1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved.
5 * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved.
6 * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions are met:
10 *
11 * a) Redistributions of source code must retain the above copyright notice,
12 *    this list of conditions and the following disclaimer.
13 *
14 * b) Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in
16 *    the documentation and/or other materials provided with the distribution.
17 *
18 * c) Neither the name of Cisco Systems, Inc. nor the names of its
19 *    contributors may be used to endorse or promote products derived
20 *    from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
24 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
26 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35#include <netinet/sctp_os.h>
36#include <netinet/sctp.h>
37#include <netinet/sctp_header.h>
38#include <netinet/sctp_pcb.h>
39#include <netinet/sctp_var.h>
40#include <netinet/sctp_sysctl.h>
41#include <netinet/sctputil.h>
42#include <netinet/sctp_indata.h>
43#include <netinet/sctp_output.h>
44#include <netinet/sctp_auth.h>
45
46#ifdef SCTP_DEBUG
47#define SCTP_AUTH_DEBUG		(SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH1)
48#define SCTP_AUTH_DEBUG2	(SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH2)
49#endif				/* SCTP_DEBUG */
50
51void
52sctp_clear_chunklist(sctp_auth_chklist_t *chklist)
53{
54	memset(chklist, 0, sizeof(*chklist));
55	/* chklist->num_chunks = 0; */
56}
57
58sctp_auth_chklist_t *
59sctp_alloc_chunklist(void)
60{
61	sctp_auth_chklist_t *chklist;
62
63	SCTP_MALLOC(chklist, sctp_auth_chklist_t *, sizeof(*chklist),
64	    SCTP_M_AUTH_CL);
65	if (chklist == NULL) {
66		SCTPDBG(SCTP_DEBUG_AUTH1, "sctp_alloc_chunklist: failed to get memory!\n");
67	} else {
68		sctp_clear_chunklist(chklist);
69	}
70	return (chklist);
71}
72
73void
74sctp_free_chunklist(sctp_auth_chklist_t *list)
75{
76	if (list != NULL)
77		SCTP_FREE(list, SCTP_M_AUTH_CL);
78}
79
80sctp_auth_chklist_t *
81sctp_copy_chunklist(sctp_auth_chklist_t *list)
82{
83	sctp_auth_chklist_t *new_list;
84
85	if (list == NULL)
86		return (NULL);
87
88	/* get a new list */
89	new_list = sctp_alloc_chunklist();
90	if (new_list == NULL)
91		return (NULL);
92	/* copy it */
93	memcpy(new_list, list, sizeof(*new_list));
94
95	return (new_list);
96}
97
98/*
99 * add a chunk to the required chunks list
100 */
101int
102sctp_auth_add_chunk(uint8_t chunk, sctp_auth_chklist_t *list)
103{
104	if (list == NULL)
105		return (-1);
106
107	/* is chunk restricted? */
108	if ((chunk == SCTP_INITIATION) ||
109	    (chunk == SCTP_INITIATION_ACK) ||
110	    (chunk == SCTP_SHUTDOWN_COMPLETE) ||
111	    (chunk == SCTP_AUTHENTICATION)) {
112		return (-1);
113	}
114	if (list->chunks[chunk] == 0) {
115		list->chunks[chunk] = 1;
116		list->num_chunks++;
117		SCTPDBG(SCTP_DEBUG_AUTH1,
118		    "SCTP: added chunk %u (0x%02x) to Auth list\n",
119		    chunk, chunk);
120	}
121	return (0);
122}
123
124/*
125 * delete a chunk from the required chunks list
126 */
127int
128sctp_auth_delete_chunk(uint8_t chunk, sctp_auth_chklist_t *list)
129{
130	if (list == NULL)
131		return (-1);
132
133	if (list->chunks[chunk] == 1) {
134		list->chunks[chunk] = 0;
135		list->num_chunks--;
136		SCTPDBG(SCTP_DEBUG_AUTH1,
137		    "SCTP: deleted chunk %u (0x%02x) from Auth list\n",
138		    chunk, chunk);
139	}
140	return (0);
141}
142
143size_t
144sctp_auth_get_chklist_size(const sctp_auth_chklist_t *list)
145{
146	if (list == NULL)
147		return (0);
148	else
149		return (list->num_chunks);
150}
151
152/*
153 * return the current number and list of required chunks caller must
154 * guarantee ptr has space for up to 256 bytes
155 */
156int
157sctp_serialize_auth_chunks(const sctp_auth_chklist_t *list, uint8_t *ptr)
158{
159	int i, count = 0;
160
161	if (list == NULL)
162		return (0);
163
164	for (i = 0; i < 256; i++) {
165		if (list->chunks[i] != 0) {
166			*ptr++ = i;
167			count++;
168		}
169	}
170	return (count);
171}
172
173int
174sctp_pack_auth_chunks(const sctp_auth_chklist_t *list, uint8_t *ptr)
175{
176	int i, size = 0;
177
178	if (list == NULL)
179		return (0);
180
181	if (list->num_chunks <= 32) {
182		/* just list them, one byte each */
183		for (i = 0; i < 256; i++) {
184			if (list->chunks[i] != 0) {
185				*ptr++ = i;
186				size++;
187			}
188		}
189	} else {
190		int index, offset;
191
192		/* pack into a 32 byte bitfield */
193		for (i = 0; i < 256; i++) {
194			if (list->chunks[i] != 0) {
195				index = i / 8;
196				offset = i % 8;
197				ptr[index] |= (1 << offset);
198			}
199		}
200		size = 32;
201	}
202	return (size);
203}
204
205int
206sctp_unpack_auth_chunks(const uint8_t *ptr, uint8_t num_chunks,
207    sctp_auth_chklist_t *list)
208{
209	int i;
210	int size;
211
212	if (list == NULL)
213		return (0);
214
215	if (num_chunks <= 32) {
216		/* just pull them, one byte each */
217		for (i = 0; i < num_chunks; i++) {
218			(void)sctp_auth_add_chunk(*ptr++, list);
219		}
220		size = num_chunks;
221	} else {
222		int index, offset;
223
224		/* unpack from a 32 byte bitfield */
225		for (index = 0; index < 32; index++) {
226			for (offset = 0; offset < 8; offset++) {
227				if (ptr[index] & (1 << offset)) {
228					(void)sctp_auth_add_chunk((index * 8) + offset, list);
229				}
230			}
231		}
232		size = 32;
233	}
234	return (size);
235}
236
237/*
238 * allocate structure space for a key of length keylen
239 */
240sctp_key_t *
241sctp_alloc_key(uint32_t keylen)
242{
243	sctp_key_t *new_key;
244
245	SCTP_MALLOC(new_key, sctp_key_t *, sizeof(*new_key) + keylen,
246	    SCTP_M_AUTH_KY);
247	if (new_key == NULL) {
248		/* out of memory */
249		return (NULL);
250	}
251	new_key->keylen = keylen;
252	return (new_key);
253}
254
255void
256sctp_free_key(sctp_key_t *key)
257{
258	if (key != NULL)
259		SCTP_FREE(key, SCTP_M_AUTH_KY);
260}
261
262void
263sctp_print_key(sctp_key_t *key, const char *str)
264{
265	uint32_t i;
266
267	if (key == NULL) {
268		SCTP_PRINTF("%s: [Null key]\n", str);
269		return;
270	}
271	SCTP_PRINTF("%s: len %u, ", str, key->keylen);
272	if (key->keylen) {
273		for (i = 0; i < key->keylen; i++)
274			SCTP_PRINTF("%02x", key->key[i]);
275		SCTP_PRINTF("\n");
276	} else {
277		SCTP_PRINTF("[Null key]\n");
278	}
279}
280
281void
282sctp_show_key(sctp_key_t *key, const char *str)
283{
284	uint32_t i;
285
286	if (key == NULL) {
287		SCTP_PRINTF("%s: [Null key]\n", str);
288		return;
289	}
290	SCTP_PRINTF("%s: len %u, ", str, key->keylen);
291	if (key->keylen) {
292		for (i = 0; i < key->keylen; i++)
293			SCTP_PRINTF("%02x", key->key[i]);
294		SCTP_PRINTF("\n");
295	} else {
296		SCTP_PRINTF("[Null key]\n");
297	}
298}
299
300static uint32_t
301sctp_get_keylen(sctp_key_t *key)
302{
303	if (key != NULL)
304		return (key->keylen);
305	else
306		return (0);
307}
308
309/*
310 * generate a new random key of length 'keylen'
311 */
312sctp_key_t *
313sctp_generate_random_key(uint32_t keylen)
314{
315	sctp_key_t *new_key;
316
317	new_key = sctp_alloc_key(keylen);
318	if (new_key == NULL) {
319		/* out of memory */
320		return (NULL);
321	}
322	SCTP_READ_RANDOM(new_key->key, keylen);
323	new_key->keylen = keylen;
324	return (new_key);
325}
326
327sctp_key_t *
328sctp_set_key(uint8_t *key, uint32_t keylen)
329{
330	sctp_key_t *new_key;
331
332	new_key = sctp_alloc_key(keylen);
333	if (new_key == NULL) {
334		/* out of memory */
335		return (NULL);
