1/*-
2 * Copyright 1998 Massachusetts Institute of Technology
3 *
4 * Permission to use, copy, modify, and distribute this software and
5 * its documentation for any purpose and without fee is hereby
6 * granted, provided that both the above copyright notice and this
7 * permission notice appear in all copies, that both the above
8 * copyright notice and this permission notice appear in all
9 * supporting documentation, and that the name of M.I.T. not be used
10 * in advertising or publicity pertaining to distribution of the
11 * software without specific, written prior permission.  M.I.T. makes
12 * no representations about the suitability of this software for any
13 * purpose.  It is provided "as is" without express or implied
14 * warranty.
15 *
16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30/*
31 * The kernel resource manager.  This code is responsible for keeping track
32 * of hardware resources which are apportioned out to various drivers.
33 * It does not actually assign those resources, and it is not expected
34 * that end-device drivers will call into this code directly.  Rather,
35 * the code which implements the buses that those devices are attached to,
36 * and the code which manages CPU resources, will call this code, and the
37 * end-device drivers will make upcalls to that code to actually perform
38 * the allocation.
39 *
40 * There are two sorts of resources managed by this code.  The first is
41 * the more familiar array (RMAN_ARRAY) type; resources in this class
42 * consist of a sequence of individually-allocatable objects which have
43 * been numbered in some well-defined order.  Most of the resources
44 * are of this type, as it is the most familiar.  The second type is
45 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
46 * resources in which each instance is indistinguishable from every
47 * other instance).  The principal anticipated application of gauges
48 * is in the context of power consumption, where a bus may have a specific
49 * power budget which all attached devices share.  RMAN_GAUGE is not
50 * implemented yet.
51 *
52 * For array resources, we make one simplifying assumption: two clients
53 * sharing the same resource must use the same range of indices.  That
54 * is to say, sharing of overlapping-but-not-identical regions is not
55 * permitted.
56 */
57
58#include "opt_ddb.h"
59
60#include <sys/param.h>
61#include <sys/systm.h>
62#include <sys/kernel.h>
63#include <sys/limits.h>
64#include <sys/lock.h>
65#include <sys/malloc.h>
66#include <sys/mutex.h>
67#include <sys/bus.h>		/* XXX debugging */
68#include <machine/bus.h>
69#include <sys/rman.h>
70#include <sys/sysctl.h>
71
72#ifdef DDB
73#include <ddb/ddb.h>
74#endif
75
76/*
77 * We use a linked list rather than a bitmap because we need to be able to
78 * represent potentially huge objects (like all of a processor's physical
79 * address space).
80 */
81struct resource_i {
82	struct resource		r_r;
83	TAILQ_ENTRY(resource_i)	r_link;
84	LIST_ENTRY(resource_i)	r_sharelink;
85	LIST_HEAD(, resource_i)	*r_sharehead;
86	rman_res_t	r_start;	/* index of the first entry in this resource */
87	rman_res_t	r_end;		/* index of the last entry (inclusive) */
88	u_int	r_flags;
89	void	*r_virtual;	/* virtual address of this resource */
90	void	*r_irq_cookie;	/* interrupt cookie for this (interrupt) resource */
91	device_t r_dev;	/* device which has allocated this resource */
92	struct rman *r_rm;	/* resource manager from whence this came */
93	int	r_rid;		/* optional rid for this resource. */
94	int	r_type;		/* optional type for this resource. */
95};
96
97static int rman_debug = 0;
98SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RWTUN,
99    &rman_debug, 0, "rman debug");
100
101#define DPRINTF(...) do { if (rman_debug) printf(__VA_ARGS__); } while (0)
102
103static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
104
105struct rman_head rman_head;
