1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2006, 2011, 2016-2017 Robert N. M. Watson
5 * Copyright 2020 The FreeBSD Foundation
6 * All rights reserved.
7 *
8 * Portions of this software were developed by BAE Systems, the University of
9 * Cambridge Computer Laboratory, and Memorial University under DARPA/AFRL
10 * contract FA8650-15-C-7558 ("CADETS"), as part of the DARPA Transparent
11 * Computing (TC) research program.
12 *
13 * Portions of this software were developed by Konstantin Belousov
14 * under sponsorship from the FreeBSD Foundation.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 *    notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 *    notice, this list of conditions and the following disclaimer in the
23 *    documentation and/or other materials provided with the distribution.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37
38/*
39 * Support for shared swap-backed anonymous memory objects via
40 * shm_open(2), shm_rename(2), and shm_unlink(2).
41 * While most of the implementation is here, vm_mmap.c contains
42 * mapping logic changes.
43 *
44 * posixshmcontrol(1) allows users to inspect the state of the memory
45 * objects.  Per-uid swap resource limit controls total amount of
46 * memory that user can consume for anonymous objects, including
47 * shared.
48 */
49
50#include <sys/cdefs.h>
51#include "opt_capsicum.h"
52#include "opt_ktrace.h"
53
54#include <sys/param.h>
55#include <sys/capsicum.h>
56#include <sys/conf.h>
57#include <sys/fcntl.h>
58#include <sys/file.h>
59#include <sys/filedesc.h>
60#include <sys/filio.h>
61#include <sys/fnv_hash.h>
62#include <sys/kernel.h>
63#include <sys/limits.h>
64#include <sys/uio.h>
65#include <sys/signal.h>
66#include <sys/jail.h>
67#include <sys/ktrace.h>
68#include <sys/lock.h>
69#include <sys/malloc.h>
70#include <sys/mman.h>
71#include <sys/mutex.h>
72#include <sys/priv.h>
73#include <sys/proc.h>
74#include <sys/refcount.h>
75#include <sys/resourcevar.h>
76#include <sys/rwlock.h>
77#include <sys/sbuf.h>
78#include <sys/stat.h>
79#include <sys/syscallsubr.h>
80#include <sys/sysctl.h>
81#include <sys/sysproto.h>
82#include <sys/systm.h>
83#include <sys/sx.h>
84#include <sys/time.h>
85#include <sys/vmmeter.h>
86#include <sys/vnode.h>
87#include <sys/unistd.h>
88#include <sys/user.h>
89
90#include <security/audit/audit.h>
91#include <security/mac/mac_framework.h>
92
93#include <vm/vm.h>
94#include <vm/vm_param.h>
95#include <vm/pmap.h>
96#include <vm/vm_extern.h>
97#include <vm/vm_map.h>
98#include <vm/vm_kern.h>
99#include <vm/vm_object.h>
100#include <vm/vm_page.h>
101#include <vm/vm_pageout.h>
102#include <vm/vm_pager.h>
103#include <vm/swap_pager.h>
104
105struct shm_mapping {
106	char		*sm_path;
107	Fnv32_t		sm_fnv;
108	struct shmfd	*sm_shmfd;
109	LIST_ENTRY(shm_mapping) sm_link;
110};
111
112static MALLOC_DEFINE(M_SHMFD, "shmfd", "shared memory file descriptor");
113static LIST_HEAD(, shm_mapping) *shm_dictionary;
114static struct sx shm_dict_lock;
115static struct mtx shm_timestamp_lock;
116static u_long shm_hash;
117static struct unrhdr64 shm_ino_unr;
118static dev_t shm_dev_ino;
119
120#define	SHM_HASH(fnv)	(&shm_dictionary[(fnv) & shm_hash])
121
122static void	shm_init(void *arg);
123static void	shm_insert(char *path, Fnv32_t fnv, struct shmfd *shmfd);
124static struct shmfd *shm_lookup(char *path, Fnv32_t fnv);
125static int	shm_remove(char *path, Fnv32_t fnv, struct ucred *ucred);
126static void	shm_doremove(struct shm_mapping *map);
127static int	shm_dotruncate_cookie(struct shmfd *shmfd, off_t length,
128    void *rl_cookie);
129static int	shm_dotruncate_locked(struct shmfd *shmfd, off_t length,
130    void *rl_cookie);
131static int	shm_copyin_path(struct thread *td, const char *userpath_in,
132    char **path_out);
133static int	shm_deallocate(struct shmfd *shmfd, off_t *offset,
134    off_t *length, int flags);
135
136static fo_rdwr_t	shm_read;
137static fo_rdwr_t	shm_write;
138static fo_truncate_t	shm_truncate;
139static fo_ioctl_t	shm_ioctl;
140static fo_stat_t	shm_stat;
141static fo_close_t	shm_close;
142static fo_chmod_t	shm_chmod;
143static fo_chown_t	shm_chown;
144static fo_seek_t	shm_seek;
145static fo_fill_kinfo_t	shm_fill_kinfo;
146static fo_mmap_t	shm_mmap;
147static fo_get_seals_t	shm_get_seals;
148static fo_add_seals_t	shm_add_seals;
149static fo_fallocate_t	shm_fallocate;
150static fo_fspacectl_t	shm_fspacectl;
151
152/* File descriptor operations. */
153struct fileops shm_ops = {
154	.fo_read = shm_read,
155	.fo_write = shm_write,
156	.fo_truncate = shm_truncate,
157	.fo_ioctl = shm_ioctl,
158	.fo_poll = invfo_poll,
159	.fo_kqfilter = invfo_kqfilter,
160	.fo_stat = shm_stat,
161	.fo_close = shm_close,
162	.fo_chmod = shm_chmod,
163	.fo_chown = shm_chown,
164	.fo_sendfile = vn_sendfile,
165	.fo_seek = shm_seek,
166	.fo_fill_kinfo = shm_fill_kinfo,
167	.fo_mmap = shm_mmap,
168	.fo_get_seals = shm_get_seals,
169	.fo_add_seals = shm_add_seals,
170	.fo_fallocate = shm_fallocate,
171	.fo_fspacectl = shm_fspacectl,
172	.fo_cmp = file_kcmp_generic,
173	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE,
174};
175
176FEATURE(posix_shm, "POSIX shared memory");
177
178static SYSCTL_NODE(_vm, OID_AUTO, largepages, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
179    "");
180
181static int largepage_reclaim_tries = 1;
182SYSCTL_INT(_vm_largepages, OID_AUTO, reclaim_tries,
183    CTLFLAG_RWTUN, &largepage_reclaim_tries, 0,
184    "Number of contig reclaims before giving up for default alloc policy");
185
186#define	shm_rangelock_unlock(shmfd, cookie)				\
187	rangelock_unlock(&(shmfd)->shm_rl, (cookie), &(shmfd)->shm_mtx)
188#define	shm_rangelock_rlock(shmfd, start, end)				\
189	rangelock_rlock(&(shmfd)->shm_rl, (start), (end), &(shmfd)->shm_mtx)
190#define	shm_rangelock_tryrlock(shmfd, start, end)			\
191	rangelock_tryrlock(&(shmfd)->shm_rl, (start), (end), &(shmfd)->shm_mtx)
192#define	shm_rangelock_wlock(shmfd, start, end)				\
193	rangelock_wlock(&(shmfd)->shm_rl, (start), (end), &(shmfd)->shm_mtx)
194
195static int
196uiomove_object_page(vm_object_t obj, size_t len, struct uio *uio)
197{
198	vm_page_t m;
199	vm_pindex_t idx;
200	size_t tlen;
201	int error, offset, rv;
202
203	idx = OFF_TO_IDX(uio->uio_offset);
204	offset = uio->uio_offset & PAGE_MASK;
205	tlen = MIN(PAGE_SIZE - offset, len);
206
207	rv = vm_page_grab_valid_unlocked(&m, obj, idx,
208	    VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY | VM_ALLOC_NOCREAT);
209	if (rv == VM_PAGER_OK)
210		goto found;
211
212	/*
213	 * Read I/O without either a corresponding resident page or swap
214	 * page: use zero_region.  This is intended to avoid instantiating
215	 * pages on read from a sparse region.
216	 */
217	VM_OBJECT_WLOCK(obj);
218	m = vm_page_lookup(obj, idx);
219	if (uio->uio_rw == UIO_READ && m == NULL &&
220	    !vm_pager_has_page(obj, idx, NULL, NULL)) {
221		VM_OBJECT_WUNLOCK(obj);
222		return (uiomove(__DECONST(void *, zero_region), tlen, uio));
223	}
224
225	/*
226	 * Although the tmpfs vnode lock is held here, it is
227	 * nonetheless safe to sleep waiting for a free page.  The
228	 * pageout daemon does not need to acquire the tmpfs vnode
229	 * lock to page out tobj's pages because tobj is a OBJT_SWAP
230	 * type object.
231	 */
232	rv = vm_page_grab_valid(&m, obj, idx,
233	    VM_ALLOC_NORMAL | VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY);
234	if (rv != VM_PAGER_OK) {
235		VM_OBJECT_WUNLOCK(obj);
236		if (bootverbose) {
237			printf("uiomove_object: vm_obj %p idx %jd "
238			    "pager error %d\n", obj, idx, rv);
239		}
240		return (rv == VM_PAGER_AGAIN ? ENOSPC : EIO);
241	}
242	VM_OBJECT_WUNLOCK(obj);
243
244found:
245	error = uiomove_fromphys(&m, offset, tlen, uio);
246	if (uio->uio_rw == UIO_WRITE && error == 0)
247		vm_page_set_dirty(m);
248	vm_page_activate(m);
249	vm_page_sunbusy(m);
250
251	return (error);
252}
253
254int
255uiomove_object(vm_object_t obj, off_t obj_size, struct uio *uio)
256{
257	ssize_t resid;
258	size_t len;
259	int error;
260
261	error = 0;
262	while ((resid = uio->uio_resid) > 0) {
263		if (obj_size <= uio->uio_offset)
264			break;
265		len = MIN(obj_size - uio->uio_offset, resid);
266		if (len == 0)
267			break;
268		error = uiomove_object_page(obj, len, uio);
269		if (error != 0 || resid == uio->uio_resid)
270			break;
271	}
272	return (error);
273}
274
275static u_long count_largepages[MAXPAGESIZES];
276
277static int
278shm_largepage_phys_populate(vm_object_t object, vm_pindex_t pidx,
279    int fault_type, vm_prot_t max_prot, vm_pindex_t *first, vm_pindex_t *last)
280{
281	vm_page_t m __diagused;
282	int psind;
283
284	psind = object->un_pager.phys.data_val;
285	if (psind == 0 || pidx >= object->size)
286		return (VM_PAGER_FAIL);
287	*first = rounddown2(pidx, pagesizes[psind] / PAGE_SIZE);
288
289	/*
290	 * We only busy the first page in the superpage run.  It is
291	 * useless to busy whole run since we only remove full
292	 * superpage, and it takes too long to busy e.g. 512 * 512 ==
293	 * 262144 pages constituing 1G amd64 superage.
