1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1991, 1993, 1995
5 *	The Regents of the University of California.
6 * Copyright (c) 2007-2009 Robert N. M. Watson
7 * Copyright (c) 2010-2011 Juniper Networks, Inc.
8 * Copyright (c) 2021-2022 Gleb Smirnoff <glebius@FreeBSD.org>
9 * All rights reserved.
10 *
11 * Portions of this software were developed by Robert N. M. Watson under
12 * contract to Juniper Networks, Inc.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 * 3. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 */
38
39#include <sys/cdefs.h>
40#include "opt_ddb.h"
41#include "opt_ipsec.h"
42#include "opt_inet.h"
43#include "opt_inet6.h"
44#include "opt_ratelimit.h"
45#include "opt_route.h"
46#include "opt_rss.h"
47
48#include <sys/param.h>
49#include <sys/hash.h>
50#include <sys/systm.h>
51#include <sys/libkern.h>
52#include <sys/lock.h>
53#include <sys/malloc.h>
54#include <sys/mbuf.h>
55#include <sys/eventhandler.h>
56#include <sys/domain.h>
57#include <sys/proc.h>
58#include <sys/protosw.h>
59#include <sys/smp.h>
60#include <sys/smr.h>
61#include <sys/socket.h>
62#include <sys/socketvar.h>
63#include <sys/sockio.h>
64#include <sys/priv.h>
65#include <sys/proc.h>
66#include <sys/refcount.h>
67#include <sys/jail.h>
68#include <sys/kernel.h>
69#include <sys/sysctl.h>
70
71#ifdef DDB
72#include <ddb/ddb.h>
73#endif
74
75#include <vm/uma.h>
76#include <vm/vm.h>
77
78#include <net/if.h>
79#include <net/if_var.h>
80#include <net/if_private.h>
81#include <net/if_types.h>
82#include <net/if_llatbl.h>
83#include <net/route.h>
84#include <net/rss_config.h>
85#include <net/vnet.h>
86
87#if defined(INET) || defined(INET6)
88#include <netinet/in.h>
89#include <netinet/in_pcb.h>
90#include <netinet/in_pcb_var.h>
91#include <netinet/tcp.h>
92#ifdef INET
93#include <netinet/in_var.h>
94#include <netinet/in_fib.h>
95#endif
96#include <netinet/ip_var.h>
97#ifdef INET6
98#include <netinet/ip6.h>
99#include <netinet6/in6_pcb.h>
100#include <netinet6/in6_var.h>
101#include <netinet6/ip6_var.h>
102#endif /* INET6 */
103#include <net/route/nhop.h>
104#endif
105
106#include <netipsec/ipsec_support.h>
107
108#include <security/mac/mac_framework.h>
109
110#define	INPCBLBGROUP_SIZMIN	8
111#define	INPCBLBGROUP_SIZMAX	256
112
113#define	INP_FREED	0x00000200	/* Went through in_pcbfree(). */
114#define	INP_INLBGROUP	0x01000000	/* Inserted into inpcblbgroup. */
115
116/*
117 * These configure the range of local port addresses assigned to
118 * "unspecified" outgoing connections/packets/whatever.
119 */
120VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
121VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
122VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
123VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
124VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
125VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
126
127/*
128 * Reserved ports accessible only to root. There are significant
129 * security considerations that must be accounted for when changing these,
130 * but the security benefits can be great. Please be careful.
131 */
132VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
133VNET_DEFINE(int, ipport_reservedlow);
134
135/* Enable random ephemeral port allocation by default. */
136VNET_DEFINE(int, ipport_randomized) = 1;
137
138#ifdef INET
139static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
140			    struct in_addr faddr, u_int fport_arg,
141			    struct in_addr laddr, u_int lport_arg,
142			    int lookupflags, uint8_t numa_domain);
143
144#define RANGECHK(var, min, max) \
145	if ((var) < (min)) { (var) = (min); } \
146	else if ((var) > (max)) { (var) = (max); }
147
148static int
149sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
150{
151	int error;
152
153	error = sysctl_handle_int(oidp, arg1, arg2, req);
154	if (error == 0) {
155		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
156		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
157		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
158		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
159		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
160		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
161	}
162	return (error);
163}
164
165#undef RANGECHK
166
167static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange,
168    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
169    "IP Ports");
170
171SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
172    CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
173    &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I",
174    "");
175SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
176    CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
177    &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I",
178    "");
179SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
180    CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
181    &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I",
182    "");
183SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
184    CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
185    &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I",
186    "");
187SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
188    CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
189    &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I",
190    "");
191SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
192    CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
193    &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I",
194    "");
195SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
196	CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
197	&VNET_NAME(ipport_reservedhigh), 0, "");
198SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
199	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
200SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
201	CTLFLAG_VNET | CTLFLAG_RW,
202	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
203
204#ifdef RATELIMIT
205counter_u64_t rate_limit_new;
206counter_u64_t rate_limit_chg;
207counter_u64_t rate_limit_active;
208counter_u64_t rate_limit_alloc_fail;
209counter_u64_t rate_limit_set_ok;
210
211static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
212    "IP Rate Limiting");
213SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD,
214    &rate_limit_active, "Active rate limited connections");
215SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD,
216   &rate_limit_alloc_fail, "Rate limited connection failures");
217SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD,
218   &rate_limit_set_ok, "Rate limited setting succeeded");
219SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD,
220   &rate_limit_new, "Total Rate limit new attempts");
221SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD,
222   &rate_limit_chg, "Total Rate limited change attempts");
223#endif /* RATELIMIT */
224
225#endif /* INET */
226
227VNET_DEFINE(uint32_t, in_pcbhashseed);
228static void
229in_pcbhashseed_init(void)
230{
231
232	V_in_pcbhashseed = arc4random();
233}
234VNET_SYSINIT(in_pcbhashseed_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST,
235    in_pcbhashseed_init, 0);
236
237static void in_pcbremhash(struct inpcb *);
238
239/*
240 * in_pcb.c: manage the Protocol Control Blocks.
241 *
242 * NOTE: It is assumed that most of these functions will be called with
243 * the pcbinfo lock held, and often, the inpcb lock held, as these utility
244 * functions often modify hash chains or addresses in pcbs.
245 */
246
247static struct inpcblbgroup *
248in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, struct ucred *cred,
249    u_char vflag, uint16_t port, const union in_dependaddr *addr, int size,
250    uint8_t numa_domain)
251{
252	struct inpcblbgroup *grp;
253	size_t bytes;
254
255	bytes = __offsetof(struct inpcblbgroup, il_inp[size]);
256	grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT);
257	if (grp == NULL)
258		return (NULL);
259	grp->il_cred = crhold(cred);
260	grp->il_vflag = vflag;
261	grp->il_lport = port;
262	grp->il_numa_domain = numa_domain;
263	grp->il_dependladdr = *addr;
264	grp->il_inpsiz = size;
265	CK_LIST_INSERT_HEAD(hdr, grp, il_list);
266	return (grp);
267}
268
269static void
270in_pcblbgroup_free_deferred(epoch_context_t ctx)
271{
272	struct inpcblbgroup *grp;
273
274	grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx);
275	crfree(grp->il_cred);
276	free(grp, M_PCB);
277}
278
279static void
280in_pcblbgroup_free(struct inpcblbgroup *grp)
281{
282
283	CK_LIST_REMOVE(grp, il_list);
284	NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx);
285}
286
287static struct inpcblbgroup *
288in_pcblbgroup_resize(struct inpcblbgrouphead *hdr,
289    struct inpcblbgroup *old_grp, int size)
290{
291	struct inpcblbgroup *grp;
292	int i;
293
294	grp = in_pcblbgroup_alloc(hdr, old_grp->il_cred, old_grp->il_vflag,
295	    old_grp->il_lport, &old_grp->il_dependladdr, size,
296	    old_grp->il_numa_domain);
297	if (grp == NULL)
298		return (NULL);
299
300	KASSERT(old_grp->il_inpcnt < grp->il_inpsiz,
301	    ("invalid new local group size %d and old local group count %d",
302	     grp->il_inpsiz, old_grp->il_inpcnt));
303
304	for (i = 0; i < old_grp->il_inpcnt; ++i)
305		grp->il_inp[i] = old_grp->il_inp[i];
306	grp->il_inpcnt = old_grp->il_inpcnt;
307	in_pcblbgroup_free(old_grp);
308	return (grp);
309}
310
311/*
312 * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i]
313 * and shrink group if possible.
314 */
315static void
316in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp,
317    int i)
318{
319	struct inpcblbgroup *grp, *new_grp;
320
321	grp = *grpp;
322	for (; i + 1 < grp->il_inpcnt; ++i)
323		grp->il_inp[i] = grp->il_inp[i + 1];
324	grp->il_inpcnt--;
325
326	if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN &&
327	    grp->il_inpcnt <= grp->il_inpsiz / 4) {
328		/* Shrink this group. */
329		new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2);
330		if (new_grp != NULL)
331			*grpp = new_grp;
332	}
333}
334
335/*
336 * Add PCB to load balance group for SO_REUSEPORT_LB option.
337 */
338static int
339in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain)
340{
341	const static struct timeval interval = { 60, 0 };
342	static struct timeval lastprint;
343	struct inpcbinfo *pcbinfo;
344	struct inpcblbgrouphead *hdr;
345	struct inpcblbgroup *grp;
346	uint32_t idx;
347
348	pcbinfo = inp->inp_pcbinfo;
349
350	INP_WLOCK_ASSERT(inp);
351	INP_HASH_WLOCK_ASSERT(pcbinfo);
352
353#ifdef INET6
354	/*
355	 * Don't allow IPv4 mapped INET6 wild socket.
356	 */
357	if ((inp->inp_vflag & INP_IPV4) &&
358	    inp->inp_laddr.s_addr == INADDR_ANY &&
359	    INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) {
360		return (0);
361	}
362#endif
363
364	idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask);
365	hdr = &pcbinfo->ipi_lbgrouphashbase[idx];
366	CK_LIST_FOREACH(grp, hdr, il_list) {
367		if (grp->il_cred->cr_prison == inp->inp_cred->cr_prison &&
368		    grp->il_vflag == inp->inp_vflag &&
369		    grp->il_lport == inp->inp_lport &&
370		    grp->il_numa_domain == numa_domain &&
371		    memcmp(&grp->il_dependladdr,
372		    &inp->inp_inc.inc_ie.ie_dependladdr,
373		    sizeof(grp->il_dependladdr)) == 0) {
374			break;
375		}
376	}
377	if (grp == NULL) {
378		/* Create new load balance group. */
379		grp = in_pcblbgroup_alloc(hdr, inp->inp_cred, inp->inp_vflag,
380		    inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr,
381		    INPCBLBGROUP_SIZMIN, numa_domain);
382		if (grp == NULL)
383			return (ENOBUFS);
384	} else if (grp->il_inpcnt == grp->il_inpsiz) {
385		if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) {
386			if (ratecheck(&lastprint, &interval))
387				printf("lb group port %d, limit reached\n",
388				    ntohs(grp->il_lport));
389			return (0);
390		}
391
392		/* Expand this local group. */
393		grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2);
394		if (grp == NULL)
395			return (ENOBUFS);
396	}
397
398	KASSERT(grp->il_inpcnt < grp->il_inpsiz,
399	    ("invalid local group size %d and count %d", grp->il_inpsiz,
400	    grp->il_inpcnt));
401
402	grp->il_inp[grp->il_inpcnt] = inp;
403	grp->il_inpcnt++;
404	inp->inp_flags |= INP_INLBGROUP;
405	return (0);
406}
407
408/*
409 * Remove PCB from load balance group.
410 */
411static void
412in_pcbremlbgrouphash(struct inpcb *inp)
413{
414	struct inpcbinfo *pcbinfo;
415	struct inpcblbgrouphead *hdr;
416	struct inpcblbgroup *grp;
417	int i;
418
419	pcbinfo = inp->inp_pcbinfo;
420
421	INP_WLOCK_ASSERT(inp);
422	MPASS(inp->inp_flags & INP_INLBGROUP);
423	INP_HASH_WLOCK_ASSERT(pcbinfo);
424
425	hdr = &pcbinfo->ipi_lbgrouphashbase[
426	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
427	CK_LIST_FOREACH(grp, hdr, il_list) {
428		for (i = 0; i < grp->il_inpcnt; ++i) {
429			if (grp->il_inp[i] != inp)
430				continue;
431
432			if (grp->il_inpcnt == 1) {
433				/* We are the last, free this local group. */
434				in_pcblbgroup_free(grp);
435			} else {
436				/* Pull up inpcbs, shrink group if possible. */
437				in_pcblbgroup_reorder(hdr, &grp, i);
438			}
439			inp->inp_flags &= ~INP_INLBGROUP;
440			return;
441		}
442	}
443	KASSERT(0, ("%s: did not find %p", __func__, inp));
444}
445
446int
447in_pcblbgroup_numa(struct inpcb *inp, int arg)
448{
449	struct inpcbinfo *pcbinfo;
450	struct inpcblbgrouphead *hdr;
451	struct inpcblbgroup *grp;
452	int err, i;
453	uint8_t numa_domain;
454
455	switch (arg) {
456	case TCP_REUSPORT_LB_NUMA_NODOM:
457		numa_domain = M_NODOM;
458		break;
459	case TCP_REUSPORT_LB_NUMA_CURDOM:
460		numa_domain = PCPU_GET(domain);
461		break;
462	default:
463		if (arg < 0 || arg >= vm_ndomains)
464			return (EINVAL);
465		numa_domain = arg;
466	}
467
468	err = 0;
469	pcbinfo = inp->inp_pcbinfo;
470	INP_WLOCK_ASSERT(inp);
471	INP_HASH_WLOCK(pcbinfo);
472	hdr = &pcbinfo->ipi_lbgrouphashbase[
473	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
474	CK_LIST_FOREACH(grp, hdr, il_list) {
475		for (i = 0; i < grp->il_inpcnt; ++i) {
476			if (grp->il_inp[i] != inp)
477				continue;
478
479			if (grp->il_numa_domain == numa_domain) {
480				goto abort_with_hash_wlock;
481			}
482
483			/* Remove it from the old group. */
484			in_pcbremlbgrouphash(inp);
485
486			/* Add it to the new group based on numa domain. */
487			in_pcbinslbgrouphash(inp, numa_domain);
488			goto abort_with_hash_wlock;
489		}
490	}
491	err = ENOENT;
492abort_with_hash_wlock:
493	INP_HASH_WUNLOCK(pcbinfo);
494	return (err);
495}
496
497/* Make sure it is safe to use hashinit(9) on CK_LIST. */
498CTASSERT(sizeof(struct inpcbhead) == sizeof(LIST_HEAD(, inpcb)));
499
500/*
501 * Initialize an inpcbinfo - a per-VNET instance of connections db.
