1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2001, John Baldwin <jhb@FreeBSD.org>.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/*
29 * This module holds the global variables and machine independent functions
30 * used for the kernel SMP support.
31 */
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/kernel.h>
36#include <sys/ktr.h>
37#include <sys/proc.h>
38#include <sys/bus.h>
39#include <sys/lock.h>
40#include <sys/malloc.h>
41#include <sys/mutex.h>
42#include <sys/pcpu.h>
43#include <sys/sched.h>
44#include <sys/smp.h>
45#include <sys/sysctl.h>
46
47#include <machine/cpu.h>
48#include <machine/pcb.h>
49#include <machine/smp.h>
50
51#include "opt_sched.h"
52
53#ifdef SMP
54MALLOC_DEFINE(M_TOPO, "toponodes", "SMP topology data");
55
56volatile cpuset_t stopped_cpus;
57volatile cpuset_t started_cpus;
58volatile cpuset_t suspended_cpus;
59cpuset_t hlt_cpus_mask;
60cpuset_t logical_cpus_mask;
61
62void (*cpustop_restartfunc)(void);
63#endif
64
65static int sysctl_kern_smp_active(SYSCTL_HANDLER_ARGS);
66
67/* This is used in modules that need to work in both SMP and UP. */
68cpuset_t all_cpus;
69
70int mp_ncpus;
71/* export this for libkvm consumers. */
72int mp_maxcpus = MAXCPU;
73
74volatile int smp_started;
75u_int mp_maxid;
76
77/* Array of CPU contexts saved during a panic. */
78struct pcb *stoppcbs;
79
80static SYSCTL_NODE(_kern, OID_AUTO, smp,
81    CTLFLAG_RD | CTLFLAG_CAPRD | CTLFLAG_MPSAFE, NULL,
82    "Kernel SMP");
83
84SYSCTL_INT(_kern_smp, OID_AUTO, maxid, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxid, 0,
85    "Max CPU ID.");
86
87SYSCTL_INT(_kern_smp, OID_AUTO, maxcpus, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxcpus,
88    0, "Max number of CPUs that the system was compiled for.");
89
90SYSCTL_PROC(_kern_smp, OID_AUTO, active, CTLFLAG_RD|CTLTYPE_INT|CTLFLAG_MPSAFE,
91    NULL, 0, sysctl_kern_smp_active, "I",
92    "Indicates system is running in SMP mode");
93
94int smp_disabled = 0;	/* has smp been disabled? */
95SYSCTL_INT(_kern_smp, OID_AUTO, disabled, CTLFLAG_RDTUN|CTLFLAG_CAPRD,
96    &smp_disabled, 0, "SMP has been disabled from the loader");
97
98int smp_cpus = 1;	/* how many cpu's running */
99SYSCTL_INT(_kern_smp, OID_AUTO, cpus, CTLFLAG_RD|CTLFLAG_CAPRD, &smp_cpus, 0,
100    "Number of CPUs online");
101
102int smp_threads_per_core = 1;	/* how many SMT threads are running per core */
103SYSCTL_INT(_kern_smp, OID_AUTO, threads_per_core, CTLFLAG_RD|CTLFLAG_CAPRD,
104    &smp_threads_per_core, 0, "Number of SMT threads online per core");
105
106int mp_ncores = -1;	/* how many physical cores running */
107SYSCTL_INT(_kern_smp, OID_AUTO, cores, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_ncores, 0,
108    "Number of physical cores online");
109
110int smp_topology = 0;	/* Which topology we're using. */
111SYSCTL_INT(_kern_smp, OID_AUTO, topology, CTLFLAG_RDTUN, &smp_topology, 0,
112    "Topology override setting; 0 is default provided by hardware.");
113
114#ifdef SMP
115/* Variables needed for SMP rendezvous. */
116static volatile int smp_rv_ncpus;
117static void (*volatile smp_rv_setup_func)(void *arg);
118static void (*volatile smp_rv_action_func)(void *arg);
119static void (*volatile smp_rv_teardown_func)(void *arg);
120static void *volatile smp_rv_func_arg;
121static volatile int smp_rv_waiters[4];
122
123/*
124 * Shared mutex to restrict busywaits between smp_rendezvous() and
125 * smp(_targeted)_tlb_shootdown().  A deadlock occurs if both of these
126 * functions trigger at once and cause multiple CPUs to busywait with
127 * interrupts disabled.
128 */
129struct mtx smp_ipi_mtx;
130
131/*
132 * Let the MD SMP code initialize mp_maxid very early if it can.
133 */
134static void
135mp_setmaxid(void *dummy)
136{
137
138	cpu_mp_setmaxid();
139
140	KASSERT(mp_ncpus >= 1, ("%s: CPU count < 1", __func__));
141	KASSERT(mp_ncpus > 1 || mp_maxid == 0,
142	    ("%s: one CPU but mp_maxid is not zero", __func__));
143	KASSERT(mp_maxid >= mp_ncpus - 1,
144	    ("%s: counters out of sync: max %d, count %d", __func__,
145		mp_maxid, mp_ncpus));
146
147	cpusetsizemin = howmany(mp_maxid + 1, NBBY);
148}
149SYSINIT(cpu_mp_setmaxid, SI_SUB_TUNABLES, SI_ORDER_FIRST, mp_setmaxid, NULL);
150
151/*
152 * Call the MD SMP initialization code.