336	}
337	memcpy(new_key->key, key, keylen);
338	return (new_key);
339}
340
341/*-
342 * given two keys of variable size, compute which key is "larger/smaller"
343 * returns:  1 if key1 > key2
344 *          -1 if key1 < key2
345 *           0 if key1 = key2
346 */
347static int
348sctp_compare_key(sctp_key_t *key1, sctp_key_t *key2)
349{
350	uint32_t maxlen;
351	uint32_t i;
352	uint32_t key1len, key2len;
353	uint8_t *key_1, *key_2;
354	uint8_t val1, val2;
355
356	/* sanity/length check */
357	key1len = sctp_get_keylen(key1);
358	key2len = sctp_get_keylen(key2);
359	if ((key1len == 0) && (key2len == 0))
360		return (0);
361	else if (key1len == 0)
362		return (-1);
363	else if (key2len == 0)
364		return (1);
365
366	if (key1len < key2len) {
367		maxlen = key2len;
368	} else {
369		maxlen = key1len;
370	}
371	key_1 = key1->key;
372	key_2 = key2->key;
373	/* check for numeric equality */
374	for (i = 0; i < maxlen; i++) {
375		/* left-pad with zeros */
376		val1 = (i < (maxlen - key1len)) ? 0 : *(key_1++);
377		val2 = (i < (maxlen - key2len)) ? 0 : *(key_2++);
378		if (val1 > val2) {
379			return (1);
380		} else if (val1 < val2) {
381			return (-1);
382		}
383	}
384	/* keys are equal value, so check lengths */
385	if (key1len == key2len)
386		return (0);
387	else if (key1len < key2len)
388		return (-1);
389	else
390		return (1);
391}
392
393/*
394 * generate the concatenated keying material based on the two keys and the
395 * shared key (if available). draft-ietf-tsvwg-auth specifies the specific
396 * order for concatenation
397 */
398sctp_key_t *
399sctp_compute_hashkey(sctp_key_t *key1, sctp_key_t *key2, sctp_key_t *shared)
400{
401	uint32_t keylen;
402	sctp_key_t *new_key;
403	uint8_t *key_ptr;
404
405	keylen = sctp_get_keylen(key1) + sctp_get_keylen(key2) +
406	    sctp_get_keylen(shared);
407
408	if (keylen > 0) {
409		/* get space for the new key */
410		new_key = sctp_alloc_key(keylen);
411		if (new_key == NULL) {
412			/* out of memory */
413			return (NULL);
414		}
415		new_key->keylen = keylen;
416		key_ptr = new_key->key;
417	} else {
418		/* all keys empty/null?! */
419		return (NULL);
420	}
421
422	/* concatenate the keys */
423	if (sctp_compare_key(key1, key2) <= 0) {
424		/* key is shared + key1 + key2 */
425		if (sctp_get_keylen(shared)) {
426			memcpy(key_ptr, shared->key, shared->keylen);
427			key_ptr += shared->keylen;
428		}
429		if (sctp_get_keylen(key1)) {
430			memcpy(key_ptr, key1->key, key1->keylen);
431			key_ptr += key1->keylen;
432		}
433		if (sctp_get_keylen(key2)) {
434			memcpy(key_ptr, key2->key, key2->keylen);
435		}
436	} else {
437		/* key is shared + key2 + key1 */
438		if (sctp_get_keylen(shared)) {
439			memcpy(key_ptr, shared->key, shared->keylen);
440			key_ptr += shared->keylen;
441		}
442		if (sctp_get_keylen(key2)) {
443			memcpy(key_ptr, key2->key, key2->keylen);
444			key_ptr += key2->keylen;
445		}
446		if (sctp_get_keylen(key1)) {
447			memcpy(key_ptr, key1->key, key1->keylen);
448		}
449	}
450	return (new_key);
451}
452
453sctp_sharedkey_t *
454sctp_alloc_sharedkey(void)
455{
456	sctp_sharedkey_t *new_key;
457
458	SCTP_MALLOC(new_key, sctp_sharedkey_t *, sizeof(*new_key),
459	    SCTP_M_AUTH_KY);
460	if (new_key == NULL) {
461		/* out of memory */
462		return (NULL);
463	}
464	new_key->keyid = 0;
465	new_key->key = NULL;
466	new_key->refcount = 1;
467	new_key->deactivated = 0;
468	return (new_key);
469}
470
471void
472sctp_free_sharedkey(sctp_sharedkey_t *skey)
473{
474	if (skey == NULL)
475		return;
476
477	if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&skey->refcount)) {
478		if (skey->key != NULL)
479			sctp_free_key(skey->key);
480		SCTP_FREE(skey, SCTP_M_AUTH_KY);
481	}
482}
483
484sctp_sharedkey_t *
485sctp_find_sharedkey(struct sctp_keyhead *shared_keys, uint16_t key_id)
486{
487	sctp_sharedkey_t *skey;
488
489	LIST_FOREACH(skey, shared_keys, next) {
490		if (skey->keyid == key_id)
491			return (skey);
492	}
493	return (NULL);
494}
495
496int
497sctp_insert_sharedkey(struct sctp_keyhead *shared_keys,
498    sctp_sharedkey_t *new_skey)
499{
500	sctp_sharedkey_t *skey;
501
502	if ((shared_keys == NULL) || (new_skey == NULL))
503		return (EINVAL);
504
505	/* insert into an empty list? */
506	if (LIST_EMPTY(shared_keys)) {
507		LIST_INSERT_HEAD(shared_keys, new_skey, next);
508		return (0);
509	}
510	/* insert into the existing list, ordered by key id */
511	LIST_FOREACH(skey, shared_keys, next) {
512		if (new_skey->keyid < skey->keyid) {
513			/* insert it before here */
514			LIST_INSERT_BEFORE(skey, new_skey, next);
515			return (0);
516		} else if (new_skey->keyid == skey->keyid) {
517			/* replace the existing key */
518			/* verify this key *can* be replaced */
519			if ((skey->deactivated) || (skey->refcount > 1)) {
520				SCTPDBG(SCTP_DEBUG_AUTH1,
521				    "can't replace shared key id %u\n",
522				    new_skey->keyid);
523				return (EBUSY);
524			}
525			SCTPDBG(SCTP_DEBUG_AUTH1,
526			    "replacing shared key id %u\n",
527			    new_skey->keyid);
528			LIST_INSERT_BEFORE(skey, new_skey, next);
529			LIST_REMOVE(skey, next);
530			sctp_free_sharedkey(skey);
531			return (0);
532		}
533		if (LIST_NEXT(skey, next) == NULL) {
534			/* belongs at the end of the list */
535			LIST_INSERT_AFTER(skey, new_skey, next);
536			return (0);
537		}
538	}
539	/* shouldn't reach here */
540	return (EINVAL);
541}
542
543void
544sctp_auth_key_acquire(struct sctp_tcb *stcb, uint16_t key_id)
545{
546	sctp_sharedkey_t *skey;
547
548	/* find the shared key */
549	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id);
550
551	/* bump the ref count */
552	if (skey) {
553		atomic_add_int(&skey->refcount, 1);
554		SCTPDBG(SCTP_DEBUG_AUTH2,
555		    "%s: stcb %p key %u refcount acquire to %d\n",
556		    __func__, (void *)stcb, key_id, skey->refcount);
557	}
558}
559
560void
561sctp_auth_key_release(struct sctp_tcb *stcb, uint16_t key_id, int so_locked)
562{
563	sctp_sharedkey_t *skey;
564
565	/* find the shared key */
566	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id);
567
568	/* decrement the ref count */
569	if (skey) {
570		SCTPDBG(SCTP_DEBUG_AUTH2,
571		    "%s: stcb %p key %u refcount release to %d\n",
572		    __func__, (void *)stcb, key_id, skey->refcount);
573
574		/* see if a notification should be generated */
575		if ((skey->refcount <= 2) && (skey->deactivated)) {
576			/* notify ULP that key is no longer used */
577			sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb,
578			    0, &key_id, so_locked);
579			SCTPDBG(SCTP_DEBUG_AUTH2,
580			    "%s: stcb %p key %u no longer used, %d\n",
581			    __func__, (void *)stcb, key_id, skey->refcount);
582		}
583		sctp_free_sharedkey(skey);
584	}
585}
586
587static sctp_sharedkey_t *
588sctp_copy_sharedkey(const sctp_sharedkey_t *skey)
589{
590	sctp_sharedkey_t *new_skey;
591
592	if (skey == NULL)
593		return (NULL);
594	new_skey = sctp_alloc_sharedkey();
595	if (new_skey == NULL)
596		return (NULL);
597	if (skey->key != NULL)
598		new_skey->key = sctp_set_key(skey->key->key, skey->key->keylen);
599	else
600		new_skey->key = NULL;
601	new_skey->keyid = skey->keyid;
602	return (new_skey);
603}
604
605int
606sctp_copy_skeylist(const struct sctp_keyhead *src, struct sctp_keyhead *dest)
607{
608	sctp_sharedkey_t *skey, *new_skey;
609	int count = 0;
610
611	if ((src == NULL) || (dest == NULL))
612		return (0);
613	LIST_FOREACH(skey, src, next) {
614		new_skey = sctp_copy_sharedkey(skey);