502 */
503void
504in_pcbinfo_init(struct inpcbinfo *pcbinfo, struct inpcbstorage *pcbstor,
505    u_int hash_nelements, u_int porthash_nelements)
506{
507
508	mtx_init(&pcbinfo->ipi_lock, pcbstor->ips_infolock_name, NULL, MTX_DEF);
509	mtx_init(&pcbinfo->ipi_hash_lock, pcbstor->ips_hashlock_name,
510	    NULL, MTX_DEF);
511#ifdef VIMAGE
512	pcbinfo->ipi_vnet = curvnet;
513#endif
514	CK_LIST_INIT(&pcbinfo->ipi_listhead);
515	pcbinfo->ipi_count = 0;
516	pcbinfo->ipi_hash_exact = hashinit(hash_nelements, M_PCB,
517	    &pcbinfo->ipi_hashmask);
518	pcbinfo->ipi_hash_wild = hashinit(hash_nelements, M_PCB,
519	    &pcbinfo->ipi_hashmask);
520	porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1);
521	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
522	    &pcbinfo->ipi_porthashmask);
523	pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB,
524	    &pcbinfo->ipi_lbgrouphashmask);
525	pcbinfo->ipi_zone = pcbstor->ips_zone;
526	pcbinfo->ipi_portzone = pcbstor->ips_portzone;
527	pcbinfo->ipi_smr = uma_zone_get_smr(pcbinfo->ipi_zone);
528}
529
530/*
531 * Destroy an inpcbinfo.
532 */
533void
534in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
535{
536
537	KASSERT(pcbinfo->ipi_count == 0,
538	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
539
540	hashdestroy(pcbinfo->ipi_hash_exact, M_PCB, pcbinfo->ipi_hashmask);
541	hashdestroy(pcbinfo->ipi_hash_wild, M_PCB, pcbinfo->ipi_hashmask);
542	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
543	    pcbinfo->ipi_porthashmask);
544	hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB,
545	    pcbinfo->ipi_lbgrouphashmask);
546	mtx_destroy(&pcbinfo->ipi_hash_lock);
547	mtx_destroy(&pcbinfo->ipi_lock);
548}
549
550/*
551 * Initialize a pcbstorage - per protocol zones to allocate inpcbs.
552 */
553static void inpcb_fini(void *, int);
554void
555in_pcbstorage_init(void *arg)
556{
557	struct inpcbstorage *pcbstor = arg;
558
559	pcbstor->ips_zone = uma_zcreate(pcbstor->ips_zone_name,
560	    pcbstor->ips_size, NULL, NULL, pcbstor->ips_pcbinit,
561	    inpcb_fini, UMA_ALIGN_CACHE, UMA_ZONE_SMR);
562	pcbstor->ips_portzone = uma_zcreate(pcbstor->ips_portzone_name,
563	    sizeof(struct inpcbport), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
564	uma_zone_set_smr(pcbstor->ips_portzone,
565	    uma_zone_get_smr(pcbstor->ips_zone));
566}
567
568/*
569 * Destroy a pcbstorage - used by unloadable protocols.
570 */
571void
572in_pcbstorage_destroy(void *arg)
573{
574	struct inpcbstorage *pcbstor = arg;
575
576	uma_zdestroy(pcbstor->ips_zone);
577	uma_zdestroy(pcbstor->ips_portzone);
578}
579
580/*
581 * Allocate a PCB and associate it with the socket.
582 * On success return with the PCB locked.
583 */
584int
585in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
586{
587	struct inpcb *inp;
588#if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
589	int error;
590#endif
591
592	inp = uma_zalloc_smr(pcbinfo->ipi_zone, M_NOWAIT);
593	if (inp == NULL)
594		return (ENOBUFS);
595	bzero(&inp->inp_start_zero, inp_zero_size);
596#ifdef NUMA
597	inp->inp_numa_domain = M_NODOM;
598#endif
599	inp->inp_pcbinfo = pcbinfo;
600	inp->inp_socket = so;
601	inp->inp_cred = crhold(so->so_cred);
602	inp->inp_inc.inc_fibnum = so->so_fibnum;
603#ifdef MAC
604	error = mac_inpcb_init(inp, M_NOWAIT);
605	if (error != 0)
606		goto out;
607	mac_inpcb_create(so, inp);
608#endif
609#if defined(IPSEC) || defined(IPSEC_SUPPORT)
610	error = ipsec_init_pcbpolicy(inp);
611	if (error != 0) {
612#ifdef MAC
613		mac_inpcb_destroy(inp);
614#endif
615		goto out;
616	}
617#endif /*IPSEC*/
618#ifdef INET6
619	if (INP_SOCKAF(so) == AF_INET6) {
620		inp->inp_vflag |= INP_IPV6PROTO | INP_IPV6;
621		if (V_ip6_v6only)
622			inp->inp_flags |= IN6P_IPV6_V6ONLY;
623#ifdef INET
624		else
625			inp->inp_vflag |= INP_IPV4;
626#endif
627		if (V_ip6_auto_flowlabel)
628			inp->inp_flags |= IN6P_AUTOFLOWLABEL;
629		inp->in6p_hops = -1;	/* use kernel default */
630	}
631#endif
632#if defined(INET) && defined(INET6)
633	else
634#endif
635#ifdef INET
636		inp->inp_vflag |= INP_IPV4;
637#endif
638	inp->inp_smr = SMR_SEQ_INVALID;
639
640	/*
641	 * Routes in inpcb's can cache L2 as well; they are guaranteed
642	 * to be cleaned up.
643	 */
644	inp->inp_route.ro_flags = RT_LLE_CACHE;
645	refcount_init(&inp->inp_refcount, 1);   /* Reference from socket. */
646	INP_WLOCK(inp);
647	INP_INFO_WLOCK(pcbinfo);
648	pcbinfo->ipi_count++;
649	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
650	CK_LIST_INSERT_HEAD(&pcbinfo->ipi_listhead, inp, inp_list);
651	INP_INFO_WUNLOCK(pcbinfo);
652	so->so_pcb = inp;
653
654	return (0);
655
656#if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
657out:
658	crfree(inp->inp_cred);
659#ifdef INVARIANTS
660	inp->inp_cred = NULL;
661#endif
662	uma_zfree_smr(pcbinfo->ipi_zone, inp);
663	return (error);
664#endif
665}
666
667#ifdef INET
668int
669in_pcbbind(struct inpcb *inp, struct sockaddr_in *sin, struct ucred *cred)
670{
671	int anonport, error;
672
673	KASSERT(sin == NULL || sin->sin_family == AF_INET,
674	    ("%s: invalid address family for %p", __func__, sin));
675	KASSERT(sin == NULL || sin->sin_len == sizeof(struct sockaddr_in),
676	    ("%s: invalid address length for %p", __func__, sin));
677	INP_WLOCK_ASSERT(inp);
678	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
679
680	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
681		return (EINVAL);
682	anonport = sin == NULL || sin->sin_port == 0;
683	error = in_pcbbind_setup(inp, sin, &inp->inp_laddr.s_addr,
684	    &inp->inp_lport, cred);
685	if (error)
686		return (error);
687	if (in_pcbinshash(inp) != 0) {
688		inp->inp_laddr.s_addr = INADDR_ANY;
689		inp->inp_lport = 0;
690		return (EAGAIN);
691	}
692	if (anonport)
693		inp->inp_flags |= INP_ANONPORT;
694	return (0);
695}
696#endif
697
698#if defined(INET) || defined(INET6)
699/*
700 * Assign a local port like in_pcb_lport(), but also used with connect()
701 * and a foreign address and port.  If fsa is non-NULL, choose a local port
702 * that is unused with those, otherwise one that is completely unused.
703 * lsa can be NULL for IPv6.
704 */
705int
706in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp,
707    struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags)
708{
709	struct inpcbinfo *pcbinfo;
710	struct inpcb *tmpinp;
711	unsigned short *lastport;
712	int count, error;
713	u_short aux, first, last, lport;
714#ifdef INET
715	struct in_addr laddr, faddr;
716#endif
717#ifdef INET6
718	struct in6_addr *laddr6, *faddr6;
719#endif
720
721	pcbinfo = inp->inp_pcbinfo;
722
723	/*
724	 * Because no actual state changes occur here, a global write lock on
725	 * the pcbinfo isn't required.
726	 */
727	INP_LOCK_ASSERT(inp);
728	INP_HASH_LOCK_ASSERT(pcbinfo);
729
730	if (inp->inp_flags & INP_HIGHPORT) {
731		first = V_ipport_hifirstauto;	/* sysctl */
732		last  = V_ipport_hilastauto;
733		lastport = &pcbinfo->ipi_lasthi;
734	} else if (inp->inp_flags & INP_LOWPORT) {
735		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT);
736		if (error)
737			return (error);
738		first = V_ipport_lowfirstauto;	/* 1023 */
739		last  = V_ipport_lowlastauto;	/* 600 */
740		lastport = &pcbinfo->ipi_lastlow;
741	} else {
742		first = V_ipport_firstauto;	/* sysctl */
743		last  = V_ipport_lastauto;
744		lastport = &pcbinfo->ipi_lastport;
745	}
746
747	/*
748	 * Instead of having two loops further down counting up or down
749	 * make sure that first is always <= last and go with only one
750	 * code path implementing all logic.
751	 */
752	if (first > last) {
753		aux = first;
754		first = last;
755		last = aux;
756	}
757
758#ifdef INET
759	laddr.s_addr = INADDR_ANY;	/* used by INET6+INET below too */
760	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
761		if (lsa != NULL)
762			laddr = ((struct sockaddr_in *)lsa)->sin_addr;
763		if (fsa != NULL)
764			faddr = ((struct sockaddr_in *)fsa)->sin_addr;
765	}
766#endif
767#ifdef INET6
768	laddr6 = NULL;
769	if ((inp->inp_vflag & INP_IPV6) != 0) {
770		if (lsa != NULL)
771			laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr;
772		if (fsa != NULL)
773			faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr;
774	}
775#endif
776
777	tmpinp = NULL;
778	lport = *lportp;
779
780	if (V_ipport_randomized)
781		*lastport = first + (arc4random() % (last - first));
782
783	count = last - first;
784
785	do {
786		if (count-- < 0)	/* completely used? */
787			return (EADDRNOTAVAIL);
788		++*lastport;
789		if (*lastport < first || *lastport > last)
790			*lastport = first;
791		lport = htons(*lastport);
792
793		if (fsa != NULL) {
794#ifdef INET
795			if (lsa->sa_family == AF_INET) {
796				tmpinp = in_pcblookup_hash_locked(pcbinfo,
797				    faddr, fport, laddr, lport, lookupflags,
798				    M_NODOM);
799			}
800#endif
801#ifdef INET6
802			if (lsa->sa_family == AF_INET6) {
803				tmpinp = in6_pcblookup_hash_locked(pcbinfo,
804				    faddr6, fport, laddr6, lport, lookupflags,
805				    M_NODOM);
806			}
807#endif
808		} else {
809#ifdef INET6
810			if ((inp->inp_vflag & INP_IPV6) != 0) {
811				tmpinp = in6_pcblookup_local(pcbinfo,
812				    &inp->in6p_laddr, lport, lookupflags, cred);
813#ifdef INET
814				if (tmpinp == NULL &&
815				    (inp->inp_vflag & INP_IPV4))
816					tmpinp = in_pcblookup_local(pcbinfo,
817					    laddr, lport, lookupflags, cred);
818#endif
819			}
820#endif
821#if defined(INET) && defined(INET6)
822			else
823#endif
824#ifdef INET
825				tmpinp = in_pcblookup_local(pcbinfo, laddr,
826				    lport, lookupflags, cred);
827#endif
828		}
829	} while (tmpinp != NULL);
830
831	*lportp = lport;
832
833	return (0);
834}
835
836/*
837 * Select a local port (number) to use.
838 */
839int
840in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
841    struct ucred *cred, int lookupflags)
842{
843	struct sockaddr_in laddr;
844
845	if (laddrp) {
846		bzero(&laddr, sizeof(laddr));
847		laddr.sin_family = AF_INET;
848		laddr.sin_addr = *laddrp;
849	}
850	return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr :
851	    NULL, lportp, NULL, 0, cred, lookupflags));
852}
853#endif /* INET || INET6 */
854
855#ifdef INET
856/*
857 * Set up a bind operation on a PCB, performing port allocation
858 * as required, but do not actually modify the PCB. Callers can
859 * either complete the bind by setting inp_laddr/inp_lport and
860 * calling in_pcbinshash(), or they can just use the resulting
861 * port and address to authorise the sending of a once-off packet.
862 *
863 * On error, the values of *laddrp and *lportp are not changed.
864 */
865int
866in_pcbbind_setup(struct inpcb *inp, struct sockaddr_in *sin, in_addr_t *laddrp,
867    u_short *lportp, struct ucred *cred)
868{
869	struct socket *so = inp->inp_socket;
870	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
871	struct in_addr laddr;
872	u_short lport = 0;
873	int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
874	int error;
875
876	/*
877	 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here
878	 * so that we don't have to add to the (already messy) code below.
879	 */
880	int reuseport_lb = (so->so_options & SO_REUSEPORT_LB);
881
882	/*
883	 * No state changes, so read locks are sufficient here.
884	 */
885	INP_LOCK_ASSERT(inp);
886	INP_HASH_LOCK_ASSERT(pcbinfo);
887
888	laddr.s_addr = *laddrp;
889	if (sin != NULL && laddr.s_addr != INADDR_ANY)
890		return (EINVAL);
891	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0)
892		lookupflags = INPLOOKUP_WILDCARD;
893	if (sin == NULL) {
894		if ((error = prison_local_ip4(cred, &laddr)) != 0)
895			return (error);
896	} else {
897		KASSERT(sin->sin_family == AF_INET,
898		    ("%s: invalid family for address %p", __func__, sin));
899		KASSERT(sin->sin_len == sizeof(*sin),
900		    ("%s: invalid length for address %p", __func__, sin));
901
902		error = prison_local_ip4(cred, &sin->sin_addr);
903		if (error)
904			return (error);
905		if (sin->sin_port != *lportp) {
906			/* Don't allow the port to change. */
907			if (*lportp != 0)
908				return (EINVAL);
909			lport = sin->sin_port;
910		}
911		/* NB: lport is left as 0 if the port isn't being changed. */
912		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
913			/*
914			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
915			 * allow complete duplication of binding if
916			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
917			 * and a multicast address is bound on both
918			 * new and duplicated sockets.
