (error)
551			*error = ENOMEM;
552		printf("Warning:No memory for malloc of tcp_rate_set\n");
553		return (NULL);
554	}
555	memset(&rl, 0, sizeof(rl));
556	rl.flags = RT_NOSUPPORT;
557	ifp->if_ratelimit_query(ifp, &rl);
558	if (rl.flags & RT_IS_UNUSABLE) {
559		/*
560		 * The interface does not really support
561		 * the rate-limiting.
562		 */
563		memset(rs, 0, sizeof(struct tcp_rate_set));
564		rs->rs_ifp = ifp;
565		rs->rs_if_dunit = ifp->if_dunit;
566		rs->rs_flags = RS_INTF_NO_SUP;
567		rs->rs_disable = 1;
568		rs_number_alive++;
569		sysctl_ctx_init(&rs->sysctl_ctx);
570		rl_sysctl_root = SYSCTL_ADD_NODE(&rs->sysctl_ctx,
571		    SYSCTL_STATIC_CHILDREN(_net_inet_tcp_rl),
572		    OID_AUTO,
573		    rs->rs_ifp->if_xname,
574		    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
575		    "");
576		rl_add_syctl_entries(rl_sysctl_root, rs);
577		NET_EPOCH_ENTER(et);
578		mtx_lock(&rs_mtx);
579		CK_LIST_INSERT_HEAD(&int_rs, rs, next);
580		mtx_unlock(&rs_mtx);
581		NET_EPOCH_EXIT(et);
582		return (rs);
583	} else if ((rl.flags & RT_IS_INDIRECT) == RT_IS_INDIRECT) {
584		memset(rs, 0, sizeof(struct tcp_rate_set));
585		rs->rs_ifp = ifp;
586		rs->rs_if_dunit = ifp->if_dunit;
587		rs->rs_flags = RS_IS_DEFF;
588		rs_number_alive++;
589		sysctl_ctx_init(&rs->sysctl_ctx);
590		rl_sysctl_root = SYSCTL_ADD_NODE(&rs->sysctl_ctx,
591		    SYSCTL_STATIC_CHILDREN(_net_inet_tcp_rl),
592		    OID_AUTO,
593		    rs->rs_ifp->if_xname,
594		    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
595		    "");
596		rl_add_syctl_entries(rl_sysctl_root, rs);
597		NET_EPOCH_ENTER(et);
598		mtx_lock(&rs_mtx);
599		CK_LIST_INSERT_HEAD(&int_rs, rs, next);
600		mtx_unlock(&rs_mtx);
601		NET_EPOCH_EXIT(et);
602		return (rs);
603	} else if ((rl.flags & RT_IS_FIXED_TABLE) == RT_IS_FIXED_TABLE) {
604		/* Mellanox C4 likely */
605		rs->rs_ifp = ifp;
606		rs->rs_if_dunit = ifp->if_dunit;
607		rs->rs_rate_cnt = rl.number_of_rates;
608		rs->rs_min_seg = rl.min_segment_burst;
609		rs->rs_highest_valid = 0;
610		rs->rs_flow_limit = rl.max_flows;
611		rs->rs_flags = RS_IS_INTF | RS_NO_PRE;
612		rs->rs_disable = 0;
613		rate_table_act = rl.rate_table;
614	} else if ((rl.flags & RT_IS_SELECTABLE) == RT_IS_SELECTABLE) {
615		/* Chelsio, C5 and C6 of Mellanox? */
616		rs->rs_ifp = ifp;
617		rs->rs_if_dunit = ifp->if_dunit;
618		rs->rs_rate_cnt = rl.number_of_rates;
619		rs->rs_min_seg = rl.min_segment_burst;
620		rs->rs_disable = 0;
621		rs->rs_flow_limit = rl.max_flows;
622		rate_table_act = desired_rates;
623		if ((rs->rs_rate_cnt > MAX_HDWR_RATES) &&
624		    (rs->rs_rate_cnt < ALL_HARDWARE_RATES)) {
625			/*
626			 * Our desired table is not big
627			 * enough, do what we can.
628			 */
629			rs->rs_rate_cnt = MAX_HDWR_RATES;
630		 }
631		if (rs->rs_rate_cnt <= RS_ORDERED_COUNT)
632			rs->rs_flags = RS_IS_INTF;
633		else
634			rs->rs_flags = RS_IS_INTF | RS_INT_TBL;
635		if (rs->rs_rate_cnt >= ALL_HARDWARE_RATES)
636			rs->rs_rate_cnt = ALL_HARDWARE_RATES;
637	} else {
638		free(rs, M_TCPPACE);
639		return (NULL);
640	}
641	sz = sizeof(struct tcp_hwrate_limit_table) * rs->rs_rate_cnt;
642	rs->rs_rlt = malloc(sz, M_TCPPACE, M_NOWAIT);
643	if (rs->rs_rlt == NULL) {
644		if (error)
645			*error = ENOMEM;
646bail:
647		free(rs, M_TCPPACE);
648		return (NULL);
649	}
650	if (rs->rs_rate_cnt >= ALL_HARDWARE_RATES) {
651		/*
652		 * The interface supports all
653		 * the rates we could possibly want.
654		 */
655		uint64_t rat;
656
657		rs->rs_rlt[0].rate = 12500;	/* 100k */
658		rs->rs_rlt[1].rate = 25000;	/* 200k */
659		rs->rs_rlt[2].rate = 62500;	/* 500k */
660		/* Note 125000 == 1Megabit
661		 * populate 1Meg - 1000meg.
662		 */
663		for(i = 3, rat = 125000; i< (ALL_HARDWARE_RATES-1); i++) {
664			rs->rs_rlt[i].rate = rat;
665			rat += 125000;
666		}
667		rs->rs_rlt[(ALL_HARDWARE_RATES-1)].rate = 1250000000;
668	} else if (rs->rs_flags & RS_INT_TBL) {
669		/* We populate this in a special way */
670		populate_canned_table(rs, rate_table_act);
671	} else {
672		/*
673		 * Just copy in the rates from
674		 * the table, it is in order.
675		 */
676		for (i=0; i<rs->rs_rate_cnt; i++) {
677			rs->rs_rlt[i].rate = rate_table_act[i];
678			rs->rs_rlt[i].time_between = 0;
679			rs->rs_rlt[i].flags = 0;
680		}
681	}
682	for (i = (rs->rs_rate_cnt - 1); i >= 0; i--) {
683		/*
684		 * We go backwards through the list so that if we can't get
685		 * a rate and fail to init one, we have at least a chance of
686		 * getting the highest one.