153 */
154static void
155mp_start(void *dummy)
156{
157
158	mtx_init(&smp_ipi_mtx, "smp rendezvous", NULL, MTX_SPIN);
159
160	/* Probe for MP hardware. */
161	if (smp_disabled != 0 || cpu_mp_probe() == 0) {
162		mp_ncores = 1;
163		mp_ncpus = 1;
164		CPU_SETOF(PCPU_GET(cpuid), &all_cpus);
165		return;
166	}
167
168	cpu_mp_start();
169	printf("FreeBSD/SMP: Multiprocessor System Detected: %d CPUs\n",
170	    mp_ncpus);
171
172	/* Provide a default for most architectures that don't have SMT/HTT. */
173	if (mp_ncores < 0)
174		mp_ncores = mp_ncpus;
175
176	stoppcbs = mallocarray(mp_maxid + 1, sizeof(struct pcb), M_DEVBUF,
177	    M_WAITOK | M_ZERO);
178
179	cpu_mp_announce();
180}
181SYSINIT(cpu_mp, SI_SUB_CPU, SI_ORDER_THIRD, mp_start, NULL);
182
183void
184forward_signal(struct thread *td)
185{
186	int id;
187
188	/*
189	 * signotify() has already set TDA_AST and TDA_SIG on td_ast for
190	 * this thread, so all we need to do is poke it if it is currently
191	 * executing so that it executes ast().
192	 */
193	THREAD_LOCK_ASSERT(td, MA_OWNED);
194	KASSERT(TD_IS_RUNNING(td),
195	    ("forward_signal: thread is not TDS_RUNNING"));
196
197	CTR1(KTR_SMP, "forward_signal(%p)", td->td_proc);
198
199	if (!smp_started || cold || KERNEL_PANICKED())
200		return;
201
202	/* No need to IPI ourself. */
203	if (td == curthread)
204		return;
205
206	id = td->td_oncpu;
207	if (id == NOCPU)
208		return;
209	ipi_cpu(id, IPI_AST);
210}
211
212/*
213 * When called the executing CPU will send an IPI to all other CPUs
214 *  requesting that they halt execution.
215 *
216 * Usually (but not necessarily) called with 'other_cpus' as its arg.
217 *
218 *  - Signals all CPUs in map to stop.
219 *  - Waits for each to stop.
220 *
221 * Returns:
222 *  -1: error
223 *   0: NA
224 *   1: ok
225 *
226 */
227#if defined(__amd64__) || defined(__i386__)
228#define	X86	1
229#else
230#define	X86	0
231#endif
232static int
233generic_stop_cpus(cpuset_t map, u_int type)
234{
235#ifdef KTR
236	char cpusetbuf[CPUSETBUFSIZ];
237#endif
238	static volatile u_int stopping_cpu = NOCPU;
239	int i;
240	volatile cpuset_t *cpus;
241
242	KASSERT(
243	    type == IPI_STOP || type == IPI_STOP_HARD
244#if X86
245	    || type == IPI_SUSPEND
246#endif
247	    , ("%s: invalid stop type", __func__));
248
249	if (!smp_started)
250		return (0);
251
252	CTR2(KTR_SMP, "stop_cpus(%s) with %u type",
253	    cpusetobj_strprint(cpusetbuf, &map), type);
254
255#if X86
256	/*
257	 * When suspending, ensure there are are no IPIs in progress.
258	 * IPIs that have been issued, but not yet delivered (e.g.
259	 * not pending on a vCPU when running under virtualization)
260	 * will be lost, violating FreeBSD's assumption of reliable
261	 * IPI delivery.
262	 */
263	if (type == IPI_SUSPEND)
264		mtx_lock_spin(&smp_ipi_mtx);
265#endif
266
267#if X86
268	if (!nmi_is_broadcast || nmi_kdb_lock == 0) {
269#endif
270	if (stopping_cpu != PCPU_GET(cpuid))
271		while (atomic_cmpset_int(&stopping_cpu, NOCPU,
272		    PCPU_GET(cpuid)) == 0)
273			while (stopping_cpu != NOCPU)
274				cpu_spinwait(); /* spin */
275
276	/* send the stop IPI to all CPUs in map */
277	ipi_selected(map, type);
278#if X86
279	}
280#endif
281
282#if X86
283	if (type == IPI_SUSPEND)
284		cpus = &suspended_cpus;
285	else
286#endif
287		cpus = &stopped_cpus;
288
289	i = 0;
290	while (!CPU_SUBSET(cpus, &map)) {
291		/* spin */
292		cpu_spinwait();
293		i++;
294		if (i == 100000000) {
295			printf("timeout stopping cpus\n");
296			break;
297		}
298	}
299
300#if X86
301	if (type == IPI_SUSPEND)
302		mtx_unlock_spin(&smp_ipi_mtx);
303#endif
304
305	stopping_cpu = NOCPU;
306	return (1);
307}
308
309int
310stop_cpus(cpuset_t map)
311{
312
313	return (generic_stop_cpus(map, IPI_STOP));
314}
315
316int
317stop_cpus_hard(cpuset_t map)
318{
319
320	return (generic_stop_cpus(map, IPI_STOP_HARD));
321}
322
323#if X86
324int
325suspend_cpus(cpuset_t map)
326{
327
328	return (generic_stop_cpus(map, IPI_SUSPEND));
329}
330#endif
331
332/*
333 * Called by a CPU to restart stopped CPUs.
334 *
335 * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
336 *
337 *  - Signals all CPUs in map to restart.
338 *  - Waits for each to restart.
