1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1989 Stephen Deering
5 * Copyright (c) 1992, 1993
6 *      The Regents of the University of California.  All rights reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * Stephen Deering of Stanford University.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. Neither the name of the University nor the names of its contributors
20 *    may be used to endorse or promote products derived from this software
21 *    without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 */
35
36/*
37 * IP multicast forwarding procedures
38 *
39 * Written by David Waitzman, BBN Labs, August 1988.
40 * Modified by Steve Deering, Stanford, February 1989.
41 * Modified by Mark J. Steiglitz, Stanford, May, 1991
42 * Modified by Van Jacobson, LBL, January 1993
43 * Modified by Ajit Thyagarajan, PARC, August 1993
44 * Modified by Bill Fenner, PARC, April 1995
45 * Modified by Ahmed Helmy, SGI, June 1996
46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
48 * Modified by Hitoshi Asaeda, WIDE, August 2000
49 * Modified by Pavlin Radoslavov, ICSI, October 2002
50 * Modified by Wojciech Macek, Semihalf, May 2021
51 *
52 * MROUTING Revision: 3.5
53 * and PIM-SMv2 and PIM-DM support, advanced API support,
54 * bandwidth metering and signaling
55 */
56
57/*
58 * TODO: Prefix functions with ipmf_.
59 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol
60 * domain attachment (if_afdata) so we can track consumers of that service.
61 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT,
62 * move it to socket options.
63 * TODO: Cleanup LSRR removal further.
64 * TODO: Push RSVP stubs into raw_ip.c.
65 * TODO: Use bitstring.h for vif set.
66 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded.
67 * TODO: Sync ip6_mroute.c with this file.
68 */
69
70#include <sys/cdefs.h>
71#include "opt_inet.h"
72#include "opt_mrouting.h"
73
74#define _PIM_VT 1
75
76#include <sys/types.h>
77#include <sys/param.h>
78#include <sys/kernel.h>
79#include <sys/stddef.h>
80#include <sys/condvar.h>
81#include <sys/eventhandler.h>
82#include <sys/lock.h>
83#include <sys/kthread.h>
84#include <sys/ktr.h>
85#include <sys/malloc.h>
86#include <sys/mbuf.h>
87#include <sys/module.h>
88#include <sys/priv.h>
89#include <sys/protosw.h>
90#include <sys/signalvar.h>
91#include <sys/socket.h>
92#include <sys/socketvar.h>
93#include <sys/sockio.h>
94#include <sys/sx.h>
95#include <sys/sysctl.h>
96#include <sys/syslog.h>
97#include <sys/systm.h>
98#include <sys/taskqueue.h>
99#include <sys/time.h>
100#include <sys/counter.h>
101#include <machine/atomic.h>
102
103#include <net/if.h>
104#include <net/if_var.h>
105#include <net/if_private.h>
106#include <net/if_types.h>
107#include <net/netisr.h>
108#include <net/route.h>
109#include <net/vnet.h>
110
111#include <netinet/in.h>
112#include <netinet/igmp.h>
113#include <netinet/in_systm.h>
114#include <netinet/in_var.h>
115#include <netinet/ip.h>
116#include <netinet/ip_encap.h>
117#include <netinet/ip_mroute.h>
118#include <netinet/ip_var.h>
119#include <netinet/ip_options.h>
120#include <netinet/pim.h>
121#include <netinet/pim_var.h>
122#include <netinet/udp.h>
123
124#include <machine/in_cksum.h>
125
126#ifndef KTR_IPMF
127#define KTR_IPMF KTR_INET
128#endif
129
130#define		VIFI_INVALID	((vifi_t) -1)
131
132static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache");
133
134/*
135 * Locking.  We use two locks: one for the virtual interface table and
136 * one for the forwarding table.  These locks may be nested in which case
137 * the VIF lock must always be taken first.  Note that each lock is used
138 * to cover not only the specific data structure but also related data
139 * structures.
140 */
141
142static struct rwlock mrouter_lock;
143#define	MRW_RLOCK()		rw_rlock(&mrouter_lock)
144#define	MRW_WLOCK()		rw_wlock(&mrouter_lock)
145#define	MRW_RUNLOCK()		rw_runlock(&mrouter_lock)
146#define	MRW_WUNLOCK()		rw_wunlock(&mrouter_lock)
147#define	MRW_UNLOCK()		rw_unlock(&mrouter_lock)
148#define	MRW_LOCK_ASSERT()	rw_assert(&mrouter_lock, RA_LOCKED)
149#define	MRW_WLOCK_ASSERT()	rw_assert(&mrouter_lock, RA_WLOCKED)
150#define	MRW_LOCK_TRY_UPGRADE()	rw_try_upgrade(&mrouter_lock)
151#define	MRW_WOWNED()		rw_wowned(&mrouter_lock)
152#define	MRW_LOCK_INIT()						\
153	rw_init(&mrouter_lock, "IPv4 multicast forwarding")
154#define	MRW_LOCK_DESTROY()	rw_destroy(&mrouter_lock)
155
156static int ip_mrouter_cnt;	/* # of vnets with active mrouters */
157static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */
158
159VNET_PCPUSTAT_DEFINE_STATIC(struct mrtstat, mrtstat);
160VNET_PCPUSTAT_SYSINIT(mrtstat);
161VNET_PCPUSTAT_SYSUNINIT(mrtstat);
162SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat,
163    mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, "
164    "netinet/ip_mroute.h)");
165
166VNET_DEFINE_STATIC(u_long, mfchash);
167#define	V_mfchash		VNET(mfchash)
168#define	MFCHASH(a, g)							\
169	((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
170	  ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash)
171#define	MFCHASHSIZE	256
172
173static u_long mfchashsize = MFCHASHSIZE;	/* Hash size */
174SYSCTL_ULONG(_net_inet_ip, OID_AUTO, mfchashsize, CTLFLAG_RDTUN,
175    &mfchashsize, 0, "IPv4 Multicast Forwarding Table hash size");
176VNET_DEFINE_STATIC(u_char *, nexpire);		/* 0..mfchashsize-1 */
177#define	V_nexpire		VNET(nexpire)
178VNET_DEFINE_STATIC(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl);
179#define	V_mfchashtbl		VNET(mfchashtbl)
180VNET_DEFINE_STATIC(struct taskqueue *, task_queue);
181#define	V_task_queue		VNET(task_queue)
182VNET_DEFINE_STATIC(struct task, task);
183#define	V_task		VNET(task)
184
185VNET_DEFINE_STATIC(vifi_t, numvifs);
186#define	V_numvifs		VNET(numvifs)
187VNET_DEFINE_STATIC(struct vif *, viftable);
188#define	V_viftable		VNET(viftable)
189
190static eventhandler_tag if_detach_event_tag = NULL;
191
192VNET_DEFINE_STATIC(struct callout, expire_upcalls_ch);
193#define	V_expire_upcalls_ch	VNET(expire_upcalls_ch)
194
195VNET_DEFINE_STATIC(struct mtx, buf_ring_mtx);
196#define	V_buf_ring_mtx	VNET(buf_ring_mtx)
197
198#define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
199#define		UPCALL_EXPIRE	6		/* number of timeouts	*/
200
201/*
202 * Bandwidth meter variables and constants
203 */
204static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
205
206/*
207 * Pending upcalls are stored in a ring which is flushed when
208 * full, or periodically
209 */
210VNET_DEFINE_STATIC(struct callout, bw_upcalls_ch);
211#define	V_bw_upcalls_ch		VNET(bw_upcalls_ch)
212VNET_DEFINE_STATIC(struct buf_ring *, bw_upcalls_ring);
213#define	V_bw_upcalls_ring    	VNET(bw_upcalls_ring)
214VNET_DEFINE_STATIC(struct mtx, bw_upcalls_ring_mtx);
215#define	V_bw_upcalls_ring_mtx    	VNET(bw_upcalls_ring_mtx)
216
217#define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
218
219VNET_PCPUSTAT_DEFINE_STATIC(struct pimstat, pimstat);
220VNET_PCPUSTAT_SYSINIT(pimstat);
221VNET_PCPUSTAT_SYSUNINIT(pimstat);
222
223SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
224    "PIM");
225SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat,
226    pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)");
227
228static u_long	pim_squelch_wholepkt = 0;
229SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RWTUN,
230    &pim_squelch_wholepkt, 0,
231    "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
232
233static const struct encaptab *pim_encap_cookie;
234static int pim_encapcheck(const struct mbuf *, int, int, void *);
235static int pim_input(struct mbuf *, int, int, void *);
236
237extern int in_mcast_loop;
238
239static const struct encap_config ipv4_encap_cfg = {
240	.proto = IPPROTO_PIM,
241	.min_length = sizeof(struct ip) + PIM_MINLEN,
242	.exact_match = 8,
243	.check = pim_encapcheck,
244	.input = pim_input
245};
246
247/*
248 * Note: the PIM Register encapsulation adds the following in front of a
249 * data packet:
250 *
251 * struct pim_encap_hdr {
252 *    struct ip ip;
253 *    struct pim_encap_pimhdr  pim;
254 * }
255 *
256 */
257
258struct pim_encap_pimhdr {
259	struct pim pim;
260	uint32_t   flags;
261};
262#define		PIM_ENCAP_TTL	64
263
264static struct ip pim_encap_iphdr = {
265#if BYTE_ORDER == LITTLE_ENDIAN
266	sizeof(struct ip) >> 2,
267	IPVERSION,
268#else
269	IPVERSION,
270	sizeof(struct ip) >> 2,
271#endif
272	0,			/* tos */
273	sizeof(struct ip),	/* total length */
274	0,			/* id */
275	0,			/* frag offset */
276	PIM_ENCAP_TTL,
277	IPPROTO_PIM,
278	0,			/* checksum */
279};
280
281static struct pim_encap_pimhdr pim_encap_pimhdr = {
282    {
283	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
284	0,			/* reserved */
285	0,			/* checksum */
286    },
287    0				/* flags */
288};
289
290VNET_DEFINE_STATIC(vifi_t, reg_vif_num) = VIFI_INVALID;
291#define	V_reg_vif_num		VNET(reg_vif_num)
292VNET_DEFINE_STATIC(struct ifnet *, multicast_register_if);
293#define	V_multicast_register_if	VNET(multicast_register_if)
294
295/*
296 * Private variables.
297 */
298
299static u_long	X_ip_mcast_src(int);
300static int	X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *,
301		    struct ip_moptions *);
302static int	X_ip_mrouter_done(void);
303static int	X_ip_mrouter_get(struct socket *, struct sockopt *);
304static int	X_ip_mrouter_set(struct socket *, struct sockopt *);
305static int	X_legal_vif_num(int);
306static int	X_mrt_ioctl(u_long, caddr_t, int);
307
308static int	add_bw_upcall(struct bw_upcall *);
309static int	add_mfc(struct mfcctl2 *);
310static int	add_vif(struct vifctl *);
311static void	bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
312static void	bw_meter_geq_receive_packet(struct bw_meter *, int,
313		    struct timeval *);
314static void	bw_upcalls_send(void);
315static int	del_bw_upcall(struct bw_upcall *);
316static int	del_mfc(struct mfcctl2 *);
317static int	del_vif(vifi_t);
318static int	del_vif_locked(vifi_t, struct ifnet **, struct ifnet **);
319static void	expire_bw_upcalls_send(void *);
320static void	expire_mfc(struct mfc *);
321static void	expire_upcalls(void *);
322static void	free_bw_list(struct bw_meter *);
323static int	get_sg_cnt(struct sioc_sg_req *);
324static int	get_vif_cnt(struct sioc_vif_req *);
325static void	if_detached_event(void *, struct ifnet *);
326static int	ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
327static int	ip_mrouter_init(struct socket *, int);
328static __inline struct mfc *
329		mfc_find(struct in_addr *, struct in_addr *);
330static void	phyint_send(struct ip *, struct vif *, struct mbuf *);
331static struct mbuf *
332		pim_register_prepare(struct ip *, struct mbuf *);
333static int	pim_register_send(struct ip *, struct vif *,
334		    struct mbuf *, struct mfc *);
335static int	pim_register_send_rp(struct ip *, struct vif *,
336		    struct mbuf *, struct mfc *);
337static int	pim_register_send_upcall(struct ip *, struct vif *,
338		    struct mbuf *, struct mfc *);
339static void	send_packet(struct vif *, struct mbuf *);
340static int	set_api_config(uint32_t *);
341static int	set_assert(int);
342static int	socket_send(struct socket *, struct mbuf *,
343		    struct sockaddr_in *);
344
345/*
346 * Kernel multicast forwarding API capabilities and setup.