919			 */
920			if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
921				reuseport = SO_REUSEADDR|SO_REUSEPORT;
922			/*
923			 * XXX: How to deal with SO_REUSEPORT_LB here?
924			 * Treat same as SO_REUSEPORT for now.
925			 */
926			if ((so->so_options &
927			    (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0)
928				reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB;
929		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
930			sin->sin_port = 0;		/* yech... */
931			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
932			/*
933			 * Is the address a local IP address?
934			 * If INP_BINDANY is set, then the socket may be bound
935			 * to any endpoint address, local or not.
936			 */
937			if ((inp->inp_flags & INP_BINDANY) == 0 &&
938			    ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
939				return (EADDRNOTAVAIL);
940		}
941		laddr = sin->sin_addr;
942		if (lport) {
943			struct inpcb *t;
944
945			/* GROSS */
946			if (ntohs(lport) <= V_ipport_reservedhigh &&
947			    ntohs(lport) >= V_ipport_reservedlow &&
948			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT))
949				return (EACCES);
950			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
951			    priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) {
952				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
953				    lport, INPLOOKUP_WILDCARD, cred);
954	/*
955	 * XXX
956	 * This entire block sorely needs a rewrite.
957	 */
958				if (t != NULL &&
959				    (so->so_type != SOCK_STREAM ||
960				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
961				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
962				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
963				     (t->inp_socket->so_options & SO_REUSEPORT) ||
964				     (t->inp_socket->so_options & SO_REUSEPORT_LB) == 0) &&
965				    (inp->inp_cred->cr_uid !=
966				     t->inp_cred->cr_uid))
967					return (EADDRINUSE);
968			}
969			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
970			    lport, lookupflags, cred);
971			if (t != NULL && (reuseport & t->inp_socket->so_options) == 0 &&
972			    (reuseport_lb & t->inp_socket->so_options) == 0) {
973#ifdef INET6
974				if (ntohl(sin->sin_addr.s_addr) !=
975				    INADDR_ANY ||
976				    ntohl(t->inp_laddr.s_addr) !=
977				    INADDR_ANY ||
978				    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
979				    (t->inp_vflag & INP_IPV6PROTO) == 0)
980#endif
981						return (EADDRINUSE);
982			}
983		}
984	}
985	if (*lportp != 0)
986		lport = *lportp;
987	if (lport == 0) {
988		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
989		if (error != 0)
990			return (error);
991	}
992	*laddrp = laddr.s_addr;
993	*lportp = lport;
994	return (0);
995}
996
997/*
998 * Connect from a socket to a specified address.
999 * Both address and port must be specified in argument sin.
1000 * If don't have a local address for this socket yet,
1001 * then pick one.
1002 */
1003int
1004in_pcbconnect(struct inpcb *inp, struct sockaddr_in *sin, struct ucred *cred,
1005    bool rehash __unused)
1006{
1007	u_short lport, fport;
1008	in_addr_t laddr, faddr;
1009	int anonport, error;
1010
1011	INP_WLOCK_ASSERT(inp);
1012	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1013	KASSERT(in_nullhost(inp->inp_faddr),
1014	    ("%s: inp is already connected", __func__));
1015
1016	lport = inp->inp_lport;
1017	laddr = inp->inp_laddr.s_addr;
1018	anonport = (lport == 0);
1019	error = in_pcbconnect_setup(inp, sin, &laddr, &lport, &faddr, &fport,
1020	    cred);
1021	if (error)
1022		return (error);
1023
1024	inp->inp_faddr.s_addr = faddr;
1025	inp->inp_fport = fport;
1026
1027	/* Do the initial binding of the local address if required. */
1028	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
1029		inp->inp_lport = lport;
1030		inp->inp_laddr.s_addr = laddr;
1031		if (in_pcbinshash(inp) != 0) {
1032			inp->inp_laddr.s_addr = inp->inp_faddr.s_addr =
1033			    INADDR_ANY;
1034			inp->inp_lport = inp->inp_fport = 0;
1035			return (EAGAIN);
1036		}
1037	} else {
1038		inp->inp_lport = lport;
1039		inp->inp_laddr.s_addr = laddr;
1040		if ((inp->inp_flags & INP_INHASHLIST) != 0)
1041			in_pcbrehash(inp);
1042		else
1043			in_pcbinshash(inp);
1044	}
1045
1046	if (anonport)
1047		inp->inp_flags |= INP_ANONPORT;
1048	return (0);
1049}
1050
1051/*
1052 * Do proper source address selection on an unbound socket in case
1053 * of connect. Take jails into account as well.
1054 */
1055int
1056in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
1057    struct ucred *cred)
1058{
1059	struct ifaddr *ifa;
1060	struct sockaddr *sa;
1061	struct sockaddr_in *sin, dst;
1062	struct nhop_object *nh;
1063	int error;
1064
1065	NET_EPOCH_ASSERT();
1066	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
1067
1068	/*
1069	 * Bypass source address selection and use the primary jail IP
1070	 * if requested.
1071	 */
1072	if (!prison_saddrsel_ip4(cred, laddr))
1073		return (0);
1074
1075	error = 0;
1076
1077	nh = NULL;
1078	bzero(&dst, sizeof(dst));
1079	sin = &dst;
1080	sin->sin_family = AF_INET;
1081	sin->sin_len = sizeof(struct sockaddr_in);
1082	sin->sin_addr.s_addr = faddr->s_addr;
1083
1084	/*
1085	 * If route is known our src addr is taken from the i/f,
1086	 * else punt.
1087	 *
1088	 * Find out route to destination.
1089	 */
1090	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
1091		nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr,
1092		    0, NHR_NONE, 0);
1093
1094	/*
1095	 * If we found a route, use the address corresponding to
1096	 * the outgoing interface.
1097	 *
1098	 * Otherwise assume faddr is reachable on a directly connected
1099	 * network and try to find a corresponding interface to take
1100	 * the source address from.
1101	 */
1102	if (nh == NULL || nh->nh_ifp == NULL) {
1103		struct in_ifaddr *ia;
1104		struct ifnet *ifp;
1105
1106		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
1107					inp->inp_socket->so_fibnum));
1108		if (ia == NULL) {
1109			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
1110						inp->inp_socket->so_fibnum));
1111		}
1112		if (ia == NULL) {
1113			error = ENETUNREACH;
1114			goto done;
1115		}
1116
1117		if (!prison_flag(cred, PR_IP4)) {
1118			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1119			goto done;
1120		}
1121
1122		ifp = ia->ia_ifp;
1123		ia = NULL;
1124		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1125			sa = ifa->ifa_addr;
1126			if (sa->sa_family != AF_INET)
1127				continue;
1128			sin = (struct sockaddr_in *)sa;
1129			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1130				ia = (struct in_ifaddr *)ifa;
1131				break;
1132			}
1133		}
1134		if (ia != NULL) {
1135			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1136			goto done;
1137		}
1138
1139		/* 3. As a last resort return the 'default' jail address. */
1140		error = prison_get_ip4(cred, laddr);
1141		goto done;
1142	}
1143
1144	/*
1145	 * If the outgoing interface on the route found is not
1146	 * a loopback interface, use the address from that interface.
1147	 * In case of jails do those three steps:
1148	 * 1. check if the interface address belongs to the jail. If so use it.
1149	 * 2. check if we have any address on the outgoing interface
1150	 *    belonging to this jail. If so use it.
1151	 * 3. as a last resort return the 'default' jail address.
1152	 */
1153	if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) {
1154		struct in_ifaddr *ia;
1155		struct ifnet *ifp;
1156
1157		/* If not jailed, use the default returned. */
1158		if (!prison_flag(cred, PR_IP4)) {
1159			ia = (struct in_ifaddr *)nh->nh_ifa;
1160			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1161			goto done;
1162		}
1163
1164		/* Jailed. */
1165		/* 1. Check if the iface address belongs to the jail. */
1166		sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr;
1167		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1168			ia = (struct in_ifaddr *)nh->nh_ifa;
1169			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1170			goto done;
1171		}
1172
1173		/*
1174		 * 2. Check if we have any address on the outgoing interface
1175		 *    belonging to this jail.
1176		 */
1177		ia = NULL;
1178		ifp = nh->nh_ifp;
1179		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1180			sa = ifa->ifa_addr;
1181			if (sa->sa_family != AF_INET)
1182				continue;
1183			sin = (struct sockaddr_in *)sa;
1184			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1185				ia = (struct in_ifaddr *)ifa;
1186				break;
1187			}
1188		}
1189		if (ia != NULL) {
1190			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1191			goto done;
1192		}
1193
1194		/* 3. As a last resort return the 'default' jail address. */
1195		error = prison_get_ip4(cred, laddr);
1196		goto done;
1197	}
1198
1199	/*
1200	 * The outgoing interface is marked with 'loopback net', so a route
1201	 * to ourselves is here.
1202	 * Try to find the interface of the destination address and then
1203	 * take the address from there. That interface is not necessarily
1204	 * a loopback interface.
1205	 * In case of jails, check that it is an address of the jail
1206	 * and if we cannot find, fall back to the 'default' jail address.
1207	 */
1208	if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) {
1209		struct in_ifaddr *ia;
1210
1211		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst),
1212					inp->inp_socket->so_fibnum));
1213		if (ia == NULL)
1214			ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0,
1215						inp->inp_socket->so_fibnum));
1216		if (ia == NULL)
1217			ia = ifatoia(ifa_ifwithaddr(sintosa(&dst)));
1218
1219		if (!prison_flag(cred, PR_IP4)) {
1220			if (ia == NULL) {
1221				error = ENETUNREACH;
1222				goto done;
1223			}
1224			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1225			goto done;
1226		}
1227
1228		/* Jailed. */
1229		if (ia != NULL) {
1230			struct ifnet *ifp;
1231
1232			ifp = ia->ia_ifp;
1233			ia = NULL;
1234			CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1235				sa = ifa->ifa_addr;
1236				if (sa->sa_family != AF_INET)
1237					continue;
1238				sin = (struct sockaddr_in *)sa;
1239				if (prison_check_ip4(cred,
1240				    &sin->sin_addr) == 0) {
1241					ia = (struct in_ifaddr *)ifa;
1242					break;
1243				}
1244			}
1245			if (ia != NULL) {
1246				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1247				goto done;
1248			}
1249		}
1250
1251		/* 3. As a last resort return the 'default' jail address. */
1252		error = prison_get_ip4(cred, laddr);
1253		goto done;
1254	}
1255
1256done:
1257	if (error == 0 && laddr->s_addr == INADDR_ANY)
1258		return (EHOSTUNREACH);
1259	return (error);
1260}
1261
1262/*
1263 * Set up for a connect from a socket to the specified address.
1264 * On entry, *laddrp and *lportp should contain the current local
1265 * address and port for the PCB; these are updated to the values
1266 * that should be placed in inp_laddr and inp_lport to complete
1267 * the connect.
1268 *
1269 * On success, *faddrp and *fportp will be set to the remote address
1270 * and port. These are not updated in the error case.
1271 */
1272int
1273in_pcbconnect_setup(struct inpcb *inp, struct sockaddr_in *sin,
1274    in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
1275    struct ucred *cred)
1276{
1277	struct in_ifaddr *ia;
1278	struct in_addr laddr, faddr;
1279	u_short lport, fport;
1280	int error;
1281
1282	KASSERT(sin->sin_family == AF_INET,
1283	    ("%s: invalid address family for %p", __func__, sin));
1284	KASSERT(sin->sin_len == sizeof(*sin),
1285	    ("%s: invalid address length for %p", __func__, sin));
1286
1287	/*
1288	 * Because a global state change doesn't actually occur here, a read
1289	 * lock is sufficient.
1290	 */
1291	NET_EPOCH_ASSERT();
1292	INP_LOCK_ASSERT(inp);
1293	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1294
1295	if (sin->sin_port == 0)
1296		return (EADDRNOTAVAIL);
1297	laddr.s_addr = *laddrp;
1298	lport = *lportp;
1299	faddr = sin->sin_addr;
1300	fport = sin->sin_port;
1301#ifdef ROUTE_MPATH
1302	if (CALC_FLOWID_OUTBOUND) {
1303		uint32_t hash_val, hash_type;
1304
1305		hash_val = fib4_calc_software_hash(laddr, faddr, 0, fport,
1306		    inp->inp_socket->so_proto->pr_protocol, &hash_type);
1307
1308		inp->inp_flowid = hash_val;
1309		inp->inp_flowtype = hash_type;
1310	}
1311#endif
1312	if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) {
1313		/*
1314		 * If the destination address is INADDR_ANY,
1315		 * use the primary local address.
1316		 * If the supplied address is INADDR_BROADCAST,
1317		 * and the primary interface supports broadcast,
1318		 * choose the broadcast address for that interface.
1319		 */
1320		if (faddr.s_addr == INADDR_ANY) {
1321			faddr =
1322			    IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1323			if ((error = prison_get_ip4(cred, &faddr)) != 0)
1324				return (error);
1325		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1326			if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1327			    IFF_BROADCAST)
1328				faddr = satosin(&CK_STAILQ_FIRST(
1329				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1330		}
1331	}
1332	if (laddr.s_addr == INADDR_ANY) {
1333		error = in_pcbladdr(inp, &faddr, &laddr, cred);
1334		/*
1335		 * If the destination address is multicast and an outgoing
1336		 * interface has been set as a multicast option, prefer the
1337		 * address of that interface as our source address.