339 *
340 * Returns:
341 *  -1: error
342 *   0: NA
343 *   1: ok
344 */
345static int
346generic_restart_cpus(cpuset_t map, u_int type)
347{
348#ifdef KTR
349	char cpusetbuf[CPUSETBUFSIZ];
350#endif
351	volatile cpuset_t *cpus;
352
353#if X86
354	KASSERT(type == IPI_STOP || type == IPI_STOP_HARD
355	    || type == IPI_SUSPEND, ("%s: invalid stop type", __func__));
356
357	if (!smp_started)
358		return (0);
359
360	CTR1(KTR_SMP, "restart_cpus(%s)", cpusetobj_strprint(cpusetbuf, &map));
361
362	if (type == IPI_SUSPEND)
363		cpus = &resuming_cpus;
364	else
365		cpus = &stopped_cpus;
366
367	/* signal other cpus to restart */
368	if (type == IPI_SUSPEND)
369		CPU_COPY_STORE_REL(&map, &toresume_cpus);
370	else
371		CPU_COPY_STORE_REL(&map, &started_cpus);
372
373	/*
374	 * Wake up any CPUs stopped with MWAIT.  From MI code we can't tell if
375	 * MONITOR/MWAIT is enabled, but the potentially redundant writes are
376	 * relatively inexpensive.
377	 */
378	if (type == IPI_STOP) {
379		struct monitorbuf *mb;
380		u_int id;
381
382		CPU_FOREACH(id) {
383			if (!CPU_ISSET(id, &map))
384				continue;
385
386			mb = &pcpu_find(id)->pc_monitorbuf;
387			atomic_store_int(&mb->stop_state,
388			    MONITOR_STOPSTATE_RUNNING);
389		}
390	}
391
392	if (!nmi_is_broadcast || nmi_kdb_lock == 0) {
393		/* wait for each to clear its bit */
394		while (CPU_OVERLAP(cpus, &map))
395			cpu_spinwait();
396	}
397#else /* !X86 */
398	KASSERT(type == IPI_STOP || type == IPI_STOP_HARD,
399	    ("%s: invalid stop type", __func__));
400
401	if (!smp_started)
402		return (0);
403
404	CTR1(KTR_SMP, "restart_cpus(%s)", cpusetobj_strprint(cpusetbuf, &map));
405
406	cpus = &stopped_cpus;
407
408	/* signal other cpus to restart */
409	CPU_COPY_STORE_REL(&map, &started_cpus);
410
411	/* wait for each to clear its bit */
412	while (CPU_OVERLAP(cpus, &map))
413		cpu_spinwait();
414#endif
415	return (1);
416}
417
418int
419restart_cpus(cpuset_t map)
420{
421
422	return (generic_restart_cpus(map, IPI_STOP));
423}
424
425#if X86
426int
427resume_cpus(cpuset_t map)
428{
429
430	return (generic_restart_cpus(map, IPI_SUSPEND));
431}
432#endif
433#undef X86
434
435/*
436 * All-CPU rendezvous.  CPUs are signalled, all execute the setup function
437 * (if specified), rendezvous, execute the action function (if specified),
438 * rendezvous again, execute the teardown function (if specified), and then
439 * resume.
440 *
441 * Note that the supplied external functions _must_ be reentrant and aware
442 * that they are running in parallel and in an unknown lock context.
443 */
444void
445smp_rendezvous_action(void)
446{
447	struct thread *td;
448	void *local_func_arg;
449	void (*local_setup_func)(void*);
450	void (*local_action_func)(void*);
451	void (*local_teardown_func)(void*);
452#ifdef INVARIANTS
453	int owepreempt;
454#endif
455
456	/* Ensure we have up-to-date values. */
457	atomic_add_acq_int(&smp_rv_waiters[0], 1);
458	while (smp_rv_waiters[0] < smp_rv_ncpus)
459		cpu_spinwait();
460
461	/* Fetch rendezvous parameters after acquire barrier. */
462	local_func_arg = smp_rv_func_arg;
463	local_setup_func = smp_rv_setup_func;
464	local_action_func = smp_rv_action_func;
465	local_teardown_func = smp_rv_teardown_func;
466
467	/*
468	 * Use a nested critical section to prevent any preemptions
469	 * from occurring during a rendezvous action routine.
470	 * Specifically, if a rendezvous handler is invoked via an IPI
471	 * and the interrupted thread was in the critical_exit()
472	 * function after setting td_critnest to 0 but before
473	 * performing a deferred preemption, this routine can be
474	 * invoked with td_critnest set to 0 and td_owepreempt true.
475	 * In that case, a critical_exit() during the rendezvous
476	 * action would trigger a preemption which is not permitted in
477	 * a rendezvous action.  To fix this, wrap all of the
478	 * rendezvous action handlers in a critical section.  We
479	 * cannot use a regular critical section however as having
480	 * critical_exit() preempt from this routine would also be
481	 * problematic (the preemption must not occur before the IPI
482	 * has been acknowledged via an EOI).  Instead, we
483	 * intentionally ignore td_owepreempt when leaving the
484	 * critical section.  This should be harmless because we do
485	 * not permit rendezvous action routines to schedule threads,
486	 * and thus td_owepreempt should never transition from 0 to 1
487	 * during this routine.
488	 */
489	td = curthread;
490	td->td_critnest++;
491#ifdef INVARIANTS
492	owepreempt = td->td_owepreempt;
493#endif
494
495	/*
496	 * If requested, run a setup function before the main action
497	 * function.  Ensure all CPUs have completed the setup
498	 * function before moving on to the action function.
499	 */
500	if (local_setup_func != smp_no_rendezvous_barrier) {
501		if (local_setup_func != NULL)
502			local_setup_func(local_func_arg);
503		atomic_add_int(&smp_rv_waiters[1], 1);
504		while (smp_rv_waiters[1] < smp_rv_ncpus)
505                	cpu_spinwait();
506	}
507
508	if (local_action_func != NULL)
509		local_action_func(local_func_arg);
510
511	if (local_teardown_func != smp_no_rendezvous_barrier) {
512		/*
513		 * Signal that the main action has been completed.  If a
514		 * full exit rendezvous is requested, then all CPUs will
515		 * wait here until all CPUs have finished the main action.
