1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1991, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37#include <sys/cdefs.h>
38#include "opt_callout_profiling.h"
39#include "opt_ddb.h"
40#include "opt_rss.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/bus.h>
45#include <sys/callout.h>
46#include <sys/domainset.h>
47#include <sys/file.h>
48#include <sys/interrupt.h>
49#include <sys/kernel.h>
50#include <sys/ktr.h>
51#include <sys/kthread.h>
52#include <sys/lock.h>
53#include <sys/malloc.h>
54#include <sys/mutex.h>
55#include <sys/proc.h>
56#include <sys/random.h>
57#include <sys/sched.h>
58#include <sys/sdt.h>
59#include <sys/sleepqueue.h>
60#include <sys/sysctl.h>
61#include <sys/smp.h>
62#include <sys/unistd.h>
63
64#ifdef DDB
65#include <ddb/ddb.h>
66#include <ddb/db_sym.h>
67#include <machine/_inttypes.h>
68#endif
69
70#ifdef SMP
71#include <machine/cpu.h>
72#endif
73
74DPCPU_DECLARE(sbintime_t, hardclocktime);
75
76SDT_PROVIDER_DEFINE(callout_execute);
77SDT_PROBE_DEFINE1(callout_execute, , , callout__start, "struct callout *");
78SDT_PROBE_DEFINE1(callout_execute, , , callout__end, "struct callout *");
79
80static void	softclock_thread(void *arg);
81
82#ifdef CALLOUT_PROFILING
83static int avg_depth;
84SYSCTL_INT(_debug, OID_AUTO, to_avg_depth, CTLFLAG_RD, &avg_depth, 0,
85    "Average number of items examined per softclock call. Units = 1/1000");
86static int avg_gcalls;
87SYSCTL_INT(_debug, OID_AUTO, to_avg_gcalls, CTLFLAG_RD, &avg_gcalls, 0,
88    "Average number of Giant callouts made per softclock call. Units = 1/1000");
89static int avg_lockcalls;
90SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls, CTLFLAG_RD, &avg_lockcalls, 0,
91    "Average number of lock callouts made per softclock call. Units = 1/1000");
92static int avg_mpcalls;
93SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls, CTLFLAG_RD, &avg_mpcalls, 0,
94    "Average number of MP callouts made per softclock call. Units = 1/1000");
95static int avg_depth_dir;
96SYSCTL_INT(_debug, OID_AUTO, to_avg_depth_dir, CTLFLAG_RD, &avg_depth_dir, 0,
97    "Average number of direct callouts examined per callout_process call. "
98    "Units = 1/1000");
99static int avg_lockcalls_dir;
100SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls_dir, CTLFLAG_RD,
101    &avg_lockcalls_dir, 0, "Average number of lock direct callouts made per "
102    "callout_process call. Units = 1/1000");
103static int avg_mpcalls_dir;
104SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls_dir, CTLFLAG_RD, &avg_mpcalls_dir,
105    0, "Average number of MP direct callouts made per callout_process call. "
106    "Units = 1/1000");
107#endif
108
109static int ncallout;
110SYSCTL_INT(_kern, OID_AUTO, ncallout, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &ncallout, 0,
111    "Number of entries in callwheel and size of timeout() preallocation");
112
113#ifdef	RSS
114static int pin_default_swi = 1;
115static int pin_pcpu_swi = 1;
116#else
117static int pin_default_swi = 0;
118static int pin_pcpu_swi = 0;
119#endif
120
121SYSCTL_INT(_kern, OID_AUTO, pin_default_swi, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pin_default_swi,
122    0, "Pin the default (non-per-cpu) swi (shared with PCPU 0 swi)");
123SYSCTL_INT(_kern, OID_AUTO, pin_pcpu_swi, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pin_pcpu_swi,
124    0, "Pin the per-CPU swis (except PCPU 0, which is also default)");
125
126/*
127 * TODO:
128 *	allocate more timeout table slots when table overflows.
129 */
130static u_int __read_mostly callwheelsize;
131static u_int __read_mostly callwheelmask;
132
133/*
134 * The callout cpu exec entities represent informations necessary for
135 * describing the state of callouts currently running on the CPU and the ones
136 * necessary for migrating callouts to the new callout cpu. In particular,
137 * the first entry of the array cc_exec_entity holds informations for callout
138 * running in SWI thread context, while the second one holds informations
139 * for callout running directly from hardware interrupt context.
140 * The cached informations are very important for deferring migration when
141 * the migrating callout is already running.