294	 */
295	m = vm_page_grab(object, *first, VM_ALLOC_NORMAL | VM_ALLOC_NOCREAT);
296	MPASS(m != NULL);
297
298	*last = *first + atop(pagesizes[psind]) - 1;
299	return (VM_PAGER_OK);
300}
301
302static boolean_t
303shm_largepage_phys_haspage(vm_object_t object, vm_pindex_t pindex,
304    int *before, int *after)
305{
306	int psind;
307
308	psind = object->un_pager.phys.data_val;
309	if (psind == 0 || pindex >= object->size)
310		return (FALSE);
311	if (before != NULL) {
312		*before = pindex - rounddown2(pindex, pagesizes[psind] /
313		    PAGE_SIZE);
314	}
315	if (after != NULL) {
316		*after = roundup2(pindex, pagesizes[psind] / PAGE_SIZE) -
317		    pindex;
318	}
319	return (TRUE);
320}
321
322static void
323shm_largepage_phys_ctor(vm_object_t object, vm_prot_t prot,
324    vm_ooffset_t foff, struct ucred *cred)
325{
326}
327
328static void
329shm_largepage_phys_dtor(vm_object_t object)
330{
331	int psind;
332
333	psind = object->un_pager.phys.data_val;
334	if (psind != 0) {
335		atomic_subtract_long(&count_largepages[psind],
336		    object->size / (pagesizes[psind] / PAGE_SIZE));
337		vm_wire_sub(object->size);
338	} else {
339		KASSERT(object->size == 0,
340		    ("largepage phys obj %p not initialized bit size %#jx > 0",
341		    object, (uintmax_t)object->size));
342	}
343}
344
345static const struct phys_pager_ops shm_largepage_phys_ops = {
346	.phys_pg_populate =	shm_largepage_phys_populate,
347	.phys_pg_haspage =	shm_largepage_phys_haspage,
348	.phys_pg_ctor =		shm_largepage_phys_ctor,
349	.phys_pg_dtor =		shm_largepage_phys_dtor,
350};
351
352bool
353shm_largepage(struct shmfd *shmfd)
354{
355	return (shmfd->shm_object->type == OBJT_PHYS);
356}
357
358static void
359shm_pager_freespace(vm_object_t obj, vm_pindex_t start, vm_size_t size)
360{
361	struct shmfd *shm;
362	vm_size_t c;
363
364	swap_pager_freespace(obj, start, size, &c);
365	if (c == 0)
366		return;
367
368	shm = obj->un_pager.swp.swp_priv;
369	if (shm == NULL)
370		return;
371	KASSERT(shm->shm_pages >= c,
372	    ("shm %p pages %jd free %jd", shm,
373	    (uintmax_t)shm->shm_pages, (uintmax_t)c));
374	shm->shm_pages -= c;
375}
376
377static void
378shm_page_inserted(vm_object_t obj, vm_page_t m)
379{
380	struct shmfd *shm;
381
382	shm = obj->un_pager.swp.swp_priv;
383	if (shm == NULL)
384		return;
385	if (!vm_pager_has_page(obj, m->pindex, NULL, NULL))
386		shm->shm_pages += 1;
387}
388
389static void
390shm_page_removed(vm_object_t obj, vm_page_t m)
391{
392	struct shmfd *shm;
393
394	shm = obj->un_pager.swp.swp_priv;
395	if (shm == NULL)
396		return;
397	if (!vm_pager_has_page(obj, m->pindex, NULL, NULL)) {
398		KASSERT(shm->shm_pages >= 1,
399		    ("shm %p pages %jd free 1", shm,
400		    (uintmax_t)shm->shm_pages));
401		shm->shm_pages -= 1;
402	}
403}
404
405static struct pagerops shm_swap_pager_ops = {
406	.pgo_kvme_type = KVME_TYPE_SWAP,
407	.pgo_freespace = shm_pager_freespace,
408	.pgo_page_inserted = shm_page_inserted,
409	.pgo_page_removed = shm_page_removed,
410};
411static int shmfd_pager_type = -1;
412
413static int
414shm_seek(struct file *fp, off_t offset, int whence, struct thread *td)
415{
416	struct shmfd *shmfd;
417	off_t foffset;
418	int error;
419
420	shmfd = fp->f_data;
421	foffset = foffset_lock(fp, 0);
422	error = 0;
423	switch (whence) {
424	case L_INCR:
425		if (foffset < 0 ||
426		    (offset > 0 && foffset > OFF_MAX - offset)) {
427			error = EOVERFLOW;
428			break;
429		}
430		offset += foffset;
431		break;
432	case L_XTND:
433		if (offset > 0 && shmfd->shm_size > OFF_MAX - offset) {
434			error = EOVERFLOW;
435			break;
436		}
437		offset += shmfd->shm_size;
438		break;
439	case L_SET:
440		break;
441	default:
442		error = EINVAL;
443	}
444	if (error == 0) {
445		if (offset < 0 || offset > shmfd->shm_size)
446			error = EINVAL;
447		else
448			td->td_uretoff.tdu_off = offset;
449	}
450	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
451	return (error);
452}
453
454static int
455shm_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
456    int flags, struct thread *td)
457{
458	struct shmfd *shmfd;
459	void *rl_cookie;
460	int error;
461
462	shmfd = fp->f_data;
463#ifdef MAC
464	error = mac_posixshm_check_read(active_cred, fp->f_cred, shmfd);
465	if (error)
466		return (error);
467#endif
468	foffset_lock_uio(fp, uio, flags);
469	rl_cookie = shm_rangelock_rlock(shmfd, uio->uio_offset,
470	    uio->uio_offset + uio->uio_resid);
471	error = uiomove_object(shmfd->shm_object, shmfd->shm_size, uio);
472	shm_rangelock_unlock(shmfd, rl_cookie);
473	foffset_unlock_uio(fp, uio, flags);
474	return (error);
475}
476
477static int
478shm_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
479    int flags, struct thread *td)
480{
481	struct shmfd *shmfd;
482	void *rl_cookie;
483	int error;
484	off_t size;
485
486	shmfd = fp->f_data;
487#ifdef MAC
488	error = mac_posixshm_check_write(active_cred, fp->f_cred, shmfd);
489	if (error)
490		return (error);
491#endif
492	if (shm_largepage(shmfd) && shmfd->shm_lp_psind == 0)
493		return (EINVAL);
494	foffset_lock_uio(fp, uio, flags);
495	if (uio->uio_resid > OFF_MAX - uio->uio_offset) {
496		/*
497		 * Overflow is only an error if we're supposed to expand on
498		 * write.  Otherwise, we'll just truncate the write to the
499		 * size of the file, which can only grow up to OFF_MAX.
500		 */
501		if ((shmfd->shm_flags & SHM_GROW_ON_WRITE) != 0) {
502			foffset_unlock_uio(fp, uio, flags);
503			return (EFBIG);
504		}
505
506		size = shmfd->shm_size;
507	} else {
508		size = uio->uio_offset + uio->uio_resid;
509	}
510	if ((flags & FOF_OFFSET) == 0)
511		rl_cookie = shm_rangelock_wlock(shmfd, 0, OFF_MAX);
512	else
513		rl_cookie = shm_rangelock_wlock(shmfd, uio->uio_offset, size);
514	if ((shmfd->shm_seals & F_SEAL_WRITE) != 0) {
515		error = EPERM;
516	} else {
517		error = 0;
518		if ((shmfd->shm_flags & SHM_GROW_ON_WRITE) != 0 &&
519		    size > shmfd->shm_size) {
520			error = shm_dotruncate_cookie(shmfd, size, rl_cookie);
521		}
522		if (error == 0)
523			error = uiomove_object(shmfd->shm_object,
524			    shmfd->shm_size, uio);
525	}
526	shm_rangelock_unlock(shmfd, rl_cookie);
527	foffset_unlock_uio(fp, uio, flags);
528	return (error);
529}
530
531static int
532shm_truncate(struct file *fp, off_t length, struct ucred *active_cred,
533    struct thread *td)
534{
535	struct shmfd *shmfd;
536#ifdef MAC
537	int error;
538#endif
539
540	shmfd = fp->f_data;
541#ifdef MAC
542	error = mac_posixshm_check_truncate(active_cred, fp->f_cred, shmfd);
543	if (error)
544		return (error);
545#endif
546	return (shm_dotruncate(shmfd, length));
547}
548
549int
550shm_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
551    struct thread *td)
552{
553	struct shmfd *shmfd;
554	struct shm_largepage_conf *conf;
555	void *rl_cookie;
556
557	shmfd = fp->f_data;
558	switch (com) {
559	case FIONBIO:
560	case FIOASYNC:
561		/*
562		 * Allow fcntl(fd, F_SETFL, O_NONBLOCK) to work,
563		 * just like it would on an unlinked regular file
564		 */
565		return (0);
566	case FIOSSHMLPGCNF:
567		if (!shm_largepage(shmfd))
568			return (ENOTTY);
569		conf = data;
570		if (shmfd->shm_lp_psind != 0 &&
571		    conf->psind != shmfd->shm_lp_psind)
572			return (EINVAL);
573		if (conf->psind <= 0 || conf->psind >= MAXPAGESIZES ||
574		    pagesizes[conf->psind] == 0)
575			return (EINVAL);
576		if (conf->alloc_policy != SHM_LARGEPAGE_ALLOC_DEFAULT &&
577		    conf->alloc_policy != SHM_LARGEPAGE_ALLOC_NOWAIT &&
578		    conf->alloc_policy != SHM_LARGEPAGE_ALLOC_HARD)
579			return (EINVAL);
580
581		rl_cookie = shm_rangelock_wlock(shmfd, 0, OFF_MAX);
582		shmfd->shm_lp_psind = conf->psind;
583		shmfd->shm_lp_alloc_policy = conf->alloc_policy;
584		shmfd->shm_object->un_pager.phys.data_val = conf->psind;
585		shm_rangelock_unlock(shmfd, rl_cookie);
586		return (0);
587	case FIOGSHMLPGCNF:
588		if (!shm_largepage(shmfd))
589			return (ENOTTY);
590		conf = data;
591		rl_cookie = shm_rangelock_rlock(shmfd, 0, OFF_MAX);
592		conf->psind = shmfd->shm_lp_psind;
593		conf->alloc_policy = shmfd->shm_lp_alloc_policy;
594		shm_rangelock_unlock(shmfd, rl_cookie);
595		return (0);
596	default:
597		return (ENOTTY);
598	}
599}
600
601static int
602shm_stat(struct file *fp, struct stat *sb, struct ucred *active_cred)
603{
604	struct shmfd *shmfd;
605#ifdef MAC
606	int error;
607#endif
608
609	shmfd = fp->f_data;
610
611#ifdef MAC
612	error = mac_posixshm_check_stat(active_cred, fp->f_cred, shmfd);
613	if (error)
614		return (error);
615#endif
616
617	/*
618	 * Attempt to return sanish values for fstat() on a memory file
619	 * descriptor.