516		 */
517		atomic_add_int(&smp_rv_waiters[2], 1);
518		while (smp_rv_waiters[2] < smp_rv_ncpus)
519			cpu_spinwait();
520
521		if (local_teardown_func != NULL)
522			local_teardown_func(local_func_arg);
523	}
524
525	/*
526	 * Signal that the rendezvous is fully completed by this CPU.
527	 * This means that no member of smp_rv_* pseudo-structure will be
528	 * accessed by this target CPU after this point; in particular,
529	 * memory pointed by smp_rv_func_arg.
530	 *
531	 * The release semantic ensures that all accesses performed by
532	 * the current CPU are visible when smp_rendezvous_cpus()
533	 * returns, by synchronizing with the
534	 * atomic_load_acq_int(&smp_rv_waiters[3]).
535	 */
536	atomic_add_rel_int(&smp_rv_waiters[3], 1);
537
538	td->td_critnest--;
539	KASSERT(owepreempt == td->td_owepreempt,
540	    ("rendezvous action changed td_owepreempt"));
541}
542
543void
544smp_rendezvous_cpus(cpuset_t map,
545	void (* setup_func)(void *),
546	void (* action_func)(void *),
547	void (* teardown_func)(void *),
548	void *arg)
549{
550	int curcpumap, i, ncpus = 0;
551
552	/* See comments in the !SMP case. */
553	if (!smp_started) {
554		spinlock_enter();
555		if (setup_func != NULL)
556			setup_func(arg);
557		if (action_func != NULL)
558			action_func(arg);
559		if (teardown_func != NULL)
560			teardown_func(arg);
561		spinlock_exit();
562		return;
563	}
564
565	/*
566	 * Make sure we come here with interrupts enabled.  Otherwise we
567	 * livelock if smp_ipi_mtx is owned by a thread which sent us an IPI.
568	 */
569	MPASS(curthread->td_md.md_spinlock_count == 0);
570
571	CPU_FOREACH(i) {
572		if (CPU_ISSET(i, &map))
573			ncpus++;
574	}
575	if (ncpus == 0)
576		panic("ncpus is 0 with non-zero map");
577
578	mtx_lock_spin(&smp_ipi_mtx);
579
580	/* Pass rendezvous parameters via global variables. */
581	smp_rv_ncpus = ncpus;
582	smp_rv_setup_func = setup_func;
583	smp_rv_action_func = action_func;
584	smp_rv_teardown_func = teardown_func;
585	smp_rv_func_arg = arg;
586	smp_rv_waiters[1] = 0;
587	smp_rv_waiters[2] = 0;
588	smp_rv_waiters[3] = 0;
589	atomic_store_rel_int(&smp_rv_waiters[0], 0);
590
591	/*
592	 * Signal other processors, which will enter the IPI with
593	 * interrupts off.
594	 */
595	curcpumap = CPU_ISSET(curcpu, &map);
596	CPU_CLR(curcpu, &map);
597	ipi_selected(map, IPI_RENDEZVOUS);
598
599	/* Check if the current CPU is in the map */
600	if (curcpumap != 0)
601		smp_rendezvous_action();
602
603	/*
604	 * Ensure that the master CPU waits for all the other
605	 * CPUs to finish the rendezvous, so that smp_rv_*
606	 * pseudo-structure and the arg are guaranteed to not
607	 * be in use.
608	 *
609	 * Load acquire synchronizes with the release add in
610	 * smp_rendezvous_action(), which ensures that our caller sees
611	 * all memory actions done by the called functions on other
612	 * CPUs.
613	 */
614	while (atomic_load_acq_int(&smp_rv_waiters[3]) < ncpus)
615		cpu_spinwait();
616
617	mtx_unlock_spin(&smp_ipi_mtx);
618}
619
620void
621smp_rendezvous(void (* setup_func)(void *),
622	       void (* action_func)(void *),
623	       void (* teardown_func)(void *),
624	       void *arg)
625{
626	smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func, arg);
627}
628
629static void
630smp_topo_fill(struct cpu_group *cg)
631{
632	int c;
633
634	for (c = 0; c < cg->cg_children; c++)
635		smp_topo_fill(&cg->cg_child[c]);
636	cg->cg_first = CPU_FFS(&cg->cg_mask) - 1;
637	cg->cg_last = CPU_FLS(&cg->cg_mask) - 1;
638}
639
640struct cpu_group *
641smp_topo(void)
642{
643	char cpusetbuf[CPUSETBUFSIZ], cpusetbuf2[CPUSETBUFSIZ];
644	static struct cpu_group *top = NULL;
645
646	/*
647	 * The first call to smp_topo() is guaranteed to occur
648	 * during the kernel boot while we are still single-threaded.
649	 */
650	if (top != NULL)
651		return (top);
652
653	/*
654	 * Check for a fake topology request for debugging purposes.