347 * If more API capabilities are added to the kernel, they should be
348 * recorded in `mrt_api_support'.
349 */
350#define MRT_API_VERSION		0x0305
351
352static const int mrt_api_version = MRT_API_VERSION;
353static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
354					 MRT_MFC_FLAGS_BORDER_VIF |
355					 MRT_MFC_RP |
356					 MRT_MFC_BW_UPCALL);
357VNET_DEFINE_STATIC(uint32_t, mrt_api_config);
358#define	V_mrt_api_config	VNET(mrt_api_config)
359VNET_DEFINE_STATIC(int, pim_assert_enabled);
360#define	V_pim_assert_enabled	VNET(pim_assert_enabled)
361static struct timeval pim_assert_interval = { 3, 0 };	/* Rate limit */
362
363/*
364 * Find a route for a given origin IP address and multicast group address.
365 * Statistics must be updated by the caller.
366 */
367static __inline struct mfc *
368mfc_find(struct in_addr *o, struct in_addr *g)
369{
370	struct mfc *rt;
371
372	/*
373	 * Might be called both RLOCK and WLOCK.
374	 * Check if any, it's caller responsibility
375	 * to choose correct option.
376	 */
377	MRW_LOCK_ASSERT();
378
379	LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
380		if (in_hosteq(rt->mfc_origin, *o) &&
381		    in_hosteq(rt->mfc_mcastgrp, *g) &&
382		    buf_ring_empty(rt->mfc_stall_ring))
383			break;
384	}
385
386	return (rt);
387}
388
389static __inline struct mfc *
390mfc_alloc(void)
391{
392	struct mfc *rt;
393	rt = malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT | M_ZERO);
394	if (rt == NULL)
395		return rt;
396
397	rt->mfc_stall_ring = buf_ring_alloc(MAX_UPQ, M_MRTABLE,
398	    M_NOWAIT, &V_buf_ring_mtx);
399	if (rt->mfc_stall_ring == NULL) {
400		free(rt, M_MRTABLE);
401		return NULL;
402	}
403
404	return rt;
405}
406
407/*
408 * Handle MRT setsockopt commands to modify the multicast forwarding tables.
409 */
410static int
411X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
412{
413	int error, optval;
414	vifi_t vifi;
415	struct vifctl vifc;
416	struct mfcctl2 mfc;
417	struct bw_upcall bw_upcall;
418	uint32_t i;
419
420	if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT)
421		return EPERM;
422
423	error = 0;
424	switch (sopt->sopt_name) {
425	case MRT_INIT:
426		error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
427		if (error)
428			break;
429		error = ip_mrouter_init(so, optval);
430		break;
431	case MRT_DONE:
432		error = ip_mrouter_done();
433		break;
434	case MRT_ADD_VIF:
435		error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
436		if (error)
437			break;
438		error = add_vif(&vifc);
439		break;
440	case MRT_DEL_VIF:
441		error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
442		if (error)
443			break;
444		error = del_vif(vifi);
445		break;
446	case MRT_ADD_MFC:
447	case MRT_DEL_MFC:
448		/*
449		 * select data size depending on API version.
450		 */
451		if (sopt->sopt_name == MRT_ADD_MFC &&
452		    V_mrt_api_config & MRT_API_FLAGS_ALL) {
453			error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
454			    sizeof(struct mfcctl2));
455		} else {
456			error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
457			    sizeof(struct mfcctl));
458			bzero((caddr_t)&mfc + sizeof(struct mfcctl),
459			    sizeof(mfc) - sizeof(struct mfcctl));
460		}
461		if (error)
462			break;
463		if (sopt->sopt_name == MRT_ADD_MFC)
464			error = add_mfc(&mfc);
465		else
466			error = del_mfc(&mfc);
467		break;
468
469	case MRT_ASSERT:
470		error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
471		if (error)
472			break;
473		set_assert(optval);
474		break;
475
476	case MRT_API_CONFIG:
477		error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
478		if (!error)
479			error = set_api_config(&i);
480		if (!error)
481			error = sooptcopyout(sopt, &i, sizeof i);
482		break;
483
484	case MRT_ADD_BW_UPCALL:
485	case MRT_DEL_BW_UPCALL:
486		error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
487		    sizeof bw_upcall);
488		if (error)
489			break;
490		if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
491			error = add_bw_upcall(&bw_upcall);
492		else
493			error = del_bw_upcall(&bw_upcall);
494		break;
495
496	default:
497		error = EOPNOTSUPP;
498		break;
499	}
500	return error;
501}
502
503/*
504 * Handle MRT getsockopt commands
505 */
506static int
507X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
508{
509	int error;
510
511	switch (sopt->sopt_name) {
512	case MRT_VERSION:
513		error = sooptcopyout(sopt, &mrt_api_version,
514		    sizeof mrt_api_version);
515		break;
516	case MRT_ASSERT:
517		error = sooptcopyout(sopt, &V_pim_assert_enabled,
518		    sizeof V_pim_assert_enabled);
519		break;
520	case MRT_API_SUPPORT:
521		error = sooptcopyout(sopt, &mrt_api_support,
522		    sizeof mrt_api_support);
523		break;
524	case MRT_API_CONFIG:
525		error = sooptcopyout(sopt, &V_mrt_api_config,
526		    sizeof V_mrt_api_config);
527		break;
528	default:
529		error = EOPNOTSUPP;
530		break;
531	}
532	return error;
533}
534
535/*
536 * Handle ioctl commands to obtain information from the cache
537 */
538static int
539X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused)
540{
541	int error;
542
543	/*
544	 * Currently the only function calling this ioctl routine is rtioctl_fib().
545	 * Typically, only root can create the raw socket in order to execute
546	 * this ioctl method, however the request might be coming from a prison
547	 */
548	error = priv_check(curthread, PRIV_NETINET_MROUTE);
549	if (error)
550		return (error);
551	switch (cmd) {
552	case (SIOCGETVIFCNT):
553		error = get_vif_cnt((struct sioc_vif_req *)data);
554		break;
555
556	case (SIOCGETSGCNT):
557		error = get_sg_cnt((struct sioc_sg_req *)data);
558		break;
559
560	default:
561		error = EINVAL;
562		break;
563	}
564	return error;
565}
566
567/*
568 * returns the packet, byte, rpf-failure count for the source group provided
569 */
570static int
571get_sg_cnt(struct sioc_sg_req *req)
572{
573	struct mfc *rt;
574
575	MRW_RLOCK();
576	rt = mfc_find(&req->src, &req->grp);
577	if (rt == NULL) {
578		MRW_RUNLOCK();
579		req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
580		return EADDRNOTAVAIL;
581	}
582	req->pktcnt = rt->mfc_pkt_cnt;
583	req->bytecnt = rt->mfc_byte_cnt;
584	req->wrong_if = rt->mfc_wrong_if;
585	MRW_RUNLOCK();
586	return 0;
587}
588
589/*
590 * returns the input and output packet and byte counts on the vif provided
591 */
592static int
593get_vif_cnt(struct sioc_vif_req *req)
594{
595	vifi_t vifi = req->vifi;
596
597	MRW_RLOCK();
598	if (vifi >= V_numvifs) {
599		MRW_RUNLOCK();
600		return EINVAL;
601	}
602
603	mtx_lock_spin(&V_viftable[vifi].v_spin);
604	req->icount = V_viftable[vifi].v_pkt_in;
605	req->ocount = V_viftable[vifi].v_pkt_out;
606	req->ibytes = V_viftable[vifi].v_bytes_in;
607	req->obytes = V_viftable[vifi].v_bytes_out;
608	mtx_unlock_spin(&V_viftable[vifi].v_spin);
609	MRW_RUNLOCK();
610
611	return 0;
612}
613
614static void
615if_detached_event(void *arg __unused, struct ifnet *ifp)
616{
617	vifi_t vifi;
618	u_long i, vifi_cnt = 0;
619	struct ifnet *free_ptr, *multi_leave;
620
621	MRW_WLOCK();
622
623	if (V_ip_mrouter == NULL) {
624		MRW_WUNLOCK();
625		return;
626	}
627
628	/*
629	 * Tear down multicast forwarder state associated with this ifnet.
630	 * 1. Walk the vif list, matching vifs against this ifnet.
631	 * 2. Walk the multicast forwarding cache (mfc) looking for
632	 *    inner matches with this vif's index.
633	 * 3. Expire any matching multicast forwarding cache entries.
634	 * 4. Free vif state. This should disable ALLMULTI on the interface.
635	 */
636restart:
637	for (vifi = 0; vifi < V_numvifs; vifi++) {
638		if (V_viftable[vifi].v_ifp != ifp)
639			continue;
640		for (i = 0; i < mfchashsize; i++) {
641			struct mfc *rt, *nrt;
642
643			LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
644				if (rt->mfc_parent == vifi) {
645					expire_mfc(rt);
646				}
647			}
648		}
649		del_vif_locked(vifi, &multi_leave, &free_ptr);
650		if (free_ptr != NULL)
651			vifi_cnt++;
652		if (multi_leave) {
653			MRW_WUNLOCK();
654			if_allmulti(multi_leave, 0);
655			MRW_WLOCK();
656			goto restart;
657		}
658	}
659
660	MRW_WUNLOCK();
661
662	/*
663	 * Free IFP. We don't have to use free_ptr here as it is the same
664	 * that ifp. Perform free as many times as required in case
665	 * refcount is greater than 1.
666	 */
667	for (i = 0; i < vifi_cnt; i++)
668		if_free(ifp);
669}
670
671static void
672ip_mrouter_upcall_thread(void *arg, int pending __unused)
673{
674	CURVNET_SET((struct vnet *) arg);
675
676	MRW_WLOCK();
677	bw_upcalls_send();
678	MRW_WUNLOCK();
679
680	CURVNET_RESTORE();
681}
682
683/*
684 * Enable multicast forwarding.
685 */
686static int
687ip_mrouter_init(struct socket *so, int version)
688{
689
690	CTR2(KTR_IPMF, "%s: so %p", __func__, so);
691
692	if (version != 1)
693		return ENOPROTOOPT;
694
695	MRW_WLOCK();
696
697	if (ip_mrouter_unloading) {
698		MRW_WUNLOCK();
699		return ENOPROTOOPT;
700	}
701
702	if (V_ip_mrouter != NULL) {
703		MRW_WUNLOCK();
704		return EADDRINUSE;
705	}
706
707	V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash,
708	    HASH_NOWAIT);
709	if (V_mfchashtbl == NULL) {
710		MRW_WUNLOCK();
711		return (ENOMEM);
712	}
713
714	/* Create upcall ring */
715	mtx_init(&V_bw_upcalls_ring_mtx, "mroute upcall buf_ring mtx", NULL, MTX_DEF);
716	V_bw_upcalls_ring = buf_ring_alloc(BW_UPCALLS_MAX, M_MRTABLE,
717	    M_NOWAIT, &V_bw_upcalls_ring_mtx);
718	if (!V_bw_upcalls_ring) {
719		MRW_WUNLOCK();
720		return (ENOMEM);
721	}
722
723	TASK_INIT(&V_task, 0, ip_mrouter_upcall_thread, curvnet);
724	taskqueue_cancel(V_task_queue, &V_task, NULL);
725	taskqueue_unblock(V_task_queue);
726
727	callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
728	    curvnet);
729	callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
730	    curvnet);
731
732	V_ip_mrouter = so;
733	atomic_add_int(&ip_mrouter_cnt, 1);
734
735	/* This is a mutex required by buf_ring init, but not used internally */
736	mtx_init(&V_buf_ring_mtx, "mroute buf_ring mtx", NULL, MTX_DEF);
737
738	MRW_WUNLOCK();
739
740	CTR1(KTR_IPMF, "%s: done", __func__);
741
742	return 0;
743}
744
745/*
746 * Disable multicast forwarding.