106static struct mtx rman_mtx; /* mutex to protect rman_head */
107static int int_rman_release_resource(struct rman *rm, struct resource_i *r);
108
109static __inline struct resource_i *
110int_alloc_resource(int malloc_flag)
111{
112	struct resource_i *r;
113
114	r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO);
115	if (r != NULL) {
116		r->r_r.__r_i = r;
117	}
118	return (r);
119}
120
121int
122rman_init(struct rman *rm)
123{
124	static int once = 0;
125
126	if (once == 0) {
127		once = 1;
128		TAILQ_INIT(&rman_head);
129		mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF);
130	}
131
132	if (rm->rm_start == 0 && rm->rm_end == 0)
133		rm->rm_end = ~0;
134	if (rm->rm_type == RMAN_UNINIT)
135		panic("rman_init");
136	if (rm->rm_type == RMAN_GAUGE)
137		panic("implement RMAN_GAUGE");
138
139	TAILQ_INIT(&rm->rm_list);
140	rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO);
141	if (rm->rm_mtx == NULL)
142		return ENOMEM;
143	mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF);
144
145	mtx_lock(&rman_mtx);
146	TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
147	mtx_unlock(&rman_mtx);
148	return 0;
149}
150
151int
152rman_manage_region(struct rman *rm, rman_res_t start, rman_res_t end)
153{
154	struct resource_i *r, *s, *t;
155	int rv = 0;
156
157	DPRINTF("%s: <%s> request: start %#jx, end %#jx\n", __func__,
158	    rm->rm_descr, start, end);
159	if (start < rm->rm_start || end > rm->rm_end)
160		return EINVAL;
161	r = int_alloc_resource(M_NOWAIT);
162	if (r == NULL)
163		return ENOMEM;
164	r->r_start = start;
165	r->r_end = end;
166	r->r_rm = rm;
167
168	mtx_lock(rm->rm_mtx);
169
170	/* Skip entries before us. */
171	TAILQ_FOREACH(s, &rm->rm_list, r_link) {
172		if (s->r_end == ~0)
173			break;
174		if (s->r_end + 1 >= r->r_start)
175			break;
176	}
177
178	/* If we ran off the end of the list, insert at the tail. */
179	if (s == NULL) {
180		TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link);
181	} else {
182		/* Check for any overlap with the current region. */
183		if (r->r_start <= s->r_end && r->r_end >= s->r_start) {
184			rv = EBUSY;
185			goto out;
186		}
187
188		/* Check for any overlap with the next region. */
189		t = TAILQ_NEXT(s, r_link);
190		if (t && r->r_start <= t->r_end && r->r_end >= t->r_start) {
191			rv = EBUSY;
192			goto out;
193		}
194
195		/*
196		 * See if this region can be merged with the next region.  If
197		 * not, clear the pointer.
198		 */
199		if (t && (r->r_end + 1 != t->r_start || t->r_flags != 0))
200			t = NULL;
201
202		/* See if we can merge with the current region. */
203		if (s->r_end + 1 == r->r_start && s->r_flags == 0) {
204			/* Can we merge all 3 regions? */
205			if (t != NULL) {
206				s->r_end = t->r_end;
207				TAILQ_REMOVE(&rm->rm_list, t, r_link);
208				free(r, M_RMAN);
209				free(t, M_RMAN);
210			} else {
211				s->r_end = r->r_end;
212				free(r, M_RMAN);
213			}
214		} else if (t != NULL) {
215			/* Can we merge with just the next region? */
216			t->r_start = r->r_start;
217			free(r, M_RMAN);
218		} else if (s->r_end < r->r_start) {
219			TAILQ_INSERT_AFTER(&rm->rm_list, s, r, r_link);
220		} else {
221			TAILQ_INSERT_BEFORE(s, r, r_link);
222		}
223	}
224out:
225	mtx_unlock(rm->rm_mtx);
226	return rv;
227}
228
229int
230rman_init_from_resource(struct rman *rm, struct resource *r)
231{
232	int rv;
233
234	if ((rv = rman_init(rm)) != 0)
235		return (rv);
236	return (rman_manage_region(rm, r->__r_i->r_start, r->__r_i->r_end));
237}
238
239int
240rman_fini(struct rman *rm)
241{
242	struct resource_i *r;
243
244	mtx_lock(rm->rm_mtx);
245	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
246		if (r->r_flags & RF_ALLOCATED) {
247			mtx_unlock(rm->rm_mtx);
248			return EBUSY;
249		}
250	}
251
252	/*
253	 * There really should only be one of these if we are in this
254	 * state and the code is working properly, but it can't hurt.