655	 */
656	switch (smp_topology) {
657	case 1:
658		/* Dual core with no sharing.  */
659		top = smp_topo_1level(CG_SHARE_NONE, 2, 0);
660		break;
661	case 2:
662		/* No topology, all cpus are equal. */
663		top = smp_topo_none();
664		break;
665	case 3:
666		/* Dual core with shared L2.  */
667		top = smp_topo_1level(CG_SHARE_L2, 2, 0);
668		break;
669	case 4:
670		/* quad core, shared l3 among each package, private l2.  */
671		top = smp_topo_1level(CG_SHARE_L3, 4, 0);
672		break;
673	case 5:
674		/* quad core,  2 dualcore parts on each package share l2.  */
675		top = smp_topo_2level(CG_SHARE_NONE, 2, CG_SHARE_L2, 2, 0);
676		break;
677	case 6:
678		/* Single-core 2xHTT */
679		top = smp_topo_1level(CG_SHARE_L1, 2, CG_FLAG_HTT);
680		break;
681	case 7:
682		/* quad core with a shared l3, 8 threads sharing L2.  */
683		top = smp_topo_2level(CG_SHARE_L3, 4, CG_SHARE_L2, 8,
684		    CG_FLAG_SMT);
685		break;
686	default:
687		/* Default, ask the system what it wants. */
688		top = cpu_topo();
689		break;
690	}
691	/*
692	 * Verify the returned topology.
693	 */
694	if (top->cg_count != mp_ncpus)
695		panic("Built bad topology at %p.  CPU count %d != %d",
696		    top, top->cg_count, mp_ncpus);
697	if (CPU_CMP(&top->cg_mask, &all_cpus))
698		panic("Built bad topology at %p.  CPU mask (%s) != (%s)",
699		    top, cpusetobj_strprint(cpusetbuf, &top->cg_mask),
700		    cpusetobj_strprint(cpusetbuf2, &all_cpus));
701
702	/*
703	 * Collapse nonsense levels that may be created out of convenience by
704	 * the MD layers.  They cause extra work in the search functions.
705	 */
706	while (top->cg_children == 1) {
707		top = &top->cg_child[0];
708		top->cg_parent = NULL;
709	}
710	smp_topo_fill(top);
711	return (top);
712}
713
714struct cpu_group *
715smp_topo_alloc(u_int count)
716{
717	static struct cpu_group *group = NULL;
718	static u_int index;
719	u_int curr;
720
721	if (group == NULL) {
722		group = mallocarray((mp_maxid + 1) * MAX_CACHE_LEVELS + 1,
723		    sizeof(*group), M_DEVBUF, M_WAITOK | M_ZERO);
724	}
725	curr = index;
726	index += count;
727	return (&group[curr]);
728}
729
730struct cpu_group *
731smp_topo_none(void)
732{
733	struct cpu_group *top;
734
735	top = smp_topo_alloc(1);
736	top->cg_parent = NULL;
737	top->cg_child = NULL;
738	top->cg_mask = all_cpus;
739	top->cg_count = mp_ncpus;
740	top->cg_children = 0;
741	top->cg_level = CG_SHARE_NONE;
742	top->cg_flags = 0;
743
744	return (top);
745}
746
747static int
748smp_topo_addleaf(struct cpu_group *parent, struct cpu_group *child, int share,
749    int count, int flags, int start)
750{
751	char cpusetbuf[CPUSETBUFSIZ], cpusetbuf2[CPUSETBUFSIZ];
752	cpuset_t mask;
753	int i;
754
755	CPU_ZERO(&mask);
756	for (i = 0; i < count; i++, start++)
757		CPU_SET(start, &mask);
758	child->cg_parent = parent;
759	child->cg_child = NULL;
760	child->cg_children = 0;
761	child->cg_level = share;
762	child->cg_count = count;
763	child->cg_flags = flags;
764	child->cg_mask = mask;
765	parent->cg_children++;
766	for (; parent != NULL; parent = parent->cg_parent) {
767		if (CPU_OVERLAP(&parent->cg_mask, &child->cg_mask))
768			panic("Duplicate children in %p.  mask (%s) child (%s)",
769			    parent,
770			    cpusetobj_strprint(cpusetbuf, &parent->cg_mask),
771			    cpusetobj_strprint(cpusetbuf2, &child->cg_mask));
772		CPU_OR(&parent->cg_mask, &parent->cg_mask, &child->cg_mask);
773		parent->cg_count += child->cg_count;
774	}
775
776	return (start);
777}
778
779struct cpu_group *
780smp_topo_1level(int share, int count, int flags)
781{
782	struct cpu_group *child;
783	struct cpu_group *top;
784	int packages;
785	int cpu;
786	int i;
787
788	cpu = 0;
789	packages = mp_ncpus / count;
790	top = smp_topo_alloc(1 + packages);
791	top->cg_child = child = top + 1;
792	top->cg_level = CG_SHARE_NONE;
793	for (i = 0; i < packages; i++, child++)
794		cpu = smp_topo_addleaf(top, child, share, count, flags, cpu);
795	return (top);
796}
797
798struct cpu_group *
799smp_topo_2level(int l2share, int l2count, int l1share, int l1count,
800    int l1flags)
801{
802	struct cpu_group *top;
803	struct cpu_group *l1g;
804	struct cpu_group *l2g;
805	int cpu;
806	int i;
807	int j;
808
809	cpu = 0;
810	top = smp_topo_alloc(1 + mp_ncpus / (l2count * l1count) +
811	    mp_ncpus / l1count);
812	l2g = top + 1;
813	top->cg_child = l2g;
814	top->cg_level = CG_SHARE_NONE;
815	top->cg_children = mp_ncpus / (l2count * l1count);
816	l1g = l2g + top->cg_children;
817	for (i = 0; i < top->cg_children; i++, l2g++) {
818		l2g->cg_parent = top;
819		l2g->cg_child = l1g;
820		l2g->cg_level = l2share;
821		for (j = 0; j < l2count; j++, l1g++)
822			cpu = smp_topo_addleaf(l2g, l1g, l1share, l1count,
823			    l1flags, cpu);
824	}
825	return (top);
826}
827
828struct cpu_group *
829smp_topo_find(struct cpu_group *top, int cpu)
830{
831	struct cpu_group *cg;
832	cpuset_t mask;
833	int children;
834	int i;
835
836	CPU_SETOF(cpu, &mask);
837	cg = top;
838	for (;;) {
839		if (!CPU_OVERLAP(&cg->cg_mask, &mask))
840			return (NULL);
841		if (cg->cg_children == 0)
842			return (cg);
843		children = cg->cg_children;
844		for (i = 0, cg = cg->cg_child; i < children; cg++, i++)
845			if (CPU_OVERLAP(&cg->cg_mask, &mask))
846				break;
847	}
848	return (NULL);
849}
850#else /* !SMP */
851
852void
853smp_rendezvous_cpus(cpuset_t map,
854	void (*setup_func)(void *),
855	void (*action_func)(void *),
856	void (*teardown_func)(void *),
857	void *arg)
858{
859	/*
860	 * In the !SMP case we just need to ensure the same initial conditions
861	 * as the SMP case.