1338		 */
1339		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1340		    inp->inp_moptions != NULL) {
1341			struct ip_moptions *imo;
1342			struct ifnet *ifp;
1343
1344			imo = inp->inp_moptions;
1345			if (imo->imo_multicast_ifp != NULL) {
1346				ifp = imo->imo_multicast_ifp;
1347				CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1348					if (ia->ia_ifp == ifp &&
1349					    prison_check_ip4(cred,
1350					    &ia->ia_addr.sin_addr) == 0)
1351						break;
1352				}
1353				if (ia == NULL)
1354					error = EADDRNOTAVAIL;
1355				else {
1356					laddr = ia->ia_addr.sin_addr;
1357					error = 0;
1358				}
1359			}
1360		}
1361		if (error)
1362			return (error);
1363	}
1364
1365	if (lport != 0) {
1366		if (in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr,
1367		    fport, laddr, lport, 0, M_NODOM) != NULL)
1368			return (EADDRINUSE);
1369	} else {
1370		struct sockaddr_in lsin, fsin;
1371
1372		bzero(&lsin, sizeof(lsin));
1373		bzero(&fsin, sizeof(fsin));
1374		lsin.sin_family = AF_INET;
1375		lsin.sin_addr = laddr;
1376		fsin.sin_family = AF_INET;
1377		fsin.sin_addr = faddr;
1378		error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin,
1379		    &lport, (struct sockaddr *)& fsin, fport, cred,
1380		    INPLOOKUP_WILDCARD);
1381		if (error)
1382			return (error);
1383	}
1384	*laddrp = laddr.s_addr;
1385	*lportp = lport;
1386	*faddrp = faddr.s_addr;
1387	*fportp = fport;
1388	return (0);
1389}
1390
1391void
1392in_pcbdisconnect(struct inpcb *inp)
1393{
1394
1395	INP_WLOCK_ASSERT(inp);
1396	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1397	KASSERT(inp->inp_smr == SMR_SEQ_INVALID,
1398	    ("%s: inp %p was already disconnected", __func__, inp));
1399
1400	in_pcbremhash_locked(inp);
1401
1402	/* See the comment in in_pcbinshash(). */
1403	inp->inp_smr = smr_advance(inp->inp_pcbinfo->ipi_smr);
1404	inp->inp_laddr.s_addr = INADDR_ANY;
1405	inp->inp_faddr.s_addr = INADDR_ANY;
1406	inp->inp_fport = 0;
1407}
1408#endif /* INET */
1409
1410/*
1411 * inpcb hash lookups are protected by SMR section.
1412 *
1413 * Once desired pcb has been found, switching from SMR section to a pcb
1414 * lock is performed with inp_smr_lock(). We can not use INP_(W|R)LOCK
1415 * here because SMR is a critical section.
1416 * In 99%+ cases inp_smr_lock() would obtain the lock immediately.
1417 */
1418void
1419inp_lock(struct inpcb *inp, const inp_lookup_t lock)
1420{
1421
1422	lock == INPLOOKUP_RLOCKPCB ?
1423	    rw_rlock(&inp->inp_lock) : rw_wlock(&inp->inp_lock);
1424}
1425
1426void
1427inp_unlock(struct inpcb *inp, const inp_lookup_t lock)
1428{
1429
1430	lock == INPLOOKUP_RLOCKPCB ?
1431	    rw_runlock(&inp->inp_lock) : rw_wunlock(&inp->inp_lock);
1432}
1433
1434int
1435inp_trylock(struct inpcb *inp, const inp_lookup_t lock)
1436{
1437
1438	return (lock == INPLOOKUP_RLOCKPCB ?
1439	    rw_try_rlock(&inp->inp_lock) : rw_try_wlock(&inp->inp_lock));
1440}
1441
1442static inline bool
1443_inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock, const int ignflags)
1444{
1445
1446	MPASS(lock == INPLOOKUP_RLOCKPCB || lock == INPLOOKUP_WLOCKPCB);
1447	SMR_ASSERT_ENTERED(inp->inp_pcbinfo->ipi_smr);
1448
1449	if (__predict_true(inp_trylock(inp, lock))) {
1450		if (__predict_false(inp->inp_flags & ignflags)) {
1451			smr_exit(inp->inp_pcbinfo->ipi_smr);
1452			inp_unlock(inp, lock);
1453			return (false);
1454		}
1455		smr_exit(inp->inp_pcbinfo->ipi_smr);
1456		return (true);
1457	}
1458
1459	if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) {
1460		smr_exit(inp->inp_pcbinfo->ipi_smr);
1461		inp_lock(inp, lock);
1462		if (__predict_false(in_pcbrele(inp, lock)))
1463			return (false);
1464		/*
1465		 * inp acquired through refcount & lock for sure didn't went
1466		 * through uma_zfree().  However, it may have already went
1467		 * through in_pcbfree() and has another reference, that
1468		 * prevented its release by our in_pcbrele().
1469		 */
1470		if (__predict_false(inp->inp_flags & ignflags)) {
1471			inp_unlock(inp, lock);
1472			return (false);
1473		}
1474		return (true);
1475	} else {
1476		smr_exit(inp->inp_pcbinfo->ipi_smr);
1477		return (false);
1478	}
1479}
1480
1481bool
1482inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock)
1483{
1484
1485	/*
1486	 * in_pcblookup() family of functions ignore not only freed entries,
1487	 * that may be found due to lockless access to the hash, but dropped
1488	 * entries, too.
1489	 */
1490	return (_inp_smr_lock(inp, lock, INP_FREED | INP_DROPPED));
1491}
1492
1493/*
1494 * inp_next() - inpcb hash/list traversal iterator
1495 *
1496 * Requires initialized struct inpcb_iterator for context.
1497 * The structure can be initialized with INP_ITERATOR() or INP_ALL_ITERATOR().
1498 *
1499 * - Iterator can have either write-lock or read-lock semantics, that can not
1500 *   be changed later.
1501 * - Iterator can iterate either over all pcbs list (INP_ALL_LIST), or through
1502 *   a single hash slot.  Note: only rip_input() does the latter.
1503 * - Iterator may have optional bool matching function.  The matching function
1504 *   will be executed for each inpcb in the SMR context, so it can not acquire
1505 *   locks and can safely access only immutable fields of inpcb.
1506 *
1507 * A fresh initialized iterator has NULL inpcb in its context and that
1508 * means that inp_next() call would return the very first inpcb on the list
1509 * locked with desired semantic.  In all following calls the context pointer
1510 * shall hold the current inpcb pointer.  The KPI user is not supposed to
1511 * unlock the current inpcb!  Upon end of traversal inp_next() will return NULL
1512 * and write NULL to its context.  After end of traversal an iterator can be
1513 * reused.
1514 *
1515 * List traversals have the following features/constraints:
1516 * - New entries won't be seen, as they are always added to the head of a list.
1517 * - Removed entries won't stop traversal as long as they are not added to
1518 *   a different list. This is violated by in_pcbrehash().
1519 */
1520#define	II_LIST_FIRST(ipi, hash)					\
1521		(((hash) == INP_ALL_LIST) ?				\
1522		    CK_LIST_FIRST(&(ipi)->ipi_listhead) :		\
1523		    CK_LIST_FIRST(&(ipi)->ipi_hash_exact[(hash)]))
1524#define	II_LIST_NEXT(inp, hash)						\
1525		(((hash) == INP_ALL_LIST) ?				\
1526		    CK_LIST_NEXT((inp), inp_list) :			\
1527		    CK_LIST_NEXT((inp), inp_hash_exact))
1528#define	II_LOCK_ASSERT(inp, lock)					\
1529		rw_assert(&(inp)->inp_lock,				\
1530		    (lock) == INPLOOKUP_RLOCKPCB ?  RA_RLOCKED : RA_WLOCKED )
1531struct inpcb *
1532inp_next(struct inpcb_iterator *ii)
1533{
1534	const struct inpcbinfo *ipi = ii->ipi;
1535	inp_match_t *match = ii->match;
1536	void *ctx = ii->ctx;
1537	inp_lookup_t lock = ii->lock;
1538	int hash = ii->hash;
1539	struct inpcb *inp;
1540
1541	if (ii->inp == NULL) {		/* First call. */
1542		smr_enter(ipi->ipi_smr);
1543		/* This is unrolled CK_LIST_FOREACH(). */
1544		for (inp = II_LIST_FIRST(ipi, hash);
1545		    inp != NULL;
1546		    inp = II_LIST_NEXT(inp, hash)) {
1547			if (match != NULL && (match)(inp, ctx) == false)
1548				continue;
1549			if (__predict_true(_inp_smr_lock(inp, lock, INP_FREED)))
1550				break;
1551			else {
1552				smr_enter(ipi->ipi_smr);
1553				MPASS(inp != II_LIST_FIRST(ipi, hash));
1554				inp = II_LIST_FIRST(ipi, hash);
1555				if (inp == NULL)
1556					break;
1557			}
1558		}
1559
1560		if (inp == NULL)
1561			smr_exit(ipi->ipi_smr);
1562		else
1563			ii->inp = inp;
1564
1565		return (inp);
1566	}
1567
1568	/* Not a first call. */
1569	smr_enter(ipi->ipi_smr);
1570restart:
1571	inp = ii->inp;
1572	II_LOCK_ASSERT(inp, lock);
1573next:
1574	inp = II_LIST_NEXT(inp, hash);
1575	if (inp == NULL) {
1576		smr_exit(ipi->ipi_smr);
1577		goto found;
1578	}
1579
1580	if (match != NULL && (match)(inp, ctx) == false)
1581		goto next;
1582
1583	if (__predict_true(inp_trylock(inp, lock))) {
1584		if (__predict_false(inp->inp_flags & INP_FREED)) {
1585			/*
1586			 * Entries are never inserted in middle of a list, thus
1587			 * as long as we are in SMR, we can continue traversal.
1588			 * Jump to 'restart' should yield in the same result,
1589			 * but could produce unnecessary looping.  Could this
1590			 * looping be unbound?
1591			 */
1592			inp_unlock(inp, lock);
1593			goto next;
1594		} else {
1595			smr_exit(ipi->ipi_smr);
1596			goto found;
1597		}
1598	}
1599
1600	/*
1601	 * Can't obtain lock immediately, thus going hard.  Once we exit the
1602	 * SMR section we can no longer jump to 'next', and our only stable
1603	 * anchoring point is ii->inp, which we keep locked for this case, so
1604	 * we jump to 'restart'.
1605	 */
1606	if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) {
1607		smr_exit(ipi->ipi_smr);
1608		inp_lock(inp, lock);
1609		if (__predict_false(in_pcbrele(inp, lock))) {
1610			smr_enter(ipi->ipi_smr);
1611			goto restart;
1612		}
1613		/*
1614		 * See comment in inp_smr_lock().
1615		 */
1616		if (__predict_false(inp->inp_flags & INP_FREED)) {
1617			inp_unlock(inp, lock);
1618			smr_enter(ipi->ipi_smr);
1619			goto restart;
1620		}
1621	} else
1622		goto next;
1623
1624found:
1625	inp_unlock(ii->inp, lock);
1626	ii->inp = inp;
1627
1628	return (ii->inp);
1629}
1630
1631/*
1632 * in_pcbref() bumps the reference count on an inpcb in order to maintain
1633 * stability of an inpcb pointer despite the inpcb lock being released or
1634 * SMR section exited.
1635 *
1636 * To free a reference later in_pcbrele_(r|w)locked() must be performed.
1637 */
1638void
1639in_pcbref(struct inpcb *inp)
1640{
1641	u_int old __diagused;
1642
1643	old = refcount_acquire(&inp->inp_refcount);
1644	KASSERT(old > 0, ("%s: refcount 0", __func__));
1645}
1646
1647/*
1648 * Drop a refcount on an inpcb elevated using in_pcbref(), potentially
1649 * freeing the pcb, if the reference was very last.
1650 */
1651bool
1652in_pcbrele_rlocked(struct inpcb *inp)
1653{
1654
1655	INP_RLOCK_ASSERT(inp);
1656
1657	if (!refcount_release(&inp->inp_refcount))
1658		return (false);
1659
1660	MPASS(inp->inp_flags & INP_FREED);
1661	MPASS(inp->inp_socket == NULL);
1662	crfree(inp->inp_cred);
1663#ifdef INVARIANTS
1664	inp->inp_cred = NULL;
1665#endif
1666	INP_RUNLOCK(inp);
1667	uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp);
1668	return (true);
1669}
1670
1671bool
1672in_pcbrele_wlocked(struct inpcb *inp)
1673{
1674
1675	INP_WLOCK_ASSERT(inp);
1676
1677	if (!refcount_release(&inp->inp_refcount))
1678		return (false);
1679
1680	MPASS(inp->inp_flags & INP_FREED);
1681	MPASS(inp->inp_socket == NULL);
1682	crfree(inp->inp_cred);
1683#ifdef INVARIANTS
1684	inp->inp_cred = NULL;
1685#endif
1686	INP_WUNLOCK(inp);
1687	uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp);
1688	return (true);
1689}
1690
1691bool
1692in_pcbrele(struct inpcb *inp, const inp_lookup_t lock)
1693{
1694
1695	return (lock == INPLOOKUP_RLOCKPCB ?
1696	    in_pcbrele_rlocked(inp) : in_pcbrele_wlocked(inp));
1697}
1698
1699/*
1700 * Unconditionally schedule an inpcb to be freed by decrementing its
1701 * reference count, which should occur only after the inpcb has been detached
1702 * from its socket.  If another thread holds a temporary reference (acquired
1703 * using in_pcbref()) then the free is deferred until that reference is
1704 * released using in_pcbrele_(r|w)locked(), but the inpcb is still unlocked.
1705 *  Almost all work, including removal from global lists, is done in this
1706 * context, where the pcbinfo lock is held.
1707 */
1708void
1709in_pcbfree(struct inpcb *inp)
1710{
1711	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1712#ifdef INET
1713	struct ip_moptions *imo;
1714#endif
1715#ifdef INET6
1716	struct ip6_moptions *im6o;
1717#endif
1718
1719	INP_WLOCK_ASSERT(inp);
1720	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1721	KASSERT((inp->inp_flags & INP_FREED) == 0,
1722	    ("%s: called twice for pcb %p", __func__, inp));
1723
1724	/*
1725	 * in_pcblookup_local() and in6_pcblookup_local() may return an inpcb
1726	 * from the hash without acquiring inpcb lock, they rely on the hash
1727	 * lock, thus in_pcbremhash() should be the first action.
1728	 */
1729	if (inp->inp_flags & INP_INHASHLIST)
1730		in_pcbremhash(inp);
1731	INP_INFO_WLOCK(pcbinfo);
1732	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1733	pcbinfo->ipi_count--;
1734	CK_LIST_REMOVE(inp, inp_list);
1735	INP_INFO_WUNLOCK(pcbinfo);
1736
1737#ifdef RATELIMIT
1738	if (inp->inp_snd_tag != NULL)
1739		in_pcbdetach_txrtlmt(inp);
1740#endif
1741	inp->inp_flags |= INP_FREED;
1742	inp->inp_socket->so_pcb = NULL;
1743	inp->inp_socket = NULL;
1744
1745	RO_INVALIDATE_CACHE(&inp->inp_route);
1746#ifdef MAC
1747	mac_inpcb_destroy(inp);
1748#endif
1749#if defined(IPSEC) || defined(IPSEC_SUPPORT)
1750	if (inp->inp_sp != NULL)
1751		ipsec_delete_pcbpolicy(inp);
1752#endif
1753#ifdef INET
1754	if (inp->inp_options)
1755		(void)m_free(inp->inp_options);
1756	DEBUG_POISON_POINTER(inp->inp_options);
1757	imo = inp->inp_moptions;
1758	DEBUG_POISON_POINTER(inp->inp_moptions);
1759#endif
1760#ifdef INET6
1761	if (inp->inp_vflag & INP_IPV6PROTO) {
1762		ip6_freepcbopts(inp->in6p_outputopts);
1763		DEBUG_POISON_POINTER(inp->in6p_outputopts);
1764		im6o = inp->in6p_moptions;
1765		DEBUG_POISON_POINTER(inp->in6p_moptions);
1766	} else
1767		im6o = NULL;
1768#endif
1769
1770	if (__predict_false(in_pcbrele_wlocked(inp) == false)) {
1771		INP_WUNLOCK(inp);
1772	}
1773#ifdef INET6
1774	ip6_freemoptions(im6o);
1775#endif
1776#ifdef INET
1777	inp_freemoptions(imo);
1778#endif
1779}
1780
1781/*
1782 * Different protocols initialize their inpcbs differently - giving
1783 * different name to the lock.  But they all are disposed the same.