615		if (new_skey != NULL) {
616			if (sctp_insert_sharedkey(dest, new_skey)) {
617				sctp_free_sharedkey(new_skey);
618			} else {
619				count++;
620			}
621		}
622	}
623	return (count);
624}
625
626sctp_hmaclist_t *
627sctp_alloc_hmaclist(uint16_t num_hmacs)
628{
629	sctp_hmaclist_t *new_list;
630	int alloc_size;
631
632	alloc_size = sizeof(*new_list) + num_hmacs * sizeof(new_list->hmac[0]);
633	SCTP_MALLOC(new_list, sctp_hmaclist_t *, alloc_size,
634	    SCTP_M_AUTH_HL);
635	if (new_list == NULL) {
636		/* out of memory */
637		return (NULL);
638	}
639	new_list->max_algo = num_hmacs;
640	new_list->num_algo = 0;
641	return (new_list);
642}
643
644void
645sctp_free_hmaclist(sctp_hmaclist_t *list)
646{
647	if (list != NULL) {
648		SCTP_FREE(list, SCTP_M_AUTH_HL);
649	}
650}
651
652int
653sctp_auth_add_hmacid(sctp_hmaclist_t *list, uint16_t hmac_id)
654{
655	int i;
656
657	if (list == NULL)
658		return (-1);
659	if (list->num_algo == list->max_algo) {
660		SCTPDBG(SCTP_DEBUG_AUTH1,
661		    "SCTP: HMAC id list full, ignoring add %u\n", hmac_id);
662		return (-1);
663	}
664	if ((hmac_id != SCTP_AUTH_HMAC_ID_SHA1) &&
665	    (hmac_id != SCTP_AUTH_HMAC_ID_SHA256)) {
666		return (-1);
667	}
668	/* Now is it already in the list */
669	for (i = 0; i < list->num_algo; i++) {
670		if (list->hmac[i] == hmac_id) {
671			/* already in list */
672			return (-1);
673		}
674	}
675	SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: add HMAC id %u to list\n", hmac_id);
676	list->hmac[list->num_algo++] = hmac_id;
677	return (0);
678}
679
680sctp_hmaclist_t *
681sctp_copy_hmaclist(sctp_hmaclist_t *list)
682{
683	sctp_hmaclist_t *new_list;
684	int i;
685
686	if (list == NULL)
687		return (NULL);
688	/* get a new list */
689	new_list = sctp_alloc_hmaclist(list->max_algo);
690	if (new_list == NULL)
691		return (NULL);
692	/* copy it */
693	new_list->max_algo = list->max_algo;
694	new_list->num_algo = list->num_algo;
695	for (i = 0; i < list->num_algo; i++)
696		new_list->hmac[i] = list->hmac[i];
697	return (new_list);
698}
699
700sctp_hmaclist_t *
701sctp_default_supported_hmaclist(void)
702{
703	sctp_hmaclist_t *new_list;
704
705	new_list = sctp_alloc_hmaclist(2);
706	if (new_list == NULL)
707		return (NULL);
708	/* We prefer SHA256, so list it first */
709	(void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA256);
710	(void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA1);
711	return (new_list);
712}
713
714/*-
715 * HMAC algos are listed in priority/preference order
716 * find the best HMAC id to use for the peer based on local support
717 */
718uint16_t
719sctp_negotiate_hmacid(sctp_hmaclist_t *peer, sctp_hmaclist_t *local)
720{
721	int i, j;
722
723	if ((local == NULL) || (peer == NULL))
724		return (SCTP_AUTH_HMAC_ID_RSVD);
725
726	for (i = 0; i < peer->num_algo; i++) {
727		for (j = 0; j < local->num_algo; j++) {
728			if (peer->hmac[i] == local->hmac[j]) {
729				/* found the "best" one */
730				SCTPDBG(SCTP_DEBUG_AUTH1,
731				    "SCTP: negotiated peer HMAC id %u\n",
732				    peer->hmac[i]);
733				return (peer->hmac[i]);
734			}
735		}
736	}
737	/* didn't find one! */
738	return (SCTP_AUTH_HMAC_ID_RSVD);
739}
740
741/*-
742 * serialize the HMAC algo list and return space used
743 * caller must guarantee ptr has appropriate space
744 */
745int
746sctp_serialize_hmaclist(sctp_hmaclist_t *list, uint8_t *ptr)
747{
748	int i;
749	uint16_t hmac_id;
750
751	if (list == NULL)
752		return (0);
753
754	for (i = 0; i < list->num_algo; i++) {
755		hmac_id = htons(list->hmac[i]);
756		memcpy(ptr, &hmac_id, sizeof(hmac_id));
757		ptr += sizeof(hmac_id);
758	}
759	return (list->num_algo * sizeof(hmac_id));
760}
761
762int
763sctp_verify_hmac_param(struct sctp_auth_hmac_algo *hmacs, uint32_t num_hmacs)
764{
765	uint32_t i;
766
767	for (i = 0; i < num_hmacs; i++) {
768		if (ntohs(hmacs->hmac_ids[i]) == SCTP_AUTH_HMAC_ID_SHA1) {
769			return (0);
770		}
771	}
772	return (-1);
773}
774
775sctp_authinfo_t *
776sctp_alloc_authinfo(void)
777{
778	sctp_authinfo_t *new_authinfo;
779
780	SCTP_MALLOC(new_authinfo, sctp_authinfo_t *, sizeof(*new_authinfo),
781	    SCTP_M_AUTH_IF);
782
783	if (new_authinfo == NULL) {
784		/* out of memory */
785		return (NULL);
786	}
787	memset(new_authinfo, 0, sizeof(*new_authinfo));
788	return (new_authinfo);
789}
790
791void
792sctp_free_authinfo(sctp_authinfo_t *authinfo)
793{
794	if (authinfo == NULL)
795		return;
796
797	if (authinfo->random != NULL)
798		sctp_free_key(authinfo->random);
799	if (authinfo->peer_random != NULL)
800		sctp_free_key(authinfo->peer_random);
801	if (authinfo->assoc_key != NULL)
802		sctp_free_key(authinfo->assoc_key);
803	if (authinfo->recv_key != NULL)
804		sctp_free_key(authinfo->recv_key);
805
806	/* We are NOT dynamically allocating authinfo's right now... */
807	/* SCTP_FREE(authinfo, SCTP_M_AUTH_??); */
808}
809
810uint32_t
811sctp_get_auth_chunk_len(uint16_t hmac_algo)
812{
813	int size;
814
815	size = sizeof(struct sctp_auth_chunk) + sctp_get_hmac_digest_len(hmac_algo);
816	return (SCTP_SIZE32(size));
817}
818
819uint32_t
820sctp_get_hmac_digest_len(uint16_t hmac_algo)
821{
822	switch (hmac_algo) {
823	case SCTP_AUTH_HMAC_ID_SHA1:
824		return (SCTP_AUTH_DIGEST_LEN_SHA1);
825	case SCTP_AUTH_HMAC_ID_SHA256:
826		return (SCTP_AUTH_DIGEST_LEN_SHA256);
827	default:
828		/* unknown HMAC algorithm: can't do anything */
829		return (0);
830	}			/* end switch */
831}
832
833static inline int
834sctp_get_hmac_block_len(uint16_t hmac_algo)
835{
836	switch (hmac_algo) {
837	case SCTP_AUTH_HMAC_ID_SHA1:
838		return (64);
839	case SCTP_AUTH_HMAC_ID_SHA256:
840		return (64);
841	case SCTP_AUTH_HMAC_ID_RSVD:
842	default:
843		/* unknown HMAC algorithm: can't do anything */
844		return (0);
845	}			/* end switch */
846}
847
848static void
849sctp_hmac_init(uint16_t hmac_algo, sctp_hash_context_t *ctx)
850{
851	switch (hmac_algo) {
852	case SCTP_AUTH_HMAC_ID_SHA1:
853		SCTP_SHA1_INIT(&ctx->sha1);
854		break;
855	case SCTP_AUTH_HMAC_ID_SHA256:
856		SCTP_SHA256_INIT(&ctx->sha256);
857		break;
858	case SCTP_AUTH_HMAC_ID_RSVD:
859	default:
860		/* unknown HMAC algorithm: can't do anything */
861		return;
862	}			/* end switch */
863}
864
865static void
866sctp_hmac_update(uint16_t hmac_algo, sctp_hash_context_t *ctx,
867    uint8_t *text, uint32_t textlen)
868{
869	switch (hmac_algo) {
870	case SCTP_AUTH_HMAC_ID_SHA1:
871		SCTP_SHA1_UPDATE(&ctx->sha1, text, textlen);
872		break;
873	case SCTP_AUTH_HMAC_ID_SHA256:
874		SCTP_SHA256_UPDATE(&ctx->sha256, text, textlen);
875		break;
876	case SCTP_AUTH_HMAC_ID_RSVD:
877	default:
878		/* unknown HMAC algorithm: can't do anything */
879		return;
880	}			/* end switch */
881}
882
883static void
884sctp_hmac_final(uint16_t hmac_algo, sctp_hash_context_t *ctx,
885    uint8_t *digest)
886{
887	switch (hmac_algo) {
888	case SCTP_AUTH_HMAC_ID_SHA1:
889		SCTP_SHA1_FINAL(digest, &ctx->sha1);
890		break;
891	case SCTP_AUTH_HMAC_ID_SHA256:
892		SCTP_SHA256_FINAL(digest, &ctx->sha256);
893		break;
894	case SCTP_AUTH_HMAC_ID_RSVD:
895	default:
896		/* unknown HMAC algorithm: can't do anything */
897		return;
898	}			/* end switch */
899}
900
901/*-
902 * Keyed-Hashing for Message Authentication: FIPS 198 (RFC 2104)
903 *
904 * Compute the HMAC digest using the desired hash key, text, and HMAC
905 * algorithm.  Resulting digest is placed in 'digest' and digest length
906 * is returned, if the HMAC was performed.