862	 */
863	spinlock_enter();
864	if (setup_func != NULL)
865		setup_func(arg);
866	if (action_func != NULL)
867		action_func(arg);
868	if (teardown_func != NULL)
869		teardown_func(arg);
870	spinlock_exit();
871}
872
873void
874smp_rendezvous(void (*setup_func)(void *),
875	       void (*action_func)(void *),
876	       void (*teardown_func)(void *),
877	       void *arg)
878{
879
880	smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func,
881	    arg);
882}
883
884/*
885 * Provide dummy SMP support for UP kernels.  Modules that need to use SMP
886 * APIs will still work using this dummy support.
887 */
888static void
889mp_setvariables_for_up(void *dummy)
890{
891	mp_ncpus = 1;
892	mp_ncores = 1;
893	mp_maxid = PCPU_GET(cpuid);
894	CPU_SETOF(mp_maxid, &all_cpus);
895	KASSERT(PCPU_GET(cpuid) == 0, ("UP must have a CPU ID of zero"));
896}
897SYSINIT(cpu_mp_setvariables, SI_SUB_TUNABLES, SI_ORDER_FIRST,
898    mp_setvariables_for_up, NULL);
899#endif /* SMP */
900
901void
902smp_no_rendezvous_barrier(void *dummy)
903{
904#ifdef SMP
905	KASSERT((!smp_started),("smp_no_rendezvous called and smp is started"));
906#endif
907}
908
909void
910smp_rendezvous_cpus_retry(cpuset_t map,
911	void (* setup_func)(void *),
912	void (* action_func)(void *),
913	void (* teardown_func)(void *),
914	void (* wait_func)(void *, int),
915	struct smp_rendezvous_cpus_retry_arg *arg)
916{
917	int cpu;
918
919	CPU_COPY(&map, &arg->cpus);
920
921	/*
922	 * Only one CPU to execute on.
923	 */
924	if (!smp_started) {
925		spinlock_enter();
926		if (setup_func != NULL)
927			setup_func(arg);
928		if (action_func != NULL)
929			action_func(arg);
930		if (teardown_func != NULL)
931			teardown_func(arg);
932		spinlock_exit();
933		return;
934	}
935
936	/*
937	 * Execute an action on all specified CPUs while retrying until they
938	 * all acknowledge completion.
939	 */
940	for (;;) {
941		smp_rendezvous_cpus(
942		    arg->cpus,
943		    setup_func,
944		    action_func,
945		    teardown_func,
946		    arg);
947
948		if (CPU_EMPTY(&arg->cpus))
949			break;
950
951		CPU_FOREACH(cpu) {
952			if (!CPU_ISSET(cpu, &arg->cpus))
953				continue;
954			wait_func(arg, cpu);
955		}
956	}
957}
958
959void
960smp_rendezvous_cpus_done(struct smp_rendezvous_cpus_retry_arg *arg)
961{
962
963	CPU_CLR_ATOMIC(curcpu, &arg->cpus);
964}
965
966/*
967 * If (prio & PDROP) == 0:
968 * Wait for specified idle threads to switch once.  This ensures that even
969 * preempted threads have cycled through the switch function once,
970 * exiting their codepaths.  This allows us to change global pointers
971 * with no other synchronization.
972 * If (prio & PDROP) != 0:
973 * Force the specified CPUs to switch context at least once.
974 */
975int
976quiesce_cpus(cpuset_t map, const char *wmesg, int prio)
977{
978	struct pcpu *pcpu;
979	u_int *gen;
980	int error;
981	int cpu;
982
983	error = 0;
984	if ((prio & PDROP) == 0) {
985		gen = mallocarray(sizeof(u_int), mp_maxid + 1, M_TEMP,
986		    M_WAITOK);
987		for (cpu = 0; cpu <= mp_maxid; cpu++) {
988			if (!CPU_ISSET(cpu, &map) || CPU_ABSENT(cpu))
989				continue;
990			pcpu = pcpu_find(cpu);
991			gen[cpu] = pcpu->pc_idlethread->td_generation;
992		}
993	}
994	for (cpu = 0; cpu <= mp_maxid; cpu++) {
995		if (!CPU_ISSET(cpu, &map) || CPU_ABSENT(cpu))
996			continue;
997		pcpu = pcpu_find(cpu);
998		thread_lock(curthread);
999		sched_bind(curthread, cpu);
1000		thread_unlock(curthread);
1001		if ((prio & PDROP) != 0)
1002			continue;
1003		while (gen[cpu] == pcpu->pc_idlethread->td_generation) {
1004			error = tsleep(quiesce_cpus, prio & ~PDROP, wmesg, 1);
1005			if (error != EWOULDBLOCK)
1006				goto out;
1007			error = 0;
1008		}
1009	}
1010out:
1011	thread_lock(curthread);
1012	sched_unbind(curthread);
1013	thread_unlock(curthread);
1014	if ((prio & PDROP) == 0)
1015		free(gen, M_TEMP);
1016
1017	return (error);
1018}
1019
1020int
1021quiesce_all_cpus(const char *wmesg, int prio)
1022{
1023
1024	return quiesce_cpus(all_cpus, wmesg, prio);
1025}
1026
1027/*
1028 * Observe all CPUs not executing in critical section.