620	 */
621	bzero(sb, sizeof(*sb));
622	sb->st_blksize = PAGE_SIZE;
623	sb->st_size = shmfd->shm_size;
624	mtx_lock(&shm_timestamp_lock);
625	sb->st_atim = shmfd->shm_atime;
626	sb->st_ctim = shmfd->shm_ctime;
627	sb->st_mtim = shmfd->shm_mtime;
628	sb->st_birthtim = shmfd->shm_birthtime;
629	sb->st_mode = S_IFREG | shmfd->shm_mode;		/* XXX */
630	sb->st_uid = shmfd->shm_uid;
631	sb->st_gid = shmfd->shm_gid;
632	mtx_unlock(&shm_timestamp_lock);
633	sb->st_dev = shm_dev_ino;
634	sb->st_ino = shmfd->shm_ino;
635	sb->st_nlink = shmfd->shm_object->ref_count;
636	if (shm_largepage(shmfd)) {
637		sb->st_blocks = shmfd->shm_object->size /
638		    (pagesizes[shmfd->shm_lp_psind] >> PAGE_SHIFT);
639	} else {
640		sb->st_blocks = shmfd->shm_pages;
641	}
642
643	return (0);
644}
645
646static int
647shm_close(struct file *fp, struct thread *td)
648{
649	struct shmfd *shmfd;
650
651	shmfd = fp->f_data;
652	fp->f_data = NULL;
653	shm_drop(shmfd);
654
655	return (0);
656}
657
658static int
659shm_copyin_path(struct thread *td, const char *userpath_in, char **path_out) {
660	int error;
661	char *path;
662	const char *pr_path;
663	size_t pr_pathlen;
664
665	path = malloc(MAXPATHLEN, M_SHMFD, M_WAITOK);
666	pr_path = td->td_ucred->cr_prison->pr_path;
667
668	/* Construct a full pathname for jailed callers. */
669	pr_pathlen = strcmp(pr_path, "/") ==
670	    0 ? 0 : strlcpy(path, pr_path, MAXPATHLEN);
671	error = copyinstr(userpath_in, path + pr_pathlen,
672	    MAXPATHLEN - pr_pathlen, NULL);
673	if (error != 0)
674		goto out;
675
676#ifdef KTRACE
677	if (KTRPOINT(curthread, KTR_NAMEI))
678		ktrnamei(path);
679#endif
680
681	/* Require paths to start with a '/' character. */
682	if (path[pr_pathlen] != '/') {
683		error = EINVAL;
684		goto out;
685	}
686
687	*path_out = path;
688
689out:
690	if (error != 0)
691		free(path, M_SHMFD);
692
693	return (error);
694}
695
696static int
697shm_partial_page_invalidate(vm_object_t object, vm_pindex_t idx, int base,
698    int end)
699{
700	vm_page_t m;
701	int rv;
702
703	VM_OBJECT_ASSERT_WLOCKED(object);
704	KASSERT(base >= 0, ("%s: base %d", __func__, base));
705	KASSERT(end - base <= PAGE_SIZE, ("%s: base %d end %d", __func__, base,
706	    end));
707
708retry:
709	m = vm_page_grab(object, idx, VM_ALLOC_NOCREAT);
710	if (m != NULL) {
711		MPASS(vm_page_all_valid(m));
712	} else if (vm_pager_has_page(object, idx, NULL, NULL)) {
713		m = vm_page_alloc(object, idx,
714		    VM_ALLOC_NORMAL | VM_ALLOC_WAITFAIL);
715		if (m == NULL)
716			goto retry;
717		vm_object_pip_add(object, 1);
718		VM_OBJECT_WUNLOCK(object);
719		rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
720		VM_OBJECT_WLOCK(object);
721		vm_object_pip_wakeup(object);
722		if (rv == VM_PAGER_OK) {
723			/*
724			 * Since the page was not resident, and therefore not
725			 * recently accessed, immediately enqueue it for
726			 * asynchronous laundering.  The current operation is
727			 * not regarded as an access.
728			 */
729			vm_page_launder(m);
730		} else {
731			vm_page_free(m);
732			VM_OBJECT_WUNLOCK(object);
733			return (EIO);
734		}
735	}
736	if (m != NULL) {
737		pmap_zero_page_area(m, base, end - base);
738		KASSERT(vm_page_all_valid(m), ("%s: page %p is invalid",
739		    __func__, m));
740		vm_page_set_dirty(m);
741		vm_page_xunbusy(m);
742	}
743
744	return (0);
745}
746
747static int
748shm_dotruncate_locked(struct shmfd *shmfd, off_t length, void *rl_cookie)
749{
750	vm_object_t object;
751	vm_pindex_t nobjsize;
752	vm_ooffset_t delta;
753	int base, error;
754
755	KASSERT(length >= 0, ("shm_dotruncate: length < 0"));
756	object = shmfd->shm_object;
757	VM_OBJECT_ASSERT_WLOCKED(object);
758	rangelock_cookie_assert(rl_cookie, RA_WLOCKED);
759	if (length == shmfd->shm_size)
760		return (0);
761	nobjsize = OFF_TO_IDX(length + PAGE_MASK);
762
763	/* Are we shrinking?  If so, trim the end. */
764	if (length < shmfd->shm_size) {
765		if ((shmfd->shm_seals & F_SEAL_SHRINK) != 0)
766			return (EPERM);
767
768		/*
769		 * Disallow any requests to shrink the size if this
770		 * object is mapped into the kernel.
771		 */
772		if (shmfd->shm_kmappings > 0)
773			return (EBUSY);
774
775		/*
776		 * Zero the truncated part of the last page.
777		 */
778		base = length & PAGE_MASK;
779		if (base != 0) {
780			error = shm_partial_page_invalidate(object,
781			    OFF_TO_IDX(length), base, PAGE_SIZE);
782			if (error)
783				return (error);
784		}
785		delta = IDX_TO_OFF(object->size - nobjsize);
786
787		if (nobjsize < object->size)
788			vm_object_page_remove(object, nobjsize, object->size,
789			    0);
790
791		/* Free the swap accounted for shm */
792		swap_release_by_cred(delta, object->cred);
793		object->charge -= delta;
794	} else {
795		if ((shmfd->shm_seals & F_SEAL_GROW) != 0)
796			return (EPERM);
797
798		/* Try to reserve additional swap space. */
799		delta = IDX_TO_OFF(nobjsize - object->size);
800		if (!swap_reserve_by_cred(delta, object->cred))
801			return (ENOMEM);
802		object->charge += delta;
803	}
804	shmfd->shm_size = length;
805	mtx_lock(&shm_timestamp_lock);
806	vfs_timestamp(&shmfd->shm_ctime);
807	shmfd->shm_mtime = shmfd->shm_ctime;
808	mtx_unlock(&shm_timestamp_lock);
809	object->size = nobjsize;
810	return (0);
811}
812
813static int
814shm_dotruncate_largepage(struct shmfd *shmfd, off_t length, void *rl_cookie)
815{
816	vm_object_t object;
817	vm_page_t m;
818	vm_pindex_t newobjsz;
819	vm_pindex_t oldobjsz __unused;
820	int aflags, error, i, psind, try;
821
822	KASSERT(length >= 0, ("shm_dotruncate: length < 0"));
823	object = shmfd->shm_object;
824	VM_OBJECT_ASSERT_WLOCKED(object);
825	rangelock_cookie_assert(rl_cookie, RA_WLOCKED);
826
827	oldobjsz = object->size;
828	newobjsz = OFF_TO_IDX(length);
829	if (length == shmfd->shm_size)
830		return (0);
831	psind = shmfd->shm_lp_psind;
832	if (psind == 0 && length != 0)
833		return (EINVAL);
834	if ((length & (pagesizes[psind] - 1)) != 0)
835		return (EINVAL);
836
837	if (length < shmfd->shm_size) {
838		if ((shmfd->shm_seals & F_SEAL_SHRINK) != 0)
839			return (EPERM);
840		if (shmfd->shm_kmappings > 0)
841			return (EBUSY);
842		return (ENOTSUP);	/* Pages are unmanaged. */
843#if 0
844		vm_object_page_remove(object, newobjsz, oldobjsz, 0);
845		object->size = newobjsz;
846		shmfd->shm_size = length;
847		return (0);
848#endif
849	}
850
851	if ((shmfd->shm_seals & F_SEAL_GROW) != 0)
852		return (EPERM);
853
854	aflags = VM_ALLOC_NORMAL | VM_ALLOC_ZERO;
855	if (shmfd->shm_lp_alloc_policy == SHM_LARGEPAGE_ALLOC_NOWAIT)
856		aflags |= VM_ALLOC_WAITFAIL;
857	try = 0;
858
859	/*
860	 * Extend shmfd and object, keeping all already fully
861	 * allocated large pages intact even on error, because dropped
862	 * object lock might allowed mapping of them.