687		 */
688		rs->rs_rlt[i].ptbl = rs;
689		rs->rs_rlt[i].tag = NULL;
690		rs->rs_rlt[i].using = 0;
691		rs->rs_rlt[i].rs_num_enobufs = 0;
692		/*
693		 * Calculate the time between.
694		 */
695		lentim = ETHERNET_SEGMENT_SIZE * USECS_IN_SECOND;
696		res = lentim / rs->rs_rlt[i].rate;
697		if (res > 0)
698			rs->rs_rlt[i].time_between = res;
699		else
700			rs->rs_rlt[i].time_between = 1;
701		if (rs->rs_flags & RS_NO_PRE) {
702			rs->rs_rlt[i].flags = HDWRPACE_INITED;
703			rs->rs_lowest_valid = i;
704		} else {
705			int err;
706
707			if ((rl.flags & RT_IS_SETUP_REQ)  &&
708			    (ifp->if_ratelimit_query)) {
709				err = ifp->if_ratelimit_setup(ifp,
710  				         rs->rs_rlt[i].rate, i);
711				if (err)
712					goto handle_err;
713			}
714#ifdef RSS
715			hash_type = M_HASHTYPE_RSS_TCP_IPV4;
716#else
717			hash_type = M_HASHTYPE_OPAQUE_HASH;
718#endif
719			err = rl_attach_txrtlmt(ifp,
720			    hash_type,
721			    (i + 1),
722			    rs->rs_rlt[i].rate,
723			    &rs->rs_rlt[i].tag);
724			if (err) {
725handle_err:
726				if (i == (rs->rs_rate_cnt - 1)) {
727					/*
728					 * Huh - first rate and we can't get
729					 * it?
730					 */
731					free(rs->rs_rlt, M_TCPPACE);
732					if (error)
733						*error = err;
734					goto bail;
735				} else {
736					if (error)
737						*error = err;
738				}
739				break;
740			} else {
741				rs->rs_rlt[i].flags = HDWRPACE_INITED | HDWRPACE_TAGPRESENT;
742				rs->rs_lowest_valid = i;
743			}
744		}
745	}
746	/* Did we get at least 1 rate? */
747	if (rs->rs_rlt[(rs->rs_rate_cnt - 1)].flags & HDWRPACE_INITED)
748		rs->rs_highest_valid = rs->rs_rate_cnt - 1;
749	else {
750		free(rs->rs_rlt, M_TCPPACE);
751		goto bail;
752	}
753	rs_number_alive++;
754	sysctl_ctx_init(&rs->sysctl_ctx);
755	rl_sysctl_root = SYSCTL_ADD_NODE(&rs->sysctl_ctx,
756	    SYSCTL_STATIC_CHILDREN(_net_inet_tcp_rl),
757	    OID_AUTO,
758	    rs->rs_ifp->if_xname,
759	    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
760	    "");
761	rl_add_syctl_entries(rl_sysctl_root, rs);
762	NET_EPOCH_ENTER(et);
763	mtx_lock(&rs_mtx);
764	CK_LIST_INSERT_HEAD(&int_rs, rs, next);
765	mtx_unlock(&rs_mtx);
766	NET_EPOCH_EXIT(et);
767	return (rs);
768}
769
770/*
771 * For an explanation of why the argument is volatile please
772 * look at the comments around rt_setup_rate().
773 */
774static const struct tcp_hwrate_limit_table *
775tcp_int_find_suitable_rate(const volatile struct tcp_rate_set *rs,
776    uint64_t bytes_per_sec, uint32_t flags, uint64_t *lower_rate)
777{
778	struct tcp_hwrate_limit_table *arte = NULL, *rte = NULL;
779	uint64_t mbits_per_sec, ind_calc, previous_rate = 0;
780	int i;
781
782	mbits_per_sec = (bytes_per_sec * 8);
783	if (flags & RS_PACING_LT) {
784		if ((mbits_per_sec < RS_ONE_MEGABIT_PERSEC) &&
785		    (rs->rs_lowest_valid <= 2)){
786			/*
787			 * Smaller than 1Meg, only
788			 * 3 entries can match it.
789			 */
790			previous_rate = 0;
791			for(i = rs->rs_lowest_valid; i < 3; i++) {
792				if (bytes_per_sec <= rs->rs_rlt[i].rate) {
793					rte = &rs->rs_rlt[i];
794					break;
795				} else if (rs->rs_rlt[i].flags & HDWRPACE_INITED) {
796					arte = &rs->rs_rlt[i];
797				}
798				previous_rate = rs->rs_rlt[i].rate;
799			}
800			goto done;
801		} else if ((mbits_per_sec > RS_ONE_GIGABIT_PERSEC) &&
802			   (rs->rs_rlt[(ALL_HARDWARE_RATES-1)].flags & HDWRPACE_INITED)){
803			/*
804			 * Larger than 1G (the majority of
805			 * our table.
806			 */
807			if (mbits_per_sec < RS_TEN_GIGABIT_PERSEC)
808				rte = &rs->rs_rlt[(ALL_HARDWARE_RATES-1)];
809			else
810				arte = &rs->rs_rlt[(ALL_HARDWARE_RATES-1)];
811			previous_rate = rs->rs_rlt[(ALL_HARDWARE_RATES-2)].rate;
812			goto done;
813		}
814		/*
815		 * If we reach here its in our table (between 1Meg - 1000Meg),
816		 * just take the rounded down mbits per second, and add
817		 * 1Megabit to it, from this we can calculate
818		 * the index in the table.