907 *
908 * WARNING: it is up to the caller to supply sufficient space to hold the
909 * resultant digest.
910 */
911uint32_t
912sctp_hmac(uint16_t hmac_algo, uint8_t *key, uint32_t keylen,
913    uint8_t *text, uint32_t textlen, uint8_t *digest)
914{
915	uint32_t digestlen;
916	uint32_t blocklen;
917	sctp_hash_context_t ctx;
918	uint8_t ipad[128], opad[128];	/* keyed hash inner/outer pads */
919	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
920	uint32_t i;
921
922	/* sanity check the material and length */
923	if ((key == NULL) || (keylen == 0) || (text == NULL) ||
924	    (textlen == 0) || (digest == NULL)) {
925		/* can't do HMAC with empty key or text or digest store */
926		return (0);
927	}
928	/* validate the hmac algo and get the digest length */
929	digestlen = sctp_get_hmac_digest_len(hmac_algo);
930	if (digestlen == 0)
931		return (0);
932
933	/* hash the key if it is longer than the hash block size */
934	blocklen = sctp_get_hmac_block_len(hmac_algo);
935	if (keylen > blocklen) {
936		sctp_hmac_init(hmac_algo, &ctx);
937		sctp_hmac_update(hmac_algo, &ctx, key, keylen);
938		sctp_hmac_final(hmac_algo, &ctx, temp);
939		/* set the hashed key as the key */
940		keylen = digestlen;
941		key = temp;
942	}
943	/* initialize the inner/outer pads with the key and "append" zeroes */
944	memset(ipad, 0, blocklen);
945	memset(opad, 0, blocklen);
946	memcpy(ipad, key, keylen);
947	memcpy(opad, key, keylen);
948
949	/* XOR the key with ipad and opad values */
950	for (i = 0; i < blocklen; i++) {
951		ipad[i] ^= 0x36;
952		opad[i] ^= 0x5c;
953	}
954
955	/* perform inner hash */
956	sctp_hmac_init(hmac_algo, &ctx);
957	sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen);
958	sctp_hmac_update(hmac_algo, &ctx, text, textlen);
959	sctp_hmac_final(hmac_algo, &ctx, temp);
960
961	/* perform outer hash */
962	sctp_hmac_init(hmac_algo, &ctx);
963	sctp_hmac_update(hmac_algo, &ctx, opad, blocklen);
964	sctp_hmac_update(hmac_algo, &ctx, temp, digestlen);
965	sctp_hmac_final(hmac_algo, &ctx, digest);
966
967	return (digestlen);
968}
969
970/* mbuf version */
971uint32_t
972sctp_hmac_m(uint16_t hmac_algo, uint8_t *key, uint32_t keylen,
973    struct mbuf *m, uint32_t m_offset, uint8_t *digest, uint32_t trailer)
974{
975	uint32_t digestlen;
976	uint32_t blocklen;
977	sctp_hash_context_t ctx;
978	uint8_t ipad[128], opad[128];	/* keyed hash inner/outer pads */
979	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
980	uint32_t i;
981	struct mbuf *m_tmp;
982
983	/* sanity check the material and length */
984	if ((key == NULL) || (keylen == 0) || (m == NULL) || (digest == NULL)) {
985		/* can't do HMAC with empty key or text or digest store */
986		return (0);
987	}
988	/* validate the hmac algo and get the digest length */
989	digestlen = sctp_get_hmac_digest_len(hmac_algo);
990	if (digestlen == 0)
991		return (0);
992
993	/* hash the key if it is longer than the hash block size */
994	blocklen = sctp_get_hmac_block_len(hmac_algo);
995	if (keylen > blocklen) {
996		sctp_hmac_init(hmac_algo, &ctx);
997		sctp_hmac_update(hmac_algo, &ctx, key, keylen);
998		sctp_hmac_final(hmac_algo, &ctx, temp);
999		/* set the hashed key as the key */
1000		keylen = digestlen;
1001		key = temp;
1002	}
1003	/* initialize the inner/outer pads with the key and "append" zeroes */
1004	memset(ipad, 0, blocklen);
1005	memset(opad, 0, blocklen);
1006	memcpy(ipad, key, keylen);
1007	memcpy(opad, key, keylen);
1008
1009	/* XOR the key with ipad and opad values */
1010	for (i = 0; i < blocklen; i++) {
1011		ipad[i] ^= 0x36;
1012		opad[i] ^= 0x5c;
1013	}
1014
1015	/* perform inner hash */
1016	sctp_hmac_init(hmac_algo, &ctx);
1017	sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen);
1018	/* find the correct starting mbuf and offset (get start of text) */
1019	m_tmp = m;
1020	while ((m_tmp != NULL) && (m_offset >= (uint32_t)SCTP_BUF_LEN(m_tmp))) {
1021		m_offset -= SCTP_BUF_LEN(m_tmp);
1022		m_tmp = SCTP_BUF_NEXT(m_tmp);
1023	}
1024	/* now use the rest of the mbuf chain for the text */
1025	while (m_tmp != NULL) {
1026		if ((SCTP_BUF_NEXT(m_tmp) == NULL) && trailer) {
1027			sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *)+m_offset,
1028			    SCTP_BUF_LEN(m_tmp) - (trailer + m_offset));
1029		} else {
1030			sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *)+m_offset,
1031			    SCTP_BUF_LEN(m_tmp) - m_offset);
1032		}
1033
1034		/* clear the offset since it's only for the first mbuf */
1035		m_offset = 0;
1036		m_tmp = SCTP_BUF_NEXT(m_tmp);
1037	}
1038	sctp_hmac_final(hmac_algo, &ctx, temp);
1039
1040	/* perform outer hash */
1041	sctp_hmac_init(hmac_algo, &ctx);
1042	sctp_hmac_update(hmac_algo, &ctx, opad, blocklen);
1043	sctp_hmac_update(hmac_algo, &ctx, temp, digestlen);
1044	sctp_hmac_final(hmac_algo, &ctx, digest);
1045
1046	return (digestlen);
1047}
1048
1049/*
1050 * computes the requested HMAC using a key struct (which may be modified if
1051 * the keylen exceeds the HMAC block len).
1052 */
1053uint32_t
1054sctp_compute_hmac(uint16_t hmac_algo, sctp_key_t *key, uint8_t *text,
1055    uint32_t textlen, uint8_t *digest)
1056{
1057	uint32_t digestlen;
1058	uint32_t blocklen;
1059	sctp_hash_context_t ctx;
1060	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1061
1062	/* sanity check */
1063	if ((key == NULL) || (text == NULL) || (textlen == 0) ||
1064	    (digest == NULL)) {
1065		/* can't do HMAC with empty key or text or digest store */
1066		return (0);
1067	}
1068	/* validate the hmac algo and get the digest length */
1069	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1070	if (digestlen == 0)
1071		return (0);
1072
1073	/* hash the key if it is longer than the hash block size */
1074	blocklen = sctp_get_hmac_block_len(hmac_algo);
1075	if (key->keylen > blocklen) {
1076		sctp_hmac_init(hmac_algo, &ctx);
1077		sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen);
1078		sctp_hmac_final(hmac_algo, &ctx, temp);
1079		/* save the hashed key as the new key */
1080		key->keylen = digestlen;
1081		memcpy(key->key, temp, key->keylen);
1082	}
1083	return (sctp_hmac(hmac_algo, key->key, key->keylen, text, textlen,
1084	    digest));
1085}
1086
1087/* mbuf version */
1088uint32_t
1089sctp_compute_hmac_m(uint16_t hmac_algo, sctp_key_t *key, struct mbuf *m,
1090    uint32_t m_offset, uint8_t *digest)
1091{
1092	uint32_t digestlen;
1093	uint32_t blocklen;
1094	sctp_hash_context_t ctx;
1095	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1096
1097	/* sanity check */
1098	if ((key == NULL) || (m == NULL) || (digest == NULL)) {
1099		/* can't do HMAC with empty key or text or digest store */
1100		return (0);
1101	}
1102	/* validate the hmac algo and get the digest length */
1103	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1104	if (digestlen == 0)
1105		return (0);
1106
1107	/* hash the key if it is longer than the hash block size */
1108	blocklen = sctp_get_hmac_block_len(hmac_algo);
1109	if (key->keylen > blocklen) {
1110		sctp_hmac_init(hmac_algo, &ctx);
1111		sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen);
1112		sctp_hmac_final(hmac_algo, &ctx, temp);
1113		/* save the hashed key as the new key */
1114		key->keylen = digestlen;
1115		memcpy(key->key, temp, key->keylen);
1116	}
1117	return (sctp_hmac_m(hmac_algo, key->key, key->keylen, m, m_offset, digest, 0));
1118}
1119
1120int
1121sctp_auth_is_supported_hmac(sctp_hmaclist_t *list, uint16_t id)
1122{
1123	int i;
1124
1125	if ((list == NULL) || (id == SCTP_AUTH_HMAC_ID_RSVD))
1126		return (0);
1127
1128	for (i = 0; i < list->num_algo; i++)
1129		if (list->hmac[i] == id)
1130			return (1);
1131
1132	/* not in the list */
1133	return (0);
1134}
1135
1136/*-
1137 * clear any cached key(s) if they match the given key id on an association.