1784 */
1785static void
1786inpcb_fini(void *mem, int size)
1787{
1788	struct inpcb *inp = mem;
1789
1790	INP_LOCK_DESTROY(inp);
1791}
1792
1793/*
1794 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1795 * port reservation, and preventing it from being returned by inpcb lookups.
1796 *
1797 * It is used by TCP to mark an inpcb as unused and avoid future packet
1798 * delivery or event notification when a socket remains open but TCP has
1799 * closed.  This might occur as a result of a shutdown()-initiated TCP close
1800 * or a RST on the wire, and allows the port binding to be reused while still
1801 * maintaining the invariant that so_pcb always points to a valid inpcb until
1802 * in_pcbdetach().
1803 *
1804 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1805 * in_pcbpurgeif0()?
1806 */
1807void
1808in_pcbdrop(struct inpcb *inp)
1809{
1810
1811	INP_WLOCK_ASSERT(inp);
1812
1813	inp->inp_flags |= INP_DROPPED;
1814	if (inp->inp_flags & INP_INHASHLIST)
1815		in_pcbremhash(inp);
1816}
1817
1818#ifdef INET
1819/*
1820 * Common routines to return the socket addresses associated with inpcbs.
1821 */
1822int
1823in_getsockaddr(struct socket *so, struct sockaddr *sa)
1824{
1825	struct inpcb *inp;
1826
1827	inp = sotoinpcb(so);
1828	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1829
1830	*(struct sockaddr_in *)sa = (struct sockaddr_in ){
1831		.sin_len = sizeof(struct sockaddr_in),
1832		.sin_family = AF_INET,
1833		.sin_port = inp->inp_lport,
1834		.sin_addr = inp->inp_laddr,
1835	};
1836
1837	return (0);
1838}
1839
1840int
1841in_getpeeraddr(struct socket *so, struct sockaddr *sa)
1842{
1843	struct inpcb *inp;
1844
1845	inp = sotoinpcb(so);
1846	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1847
1848	*(struct sockaddr_in *)sa = (struct sockaddr_in ){
1849		.sin_len = sizeof(struct sockaddr_in),
1850		.sin_family = AF_INET,
1851		.sin_port = inp->inp_fport,
1852		.sin_addr = inp->inp_faddr,
1853	};
1854
1855	return (0);
1856}
1857
1858static bool
1859inp_v4_multi_match(const struct inpcb *inp, void *v __unused)
1860{
1861
1862	if ((inp->inp_vflag & INP_IPV4) && inp->inp_moptions != NULL)
1863		return (true);
1864	else
1865		return (false);
1866}
1867
1868void
1869in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1870{
1871	struct inpcb_iterator inpi = INP_ITERATOR(pcbinfo, INPLOOKUP_WLOCKPCB,
1872	    inp_v4_multi_match, NULL);
1873	struct inpcb *inp;
1874	struct in_multi *inm;
1875	struct in_mfilter *imf;
1876	struct ip_moptions *imo;
1877
1878	IN_MULTI_LOCK_ASSERT();
1879
1880	while ((inp = inp_next(&inpi)) != NULL) {
1881		INP_WLOCK_ASSERT(inp);
1882
1883		imo = inp->inp_moptions;
1884		/*
1885		 * Unselect the outgoing interface if it is being
1886		 * detached.
1887		 */
1888		if (imo->imo_multicast_ifp == ifp)
1889			imo->imo_multicast_ifp = NULL;
1890
1891		/*
1892		 * Drop multicast group membership if we joined
1893		 * through the interface being detached.
1894		 *
1895		 * XXX This can all be deferred to an epoch_call
1896		 */
1897restart:
1898		IP_MFILTER_FOREACH(imf, &imo->imo_head) {
1899			if ((inm = imf->imf_inm) == NULL)
1900				continue;
1901			if (inm->inm_ifp != ifp)
1902				continue;
1903			ip_mfilter_remove(&imo->imo_head, imf);
1904			in_leavegroup_locked(inm, NULL);
1905			ip_mfilter_free(imf);
1906			goto restart;
1907		}
1908	}
1909}
1910
1911/*
1912 * Lookup a PCB based on the local address and port.  Caller must hold the
1913 * hash lock.  No inpcb locks or references are acquired.
1914 */
1915#define INP_LOOKUP_MAPPED_PCB_COST	3
1916struct inpcb *
1917in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1918    u_short lport, int lookupflags, struct ucred *cred)
1919{
1920	struct inpcb *inp;
1921#ifdef INET6
1922	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1923#else
1924	int matchwild = 3;
1925#endif
1926	int wildcard;
1927
1928	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1929	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1930	INP_HASH_LOCK_ASSERT(pcbinfo);
1931
1932	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1933		struct inpcbhead *head;
1934		/*
1935		 * Look for an unconnected (wildcard foreign addr) PCB that
1936		 * matches the local address and port we're looking for.
1937		 */
1938		head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport,
1939		    pcbinfo->ipi_hashmask)];
1940		CK_LIST_FOREACH(inp, head, inp_hash_wild) {
1941#ifdef INET6
1942			/* XXX inp locking */
1943			if ((inp->inp_vflag & INP_IPV4) == 0)
1944				continue;
1945#endif
1946			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1947			    inp->inp_laddr.s_addr == laddr.s_addr &&
1948			    inp->inp_lport == lport) {
1949				/*
1950				 * Found?
1951				 */
1952				if (prison_equal_ip4(cred->cr_prison,
1953				    inp->inp_cred->cr_prison))
1954					return (inp);
1955			}
1956		}
1957		/*
1958		 * Not found.
1959		 */
1960		return (NULL);
1961	} else {
1962		struct inpcbporthead *porthash;
1963		struct inpcbport *phd;
1964		struct inpcb *match = NULL;
1965		/*
1966		 * Best fit PCB lookup.
1967		 *
1968		 * First see if this local port is in use by looking on the
1969		 * port hash list.
1970		 */
1971		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1972		    pcbinfo->ipi_porthashmask)];
1973		CK_LIST_FOREACH(phd, porthash, phd_hash) {
1974			if (phd->phd_port == lport)
1975				break;
1976		}
1977		if (phd != NULL) {
1978			/*
1979			 * Port is in use by one or more PCBs. Look for best
1980			 * fit.
1981			 */
1982			CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1983				wildcard = 0;
1984				if (!prison_equal_ip4(inp->inp_cred->cr_prison,
1985				    cred->cr_prison))
1986					continue;
1987#ifdef INET6
1988				/* XXX inp locking */
1989				if ((inp->inp_vflag & INP_IPV4) == 0)
1990					continue;
1991				/*
1992				 * We never select the PCB that has
1993				 * INP_IPV6 flag and is bound to :: if
1994				 * we have another PCB which is bound
1995				 * to 0.0.0.0.  If a PCB has the
1996				 * INP_IPV6 flag, then we set its cost
1997				 * higher than IPv4 only PCBs.
1998				 *
1999				 * Note that the case only happens
2000				 * when a socket is bound to ::, under
2001				 * the condition that the use of the
2002				 * mapped address is allowed.
2003				 */
2004				if ((inp->inp_vflag & INP_IPV6) != 0)
2005					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
2006#endif
2007				if (inp->inp_faddr.s_addr != INADDR_ANY)
2008					wildcard++;
2009				if (inp->inp_laddr.s_addr != INADDR_ANY) {
2010					if (laddr.s_addr == INADDR_ANY)
2011						wildcard++;
2012					else if (inp->inp_laddr.s_addr != laddr.s_addr)
2013						continue;
2014				} else {
2015					if (laddr.s_addr != INADDR_ANY)
2016						wildcard++;
2017				}
2018				if (wildcard < matchwild) {
2019					match = inp;
2020					matchwild = wildcard;
2021					if (matchwild == 0)
2022						break;
2023				}
2024			}
2025		}
2026		return (match);
2027	}
2028}
2029#undef INP_LOOKUP_MAPPED_PCB_COST
2030
2031static bool
2032in_pcblookup_lb_numa_match(const struct inpcblbgroup *grp, int domain)
2033{
2034	return (domain == M_NODOM || domain == grp->il_numa_domain);
2035}
2036
2037static struct inpcb *
2038in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo,
2039    const struct in_addr *faddr, uint16_t fport, const struct in_addr *laddr,
2040    uint16_t lport, int domain)
2041{
2042	const struct inpcblbgrouphead *hdr;
2043	struct inpcblbgroup *grp;
2044	struct inpcblbgroup *jail_exact, *jail_wild, *local_exact, *local_wild;
2045
2046	INP_HASH_LOCK_ASSERT(pcbinfo);
2047
2048	hdr = &pcbinfo->ipi_lbgrouphashbase[
2049	    INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)];
2050
2051	/*
2052	 * Search for an LB group match based on the following criteria:
2053	 * - prefer jailed groups to non-jailed groups
2054	 * - prefer exact source address matches to wildcard matches
2055	 * - prefer groups bound to the specified NUMA domain
2056	 */
2057	jail_exact = jail_wild = local_exact = local_wild = NULL;
2058	CK_LIST_FOREACH(grp, hdr, il_list) {
2059		bool injail;
2060
2061#ifdef INET6
2062		if (!(grp->il_vflag & INP_IPV4))
2063			continue;
2064#endif
2065		if (grp->il_lport != lport)
2066			continue;
2067
2068		injail = prison_flag(grp->il_cred, PR_IP4) != 0;
2069		if (injail && prison_check_ip4_locked(grp->il_cred->cr_prison,
2070		    laddr) != 0)
2071			continue;
2072
2073		if (grp->il_laddr.s_addr == laddr->s_addr) {
2074			if (injail) {
2075				jail_exact = grp;
2076				if (in_pcblookup_lb_numa_match(grp, domain))
2077					/* This is a perfect match. */
2078					goto out;
2079			} else if (local_exact == NULL ||
2080			    in_pcblookup_lb_numa_match(grp, domain)) {
2081				local_exact = grp;
2082			}
2083		} else if (grp->il_laddr.s_addr == INADDR_ANY) {
2084			if (injail) {
2085				if (jail_wild == NULL ||
2086				    in_pcblookup_lb_numa_match(grp, domain))
2087					jail_wild = grp;
2088			} else if (local_wild == NULL ||
2089			    in_pcblookup_lb_numa_match(grp, domain)) {
2090				local_wild = grp;
2091			}
2092		}
2093	}
2094
2095	if (jail_exact != NULL)
2096		grp = jail_exact;
2097	else if (jail_wild != NULL)
2098		grp = jail_wild;
2099	else if (local_exact != NULL)
2100		grp = local_exact;
2101	else
2102		grp = local_wild;
2103	if (grp == NULL)
2104		return (NULL);
2105out:
2106	return (grp->il_inp[INP_PCBLBGROUP_PKTHASH(faddr, lport, fport) %
2107	    grp->il_inpcnt]);
2108}
2109
2110static bool
2111in_pcblookup_exact_match(const struct inpcb *inp, struct in_addr faddr,
2112    u_short fport, struct in_addr laddr, u_short lport)
2113{
2114#ifdef INET6
2115	/* XXX inp locking */
2116	if ((inp->inp_vflag & INP_IPV4) == 0)
2117		return (false);
2118#endif
2119	if (inp->inp_faddr.s_addr == faddr.s_addr &&
2120	    inp->inp_laddr.s_addr == laddr.s_addr &&
2121	    inp->inp_fport == fport &&
2122	    inp->inp_lport == lport)
2123		return (true);
2124	return (false);
2125}
2126
2127static struct inpcb *
2128in_pcblookup_hash_exact(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2129    u_short fport, struct in_addr laddr, u_short lport)
2130{
2131	struct inpcbhead *head;
2132	struct inpcb *inp;
2133
2134	INP_HASH_LOCK_ASSERT(pcbinfo);
2135
2136	head = &pcbinfo->ipi_hash_exact[INP_PCBHASH(&faddr, lport, fport,
2137	    pcbinfo->ipi_hashmask)];
2138	CK_LIST_FOREACH(inp, head, inp_hash_exact) {
2139		if (in_pcblookup_exact_match(inp, faddr, fport, laddr, lport))
2140			return (inp);
2141	}
2142	return (NULL);
2143}
2144
2145typedef enum {
2146	INPLOOKUP_MATCH_NONE = 0,
2147	INPLOOKUP_MATCH_WILD = 1,
2148	INPLOOKUP_MATCH_LADDR = 2,
2149} inp_lookup_match_t;
2150
2151static inp_lookup_match_t
2152in_pcblookup_wild_match(const struct inpcb *inp, struct in_addr laddr,
2153    u_short lport)
2154{
2155#ifdef INET6
2156	/* XXX inp locking */
2157	if ((inp->inp_vflag & INP_IPV4) == 0)
2158		return (INPLOOKUP_MATCH_NONE);
2159#endif
2160	if (inp->inp_faddr.s_addr != INADDR_ANY || inp->inp_lport != lport)
2161		return (INPLOOKUP_MATCH_NONE);
2162	if (inp->inp_laddr.s_addr == INADDR_ANY)
2163		return (INPLOOKUP_MATCH_WILD);
2164	if (inp->inp_laddr.s_addr == laddr.s_addr)
2165		return (INPLOOKUP_MATCH_LADDR);
2166	return (INPLOOKUP_MATCH_NONE);
2167}
2168
2169#define	INP_LOOKUP_AGAIN	((struct inpcb *)(uintptr_t)-1)
2170
2171static struct inpcb *
2172in_pcblookup_hash_wild_smr(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2173    u_short fport, struct in_addr laddr, u_short lport,
2174    const inp_lookup_t lockflags)
2175{
2176	struct inpcbhead *head;
2177	struct inpcb *inp;
2178
2179	KASSERT(SMR_ENTERED(pcbinfo->ipi_smr),
2180	    ("%s: not in SMR read section", __func__));
2181
2182	head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport,
2183	    pcbinfo->ipi_hashmask)];
2184	CK_LIST_FOREACH(inp, head, inp_hash_wild) {
2185		inp_lookup_match_t match;
2186
2187		match = in_pcblookup_wild_match(inp, laddr, lport);
2188		if (match == INPLOOKUP_MATCH_NONE)
2189			continue;
2190
2191		if (__predict_true(inp_smr_lock(inp, lockflags))) {
2192			match = in_pcblookup_wild_match(inp, laddr, lport);
2193			if (match != INPLOOKUP_MATCH_NONE &&
2194			    prison_check_ip4_locked(inp->inp_cred->cr_prison,
2195			    &laddr) == 0)
2196				return (inp);
2197			inp_unlock(inp, lockflags);
2198		}
2199
2200		/*
2201		 * The matching socket disappeared out from under us.  Fall back
2202		 * to a serialized lookup.