819		 */
820		ind_calc = mbits_per_sec/RS_ONE_MEGABIT_PERSEC;
821		if ((ind_calc * RS_ONE_MEGABIT_PERSEC) != mbits_per_sec)
822			ind_calc++;
823		/* our table is offset by 3, we add 2 */
824		ind_calc += 2;
825		if (ind_calc > (ALL_HARDWARE_RATES-1)) {
826			/* This should not happen */
827			ind_calc = ALL_HARDWARE_RATES-1;
828		}
829		if ((ind_calc >= rs->rs_lowest_valid) &&
830		    (ind_calc <= rs->rs_highest_valid)) {
831			rte = &rs->rs_rlt[ind_calc];
832			if (ind_calc >= 1)
833				previous_rate = rs->rs_rlt[(ind_calc-1)].rate;
834		}
835	} else if (flags & RS_PACING_EXACT_MATCH) {
836		if ((mbits_per_sec < RS_ONE_MEGABIT_PERSEC) &&
837		    (rs->rs_lowest_valid <= 2)){
838			for(i = rs->rs_lowest_valid; i < 3; i++) {
839				if (bytes_per_sec == rs->rs_rlt[i].rate) {
840					rte = &rs->rs_rlt[i];
841					break;
842				}
843			}
844		} else if ((mbits_per_sec > RS_ONE_GIGABIT_PERSEC) &&
845			   (rs->rs_rlt[(ALL_HARDWARE_RATES-1)].flags & HDWRPACE_INITED)) {
846			/* > 1Gbps only one rate */
847			if (bytes_per_sec == rs->rs_rlt[(ALL_HARDWARE_RATES-1)].rate) {
848				/* Its 10G wow */
849				rte = &rs->rs_rlt[(ALL_HARDWARE_RATES-1)];
850			}
851		} else {
852			/* Ok it must be a exact meg (its between 1G and 1Meg) */
853			ind_calc = mbits_per_sec/RS_ONE_MEGABIT_PERSEC;
854			if ((ind_calc * RS_ONE_MEGABIT_PERSEC) == mbits_per_sec) {
855				/* its an exact Mbps */
856				ind_calc += 2;
857				if (ind_calc > (ALL_HARDWARE_RATES-1)) {
858					/* This should not happen */
859					ind_calc = ALL_HARDWARE_RATES-1;
860				}
861				if (rs->rs_rlt[ind_calc].flags & HDWRPACE_INITED)
862					rte = &rs->rs_rlt[ind_calc];
863			}
864		}
865	} else {
866		/* we want greater than the requested rate */
867		if ((mbits_per_sec < RS_ONE_MEGABIT_PERSEC) &&
868		    (rs->rs_lowest_valid <= 2)){
869			arte = &rs->rs_rlt[3]; /* set alternate to 1Meg */
870			for (i=2; i>=rs->rs_lowest_valid; i--) {
871				if (bytes_per_sec < rs->rs_rlt[i].rate) {
872					rte = &rs->rs_rlt[i];
873					if (i >= 1) {
874						previous_rate = rs->rs_rlt[(i-1)].rate;
875					}
876					break;
877				} else if ((flags & RS_PACING_GEQ) &&
878					   (bytes_per_sec == rs->rs_rlt[i].rate)) {
879					rte = &rs->rs_rlt[i];
880					if (i >= 1) {
881						previous_rate = rs->rs_rlt[(i-1)].rate;
882					}
883					break;
884				} else {
885					arte = &rs->rs_rlt[i]; /* new alternate */
886				}
887			}
888		} else if (mbits_per_sec > RS_ONE_GIGABIT_PERSEC) {
889			if ((bytes_per_sec < rs->rs_rlt[(ALL_HARDWARE_RATES-1)].rate) &&
890			    (rs->rs_rlt[(ALL_HARDWARE_RATES-1)].flags & HDWRPACE_INITED)){
891				/* Our top rate is larger than the request */
892				rte = &rs->rs_rlt[(ALL_HARDWARE_RATES-1)];
893			} else if ((flags & RS_PACING_GEQ) &&
894				   (bytes_per_sec == rs->rs_rlt[(ALL_HARDWARE_RATES-1)].rate) &&
895				   (rs->rs_rlt[(ALL_HARDWARE_RATES-1)].flags & HDWRPACE_INITED)) {
896				/* It matches our top rate */
897				rte = &rs->rs_rlt[(ALL_HARDWARE_RATES-1)];
898			} else if (rs->rs_rlt[(ALL_HARDWARE_RATES-1)].flags & HDWRPACE_INITED) {
899				/* The top rate is an alternative */
900				arte = &rs->rs_rlt[(ALL_HARDWARE_RATES-1)];
901			}
902			previous_rate = rs->rs_rlt[(ALL_HARDWARE_RATES-2)].rate;
903		} else {
904			/* Its in our range 1Meg - 1Gig */
905			if (flags & RS_PACING_GEQ) {
906				ind_calc = mbits_per_sec/RS_ONE_MEGABIT_PERSEC;
907				if ((ind_calc * RS_ONE_MEGABIT_PERSEC) == mbits_per_sec) {
908					if (ind_calc > (ALL_HARDWARE_RATES-1)) {
909						/* This should not happen */
910						ind_calc = (ALL_HARDWARE_RATES-1);
911					}
912					rte = &rs->rs_rlt[ind_calc];
913					if (ind_calc >= 1)
914						previous_rate = rs->rs_rlt[(ind_calc-1)].rate;
915				}
916				goto done;
917			}
918			ind_calc = (mbits_per_sec + (RS_ONE_MEGABIT_PERSEC-1))/RS_ONE_MEGABIT_PERSEC;
919			ind_calc += 2;
920			if (ind_calc > (ALL_HARDWARE_RATES-1)) {
921				/* This should not happen */
922				ind_calc = ALL_HARDWARE_RATES-1;
923			}
924			if (rs->rs_rlt[ind_calc].flags & HDWRPACE_INITED) {
925				rte = &rs->rs_rlt[ind_calc];
926				if (ind_calc >= 1)
927					previous_rate = rs->rs_rlt[(ind_calc-1)].rate;
928			}
929		}
930	}
931done:
932	if ((rte == NULL) &&
933	    (arte != NULL) &&
934	    (flags & RS_PACING_SUB_OK)) {
935		/* We can use the substitute */
936		rte = arte;
937	}
938	if (lower_rate)
939		*lower_rate = previous_rate;
940	return (rte);
941}
942
943/*
944 * For an explanation of why the argument is volatile please
945 * look at the comments around rt_setup_rate().
946 */
947static const struct tcp_hwrate_limit_table *
948tcp_find_suitable_rate(const volatile struct tcp_rate_set *rs, uint64_t bytes_per_sec, uint32_t flags, uint64_t *lower_rate)
949{
950	/**
951	 * Hunt the rate table with the restrictions in flags and find a
952	 * suitable rate if possible.
953	 * RS_PACING_EXACT_MATCH - look for an exact match to rate.
954	 * RS_PACING_GT     - must be greater than.
955	 * RS_PACING_GEQ    - must be greater than or equal.
956	 * RS_PACING_LT     - must be less than.
957	 * RS_PACING_SUB_OK - If we don't meet criteria a
958	 *                    substitute is ok.
959	 */
960	int i, matched;
961	struct tcp_hwrate_limit_table *rte = NULL;
962	uint64_t previous_rate = 0;
963
964	if ((rs->rs_flags & RS_INT_TBL) &&
965	    (rs->rs_rate_cnt >= ALL_HARDWARE_RATES)) {
966		/*
967		 * Here we don't want to paw thru
968		 * a big table, we have everything
969		 * from 1Meg - 1000Meg in 1Meg increments.