1138 * the cached key(s) will be recomputed and re-cached at next use.
1139 * ASSUMES TCB_LOCK is already held
1140 */
1141void
1142sctp_clear_cachedkeys(struct sctp_tcb *stcb, uint16_t keyid)
1143{
1144	if (stcb == NULL)
1145		return;
1146
1147	if (keyid == stcb->asoc.authinfo.assoc_keyid) {
1148		sctp_free_key(stcb->asoc.authinfo.assoc_key);
1149		stcb->asoc.authinfo.assoc_key = NULL;
1150	}
1151	if (keyid == stcb->asoc.authinfo.recv_keyid) {
1152		sctp_free_key(stcb->asoc.authinfo.recv_key);
1153		stcb->asoc.authinfo.recv_key = NULL;
1154	}
1155}
1156
1157/*-
1158 * clear any cached key(s) if they match the given key id for all assocs on
1159 * an endpoint.
1160 * ASSUMES INP_WLOCK is already held
1161 */
1162void
1163sctp_clear_cachedkeys_ep(struct sctp_inpcb *inp, uint16_t keyid)
1164{
1165	struct sctp_tcb *stcb;
1166
1167	if (inp == NULL)
1168		return;
1169
1170	/* clear the cached keys on all assocs on this instance */
1171	LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) {
1172		SCTP_TCB_LOCK(stcb);
1173		sctp_clear_cachedkeys(stcb, keyid);
1174		SCTP_TCB_UNLOCK(stcb);
1175	}
1176}
1177
1178/*-
1179 * delete a shared key from an association
1180 * ASSUMES TCB_LOCK is already held
1181 */
1182int
1183sctp_delete_sharedkey(struct sctp_tcb *stcb, uint16_t keyid)
1184{
1185	sctp_sharedkey_t *skey;
1186
1187	if (stcb == NULL)
1188		return (-1);
1189
1190	/* is the keyid the assoc active sending key */
1191	if (keyid == stcb->asoc.authinfo.active_keyid)
1192		return (-1);
1193
1194	/* does the key exist? */
1195	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1196	if (skey == NULL)
1197		return (-1);
1198
1199	/* are there other refcount holders on the key? */
1200	if (skey->refcount > 1)
1201		return (-1);
1202
1203	/* remove it */
1204	LIST_REMOVE(skey, next);
1205	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1206
1207	/* clear any cached keys */
1208	sctp_clear_cachedkeys(stcb, keyid);
1209	return (0);
1210}
1211
1212/*-
1213 * deletes a shared key from the endpoint
1214 * ASSUMES INP_WLOCK is already held
1215 */
1216int
1217sctp_delete_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1218{
1219	sctp_sharedkey_t *skey;
1220
1221	if (inp == NULL)
1222		return (-1);
1223
1224	/* is the keyid the active sending key on the endpoint */
1225	if (keyid == inp->sctp_ep.default_keyid)
1226		return (-1);
1227
1228	/* does the key exist? */
1229	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1230	if (skey == NULL)
1231		return (-1);
1232
1233	/* endpoint keys are not refcounted */
1234
1235	/* remove it */
1236	LIST_REMOVE(skey, next);
1237	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1238
1239	/* clear any cached keys */
1240	sctp_clear_cachedkeys_ep(inp, keyid);
1241	return (0);
1242}
1243
1244/*-
1245 * set the active key on an association
1246 * ASSUMES TCB_LOCK is already held
1247 */
1248int
1249sctp_auth_setactivekey(struct sctp_tcb *stcb, uint16_t keyid)
1250{
1251	sctp_sharedkey_t *skey = NULL;
1252
1253	/* find the key on the assoc */
1254	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1255	if (skey == NULL) {
1256		/* that key doesn't exist */
1257		return (-1);
1258	}
1259	if ((skey->deactivated) && (skey->refcount > 1)) {
1260		/* can't reactivate a deactivated key with other refcounts */
1261		return (-1);
1262	}
1263
1264	/* set the (new) active key */
1265	stcb->asoc.authinfo.active_keyid = keyid;
1266	/* reset the deactivated flag */
1267	skey->deactivated = 0;
1268
1269	return (0);
1270}
1271
1272/*-
1273 * set the active key on an endpoint
1274 * ASSUMES INP_WLOCK is already held
1275 */
1276int
1277sctp_auth_setactivekey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1278{
1279	sctp_sharedkey_t *skey;
1280
1281	/* find the key */
1282	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1283	if (skey == NULL) {
1284		/* that key doesn't exist */
1285		return (-1);
1286	}
1287	inp->sctp_ep.default_keyid = keyid;
1288	return (0);
1289}
1290
1291/*-
1292 * deactivates a shared key from the association
1293 * ASSUMES INP_WLOCK is already held
1294 */
1295int
1296sctp_deact_sharedkey(struct sctp_tcb *stcb, uint16_t keyid)
1297{
1298	sctp_sharedkey_t *skey;
1299
1300	if (stcb == NULL)
1301		return (-1);
1302
1303	/* is the keyid the assoc active sending key */
1304	if (keyid == stcb->asoc.authinfo.active_keyid)
1305		return (-1);
1306
1307	/* does the key exist? */
1308	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1309	if (skey == NULL)
1310		return (-1);
1311
1312	/* are there other refcount holders on the key? */
1313	if (skey->refcount == 1) {
1314		/* no other users, send a notification for this key */
1315		sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, 0, &keyid,
1316		    SCTP_SO_LOCKED);
1317	}
1318
1319	/* mark the key as deactivated */
1320	skey->deactivated = 1;
1321
1322	return (0);
1323}
1324
1325/*-
1326 * deactivates a shared key from the endpoint
1327 * ASSUMES INP_WLOCK is already held
1328 */
1329int
1330sctp_deact_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1331{
1332	sctp_sharedkey_t *skey;
1333
1334	if (inp == NULL)
1335		return (-1);
1336
1337	/* is the keyid the active sending key on the endpoint */
1338	if (keyid == inp->sctp_ep.default_keyid)
1339		return (-1);
1340
1341	/* does the key exist? */
1342	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1343	if (skey == NULL)
1344		return (-1);
1345
1346	/* endpoint keys are not refcounted */
1347
1348	/* remove it */
1349	LIST_REMOVE(skey, next);
1350	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1351
1352	return (0);
1353}
1354
1355/*
1356 * get local authentication parameters from cookie (from INIT-ACK)
1357 */
1358void
1359sctp_auth_get_cookie_params(struct sctp_tcb *stcb, struct mbuf *m,
1360    uint32_t offset, uint32_t length)
1361{
1362	struct sctp_paramhdr *phdr, tmp_param;
1363	uint16_t plen, ptype;
1364	uint8_t random_store[SCTP_PARAM_BUFFER_SIZE];
1365	struct sctp_auth_random *p_random = NULL;
1366	uint16_t random_len = 0;
1367	uint8_t hmacs_store[SCTP_PARAM_BUFFER_SIZE];
1368	struct sctp_auth_hmac_algo *hmacs = NULL;
1369	uint16_t hmacs_len = 0;
1370	uint8_t chunks_store[SCTP_PARAM_BUFFER_SIZE];
1371	struct sctp_auth_chunk_list *chunks = NULL;
1372	uint16_t num_chunks = 0;
1373	sctp_key_t *new_key;
1374	uint32_t keylen;
1375
1376	/* convert to upper bound */
1377	length += offset;
1378
1379	phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset,
1380	    sizeof(struct sctp_paramhdr), (uint8_t *)&tmp_param);
1381	while (phdr != NULL) {
1382		ptype = ntohs(phdr->param_type);
1383		plen = ntohs(phdr->param_length);
1384
1385		if ((plen < sizeof(struct sctp_paramhdr)) ||
1386		    (offset + plen > length))
1387			break;
1388
1389		if (ptype == SCTP_RANDOM) {
1390			if (plen > sizeof(random_store))