2203		 */
2204		return (INP_LOOKUP_AGAIN);
2205	}
2206	return (NULL);
2207}
2208
2209static struct inpcb *
2210in_pcblookup_hash_wild_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2211    u_short fport, struct in_addr laddr, u_short lport)
2212{
2213	struct inpcbhead *head;
2214	struct inpcb *inp, *local_wild, *local_exact, *jail_wild;
2215#ifdef INET6
2216	struct inpcb *local_wild_mapped;
2217#endif
2218
2219	INP_HASH_LOCK_ASSERT(pcbinfo);
2220
2221	/*
2222	 * Order of socket selection - we always prefer jails.
2223	 *      1. jailed, non-wild.
2224	 *      2. jailed, wild.
2225	 *      3. non-jailed, non-wild.
2226	 *      4. non-jailed, wild.
2227	 */
2228	head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport,
2229	    pcbinfo->ipi_hashmask)];
2230	local_wild = local_exact = jail_wild = NULL;
2231#ifdef INET6
2232	local_wild_mapped = NULL;
2233#endif
2234	CK_LIST_FOREACH(inp, head, inp_hash_wild) {
2235		inp_lookup_match_t match;
2236		bool injail;
2237
2238		match = in_pcblookup_wild_match(inp, laddr, lport);
2239		if (match == INPLOOKUP_MATCH_NONE)
2240			continue;
2241
2242		injail = prison_flag(inp->inp_cred, PR_IP4) != 0;
2243		if (injail) {
2244			if (prison_check_ip4_locked(inp->inp_cred->cr_prison,
2245			    &laddr) != 0)
2246				continue;
2247		} else {
2248			if (local_exact != NULL)
2249				continue;
2250		}
2251
2252		if (match == INPLOOKUP_MATCH_LADDR) {
2253			if (injail)
2254				return (inp);
2255			local_exact = inp;
2256		} else {
2257#ifdef INET6
2258			/* XXX inp locking, NULL check */
2259			if (inp->inp_vflag & INP_IPV6PROTO)
2260				local_wild_mapped = inp;
2261			else
2262#endif
2263				if (injail)
2264					jail_wild = inp;
2265				else
2266					local_wild = inp;
2267		}
2268	}
2269	if (jail_wild != NULL)
2270		return (jail_wild);
2271	if (local_exact != NULL)
2272		return (local_exact);
2273	if (local_wild != NULL)
2274		return (local_wild);
2275#ifdef INET6
2276	if (local_wild_mapped != NULL)
2277		return (local_wild_mapped);
2278#endif
2279	return (NULL);
2280}
2281
2282/*
2283 * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
2284 * that the caller has either locked the hash list, which usually happens
2285 * for bind(2) operations, or is in SMR section, which happens when sorting
2286 * out incoming packets.
2287 */
2288static struct inpcb *
2289in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2290    u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
2291    uint8_t numa_domain)
2292{
2293	struct inpcb *inp;
2294	const u_short fport = fport_arg, lport = lport_arg;
2295
2296	KASSERT((lookupflags & ~INPLOOKUP_WILDCARD) == 0,
2297	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2298	KASSERT(faddr.s_addr != INADDR_ANY,
2299	    ("%s: invalid foreign address", __func__));
2300	KASSERT(laddr.s_addr != INADDR_ANY,
2301	    ("%s: invalid local address", __func__));
2302	INP_HASH_WLOCK_ASSERT(pcbinfo);
2303
2304	inp = in_pcblookup_hash_exact(pcbinfo, faddr, fport, laddr, lport);
2305	if (inp != NULL)
2306		return (inp);
2307
2308	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2309		inp = in_pcblookup_lbgroup(pcbinfo, &faddr, fport,
2310		    &laddr, lport, numa_domain);
2311		if (inp == NULL) {
2312			inp = in_pcblookup_hash_wild_locked(pcbinfo, faddr,
2313			    fport, laddr, lport);
2314		}
2315	}
2316
2317	return (inp);
2318}
2319
2320static struct inpcb *
2321in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2322    u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2323    uint8_t numa_domain)
2324{
2325	struct inpcb *inp;
2326	const inp_lookup_t lockflags = lookupflags & INPLOOKUP_LOCKMASK;
2327
2328	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2329	    ("%s: LOCKPCB not set", __func__));
2330
2331	INP_HASH_WLOCK(pcbinfo);
2332	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
2333	    lookupflags & ~INPLOOKUP_LOCKMASK, numa_domain);
2334	if (inp != NULL && !inp_trylock(inp, lockflags)) {
2335		in_pcbref(inp);
2336		INP_HASH_WUNLOCK(pcbinfo);
2337		inp_lock(inp, lockflags);
2338		if (in_pcbrele(inp, lockflags))
2339			/* XXX-MJ or retry until we get a negative match? */
2340			inp = NULL;
2341	} else {
2342		INP_HASH_WUNLOCK(pcbinfo);
2343	}
2344	return (inp);
2345}
2346
2347static struct inpcb *
2348in_pcblookup_hash_smr(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2349    u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
2350    uint8_t numa_domain)
2351{
2352	struct inpcb *inp;
2353	const inp_lookup_t lockflags = lookupflags & INPLOOKUP_LOCKMASK;
2354	const u_short fport = fport_arg, lport = lport_arg;
2355
2356	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2357	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2358	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2359	    ("%s: LOCKPCB not set", __func__));
2360
2361	smr_enter(pcbinfo->ipi_smr);
2362	inp = in_pcblookup_hash_exact(pcbinfo, faddr, fport, laddr, lport);
2363	if (inp != NULL) {
2364		if (__predict_true(inp_smr_lock(inp, lockflags))) {
2365			/*
2366			 * Revalidate the 4-tuple, the socket could have been
2367			 * disconnected.
2368			 */
2369			if (__predict_true(in_pcblookup_exact_match(inp,
2370			    faddr, fport, laddr, lport)))
2371				return (inp);
2372			inp_unlock(inp, lockflags);
2373		}
2374
2375		/*
2376		 * We failed to lock the inpcb, or its connection state changed
2377		 * out from under us.  Fall back to a precise search.
2378		 */
2379		return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2380		    lookupflags, numa_domain));
2381	}
2382
2383	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2384		inp = in_pcblookup_lbgroup(pcbinfo, &faddr, fport,
2385		    &laddr, lport, numa_domain);
2386		if (inp != NULL) {
2387			if (__predict_true(inp_smr_lock(inp, lockflags))) {
2388				if (__predict_true(in_pcblookup_wild_match(inp,
2389				    laddr, lport) != INPLOOKUP_MATCH_NONE))
2390					return (inp);
2391				inp_unlock(inp, lockflags);
2392			}
2393			inp = INP_LOOKUP_AGAIN;
2394		} else {
2395			inp = in_pcblookup_hash_wild_smr(pcbinfo, faddr, fport,
2396			    laddr, lport, lockflags);
2397		}
2398		if (inp == INP_LOOKUP_AGAIN) {
2399			return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr,
2400			    lport, lookupflags, numa_domain));
2401		}
2402	}
2403
2404	if (inp == NULL)
2405		smr_exit(pcbinfo->ipi_smr);
2406
2407	return (inp);
2408}
2409
2410/*
2411 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
2412 * from which a pre-calculated hash value may be extracted.
2413 */
2414struct inpcb *
2415in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
2416    struct in_addr laddr, u_int lport, int lookupflags,
2417    struct ifnet *ifp __unused)
2418{
2419	return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport,
2420	    lookupflags, M_NODOM));
2421}
2422
2423struct inpcb *
2424in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2425    u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2426    struct ifnet *ifp __unused, struct mbuf *m)
2427{
2428	return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport,
2429	    lookupflags, m->m_pkthdr.numa_domain));
2430}
2431#endif /* INET */
2432
2433static bool
2434in_pcbjailed(const struct inpcb *inp, unsigned int flag)
2435{
2436	return (prison_flag(inp->inp_cred, flag) != 0);
2437}
2438
2439/*
2440 * Insert the PCB into a hash chain using ordering rules which ensure that
2441 * in_pcblookup_hash_wild_*() always encounter the highest-ranking PCB first.
2442 *
2443 * Specifically, keep jailed PCBs in front of non-jailed PCBs, and keep PCBs
2444 * with exact local addresses ahead of wildcard PCBs.  Unbound v4-mapped v6 PCBs
2445 * always appear last no matter whether they are jailed.
2446 */
2447static void
2448_in_pcbinshash_wild(struct inpcbhead *pcbhash, struct inpcb *inp)
2449{
2450	struct inpcb *last;
2451	bool bound, injail;
2452
2453	INP_LOCK_ASSERT(inp);
2454	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
2455
2456	last = NULL;
2457	bound = inp->inp_laddr.s_addr != INADDR_ANY;
2458	if (!bound && (inp->inp_vflag & INP_IPV6PROTO) != 0) {
2459		CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) {
2460			if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2461				CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2462				return;
2463			}
2464		}
2465		CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2466		return;
2467	}
2468
2469	injail = in_pcbjailed(inp, PR_IP4);
2470	if (!injail) {
2471		CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) {
2472			if (!in_pcbjailed(last, PR_IP4))
2473				break;
2474			if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2475				CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2476				return;
2477			}
2478		}
2479	} else if (!CK_LIST_EMPTY(pcbhash) &&
2480	    !in_pcbjailed(CK_LIST_FIRST(pcbhash), PR_IP4)) {
2481		CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2482		return;
2483	}
2484	if (!bound) {
2485		CK_LIST_FOREACH_FROM(last, pcbhash, inp_hash_wild) {
2486			if (last->inp_laddr.s_addr == INADDR_ANY)
2487				break;
2488			if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2489				CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2490				return;
2491			}
2492		}
2493	}
2494	if (last == NULL)
2495		CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2496	else
2497		CK_LIST_INSERT_BEFORE(last, inp, inp_hash_wild);
2498}
2499
2500#ifdef INET6
2501/*
2502 * See the comment above _in_pcbinshash_wild().
2503 */
2504static void
2505_in6_pcbinshash_wild(struct inpcbhead *pcbhash, struct inpcb *inp)
2506{
2507	struct inpcb *last;
2508	bool bound, injail;
2509
2510	INP_LOCK_ASSERT(inp);
2511	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
2512
2513	last = NULL;
2514	bound = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr);
2515	injail = in_pcbjailed(inp, PR_IP6);
2516	if (!injail) {
2517		CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) {
2518			if (!in_pcbjailed(last, PR_IP6))
2519				break;
2520			if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2521				CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2522				return;
2523			}
2524		}
2525	} else if (!CK_LIST_EMPTY(pcbhash) &&
2526	    !in_pcbjailed(CK_LIST_FIRST(pcbhash), PR_IP6)) {
2527		CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2528		return;
2529	}
2530	if (!bound) {
2531		CK_LIST_FOREACH_FROM(last, pcbhash, inp_hash_wild) {
2532			if (IN6_IS_ADDR_UNSPECIFIED(&last->in6p_laddr))
2533				break;
2534			if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2535				CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2536				return;
2537			}
2538		}
2539	}
2540	if (last == NULL)
2541		CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2542	else
2543		CK_LIST_INSERT_BEFORE(last, inp, inp_hash_wild);
2544}
2545#endif
2546
2547/*
2548 * Insert PCB onto various hash lists.
2549 */
2550int
2551in_pcbinshash(struct inpcb *inp)
2552{
2553	struct inpcbhead *pcbhash;
2554	struct inpcbporthead *pcbporthash;
2555	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2556	struct inpcbport *phd;
2557	uint32_t hash;
2558	bool connected;
2559
2560	INP_WLOCK_ASSERT(inp);
2561	INP_HASH_WLOCK_ASSERT(pcbinfo);
2562	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2563	    ("in_pcbinshash: INP_INHASHLIST"));
2564
2565#ifdef INET6
2566	if (inp->inp_vflag & INP_IPV6) {
2567		hash = INP6_PCBHASH(&inp->in6p_faddr, inp->inp_lport,
2568		    inp->inp_fport, pcbinfo->ipi_hashmask);
2569		connected = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr);
2570	} else
2571#endif
2572	{
2573		hash = INP_PCBHASH(&inp->inp_faddr, inp->inp_lport,
2574		    inp->inp_fport, pcbinfo->ipi_hashmask);
2575		connected = !in_nullhost(inp->inp_faddr);
2576	}
2577
2578	if (connected)
2579		pcbhash = &pcbinfo->ipi_hash_exact[hash];
2580	else
2581		pcbhash = &pcbinfo->ipi_hash_wild[hash];
2582
2583	pcbporthash = &pcbinfo->ipi_porthashbase[
2584	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2585
2586	/*
2587	 * Add entry to load balance group.
2588	 * Only do this if SO_REUSEPORT_LB is set.
2589	 */
2590	if ((inp->inp_socket->so_options & SO_REUSEPORT_LB) != 0) {
2591		int error = in_pcbinslbgrouphash(inp, M_NODOM);
2592		if (error != 0)
2593			return (error);
2594	}
2595
2596	/*
2597	 * Go through port list and look for a head for this lport.
2598	 */
2599	CK_LIST_FOREACH(phd, pcbporthash, phd_hash) {
2600		if (phd->phd_port == inp->inp_lport)
2601			break;
2602	}
2603
2604	/*
2605	 * If none exists, malloc one and tack it on.