970		 * Use an alternate method to "lookup".
971		 */
972		return (tcp_int_find_suitable_rate(rs, bytes_per_sec, flags, lower_rate));
973	}
974	if ((flags & RS_PACING_LT) ||
975	    (flags & RS_PACING_EXACT_MATCH)) {
976		/*
977		 * For exact and less than we go forward through the table.
978		 * This way when we find one larger we stop (exact was a
979		 * toss up).
980		 */
981		for (i = rs->rs_lowest_valid, matched = 0; i <= rs->rs_highest_valid; i++) {
982			if ((flags & RS_PACING_EXACT_MATCH) &&
983			    (bytes_per_sec == rs->rs_rlt[i].rate)) {
984				rte = &rs->rs_rlt[i];
985				matched = 1;
986				if (lower_rate != NULL)
987					*lower_rate = previous_rate;
988				break;
989			} else if ((flags & RS_PACING_LT) &&
990			    (bytes_per_sec <= rs->rs_rlt[i].rate)) {
991				rte = &rs->rs_rlt[i];
992				matched = 1;
993				if (lower_rate != NULL)
994					*lower_rate = previous_rate;
995				break;
996			}
997			previous_rate = rs->rs_rlt[i].rate;
998			if (bytes_per_sec > rs->rs_rlt[i].rate)
999				break;
1000		}
1001		if ((matched == 0) &&
1002		    (flags & RS_PACING_LT) &&
1003		    (flags & RS_PACING_SUB_OK)) {
1004			/* Kick in a substitute (the lowest) */
1005			rte = &rs->rs_rlt[rs->rs_lowest_valid];
1006		}
1007	} else {
1008		/*
1009		 * Here we go backward through the table so that we can find
1010		 * the one greater in theory faster (but its probably a
1011		 * wash).
1012		 */
1013		for (i = rs->rs_highest_valid, matched = 0; i >= rs->rs_lowest_valid; i--) {
1014			if (rs->rs_rlt[i].rate > bytes_per_sec) {
1015				/* A possible candidate */
1016				rte = &rs->rs_rlt[i];
1017			}
1018			if ((flags & RS_PACING_GEQ) &&
1019			    (bytes_per_sec == rs->rs_rlt[i].rate)) {
1020				/* An exact match and we want equal */
1021				matched = 1;
1022				rte = &rs->rs_rlt[i];
1023				break;
1024			} else if (rte) {
1025				/*
1026				 * Found one that is larger than but don't
1027				 * stop, there may be a more closer match.
1028				 */
1029				matched = 1;
1030			}
1031			if (rs->rs_rlt[i].rate < bytes_per_sec) {
1032				/*
1033				 * We found a table entry that is smaller,
1034				 * stop there will be none greater or equal.
1035				 */
1036				if (lower_rate != NULL)
1037					*lower_rate = rs->rs_rlt[i].rate;
1038				break;
1039			}
1040		}
1041		if ((matched == 0) &&
1042		    (flags & RS_PACING_SUB_OK)) {
1043			/* Kick in a substitute (the highest) */
1044			rte = &rs->rs_rlt[rs->rs_highest_valid];
1045		}
1046	}
1047	return (rte);
1048}
1049
1050static struct ifnet *
1051rt_find_real_interface(struct ifnet *ifp, struct inpcb *inp, int *error)
1052{
1053	struct ifnet *tifp;
1054	struct m_snd_tag *tag, *ntag;
1055	union if_snd_tag_alloc_params params = {
1056		.rate_limit.hdr.type = IF_SND_TAG_TYPE_RATE_LIMIT,
1057		.rate_limit.hdr.flowid = inp->inp_flowid,
1058		.rate_limit.hdr.numa_domain = inp->inp_numa_domain,
1059		.rate_limit.max_rate = COMMON_RATE,
1060		.rate_limit.flags = M_NOWAIT,
1061	};
1062	int err;
1063#ifdef RSS
1064	params.rate_limit.hdr.flowtype = ((inp->inp_vflag & INP_IPV6) ?
1065	    M_HASHTYPE_RSS_TCP_IPV6 : M_HASHTYPE_RSS_TCP_IPV4);
1066#else
1067	params.rate_limit.hdr.flowtype = M_HASHTYPE_OPAQUE_HASH;
1068#endif
1069	err = m_snd_tag_alloc(ifp, &params, &tag);
1070	if (err) {
1071		/* Failed to setup a tag? */
1072		if (error)
1073			*error = err;
1074		return (NULL);
1075	}
1076	ntag = tag;
1077	while (ntag->sw->next_snd_tag != NULL) {
1078		ntag = ntag->sw->next_snd_tag(ntag);
1079	}
1080	tifp = ntag->ifp;
1081	m_snd_tag_rele(tag);
1082	return (tifp);
1083}
1084
1085static void
1086rl_increment_using(const struct tcp_hwrate_limit_table *rte)
1087{
1088	struct tcp_hwrate_limit_table *decon_rte;
1089
1090	decon_rte = __DECONST(struct tcp_hwrate_limit_table *, rte);
1091	atomic_add_long(&decon_rte->using, 1);
1092}
1093
1094static void
1095rl_decrement_using(const struct tcp_hwrate_limit_table *rte)
1096{
1097	struct tcp_hwrate_limit_table *decon_rte;
1098
1099	decon_rte = __DECONST(struct tcp_hwrate_limit_table *, rte);
1100	atomic_subtract_long(&decon_rte->using, 1);
1101}
1102
1103void
1104tcp_rl_log_enobuf(const struct tcp_hwrate_limit_table *rte)
1105{
1106	struct tcp_hwrate_limit_table *decon_rte;
1107
1108	decon_rte = __DECONST(struct tcp_hwrate_limit_table *, rte);
1109	atomic_add_long(&decon_rte->rs_num_enobufs, 1);
1110}
1111
1112/*
1113 * Do NOT take the __noinline out of the
1114 * find_rs_for_ifp() function. If you do the inline
1115 * of it for the rt_setup_rate() will show you a
1116 * compiler bug. For some reason the compiler thinks
1117 * the list can never be empty. The consequence of
1118 * this will be a crash when we dereference NULL
1119 * if an ifp is removed just has a hw rate limit
1120 * is attempted. If you are working on the compiler
1121 * and want to "test" this go ahead and take the noinline
1122 * out otherwise let sleeping dogs ly until such time
1123 * as we get a compiler fix 10/2/20 -- RRS
1124 */
1125static __noinline struct tcp_rate_set *
1126find_rs_for_ifp(struct ifnet *ifp)
1127{
1128	struct tcp_rate_set *rs;
1129
1130	CK_LIST_FOREACH(rs, &int_rs, next) {
1131		if ((rs->rs_ifp == ifp) &&
1132		    (rs->rs_if_dunit == ifp->if_dunit)) {
1133			/* Ok we found it */
1134			return (rs);
1135		}
1136	}
1137	return (NULL);
1138}
1139
1140
1141static const struct tcp_hwrate_limit_table *
1142rt_setup_rate(struct inpcb *inp, struct ifnet *ifp, uint64_t bytes_per_sec,
1143    uint32_t flags, int *error, uint64_t *lower_rate)
1144{
1145	/* First lets find the interface if it exists */
1146	const struct tcp_hwrate_limit_table *rte;
1147	/*
1148	 * So why is rs volatile? This is to defeat a
1149	 * compiler bug where in the compiler is convinced
1150	 * that rs can never be NULL (which is not true). Because
1151	 * of its conviction it nicely optimizes out the if ((rs == NULL
1152	 * below which means if you get a NULL back you dereference it.