255	 */
256	while (!TAILQ_EMPTY(&rm->rm_list)) {
257		r = TAILQ_FIRST(&rm->rm_list);
258		TAILQ_REMOVE(&rm->rm_list, r, r_link);
259		free(r, M_RMAN);
260	}
261	mtx_unlock(rm->rm_mtx);
262	mtx_lock(&rman_mtx);
263	TAILQ_REMOVE(&rman_head, rm, rm_link);
264	mtx_unlock(&rman_mtx);
265	mtx_destroy(rm->rm_mtx);
266	free(rm->rm_mtx, M_RMAN);
267
268	return 0;
269}
270
271int
272rman_first_free_region(struct rman *rm, rman_res_t *start, rman_res_t *end)
273{
274	struct resource_i *r;
275
276	mtx_lock(rm->rm_mtx);
277	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
278		if (!(r->r_flags & RF_ALLOCATED)) {
279			*start = r->r_start;
280			*end = r->r_end;
281			mtx_unlock(rm->rm_mtx);
282			return (0);
283		}
284	}
285	mtx_unlock(rm->rm_mtx);
286	return (ENOENT);
287}
288
289int
290rman_last_free_region(struct rman *rm, rman_res_t *start, rman_res_t *end)
291{
292	struct resource_i *r;
293
294	mtx_lock(rm->rm_mtx);
295	TAILQ_FOREACH_REVERSE(r, &rm->rm_list, resource_head, r_link) {
296		if (!(r->r_flags & RF_ALLOCATED)) {
297			*start = r->r_start;
298			*end = r->r_end;
299			mtx_unlock(rm->rm_mtx);
300			return (0);
301		}
302	}
303	mtx_unlock(rm->rm_mtx);
304	return (ENOENT);
305}
306
307/* Shrink or extend one or both ends of an allocated resource. */
308int
309rman_adjust_resource(struct resource *rr, rman_res_t start, rman_res_t end)
310{
311	struct resource_i *r, *s, *t, *new;
312	struct rman *rm;
313
314	/* Not supported for shared resources. */
315	r = rr->__r_i;
316	if (r->r_flags & RF_SHAREABLE)
317		return (EINVAL);
318
319	/*
320	 * This does not support wholesale moving of a resource.  At
321	 * least part of the desired new range must overlap with the
322	 * existing resource.
323	 */
324	if (end < r->r_start || r->r_end < start)
325		return (EINVAL);
326
327	/*
328	 * Find the two resource regions immediately adjacent to the
329	 * allocated resource.
330	 */
331	rm = r->r_rm;
332	mtx_lock(rm->rm_mtx);
333#ifdef INVARIANTS
334	TAILQ_FOREACH(s, &rm->rm_list, r_link) {
335		if (s == r)
336			break;
337	}
338	if (s == NULL)
339		panic("resource not in list");
340#endif
341	s = TAILQ_PREV(r, resource_head, r_link);
342	t = TAILQ_NEXT(r, r_link);
343	KASSERT(s == NULL || s->r_end + 1 == r->r_start,
344	    ("prev resource mismatch"));
345	KASSERT(t == NULL || r->r_end + 1 == t->r_start,
346	    ("next resource mismatch"));
347
348	/*
349	 * See if the changes are permitted.  Shrinking is always allowed,
350	 * but growing requires sufficient room in the adjacent region.
351	 */
352	if (start < r->r_start && (s == NULL || (s->r_flags & RF_ALLOCATED) ||
353	    s->r_start > start)) {
354		mtx_unlock(rm->rm_mtx);
355		return (EBUSY);
356	}
357	if (end > r->r_end && (t == NULL || (t->r_flags & RF_ALLOCATED) ||
358	    t->r_end < end)) {
359		mtx_unlock(rm->rm_mtx);
360		return (EBUSY);
361	}
362
363	/*
364	 * While holding the lock, grow either end of the resource as
365	 * needed and shrink either end if the shrinking does not require
366	 * allocating a new resource.  We can safely drop the lock and then
367	 * insert a new range to handle the shrinking case afterwards.
368	 */
369	if (start < r->r_start ||
370	    (start > r->r_start && s != NULL && !(s->r_flags & RF_ALLOCATED))) {
371		KASSERT(s->r_flags == 0, ("prev is busy"));
372		r->r_start = start;
373		if (s->r_start == start) {
374			TAILQ_REMOVE(&rm->rm_list, s, r_link);
375			free(s, M_RMAN);
376		} else
377			s->r_end = start - 1;
378	}
379	if (end > r->r_end ||
380	    (end < r->r_end && t != NULL && !(t->r_flags & RF_ALLOCATED))) {
381		KASSERT(t->r_flags == 0, ("next is busy"));
382		r->r_end = end;
383		if (t->r_end == end) {
384			TAILQ_REMOVE(&rm->rm_list, t, r_link);
385			free(t, M_RMAN);
386		} else
387			t->r_start = end + 1;
388	}
389	mtx_unlock(rm->rm_mtx);
390
391	/*
392	 * Handle the shrinking cases that require allocating a new
393	 * resource to hold the newly-free region.  We have to recheck
394	 * if we still need this new region after acquiring the lock.