747 */
748static int
749X_ip_mrouter_done(void)
750{
751	struct ifnet **ifps;
752	int nifp;
753	u_long i;
754	vifi_t vifi;
755	struct bw_upcall *bu;
756
757	if (V_ip_mrouter == NULL)
758		return (EINVAL);
759
760	/*
761	 * Detach/disable hooks to the reset of the system.
762	 */
763	V_ip_mrouter = NULL;
764	atomic_subtract_int(&ip_mrouter_cnt, 1);
765	V_mrt_api_config = 0;
766
767	/*
768	 * Wait for all epoch sections to complete to ensure
769	 * V_ip_mrouter = NULL is visible to others.
770	 */
771	epoch_wait_preempt(net_epoch_preempt);
772
773	/* Stop and drain task queue */
774	taskqueue_block(V_task_queue);
775	while (taskqueue_cancel(V_task_queue, &V_task, NULL)) {
776		taskqueue_drain(V_task_queue, &V_task);
777	}
778
779	ifps = malloc(MAXVIFS * sizeof(*ifps), M_TEMP, M_WAITOK);
780
781	MRW_WLOCK();
782	taskqueue_cancel(V_task_queue, &V_task, NULL);
783
784	/* Destroy upcall ring */
785	while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) {
786		free(bu, M_MRTABLE);
787	}
788	buf_ring_free(V_bw_upcalls_ring, M_MRTABLE);
789	mtx_destroy(&V_bw_upcalls_ring_mtx);
790
791	/*
792	 * For each phyint in use, prepare to disable promiscuous reception
793	 * of all IP multicasts.  Defer the actual call until the lock is released;
794	 * just record the list of interfaces while locked.  Some interfaces use
795	 * sx locks in their ioctl routines, which is not allowed while holding
796	 * a non-sleepable lock.
797	 */
798	KASSERT(V_numvifs <= MAXVIFS, ("More vifs than possible"));
799	for (vifi = 0, nifp = 0; vifi < V_numvifs; vifi++) {
800		if (!in_nullhost(V_viftable[vifi].v_lcl_addr) &&
801		    !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
802			ifps[nifp++] = V_viftable[vifi].v_ifp;
803		}
804	}
805	bzero((caddr_t)V_viftable, sizeof(*V_viftable) * MAXVIFS);
806	V_numvifs = 0;
807	V_pim_assert_enabled = 0;
808
809	callout_stop(&V_expire_upcalls_ch);
810	callout_stop(&V_bw_upcalls_ch);
811
812	/*
813	 * Free all multicast forwarding cache entries.
814	 * Do not use hashdestroy(), as we must perform other cleanup.
815	 */
816	for (i = 0; i < mfchashsize; i++) {
817		struct mfc *rt, *nrt;
818
819		LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
820			expire_mfc(rt);
821		}
822	}
823	free(V_mfchashtbl, M_MRTABLE);
824	V_mfchashtbl = NULL;
825
826	bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize);
827
828	V_reg_vif_num = VIFI_INVALID;
829
830	mtx_destroy(&V_buf_ring_mtx);
831
832	MRW_WUNLOCK();
833
834	/*
835	 * Now drop our claim on promiscuous multicast on the interfaces recorded
836	 * above.  This is safe to do now because ALLMULTI is reference counted.
837	 */
838	for (vifi = 0; vifi < nifp; vifi++)
839		if_allmulti(ifps[vifi], 0);
840	free(ifps, M_TEMP);
841
842	CTR1(KTR_IPMF, "%s: done", __func__);
843
844	return 0;
845}
846
847/*
848 * Set PIM assert processing global
849 */
850static int
851set_assert(int i)
852{
853	if ((i != 1) && (i != 0))
854		return EINVAL;
855
856	V_pim_assert_enabled = i;
857
858	return 0;
859}
860
861/*
862 * Configure API capabilities
863 */
864int
865set_api_config(uint32_t *apival)
866{
867	u_long i;
868
869	/*
870	 * We can set the API capabilities only if it is the first operation
871	 * after MRT_INIT. I.e.:
872	 *  - there are no vifs installed
873	 *  - pim_assert is not enabled
874	 *  - the MFC table is empty
875	 */
876	if (V_numvifs > 0) {
877		*apival = 0;
878		return EPERM;
879	}
880	if (V_pim_assert_enabled) {
881		*apival = 0;
882		return EPERM;
883	}
884
885	MRW_RLOCK();
886
887	for (i = 0; i < mfchashsize; i++) {
888		if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) {
889			MRW_RUNLOCK();
890			*apival = 0;
891			return EPERM;
892		}
893	}
894
895	MRW_RUNLOCK();
896
897	V_mrt_api_config = *apival & mrt_api_support;
898	*apival = V_mrt_api_config;
899
900	return 0;
901}
902
903/*
904 * Add a vif to the vif table
905 */
906static int
907add_vif(struct vifctl *vifcp)
908{
909	struct vif *vifp = V_viftable + vifcp->vifc_vifi;
910	struct sockaddr_in sin = {sizeof sin, AF_INET};
911	struct ifaddr *ifa;
912	struct ifnet *ifp;
913	int error;
914
915	if (vifcp->vifc_vifi >= MAXVIFS)
916		return EINVAL;
917	/* rate limiting is no longer supported by this code */
918	if (vifcp->vifc_rate_limit != 0) {
919		log(LOG_ERR, "rate limiting is no longer supported\n");
920		return EINVAL;
921	}
922
923	if (in_nullhost(vifcp->vifc_lcl_addr))
924		return EADDRNOTAVAIL;
925
926	/* Find the interface with an address in AF_INET family */
927	if (vifcp->vifc_flags & VIFF_REGISTER) {
928		/*
929		 * XXX: Because VIFF_REGISTER does not really need a valid
930		 * local interface (e.g. it could be 127.0.0.2), we don't
931		 * check its address.
932		 */
933		ifp = NULL;
934	} else {
935		struct epoch_tracker et;
936
937		sin.sin_addr = vifcp->vifc_lcl_addr;
938		NET_EPOCH_ENTER(et);
939		ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
940		if (ifa == NULL) {
941			NET_EPOCH_EXIT(et);
942			return EADDRNOTAVAIL;
943		}
944		ifp = ifa->ifa_ifp;
945		/* XXX FIXME we need to take a ref on ifp and cleanup properly! */
946		NET_EPOCH_EXIT(et);
947	}
948
949	if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
950		CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__);
951		return EOPNOTSUPP;
952	} else if (vifcp->vifc_flags & VIFF_REGISTER) {
953		ifp = V_multicast_register_if = if_alloc(IFT_LOOP);
954		CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp);
955		if (V_reg_vif_num == VIFI_INVALID) {
956			if_initname(V_multicast_register_if, "register_vif", 0);
957			V_reg_vif_num = vifcp->vifc_vifi;
958		}
959	} else {		/* Make sure the interface supports multicast */
960		if ((ifp->if_flags & IFF_MULTICAST) == 0)
961			return EOPNOTSUPP;
962
963		/* Enable promiscuous reception of all IP multicasts from the if */
964		error = if_allmulti(ifp, 1);
965		if (error)
966			return error;
967	}
968
969	MRW_WLOCK();
970
971	if (!in_nullhost(vifp->v_lcl_addr)) {
972		if (ifp)
973			V_multicast_register_if = NULL;
974		MRW_WUNLOCK();
975		if (ifp)
976			if_free(ifp);
977		return EADDRINUSE;
978	}
979
980	vifp->v_flags     = vifcp->vifc_flags;
981	vifp->v_threshold = vifcp->vifc_threshold;
982	vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
983	vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
984	vifp->v_ifp       = ifp;
985	/* initialize per vif pkt counters */
986	vifp->v_pkt_in    = 0;
987	vifp->v_pkt_out   = 0;
988	vifp->v_bytes_in  = 0;
989	vifp->v_bytes_out = 0;
990	sprintf(vifp->v_spin_name, "BM[%d] spin", vifcp->vifc_vifi);
991	mtx_init(&vifp->v_spin, vifp->v_spin_name, NULL, MTX_SPIN);
992
993	/* Adjust numvifs up if the vifi is higher than numvifs */
994	if (V_numvifs <= vifcp->vifc_vifi)
995		V_numvifs = vifcp->vifc_vifi + 1;
996
997	MRW_WUNLOCK();
998
999	CTR4(KTR_IPMF, "%s: add vif %d laddr 0x%08x thresh %x", __func__,
1000	    (int)vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr),
1001	    (int)vifcp->vifc_threshold);
1002
1003	return 0;
1004}
1005
1006/*
1007 * Delete a vif from the vif table
1008 */
1009static int
1010del_vif_locked(vifi_t vifi, struct ifnet **ifp_multi_leave, struct ifnet **ifp_free)
1011{
1012	struct vif *vifp;
1013
1014	*ifp_free = NULL;
1015	*ifp_multi_leave = NULL;
1016
1017	MRW_WLOCK_ASSERT();
1018
1019	if (vifi >= V_numvifs) {
1020		return EINVAL;
1021	}
1022	vifp = &V_viftable[vifi];
1023	if (in_nullhost(vifp->v_lcl_addr)) {
1024		return EADDRNOTAVAIL;
1025	}
1026
1027	if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
1028		*ifp_multi_leave = vifp->v_ifp;
1029
1030	if (vifp->v_flags & VIFF_REGISTER) {
1031		V_reg_vif_num = VIFI_INVALID;
1032		if (vifp->v_ifp) {
1033			if (vifp->v_ifp == V_multicast_register_if)
1034				V_multicast_register_if = NULL;
1035			*ifp_free = vifp->v_ifp;
1036		}
1037	}
1038
1039	mtx_destroy(&vifp->v_spin);
1040
1041	bzero((caddr_t)vifp, sizeof (*vifp));
1042
1043	CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi);
1044
1045	/* Adjust numvifs down */
1046	for (vifi = V_numvifs; vifi > 0; vifi--)
1047		if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr))
1048			break;
1049	V_numvifs = vifi;
1050
1051	return 0;
1052}
1053
1054static int
1055del_vif(vifi_t vifi)
1056{
1057	int cc;
1058	struct ifnet *free_ptr, *multi_leave;
1059
1060	MRW_WLOCK();
1061	cc = del_vif_locked(vifi, &multi_leave, &free_ptr);
1062	MRW_WUNLOCK();
1063
1064	if (multi_leave)
1065		if_allmulti(multi_leave, 0);
1066	if (free_ptr) {
1067		if_free(free_ptr);
1068	}
1069
1070	return cc;
1071}
1072
1073/*
1074 * update an mfc entry without resetting counters and S,G addresses.
1075 */
1076static void
1077update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1078{
1079	int i;
1080
1081	rt->mfc_parent = mfccp->mfcc_parent;
1082	for (i = 0; i < V_numvifs; i++) {
1083		rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1084		rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config &
1085			MRT_MFC_FLAGS_ALL;
1086	}
1087	/* set the RP address */
1088	if (V_mrt_api_config & MRT_MFC_RP)
1089		rt->mfc_rp = mfccp->mfcc_rp;
1090	else
1091		rt->mfc_rp.s_addr = INADDR_ANY;
1092}
1093
1094/*
1095 * fully initialize an mfc entry from the parameter.