863	 */
864	while (object->size < newobjsz) {
865		m = vm_page_alloc_contig(object, object->size, aflags,
866		    pagesizes[psind] / PAGE_SIZE, 0, ~0,
867		    pagesizes[psind], 0,
868		    VM_MEMATTR_DEFAULT);
869		if (m == NULL) {
870			VM_OBJECT_WUNLOCK(object);
871			if (shmfd->shm_lp_alloc_policy ==
872			    SHM_LARGEPAGE_ALLOC_NOWAIT ||
873			    (shmfd->shm_lp_alloc_policy ==
874			    SHM_LARGEPAGE_ALLOC_DEFAULT &&
875			    try >= largepage_reclaim_tries)) {
876				VM_OBJECT_WLOCK(object);
877				return (ENOMEM);
878			}
879			error = vm_page_reclaim_contig(aflags,
880			    pagesizes[psind] / PAGE_SIZE, 0, ~0,
881			    pagesizes[psind], 0);
882			if (error == ENOMEM)
883				error = vm_wait_intr(object);
884			if (error != 0) {
885				VM_OBJECT_WLOCK(object);
886				return (error);
887			}
888			try++;
889			VM_OBJECT_WLOCK(object);
890			continue;
891		}
892		try = 0;
893		for (i = 0; i < pagesizes[psind] / PAGE_SIZE; i++) {
894			if ((m[i].flags & PG_ZERO) == 0)
895				pmap_zero_page(&m[i]);
896			vm_page_valid(&m[i]);
897			vm_page_xunbusy(&m[i]);
898		}
899		object->size += OFF_TO_IDX(pagesizes[psind]);
900		shmfd->shm_size += pagesizes[psind];
901		atomic_add_long(&count_largepages[psind], 1);
902		vm_wire_add(atop(pagesizes[psind]));
903	}
904	return (0);
905}
906
907static int
908shm_dotruncate_cookie(struct shmfd *shmfd, off_t length, void *rl_cookie)
909{
910	int error;
911
912	VM_OBJECT_WLOCK(shmfd->shm_object);
913	error = shm_largepage(shmfd) ? shm_dotruncate_largepage(shmfd,
914	    length, rl_cookie) : shm_dotruncate_locked(shmfd, length,
915	    rl_cookie);
916	VM_OBJECT_WUNLOCK(shmfd->shm_object);
917	return (error);
918}
919
920int
921shm_dotruncate(struct shmfd *shmfd, off_t length)
922{
923	void *rl_cookie;
924	int error;
925
926	rl_cookie = shm_rangelock_wlock(shmfd, 0, OFF_MAX);
927	error = shm_dotruncate_cookie(shmfd, length, rl_cookie);
928	shm_rangelock_unlock(shmfd, rl_cookie);
929	return (error);
930}
931
932/*
933 * shmfd object management including creation and reference counting
934 * routines.
935 */
936struct shmfd *
937shm_alloc(struct ucred *ucred, mode_t mode, bool largepage)
938{
939	struct shmfd *shmfd;
940	vm_object_t obj;
941
942	shmfd = malloc(sizeof(*shmfd), M_SHMFD, M_WAITOK | M_ZERO);
943	shmfd->shm_size = 0;
944	shmfd->shm_uid = ucred->cr_uid;
945	shmfd->shm_gid = ucred->cr_gid;
946	shmfd->shm_mode = mode;
947	if (largepage) {
948		shmfd->shm_object = phys_pager_allocate(NULL,
949		    &shm_largepage_phys_ops, NULL, shmfd->shm_size,
950		    VM_PROT_DEFAULT, 0, ucred);
951		shmfd->shm_lp_alloc_policy = SHM_LARGEPAGE_ALLOC_DEFAULT;
952	} else {
953		obj = vm_pager_allocate(shmfd_pager_type, NULL,
954		    shmfd->shm_size, VM_PROT_DEFAULT, 0, ucred);
955		VM_OBJECT_WLOCK(obj);
956		obj->un_pager.swp.swp_priv = shmfd;
957		VM_OBJECT_WUNLOCK(obj);
958		shmfd->shm_object = obj;
959	}
960	KASSERT(shmfd->shm_object != NULL, ("shm_create: vm_pager_allocate"));
961	vfs_timestamp(&shmfd->shm_birthtime);
962	shmfd->shm_atime = shmfd->shm_mtime = shmfd->shm_ctime =
963	    shmfd->shm_birthtime;
964	shmfd->shm_ino = alloc_unr64(&shm_ino_unr);
965	refcount_init(&shmfd->shm_refs, 1);
966	mtx_init(&shmfd->shm_mtx, "shmrl", NULL, MTX_DEF);
967	rangelock_init(&shmfd->shm_rl);
968#ifdef MAC
969	mac_posixshm_init(shmfd);
970	mac_posixshm_create(ucred, shmfd);
971#endif
972
973	return (shmfd);
974}
975
976struct shmfd *
977shm_hold(struct shmfd *shmfd)
978{
979
980	refcount_acquire(&shmfd->shm_refs);
981	return (shmfd);
982}
983
984void
985shm_drop(struct shmfd *shmfd)
986{
987	vm_object_t obj;
988
989	if (refcount_release(&shmfd->shm_refs)) {
990#ifdef MAC
991		mac_posixshm_destroy(shmfd);
992#endif
993		rangelock_destroy(&shmfd->shm_rl);
994		mtx_destroy(&shmfd->shm_mtx);
995		obj = shmfd->shm_object;
996		if (!shm_largepage(shmfd)) {
997			VM_OBJECT_WLOCK(obj);
998			obj->un_pager.swp.swp_priv = NULL;
999			VM_OBJECT_WUNLOCK(obj);
1000		}
1001		vm_object_deallocate(obj);
1002		free(shmfd, M_SHMFD);
1003	}
1004}
1005
1006/*
1007 * Determine if the credentials have sufficient permissions for a
1008 * specified combination of FREAD and FWRITE.
1009 */
1010int
1011shm_access(struct shmfd *shmfd, struct ucred *ucred, int flags)
1012{
1013	accmode_t accmode;
1014	int error;
1015
1016	accmode = 0;
1017	if (flags & FREAD)
1018		accmode |= VREAD;
1019	if (flags & FWRITE)
1020		accmode |= VWRITE;
1021	mtx_lock(&shm_timestamp_lock);
1022	error = vaccess(VREG, shmfd->shm_mode, shmfd->shm_uid, shmfd->shm_gid,
1023	    accmode, ucred);
1024	mtx_unlock(&shm_timestamp_lock);
1025	return (error);
1026}
1027
1028static void
1029shm_init(void *arg)
1030{
1031	char name[32];
1032	int i;
1033
1034	mtx_init(&shm_timestamp_lock, "shm timestamps", NULL, MTX_DEF);
1035	sx_init(&shm_dict_lock, "shm dictionary");
1036	shm_dictionary = hashinit(1024, M_SHMFD, &shm_hash);
1037	new_unrhdr64(&shm_ino_unr, 1);
1038	shm_dev_ino = devfs_alloc_cdp_inode();
1039	KASSERT(shm_dev_ino > 0, ("shm dev inode not initialized"));
1040	shmfd_pager_type = vm_pager_alloc_dyn_type(&shm_swap_pager_ops,
1041	    OBJT_SWAP);
1042	MPASS(shmfd_pager_type != -1);
1043
1044	for (i = 1; i < MAXPAGESIZES; i++) {
1045		if (pagesizes[i] == 0)
1046			break;
1047#define	M	(1024 * 1024)
1048#define	G	(1024 * M)
1049		if (pagesizes[i] >= G)
1050			snprintf(name, sizeof(name), "%luG", pagesizes[i] / G);
1051		else if (pagesizes[i] >= M)
1052			snprintf(name, sizeof(name), "%luM", pagesizes[i] / M);
1053		else
1054			snprintf(name, sizeof(name), "%lu", pagesizes[i]);
1055#undef G
1056#undef M
1057		SYSCTL_ADD_ULONG(NULL, SYSCTL_STATIC_CHILDREN(_vm_largepages),
1058		    OID_AUTO, name, CTLFLAG_RD, &count_largepages[i],
1059		    "number of non-transient largepages allocated");
1060	}
1061}
1062SYSINIT(shm_init, SI_SUB_SYSV_SHM, SI_ORDER_ANY, shm_init, NULL);
1063
1064/*
1065 * Remove all shared memory objects that belong to a prison.
1066 */
1067void
1068shm_remove_prison(struct prison *pr)
1069{
1070	struct shm_mapping *shmm, *tshmm;
1071	u_long i;
1072
1073	sx_xlock(&shm_dict_lock);
1074	for (i = 0; i < shm_hash + 1; i++) {
1075		LIST_FOREACH_SAFE(shmm, &shm_dictionary[i], sm_link, tshmm) {
1076			if (shmm->sm_shmfd->shm_object->cred &&
1077			    shmm->sm_shmfd->shm_object->cred->cr_prison == pr)
1078				shm_doremove(shmm);
1079		}
1080	}
1081	sx_xunlock(&shm_dict_lock);
1082}
1083
1084/*
1085 * Dictionary management.  We maintain an in-kernel dictionary to map
1086 * paths to shmfd objects.  We use the FNV hash on the path to store
1087 * the mappings in a hash table.