2606	 */
2607	if (phd == NULL) {
2608		phd = uma_zalloc_smr(pcbinfo->ipi_portzone, M_NOWAIT);
2609		if (phd == NULL) {
2610			if ((inp->inp_flags & INP_INLBGROUP) != 0)
2611				in_pcbremlbgrouphash(inp);
2612			return (ENOMEM);
2613		}
2614		phd->phd_port = inp->inp_lport;
2615		CK_LIST_INIT(&phd->phd_pcblist);
2616		CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2617	}
2618	inp->inp_phd = phd;
2619	CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2620
2621	/*
2622	 * The PCB may have been disconnected in the past.  Before we can safely
2623	 * make it visible in the hash table, we must wait for all readers which
2624	 * may be traversing this PCB to finish.
2625	 */
2626	if (inp->inp_smr != SMR_SEQ_INVALID) {
2627		smr_wait(pcbinfo->ipi_smr, inp->inp_smr);
2628		inp->inp_smr = SMR_SEQ_INVALID;
2629	}
2630
2631	if (connected)
2632		CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_exact);
2633	else {
2634#ifdef INET6
2635		if ((inp->inp_vflag & INP_IPV6) != 0)
2636			_in6_pcbinshash_wild(pcbhash, inp);
2637		else
2638#endif
2639			_in_pcbinshash_wild(pcbhash, inp);
2640	}
2641	inp->inp_flags |= INP_INHASHLIST;
2642
2643	return (0);
2644}
2645
2646void
2647in_pcbremhash_locked(struct inpcb *inp)
2648{
2649	struct inpcbport *phd = inp->inp_phd;
2650
2651	INP_WLOCK_ASSERT(inp);
2652	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
2653	MPASS(inp->inp_flags & INP_INHASHLIST);
2654
2655	if ((inp->inp_flags & INP_INLBGROUP) != 0)
2656		in_pcbremlbgrouphash(inp);
2657#ifdef INET6
2658	if (inp->inp_vflag & INP_IPV6) {
2659		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr))
2660			CK_LIST_REMOVE(inp, inp_hash_wild);
2661		else
2662			CK_LIST_REMOVE(inp, inp_hash_exact);
2663	} else
2664#endif
2665	{
2666		if (in_nullhost(inp->inp_faddr))
2667			CK_LIST_REMOVE(inp, inp_hash_wild);
2668		else
2669			CK_LIST_REMOVE(inp, inp_hash_exact);
2670	}
2671	CK_LIST_REMOVE(inp, inp_portlist);
2672	if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
2673		CK_LIST_REMOVE(phd, phd_hash);
2674		uma_zfree_smr(inp->inp_pcbinfo->ipi_portzone, phd);
2675	}
2676	inp->inp_flags &= ~INP_INHASHLIST;
2677}
2678
2679static void
2680in_pcbremhash(struct inpcb *inp)
2681{
2682	INP_HASH_WLOCK(inp->inp_pcbinfo);
2683	in_pcbremhash_locked(inp);
2684	INP_HASH_WUNLOCK(inp->inp_pcbinfo);
2685}
2686
2687/*
2688 * Move PCB to the proper hash bucket when { faddr, fport } have  been
2689 * changed. NOTE: This does not handle the case of the lport changing (the
2690 * hashed port list would have to be updated as well), so the lport must
2691 * not change after in_pcbinshash() has been called.
2692 */
2693void
2694in_pcbrehash(struct inpcb *inp)
2695{
2696	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2697	struct inpcbhead *head;
2698	uint32_t hash;
2699	bool connected;
2700
2701	INP_WLOCK_ASSERT(inp);
2702	INP_HASH_WLOCK_ASSERT(pcbinfo);
2703	KASSERT(inp->inp_flags & INP_INHASHLIST,
2704	    ("%s: !INP_INHASHLIST", __func__));
2705	KASSERT(inp->inp_smr == SMR_SEQ_INVALID,
2706	    ("%s: inp was disconnected", __func__));
2707
2708#ifdef INET6
2709	if (inp->inp_vflag & INP_IPV6) {
2710		hash = INP6_PCBHASH(&inp->in6p_faddr, inp->inp_lport,
2711		    inp->inp_fport, pcbinfo->ipi_hashmask);
2712		connected = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr);
2713	} else
2714#endif
2715	{
2716		hash = INP_PCBHASH(&inp->inp_faddr, inp->inp_lport,
2717		    inp->inp_fport, pcbinfo->ipi_hashmask);
2718		connected = !in_nullhost(inp->inp_faddr);
2719	}
2720
2721	/*
2722	 * When rehashing, the caller must ensure that either the new or the old
2723	 * foreign address was unspecified.
2724	 */
2725	if (connected)
2726		CK_LIST_REMOVE(inp, inp_hash_wild);
2727	else
2728		CK_LIST_REMOVE(inp, inp_hash_exact);
2729
2730	if (connected) {
2731		head = &pcbinfo->ipi_hash_exact[hash];
2732		CK_LIST_INSERT_HEAD(head, inp, inp_hash_exact);
2733	} else {
2734		head = &pcbinfo->ipi_hash_wild[hash];
2735		CK_LIST_INSERT_HEAD(head, inp, inp_hash_wild);
2736	}
2737}
2738
2739/*
2740 * Check for alternatives when higher level complains
2741 * about service problems.  For now, invalidate cached
2742 * routing information.  If the route was created dynamically
2743 * (by a redirect), time to try a default gateway again.
2744 */
2745void
2746in_losing(struct inpcb *inp)
2747{
2748
2749	RO_INVALIDATE_CACHE(&inp->inp_route);
2750	return;
2751}
2752
2753/*
2754 * A set label operation has occurred at the socket layer, propagate the
2755 * label change into the in_pcb for the socket.
2756 */
2757void
2758in_pcbsosetlabel(struct socket *so)
2759{
2760#ifdef MAC
2761	struct inpcb *inp;
2762
2763	inp = sotoinpcb(so);
2764	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2765
2766	INP_WLOCK(inp);
2767	SOCK_LOCK(so);
2768	mac_inpcb_sosetlabel(so, inp);
2769	SOCK_UNLOCK(so);
2770	INP_WUNLOCK(inp);
2771#endif
2772}
2773
2774void
2775inp_wlock(struct inpcb *inp)
2776{
2777
2778	INP_WLOCK(inp);
2779}
2780
2781void
2782inp_wunlock(struct inpcb *inp)
2783{
2784
2785	INP_WUNLOCK(inp);
2786}
2787
2788void
2789inp_rlock(struct inpcb *inp)
2790{
2791
2792	INP_RLOCK(inp);
2793}
2794
2795void
2796inp_runlock(struct inpcb *inp)
2797{
2798
2799	INP_RUNLOCK(inp);
2800}
2801
2802#ifdef INVARIANT_SUPPORT
2803void
2804inp_lock_assert(struct inpcb *inp)
2805{
2806
2807	INP_WLOCK_ASSERT(inp);
2808}
2809
2810void
2811inp_unlock_assert(struct inpcb *inp)
2812{
2813
2814	INP_UNLOCK_ASSERT(inp);
2815}
2816#endif
2817
2818void
2819inp_apply_all(struct inpcbinfo *pcbinfo,
2820    void (*func)(struct inpcb *, void *), void *arg)
2821{
2822	struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo,
2823	    INPLOOKUP_WLOCKPCB);
2824	struct inpcb *inp;
2825
2826	while ((inp = inp_next(&inpi)) != NULL)
2827		func(inp, arg);
2828}
2829
2830struct socket *
2831inp_inpcbtosocket(struct inpcb *inp)
2832{
2833
2834	INP_WLOCK_ASSERT(inp);
2835	return (inp->inp_socket);
2836}
2837
2838void
2839inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2840    uint32_t *faddr, uint16_t *fp)
2841{
2842
2843	INP_LOCK_ASSERT(inp);
2844	*laddr = inp->inp_laddr.s_addr;
2845	*faddr = inp->inp_faddr.s_addr;
2846	*lp = inp->inp_lport;
2847	*fp = inp->inp_fport;
2848}
2849
2850/*
2851 * Create an external-format (``xinpcb'') structure using the information in
2852 * the kernel-format in_pcb structure pointed to by inp.  This is done to
2853 * reduce the spew of irrelevant information over this interface, to isolate
2854 * user code from changes in the kernel structure, and potentially to provide
2855 * information-hiding if we decide that some of this information should be
2856 * hidden from users.
2857 */
2858void
2859in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
2860{
2861
2862	bzero(xi, sizeof(*xi));
2863	xi->xi_len = sizeof(struct xinpcb);
2864	if (inp->inp_socket)
2865		sotoxsocket(inp->inp_socket, &xi->xi_socket);
2866	bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
2867	xi->inp_gencnt = inp->inp_gencnt;
2868	xi->inp_flow = inp->inp_flow;
2869	xi->inp_flowid = inp->inp_flowid;
2870	xi->inp_flowtype = inp->inp_flowtype;
2871	xi->inp_flags = inp->inp_flags;
2872	xi->inp_flags2 = inp->inp_flags2;
2873	xi->in6p_cksum = inp->in6p_cksum;
2874	xi->in6p_hops = inp->in6p_hops;
2875	xi->inp_ip_tos = inp->inp_ip_tos;
2876	xi->inp_vflag = inp->inp_vflag;
2877	xi->inp_ip_ttl = inp->inp_ip_ttl;
2878	xi->inp_ip_p = inp->inp_ip_p;
2879	xi->inp_ip_minttl = inp->inp_ip_minttl;
2880}
2881
2882int
2883sysctl_setsockopt(SYSCTL_HANDLER_ARGS, struct inpcbinfo *pcbinfo,
2884    int (*ctloutput_set)(struct inpcb *, struct sockopt *))
2885{
2886	struct sockopt sopt;
2887	struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo,
2888	    INPLOOKUP_WLOCKPCB);
2889	struct inpcb *inp;
2890	struct sockopt_parameters *params;
2891	struct socket *so;
2892	int error;
2893	char buf[1024];
2894
2895	if (req->oldptr != NULL || req->oldlen != 0)
2896		return (EINVAL);
2897	if (req->newptr == NULL)
2898		return (EPERM);
2899	if (req->newlen > sizeof(buf))
2900		return (ENOMEM);
2901	error = SYSCTL_IN(req, buf, req->newlen);
2902	if (error != 0)
2903		return (error);
2904	if (req->newlen < sizeof(struct sockopt_parameters))
2905		return (EINVAL);
2906	params = (struct sockopt_parameters *)buf;
2907	sopt.sopt_level = params->sop_level;
2908	sopt.sopt_name = params->sop_optname;
2909	sopt.sopt_dir = SOPT_SET;
2910	sopt.sopt_val = params->sop_optval;
2911	sopt.sopt_valsize = req->newlen - sizeof(struct sockopt_parameters);
2912	sopt.sopt_td = NULL;
2913#ifdef INET6
2914	if (params->sop_inc.inc_flags & INC_ISIPV6) {
2915		if (IN6_IS_SCOPE_LINKLOCAL(&params->sop_inc.inc6_laddr))
2916			params->sop_inc.inc6_laddr.s6_addr16[1] =
2917			    htons(params->sop_inc.inc6_zoneid & 0xffff);
2918		if (IN6_IS_SCOPE_LINKLOCAL(&params->sop_inc.inc6_faddr))
2919			params->sop_inc.inc6_faddr.s6_addr16[1] =
2920			    htons(params->sop_inc.inc6_zoneid & 0xffff);
2921	}
2922#endif
2923	if (params->sop_inc.inc_lport != htons(0) &&
2924	    params->sop_inc.inc_fport != htons(0)) {
2925#ifdef INET6
2926		if (params->sop_inc.inc_flags & INC_ISIPV6)
2927			inpi.hash = INP6_PCBHASH(
2928			    &params->sop_inc.inc6_faddr,
2929			    params->sop_inc.inc_lport,
2930			    params->sop_inc.inc_fport,
2931			    pcbinfo->ipi_hashmask);
2932		else
2933#endif
2934			inpi.hash = INP_PCBHASH(
2935			    &params->sop_inc.inc_faddr,
2936			    params->sop_inc.inc_lport,
2937			    params->sop_inc.inc_fport,
2938			    pcbinfo->ipi_hashmask);
2939	}
2940	while ((inp = inp_next(&inpi)) != NULL)
2941		if (inp->inp_gencnt == params->sop_id) {
2942			if (inp->inp_flags & INP_DROPPED) {
2943				INP_WUNLOCK(inp);
2944				return (ECONNRESET);
2945			}
2946			so = inp->inp_socket;
2947			KASSERT(so != NULL, ("inp_socket == NULL"));
2948			soref(so);
2949			if (params->sop_level == SOL_SOCKET) {
2950				INP_WUNLOCK(inp);
2951				error = sosetopt(so, &sopt);
2952			} else
2953				error = (*ctloutput_set)(inp, &sopt);
2954			sorele(so);
2955			break;
2956		}
2957	if (inp == NULL)
2958		error = ESRCH;
2959	return (error);
2960}
2961
2962#ifdef DDB
2963static void
2964db_print_indent(int indent)
2965{
2966	int i;
2967
2968	for (i = 0; i < indent; i++)
2969		db_printf(" ");
2970}
2971
2972static void
2973db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2974{
2975	char faddr_str[48], laddr_str[48];
2976
2977	db_print_indent(indent);
2978	db_printf("%s at %p\n", name, inc);
2979
2980	indent += 2;
2981
2982#ifdef INET6
2983	if (inc->inc_flags & INC_ISIPV6) {
2984		/* IPv6. */
2985		ip6_sprintf(laddr_str, &inc->inc6_laddr);
2986		ip6_sprintf(faddr_str, &inc->inc6_faddr);
2987	} else
2988#endif
2989	{
2990		/* IPv4. */
2991		inet_ntoa_r(inc->inc_laddr, laddr_str);
2992		inet_ntoa_r(inc->inc_faddr, faddr_str);
2993	}
2994	db_print_indent(indent);
2995	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2996	    ntohs(inc->inc_lport));
2997	db_print_indent(indent);
2998	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2999	    ntohs(inc->inc_fport));
3000}
3001
3002static void
3003db_print_inpflags(int inp_flags)
3004{
3005	int comma;
3006
3007	comma = 0;
3008	if (inp_flags & INP_RECVOPTS) {
3009		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
3010		comma = 1;
3011	}
3012	if (inp_flags & INP_RECVRETOPTS) {
3013		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
3014		comma = 1;
3015	}
3016	if (inp_flags & INP_RECVDSTADDR) {
3017		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
3018		comma = 1;
3019	}
3020	if (inp_flags & INP_ORIGDSTADDR) {
3021		db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
3022		comma = 1;
3023	}
3024	if (inp_flags & INP_HDRINCL) {
3025		db_printf("%sINP_HDRINCL", comma ? ", " : "");
3026		comma = 1;
3027	}
3028	if (inp_flags & INP_HIGHPORT) {
3029		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
3030		comma = 1;
3031	}
3032	if (inp_flags & INP_LOWPORT) {
3033		db_printf("%sINP_LOWPORT", comma ? ", " : "");
3034		comma = 1;
3035	}
3036	if (inp_flags & INP_ANONPORT) {
3037		db_printf("%sINP_ANONPORT", comma ? ", " : "");
3038		comma = 1;
3039	}
3040	if (inp_flags & INP_RECVIF) {
3041		db_printf("%sINP_RECVIF", comma ? ", " : "");
3042		comma = 1;
3043	}
3044	if (inp_flags & INP_MTUDISC) {
3045		db_printf("%sINP_MTUDISC", comma ? ", " : "");
3046		comma = 1;
3047	}
3048	if (inp_flags & INP_RECVTTL) {
3049		db_printf("%sINP_RECVTTL", comma ? ", " : "");
3050		comma = 1;
3051	}
3052	if (inp_flags & INP_DONTFRAG) {