1096 */
1097static void
1098init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1099{
1100	rt->mfc_origin     = mfccp->mfcc_origin;
1101	rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1102
1103	update_mfc_params(rt, mfccp);
1104
1105	/* initialize pkt counters per src-grp */
1106	rt->mfc_pkt_cnt    = 0;
1107	rt->mfc_byte_cnt   = 0;
1108	rt->mfc_wrong_if   = 0;
1109	timevalclear(&rt->mfc_last_assert);
1110}
1111
1112static void
1113expire_mfc(struct mfc *rt)
1114{
1115	struct rtdetq *rte;
1116
1117	MRW_WLOCK_ASSERT();
1118
1119	free_bw_list(rt->mfc_bw_meter_leq);
1120	free_bw_list(rt->mfc_bw_meter_geq);
1121
1122	while (!buf_ring_empty(rt->mfc_stall_ring)) {
1123		rte = buf_ring_dequeue_mc(rt->mfc_stall_ring);
1124		if (rte) {
1125			m_freem(rte->m);
1126			free(rte, M_MRTABLE);
1127		}
1128	}
1129	buf_ring_free(rt->mfc_stall_ring, M_MRTABLE);
1130
1131	LIST_REMOVE(rt, mfc_hash);
1132	free(rt, M_MRTABLE);
1133}
1134
1135/*
1136 * Add an mfc entry
1137 */
1138static int
1139add_mfc(struct mfcctl2 *mfccp)
1140{
1141	struct mfc *rt;
1142	struct rtdetq *rte;
1143	u_long hash = 0;
1144	u_short nstl;
1145	struct epoch_tracker et;
1146
1147	MRW_WLOCK();
1148	rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1149
1150	/* If an entry already exists, just update the fields */
1151	if (rt) {
1152		CTR4(KTR_IPMF, "%s: update mfc orig 0x%08x group %lx parent %x",
1153		    __func__, ntohl(mfccp->mfcc_origin.s_addr),
1154		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1155		    mfccp->mfcc_parent);
1156		update_mfc_params(rt, mfccp);
1157		MRW_WUNLOCK();
1158		return (0);
1159	}
1160
1161	/*
1162	 * Find the entry for which the upcall was made and update
1163	 */
1164	nstl = 0;
1165	hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
1166	NET_EPOCH_ENTER(et);
1167	LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1168		if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1169		    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
1170		    !buf_ring_empty(rt->mfc_stall_ring)) {
1171			CTR5(KTR_IPMF,
1172			   "%s: add mfc orig 0x%08x group %lx parent %x qh %p",
1173			    __func__, ntohl(mfccp->mfcc_origin.s_addr),
1174			    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1175			    mfccp->mfcc_parent,
1176			    rt->mfc_stall_ring);
1177			if (nstl++)
1178				CTR1(KTR_IPMF, "%s: multiple matches", __func__);
1179
1180			init_mfc_params(rt, mfccp);
1181			rt->mfc_expire = 0;	/* Don't clean this guy up */
1182			V_nexpire[hash]--;
1183
1184			/* Free queued packets, but attempt to forward them first. */
1185			while (!buf_ring_empty(rt->mfc_stall_ring)) {
1186				rte = buf_ring_dequeue_mc(rt->mfc_stall_ring);
1187				if (rte->ifp != NULL)
1188					ip_mdq(rte->m, rte->ifp, rt, -1);
1189				m_freem(rte->m);
1190				free(rte, M_MRTABLE);
1191			}
1192		}
1193	}
1194	NET_EPOCH_EXIT(et);
1195
1196	/*
1197	 * It is possible that an entry is being inserted without an upcall
1198	 */
1199	if (nstl == 0) {
1200		CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__);
1201		LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1202			if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1203			    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
1204				init_mfc_params(rt, mfccp);
1205				if (rt->mfc_expire)
1206					V_nexpire[hash]--;
1207				rt->mfc_expire = 0;
1208				break; /* XXX */
1209			}
1210		}
1211
1212		if (rt == NULL) {		/* no upcall, so make a new entry */
1213			rt = mfc_alloc();
1214			if (rt == NULL) {
1215				MRW_WUNLOCK();
1216				return (ENOBUFS);
1217			}
1218
1219			init_mfc_params(rt, mfccp);
1220
1221			rt->mfc_expire     = 0;
1222			rt->mfc_bw_meter_leq = NULL;
1223			rt->mfc_bw_meter_geq = NULL;
1224
1225			/* insert new entry at head of hash chain */
1226			LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
1227		}
1228	}
1229
1230	MRW_WUNLOCK();
1231
1232	return (0);
1233}
1234
1235/*
1236 * Delete an mfc entry
1237 */
1238static int
1239del_mfc(struct mfcctl2 *mfccp)
1240{
1241	struct in_addr origin;
1242	struct in_addr mcastgrp;
1243	struct mfc *rt;
1244
1245	origin = mfccp->mfcc_origin;
1246	mcastgrp = mfccp->mfcc_mcastgrp;
1247
1248	CTR3(KTR_IPMF, "%s: delete mfc orig 0x%08x group %lx", __func__,
1249			ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1250
1251	MRW_WLOCK();
1252
1253	LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(origin, mcastgrp)], mfc_hash) {
1254		if (in_hosteq(rt->mfc_origin, origin) &&
1255		    in_hosteq(rt->mfc_mcastgrp, mcastgrp))
1256			break;
1257	}
1258	if (rt == NULL) {
1259		MRW_WUNLOCK();
1260		return EADDRNOTAVAIL;
1261	}
1262
1263	expire_mfc(rt);
1264
1265	MRW_WUNLOCK();
1266
1267	return (0);
1268}
1269
1270/*
1271 * Send a message to the routing daemon on the multicast routing socket.
1272 */
1273static int
1274socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1275{
1276	if (s) {
1277		SOCKBUF_LOCK(&s->so_rcv);
1278		if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1279		    NULL) != 0) {
1280			sorwakeup_locked(s);
1281			return 0;
1282		}
1283		soroverflow_locked(s);
1284	}
1285	m_freem(mm);
1286	return -1;
1287}
1288
1289/*
1290 * IP multicast forwarding function. This function assumes that the packet
1291 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1292 * pointed to by "ifp", and the packet is to be relayed to other networks
1293 * that have members of the packet's destination IP multicast group.
1294 *
1295 * The packet is returned unscathed to the caller, unless it is
1296 * erroneous, in which case a non-zero return value tells the caller to
1297 * discard it.
1298 */
1299
1300#define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1301
1302static int
1303X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1304    struct ip_moptions *imo)
1305{
1306	struct mfc *rt;
1307	int error;
1308	vifi_t vifi;
1309	struct mbuf *mb0;
1310	struct rtdetq *rte;
1311	u_long hash;
1312	int hlen;
1313
1314	CTR3(KTR_IPMF, "ip_mforward: delete mfc orig 0x%08x group %lx ifp %p",
1315	    ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), ifp);
1316
1317	if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1318	    ((u_char *)(ip + 1))[1] != IPOPT_LSRR) {
1319		/*
1320		 * Packet arrived via a physical interface or
1321		 * an encapsulated tunnel or a register_vif.
1322		 */
1323	} else {
1324		/*
1325		 * Packet arrived through a source-route tunnel.
1326		 * Source-route tunnels are no longer supported.
1327		 */
1328		return (1);
1329	}
1330
1331	/*
1332	 * BEGIN: MCAST ROUTING HOT PATH
1333	 */
1334	MRW_RLOCK();
1335	if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) {
1336		if (ip->ip_ttl < MAXTTL)
1337			ip->ip_ttl++; /* compensate for -1 in *_send routines */
1338		error = ip_mdq(m, ifp, NULL, vifi);
1339		MRW_RUNLOCK();
1340		return error;
1341	}
1342
1343	/*
1344	 * Don't forward a packet with time-to-live of zero or one,
1345	 * or a packet destined to a local-only group.
1346	 */
1347	if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) {
1348		MRW_RUNLOCK();
1349		return 0;
1350	}
1351
1352mfc_find_retry:
1353	/*
1354	 * Determine forwarding vifs from the forwarding cache table
1355	 */
1356	MRTSTAT_INC(mrts_mfc_lookups);
1357	rt = mfc_find(&ip->ip_src, &ip->ip_dst);
1358
1359	/* Entry exists, so forward if necessary */
1360	if (rt != NULL) {
1361		error = ip_mdq(m, ifp, rt, -1);
1362		/* Generic unlock here as we might release R or W lock */
1363		MRW_UNLOCK();
1364		return error;
1365	}
1366
1367	/*
1368	 * END: MCAST ROUTING HOT PATH
1369	 */
1370
1371	/* Further processing must be done with WLOCK taken */
1372	if ((MRW_WOWNED() == 0) && (MRW_LOCK_TRY_UPGRADE() == 0)) {
1373		MRW_RUNLOCK();
1374		MRW_WLOCK();
1375		goto mfc_find_retry;
1376	}
1377
1378	/*
1379	 * If we don't have a route for packet's origin,
1380	 * Make a copy of the packet & send message to routing daemon
1381	 */
1382	hlen = ip->ip_hl << 2;
1383
1384	MRTSTAT_INC(mrts_mfc_misses);
1385	MRTSTAT_INC(mrts_no_route);
1386	CTR2(KTR_IPMF, "ip_mforward: no mfc for (0x%08x,%lx)",
1387	    ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr));
1388
1389	/*
1390	 * Allocate mbufs early so that we don't do extra work if we are
1391	 * just going to fail anyway.  Make sure to pullup the header so
1392	 * that other people can't step on it.
1393	 */
1394	rte = malloc((sizeof *rte), M_MRTABLE, M_NOWAIT|M_ZERO);
1395	if (rte == NULL) {
1396		MRW_WUNLOCK();
1397		return ENOBUFS;
1398	}
1399
1400	mb0 = m_copypacket(m, M_NOWAIT);
1401	if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen))
1402		mb0 = m_pullup(mb0, hlen);
1403	if (mb0 == NULL) {
1404		free(rte, M_MRTABLE);
1405		MRW_WUNLOCK();
1406		return ENOBUFS;
1407	}
1408
1409	/* is there an upcall waiting for this flow ? */
1410	hash = MFCHASH(ip->ip_src, ip->ip_dst);
1411	LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash)
1412	{
1413		if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1414		    in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1415		    !buf_ring_empty(rt->mfc_stall_ring))
1416			break;
1417	}
1418
1419	if (rt == NULL) {
1420		int i;
1421		struct igmpmsg *im;
1422		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1423		struct mbuf *mm;
1424
1425		/*
1426		 * Locate the vifi for the incoming interface for this packet.
1427		 * If none found, drop packet.