1153	 */
1154	volatile struct tcp_rate_set *rs;
1155	struct epoch_tracker et;
1156	struct ifnet *oifp = ifp;
1157	int err;
1158
1159	NET_EPOCH_ENTER(et);
1160use_real_interface:
1161	rs = find_rs_for_ifp(ifp);
1162	if ((rs == NULL) ||
1163	    (rs->rs_flags & RS_INTF_NO_SUP) ||
1164	    (rs->rs_flags & RS_IS_DEAD)) {
1165		/*
1166		 * This means we got a packet *before*
1167		 * the IF-UP was processed below, <or>
1168		 * while or after we already received an interface
1169		 * departed event. In either case we really don't
1170		 * want to do anything with pacing, in
1171		 * the departing case the packet is not
1172		 * going to go very far. The new case
1173		 * might be arguable, but its impossible
1174		 * to tell from the departing case.
1175		 */
1176		if (error)
1177			*error = ENODEV;
1178		NET_EPOCH_EXIT(et);
1179		return (NULL);
1180	}
1181
1182	if ((rs == NULL) || (rs->rs_disable != 0)) {
1183		if (error)
1184			*error = ENOSPC;
1185		NET_EPOCH_EXIT(et);
1186		return (NULL);
1187	}
1188	if (rs->rs_flags & RS_IS_DEFF) {
1189		/* We need to find the real interface */
1190		struct ifnet *tifp;
1191
1192		tifp = rt_find_real_interface(ifp, inp, error);
1193		if (tifp == NULL) {
1194			if (rs->rs_disable && error)
1195				*error = ENOTSUP;
1196			NET_EPOCH_EXIT(et);
1197			return (NULL);
1198		}
1199		KASSERT((tifp != ifp),
1200			("Lookup failure ifp:%p inp:%p rt_find_real_interface() returns the same interface tifp:%p?\n",
1201			 ifp, inp, tifp));
1202		ifp = tifp;
1203		goto use_real_interface;
1204	}
1205	if (rs->rs_flow_limit &&
1206	    ((rs->rs_flows_using + 1) > rs->rs_flow_limit)) {
1207		if (error)
1208			*error = ENOSPC;
1209		NET_EPOCH_EXIT(et);
1210		return (NULL);
1211	}
1212	rte = tcp_find_suitable_rate(rs, bytes_per_sec, flags, lower_rate);
1213	if (rte) {
1214		err = in_pcbattach_txrtlmt(inp, oifp,
1215		    inp->inp_flowtype,
1216		    inp->inp_flowid,
1217		    rte->rate,
1218		    &inp->inp_snd_tag);
1219		if (err) {
1220			/* Failed to attach */
1221			if (error)
1222				*error = err;
1223			rte = NULL;
1224		} else {
1225			KASSERT((inp->inp_snd_tag != NULL) ,
1226				("Setup rate has no snd_tag inp:%p rte:%p rate:%llu rs:%p",
1227				 inp, rte, (unsigned long long)rte->rate, rs));
1228#ifdef INET
1229			counter_u64_add(rate_limit_new, 1);
1230#endif
1231		}
1232	}
1233	if (rte) {
1234		/*
1235		 * We use an atomic here for accounting so we don't have to
1236		 * use locks when freeing.
1237		 */
1238		atomic_add_64(&rs->rs_flows_using, 1);
1239	}
1240	NET_EPOCH_EXIT(et);
1241	return (rte);
1242}
1243
1244static void
1245tcp_rl_ifnet_link(void *arg __unused, struct ifnet *ifp, int link_state)
1246{
1247	int error;
1248	struct tcp_rate_set *rs;
1249	struct epoch_tracker et;
1250
1251	if (((ifp->if_capenable & IFCAP_TXRTLMT) == 0) ||
1252	    (link_state != LINK_STATE_UP)) {
1253		/*
1254		 * We only care on an interface going up that is rate-limit
1255		 * capable.