1391				break;
1392			phdr = sctp_get_next_param(m, offset,
1393			    (struct sctp_paramhdr *)random_store, plen);
1394			if (phdr == NULL)
1395				return;
1396			/* save the random and length for the key */
1397			p_random = (struct sctp_auth_random *)phdr;
1398			random_len = plen - sizeof(*p_random);
1399		} else if (ptype == SCTP_HMAC_LIST) {
1400			uint16_t num_hmacs;
1401			uint16_t i;
1402
1403			if (plen > sizeof(hmacs_store))
1404				break;
1405			phdr = sctp_get_next_param(m, offset,
1406			    (struct sctp_paramhdr *)hmacs_store, plen);
1407			if (phdr == NULL)
1408				return;
1409			/* save the hmacs list and num for the key */
1410			hmacs = (struct sctp_auth_hmac_algo *)phdr;
1411			hmacs_len = plen - sizeof(*hmacs);
1412			num_hmacs = hmacs_len / sizeof(hmacs->hmac_ids[0]);
1413			if (stcb->asoc.local_hmacs != NULL)
1414				sctp_free_hmaclist(stcb->asoc.local_hmacs);
1415			stcb->asoc.local_hmacs = sctp_alloc_hmaclist(num_hmacs);
1416			if (stcb->asoc.local_hmacs != NULL) {
1417				for (i = 0; i < num_hmacs; i++) {
1418					(void)sctp_auth_add_hmacid(stcb->asoc.local_hmacs,
1419					    ntohs(hmacs->hmac_ids[i]));
1420				}
1421			}
1422		} else if (ptype == SCTP_CHUNK_LIST) {
1423			int i;
1424
1425			if (plen > sizeof(chunks_store))
1426				break;
1427			phdr = sctp_get_next_param(m, offset,
1428			    (struct sctp_paramhdr *)chunks_store, plen);
1429			if (phdr == NULL)
1430				return;
1431			chunks = (struct sctp_auth_chunk_list *)phdr;
1432			num_chunks = plen - sizeof(*chunks);
1433			/* save chunks list and num for the key */
1434			if (stcb->asoc.local_auth_chunks != NULL)
1435				sctp_clear_chunklist(stcb->asoc.local_auth_chunks);
1436			else
1437				stcb->asoc.local_auth_chunks = sctp_alloc_chunklist();
1438			for (i = 0; i < num_chunks; i++) {
1439				(void)sctp_auth_add_chunk(chunks->chunk_types[i],
1440				    stcb->asoc.local_auth_chunks);
1441			}
1442		}
1443		/* get next parameter */
1444		offset += SCTP_SIZE32(plen);
1445		if (offset + sizeof(struct sctp_paramhdr) > length)
1446			break;
1447		phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr),
1448		    (uint8_t *)&tmp_param);
1449	}
1450	/* concatenate the full random key */
1451	keylen = sizeof(*p_random) + random_len + sizeof(*hmacs) + hmacs_len;
1452	if (chunks != NULL) {
1453		keylen += sizeof(*chunks) + num_chunks;
1454	}
1455	new_key = sctp_alloc_key(keylen);
1456	if (new_key != NULL) {
1457		/* copy in the RANDOM */
1458		if (p_random != NULL) {
1459			keylen = sizeof(*p_random) + random_len;
1460			memcpy(new_key->key, p_random, keylen);
1461		} else {
1462			keylen = 0;
1463		}
1464		/* append in the AUTH chunks */
1465		if (chunks != NULL) {
1466			memcpy(new_key->key + keylen, chunks,
1467			    sizeof(*chunks) + num_chunks);
1468			keylen += sizeof(*chunks) + num_chunks;
1469		}
1470		/* append in the HMACs */
1471		if (hmacs != NULL) {
1472			memcpy(new_key->key + keylen, hmacs,
1473			    sizeof(*hmacs) + hmacs_len);
1474		}
1475	}
1476	if (stcb->asoc.authinfo.random != NULL)
1477		sctp_free_key(stcb->asoc.authinfo.random);
1478	stcb->asoc.authinfo.random = new_key;
1479	stcb->asoc.authinfo.random_len = random_len;
1480	sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.assoc_keyid);
1481	sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.recv_keyid);
1482
1483	/* negotiate what HMAC to use for the peer */
1484	stcb->asoc.peer_hmac_id = sctp_negotiate_hmacid(stcb->asoc.peer_hmacs,
1485	    stcb->asoc.local_hmacs);
1486
1487	/* copy defaults from the endpoint */
1488	/* FIX ME: put in cookie? */
1489	stcb->asoc.authinfo.active_keyid = stcb->sctp_ep->sctp_ep.default_keyid;
1490	/* copy out the shared key list (by reference) from the endpoint */
1491	(void)sctp_copy_skeylist(&stcb->sctp_ep->sctp_ep.shared_keys,
1492	    &stcb->asoc.shared_keys);
1493}
1494
1495/*
1496 * compute and fill in the HMAC digest for a packet
1497 */
1498void
1499sctp_fill_hmac_digest_m(struct mbuf *m, uint32_t auth_offset,
1500    struct sctp_auth_chunk *auth, struct sctp_tcb *stcb, uint16_t keyid)
1501{
1502	uint32_t digestlen;
1503	sctp_sharedkey_t *skey;
1504	sctp_key_t *key;
1505
1506	if ((stcb == NULL) || (auth == NULL))
1507		return;
1508
1509	/* zero the digest + chunk padding */
1510	digestlen = sctp_get_hmac_digest_len(stcb->asoc.peer_hmac_id);
1511	memset(auth->hmac, 0, SCTP_SIZE32(digestlen));
1512
1513	/* is the desired key cached? */
1514	if ((keyid != stcb->asoc.authinfo.assoc_keyid) ||
1515	    (stcb->asoc.authinfo.assoc_key == NULL)) {
1516		if (stcb->asoc.authinfo.assoc_key != NULL) {
1517			/* free the old cached key */
1518			sctp_free_key(stcb->asoc.authinfo.assoc_key);
1519		}
1520		skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1521		/* the only way skey is NULL is if null key id 0 is used */
1522		if (skey != NULL)
1523			key = skey->key;
1524		else
1525			key = NULL;
1526		/* compute a new assoc key and cache it */
1527		stcb->asoc.authinfo.assoc_key =
1528		    sctp_compute_hashkey(stcb->asoc.authinfo.random,
1529		    stcb->asoc.authinfo.peer_random, key);
1530		stcb->asoc.authinfo.assoc_keyid = keyid;
1531		SCTPDBG(SCTP_DEBUG_AUTH1, "caching key id %u\n",
1532		    stcb->asoc.authinfo.assoc_keyid);
1533#ifdef SCTP_DEBUG
1534		if (SCTP_AUTH_DEBUG)
1535			sctp_print_key(stcb->asoc.authinfo.assoc_key,
1536			    "Assoc Key");
1537#endif
1538	}
1539
1540	/* set in the active key id */
1541	auth->shared_key_id = htons(keyid);
1542
1543	/* compute and fill in the digest */
1544	(void)sctp_compute_hmac_m(stcb->asoc.peer_hmac_id, stcb->asoc.authinfo.assoc_key,
1545	    m, auth_offset, auth->hmac);
1546}
1547
1548static void
1549sctp_zero_m(struct mbuf *m, uint32_t m_offset, uint32_t size)
1550{
1551	struct mbuf *m_tmp;
1552	uint8_t *data;
1553
1554	/* sanity check */
1555	if (m == NULL)
1556		return;
1557
1558	/* find the correct starting mbuf and offset (get start position) */
1559	m_tmp = m;
1560	while ((m_tmp != NULL) && (m_offset >= (uint32_t)SCTP_BUF_LEN(m_tmp))) {
1561		m_offset -= SCTP_BUF_LEN(m_tmp);
1562		m_tmp = SCTP_BUF_NEXT(m_tmp);
1563	}
1564	/* now use the rest of the mbuf chain */
1565	while ((m_tmp != NULL) && (size > 0)) {
1566		data = mtod(m_tmp, uint8_t *)+m_offset;
1567		if (size > (uint32_t)(SCTP_BUF_LEN(m_tmp) - m_offset)) {
1568			memset(data, 0, SCTP_BUF_LEN(m_tmp) - m_offset);
1569			size -= SCTP_BUF_LEN(m_tmp) - m_offset;
1570		} else {
1571			memset(data, 0, size);
1572			size = 0;
1573		}
1574		/* clear the offset since it's only for the first mbuf */
1575		m_offset = 0;
1576		m_tmp = SCTP_BUF_NEXT(m_tmp);
1577	}
1578}
1579
1580/*-
1581 * process the incoming Authentication chunk
1582 * return codes:
1583 *   -1 on any authentication error
1584 *    0 on authentication verification
1585 */
1586int
1587sctp_handle_auth(struct sctp_tcb *stcb, struct sctp_auth_chunk *auth,