1428		 */
1429		for (vifi = 0; vifi < V_numvifs &&
1430		    V_viftable[vifi].v_ifp != ifp; vifi++)
1431			;
1432		if (vifi >= V_numvifs) /* vif not found, drop packet */
1433			goto non_fatal;
1434
1435		/* no upcall, so make a new entry */
1436		rt = mfc_alloc();
1437		if (rt == NULL)
1438			goto fail;
1439
1440		/* Make a copy of the header to send to the user level process */
1441		mm = m_copym(mb0, 0, hlen, M_NOWAIT);
1442		if (mm == NULL)
1443			goto fail1;
1444
1445		/*
1446		 * Send message to routing daemon to install
1447		 * a route into the kernel table
1448		 */
1449
1450		im = mtod(mm, struct igmpmsg*);
1451		im->im_msgtype = IGMPMSG_NOCACHE;
1452		im->im_mbz = 0;
1453		im->im_vif = vifi;
1454
1455		MRTSTAT_INC(mrts_upcalls);
1456
1457		k_igmpsrc.sin_addr = ip->ip_src;
1458		if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1459			CTR0(KTR_IPMF, "ip_mforward: socket queue full");
1460			MRTSTAT_INC(mrts_upq_sockfull);
1461			fail1: free(rt, M_MRTABLE);
1462			fail: free(rte, M_MRTABLE);
1463			m_freem(mb0);
1464			MRW_WUNLOCK();
1465			return ENOBUFS;
1466		}
1467
1468		/* insert new entry at head of hash chain */
1469		rt->mfc_origin.s_addr = ip->ip_src.s_addr;
1470		rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr;
1471		rt->mfc_expire = UPCALL_EXPIRE;
1472		V_nexpire[hash]++;
1473		for (i = 0; i < V_numvifs; i++) {
1474			rt->mfc_ttls[i] = 0;
1475			rt->mfc_flags[i] = 0;
1476		}
1477		rt->mfc_parent = -1;
1478
1479		/* clear the RP address */
1480		rt->mfc_rp.s_addr = INADDR_ANY;
1481		rt->mfc_bw_meter_leq = NULL;
1482		rt->mfc_bw_meter_geq = NULL;
1483
1484		/* initialize pkt counters per src-grp */
1485		rt->mfc_pkt_cnt = 0;
1486		rt->mfc_byte_cnt = 0;
1487		rt->mfc_wrong_if = 0;
1488		timevalclear(&rt->mfc_last_assert);
1489
1490		buf_ring_enqueue(rt->mfc_stall_ring, rte);
1491
1492		/* Add RT to hashtable as it didn't exist before */
1493		LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
1494	} else {
1495		/* determine if queue has overflowed */
1496		if (buf_ring_full(rt->mfc_stall_ring)) {
1497			MRTSTAT_INC(mrts_upq_ovflw);
1498			non_fatal: free(rte, M_MRTABLE);
1499			m_freem(mb0);
1500			MRW_WUNLOCK();
1501			return (0);
1502		}
1503
1504		buf_ring_enqueue(rt->mfc_stall_ring, rte);
1505	}
1506
1507	rte->m = mb0;
1508	rte->ifp = ifp;
1509
1510	MRW_WUNLOCK();
1511
1512	return 0;
1513}
1514
1515/*
1516 * Clean up the cache entry if upcall is not serviced
1517 */
1518static void
1519expire_upcalls(void *arg)
1520{
1521	u_long i;
1522
1523	CURVNET_SET((struct vnet *) arg);
1524
1525	/*This callout is always run with MRW_WLOCK taken. */
1526
1527	for (i = 0; i < mfchashsize; i++) {
1528		struct mfc *rt, *nrt;
1529
1530		if (V_nexpire[i] == 0)
1531			continue;
1532
1533		LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
1534			if (buf_ring_empty(rt->mfc_stall_ring))
1535				continue;
1536
1537			if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
1538				continue;
1539
1540			MRTSTAT_INC(mrts_cache_cleanups);
1541			CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__,
1542			    (u_long)ntohl(rt->mfc_origin.s_addr),
1543			    (u_long)ntohl(rt->mfc_mcastgrp.s_addr));
1544
1545			expire_mfc(rt);
1546		}
1547	}
1548
1549	callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
1550	    curvnet);
1551
1552	CURVNET_RESTORE();
1553}
1554
1555/*
1556 * Packet forwarding routine once entry in the cache is made
1557 */
1558static int
1559ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1560{
1561	struct ip *ip = mtod(m, struct ip *);
1562	vifi_t vifi;
1563	int plen = ntohs(ip->ip_len);
1564
1565	MRW_LOCK_ASSERT();
1566	NET_EPOCH_ASSERT();
1567
1568	/*
1569	 * If xmt_vif is not -1, send on only the requested vif.
1570	 *
1571	 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1572	 */
1573	if (xmt_vif < V_numvifs) {
1574		if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER)
1575			pim_register_send(ip, V_viftable + xmt_vif, m, rt);
1576		else
1577			phyint_send(ip, V_viftable + xmt_vif, m);
1578		return 1;
1579	}
1580
1581	/*
1582	 * Don't forward if it didn't arrive from the parent vif for its origin.
1583	 */
1584	vifi = rt->mfc_parent;
1585	if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) {
1586		CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)",
1587				__func__, ifp, (int)vifi, V_viftable[vifi].v_ifp);
1588		MRTSTAT_INC(mrts_wrong_if);
1589		++rt->mfc_wrong_if;
1590		/*
1591		 * If we are doing PIM assert processing, send a message
1592		 * to the routing daemon.
1593		 *
1594		 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1595		 * can complete the SPT switch, regardless of the type
1596		 * of the iif (broadcast media, GRE tunnel, etc).
1597		 */
1598		if (V_pim_assert_enabled && (vifi < V_numvifs) &&
1599		    V_viftable[vifi].v_ifp) {
1600			if (ifp == V_multicast_register_if)
1601				PIMSTAT_INC(pims_rcv_registers_wrongiif);
1602
1603			/* Get vifi for the incoming packet */
1604			for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp; vifi++)
1605				;
1606			if (vifi >= V_numvifs)
1607				return 0;	/* The iif is not found: ignore the packet. */
1608
1609			if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1610				return 0;	/* WRONGVIF disabled: ignore the packet */
1611
1612			if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) {
1613				struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1614				struct igmpmsg *im;
1615				int hlen = ip->ip_hl << 2;
1616				struct mbuf *mm = m_copym(m, 0, hlen, M_NOWAIT);
1617
1618				if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen))
1619					mm = m_pullup(mm, hlen);
1620				if (mm == NULL)
1621					return ENOBUFS;
1622
1623				im = mtod(mm, struct igmpmsg *);
1624				im->im_msgtype = IGMPMSG_WRONGVIF;
1625				im->im_mbz = 0;
1626				im->im_vif = vifi;
1627
1628				MRTSTAT_INC(mrts_upcalls);
1629
1630				k_igmpsrc.sin_addr = im->im_src;
1631				if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1632					CTR1(KTR_IPMF, "%s: socket queue full", __func__);
1633					MRTSTAT_INC(mrts_upq_sockfull);
1634					return ENOBUFS;
1635				}
1636			}
1637		}
1638		return 0;
1639	}
1640
1641	/* If I sourced this packet, it counts as output, else it was input. */
1642	mtx_lock_spin(&V_viftable[vifi].v_spin);
1643	if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) {
1644		V_viftable[vifi].v_pkt_out++;
1645		V_viftable[vifi].v_bytes_out += plen;
1646	} else {
1647		V_viftable[vifi].v_pkt_in++;
1648		V_viftable[vifi].v_bytes_in += plen;
1649	}
1650	mtx_unlock_spin(&V_viftable[vifi].v_spin);
1651
1652	rt->mfc_pkt_cnt++;
1653	rt->mfc_byte_cnt += plen;
1654
1655	/*
1656	 * For each vif, decide if a copy of the packet should be forwarded.
1657	 * Forward if:
1658	 *		- the ttl exceeds the vif's threshold
1659	 *		- there are group members downstream on interface
1660	 */
1661	for (vifi = 0; vifi < V_numvifs; vifi++)
1662		if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1663			V_viftable[vifi].v_pkt_out++;
1664			V_viftable[vifi].v_bytes_out += plen;
1665			if (V_viftable[vifi].v_flags & VIFF_REGISTER)
1666				pim_register_send(ip, V_viftable + vifi, m, rt);
1667			else
1668				phyint_send(ip, V_viftable + vifi, m);
1669		}
1670
1671	/*
1672	 * Perform upcall-related bw measuring.
1673	 */
1674	if ((rt->mfc_bw_meter_geq != NULL) || (rt->mfc_bw_meter_leq != NULL)) {
1675		struct bw_meter *x;
1676		struct timeval now;
1677
1678		microtime(&now);
1679		/* Process meters for Greater-or-EQual case */
1680		for (x = rt->mfc_bw_meter_geq; x != NULL; x = x->bm_mfc_next)
1681			bw_meter_geq_receive_packet(x, plen, &now);
1682
1683		/* Process meters for Lower-or-EQual case */
1684		for (x = rt->mfc_bw_meter_leq; x != NULL; x = x->bm_mfc_next) {
1685			/*
1686			 * Record that a packet is received.
1687			 * Spin lock has to be taken as callout context
1688			 * (expire_bw_meter_leq) might modify these fields
1689			 * as well
1690			 */
1691			mtx_lock_spin(&x->bm_spin);
1692			x->bm_measured.b_packets++;
1693			x->bm_measured.b_bytes += plen;
1694			mtx_unlock_spin(&x->bm_spin);
1695		}
1696	}
1697
1698	return 0;
1699}
1700
1701/*
1702 * Check if a vif number is legal/ok. This is used by in_mcast.c.
1703 */
1704static int
1705X_legal_vif_num(int vif)
1706{
1707	int ret;
1708
1709	ret = 0;
1710	if (vif < 0)
1711		return (ret);
1712
1713	MRW_RLOCK();
1714	if (vif < V_numvifs)
1715		ret = 1;
1716	MRW_RUNLOCK();
1717
1718	return (ret);
1719}
1720
1721/*
1722 * Return the local address used by this vif
1723 */
1724static u_long
1725X_ip_mcast_src(int vifi)
1726{
1727	in_addr_t addr;
1728
1729	addr = INADDR_ANY;
1730	if (vifi < 0)
1731		return (addr);
1732
1733	MRW_RLOCK();
1734	if (vifi < V_numvifs)
1735		addr = V_viftable[vifi].v_lcl_addr.s_addr;
1736	MRW_RUNLOCK();
1737
1738	return (addr);
1739}
1740
1741static void
1742phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1743{
1744	struct mbuf *mb_copy;
1745	int hlen = ip->ip_hl << 2;
1746
1747	MRW_LOCK_ASSERT();
1748
1749	/*
1750	 * Make a new reference to the packet; make sure that
1751	 * the IP header is actually copied, not just referenced,
1752	 * so that ip_output() only scribbles on the copy.
1753	 */
1754	mb_copy = m_copypacket(m, M_NOWAIT);
1755	if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen))
1756		mb_copy = m_pullup(mb_copy, hlen);
1757	if (mb_copy == NULL)
1758		return;
1759
1760	send_packet(vifp, mb_copy);
1761}
1762
1763static void
1764send_packet(struct vif *vifp, struct mbuf *m)
1765{
1766	struct ip_moptions imo;
1767	int error __unused;
1768
1769	MRW_LOCK_ASSERT();
1770	NET_EPOCH_ASSERT();
1771
1772	imo.imo_multicast_ifp  = vifp->v_ifp;
1773	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1774	imo.imo_multicast_loop = !!in_mcast_loop;
1775	imo.imo_multicast_vif  = -1;
1776	STAILQ_INIT(&imo.imo_head);
1777
1778	/*
1779	 * Re-entrancy should not be a problem here, because
1780	 * the packets that we send out and are looped back at us
1781	 * should get rejected because they appear to come from
1782	 * the loopback interface, thus preventing looping.
1783	 */
1784	error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL);
1785	CTR3(KTR_IPMF, "%s: vif %td err %d", __func__,
1786	    (ptrdiff_t)(vifp - V_viftable), error);
1787}
1788
1789/*
1790 * Stubs for old RSVP socket shim implementation.