3053		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
3054		comma = 1;
3055	}
3056	if (inp_flags & INP_RECVTOS) {
3057		db_printf("%sINP_RECVTOS", comma ? ", " : "");
3058		comma = 1;
3059	}
3060	if (inp_flags & IN6P_IPV6_V6ONLY) {
3061		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
3062		comma = 1;
3063	}
3064	if (inp_flags & IN6P_PKTINFO) {
3065		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
3066		comma = 1;
3067	}
3068	if (inp_flags & IN6P_HOPLIMIT) {
3069		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
3070		comma = 1;
3071	}
3072	if (inp_flags & IN6P_HOPOPTS) {
3073		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
3074		comma = 1;
3075	}
3076	if (inp_flags & IN6P_DSTOPTS) {
3077		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
3078		comma = 1;
3079	}
3080	if (inp_flags & IN6P_RTHDR) {
3081		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
3082		comma = 1;
3083	}
3084	if (inp_flags & IN6P_RTHDRDSTOPTS) {
3085		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
3086		comma = 1;
3087	}
3088	if (inp_flags & IN6P_TCLASS) {
3089		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
3090		comma = 1;
3091	}
3092	if (inp_flags & IN6P_AUTOFLOWLABEL) {
3093		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
3094		comma = 1;
3095	}
3096	if (inp_flags & INP_ONESBCAST) {
3097		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
3098		comma  = 1;
3099	}
3100	if (inp_flags & INP_DROPPED) {
3101		db_printf("%sINP_DROPPED", comma ? ", " : "");
3102		comma  = 1;
3103	}
3104	if (inp_flags & INP_SOCKREF) {
3105		db_printf("%sINP_SOCKREF", comma ? ", " : "");
3106		comma  = 1;
3107	}
3108	if (inp_flags & IN6P_RFC2292) {
3109		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
3110		comma = 1;
3111	}
3112	if (inp_flags & IN6P_MTU) {
3113		db_printf("IN6P_MTU%s", comma ? ", " : "");
3114		comma = 1;
3115	}
3116}
3117
3118static void
3119db_print_inpvflag(u_char inp_vflag)
3120{
3121	int comma;
3122
3123	comma = 0;
3124	if (inp_vflag & INP_IPV4) {
3125		db_printf("%sINP_IPV4", comma ? ", " : "");
3126		comma  = 1;
3127	}
3128	if (inp_vflag & INP_IPV6) {
3129		db_printf("%sINP_IPV6", comma ? ", " : "");
3130		comma  = 1;
3131	}
3132	if (inp_vflag & INP_IPV6PROTO) {
3133		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
3134		comma  = 1;
3135	}
3136}
3137
3138static void
3139db_print_inpcb(struct inpcb *inp, const char *name, int indent)
3140{
3141
3142	db_print_indent(indent);
3143	db_printf("%s at %p\n", name, inp);
3144
3145	indent += 2;
3146
3147	db_print_indent(indent);
3148	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
3149
3150	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
3151
3152	db_print_indent(indent);
3153	db_printf("inp_label: %p   inp_flags: 0x%x (",
3154	   inp->inp_label, inp->inp_flags);
3155	db_print_inpflags(inp->inp_flags);
3156	db_printf(")\n");
3157
3158	db_print_indent(indent);
3159	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
3160	    inp->inp_vflag);
3161	db_print_inpvflag(inp->inp_vflag);
3162	db_printf(")\n");
3163
3164	db_print_indent(indent);
3165	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
3166	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
3167
3168	db_print_indent(indent);
3169#ifdef INET6
3170	if (inp->inp_vflag & INP_IPV6) {
3171		db_printf("in6p_options: %p   in6p_outputopts: %p   "
3172		    "in6p_moptions: %p\n", inp->in6p_options,
3173		    inp->in6p_outputopts, inp->in6p_moptions);
3174		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
3175		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
3176		    inp->in6p_hops);
3177	} else
3178#endif
3179	{
3180		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
3181		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
3182		    inp->inp_options, inp->inp_moptions);
3183	}
3184
3185	db_print_indent(indent);
3186	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
3187	    (uintmax_t)inp->inp_gencnt);
3188}
3189
3190DB_SHOW_COMMAND(inpcb, db_show_inpcb)
3191{
3192	struct inpcb *inp;
3193
3194	if (!have_addr) {
3195		db_printf("usage: show inpcb <addr>\n");
3196		return;
3197	}
3198	inp = (struct inpcb *)addr;
3199
3200	db_print_inpcb(inp, "inpcb", 0);
3201}
3202#endif /* DDB */
3203
3204#ifdef RATELIMIT
3205/*
3206 * Modify TX rate limit based on the existing "inp->inp_snd_tag",
3207 * if any.
3208 */
3209int
3210in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
3211{
3212	union if_snd_tag_modify_params params = {
3213		.rate_limit.max_rate = max_pacing_rate,
3214		.rate_limit.flags = M_NOWAIT,
3215	};
3216	struct m_snd_tag *mst;
3217	int error;
3218
3219	mst = inp->inp_snd_tag;
3220	if (mst == NULL)
3221		return (EINVAL);
3222
3223	if (mst->sw->snd_tag_modify == NULL) {
3224		error = EOPNOTSUPP;
3225	} else {
3226		error = mst->sw->snd_tag_modify(mst, &params);
3227	}
3228	return (error);
3229}
3230
3231/*
3232 * Query existing TX rate limit based on the existing
3233 * "inp->inp_snd_tag", if any.
3234 */
3235int
3236in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
3237{
3238	union if_snd_tag_query_params params = { };
3239	struct m_snd_tag *mst;
3240	int error;
3241
3242	mst = inp->inp_snd_tag;
3243	if (mst == NULL)
3244		return (EINVAL);
3245
3246	if (mst->sw->snd_tag_query == NULL) {
3247		error = EOPNOTSUPP;
3248	} else {
3249		error = mst->sw->snd_tag_query(mst, &params);
3250		if (error == 0 && p_max_pacing_rate != NULL)
3251			*p_max_pacing_rate = params.rate_limit.max_rate;
3252	}
3253	return (error);
3254}
3255
3256/*
3257 * Query existing TX queue level based on the existing
3258 * "inp->inp_snd_tag", if any.
3259 */
3260int
3261in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
3262{
3263	union if_snd_tag_query_params params = { };
3264	struct m_snd_tag *mst;
3265	int error;
3266
3267	mst = inp->inp_snd_tag;
3268	if (mst == NULL)
3269		return (EINVAL);
3270
3271	if (mst->sw->snd_tag_query == NULL)
3272		return (EOPNOTSUPP);
3273
3274	error = mst->sw->snd_tag_query(mst, &params);
3275	if (error == 0 && p_txqueue_level != NULL)
3276		*p_txqueue_level = params.rate_limit.queue_level;
3277	return (error);
3278}
3279
3280/*
3281 * Allocate a new TX rate limit send tag from the network interface
3282 * given by the "ifp" argument and save it in "inp->inp_snd_tag":
3283 */
3284int
3285in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
3286    uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st)
3287
3288{
3289	union if_snd_tag_alloc_params params = {
3290		.rate_limit.hdr.type = (max_pacing_rate == -1U) ?
3291		    IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
3292		.rate_limit.hdr.flowid = flowid,
3293		.rate_limit.hdr.flowtype = flowtype,
3294		.rate_limit.hdr.numa_domain = inp->inp_numa_domain,
3295		.rate_limit.max_rate = max_pacing_rate,
3296		.rate_limit.flags = M_NOWAIT,
3297	};
3298	int error;
3299
3300	INP_WLOCK_ASSERT(inp);
3301
3302	/*
3303	 * If there is already a send tag, or the INP is being torn
3304	 * down, allocating a new send tag is not allowed. Else send
3305	 * tags may leak.
3306	 */
3307	if (*st != NULL || (inp->inp_flags & INP_DROPPED) != 0)
3308		return (EINVAL);
3309
3310	error = m_snd_tag_alloc(ifp, &params, st);
3311#ifdef INET
3312	if (error == 0) {
3313		counter_u64_add(rate_limit_set_ok, 1);
3314		counter_u64_add(rate_limit_active, 1);
3315	} else if (error != EOPNOTSUPP)
3316		  counter_u64_add(rate_limit_alloc_fail, 1);
3317#endif
3318	return (error);
3319}
3320
3321void
3322in_pcbdetach_tag(struct m_snd_tag *mst)
3323{
3324
3325	m_snd_tag_rele(mst);
3326#ifdef INET
3327	counter_u64_add(rate_limit_active, -1);
3328#endif
3329}
3330
3331/*
3332 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
3333 * if any:
3334 */
3335void
3336in_pcbdetach_txrtlmt(struct inpcb *inp)
3337{
3338	struct m_snd_tag *mst;
3339
3340	INP_WLOCK_ASSERT(inp);
3341
3342	mst = inp->inp_snd_tag;
3343	inp->inp_snd_tag = NULL;
3344
3345	if (mst == NULL)
3346		return;
3347
3348	m_snd_tag_rele(mst);
3349#ifdef INET
3350	counter_u64_add(rate_limit_active, -1);
3351#endif
3352}
3353
3354int
3355in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate)
3356{
3357	int error;
3358
3359	/*
3360	 * If the existing send tag is for the wrong interface due to
3361	 * a route change, first drop the existing tag.  Set the
3362	 * CHANGED flag so that we will keep trying to allocate a new
3363	 * tag if we fail to allocate one this time.
3364	 */
3365	if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) {
3366		in_pcbdetach_txrtlmt(inp);
3367		inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3368	}
3369
3370	/*
3371	 * NOTE: When attaching to a network interface a reference is
3372	 * made to ensure the network interface doesn't go away until
3373	 * all ratelimit connections are gone. The network interface
3374	 * pointers compared below represent valid network interfaces,
3375	 * except when comparing towards NULL.
3376	 */
3377	if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
3378		error = 0;
3379	} else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
3380		if (inp->inp_snd_tag != NULL)
3381			in_pcbdetach_txrtlmt(inp);
3382		error = 0;
3383	} else if (inp->inp_snd_tag == NULL) {
3384		/*
3385		 * In order to utilize packet pacing with RSS, we need
3386		 * to wait until there is a valid RSS hash before we
3387		 * can proceed:
3388		 */
3389		if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
3390			error = EAGAIN;
3391		} else {
3392			error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
3393			    mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag);
3394		}
3395	} else {
3396		error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
3397	}
3398	if (error == 0 || error == EOPNOTSUPP)
3399		inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
3400
3401	return (error);
3402}
3403
3404/*
3405 * This function should be called when the INP_RATE_LIMIT_CHANGED flag
3406 * is set in the fast path and will attach/detach/modify the TX rate
3407 * limit send tag based on the socket's so_max_pacing_rate value.
3408 */
3409void
3410in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
3411{
3412	struct socket *socket;
3413	uint32_t max_pacing_rate;
3414	bool did_upgrade;
3415
3416	if (inp == NULL)
3417		return;
3418
3419	socket = inp->inp_socket;
3420	if (socket == NULL)
3421		return;
3422
3423	if (!INP_WLOCKED(inp)) {
3424		/*
3425		 * NOTE: If the write locking fails, we need to bail
3426		 * out and use the non-ratelimited ring for the
3427		 * transmit until there is a new chance to get the
3428		 * write lock.
3429		 */
3430		if (!INP_TRY_UPGRADE(inp))
3431			return;
3432		did_upgrade = 1;
3433	} else {
3434		did_upgrade = 0;
3435	}
3436
3437	/*
3438	 * NOTE: The so_max_pacing_rate value is read unlocked,
3439	 * because atomic updates are not required since the variable
3440	 * is checked at every mbuf we send. It is assumed that the
3441	 * variable read itself will be atomic.
3442	 */
3443	max_pacing_rate = socket->so_max_pacing_rate;
3444
3445	in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate);
3446
3447	if (did_upgrade)
3448		INP_DOWNGRADE(inp);
3449}
3450
3451/*
3452 * Track route changes for TX rate limiting.
3453 */
3454void
3455in_pcboutput_eagain(struct inpcb *inp)
3456{
3457	bool did_upgrade;
3458
3459	if (inp == NULL)
3460		return;
3461
3462	if (inp->inp_snd_tag == NULL)
3463		return;
3464
3465	if (!INP_WLOCKED(inp)) {
3466		/*
3467		 * NOTE: If the write locking fails, we need to bail
3468		 * out and use the non-ratelimited ring for the
3469		 * transmit until there is a new chance to get the
3470		 * write lock.
3471		 */
3472		if (!INP_TRY_UPGRADE(inp))
3473			return;
3474		did_upgrade = 1;
3475	} else {
3476		did_upgrade = 0;
3477	}
3478
3479	/* detach rate limiting */
3480	in_pcbdetach_txrtlmt(inp);
3481
3482	/* make sure new mbuf send tag allocation is made */
3483	inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3484
3485	if (did_upgrade)
3486		INP_DOWNGRADE(inp);
3487}
3488
3489#ifdef INET
3490static void
3491rl_init(void *st)
3492{
3493	rate_limit_new = counter_u64_alloc(M_WAITOK);
3494	rate_limit_chg = counter_u64_alloc(M_WAITOK);
3495	rate_limit_active = counter_u64_alloc(M_WAITOK);
3496	rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK);
3497	rate_limit_set_ok = counter_u64_alloc(M_WAITOK);
3498}
3499
3500SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL);
3501#endif
3502#endif /* RATELIMIT */
3503