1088 */
1089static struct shmfd *
1090shm_lookup(char *path, Fnv32_t fnv)
1091{
1092	struct shm_mapping *map;
1093
1094	LIST_FOREACH(map, SHM_HASH(fnv), sm_link) {
1095		if (map->sm_fnv != fnv)
1096			continue;
1097		if (strcmp(map->sm_path, path) == 0)
1098			return (map->sm_shmfd);
1099	}
1100
1101	return (NULL);
1102}
1103
1104static void
1105shm_insert(char *path, Fnv32_t fnv, struct shmfd *shmfd)
1106{
1107	struct shm_mapping *map;
1108
1109	map = malloc(sizeof(struct shm_mapping), M_SHMFD, M_WAITOK);
1110	map->sm_path = path;
1111	map->sm_fnv = fnv;
1112	map->sm_shmfd = shm_hold(shmfd);
1113	shmfd->shm_path = path;
1114	LIST_INSERT_HEAD(SHM_HASH(fnv), map, sm_link);
1115}
1116
1117static int
1118shm_remove(char *path, Fnv32_t fnv, struct ucred *ucred)
1119{
1120	struct shm_mapping *map;
1121	int error;
1122
1123	LIST_FOREACH(map, SHM_HASH(fnv), sm_link) {
1124		if (map->sm_fnv != fnv)
1125			continue;
1126		if (strcmp(map->sm_path, path) == 0) {
1127#ifdef MAC
1128			error = mac_posixshm_check_unlink(ucred, map->sm_shmfd);
1129			if (error)
1130				return (error);
1131#endif
1132			error = shm_access(map->sm_shmfd, ucred,
1133			    FREAD | FWRITE);
1134			if (error)
1135				return (error);
1136			shm_doremove(map);
1137			return (0);
1138		}
1139	}
1140
1141	return (ENOENT);
1142}
1143
1144static void
1145shm_doremove(struct shm_mapping *map)
1146{
1147	map->sm_shmfd->shm_path = NULL;
1148	LIST_REMOVE(map, sm_link);
1149	shm_drop(map->sm_shmfd);
1150	free(map->sm_path, M_SHMFD);
1151	free(map, M_SHMFD);
1152}
1153
1154int
1155kern_shm_open2(struct thread *td, const char *userpath, int flags, mode_t mode,
1156    int shmflags, struct filecaps *fcaps, const char *name __unused)
1157{
1158	struct pwddesc *pdp;
1159	struct shmfd *shmfd;
1160	struct file *fp;
1161	char *path;
1162	void *rl_cookie;
1163	Fnv32_t fnv;
1164	mode_t cmode;
1165	int error, fd, initial_seals;
1166	bool largepage;
1167
1168	if ((shmflags & ~(SHM_ALLOW_SEALING | SHM_GROW_ON_WRITE |
1169	    SHM_LARGEPAGE)) != 0)
1170		return (EINVAL);
1171
1172	initial_seals = F_SEAL_SEAL;
1173	if ((shmflags & SHM_ALLOW_SEALING) != 0)
1174		initial_seals &= ~F_SEAL_SEAL;
1175
1176	AUDIT_ARG_FFLAGS(flags);
1177	AUDIT_ARG_MODE(mode);
1178
1179	if ((flags & O_ACCMODE) != O_RDONLY && (flags & O_ACCMODE) != O_RDWR)
1180		return (EINVAL);
1181
1182	if ((flags & ~(O_ACCMODE | O_CREAT | O_EXCL | O_TRUNC | O_CLOEXEC)) != 0)
1183		return (EINVAL);
1184
1185	largepage = (shmflags & SHM_LARGEPAGE) != 0;
1186	if (largepage && !PMAP_HAS_LARGEPAGES)
1187		return (ENOTTY);
1188
1189	/*
1190	 * Currently only F_SEAL_SEAL may be set when creating or opening shmfd.
1191	 * If the decision is made later to allow additional seals, care must be
1192	 * taken below to ensure that the seals are properly set if the shmfd
1193	 * already existed -- this currently assumes that only F_SEAL_SEAL can
1194	 * be set and doesn't take further precautions to ensure the validity of
1195	 * the seals being added with respect to current mappings.
1196	 */
1197	if ((initial_seals & ~F_SEAL_SEAL) != 0)
1198		return (EINVAL);
1199
1200	if (userpath != SHM_ANON) {
1201		error = shm_copyin_path(td, userpath, &path);
1202		if (error != 0)
1203			return (error);
1204
1205#ifdef CAPABILITY_MODE
1206		/*
1207		 * shm_open(2) is only allowed for anonymous objects.
1208		 */
1209		if (CAP_TRACING(td))
1210			ktrcapfail(CAPFAIL_NAMEI, path);
1211		if (IN_CAPABILITY_MODE(td)) {
1212			free(path, M_SHMFD);
1213			return (ECAPMODE);
1214		}
1215#endif
1216
1217		AUDIT_ARG_UPATH1_CANON(path);
1218	} else {
1219		path = NULL;
1220	}
1221
1222	pdp = td->td_proc->p_pd;
1223	cmode = (mode & ~pdp->pd_cmask) & ACCESSPERMS;
1224
1225	/*
1226	 * shm_open(2) created shm should always have O_CLOEXEC set, as mandated
1227	 * by POSIX.  We allow it to be unset here so that an in-kernel
1228	 * interface may be written as a thin layer around shm, optionally not
1229	 * setting CLOEXEC.  For shm_open(2), O_CLOEXEC is set unconditionally
1230	 * in sys_shm_open() to keep this implementation compliant.
1231	 */
1232	error = falloc_caps(td, &fp, &fd, flags & O_CLOEXEC, fcaps);
1233	if (error) {
1234		free(path, M_SHMFD);
1235		return (error);
1236	}
1237
1238	/* A SHM_ANON path pointer creates an anonymous object. */
1239	if (userpath == SHM_ANON) {
1240		/* A read-only anonymous object is pointless. */
1241		if ((flags & O_ACCMODE) == O_RDONLY) {
1242			fdclose(td, fp, fd);
1243			fdrop(fp, td);
1244			return (EINVAL);
1245		}
1246		shmfd = shm_alloc(td->td_ucred, cmode, largepage);
1247		shmfd->shm_seals = initial_seals;
1248		shmfd->shm_flags = shmflags;
1249	} else {
1250		fnv = fnv_32_str(path, FNV1_32_INIT);
1251		sx_xlock(&shm_dict_lock);
1252		shmfd = shm_lookup(path, fnv);
1253		if (shmfd == NULL) {
1254			/* Object does not yet exist, create it if requested. */
1255			if (flags & O_CREAT) {
1256#ifdef MAC
1257				error = mac_posixshm_check_create(td->td_ucred,
1258				    path);
1259				if (error == 0) {
1260#endif
1261					shmfd = shm_alloc(td->td_ucred, cmode,
1262					    largepage);
1263					shmfd->shm_seals = initial_seals;
1264					shmfd->shm_flags = shmflags;
1265					shm_insert(path, fnv, shmfd);
1266#ifdef MAC
1267				}
1268#endif
1269			} else {
1270				free(path, M_SHMFD);
1271				error = ENOENT;
1272			}
1273		} else {
1274			rl_cookie = shm_rangelock_wlock(shmfd, 0, OFF_MAX);
1275
1276			/*
1277			 * kern_shm_open() likely shouldn't ever error out on
1278			 * trying to set a seal that already exists, unlike
1279			 * F_ADD_SEALS.  This would break terribly as
1280			 * shm_open(2) actually sets F_SEAL_SEAL to maintain
1281			 * historical behavior where the underlying file could
1282			 * not be sealed.
1283			 */
1284			initial_seals &= ~shmfd->shm_seals;
1285
1286			/*
1287			 * Object already exists, obtain a new
1288			 * reference if requested and permitted.
1289			 */
1290			free(path, M_SHMFD);
1291
1292			/*
1293			 * initial_seals can't set additional seals if we've
1294			 * already been set F_SEAL_SEAL.  If F_SEAL_SEAL is set,
1295			 * then we've already removed that one from
1296			 * initial_seals.  This is currently redundant as we
1297			 * only allow setting F_SEAL_SEAL at creation time, but
1298			 * it's cheap to check and decreases the effort required
1299			 * to allow additional seals.
1300			 */
1301			if ((shmfd->shm_seals & F_SEAL_SEAL) != 0 &&
1302			    initial_seals != 0)
1303				error = EPERM;
1304			else if ((flags & (O_CREAT | O_EXCL)) ==
1305			    (O_CREAT | O_EXCL))
1306				error = EEXIST;
1307			else if (shmflags != 0 && shmflags != shmfd->shm_flags)
1308				error = EINVAL;
1309			else {
1310#ifdef MAC
1311				error = mac_posixshm_check_open(td->td_ucred,
1312				    shmfd, FFLAGS(flags & O_ACCMODE));
1313				if (error == 0)
1314#endif
1315				error = shm_access(shmfd, td->td_ucred,
1316				    FFLAGS(flags & O_ACCMODE));
1317			}
1318
1319			/*
1320			 * Truncate the file back to zero length if
1321			 * O_TRUNC was specified and the object was
1322			 * opened with read/write.
1323			 */
1324			if (error == 0 &&
1325			    (flags & (O_ACCMODE | O_TRUNC)) ==
1326			    (O_RDWR | O_TRUNC)) {
1327				VM_OBJECT_WLOCK(shmfd->shm_object);
1328#ifdef MAC
1329				error = mac_posixshm_check_truncate(
1330					td->td_ucred, fp->f_cred, shmfd);
1331				if (error == 0)
1332#endif
1333					error = shm_dotruncate_locked(shmfd, 0,
1334					    rl_cookie);
1335				VM_OBJECT_WUNLOCK(shmfd->shm_object);
1336			}
1337			if (error == 0) {
1338				/*
1339				 * Currently we only allow F_SEAL_SEAL to be
1340				 * set initially.  As noted above, this would
1341				 * need to be reworked should that change.
1342				 */
1343				shmfd->shm_seals |= initial_seals;
1344				shm_hold(shmfd);
1345			}
1346			shm_rangelock_unlock(shmfd, rl_cookie);
1347		}
1348		sx_xunlock(&shm_dict_lock);
1349
1350		if (error) {
1351			fdclose(td, fp, fd);
1352			fdrop(fp, td);
1353			return (error);
1354		}
1355	}
1356
1357	finit(fp, FFLAGS(flags & O_ACCMODE), DTYPE_SHM, shmfd, &shm_ops);
1358
1359	td->td_retval[0] = fd;
1360	fdrop(fp, td);
1361
1362	return (0);
1363}
1364
1365/* System calls. */
1366#ifdef COMPAT_FREEBSD12
1367int
1368freebsd12_shm_open(struct thread *td, struct freebsd12_shm_open_args *uap)
1369{
1370
1371	return (kern_shm_open(td, uap->path, uap->flags | O_CLOEXEC,
1372	    uap->mode, NULL));
1373}
1374#endif
1375
1376int
1377sys_shm_unlink(struct thread *td, struct shm_unlink_args *uap)
1378{
1379	char *path;
1380	Fnv32_t fnv;
1381	int error;
1382
1383	error = shm_copyin_path(td, uap->path, &path);
1384	if (error != 0)
1385		return (error);
1386
1387	AUDIT_ARG_UPATH1_CANON(path);
1388	fnv = fnv_32_str(path, FNV1_32_INIT);
1389	sx_xlock(&shm_dict_lock);
1390	error = shm_remove(path, fnv, td->td_ucred);
1391	sx_xunlock(&shm_dict_lock);
1392	free(path, M_SHMFD);
1393
1394	return (error);
1395}
1396
1397int
1398sys_shm_rename(struct thread *td, struct shm_rename_args *uap)
1399{
1400	char *path_from = NULL, *path_to = NULL;
1401	Fnv32_t fnv_from, fnv_to;
1402	struct shmfd *fd_from;
1403	struct shmfd *fd_to;
1404	int error;
1405	int flags;
1406
1407	flags = uap->flags;
1408	AUDIT_ARG_FFLAGS(flags);
1409
1410	/*
1411	 * Make sure the user passed only valid flags.