1029 * We are not in one so the check for us is safe. If the found
1030 * thread changes to something else we know the section was
1031 * exited as well.
1032 */
1033void
1034quiesce_all_critical(void)
1035{
1036	struct thread *td, *newtd;
1037	struct pcpu *pcpu;
1038	int cpu;
1039
1040	MPASS(curthread->td_critnest == 0);
1041
1042	CPU_FOREACH(cpu) {
1043		pcpu = cpuid_to_pcpu[cpu];
1044		td = pcpu->pc_curthread;
1045		for (;;) {
1046			if (td->td_critnest == 0)
1047				break;
1048			cpu_spinwait();
1049			newtd = (struct thread *)
1050			    atomic_load_acq_ptr((void *)pcpu->pc_curthread);
1051			if (td != newtd)
1052				break;
1053		}
1054	}
1055}
1056
1057static void
1058cpus_fence_seq_cst_issue(void *arg __unused)
1059{
1060
1061	atomic_thread_fence_seq_cst();
1062}
1063
1064/*
1065 * Send an IPI forcing a sequentially consistent fence.
1066 *
1067 * Allows replacement of an explicitly fence with a compiler barrier.
1068 * Trades speed up during normal execution for a significant slowdown when
1069 * the barrier is needed.
1070 */
1071void
1072cpus_fence_seq_cst(void)
1073{
1074
1075#ifdef SMP
1076	smp_rendezvous(
1077	    smp_no_rendezvous_barrier,
1078	    cpus_fence_seq_cst_issue,
1079	    smp_no_rendezvous_barrier,
1080	    NULL
1081	);
1082#else
1083	cpus_fence_seq_cst_issue(NULL);
1084#endif
1085}
1086
1087/* Extra care is taken with this sysctl because the data type is volatile */
1088static int
1089sysctl_kern_smp_active(SYSCTL_HANDLER_ARGS)
1090{
1091	int error, active;
1092
1093	active = smp_started;
1094	error = SYSCTL_OUT(req, &active, sizeof(active));
1095	return (error);
1096}
1097
1098#ifdef SMP
1099void
1100topo_init_node(struct topo_node *node)
1101{
1102
1103	bzero(node, sizeof(*node));
1104	TAILQ_INIT(&node->children);
1105}
1106
1107void
1108topo_init_root(struct topo_node *root)
1109{
1110
1111	topo_init_node(root);
1112	root->type = TOPO_TYPE_SYSTEM;
1113}
1114
1115/*
1116 * Add a child node with the given ID under the given parent.
1117 * Do nothing if there is already a child with that ID.
1118 */
1119struct topo_node *
1120topo_add_node_by_hwid(struct topo_node *parent, int hwid,
1121    topo_node_type type, uintptr_t subtype)
1122{
1123	struct topo_node *node;
1124
1125	TAILQ_FOREACH_REVERSE(node, &parent->children,
1126	    topo_children, siblings) {
1127		if (node->hwid == hwid
1128		    && node->type == type && node->subtype == subtype) {
1129			return (node);
1130		}
1131	}
1132
1133	node = malloc(sizeof(*node), M_TOPO, M_WAITOK);
1134	topo_init_node(node);
1135	node->parent = parent;
1136	node->hwid = hwid;
1137	node->type = type;
1138	node->subtype = subtype;
1139	TAILQ_INSERT_TAIL(&parent->children, node, siblings);
1140	parent->nchildren++;
1141
1142	return (node);
1143}
1144
1145/*
1146 * Find a child node with the given ID under the given parent.
1147 */
1148struct topo_node *
1149topo_find_node_by_hwid(struct topo_node *parent, int hwid,
1150    topo_node_type type, uintptr_t subtype)
1151{
1152
1153	struct topo_node *node;
1154
1155	TAILQ_FOREACH(node, &parent->children, siblings) {
1156		if (node->hwid == hwid
1157		    && node->type == type && node->subtype == subtype) {
1158			return (node);
1159		}
1160	}
1161
1162	return (NULL);
1163}
1164
1165/*
1166 * Given a node change the order of its parent's child nodes such
1167 * that the node becomes the firt child while preserving the cyclic
1168 * order of the children.  In other words, the given node is promoted
1169 * by rotation.
1170 */
1171void
1172topo_promote_child(struct topo_node *child)
1173{
1174	struct topo_node *next;
1175	struct topo_node *node;
1176	struct topo_node *parent;
1177
1178	parent = child->parent;
1179	next = TAILQ_NEXT(child, siblings);
1180	TAILQ_REMOVE(&parent->children, child, siblings);
1181	TAILQ_INSERT_HEAD(&parent->children, child, siblings);
1182
1183	while (next != NULL) {
1184		node = next;
1185		next = TAILQ_NEXT(node, siblings);
1186		TAILQ_REMOVE(&parent->children, node, siblings);
1187		TAILQ_INSERT_AFTER(&parent->children, child, node, siblings);
1188		child = node;
1189	}
1190}
1191
1192/*
1193 * Iterate to the next node in the depth-first search (traversal) of
1194 * the topology tree.