1791 */
1792
1793static int
1794X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused)
1795{
1796
1797	return (EOPNOTSUPP);
1798}
1799
1800static void
1801X_ip_rsvp_force_done(struct socket *so __unused)
1802{
1803
1804}
1805
1806static int
1807X_rsvp_input(struct mbuf **mp, int *offp, int proto)
1808{
1809	struct mbuf *m;
1810
1811	m = *mp;
1812	*mp = NULL;
1813	if (!V_rsvp_on)
1814		m_freem(m);
1815	return (IPPROTO_DONE);
1816}
1817
1818/*
1819 * Code for bandwidth monitors
1820 */
1821
1822/*
1823 * Define common interface for timeval-related methods
1824 */
1825#define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
1826#define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
1827#define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
1828
1829static uint32_t
1830compute_bw_meter_flags(struct bw_upcall *req)
1831{
1832	uint32_t flags = 0;
1833
1834	if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
1835		flags |= BW_METER_UNIT_PACKETS;
1836	if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
1837		flags |= BW_METER_UNIT_BYTES;
1838	if (req->bu_flags & BW_UPCALL_GEQ)
1839		flags |= BW_METER_GEQ;
1840	if (req->bu_flags & BW_UPCALL_LEQ)
1841		flags |= BW_METER_LEQ;
1842
1843	return flags;
1844}
1845
1846static void
1847expire_bw_meter_leq(void *arg)
1848{
1849	struct bw_meter *x = arg;
1850	struct timeval now;
1851	/*
1852	 * INFO:
1853	 * callout is always executed with MRW_WLOCK taken
1854	 */
1855
1856	CURVNET_SET((struct vnet *)x->arg);
1857
1858	microtime(&now);
1859
1860	/*
1861	 * Test if we should deliver an upcall
1862	 */
1863	if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1864	    (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
1865	    ((x->bm_flags & BW_METER_UNIT_BYTES) &&
1866	    (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
1867		/* Prepare an upcall for delivery */
1868		bw_meter_prepare_upcall(x, &now);
1869	}
1870
1871	/* Send all upcalls that are pending delivery */
1872	taskqueue_enqueue(V_task_queue, &V_task);
1873
1874	/* Reset counters */
1875	x->bm_start_time = now;
1876	/* Spin lock has to be taken as ip_forward context
1877	 * might modify these fields as well
1878	 */
1879	mtx_lock_spin(&x->bm_spin);
1880	x->bm_measured.b_bytes = 0;
1881	x->bm_measured.b_packets = 0;
1882	mtx_unlock_spin(&x->bm_spin);
1883
1884	callout_schedule(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time));
1885
1886	CURVNET_RESTORE();
1887}
1888
1889/*
1890 * Add a bw_meter entry
1891 */
1892static int
1893add_bw_upcall(struct bw_upcall *req)
1894{
1895	struct mfc *mfc;
1896	struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
1897	BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
1898	struct timeval now;
1899	struct bw_meter *x, **bwm_ptr;
1900	uint32_t flags;
1901
1902	if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
1903		return EOPNOTSUPP;
1904
1905	/* Test if the flags are valid */
1906	if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
1907		return EINVAL;
1908	if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
1909		return EINVAL;
1910	if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1911		return EINVAL;
1912
1913	/* Test if the threshold time interval is valid */
1914	if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
1915		return EINVAL;
1916
1917	flags = compute_bw_meter_flags(req);
1918
1919	/*
1920	 * Find if we have already same bw_meter entry
1921	 */
1922	MRW_WLOCK();
1923	mfc = mfc_find(&req->bu_src, &req->bu_dst);
1924	if (mfc == NULL) {
1925		MRW_WUNLOCK();
1926		return EADDRNOTAVAIL;
1927	}
1928
1929	/* Choose an appropriate bw_meter list */
1930	if (req->bu_flags & BW_UPCALL_GEQ)
1931		bwm_ptr = &mfc->mfc_bw_meter_geq;
1932	else
1933		bwm_ptr = &mfc->mfc_bw_meter_leq;
1934
1935	for (x = *bwm_ptr; x != NULL; x = x->bm_mfc_next) {
1936		if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1937		    &req->bu_threshold.b_time, ==))
1938		    && (x->bm_threshold.b_packets
1939		    == req->bu_threshold.b_packets)
1940		    && (x->bm_threshold.b_bytes
1941		    == req->bu_threshold.b_bytes)
1942		    && (x->bm_flags & BW_METER_USER_FLAGS)
1943		    == flags) {
1944			MRW_WUNLOCK();
1945			return 0; /* XXX Already installed */
1946		}
1947	}
1948
1949	/* Allocate the new bw_meter entry */
1950	x = malloc(sizeof(*x), M_BWMETER, M_ZERO | M_NOWAIT);
1951	if (x == NULL) {
1952		MRW_WUNLOCK();
1953		return ENOBUFS;
1954	}
1955
1956	/* Set the new bw_meter entry */
1957	x->bm_threshold.b_time = req->bu_threshold.b_time;
1958	microtime(&now);
1959	x->bm_start_time = now;
1960	x->bm_threshold.b_packets = req->bu_threshold.b_packets;
1961	x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
1962	x->bm_measured.b_packets = 0;
1963	x->bm_measured.b_bytes = 0;
1964	x->bm_flags = flags;
1965	x->bm_time_next = NULL;
1966	x->bm_mfc = mfc;
1967	x->arg = curvnet;
1968	sprintf(x->bm_spin_name, "BM spin %p", x);
1969	mtx_init(&x->bm_spin, x->bm_spin_name, NULL, MTX_SPIN);
1970
1971	/* For LEQ case create periodic callout */
1972	if (req->bu_flags & BW_UPCALL_LEQ) {
1973		callout_init_rw(&x->bm_meter_callout, &mrouter_lock, CALLOUT_SHAREDLOCK);
1974		callout_reset(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time),
1975		    expire_bw_meter_leq, x);
1976	}
1977
1978	/* Add the new bw_meter entry to the front of entries for this MFC */
1979	x->bm_mfc_next = *bwm_ptr;
1980	*bwm_ptr = x;
1981
1982	MRW_WUNLOCK();
1983
1984	return 0;
1985}
1986
1987static void
1988free_bw_list(struct bw_meter *list)
1989{
1990	while (list != NULL) {
1991		struct bw_meter *x = list;
1992
1993		/* MRW_WLOCK must be held here */
1994		if (x->bm_flags & BW_METER_LEQ) {
1995			callout_drain(&x->bm_meter_callout);
1996			mtx_destroy(&x->bm_spin);
1997		}
1998
1999		list = list->bm_mfc_next;
2000		free(x, M_BWMETER);
2001	}
2002}
2003
2004/*
2005 * Delete one or multiple bw_meter entries
2006 */
2007static int
2008del_bw_upcall(struct bw_upcall *req)
2009{
2010	struct mfc *mfc;
2011	struct bw_meter *x, **bwm_ptr;
2012
2013	if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
2014		return EOPNOTSUPP;
2015
2016	MRW_WLOCK();
2017
2018	/* Find the corresponding MFC entry */
2019	mfc = mfc_find(&req->bu_src, &req->bu_dst);
2020	if (mfc == NULL) {
2021		MRW_WUNLOCK();
2022		return EADDRNOTAVAIL;
2023	} else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2024		/*
2025		 * Delete all bw_meter entries for this mfc
2026		 */
2027		struct bw_meter *list;
2028
2029		/* Free LEQ list */
2030		list = mfc->mfc_bw_meter_leq;
2031		mfc->mfc_bw_meter_leq = NULL;
2032		free_bw_list(list);
2033
2034		/* Free GEQ list */
2035		list = mfc->mfc_bw_meter_geq;
2036		mfc->mfc_bw_meter_geq = NULL;
2037		free_bw_list(list);
2038		MRW_WUNLOCK();
2039		return 0;
2040	} else {			/* Delete a single bw_meter entry */
2041		struct bw_meter *prev;
2042		uint32_t flags = 0;
2043
2044		flags = compute_bw_meter_flags(req);
2045
2046		/* Choose an appropriate bw_meter list */
2047		if (req->bu_flags & BW_UPCALL_GEQ)
2048			bwm_ptr = &mfc->mfc_bw_meter_geq;
2049		else
2050			bwm_ptr = &mfc->mfc_bw_meter_leq;
2051
2052		/* Find the bw_meter entry to delete */
2053		for (prev = NULL, x = *bwm_ptr; x != NULL;
2054				prev = x, x = x->bm_mfc_next) {
2055			if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, &req->bu_threshold.b_time, ==)) &&
2056			    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2057			    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2058			    (x->bm_flags & BW_METER_USER_FLAGS) == flags)
2059				break;
2060		}
2061		if (x != NULL) { /* Delete entry from the list for this MFC */
2062			if (prev != NULL)
2063				prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
2064			else
2065				*bwm_ptr = x->bm_mfc_next;/* new head of list */
2066
2067			if (req->bu_flags & BW_UPCALL_LEQ)
2068				callout_stop(&x->bm_meter_callout);
2069
2070			MRW_WUNLOCK();
2071			/* Free the bw_meter entry */
2072			free(x, M_BWMETER);
2073			return 0;
2074		} else {
2075			MRW_WUNLOCK();
2076			return EINVAL;
2077		}
2078	}
2079	__assert_unreachable();
2080}
2081
2082/*
2083 * Perform bandwidth measurement processing that may result in an upcall
2084 */
2085static void
2086bw_meter_geq_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2087{
2088	struct timeval delta;
2089
2090	MRW_LOCK_ASSERT();
2091
2092	delta = *nowp;
2093	BW_TIMEVALDECR(&delta, &x->bm_start_time);
2094
2095	/*
2096	 * Processing for ">=" type of bw_meter entry.
2097	 * bm_spin does not have to be hold here as in GEQ
2098	 * case this is the only context accessing bm_measured.
2099	 */
2100	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2101	    /* Reset the bw_meter entry */
2102	    x->bm_start_time = *nowp;
2103	    x->bm_measured.b_packets = 0;
2104	    x->bm_measured.b_bytes = 0;
2105	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2106	}
2107
2108	/* Record that a packet is received */
2109	x->bm_measured.b_packets++;
2110	x->bm_measured.b_bytes += plen;
2111
2112	/*
2113	 * Test if we should deliver an upcall
2114	 */
2115	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2116		if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2117		    (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2118		    ((x->bm_flags & BW_METER_UNIT_BYTES) &&
2119		    (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2120			/* Prepare an upcall for delivery */
2121			bw_meter_prepare_upcall(x, nowp);
2122			x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2123		}
2124	}
2125}
2126
2127/*
2128 * Prepare a bandwidth-related upcall
2129 */
2130static void
2131bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2132{
2133	struct timeval delta;
2134	struct bw_upcall *u;
2135
2136	MRW_LOCK_ASSERT();
2137
2138	/*
2139	 * Compute the measured time interval
2140	 */
2141	delta = *nowp;
2142	BW_TIMEVALDECR(&delta, &x->bm_start_time);
2143
2144	/*
2145	 * Set the bw_upcall entry
2146	 */
2147	u = malloc(sizeof(struct bw_upcall), M_MRTABLE, M_NOWAIT | M_ZERO);
2148	if (!u) {
2149		log(LOG_WARNING, "bw_meter_prepare_upcall: cannot allocate entry\n");
2150		return;
2151	}
2152	u->bu_src = x->bm_mfc->mfc_origin;
2153	u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2154	u->bu_threshold.b_time = x->bm_threshold.b_time;
2155	u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2156	u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2157	u->bu_measured.b_time = delta;
2158	u->bu_measured.b_packets = x->bm_measured.b_packets;
2159	u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2160	u->bu_flags = 0;
2161	if (x->bm_flags & BW_METER_UNIT_PACKETS)
2162		u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2163	if (x->bm_flags & BW_METER_UNIT_BYTES)
2164		u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2165	if (x->bm_flags & BW_METER_GEQ)
2166		u->bu_flags |= BW_UPCALL_GEQ;
2167	if (x->bm_flags & BW_METER_LEQ)
2168		u->bu_flags |= BW_UPCALL_LEQ;
2169
2170	if (buf_ring_enqueue(V_bw_upcalls_ring, u))
2171		log(LOG_WARNING, "bw_meter_prepare_upcall: cannot enqueue upcall\n");
2172	if (buf_ring_count(V_bw_upcalls_ring) > (BW_UPCALLS_MAX / 2)) {
2173		taskqueue_enqueue(V_task_queue, &V_task);
2174	}
2175}
2176/*
2177 * Send the pending bandwidth-related upcalls
2178 */
2179static void
2180bw_upcalls_send(void)
2181{
2182	struct mbuf *m;
2183	int len = 0;
2184	struct bw_upcall *bu;
2185	struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2186	static struct igmpmsg igmpmsg = {
2187		0,		/* unused1 */
2188		0,		/* unused2 */
2189		IGMPMSG_BW_UPCALL,/* im_msgtype */
2190		0,		/* im_mbz  */
2191		0,		/* im_vif  */
2192		0,		/* unused3 */
2193		{ 0 },		/* im_src  */
2194		{ 0 }		/* im_dst  */
2195	};
2196
2197	MRW_LOCK_ASSERT();
2198
2199	if (buf_ring_empty(V_bw_upcalls_ring))
2200		return;
2201
2202	/*
2203	 * Allocate a new mbuf, initialize it with the header and
2204	 * the payload for the pending calls.