1412	 * If you add a new flag, please add a new term here.
1413	 */
1414	if ((flags & ~(
1415	    SHM_RENAME_NOREPLACE |
1416	    SHM_RENAME_EXCHANGE
1417	    )) != 0) {
1418		error = EINVAL;
1419		goto out;
1420	}
1421
1422	/*
1423	 * EXCHANGE and NOREPLACE don't quite make sense together. Let's
1424	 * force the user to choose one or the other.
1425	 */
1426	if ((flags & SHM_RENAME_NOREPLACE) != 0 &&
1427	    (flags & SHM_RENAME_EXCHANGE) != 0) {
1428		error = EINVAL;
1429		goto out;
1430	}
1431
1432	/* Renaming to or from anonymous makes no sense */
1433	if (uap->path_from == SHM_ANON || uap->path_to == SHM_ANON) {
1434		error = EINVAL;
1435		goto out;
1436	}
1437
1438	error = shm_copyin_path(td, uap->path_from, &path_from);
1439	if (error != 0)
1440		goto out;
1441
1442	error = shm_copyin_path(td, uap->path_to, &path_to);
1443	if (error != 0)
1444		goto out;
1445
1446	AUDIT_ARG_UPATH1_CANON(path_from);
1447	AUDIT_ARG_UPATH2_CANON(path_to);
1448
1449	/* Rename with from/to equal is a no-op */
1450	if (strcmp(path_from, path_to) == 0)
1451		goto out;
1452
1453	fnv_from = fnv_32_str(path_from, FNV1_32_INIT);
1454	fnv_to = fnv_32_str(path_to, FNV1_32_INIT);
1455
1456	sx_xlock(&shm_dict_lock);
1457
1458	fd_from = shm_lookup(path_from, fnv_from);
1459	if (fd_from == NULL) {
1460		error = ENOENT;
1461		goto out_locked;
1462	}
1463
1464	fd_to = shm_lookup(path_to, fnv_to);
1465	if ((flags & SHM_RENAME_NOREPLACE) != 0 && fd_to != NULL) {
1466		error = EEXIST;
1467		goto out_locked;
1468	}
1469
1470	/*
1471	 * Unconditionally prevents shm_remove from invalidating the 'from'
1472	 * shm's state.
1473	 */
1474	shm_hold(fd_from);
1475	error = shm_remove(path_from, fnv_from, td->td_ucred);
1476
1477	/*
1478	 * One of my assumptions failed if ENOENT (e.g. locking didn't
1479	 * protect us)
1480	 */
1481	KASSERT(error != ENOENT, ("Our shm disappeared during shm_rename: %s",
1482	    path_from));
1483	if (error != 0) {
1484		shm_drop(fd_from);
1485		goto out_locked;
1486	}
1487
1488	/*
1489	 * If we are exchanging, we need to ensure the shm_remove below
1490	 * doesn't invalidate the dest shm's state.
1491	 */
1492	if ((flags & SHM_RENAME_EXCHANGE) != 0 && fd_to != NULL)
1493		shm_hold(fd_to);
1494
1495	/*
1496	 * NOTE: if path_to is not already in the hash, c'est la vie;
1497	 * it simply means we have nothing already at path_to to unlink.
1498	 * That is the ENOENT case.
1499	 *
1500	 * If we somehow don't have access to unlink this guy, but
1501	 * did for the shm at path_from, then relink the shm to path_from
1502	 * and abort with EACCES.
1503	 *
1504	 * All other errors: that is weird; let's relink and abort the
1505	 * operation.
1506	 */
1507	error = shm_remove(path_to, fnv_to, td->td_ucred);
1508	if (error != 0 && error != ENOENT) {
1509		shm_insert(path_from, fnv_from, fd_from);
1510		shm_drop(fd_from);
1511		/* Don't free path_from now, since the hash references it */
1512		path_from = NULL;
1513		goto out_locked;
1514	}
1515
1516	error = 0;
1517
1518	shm_insert(path_to, fnv_to, fd_from);
1519
1520	/* Don't free path_to now, since the hash references it */
1521	path_to = NULL;
1522
1523	/* We kept a ref when we removed, and incremented again in insert */
1524	shm_drop(fd_from);
1525	KASSERT(fd_from->shm_refs > 0, ("Expected >0 refs; got: %d\n",
1526	    fd_from->shm_refs));
1527
1528	if ((flags & SHM_RENAME_EXCHANGE) != 0 && fd_to != NULL) {
1529		shm_insert(path_from, fnv_from, fd_to);
1530		path_from = NULL;
1531		shm_drop(fd_to);
1532		KASSERT(fd_to->shm_refs > 0, ("Expected >0 refs; got: %d\n",
1533		    fd_to->shm_refs));
1534	}
1535
1536out_locked:
1537	sx_xunlock(&shm_dict_lock);
1538
1539out:
1540	free(path_from, M_SHMFD);
1541	free(path_to, M_SHMFD);
1542	return (error);
1543}
1544
1545static int
1546shm_mmap_large(struct shmfd *shmfd, vm_map_t map, vm_offset_t *addr,
1547    vm_size_t size, vm_prot_t prot, vm_prot_t max_prot, int flags,
1548    vm_ooffset_t foff, struct thread *td)
1549{
1550	struct vmspace *vms;
1551	vm_map_entry_t next_entry, prev_entry;
1552	vm_offset_t align, mask, maxaddr;
1553	int docow, error, rv, try;
1554	bool curmap;
1555
1556	if (shmfd->shm_lp_psind == 0)
1557		return (EINVAL);
1558
1559	/* MAP_PRIVATE is disabled */
1560	if ((flags & ~(MAP_SHARED | MAP_FIXED | MAP_EXCL |
1561	    MAP_NOCORE | MAP_32BIT | MAP_ALIGNMENT_MASK)) != 0)
1562		return (EINVAL);
1563
1564	vms = td->td_proc->p_vmspace;
1565	curmap = map == &vms->vm_map;
1566	if (curmap) {
1567		error = kern_mmap_racct_check(td, map, size);
1568		if (error != 0)
1569			return (error);
1570	}
1571
1572	docow = shmfd->shm_lp_psind << MAP_SPLIT_BOUNDARY_SHIFT;
1573	docow |= MAP_INHERIT_SHARE;
1574	if ((flags & MAP_NOCORE) != 0)
1575		docow |= MAP_DISABLE_COREDUMP;
1576
1577	mask = pagesizes[shmfd->shm_lp_psind] - 1;
1578	if ((foff & mask) != 0)
1579		return (EINVAL);
1580	maxaddr = vm_map_max(map);
1581	if ((flags & MAP_32BIT) != 0 && maxaddr > MAP_32BIT_MAX_ADDR)
1582		maxaddr = MAP_32BIT_MAX_ADDR;
1583	if (size == 0 || (size & mask) != 0 ||
1584	    (*addr != 0 && ((*addr & mask) != 0 ||
1585	    *addr + size < *addr || *addr + size > maxaddr)))
1586		return (EINVAL);
1587
1588	align = flags & MAP_ALIGNMENT_MASK;
1589	if (align == 0) {
1590		align = pagesizes[shmfd->shm_lp_psind];
1591	} else if (align == MAP_ALIGNED_SUPER) {
1592		if (shmfd->shm_lp_psind != 1)
1593			return (EINVAL);
1594		align = pagesizes[1];
1595	} else {
1596		align >>= MAP_ALIGNMENT_SHIFT;
1597		align = 1ULL << align;
1598		/* Also handles overflow. */
1599		if (align < pagesizes[shmfd->shm_lp_psind])
1600			return (EINVAL);
1601	}
1602
1603	vm_map_lock(map);
1604	if ((flags & MAP_FIXED) == 0) {
1605		try = 1;
1606		if (curmap && (*addr == 0 ||
1607		    (*addr >= round_page((vm_offset_t)vms->vm_taddr) &&
1608		    *addr < round_page((vm_offset_t)vms->vm_daddr +
1609		    lim_max(td, RLIMIT_DATA))))) {
1610			*addr = roundup2((vm_offset_t)vms->vm_daddr +
1611			    lim_max(td, RLIMIT_DATA),
1612			    pagesizes[shmfd->shm_lp_psind]);
1613		}
1614again:
1615		rv = vm_map_find_aligned(map, addr, size, maxaddr, align);
1616		if (rv != KERN_SUCCESS) {
1617			if (try == 1) {
1618				try = 2;
1619				*addr = vm_map_min(map);
1620				if ((*addr & mask) != 0)
1621					*addr = (*addr + mask) & mask;
1622				goto again;
1623			}
1624			goto fail1;
1625		}
1626	} else if ((flags & MAP_EXCL) == 0) {
1627		rv = vm_map_delete(map, *addr, *addr + size);
1628		if (rv != KERN_SUCCESS)
1629			goto fail1;
1630	} else {
1631		error = ENOSPC;
1632		if (vm_map_lookup_entry(map, *addr, &prev_entry))
1633			goto fail;
1634		next_entry = vm_map_entry_succ(prev_entry);
1635		if (next_entry->start < *addr + size)
1636			goto fail;
1637	}
1638
1639	rv = vm_map_insert(map, shmfd->shm_object, foff, *addr, *addr + size,
1640	    prot, max_prot, docow);
1641fail1:
1642	error = vm_mmap_to_errno(rv);
1643fail:
1644	vm_map_unlock(map);
1645	return (error);
1646}
1647
1648static int
1649shm_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t objsize,
1650    vm_prot_t prot, vm_prot_t cap_maxprot, int flags,
1651    vm_ooffset_t foff, struct thread *td)
1652{
1653	struct shmfd *shmfd;
1654	vm_prot_t maxprot;
1655	int error;
1656	bool writecnt;
1657	void *rl_cookie;
1658
1659	shmfd = fp->f_data;
1660	maxprot = VM_PROT_NONE;
1661
1662	rl_cookie = shm_rangelock_rlock(shmfd, 0, objsize);
1663	/* FREAD should always be set. */
1664	if ((fp->f_flag & FREAD) != 0)
1665		maxprot |= VM_PROT_EXECUTE | VM_PROT_READ;
1666
1667	/*
1668	 * If FWRITE's set, we can allow VM_PROT_WRITE unless it's a shared
1669	 * mapping with a write seal applied.  Private mappings are always
1670	 * writeable.