395	 */
396	if (start > r->r_start) {
397		new = int_alloc_resource(M_WAITOK);
398		new->r_start = r->r_start;
399		new->r_end = start - 1;
400		new->r_rm = rm;
401		mtx_lock(rm->rm_mtx);
402		r->r_start = start;
403		s = TAILQ_PREV(r, resource_head, r_link);
404		if (s != NULL && !(s->r_flags & RF_ALLOCATED)) {
405			s->r_end = start - 1;
406			free(new, M_RMAN);
407		} else
408			TAILQ_INSERT_BEFORE(r, new, r_link);
409		mtx_unlock(rm->rm_mtx);
410	}
411	if (end < r->r_end) {
412		new = int_alloc_resource(M_WAITOK);
413		new->r_start = end + 1;
414		new->r_end = r->r_end;
415		new->r_rm = rm;
416		mtx_lock(rm->rm_mtx);
417		r->r_end = end;
418		t = TAILQ_NEXT(r, r_link);
419		if (t != NULL && !(t->r_flags & RF_ALLOCATED)) {
420			t->r_start = end + 1;
421			free(new, M_RMAN);
422		} else
423			TAILQ_INSERT_AFTER(&rm->rm_list, r, new, r_link);
424		mtx_unlock(rm->rm_mtx);
425	}
426	return (0);
427}
428
429#define	SHARE_TYPE(f)	(f & (RF_SHAREABLE | RF_PREFETCHABLE))
430
431struct resource *
432rman_reserve_resource(struct rman *rm, rman_res_t start, rman_res_t end,
433			    rman_res_t count, u_int flags, device_t dev)
434{
435	u_int new_rflags;
436	struct resource_i *r, *s, *rv;
437	rman_res_t rstart, rend, amask;
438
439	rv = NULL;
440
441	DPRINTF("%s: <%s> request: [%#jx, %#jx], length %#jx, flags %x, "
442	    "device %s\n", __func__, rm->rm_descr, start, end, count, flags,
443	    dev == NULL ? "<null>" : device_get_nameunit(dev));
444	KASSERT(count != 0, ("%s: attempted to allocate an empty range",
445	    __func__));
446	KASSERT((flags & RF_FIRSTSHARE) == 0,
447	    ("invalid flags %#x", flags));
448	new_rflags = (flags & ~RF_FIRSTSHARE) | RF_ALLOCATED;
449
450	mtx_lock(rm->rm_mtx);
451
452	r = TAILQ_FIRST(&rm->rm_list);
453	if (r == NULL)
454		DPRINTF("NULL list head\n");
455	else
456		DPRINTF("%s: trying %#jx <%#jx,%#jx>\n", __func__, r->r_end,
457		    start, count-1);
458
459	for (r = TAILQ_FIRST(&rm->rm_list);
460	     r && r->r_end < start + count - 1;
461	     r = TAILQ_NEXT(r, r_link))
462		DPRINTF("%s: tried %#jx <%#jx,%#jx>\n", __func__, r->r_end,
463		    start, count-1);
464
465	if (r == NULL) {
466		DPRINTF("could not find a region\n");
467		goto out;
468	}
469
470	amask = (1ull << RF_ALIGNMENT(flags)) - 1;
471	KASSERT(start <= RM_MAX_END - amask,
472	    ("start (%#jx) + amask (%#jx) would wrap around", start, amask));
473
474	/*
475	 * First try to find an acceptable totally-unshared region.
476	 */
477	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
478		DPRINTF("considering [%#jx, %#jx]\n", s->r_start, s->r_end);
479		/*
480		 * The resource list is sorted, so there is no point in
481		 * searching further once r_start is too large.
482		 */
483		if (s->r_start > end - (count - 1)) {
484			DPRINTF("s->r_start (%#jx) + count - 1> end (%#jx)\n",
485			    s->r_start, end);
486			break;
487		}
488		if (s->r_start > RM_MAX_END - amask) {
489			DPRINTF("s->r_start (%#jx) + amask (%#jx) too large\n",
490			    s->r_start, amask);
491			break;
492		}
493		if (s->r_flags & RF_ALLOCATED) {
494			DPRINTF("region is allocated\n");
495			continue;
496		}
497		rstart = ummax(s->r_start, start);
498		/*
499		 * Try to find a region by adjusting to boundary and alignment
500		 * until both conditions are satisfied. This is not an optimal
501		 * algorithm, but in most cases it isn't really bad, either.