2205	 */
2206	m = m_gethdr(M_NOWAIT, MT_DATA);
2207	if (m == NULL) {
2208		log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2209		return;
2210	}
2211
2212	m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2213	len += sizeof(struct igmpmsg);
2214	while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) {
2215		m_copyback(m, len, sizeof(struct bw_upcall), (caddr_t)bu);
2216		len += sizeof(struct bw_upcall);
2217		free(bu, M_MRTABLE);
2218	}
2219
2220	/*
2221	 * Send the upcalls
2222	 * XXX do we need to set the address in k_igmpsrc ?
2223	 */
2224	MRTSTAT_INC(mrts_upcalls);
2225	if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) {
2226		log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2227		MRTSTAT_INC(mrts_upq_sockfull);
2228	}
2229}
2230
2231/*
2232 * A periodic function for sending all upcalls that are pending delivery
2233 */
2234static void
2235expire_bw_upcalls_send(void *arg)
2236{
2237	CURVNET_SET((struct vnet *) arg);
2238
2239	/* This callout is run with MRW_RLOCK taken */
2240
2241	bw_upcalls_send();
2242
2243	callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
2244	    curvnet);
2245	CURVNET_RESTORE();
2246}
2247
2248/*
2249 * End of bandwidth monitoring code
2250 */
2251
2252/*
2253 * Send the packet up to the user daemon, or eventually do kernel encapsulation
2254 *
2255 */
2256static int
2257pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
2258    struct mfc *rt)
2259{
2260	struct mbuf *mb_copy, *mm;
2261
2262	/*
2263	 * Do not send IGMP_WHOLEPKT notifications to userland, if the
2264	 * rendezvous point was unspecified, and we were told not to.
2265	 */
2266	if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) &&
2267	    in_nullhost(rt->mfc_rp))
2268		return 0;
2269
2270	mb_copy = pim_register_prepare(ip, m);
2271	if (mb_copy == NULL)
2272		return ENOBUFS;
2273
2274	/*
2275	 * Send all the fragments. Note that the mbuf for each fragment
2276	 * is freed by the sending machinery.
2277	 */
2278	for (mm = mb_copy; mm; mm = mb_copy) {
2279		mb_copy = mm->m_nextpkt;
2280		mm->m_nextpkt = 0;
2281		mm = m_pullup(mm, sizeof(struct ip));
2282		if (mm != NULL) {
2283			ip = mtod(mm, struct ip *);
2284			if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) {
2285				pim_register_send_rp(ip, vifp, mm, rt);
2286			} else {
2287				pim_register_send_upcall(ip, vifp, mm, rt);
2288			}
2289		}
2290	}
2291
2292	return 0;
2293}
2294
2295/*
2296 * Return a copy of the data packet that is ready for PIM Register
2297 * encapsulation.
2298 * XXX: Note that in the returned copy the IP header is a valid one.
2299 */
2300static struct mbuf *
2301pim_register_prepare(struct ip *ip, struct mbuf *m)
2302{
2303	struct mbuf *mb_copy = NULL;
2304	int mtu;
2305
2306	/* Take care of delayed checksums */
2307	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2308		in_delayed_cksum(m);
2309		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2310	}
2311
2312	/*
2313	 * Copy the old packet & pullup its IP header into the
2314	 * new mbuf so we can modify it.
2315	 */
2316	mb_copy = m_copypacket(m, M_NOWAIT);
2317	if (mb_copy == NULL)
2318		return NULL;
2319	mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2320	if (mb_copy == NULL)
2321		return NULL;
2322
2323	/* take care of the TTL */
2324	ip = mtod(mb_copy, struct ip *);
2325	--ip->ip_ttl;
2326
2327	/* Compute the MTU after the PIM Register encapsulation */
2328	mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2329
2330	if (ntohs(ip->ip_len) <= mtu) {
2331		/* Turn the IP header into a valid one */
2332		ip->ip_sum = 0;
2333		ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2334	} else {
2335		/* Fragment the packet */
2336		mb_copy->m_pkthdr.csum_flags |= CSUM_IP;
2337		if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) {
2338			m_freem(mb_copy);
2339			return NULL;
2340		}
2341	}
2342	return mb_copy;
2343}
2344
2345/*
2346 * Send an upcall with the data packet to the user-level process.
2347 */
2348static int
2349pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2350    struct mbuf *mb_copy, struct mfc *rt)
2351{
2352	struct mbuf *mb_first;
2353	int len = ntohs(ip->ip_len);
2354	struct igmpmsg *im;
2355	struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2356
2357	MRW_LOCK_ASSERT();
2358
2359	/*
2360	 * Add a new mbuf with an upcall header
2361	 */
2362	mb_first = m_gethdr(M_NOWAIT, MT_DATA);
2363	if (mb_first == NULL) {
2364		m_freem(mb_copy);
2365		return ENOBUFS;
2366	}
2367	mb_first->m_data += max_linkhdr;
2368	mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2369	mb_first->m_len = sizeof(struct igmpmsg);
2370	mb_first->m_next = mb_copy;
2371
2372	/* Send message to routing daemon */
2373	im = mtod(mb_first, struct igmpmsg *);
2374	im->im_msgtype	= IGMPMSG_WHOLEPKT;
2375	im->im_mbz		= 0;
2376	im->im_vif		= vifp - V_viftable;
2377	im->im_src		= ip->ip_src;
2378	im->im_dst		= ip->ip_dst;
2379
2380	k_igmpsrc.sin_addr	= ip->ip_src;
2381
2382	MRTSTAT_INC(mrts_upcalls);
2383
2384	if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2385		CTR1(KTR_IPMF, "%s: socket queue full", __func__);
2386		MRTSTAT_INC(mrts_upq_sockfull);
2387		return ENOBUFS;
2388	}
2389
2390	/* Keep statistics */
2391	PIMSTAT_INC(pims_snd_registers_msgs);
2392	PIMSTAT_ADD(pims_snd_registers_bytes, len);
2393
2394	return 0;
2395}
2396
2397/*
2398 * Encapsulate the data packet in PIM Register message and send it to the RP.
2399 */
2400static int
2401pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy,
2402    struct mfc *rt)
2403{
2404	struct mbuf *mb_first;
2405	struct ip *ip_outer;
2406	struct pim_encap_pimhdr *pimhdr;
2407	int len = ntohs(ip->ip_len);
2408	vifi_t vifi = rt->mfc_parent;
2409
2410	MRW_LOCK_ASSERT();
2411
2412	if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) {
2413		m_freem(mb_copy);
2414		return EADDRNOTAVAIL;		/* The iif vif is invalid */
2415	}
2416
2417	/*
2418	 * Add a new mbuf with the encapsulating header
2419	 */
2420	mb_first = m_gethdr(M_NOWAIT, MT_DATA);
2421	if (mb_first == NULL) {
2422		m_freem(mb_copy);
2423		return ENOBUFS;
2424	}
2425	mb_first->m_data += max_linkhdr;
2426	mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2427	mb_first->m_next = mb_copy;
2428
2429	mb_first->m_pkthdr.len = len + mb_first->m_len;
2430
2431	/*
2432	 * Fill in the encapsulating IP and PIM header
2433	 */
2434	ip_outer = mtod(mb_first, struct ip *);
2435	*ip_outer = pim_encap_iphdr;
2436	ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) +
2437			sizeof(pim_encap_pimhdr));
2438	ip_outer->ip_src = V_viftable[vifi].v_lcl_addr;
2439	ip_outer->ip_dst = rt->mfc_rp;
2440	/*
2441	 * Copy the inner header TOS to the outer header, and take care of the
2442	 * IP_DF bit.
2443	 */
2444	ip_outer->ip_tos = ip->ip_tos;
2445	if (ip->ip_off & htons(IP_DF))
2446		ip_outer->ip_off |= htons(IP_DF);
2447	ip_fillid(ip_outer);
2448	pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2449			+ sizeof(pim_encap_iphdr));
2450	*pimhdr = pim_encap_pimhdr;
2451	/* If the iif crosses a border, set the Border-bit */
2452	if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config)
2453		pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2454
2455	mb_first->m_data += sizeof(pim_encap_iphdr);
2456	pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2457	mb_first->m_data -= sizeof(pim_encap_iphdr);
2458
2459	send_packet(vifp, mb_first);
2460
2461	/* Keep statistics */
2462	PIMSTAT_INC(pims_snd_registers_msgs);
2463	PIMSTAT_ADD(pims_snd_registers_bytes, len);
2464
2465	return 0;
2466}
2467
2468/*
2469 * pim_encapcheck() is called by the encap4_input() path at runtime to
2470 * determine if a packet is for PIM; allowing PIM to be dynamically loaded
2471 * into the kernel.
2472 */
2473static int
2474pim_encapcheck(const struct mbuf *m __unused, int off __unused,
2475    int proto __unused, void *arg __unused)
2476{
2477
2478	KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
2479	return (8);		/* claim the datagram. */
2480}
2481
2482/*
2483 * PIM-SMv2 and PIM-DM messages processing.
2484 * Receives and verifies the PIM control messages, and passes them
2485 * up to the listening socket, using rip_input().
2486 * The only message with special processing is the PIM_REGISTER message
2487 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2488 * is passed to if_simloop().
2489 */
2490static int
2491pim_input(struct mbuf *m, int off, int proto, void *arg __unused)
2492{
2493	struct ip *ip = mtod(m, struct ip *);
2494	struct pim *pim;
2495	int iphlen = off;
2496	int minlen;
2497	int datalen = ntohs(ip->ip_len) - iphlen;
2498	int ip_tos;
2499
2500	/* Keep statistics */
2501	PIMSTAT_INC(pims_rcv_total_msgs);
2502	PIMSTAT_ADD(pims_rcv_total_bytes, datalen);
2503
2504	/*
2505	 * Validate lengths
2506	 */
2507	if (datalen < PIM_MINLEN) {
2508		PIMSTAT_INC(pims_rcv_tooshort);
2509		CTR3(KTR_IPMF, "%s: short packet (%d) from 0x%08x",
2510		    __func__, datalen, ntohl(ip->ip_src.s_addr));
2511		m_freem(m);
2512		return (IPPROTO_DONE);
2513	}
2514
2515	/*
2516	 * If the packet is at least as big as a REGISTER, go agead
2517	 * and grab the PIM REGISTER header size, to avoid another
2518	 * possible m_pullup() later.
2519	 *
2520	 * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
2521	 * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
2522	 */
2523	minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
2524	/*
2525	 * Get the IP and PIM headers in contiguous memory, and
2526	 * possibly the PIM REGISTER header.
2527	 */
2528	if (m->m_len < minlen && (m = m_pullup(m, minlen)) == NULL) {
2529		CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__);
2530		return (IPPROTO_DONE);
2531	}
2532
2533	/* m_pullup() may have given us a new mbuf so reset ip. */
2534	ip = mtod(m, struct ip *);
2535	ip_tos = ip->ip_tos;
2536
2537	/* adjust mbuf to point to the PIM header */
2538	m->m_data += iphlen;
2539	m->m_len  -= iphlen;
2540	pim = mtod(m, struct pim *);
2541
2542	/*
2543	 * Validate checksum. If PIM REGISTER, exclude the data packet.
2544	 *
2545	 * XXX: some older PIMv2 implementations don't make this distinction,
2546	 * so for compatibility reason perform the checksum over part of the
2547	 * message, and if error, then over the whole message.
2548	 */
2549	if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
2550		/* do nothing, checksum okay */
2551	} else if (in_cksum(m, datalen)) {
2552		PIMSTAT_INC(pims_rcv_badsum);
2553		CTR1(KTR_IPMF, "%s: invalid checksum", __func__);
2554		m_freem(m);
2555		return (IPPROTO_DONE);
2556	}
2557
2558	/* PIM version check */
2559	if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
2560		PIMSTAT_INC(pims_rcv_badversion);
2561		CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__,
2562		    (int)PIM_VT_V(pim->pim_vt), PIM_VERSION);
2563		m_freem(m);
2564		return (IPPROTO_DONE);
2565	}
2566
2567	/* restore mbuf back to the outer IP */
2568	m->m_data -= iphlen;
2569	m->m_len  += iphlen;
2570
2571	if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
2572		/*
2573		 * Since this is a REGISTER, we'll make a copy of the register
2574		 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
2575		 * routing daemon.