1256		 */
1257		return;
1258	}
1259	NET_EPOCH_ENTER(et);
1260	mtx_lock(&rs_mtx);
1261	rs = find_rs_for_ifp(ifp);
1262	if (rs) {
1263		/* We already have initialized this guy */
1264		mtx_unlock(&rs_mtx);
1265		NET_EPOCH_EXIT(et);
1266		return;
1267	}
1268	mtx_unlock(&rs_mtx);
1269	NET_EPOCH_EXIT(et);
1270	rt_setup_new_rs(ifp, &error);
1271}
1272
1273static void
1274tcp_rl_ifnet_departure(void *arg __unused, struct ifnet *ifp)
1275{
1276	struct tcp_rate_set *rs;
1277	struct epoch_tracker et;
1278	int i;
1279
1280	NET_EPOCH_ENTER(et);
1281	mtx_lock(&rs_mtx);
1282	rs = find_rs_for_ifp(ifp);
1283	if (rs) {
1284		CK_LIST_REMOVE(rs, next);
1285		rs_number_alive--;
1286		rs->rs_flags |= RS_IS_DEAD;
1287		for (i = 0; i < rs->rs_rate_cnt; i++) {
1288			if (rs->rs_rlt[i].flags & HDWRPACE_TAGPRESENT) {
1289				in_pcbdetach_tag(rs->rs_rlt[i].tag);
1290				rs->rs_rlt[i].tag = NULL;
1291			}
1292			rs->rs_rlt[i].flags = HDWRPACE_IFPDEPARTED;
1293		}
1294		if (rs->rs_flows_using == 0)
1295			rs_defer_destroy(rs);
1296	}
1297	mtx_unlock(&rs_mtx);
1298	NET_EPOCH_EXIT(et);
1299}
1300
1301static void
1302tcp_rl_shutdown(void *arg __unused, int howto __unused)
1303{
1304	struct tcp_rate_set *rs, *nrs;
1305	struct epoch_tracker et;
1306	int i;
1307
1308	NET_EPOCH_ENTER(et);
1309	mtx_lock(&rs_mtx);
1310	CK_LIST_FOREACH_SAFE(rs, &int_rs, next, nrs) {
1311		CK_LIST_REMOVE(rs, next);
1312		rs_number_alive--;
1313		rs->rs_flags |= RS_IS_DEAD;
1314		for (i = 0; i < rs->rs_rate_cnt; i++) {
1315			if (rs->rs_rlt[i].flags & HDWRPACE_TAGPRESENT) {
1316				in_pcbdetach_tag(rs->rs_rlt[i].tag);
1317				rs->rs_rlt[i].tag = NULL;
1318			}
1319			rs->rs_rlt[i].flags = HDWRPACE_IFPDEPARTED;
1320		}
1321		if (rs->rs_flows_using == 0)
1322			rs_defer_destroy(rs);
1323	}
1324	mtx_unlock(&rs_mtx);
1325	NET_EPOCH_EXIT(et);
1326}
1327
1328const struct tcp_hwrate_limit_table *
1329tcp_set_pacing_rate(struct tcpcb *tp, struct ifnet *ifp,
1330    uint64_t bytes_per_sec, int flags, int *error, uint64_t *lower_rate)
1331{
1332	struct inpcb *inp = tptoinpcb(tp);
1333	const struct tcp_hwrate_limit_table *rte;
1334#ifdef KERN_TLS
1335	struct ktls_session *tls;
1336#endif
1337
1338	INP_WLOCK_ASSERT(inp);
1339
1340	if (inp->inp_snd_tag == NULL) {
1341		/*
1342		 * We are setting up a rate for the first time.
1343		 */
1344		if ((ifp->if_capenable & IFCAP_TXRTLMT) == 0) {
1345			/* Not supported by the egress */
1346			if (error)
1347				*error = ENODEV;
1348			return (NULL);
1349		}
1350#ifdef KERN_TLS
1351		tls = NULL;
1352		if (tp->t_nic_ktls_xmit != 0) {
1353			tls = tptosocket(tp)->so_snd.sb_tls_info;
1354
1355			if ((ifp->if_capenable & IFCAP_TXTLS_RTLMT) == 0 ||
1356			    tls->mode != TCP_TLS_MODE_IFNET) {
1357				if (error)
1358					*error = ENODEV;
1359				return (NULL);
1360			}
1361		}
1362#endif
1363		rte = rt_setup_rate(inp, ifp, bytes_per_sec, flags, error, lower_rate);
1364		if (rte)
1365			rl_increment_using(rte);
1366#ifdef KERN_TLS
1367		if (rte != NULL && tls != NULL && tls->snd_tag != NULL) {
1368			/*
1369			 * Fake a route change error to reset the TLS
1370			 * send tag.  This will convert the existing
1371			 * tag to a TLS ratelimit tag.
1372			 */
1373			MPASS(tls->snd_tag->sw->type == IF_SND_TAG_TYPE_TLS);
1374			ktls_output_eagain(inp, tls);
1375		}
1376#endif
1377	} else {
1378		/*
1379		 * We are modifying a rate, wrong interface?
1380		 */
1381		if (error)
1382			*error = EINVAL;
1383		rte = NULL;
1384	}
1385	if (rte != NULL) {
1386		tp->t_pacing_rate = rte->rate;
1387		*error = 0;
1388	}
1389	return (rte);
1390}
1391
1392const struct tcp_hwrate_limit_table *
1393tcp_chg_pacing_rate(const struct tcp_hwrate_limit_table *crte,
1394    struct tcpcb *tp, struct ifnet *ifp,
1395    uint64_t bytes_per_sec, int flags, int *error, uint64_t *lower_rate)
1396{
1397	struct inpcb *inp = tptoinpcb(tp);
1398	const struct tcp_hwrate_limit_table *nrte;
1399	const struct tcp_rate_set *rs;
1400#ifdef KERN_TLS
1401	struct ktls_session *tls = NULL;
1402#endif
1403	int err;
1404
1405	INP_WLOCK_ASSERT(inp);
1406
1407	if (crte == NULL) {
1408		/* Wrong interface */
1409		if (error)
1410			*error = EINVAL;
1411		return (NULL);
1412	}
1413
1414#ifdef KERN_TLS
1415	if (tp->t_nic_ktls_xmit) {
1416		tls = tptosocket(tp)->so_snd.sb_tls_info;
1417		if (tls->mode != TCP_TLS_MODE_IFNET)
1418			tls = NULL;
1419		else if (tls->snd_tag != NULL &&
1420		    tls->snd_tag->sw->type != IF_SND_TAG_TYPE_TLS_RATE_LIMIT) {
1421			if (!tls->reset_pending) {
1422				/*
1423				 * NIC probably doesn't support
1424				 * ratelimit TLS tags if it didn't
1425				 * allocate one when an existing rate
1426				 * was present, so ignore.
1427				 */
1428				tcp_rel_pacing_rate(crte, tp);
1429				if (error)
1430					*error = EOPNOTSUPP;
1431				return (NULL);
1432			}
1433
1434			/*
1435			 * The send tag is being converted, so set the
1436			 * rate limit on the inpcb tag.  There is a
1437			 * race that the new NIC send tag might use
1438			 * the current rate instead of this one.