502		 */
503		do {
504			rstart = (rstart + amask) & ~amask;
505		} while ((rstart & amask) != 0 && rstart < end &&
506		    rstart < s->r_end);
507		rend = ummin(s->r_end, ummax(rstart + count - 1, end));
508		if (rstart > rend) {
509			DPRINTF("adjusted start exceeds end\n");
510			continue;
511		}
512		DPRINTF("truncated region: [%#jx, %#jx]; size %#jx (requested %#jx)\n",
513		       rstart, rend, (rend - rstart + 1), count);
514
515		if ((rend - rstart) >= (count - 1)) {
516			DPRINTF("candidate region: [%#jx, %#jx], size %#jx\n",
517			       rstart, rend, (rend - rstart + 1));
518			if ((s->r_end - s->r_start + 1) == count) {
519				DPRINTF("candidate region is entire chunk\n");
520				rv = s;
521				rv->r_flags = new_rflags;
522				rv->r_dev = dev;
523				goto out;
524			}
525
526			/*
527			 * If s->r_start < rstart and
528			 *    s->r_end > rstart + count - 1, then
529			 * we need to split the region into three pieces
530			 * (the middle one will get returned to the user).
531			 * Otherwise, we are allocating at either the
532			 * beginning or the end of s, so we only need to
533			 * split it in two.  The first case requires
534			 * two new allocations; the second requires but one.
535			 */
536			rv = int_alloc_resource(M_NOWAIT);
537			if (rv == NULL)
538				goto out;
539			rv->r_start = rstart;
540			rv->r_end = rstart + count - 1;
541			rv->r_flags = new_rflags;
542			rv->r_dev = dev;
543			rv->r_rm = rm;
544
545			if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
546				DPRINTF("splitting region in three parts: "
547				       "[%#jx, %#jx]; [%#jx, %#jx]; [%#jx, %#jx]\n",
548				       s->r_start, rv->r_start - 1,
549				       rv->r_start, rv->r_end,
550				       rv->r_end + 1, s->r_end);
551				/*
552				 * We are allocating in the middle.
553				 */
554				r = int_alloc_resource(M_NOWAIT);
555				if (r == NULL) {
556					free(rv, M_RMAN);
557					rv = NULL;
558					goto out;
559				}
560				r->r_start = rv->r_end + 1;
561				r->r_end = s->r_end;
562				r->r_flags = s->r_flags;
563				r->r_rm = rm;
564				s->r_end = rv->r_start - 1;
565				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
566						     r_link);
567				TAILQ_INSERT_AFTER(&rm->rm_list, rv, r,
568						     r_link);
569			} else if (s->r_start == rv->r_start) {
570				DPRINTF("allocating from the beginning\n");
571				/*
572				 * We are allocating at the beginning.
573				 */
574				s->r_start = rv->r_end + 1;
575				TAILQ_INSERT_BEFORE(s, rv, r_link);
576			} else {
577				DPRINTF("allocating at the end\n");
578				/*
579				 * We are allocating at the end.
580				 */
581				s->r_end = rv->r_start - 1;
582				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
583						     r_link);
584			}
585			goto out;
586		}
587	}
588
589	/*
590	 * Now find an acceptable shared region, if the client's requirements
591	 * allow sharing.  By our implementation restriction, a candidate
592	 * region must match exactly by both size and sharing type in order
593	 * to be considered compatible with the client's request.  (The
594	 * former restriction could probably be lifted without too much
595	 * additional work, but this does not seem warranted.)
596	 */
597	DPRINTF("no unshared regions found\n");
598	if ((flags & RF_SHAREABLE) == 0)
599		goto out;
600
601	for (s = r; s && s->r_end <= end; s = TAILQ_NEXT(s, r_link)) {
602		if (SHARE_TYPE(s->r_flags) == SHARE_TYPE(flags) &&
603		    s->r_start >= start &&
604		    (s->r_end - s->r_start + 1) == count &&
605		    (s->r_start & amask) == 0) {
606			rv = int_alloc_resource(M_NOWAIT);
607			if (rv == NULL)
608				goto out;
609			rv->r_start = s->r_start;
610			rv->r_end = s->r_end;
611			rv->r_flags = new_rflags;
612			rv->r_dev = dev;
613			rv->r_rm = rm;
614			if (s->r_sharehead == NULL) {
615				s->r_sharehead = malloc(sizeof *s->r_sharehead,
616						M_RMAN, M_NOWAIT | M_ZERO);
617				if (s->r_sharehead == NULL) {
618					free(rv, M_RMAN);
619					rv = NULL;
620					goto out;
621				}
622				LIST_INIT(s->r_sharehead);
623				LIST_INSERT_HEAD(s->r_sharehead, s,
624						 r_sharelink);
625				s->r_flags |= RF_FIRSTSHARE;
626			}
627			rv->r_sharehead = s->r_sharehead;
628			LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
629			goto out;
630		}
631	}
632	/*
633	 * We couldn't find anything.