1671	 */
1672	if ((flags & MAP_SHARED) == 0) {
1673		cap_maxprot |= VM_PROT_WRITE;
1674		maxprot |= VM_PROT_WRITE;
1675		writecnt = false;
1676	} else {
1677		if ((fp->f_flag & FWRITE) != 0 &&
1678		    (shmfd->shm_seals & F_SEAL_WRITE) == 0)
1679			maxprot |= VM_PROT_WRITE;
1680
1681		/*
1682		 * Any mappings from a writable descriptor may be upgraded to
1683		 * VM_PROT_WRITE with mprotect(2), unless a write-seal was
1684		 * applied between the open and subsequent mmap(2).  We want to
1685		 * reject application of a write seal as long as any such
1686		 * mapping exists so that the seal cannot be trivially bypassed.
1687		 */
1688		writecnt = (maxprot & VM_PROT_WRITE) != 0;
1689		if (!writecnt && (prot & VM_PROT_WRITE) != 0) {
1690			error = EACCES;
1691			goto out;
1692		}
1693	}
1694	maxprot &= cap_maxprot;
1695
1696	/* See comment in vn_mmap(). */
1697	if (
1698#ifdef _LP64
1699	    objsize > OFF_MAX ||
1700#endif
1701	    foff > OFF_MAX - objsize) {
1702		error = EINVAL;
1703		goto out;
1704	}
1705
1706#ifdef MAC
1707	error = mac_posixshm_check_mmap(td->td_ucred, shmfd, prot, flags);
1708	if (error != 0)
1709		goto out;
1710#endif
1711
1712	mtx_lock(&shm_timestamp_lock);
1713	vfs_timestamp(&shmfd->shm_atime);
1714	mtx_unlock(&shm_timestamp_lock);
1715	vm_object_reference(shmfd->shm_object);
1716
1717	if (shm_largepage(shmfd)) {
1718		writecnt = false;
1719		error = shm_mmap_large(shmfd, map, addr, objsize, prot,
1720		    maxprot, flags, foff, td);
1721	} else {
1722		if (writecnt) {
1723			vm_pager_update_writecount(shmfd->shm_object, 0,
1724			    objsize);
1725		}
1726		error = vm_mmap_object(map, addr, objsize, prot, maxprot, flags,
1727		    shmfd->shm_object, foff, writecnt, td);
1728	}
1729	if (error != 0) {
1730		if (writecnt)
1731			vm_pager_release_writecount(shmfd->shm_object, 0,
1732			    objsize);
1733		vm_object_deallocate(shmfd->shm_object);
1734	}
1735out:
1736	shm_rangelock_unlock(shmfd, rl_cookie);
1737	return (error);
1738}
1739
1740static int
1741shm_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
1742    struct thread *td)
1743{
1744	struct shmfd *shmfd;
1745	int error;
1746
1747	error = 0;
1748	shmfd = fp->f_data;
1749	mtx_lock(&shm_timestamp_lock);
1750	/*
1751	 * SUSv4 says that x bits of permission need not be affected.
1752	 * Be consistent with our shm_open there.
1753	 */
1754#ifdef MAC
1755	error = mac_posixshm_check_setmode(active_cred, shmfd, mode);
1756	if (error != 0)
1757		goto out;
1758#endif
1759	error = vaccess(VREG, shmfd->shm_mode, shmfd->shm_uid, shmfd->shm_gid,
1760	    VADMIN, active_cred);
1761	if (error != 0)
1762		goto out;
1763	shmfd->shm_mode = mode & ACCESSPERMS;
1764out:
1765	mtx_unlock(&shm_timestamp_lock);
1766	return (error);
1767}
1768
1769static int
1770shm_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
1771    struct thread *td)
1772{
1773	struct shmfd *shmfd;
1774	int error;
1775
1776	error = 0;
1777	shmfd = fp->f_data;
1778	mtx_lock(&shm_timestamp_lock);
1779#ifdef MAC
1780	error = mac_posixshm_check_setowner(active_cred, shmfd, uid, gid);
1781	if (error != 0)
1782		goto out;
1783#endif
1784	if (uid == (uid_t)-1)
1785		uid = shmfd->shm_uid;
1786	if (gid == (gid_t)-1)
1787                 gid = shmfd->shm_gid;
1788	if (((uid != shmfd->shm_uid && uid != active_cred->cr_uid) ||
1789	    (gid != shmfd->shm_gid && !groupmember(gid, active_cred))) &&
1790	    (error = priv_check_cred(active_cred, PRIV_VFS_CHOWN)))
1791		goto out;
1792	shmfd->shm_uid = uid;
1793	shmfd->shm_gid = gid;
1794out:
1795	mtx_unlock(&shm_timestamp_lock);
1796	return (error);
1797}
1798
1799/*
1800 * Helper routines to allow the backing object of a shared memory file
1801 * descriptor to be mapped in the kernel.
1802 */
1803int
1804shm_map(struct file *fp, size_t size, off_t offset, void **memp)
1805{
1806	struct shmfd *shmfd;
1807	vm_offset_t kva, ofs;
1808	vm_object_t obj;
1809	int rv;
1810
1811	if (fp->f_type != DTYPE_SHM)
1812		return (EINVAL);
1813	shmfd = fp->f_data;
1814	obj = shmfd->shm_object;
1815	VM_OBJECT_WLOCK(obj);
1816	/*
1817	 * XXXRW: This validation is probably insufficient, and subject to
1818	 * sign errors.  It should be fixed.
1819	 */
1820	if (offset >= shmfd->shm_size ||
1821	    offset + size > round_page(shmfd->shm_size)) {
1822		VM_OBJECT_WUNLOCK(obj);
1823		return (EINVAL);
1824	}
1825
1826	shmfd->shm_kmappings++;
1827	vm_object_reference_locked(obj);
1828	VM_OBJECT_WUNLOCK(obj);
1829
1830	/* Map the object into the kernel_map and wire it. */
1831	kva = vm_map_min(kernel_map);
1832	ofs = offset & PAGE_MASK;
1833	offset = trunc_page(offset);
1834	size = round_page(size + ofs);
1835	rv = vm_map_find(kernel_map, obj, offset, &kva, size, 0,
1836	    VMFS_OPTIMAL_SPACE, VM_PROT_READ | VM_PROT_WRITE,
1837	    VM_PROT_READ | VM_PROT_WRITE, 0);
1838	if (rv == KERN_SUCCESS) {
1839		rv = vm_map_wire(kernel_map, kva, kva + size,
1840		    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
1841		if (rv == KERN_SUCCESS) {
1842			*memp = (void *)(kva + ofs);
1843			return (0);
1844		}
1845		vm_map_remove(kernel_map, kva, kva + size);
1846	} else
1847		vm_object_deallocate(obj);
1848
1849	/* On failure, drop our mapping reference. */
1850	VM_OBJECT_WLOCK(obj);
1851	shmfd->shm_kmappings--;
1852	VM_OBJECT_WUNLOCK(obj);
1853
1854	return (vm_mmap_to_errno(rv));
1855}
1856
1857/*
1858 * We require the caller to unmap the entire entry.  This allows us to
1859 * safely decrement shm_kmappings when a mapping is removed.
1860 */
1861int
1862shm_unmap(struct file *fp, void *mem, size_t size)
1863{
1864	struct shmfd *shmfd;
1865	vm_map_entry_t entry;
1866	vm_offset_t kva, ofs;
1867	vm_object_t obj;
1868	vm_pindex_t pindex;
1869	vm_prot_t prot;
1870	boolean_t wired;
1871	vm_map_t map;
1872	int rv;
1873
1874	if (fp->f_type != DTYPE_SHM)
1875		return (EINVAL);
1876	shmfd = fp->f_data;
1877	kva = (vm_offset_t)mem;
1878	ofs = kva & PAGE_MASK;
1879	kva = trunc_page(kva);
1880	size = round_page(size + ofs);
1881	map = kernel_map;
1882	rv = vm_map_lookup(&map, kva, VM_PROT_READ | VM_PROT_WRITE, &entry,
1883	    &obj, &pindex, &prot, &wired);
1884	if (rv != KERN_SUCCESS)
1885		return (EINVAL);
1886	if (entry->start != kva || entry->end != kva + size) {
1887		vm_map_lookup_done(map, entry);
1888		return (EINVAL);
1889	}
1890	vm_map_lookup_done(map, entry);
1891	if (obj != shmfd->shm_object)
1892		return (EINVAL);
1893	vm_map_remove(map, kva, kva + size);
1894	VM_OBJECT_WLOCK(obj);
1895	KASSERT(shmfd->shm_kmappings > 0, ("shm_unmap: object not mapped"));
1896	shmfd->shm_kmappings--;
1897	VM_OBJECT_WUNLOCK(obj);
1898	return (0);
1899}
1900
1901static int
1902shm_fill_kinfo_locked(struct shmfd *shmfd, struct kinfo_file *kif, bool list)
1903{
1904	const char *path, *pr_path;
1905	size_t pr_pathlen;
1906	bool visible;
1907
1908	sx_assert(&shm_dict_lock, SA_LOCKED);
1909	kif->kf_type = KF_TYPE_SHM;
1910	kif->kf_un.kf_file.kf_file_mode = S_IFREG | shmfd->shm_mode;
1911	kif->kf_un.kf_file.kf_file_size = shmfd->shm_size;
1912	if (shmfd->shm_path != NULL) {
1913		path = shmfd->shm_path;
1914		pr_path = curthread->td_ucred->cr_prison->pr_path;
1915		if (strcmp(pr_path, "/") != 0) {
1916			/* Return the jail-rooted pathname. */
1917			pr_pathlen = strlen(pr_path);
1918			visible = strncmp(path, pr_path, pr_pathlen) == 0 &&
1919			    path[pr_pathlen] == '/';
1920			if (list && !visible)
1921				return (EPERM);
1922			if (visible)
1923				path += pr_pathlen;
1924		}
1925		strlcpy(kif->kf_path, path, sizeof(kif->kf_path));
1926	}
1927	return (0);
1928}
1929
1930static int
1931shm_fill_kinfo(struct file *fp, struct kinfo_file *kif,
1932    struct filedesc *fdp __unused)
1933{
1934	int res;
1935
1936	sx_slock(&shm_dict_lock);
1937	res = shm_fill_kinfo_locked(fp->f_data, kif, false);
1938	sx_sunlock(&shm_dict_lock);
1939	return (res);
1940}
1941
1942static int
1943shm_add_seals(struct file *fp, int seals)
1944{
1945	struct shmfd *shmfd;
1946	void *rl_cookie;
1947	vm_ooffset_t writemappings;
1948	int error, nseals;
1949
1950	error = 0;
1951	shmfd = fp->f_data;
1952	rl_cookie = shm_rangelock_wlock(shmfd, 0, OFF_MAX);
1953
1954	/* Even already-set seals should result in EPERM. */
1955	if ((shmfd->shm_seals & F_SEAL_SEAL) != 0) {
1956		error = EPERM;
1957		goto out;
1958	}
1959	nseals = seals & ~shmfd->shm_seals;
1960	if ((nseals & F_SEAL_WRITE) != 0) {
1961		if (shm_largepage(shmfd)) {
1962			error = ENOTSUP;
1963			goto out;
1964		}
1965
1966		/*
1967		 * The rangelock above prevents writable mappings from being
1968		 * added after we've started applying seals.  The RLOCK here
1969		 * is to avoid torn reads on ILP32 arches as unmapping/reducing
1970		 * writemappings will be done without a rangelock.