1588    struct mbuf *m, uint32_t offset)
1589{
1590	uint16_t chunklen;
1591	uint16_t shared_key_id;
1592	uint16_t hmac_id;
1593	sctp_sharedkey_t *skey;
1594	uint32_t digestlen;
1595	uint8_t digest[SCTP_AUTH_DIGEST_LEN_MAX];
1596	uint8_t computed_digest[SCTP_AUTH_DIGEST_LEN_MAX];
1597
1598	/* auth is checked for NULL by caller */
1599	chunklen = ntohs(auth->ch.chunk_length);
1600	if (chunklen < sizeof(*auth)) {
1601		SCTP_STAT_INCR(sctps_recvauthfailed);
1602		return (-1);
1603	}
1604	SCTP_STAT_INCR(sctps_recvauth);
1605
1606	/* get the auth params */
1607	shared_key_id = ntohs(auth->shared_key_id);
1608	hmac_id = ntohs(auth->hmac_id);
1609	SCTPDBG(SCTP_DEBUG_AUTH1,
1610	    "SCTP AUTH Chunk: shared key %u, HMAC id %u\n",
1611	    shared_key_id, hmac_id);
1612
1613	/* is the indicated HMAC supported? */
1614	if (!sctp_auth_is_supported_hmac(stcb->asoc.local_hmacs, hmac_id)) {
1615		struct mbuf *op_err;
1616		struct sctp_error_auth_invalid_hmac *cause;
1617
1618		SCTP_STAT_INCR(sctps_recvivalhmacid);
1619		SCTPDBG(SCTP_DEBUG_AUTH1,
1620		    "SCTP Auth: unsupported HMAC id %u\n",
1621		    hmac_id);
1622		/*
1623		 * report this in an Error Chunk: Unsupported HMAC
1624		 * Identifier
1625		 */
1626		op_err = sctp_get_mbuf_for_msg(sizeof(struct sctp_error_auth_invalid_hmac),
1627		    0, M_NOWAIT, 1, MT_HEADER);
1628		if (op_err != NULL) {
1629			/* pre-reserve some space */
1630			SCTP_BUF_RESV_UF(op_err, sizeof(struct sctp_chunkhdr));
1631			/* fill in the error */
1632			cause = mtod(op_err, struct sctp_error_auth_invalid_hmac *);
1633			cause->cause.code = htons(SCTP_CAUSE_UNSUPPORTED_HMACID);
1634			cause->cause.length = htons(sizeof(struct sctp_error_auth_invalid_hmac));
1635			cause->hmac_id = ntohs(hmac_id);
1636			SCTP_BUF_LEN(op_err) = sizeof(struct sctp_error_auth_invalid_hmac);
1637			/* queue it */
1638			sctp_queue_op_err(stcb, op_err);
1639		}
1640		return (-1);
1641	}
1642	/* get the indicated shared key, if available */
1643	if ((stcb->asoc.authinfo.recv_key == NULL) ||
1644	    (stcb->asoc.authinfo.recv_keyid != shared_key_id)) {
1645		/* find the shared key on the assoc first */
1646		skey = sctp_find_sharedkey(&stcb->asoc.shared_keys,
1647		    shared_key_id);
1648		/* if the shared key isn't found, discard the chunk */
1649		if (skey == NULL) {
1650			SCTP_STAT_INCR(sctps_recvivalkeyid);
1651			SCTPDBG(SCTP_DEBUG_AUTH1,
1652			    "SCTP Auth: unknown key id %u\n",
1653			    shared_key_id);
1654			return (-1);
1655		}
1656		/* generate a notification if this is a new key id */
1657		if (stcb->asoc.authinfo.recv_keyid != shared_key_id) {
1658			sctp_ulp_notify(SCTP_NOTIFY_AUTH_NEW_KEY, stcb, 0,
1659			    &shared_key_id, SCTP_SO_NOT_LOCKED);
1660		}
1661		/* compute a new recv assoc key and cache it */
1662		if (stcb->asoc.authinfo.recv_key != NULL)
1663			sctp_free_key(stcb->asoc.authinfo.recv_key);
1664		stcb->asoc.authinfo.recv_key =
1665		    sctp_compute_hashkey(stcb->asoc.authinfo.random,
1666		    stcb->asoc.authinfo.peer_random, skey->key);
1667		stcb->asoc.authinfo.recv_keyid = shared_key_id;
1668#ifdef SCTP_DEBUG
1669		if (SCTP_AUTH_DEBUG)
1670			sctp_print_key(stcb->asoc.authinfo.recv_key, "Recv Key");
1671#endif
1672	}
1673	/* validate the digest length */
1674	digestlen = sctp_get_hmac_digest_len(hmac_id);
1675	if (chunklen < (sizeof(*auth) + digestlen)) {
1676		/* invalid digest length */
1677		SCTP_STAT_INCR(sctps_recvauthfailed);
1678		SCTPDBG(SCTP_DEBUG_AUTH1,
1679		    "SCTP Auth: chunk too short for HMAC\n");
1680		return (-1);
1681	}
1682	/* save a copy of the digest, zero the pseudo header, and validate */
1683	memcpy(digest, auth->hmac, digestlen);
1684	sctp_zero_m(m, offset + sizeof(*auth), SCTP_SIZE32(digestlen));
1685	(void)sctp_compute_hmac_m(hmac_id, stcb->asoc.authinfo.recv_key,
1686	    m, offset, computed_digest);
1687
1688	/* compare the computed digest with the one in the AUTH chunk */
1689	if (timingsafe_bcmp(digest, computed_digest, digestlen) != 0) {
1690		SCTP_STAT_INCR(sctps_recvauthfailed);
1691		SCTPDBG(SCTP_DEBUG_AUTH1,
1692		    "SCTP Auth: HMAC digest check failed\n");
1693		return (-1);
1694	}
1695	return (0);
1696}
1697
1698/*
1699 * Generate NOTIFICATION
1700 */
1701void
1702sctp_notify_authentication(struct sctp_tcb *stcb, uint32_t indication,
1703    uint16_t keyid, int so_locked)
1704{
1705	struct mbuf *m_notify;
1706	struct sctp_authkey_event *auth;
1707	struct sctp_queued_to_read *control;
1708
1709	KASSERT(stcb != NULL, ("stcb == NULL"));
1710	SCTP_TCB_LOCK_ASSERT(stcb);
1711	SCTP_INP_READ_LOCK_ASSERT(stcb->sctp_ep);
1712
1713	if (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_AUTHEVNT))
1714		/* event not enabled */
1715		return;
1716
1717	m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_authkey_event),
1718	    0, M_NOWAIT, 1, MT_HEADER);
1719	if (m_notify == NULL)
1720		/* no space left */
1721		return;
1722
1723	SCTP_BUF_LEN(m_notify) = 0;
1724	auth = mtod(m_notify, struct sctp_authkey_event *);
1725	memset(auth, 0, sizeof(struct sctp_authkey_event));
1726	auth->auth_type = SCTP_AUTHENTICATION_EVENT;
1727	auth->auth_flags = 0;
1728	auth->auth_length = sizeof(*auth);
1729	auth->auth_keynumber = keyid;
1730	/* XXXMT: The following is BSD specific. */
1731	if (indication == SCTP_AUTH_NEW_KEY) {
1732		auth->auth_altkeynumber = stcb->asoc.authinfo.recv_keyid;
1733	} else {
1734		auth->auth_altkeynumber = 0;
1735	}
1736	auth->auth_indication = indication;
1737	auth->auth_assoc_id = sctp_get_associd(stcb);
1738
1739	SCTP_BUF_LEN(m_notify) = sizeof(*auth);
1740	SCTP_BUF_NEXT(m_notify) = NULL;
1741
1742	/* append to socket */
1743	control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination,
1744	    0, 0, stcb->asoc.context, 0, 0, 0, m_notify);
1745	if (control == NULL) {
1746		/* no memory */
1747		sctp_m_freem(m_notify);
1748		return;
1749	}
1750	control->length = SCTP_BUF_LEN(m_notify);
1751	control->spec_flags = M_NOTIFICATION;
1752	/* not that we need this */
1753	control->tail_mbuf = m_notify;
1754	sctp_add_to_readq(stcb->sctp_ep, stcb, control,
1755	    &stcb->sctp_socket->so_rcv, 1,
1756	    SCTP_READ_LOCK_HELD, so_locked);
1757}
1758
1759/*-
1760 * validates the AUTHentication related parameters in an INIT/INIT-ACK
1761 * Note: currently only used for INIT as INIT-ACK is handled inline
1762 * with sctp_load_addresses_from_init()
1763 */
1764int
1765sctp_validate_init_auth_params(struct mbuf *m, int offset, int limit)
1766{
1767	struct sctp_paramhdr *phdr, param_buf;
1768	uint16_t ptype, plen;
1769	int peer_supports_asconf = 0;
1770	int peer_supports_auth = 0;
1771	int got_random = 0, got_hmacs = 0, got_chklist = 0;
1772	uint8_t saw_asconf = 0;
1773	uint8_t saw_asconf_ack = 0;
1774
1775	/* go through each of the params. */
1776	phdr = sctp_get_next_param(m, offset, &param_buf, sizeof(param_buf));