634	 */
635
636out:
637	mtx_unlock(rm->rm_mtx);
638	return (rv == NULL ? NULL : &rv->r_r);
639}
640
641int
642rman_activate_resource(struct resource *re)
643{
644	struct resource_i *r;
645	struct rman *rm;
646
647	r = re->__r_i;
648	rm = r->r_rm;
649	mtx_lock(rm->rm_mtx);
650	r->r_flags |= RF_ACTIVE;
651	mtx_unlock(rm->rm_mtx);
652	return 0;
653}
654
655int
656rman_deactivate_resource(struct resource *r)
657{
658	struct rman *rm;
659
660	rm = r->__r_i->r_rm;
661	mtx_lock(rm->rm_mtx);
662	r->__r_i->r_flags &= ~RF_ACTIVE;
663	mtx_unlock(rm->rm_mtx);
664	return 0;
665}
666
667static int
668int_rman_release_resource(struct rman *rm, struct resource_i *r)
669{
670	struct resource_i *s, *t;
671
672	if (r->r_flags & RF_ACTIVE)
673		r->r_flags &= ~RF_ACTIVE;
674
675	/*
676	 * Check for a sharing list first.  If there is one, then we don't
677	 * have to think as hard.
678	 */
679	if (r->r_sharehead) {
680		/*
681		 * If a sharing list exists, then we know there are at
682		 * least two sharers.
683		 *
684		 * If we are in the main circleq, appoint someone else.
685		 */
686		LIST_REMOVE(r, r_sharelink);
687		s = LIST_FIRST(r->r_sharehead);
688		if (r->r_flags & RF_FIRSTSHARE) {
689			s->r_flags |= RF_FIRSTSHARE;
690			TAILQ_INSERT_BEFORE(r, s, r_link);
691			TAILQ_REMOVE(&rm->rm_list, r, r_link);
692		}
693
694		/*
695		 * Make sure that the sharing list goes away completely
696		 * if the resource is no longer being shared at all.
697		 */
698		if (LIST_NEXT(s, r_sharelink) == NULL) {
699			free(s->r_sharehead, M_RMAN);
700			s->r_sharehead = NULL;
701			s->r_flags &= ~RF_FIRSTSHARE;
702		}
703		goto out;
704	}
705
706	/*
707	 * Look at the adjacent resources in the list and see if our
708	 * segment can be merged with any of them.  If either of the
709	 * resources is allocated or is not exactly adjacent then they
710	 * cannot be merged with our segment.
711	 */
712	s = TAILQ_PREV(r, resource_head, r_link);
713	if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 ||
714	    s->r_end + 1 != r->r_start))
715		s = NULL;
716	t = TAILQ_NEXT(r, r_link);
717	if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 ||
718	    r->r_end + 1 != t->r_start))
719		t = NULL;
720
721	if (s != NULL && t != NULL) {
722		/*
723		 * Merge all three segments.
724		 */
725		s->r_end = t->r_end;
726		TAILQ_REMOVE(&rm->rm_list, r, r_link);
727		TAILQ_REMOVE(&rm->rm_list, t, r_link);
728		free(t, M_RMAN);
729	} else if (s != NULL) {
730		/*
731		 * Merge previous segment with ours.
732		 */
733		s->r_end = r->r_end;
734		TAILQ_REMOVE(&rm->rm_list, r, r_link);
735	} else if (t != NULL) {
736		/*
737		 * Merge next segment with ours.
738		 */
739		t->r_start = r->r_start;
740		TAILQ_REMOVE(&rm->rm_list, r, r_link);
741	} else {
742		/*
743		 * At this point, we know there is nothing we
744		 * can potentially merge with, because on each
745		 * side, there is either nothing there or what is
746		 * there is still allocated.  In that case, we don't
747		 * want to remove r from the list; we simply want to
748		 * change it to an unallocated region and return
749		 * without freeing anything.
750		 */
751		r->r_flags &= ~RF_ALLOCATED;
752		r->r_dev = NULL;
753		return 0;
754	}
755
756out:
757	free(r, M_RMAN);
758	return 0;
759}
760
761int
762rman_release_resource(struct resource *re)
763{
764	int rv;
765	struct resource_i *r;
766	struct rman *rm;
767
768	r = re->__r_i;
769	rm = r->r_rm;
770	mtx_lock(rm->rm_mtx);
771	rv = int_rman_release_resource(rm, r);
772	mtx_unlock(rm->rm_mtx);
773	return (rv);
774}
775
776uint32_t
777rman_make_alignment_flags(uint32_t size)
778{
779
780	/*
781	 * Find the hightest bit set, and add one if more than one bit
782	 * set.  We're effectively computing the ceil(log2(size)) here.