1439			 */
1440			tls = NULL;
1441		}
1442	}
1443#endif
1444	if (inp->inp_snd_tag == NULL) {
1445		/* Wrong interface */
1446		tcp_rel_pacing_rate(crte, tp);
1447		if (error)
1448			*error = EINVAL;
1449		return (NULL);
1450	}
1451	rs = crte->ptbl;
1452	if ((rs->rs_flags & RS_IS_DEAD) ||
1453	    (crte->flags & HDWRPACE_IFPDEPARTED)) {
1454		/* Release the rate, and try anew */
1455
1456		tcp_rel_pacing_rate(crte, tp);
1457		nrte = tcp_set_pacing_rate(tp, ifp,
1458		    bytes_per_sec, flags, error, lower_rate);
1459		return (nrte);
1460	}
1461	nrte = tcp_find_suitable_rate(rs, bytes_per_sec, flags, lower_rate);
1462	if (nrte == crte) {
1463		/* No change */
1464		if (error)
1465			*error = 0;
1466		return (crte);
1467	}
1468	if (nrte == NULL) {
1469		/* Release the old rate */
1470		if (error)
1471			*error = ENOENT;
1472		tcp_rel_pacing_rate(crte, tp);
1473		return (NULL);
1474	}
1475	rl_decrement_using(crte);
1476	rl_increment_using(nrte);
1477	/* Change rates to our new entry */
1478#ifdef KERN_TLS
1479	if (tls != NULL)
1480		err = ktls_modify_txrtlmt(tls, nrte->rate);
1481	else
1482#endif
1483		err = in_pcbmodify_txrtlmt(inp, nrte->rate);
1484	if (err) {
1485		struct tcp_rate_set *lrs;
1486		uint64_t pre;
1487
1488		rl_decrement_using(nrte);
1489		lrs = __DECONST(struct tcp_rate_set *, rs);
1490		pre = atomic_fetchadd_64(&lrs->rs_flows_using, -1);
1491		/* Do we still have a snd-tag attached? */
1492		if (inp->inp_snd_tag)
1493			in_pcbdetach_txrtlmt(inp);
1494
1495		if (pre == 1) {
1496			struct epoch_tracker et;
1497
1498			NET_EPOCH_ENTER(et);
1499			mtx_lock(&rs_mtx);
1500			/*
1501			 * Is it dead?
1502			 */
1503			if (lrs->rs_flags & RS_IS_DEAD)
1504				rs_defer_destroy(lrs);
1505			mtx_unlock(&rs_mtx);
1506			NET_EPOCH_EXIT(et);
1507		}
1508		if (error)
1509			*error = err;
1510		return (NULL);
1511	} else {
1512#ifdef INET
1513		counter_u64_add(rate_limit_chg, 1);
1514#endif
1515	}
1516	if (error)
1517		*error = 0;
1518	tp->t_pacing_rate = nrte->rate;
1519	return (nrte);
1520}
1521
1522void
1523tcp_rel_pacing_rate(const struct tcp_hwrate_limit_table *crte, struct tcpcb *tp)
1524{
1525	struct inpcb *inp = tptoinpcb(tp);
1526	const struct tcp_rate_set *crs;
1527	struct tcp_rate_set *rs;
1528	uint64_t pre;
1529
1530	INP_WLOCK_ASSERT(inp);
1531
1532	tp->t_pacing_rate = -1;
1533	crs = crte->ptbl;
1534	/*
1535	 * Now we must break the const
1536	 * in order to release our refcount.
1537	 */
1538	rs = __DECONST(struct tcp_rate_set *, crs);
1539	rl_decrement_using(crte);
1540	pre = atomic_fetchadd_64(&rs->rs_flows_using, -1);
1541	if (pre == 1) {
1542		struct epoch_tracker et;
1543
1544		NET_EPOCH_ENTER(et);
1545		mtx_lock(&rs_mtx);
1546		/*
1547		 * Is it dead?
1548		 */
1549		if (rs->rs_flags & RS_IS_DEAD)
1550			rs_defer_destroy(rs);
1551		mtx_unlock(&rs_mtx);
1552		NET_EPOCH_EXIT(et);
1553	}
1554
1555	/*
1556	 * XXX: If this connection is using ifnet TLS, should we
1557	 * switch it to using an unlimited rate, or perhaps use
1558	 * ktls_output_eagain() to reset the send tag to a plain
1559	 * TLS tag?
1560	 */
1561	in_pcbdetach_txrtlmt(inp);
1562}
1563
1564#define ONE_POINT_TWO_MEG 150000 /* 1.2 megabits in bytes */
1565#define ONE_HUNDRED_MBPS 12500000	/* 100Mbps in bytes per second */
1566#define FIVE_HUNDRED_MBPS 62500000	/* 500Mbps in bytes per second */
1567#define MAX_MSS_SENT 43	/* 43 mss = 43 x 1500 = 64,500 bytes */
1568
1569static void
1570tcp_log_pacing_size(struct tcpcb *tp, uint64_t bw, uint32_t segsiz, uint32_t new_tso,
1571		    uint64_t hw_rate, uint32_t time_between, uint32_t calc_time_between,
1572		    uint32_t segs, uint32_t res_div, uint16_t mult, uint8_t mod)
1573{
1574	if (tcp_bblogging_on(tp)) {
1575		union tcp_log_stackspecific log;
1576		struct timeval tv;
1577
1578		memset(&log, 0, sizeof(log));
1579		log.u_bbr.flex1 = segsiz;
1580		log.u_bbr.flex2 = new_tso;
1581		log.u_bbr.flex3 = time_between;
1582		log.u_bbr.flex4 = calc_time_between;
1583		log.u_bbr.flex5 = segs;
1584		log.u_bbr.flex6 = res_div;
1585		log.u_bbr.flex7 = mult;
1586		log.u_bbr.flex8 = mod;
1587		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1588		log.u_bbr.cur_del_rate = bw;
1589		log.u_bbr.delRate = hw_rate;
1590		TCP_LOG_EVENTP(tp, NULL,
1591		    &tptosocket(tp)->so_rcv,
1592		    &tptosocket(tp)->so_snd,
1593		    TCP_HDWR_PACE_SIZE, 0,
1594		    0, &log, false, &tv);
1595	}
1596}
1597
1598uint32_t
1599tcp_get_pacing_burst_size_w_divisor(struct tcpcb *tp, uint64_t bw, uint32_t segsiz, int can_use_1mss,
1600   const struct tcp_hwrate_limit_table *te, int *err, int divisor)
1601{
1602	/*
1603	 * We use the google formula to calculate the
1604	 * TSO size. I.E.
1605	 * bw < 24Meg
1606	 *   tso = 2mss
1607	 * else
1608	 *   tso = min(bw/(div=1000), 64k)
1609	 *
1610	 * Note for these calculations we ignore the
1611	 * packet overhead (enet hdr, ip hdr and tcp hdr).
1612	 * We only get the google formula when we have
1613	 * divisor = 1000, which is the default for now.