1777	while (phdr) {
1778		ptype = ntohs(phdr->param_type);
1779		plen = ntohs(phdr->param_length);
1780
1781		if (offset + plen > limit) {
1782			break;
1783		}
1784		if (plen < sizeof(struct sctp_paramhdr)) {
1785			break;
1786		}
1787		if (ptype == SCTP_SUPPORTED_CHUNK_EXT) {
1788			/* A supported extension chunk */
1789			struct sctp_supported_chunk_types_param *pr_supported;
1790			uint8_t local_store[SCTP_SMALL_CHUNK_STORE];
1791			int num_ent, i;
1792
1793			if (plen > sizeof(local_store)) {
1794				break;
1795			}
1796			phdr = sctp_get_next_param(m, offset,
1797			    (struct sctp_paramhdr *)&local_store,
1798			    plen);
1799			if (phdr == NULL) {
1800				return (-1);
1801			}
1802			pr_supported = (struct sctp_supported_chunk_types_param *)phdr;
1803			num_ent = plen - sizeof(struct sctp_paramhdr);
1804			for (i = 0; i < num_ent; i++) {
1805				switch (pr_supported->chunk_types[i]) {
1806				case SCTP_ASCONF:
1807				case SCTP_ASCONF_ACK:
1808					peer_supports_asconf = 1;
1809					break;
1810				default:
1811					/* one we don't care about */
1812					break;
1813				}
1814			}
1815		} else if (ptype == SCTP_RANDOM) {
1816			/* enforce the random length */
1817			if (plen != (sizeof(struct sctp_auth_random) +
1818			    SCTP_AUTH_RANDOM_SIZE_REQUIRED)) {
1819				SCTPDBG(SCTP_DEBUG_AUTH1,
1820				    "SCTP: invalid RANDOM len\n");
1821				return (-1);
1822			}
1823			got_random = 1;
1824		} else if (ptype == SCTP_HMAC_LIST) {
1825			struct sctp_auth_hmac_algo *hmacs;
1826			uint8_t store[SCTP_PARAM_BUFFER_SIZE];
1827			int num_hmacs;
1828
1829			if (plen > sizeof(store)) {
1830				break;
1831			}
1832			phdr = sctp_get_next_param(m, offset,
1833			    (struct sctp_paramhdr *)store,
1834			    plen);
1835			if (phdr == NULL) {
1836				return (-1);
1837			}
1838			hmacs = (struct sctp_auth_hmac_algo *)phdr;
1839			num_hmacs = (plen - sizeof(*hmacs)) / sizeof(hmacs->hmac_ids[0]);
1840			/* validate the hmac list */
1841			if (sctp_verify_hmac_param(hmacs, num_hmacs)) {
1842				SCTPDBG(SCTP_DEBUG_AUTH1,
1843				    "SCTP: invalid HMAC param\n");
1844				return (-1);
1845			}
1846			got_hmacs = 1;
1847		} else if (ptype == SCTP_CHUNK_LIST) {
1848			struct sctp_auth_chunk_list *chunks;
1849			uint8_t chunks_store[SCTP_SMALL_CHUNK_STORE];
1850			int i, num_chunks;
1851
1852			if (plen > sizeof(chunks_store)) {
1853				break;
1854			}
1855			phdr = sctp_get_next_param(m, offset,
1856			    (struct sctp_paramhdr *)chunks_store,
1857			    plen);
1858			if (phdr == NULL) {
1859				return (-1);
1860			}
1861			/*-
1862			 * Flip through the list and mark that the
1863			 * peer supports asconf/asconf_ack.
1864			 */
1865			chunks = (struct sctp_auth_chunk_list *)phdr;
1866			num_chunks = plen - sizeof(*chunks);
1867			for (i = 0; i < num_chunks; i++) {
1868				/* record asconf/asconf-ack if listed */
1869				if (chunks->chunk_types[i] == SCTP_ASCONF)
1870					saw_asconf = 1;
1871				if (chunks->chunk_types[i] == SCTP_ASCONF_ACK)
1872					saw_asconf_ack = 1;
1873			}
1874			if (num_chunks)
1875				got_chklist = 1;
1876		}
1877
1878		offset += SCTP_SIZE32(plen);
1879		if (offset >= limit) {
1880			break;
1881		}
1882		phdr = sctp_get_next_param(m, offset, &param_buf,
1883		    sizeof(param_buf));
1884	}
1885	/* validate authentication required parameters */
1886	if (got_random && got_hmacs) {
1887		peer_supports_auth = 1;
1888	} else {
1889		peer_supports_auth = 0;
1890	}
1891	if (!peer_supports_auth && got_chklist) {
1892		SCTPDBG(SCTP_DEBUG_AUTH1,
1893		    "SCTP: peer sent chunk list w/o AUTH\n");
1894		return (-1);
1895	}
1896	if (peer_supports_asconf && !peer_supports_auth) {
1897		SCTPDBG(SCTP_DEBUG_AUTH1,
1898		    "SCTP: peer supports ASCONF but not AUTH\n");
1899		return (-1);
1900	} else if ((peer_supports_asconf) && (peer_supports_auth) &&
1901	    ((saw_asconf == 0) || (saw_asconf_ack == 0))) {
1902		return (-2);
1903	}
1904	return (0);
1905}
1906
1907void
1908sctp_initialize_auth_params(struct sctp_inpcb *inp, struct sctp_tcb *stcb)
1909{
1910	uint16_t chunks_len = 0;
1911	uint16_t hmacs_len = 0;
1912	uint16_t random_len = SCTP_AUTH_RANDOM_SIZE_DEFAULT;
1913	sctp_key_t *new_key;
1914	uint16_t keylen;
1915
1916	/* initialize hmac list from endpoint */
1917	stcb->asoc.local_hmacs = sctp_copy_hmaclist(inp->sctp_ep.local_hmacs);
1918	if (stcb->asoc.local_hmacs != NULL) {
1919		hmacs_len = stcb->asoc.local_hmacs->num_algo *
1920		    sizeof(stcb->asoc.local_hmacs->hmac[0]);
1921	}
1922	/* initialize auth chunks list from endpoint */
1923	stcb->asoc.local_auth_chunks =
1924	    sctp_copy_chunklist(inp->sctp_ep.local_auth_chunks);
1925	if (stcb->asoc.local_auth_chunks != NULL) {
1926		int i;
1927
1928		for (i = 0; i < 256; i++) {
1929			if (stcb->asoc.local_auth_chunks->chunks[i])
1930				chunks_len++;
1931		}
1932	}
1933	/* copy defaults from the endpoint */
1934	stcb->asoc.authinfo.active_keyid = inp->sctp_ep.default_keyid;
1935
1936	/* copy out the shared key list (by reference) from the endpoint */
1937	(void)sctp_copy_skeylist(&inp->sctp_ep.shared_keys,
1938	    &stcb->asoc.shared_keys);
1939
1940	/* now set the concatenated key (random + chunks + hmacs) */
1941	/* key includes parameter headers */
1942	keylen = (3 * sizeof(struct sctp_paramhdr)) + random_len + chunks_len +
1943	    hmacs_len;
1944	new_key = sctp_alloc_key(keylen);
1945	if (new_key != NULL) {
1946		struct sctp_paramhdr *ph;
1947		int plen;
1948
1949		/* generate and copy in the RANDOM */
1950		ph = (struct sctp_paramhdr *)new_key->key;
1951		ph->param_type = htons(SCTP_RANDOM);
1952		plen = sizeof(*ph) + random_len;
1953		ph->param_length = htons(plen);
1954		SCTP_READ_RANDOM(new_key->key + sizeof(*ph), random_len);
1955		keylen = plen;
1956
1957		/* append in the AUTH chunks */
1958		/* NOTE: currently we always have chunks to list */
1959		ph = (struct sctp_paramhdr *)(new_key->key + keylen);
1960		ph->param_type = htons(SCTP_CHUNK_LIST);
1961		plen = sizeof(*ph) + chunks_len;
1962		ph->param_length = htons(plen);
1963		keylen += sizeof(*ph);
1964		if (stcb->asoc.local_auth_chunks) {
1965			int i;
1966
1967			for (i = 0; i < 256; i++) {
1968				if (stcb->asoc.local_auth_chunks->chunks[i])
1969					new_key->key[keylen++] = i;
1970			}
1971		}
1972
1973		/* append in the HMACs */
1974		ph = (struct sctp_paramhdr *)(new_key->key + keylen);
1975		ph->param_type = htons(SCTP_HMAC_LIST);
1976		plen = sizeof(*ph) + hmacs_len;
1977		ph->param_length = htons(plen);
1978		keylen += sizeof(*ph);
1979		(void)sctp_serialize_hmaclist(stcb->asoc.local_hmacs,
1980		    new_key->key + keylen);
1981	}
1982	if (stcb->asoc.authinfo.random != NULL)
1983		sctp_free_key(stcb->asoc.authinfo.random);
1984	stcb->asoc.authinfo.random = new_key;
1985	stcb->asoc.authinfo.random_len = random_len;
1986}
1987