783	 */
784	if (__predict_false(size == 0))
785		return (0);
786	return (RF_ALIGNMENT_LOG2(flsl(size - 1)));
787}
788
789rman_res_t
790rman_get_start(const struct resource *r)
791{
792
793	return (r->__r_i->r_start);
794}
795
796rman_res_t
797rman_get_end(const struct resource *r)
798{
799
800	return (r->__r_i->r_end);
801}
802
803rman_res_t
804rman_get_size(const struct resource *r)
805{
806
807	return (r->__r_i->r_end - r->__r_i->r_start + 1);
808}
809
810u_int
811rman_get_flags(const struct resource *r)
812{
813
814	return (r->__r_i->r_flags);
815}
816
817void
818rman_set_virtual(struct resource *r, void *v)
819{
820
821	r->__r_i->r_virtual = v;
822}
823
824void *
825rman_get_virtual(const struct resource *r)
826{
827
828	return (r->__r_i->r_virtual);
829}
830
831void
832rman_set_irq_cookie(struct resource *r, void *c)
833{
834
835	r->__r_i->r_irq_cookie = c;
836}
837
838void *
839rman_get_irq_cookie(const struct resource *r)
840{
841
842	return (r->__r_i->r_irq_cookie);
843}
844
845void
846rman_set_bustag(struct resource *r, bus_space_tag_t t)
847{
848
849	r->r_bustag = t;
850}
851
852bus_space_tag_t
853rman_get_bustag(const struct resource *r)
854{
855
856	return (r->r_bustag);
857}
858
859void
860rman_set_bushandle(struct resource *r, bus_space_handle_t h)
861{
862
863	r->r_bushandle = h;
864}
865
866bus_space_handle_t
867rman_get_bushandle(const struct resource *r)
868{
869
870	return (r->r_bushandle);
871}
872
873void
874rman_set_mapping(struct resource *r, struct resource_map *map)
875{
876
877	KASSERT(rman_get_size(r) == map->r_size,
878	    ("rman_set_mapping: size mismatch"));
879	rman_set_bustag(r, map->r_bustag);
880	rman_set_bushandle(r, map->r_bushandle);
881	rman_set_virtual(r, map->r_vaddr);
882}
883
884void
885rman_get_mapping(const struct resource *r, struct resource_map *map)
886{
887
888	map->r_bustag = rman_get_bustag(r);
889	map->r_bushandle = rman_get_bushandle(r);
890	map->r_size = rman_get_size(r);
891	map->r_vaddr = rman_get_virtual(r);
892}
893
894void
895rman_set_rid(struct resource *r, int rid)
896{
897
898	r->__r_i->r_rid = rid;
899}
900
901int
902rman_get_rid(const struct resource *r)
903{
904
905	return (r->__r_i->r_rid);
906}
907
908void
909rman_set_type(struct resource *r, int type)
910{
911	r->__r_i->r_type = type;
912}
913
914int
915rman_get_type(const struct resource *r)
916{
917	return (r->__r_i->r_type);
918}
919
920void
921rman_set_device(struct resource *r, device_t dev)
922{
923
924	r->__r_i->r_dev = dev;
925}
926
927device_t
928rman_get_device(const struct resource *r)
929{
930
931	return (r->__r_i->r_dev);
932}
933
934int
935rman_is_region_manager(const struct resource *r, const struct rman *rm)
936{
937
938	return (r->__r_i->r_rm == rm);
939}
940
941/*
942 * Sysctl interface for scanning the resource lists.
943 *
944 * We take two input parameters; the index into the list of resource
945 * managers, and the resource offset into the list.
946 */
947static int
948sysctl_rman(SYSCTL_HANDLER_ARGS)
949{
950	int			*name = (int *)arg1;
951	u_int			namelen = arg2;
952	int			rman_idx, res_idx;
953	struct rman		*rm;
954	struct resource_i	*res;
955	struct resource_i	*sres;
956	struct u_rman		urm;
957	struct u_resource	ures;
958	int			error;
959
960	if (namelen != 3)
961		return (EINVAL);
962
963	if (bus_data_generation_check(name[0]))
964		return (EINVAL);
965	rman_idx = name[1];
966	res_idx = name[2];
967
968	/*
969	 * Find the indexed resource manager
970	 */
971	mtx_lock(&rman_mtx);
972	TAILQ_FOREACH(rm, &rman_head, rm_link) {
973		if (rman_idx-- == 0)
974			break;
975	}
976	mtx_unlock(&rman_mtx);
977	if (rm == NULL)
978		return (ENOENT);
979
980	/*
981	 * If the resource index is -1, we want details on the
982	 * resource manager.