1195 */
1196struct topo_node *
1197topo_next_node(struct topo_node *top, struct topo_node *node)
1198{
1199	struct topo_node *next;
1200
1201	if ((next = TAILQ_FIRST(&node->children)) != NULL)
1202		return (next);
1203
1204	if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1205		return (next);
1206
1207	while (node != top && (node = node->parent) != top)
1208		if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1209			return (next);
1210
1211	return (NULL);
1212}
1213
1214/*
1215 * Iterate to the next node in the depth-first search of the topology tree,
1216 * but without descending below the current node.
1217 */
1218struct topo_node *
1219topo_next_nonchild_node(struct topo_node *top, struct topo_node *node)
1220{
1221	struct topo_node *next;
1222
1223	if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1224		return (next);
1225
1226	while (node != top && (node = node->parent) != top)
1227		if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1228			return (next);
1229
1230	return (NULL);
1231}
1232
1233/*
1234 * Assign the given ID to the given topology node that represents a logical
1235 * processor.
1236 */
1237void
1238topo_set_pu_id(struct topo_node *node, cpuid_t id)
1239{
1240
1241	KASSERT(node->type == TOPO_TYPE_PU,
1242	    ("topo_set_pu_id: wrong node type: %u", node->type));
1243	KASSERT(CPU_EMPTY(&node->cpuset) && node->cpu_count == 0,
1244	    ("topo_set_pu_id: cpuset already not empty"));
1245	node->id = id;
1246	CPU_SET(id, &node->cpuset);
1247	node->cpu_count = 1;
1248	node->subtype = 1;
1249
1250	while ((node = node->parent) != NULL) {
1251		KASSERT(!CPU_ISSET(id, &node->cpuset),
1252		    ("logical ID %u is already set in node %p", id, node));
1253		CPU_SET(id, &node->cpuset);
1254		node->cpu_count++;
1255	}
1256}
1257
1258static struct topology_spec {
1259	topo_node_type	type;
1260	bool		match_subtype;
1261	uintptr_t	subtype;
1262} topology_level_table[TOPO_LEVEL_COUNT] = {
1263	[TOPO_LEVEL_PKG] = { .type = TOPO_TYPE_PKG, },
1264	[TOPO_LEVEL_GROUP] = { .type = TOPO_TYPE_GROUP, },
1265	[TOPO_LEVEL_CACHEGROUP] = {
1266		.type = TOPO_TYPE_CACHE,
1267		.match_subtype = true,
1268		.subtype = CG_SHARE_L3,
1269	},
1270	[TOPO_LEVEL_CORE] = { .type = TOPO_TYPE_CORE, },
1271	[TOPO_LEVEL_THREAD] = { .type = TOPO_TYPE_PU, },
1272};
1273
1274static bool
1275topo_analyze_table(struct topo_node *root, int all, enum topo_level level,
1276    struct topo_analysis *results)
1277{
1278	struct topology_spec *spec;
1279	struct topo_node *node;
1280	int count;
1281
1282	if (level >= TOPO_LEVEL_COUNT)
1283		return (true);
1284
1285	spec = &topology_level_table[level];
1286	count = 0;
1287	node = topo_next_node(root, root);
1288
1289	while (node != NULL) {
1290		if (node->type != spec->type ||
1291		    (spec->match_subtype && node->subtype != spec->subtype)) {
1292			node = topo_next_node(root, node);
1293			continue;
1294		}
1295		if (!all && CPU_EMPTY(&node->cpuset)) {
1296			node = topo_next_nonchild_node(root, node);
1297			continue;
1298		}
1299
1300		count++;
1301
1302		if (!topo_analyze_table(node, all, level + 1, results))
1303			return (false);
1304
1305		node = topo_next_nonchild_node(root, node);
1306	}
1307
1308	/* No explicit subgroups is essentially one subgroup. */
1309	if (count == 0) {
1310		count = 1;
1311
1312		if (!topo_analyze_table(root, all, level + 1, results))
1313			return (false);
1314	}
1315
1316	if (results->entities[level] == -1)
1317		results->entities[level] = count;
1318	else if (results->entities[level] != count)
1319		return (false);
1320
1321	return (true);
1322}
1323
1324/*
1325 * Check if the topology is uniform, that is, each package has the same number
1326 * of cores in it and each core has the same number of threads (logical
1327 * processors) in it.  If so, calculate the number of packages, the number of
1328 * groups per package, the number of cachegroups per group, and the number of
1329 * logical processors per cachegroup.  'all' parameter tells whether to include
1330 * administratively disabled logical processors into the analysis.
1331 */
1332int
1333topo_analyze(struct topo_node *topo_root, int all,
1334    struct topo_analysis *results)
1335{
1336
1337	results->entities[TOPO_LEVEL_PKG] = -1;
1338	results->entities[TOPO_LEVEL_CORE] = -1;
1339	results->entities[TOPO_LEVEL_THREAD] = -1;
1340	results->entities[TOPO_LEVEL_GROUP] = -1;
1341	results->entities[TOPO_LEVEL_CACHEGROUP] = -1;
1342
1343	if (!topo_analyze_table(topo_root, all, TOPO_LEVEL_PKG, results))
1344		return (0);
1345
1346	KASSERT(results->entities[TOPO_LEVEL_PKG] > 0,
1347		("bug in topology or analysis"));
1348
1349	return (1);
1350}
1351
1352#endif /* SMP */
1353