1614	 */
1615	uint64_t lentim, res, bytes;
1616	uint32_t new_tso, min_tso_segs;
1617
1618	/* It can't be zero */
1619	if ((divisor == 0) ||
1620	    (divisor < RL_MIN_DIVISOR)) {
1621		if (mss_divisor)
1622			bytes = bw / mss_divisor;
1623		else
1624			bytes = bw / 1000;
1625	} else
1626		bytes = bw / divisor;
1627	/* We can't ever send more than 65k in a TSO */
1628	if (bytes > 0xffff) {
1629		bytes = 0xffff;
1630	}
1631	/* Round up */
1632	new_tso = (bytes + segsiz - 1) / segsiz;
1633	/* Are we enforcing even boundaries? */
1634	if (even_num_segs && (new_tso & 1) && (new_tso > even_threshold))
1635		new_tso++;
1636	if (can_use_1mss)
1637		min_tso_segs = 1;
1638	else
1639		min_tso_segs = 2;
1640	if (rs_floor_mss && (new_tso < rs_floor_mss))
1641		new_tso = rs_floor_mss;
1642	else if (new_tso < min_tso_segs)
1643		new_tso = min_tso_segs;
1644	if (new_tso > MAX_MSS_SENT)
1645		new_tso = MAX_MSS_SENT;
1646	new_tso *= segsiz;
1647 	tcp_log_pacing_size(tp, bw, segsiz, new_tso,
1648			    0, 0, 0, 0, 0, 0, 1);
1649	/*
1650	 * If we are not doing hardware pacing
1651	 * then we are done.
1652	 */
1653	if (te == NULL) {
1654		if (err)
1655			*err = 0;
1656		return(new_tso);
1657	}
1658	/*
1659	 * For hardware pacing we look at the
1660	 * rate you are sending at and compare
1661	 * that to the rate you have in hardware.
1662	 *
1663	 * If the hardware rate is slower than your
1664	 * software rate then you are in error and
1665	 * we will build a queue in our hardware whic
1666	 * is probably not desired, in such a case
1667	 * just return the non-hardware TSO size.
1668	 *
1669	 * If the rate in hardware is faster (which
1670	 * it should be) then look at how long it
1671	 * takes to send one ethernet segment size at
1672	 * your b/w and compare that to the time it
1673	 * takes to send at the rate you had selected.
1674	 *
1675	 * If your time is greater (which we hope it is)
1676	 * we get the delta between the two, and then
1677	 * divide that into your pacing time. This tells
1678	 * us how many MSS you can send down at once (rounded up).
1679	 *
1680	 * Note we also double this value if the b/w is over
1681	 * 100Mbps. If its over 500meg we just set you to the
1682	 * max (43 segments).
1683	 */
1684	if (te->rate > FIVE_HUNDRED_MBPS)
1685		goto max;
1686	if (te->rate == bw) {
1687		/* We are pacing at exactly the hdwr rate */
1688max:
1689		tcp_log_pacing_size(tp, bw, segsiz, new_tso,
1690				    te->rate, te->time_between, (uint32_t)0,
1691				    (segsiz * MAX_MSS_SENT), 0, 0, 3);
1692		return (segsiz * MAX_MSS_SENT);
1693	}
1694	lentim = ETHERNET_SEGMENT_SIZE * USECS_IN_SECOND;
1695	res = lentim / bw;
1696	if (res > te->time_between) {
1697		uint32_t delta, segs, res_div;
1698
1699		res_div = ((res * num_of_waits_allowed) + wait_time_floor);
1700		delta = res - te->time_between;
1701		segs = (res_div + delta - 1)/delta;
1702		if (segs < min_tso_segs)
1703			segs = min_tso_segs;
1704		if (segs < rs_hw_floor_mss)
1705			segs = rs_hw_floor_mss;
1706		if (segs > MAX_MSS_SENT)
1707			segs = MAX_MSS_SENT;
1708		segs *= segsiz;
1709		tcp_log_pacing_size(tp, bw, segsiz, new_tso,
1710				    te->rate, te->time_between, (uint32_t)res,
1711				    segs, res_div, 1, 3);
1712		if (err)
1713			*err = 0;
1714		if (segs < new_tso) {
1715			/* unexpected ? */
1716			return(new_tso);
1717		} else {
1718			return (segs);
1719		}
1720	} else {
1721		/*
1722		 * Your time is smaller which means
1723		 * we will grow a queue on our
1724		 * hardware. Send back the non-hardware
1725		 * rate.
1726		 */
1727		tcp_log_pacing_size(tp, bw, segsiz, new_tso,
1728				    te->rate, te->time_between, (uint32_t)res,
1729				    0, 0, 0, 4);
1730		if (err)
1731			*err = -1;
1732		return (new_tso);
1733	}
1734}
1735
1736uint64_t
1737tcp_hw_highest_rate_ifp(struct ifnet *ifp, struct inpcb *inp)
1738{
1739	struct epoch_tracker et;
1740	struct tcp_rate_set *rs;
1741	uint64_t rate_ret;
1742
1743	NET_EPOCH_ENTER(et);
1744use_next_interface:
1745	rs = find_rs_for_ifp(ifp);
1746	if (rs == NULL) {
1747		/* This interface does not do ratelimiting */
1748		rate_ret = 0;
1749	} else if (rs->rs_flags & RS_IS_DEFF) {
1750		/* We need to find the real interface */
1751		struct ifnet *tifp;
1752
1753		tifp = rt_find_real_interface(ifp, inp, NULL);
1754		if (tifp == NULL) {
1755			NET_EPOCH_EXIT(et);
1756			return (0);
1757		}
1758		ifp = tifp;
1759		goto use_next_interface;
1760	} else {
1761		/* Lets return the highest rate this guy has */
1762		rate_ret = rs->rs_rlt[rs->rs_highest_valid].rate;
1763	}
1764	NET_EPOCH_EXIT(et);
1765	return(rate_ret);
1766}
1767
1768static eventhandler_tag rl_ifnet_departs;
1769static eventhandler_tag rl_ifnet_arrives;
1770static eventhandler_tag rl_shutdown_start;
1771
1772static void
1773tcp_rs_init(void *st __unused)
1774{
1775	CK_LIST_INIT(&int_rs);
1776	rs_number_alive = 0;
1777	rs_number_dead = 0;
1778	mtx_init(&rs_mtx, "tcp_rs_mtx", "rsmtx", MTX_DEF);
1779	rl_ifnet_departs = EVENTHANDLER_REGISTER(ifnet_departure_event,
1780	    tcp_rl_ifnet_departure,
1781	    NULL, EVENTHANDLER_PRI_ANY);
1782	rl_ifnet_arrives = EVENTHANDLER_REGISTER(ifnet_link_event,
1783	    tcp_rl_ifnet_link,
1784	    NULL, EVENTHANDLER_PRI_ANY);
1785	rl_shutdown_start = EVENTHANDLER_REGISTER(shutdown_pre_sync,
1786	    tcp_rl_shutdown, NULL,
1787	    SHUTDOWN_PRI_FIRST);
1788	printf("TCP_ratelimit: Is now initialized\n");
1789}
1790
1791SYSINIT(tcp_rl_init, SI_SUB_SMP + 1, SI_ORDER_ANY, tcp_rs_init, NULL);
1792#endif
1793