1971		 */
1972		VM_OBJECT_RLOCK(shmfd->shm_object);
1973		writemappings = shmfd->shm_object->un_pager.swp.writemappings;
1974		VM_OBJECT_RUNLOCK(shmfd->shm_object);
1975		/* kmappings are also writable */
1976		if (writemappings > 0) {
1977			error = EBUSY;
1978			goto out;
1979		}
1980	}
1981	shmfd->shm_seals |= nseals;
1982out:
1983	shm_rangelock_unlock(shmfd, rl_cookie);
1984	return (error);
1985}
1986
1987static int
1988shm_get_seals(struct file *fp, int *seals)
1989{
1990	struct shmfd *shmfd;
1991
1992	shmfd = fp->f_data;
1993	*seals = shmfd->shm_seals;
1994	return (0);
1995}
1996
1997static int
1998shm_deallocate(struct shmfd *shmfd, off_t *offset, off_t *length, int flags)
1999{
2000	vm_object_t object;
2001	vm_pindex_t pistart, pi, piend;
2002	vm_ooffset_t off, len;
2003	int startofs, endofs, end;
2004	int error;
2005
2006	off = *offset;
2007	len = *length;
2008	KASSERT(off + len <= (vm_ooffset_t)OFF_MAX, ("off + len overflows"));
2009	if (off + len > shmfd->shm_size)
2010		len = shmfd->shm_size - off;
2011	object = shmfd->shm_object;
2012	startofs = off & PAGE_MASK;
2013	endofs = (off + len) & PAGE_MASK;
2014	pistart = OFF_TO_IDX(off);
2015	piend = OFF_TO_IDX(off + len);
2016	pi = OFF_TO_IDX(off + PAGE_MASK);
2017	error = 0;
2018
2019	/* Handle the case when offset is on or beyond shm size. */
2020	if ((off_t)len <= 0) {
2021		*length = 0;
2022		return (0);
2023	}
2024
2025	VM_OBJECT_WLOCK(object);
2026
2027	if (startofs != 0) {
2028		end = pistart != piend ? PAGE_SIZE : endofs;
2029		error = shm_partial_page_invalidate(object, pistart, startofs,
2030		    end);
2031		if (error)
2032			goto out;
2033		off += end - startofs;
2034		len -= end - startofs;
2035	}
2036
2037	if (pi < piend) {
2038		vm_object_page_remove(object, pi, piend, 0);
2039		off += IDX_TO_OFF(piend - pi);
2040		len -= IDX_TO_OFF(piend - pi);
2041	}
2042
2043	if (endofs != 0 && pistart != piend) {
2044		error = shm_partial_page_invalidate(object, piend, 0, endofs);
2045		if (error)
2046			goto out;
2047		off += endofs;
2048		len -= endofs;
2049	}
2050
2051out:
2052	VM_OBJECT_WUNLOCK(shmfd->shm_object);
2053	*offset = off;
2054	*length = len;
2055	return (error);
2056}
2057
2058static int
2059shm_fspacectl(struct file *fp, int cmd, off_t *offset, off_t *length, int flags,
2060    struct ucred *active_cred, struct thread *td)
2061{
2062	void *rl_cookie;
2063	struct shmfd *shmfd;
2064	off_t off, len;
2065	int error;
2066
2067	KASSERT(cmd == SPACECTL_DEALLOC, ("shm_fspacectl: Invalid cmd"));
2068	KASSERT((flags & ~SPACECTL_F_SUPPORTED) == 0,
2069	    ("shm_fspacectl: non-zero flags"));
2070	KASSERT(*offset >= 0 && *length > 0 && *length <= OFF_MAX - *offset,
2071	    ("shm_fspacectl: offset/length overflow or underflow"));
2072	error = EINVAL;
2073	shmfd = fp->f_data;
2074	off = *offset;
2075	len = *length;
2076
2077	rl_cookie = shm_rangelock_wlock(shmfd, off, off + len);
2078	switch (cmd) {
2079	case SPACECTL_DEALLOC:
2080		if ((shmfd->shm_seals & F_SEAL_WRITE) != 0) {
2081			error = EPERM;
2082			break;
2083		}
2084		error = shm_deallocate(shmfd, &off, &len, flags);
2085		*offset = off;
2086		*length = len;
2087		break;
2088	default:
2089		__assert_unreachable();
2090	}
2091	shm_rangelock_unlock(shmfd, rl_cookie);
2092	return (error);
2093}
2094
2095
2096static int
2097shm_fallocate(struct file *fp, off_t offset, off_t len, struct thread *td)
2098{
2099	void *rl_cookie;
2100	struct shmfd *shmfd;
2101	size_t size;
2102	int error;
2103
2104	/* This assumes that the caller already checked for overflow. */
2105	error = 0;
2106	shmfd = fp->f_data;
2107	size = offset + len;
2108
2109	/*
2110	 * Just grab the rangelock for the range that we may be attempting to
2111	 * grow, rather than blocking read/write for regions we won't be
2112	 * touching while this (potential) resize is in progress.  Other
2113	 * attempts to resize the shmfd will have to take a write lock from 0 to
2114	 * OFF_MAX, so this being potentially beyond the current usable range of
2115	 * the shmfd is not necessarily a concern.  If other mechanisms are
2116	 * added to grow a shmfd, this may need to be re-evaluated.
2117	 */
2118	rl_cookie = shm_rangelock_wlock(shmfd, offset, size);
2119	if (size > shmfd->shm_size)
2120		error = shm_dotruncate_cookie(shmfd, size, rl_cookie);
2121	shm_rangelock_unlock(shmfd, rl_cookie);
2122	/* Translate to posix_fallocate(2) return value as needed. */
2123	if (error == ENOMEM)
2124		error = ENOSPC;
2125	return (error);
2126}
2127
2128static int
2129sysctl_posix_shm_list(SYSCTL_HANDLER_ARGS)
2130{
2131	struct shm_mapping *shmm;
2132	struct sbuf sb;
2133	struct kinfo_file kif;
2134	u_long i;
2135	int error, error2;
2136
2137	sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_file) * 5, req);
2138	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2139	error = 0;
2140	sx_slock(&shm_dict_lock);
2141	for (i = 0; i < shm_hash + 1; i++) {
2142		LIST_FOREACH(shmm, &shm_dictionary[i], sm_link) {
2143			error = shm_fill_kinfo_locked(shmm->sm_shmfd,
2144			    &kif, true);
2145			if (error == EPERM) {
2146				error = 0;
2147				continue;
2148			}
2149			if (error != 0)
2150				break;
2151			pack_kinfo(&kif);
2152			error = sbuf_bcat(&sb, &kif, kif.kf_structsize) == 0 ?
2153			    0 : ENOMEM;
2154			if (error != 0)
2155				break;
2156		}
2157	}
2158	sx_sunlock(&shm_dict_lock);
2159	error2 = sbuf_finish(&sb);
2160	sbuf_delete(&sb);
2161	return (error != 0 ? error : error2);
2162}
2163
2164SYSCTL_PROC(_kern_ipc, OID_AUTO, posix_shm_list,
2165    CTLFLAG_RD | CTLFLAG_PRISON | CTLFLAG_MPSAFE | CTLTYPE_OPAQUE,
2166    NULL, 0, sysctl_posix_shm_list, "",
2167    "POSIX SHM list");
2168
2169int
2170kern_shm_open(struct thread *td, const char *path, int flags, mode_t mode,
2171    struct filecaps *caps)
2172{
2173
2174	return (kern_shm_open2(td, path, flags, mode, 0, caps, NULL));
2175}
2176
2177/*
2178 * This version of the shm_open() interface leaves CLOEXEC behavior up to the
2179 * caller, and libc will enforce it for the traditional shm_open() call.  This
2180 * allows other consumers, like memfd_create(), to opt-in for CLOEXEC.  This
2181 * interface also includes a 'name' argument that is currently unused, but could
2182 * potentially be exported later via some interface for debugging purposes.
2183 * From the kernel's perspective, it is optional.  Individual consumers like
2184 * memfd_create() may require it in order to be compatible with other systems
2185 * implementing the same function.
2186 */
2187int
2188sys_shm_open2(struct thread *td, struct shm_open2_args *uap)
2189{
2190
2191	return (kern_shm_open2(td, uap->path, uap->flags, uap->mode,
2192	    uap->shmflags, NULL, uap->name));
2193}
2194