983	 */
984	if (res_idx == -1) {
985		bzero(&urm, sizeof(urm));
986		urm.rm_handle = (uintptr_t)rm;
987		if (rm->rm_descr != NULL)
988			strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN);
989		urm.rm_start = rm->rm_start;
990		urm.rm_size = rm->rm_end - rm->rm_start + 1;
991		urm.rm_type = rm->rm_type;
992
993		error = SYSCTL_OUT(req, &urm, sizeof(urm));
994		return (error);
995	}
996
997	/*
998	 * Find the indexed resource and return it.
999	 */
1000	mtx_lock(rm->rm_mtx);
1001	TAILQ_FOREACH(res, &rm->rm_list, r_link) {
1002		if (res->r_sharehead != NULL) {
1003			LIST_FOREACH(sres, res->r_sharehead, r_sharelink)
1004				if (res_idx-- == 0) {
1005					res = sres;
1006					goto found;
1007				}
1008		}
1009		else if (res_idx-- == 0)
1010				goto found;
1011	}
1012	mtx_unlock(rm->rm_mtx);
1013	return (ENOENT);
1014
1015found:
1016	bzero(&ures, sizeof(ures));
1017	ures.r_handle = (uintptr_t)res;
1018	ures.r_parent = (uintptr_t)res->r_rm;
1019	ures.r_device = (uintptr_t)res->r_dev;
1020	if (res->r_dev != NULL) {
1021		if (device_get_name(res->r_dev) != NULL) {
1022			snprintf(ures.r_devname, RM_TEXTLEN,
1023			    "%s%d",
1024			    device_get_name(res->r_dev),
1025			    device_get_unit(res->r_dev));
1026		} else {
1027			strlcpy(ures.r_devname, "nomatch",
1028			    RM_TEXTLEN);
1029		}
1030	} else {
1031		ures.r_devname[0] = '\0';
1032	}
1033	ures.r_start = res->r_start;
1034	ures.r_size = res->r_end - res->r_start + 1;
1035	ures.r_flags = res->r_flags;
1036
1037	mtx_unlock(rm->rm_mtx);
1038	error = SYSCTL_OUT(req, &ures, sizeof(ures));
1039	return (error);
1040}
1041
1042static SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD | CTLFLAG_MPSAFE,
1043    sysctl_rman,
1044    "kernel resource manager");
1045
1046#ifdef DDB
1047static void
1048dump_rman_header(struct rman *rm)
1049{
1050
1051	if (db_pager_quit)
1052		return;
1053	db_printf("rman %p: %s (0x%jx-0x%jx full range)\n",
1054	    rm, rm->rm_descr, (rman_res_t)rm->rm_start, (rman_res_t)rm->rm_end);
1055}
1056
1057static void
1058dump_rman(struct rman *rm)
1059{
1060	struct resource_i *r;
1061	const char *devname;
1062
1063	if (db_pager_quit)
1064		return;
1065	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
1066		if (r->r_dev != NULL) {
1067			devname = device_get_nameunit(r->r_dev);
1068			if (devname == NULL)
1069				devname = "nomatch";
1070		} else
1071			devname = NULL;
1072		db_printf("    0x%jx-0x%jx (RID=%d) ",
1073		    r->r_start, r->r_end, r->r_rid);
1074		if (devname != NULL)
1075			db_printf("(%s)\n", devname);
1076		else
1077			db_printf("----\n");
1078		if (db_pager_quit)
1079			return;
1080	}
1081}
1082
1083DB_SHOW_COMMAND(rman, db_show_rman)
1084{
1085
1086	if (have_addr) {
1087		dump_rman_header((struct rman *)addr);
1088		dump_rman((struct rman *)addr);
1089	}
1090}
1091
1092DB_SHOW_COMMAND_FLAGS(rmans, db_show_rmans, DB_CMD_MEMSAFE)
1093{
1094	struct rman *rm;
1095
1096	TAILQ_FOREACH(rm, &rman_head, rm_link) {
1097		dump_rman_header(rm);
1098	}
1099}
1100
1101DB_SHOW_ALL_COMMAND(rman, db_show_all_rman)
1102{
1103	struct rman *rm;
1104
1105	TAILQ_FOREACH(rm, &rman_head, rm_link) {
1106		dump_rman_header(rm);
1107		dump_rman(rm);
1108	}
1109}
1110DB_SHOW_ALIAS_FLAGS(allrman, db_show_all_rman, DB_CMD_MEMSAFE);
1111#endif
1112