2576		 */
2577		struct sockaddr_in dst = { sizeof(dst), AF_INET };
2578		struct mbuf *mcp;
2579		struct ip *encap_ip;
2580		u_int32_t *reghdr;
2581		struct ifnet *vifp;
2582
2583		MRW_RLOCK();
2584		if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) {
2585			MRW_RUNLOCK();
2586			CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__,
2587			    (int)V_reg_vif_num);
2588			m_freem(m);
2589			return (IPPROTO_DONE);
2590		}
2591		/* XXX need refcnt? */
2592		vifp = V_viftable[V_reg_vif_num].v_ifp;
2593		MRW_RUNLOCK();
2594
2595		/*
2596		 * Validate length
2597		 */
2598		if (datalen < PIM_REG_MINLEN) {
2599			PIMSTAT_INC(pims_rcv_tooshort);
2600			PIMSTAT_INC(pims_rcv_badregisters);
2601			CTR1(KTR_IPMF, "%s: register packet size too small", __func__);
2602			m_freem(m);
2603			return (IPPROTO_DONE);
2604		}
2605
2606		reghdr = (u_int32_t *)(pim + 1);
2607		encap_ip = (struct ip *)(reghdr + 1);
2608
2609		CTR3(KTR_IPMF, "%s: register: encap ip src 0x%08x len %d",
2610		    __func__, ntohl(encap_ip->ip_src.s_addr),
2611		    ntohs(encap_ip->ip_len));
2612
2613		/* verify the version number of the inner packet */
2614		if (encap_ip->ip_v != IPVERSION) {
2615			PIMSTAT_INC(pims_rcv_badregisters);
2616			CTR1(KTR_IPMF, "%s: bad encap ip version", __func__);
2617			m_freem(m);
2618			return (IPPROTO_DONE);
2619		}
2620
2621		/* verify the inner packet is destined to a mcast group */
2622		if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
2623			PIMSTAT_INC(pims_rcv_badregisters);
2624			CTR2(KTR_IPMF, "%s: bad encap ip dest 0x%08x", __func__,
2625			    ntohl(encap_ip->ip_dst.s_addr));
2626			m_freem(m);
2627			return (IPPROTO_DONE);
2628		}
2629
2630		/* If a NULL_REGISTER, pass it to the daemon */
2631		if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
2632			goto pim_input_to_daemon;
2633
2634		/*
2635		 * Copy the TOS from the outer IP header to the inner IP header.
2636		 */
2637		if (encap_ip->ip_tos != ip_tos) {
2638			/* Outer TOS -> inner TOS */
2639			encap_ip->ip_tos = ip_tos;
2640			/* Recompute the inner header checksum. Sigh... */
2641
2642			/* adjust mbuf to point to the inner IP header */
2643			m->m_data += (iphlen + PIM_MINLEN);
2644			m->m_len  -= (iphlen + PIM_MINLEN);
2645
2646			encap_ip->ip_sum = 0;
2647			encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
2648
2649			/* restore mbuf to point back to the outer IP header */
2650			m->m_data -= (iphlen + PIM_MINLEN);
2651			m->m_len  += (iphlen + PIM_MINLEN);
2652		}
2653
2654		/*
2655		 * Decapsulate the inner IP packet and loopback to forward it
2656		 * as a normal multicast packet. Also, make a copy of the
2657		 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
2658		 * to pass to the daemon later, so it can take the appropriate
2659		 * actions (e.g., send back PIM_REGISTER_STOP).
2660		 * XXX: here m->m_data points to the outer IP header.
2661		 */
2662		mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_NOWAIT);
2663		if (mcp == NULL) {
2664			CTR1(KTR_IPMF, "%s: m_copym() failed", __func__);
2665			m_freem(m);
2666			return (IPPROTO_DONE);
2667		}
2668
2669		/* Keep statistics */
2670		/* XXX: registers_bytes include only the encap. mcast pkt */
2671		PIMSTAT_INC(pims_rcv_registers_msgs);
2672		PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len));
2673
2674		/*
2675		 * forward the inner ip packet; point m_data at the inner ip.
2676		 */
2677		m_adj(m, iphlen + PIM_MINLEN);
2678
2679		CTR4(KTR_IPMF,
2680		    "%s: forward decap'd REGISTER: src %lx dst %lx vif %d",
2681		    __func__,
2682		    (u_long)ntohl(encap_ip->ip_src.s_addr),
2683		    (u_long)ntohl(encap_ip->ip_dst.s_addr),
2684		    (int)V_reg_vif_num);
2685
2686		/* NB: vifp was collected above; can it change on us? */
2687		if_simloop(vifp, m, dst.sin_family, 0);
2688
2689		/* prepare the register head to send to the mrouting daemon */
2690		m = mcp;
2691	}
2692
2693pim_input_to_daemon:
2694	/*
2695	 * Pass the PIM message up to the daemon; if it is a Register message,
2696	 * pass the 'head' only up to the daemon. This includes the
2697	 * outer IP header, PIM header, PIM-Register header and the
2698	 * inner IP header.
2699	 * XXX: the outer IP header pkt size of a Register is not adjust to
2700	 * reflect the fact that the inner multicast data is truncated.
2701	 */
2702	return (rip_input(&m, &off, proto));
2703}
2704
2705static int
2706sysctl_mfctable(SYSCTL_HANDLER_ARGS)
2707{
2708	struct mfc	*rt;
2709	int		 error, i;
2710
2711	if (req->newptr)
2712		return (EPERM);
2713	if (V_mfchashtbl == NULL)	/* XXX unlocked */
2714		return (0);
2715	error = sysctl_wire_old_buffer(req, 0);
2716	if (error)
2717		return (error);
2718
2719	MRW_RLOCK();
2720	for (i = 0; i < mfchashsize; i++) {
2721		LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) {
2722			error = SYSCTL_OUT(req, rt, sizeof(struct mfc));
2723			if (error)
2724				goto out_locked;
2725		}
2726	}
2727out_locked:
2728	MRW_RUNLOCK();
2729	return (error);
2730}
2731
2732static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable,
2733    CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mfctable,
2734    "IPv4 Multicast Forwarding Table "
2735    "(struct *mfc[mfchashsize], netinet/ip_mroute.h)");
2736
2737static int
2738sysctl_viflist(SYSCTL_HANDLER_ARGS)
2739{
2740	int error, i;
2741
2742	if (req->newptr)
2743		return (EPERM);
2744	if (V_viftable == NULL)		/* XXX unlocked */
2745		return (0);
2746	error = sysctl_wire_old_buffer(req, MROUTE_VIF_SYSCTL_LEN * MAXVIFS);
2747	if (error)
2748		return (error);
2749
2750	MRW_RLOCK();
2751	/* Copy out user-visible portion of vif entry. */
2752	for (i = 0; i < MAXVIFS; i++) {
2753		error = SYSCTL_OUT(req, &V_viftable[i], MROUTE_VIF_SYSCTL_LEN);
2754		if (error)
2755			break;
2756	}
2757	MRW_RUNLOCK();
2758	return (error);
2759}
2760
2761SYSCTL_PROC(_net_inet_ip, OID_AUTO, viftable,
2762    CTLTYPE_OPAQUE | CTLFLAG_VNET | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
2763    sysctl_viflist, "S,vif[MAXVIFS]",
2764    "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
2765
2766static void
2767vnet_mroute_init(const void *unused __unused)
2768{
2769
2770	V_nexpire = malloc(mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO);
2771
2772	V_viftable = mallocarray(MAXVIFS, sizeof(*V_viftable),
2773	    M_MRTABLE, M_WAITOK|M_ZERO);
2774
2775	callout_init_rw(&V_expire_upcalls_ch, &mrouter_lock, 0);
2776	callout_init_rw(&V_bw_upcalls_ch, &mrouter_lock, 0);
2777
2778	/* Prepare taskqueue */
2779	V_task_queue = taskqueue_create_fast("ip_mroute_tskq", M_NOWAIT,
2780		    taskqueue_thread_enqueue, &V_task_queue);
2781	taskqueue_start_threads(&V_task_queue, 1, PI_NET, "ip_mroute_tskq task");
2782}
2783
2784VNET_SYSINIT(vnet_mroute_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mroute_init,
2785	NULL);
2786
2787static void
2788vnet_mroute_uninit(const void *unused __unused)
2789{
2790
2791	/* Taskqueue should be cancelled and drained before freeing */
2792	taskqueue_free(V_task_queue);
2793
2794	free(V_viftable, M_MRTABLE);
2795	free(V_nexpire, M_MRTABLE);
2796	V_nexpire = NULL;
2797}
2798
2799VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE,
2800    vnet_mroute_uninit, NULL);
2801
2802static int
2803ip_mroute_modevent(module_t mod, int type, void *unused)
2804{
2805
2806	switch (type) {
2807	case MOD_LOAD:
2808		MRW_LOCK_INIT();
2809
2810		if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
2811		    if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
2812		if (if_detach_event_tag == NULL) {
2813			printf("ip_mroute: unable to register "
2814					"ifnet_departure_event handler\n");
2815			MRW_LOCK_DESTROY();
2816			return (EINVAL);
2817		}
2818
2819		if (!powerof2(mfchashsize)) {
2820			printf("WARNING: %s not a power of 2; using default\n",
2821					"net.inet.ip.mfchashsize");
2822			mfchashsize = MFCHASHSIZE;
2823		}
2824
2825		pim_encap_cookie = ip_encap_attach(&ipv4_encap_cfg, NULL, M_WAITOK);
2826
2827		ip_mcast_src = X_ip_mcast_src;
2828		ip_mforward = X_ip_mforward;
2829		ip_mrouter_done = X_ip_mrouter_done;
2830		ip_mrouter_get = X_ip_mrouter_get;
2831		ip_mrouter_set = X_ip_mrouter_set;
2832
2833		ip_rsvp_force_done = X_ip_rsvp_force_done;
2834		ip_rsvp_vif = X_ip_rsvp_vif;
2835
2836		legal_vif_num = X_legal_vif_num;
2837		mrt_ioctl = X_mrt_ioctl;
2838		rsvp_input_p = X_rsvp_input;
2839		break;
2840
2841	case MOD_UNLOAD:
2842		/*
2843		 * Typically module unload happens after the user-level
2844		 * process has shutdown the kernel services (the check
2845		 * below insures someone can't just yank the module out
2846		 * from under a running process).  But if the module is
2847		 * just loaded and then unloaded w/o starting up a user
2848		 * process we still need to cleanup.
2849		 */
2850		MRW_WLOCK();
2851		if (ip_mrouter_cnt != 0) {
2852			MRW_WUNLOCK();
2853			return (EINVAL);
2854		}
2855		ip_mrouter_unloading = 1;
2856		MRW_WUNLOCK();
2857
2858		EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
2859
2860		if (pim_encap_cookie) {
2861			ip_encap_detach(pim_encap_cookie);
2862			pim_encap_cookie = NULL;
2863		}
2864
2865		ip_mcast_src = NULL;
2866		ip_mforward = NULL;
2867		ip_mrouter_done = NULL;
2868		ip_mrouter_get = NULL;
2869		ip_mrouter_set = NULL;
2870
2871		ip_rsvp_force_done = NULL;
2872		ip_rsvp_vif = NULL;
2873
2874		legal_vif_num = NULL;
2875		mrt_ioctl = NULL;
2876		rsvp_input_p = NULL;
2877
2878		MRW_LOCK_DESTROY();
2879		break;
2880
2881	default:
2882		return EOPNOTSUPP;
2883	}
2884	return 0;
2885}
2886
2887static moduledata_t ip_mroutemod = {
2888	"ip_mroute",
2889	ip_mroute_modevent,
2890	0
2891};
2892
2893DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE);
2894