142 */
143struct cc_exec {
144	struct callout		*cc_curr;
145	void			*cc_last_func;
146	void			*cc_last_arg;
147#ifdef SMP
148	callout_func_t		*ce_migration_func;
149	void			*ce_migration_arg;
150	sbintime_t		ce_migration_time;
151	sbintime_t		ce_migration_prec;
152	int			ce_migration_cpu;
153#endif
154	bool			cc_cancel;
155	bool			cc_waiting;
156};
157
158/*
159 * There is one struct callout_cpu per cpu, holding all relevant
160 * state for the callout processing thread on the individual CPU.
161 */
162struct callout_cpu {
163	struct mtx_padalign	cc_lock;
164	struct cc_exec 		cc_exec_entity[2];
165	struct callout		*cc_next;
166	struct callout_list	*cc_callwheel;
167	struct callout_tailq	cc_expireq;
168	sbintime_t		cc_firstevent;
169	sbintime_t		cc_lastscan;
170	struct thread		*cc_thread;
171	u_int			cc_bucket;
172#ifdef KTR
173	char			cc_ktr_event_name[20];
174#endif
175};
176
177#define	callout_migrating(c)	((c)->c_iflags & CALLOUT_DFRMIGRATION)
178
179#define	cc_exec_curr(cc, dir)		cc->cc_exec_entity[dir].cc_curr
180#define	cc_exec_last_func(cc, dir)	cc->cc_exec_entity[dir].cc_last_func
181#define	cc_exec_last_arg(cc, dir)	cc->cc_exec_entity[dir].cc_last_arg
182#define	cc_exec_next(cc)		cc->cc_next
183#define	cc_exec_cancel(cc, dir)		cc->cc_exec_entity[dir].cc_cancel
184#define	cc_exec_waiting(cc, dir)	cc->cc_exec_entity[dir].cc_waiting
185#ifdef SMP
186#define	cc_migration_func(cc, dir)	cc->cc_exec_entity[dir].ce_migration_func
187#define	cc_migration_arg(cc, dir)	cc->cc_exec_entity[dir].ce_migration_arg
188#define	cc_migration_cpu(cc, dir)	cc->cc_exec_entity[dir].ce_migration_cpu
189#define	cc_migration_time(cc, dir)	cc->cc_exec_entity[dir].ce_migration_time
190#define	cc_migration_prec(cc, dir)	cc->cc_exec_entity[dir].ce_migration_prec
191
192DPCPU_DEFINE_STATIC(struct callout_cpu, cc_cpu);
193#define	CPUBLOCK	MAXCPU
194#define	CC_CPU(cpu)	DPCPU_ID_PTR(cpu, cc_cpu)
195#define	CC_SELF()	CC_CPU(PCPU_GET(cpuid))
196#else
197static struct callout_cpu cc_cpu;
198#define	CC_CPU(cpu)	(&cc_cpu)
199#define	CC_SELF()	(&cc_cpu)
200#endif
201#define	CC_LOCK(cc)	mtx_lock_spin(&(cc)->cc_lock)
202#define	CC_UNLOCK(cc)	mtx_unlock_spin(&(cc)->cc_lock)
203#define	CC_LOCK_ASSERT(cc)	mtx_assert(&(cc)->cc_lock, MA_OWNED)
204
205static int __read_mostly cc_default_cpu;
206
207static void	callout_cpu_init(struct callout_cpu *cc, int cpu);
208static void	softclock_call_cc(struct callout *c, struct callout_cpu *cc,
209#ifdef CALLOUT_PROFILING
210		    int *mpcalls, int *lockcalls, int *gcalls,
211#endif
212		    int direct);
213
214static MALLOC_DEFINE(M_CALLOUT, "callout", "Callout datastructures");
215
216/**
217 * Locked by cc_lock:
218 *   cc_curr         - If a callout is in progress, it is cc_curr.
219 *                     If cc_curr is non-NULL, threads waiting in
220 *                     callout_drain() will be woken up as soon as the
221 *                     relevant callout completes.
222 *   cc_cancel       - Changing to 1 with both callout_lock and cc_lock held
223 *                     guarantees that the current callout will not run.
224 *                     The softclock_call_cc() function sets this to 0 before it
225 *                     drops callout_lock to acquire c_lock, and it calls
226 *                     the handler only if curr_cancelled is still 0 after
227 *                     cc_lock is successfully acquired.
228 *   cc_waiting      - If a thread is waiting in callout_drain(), then
229 *                     callout_wait is nonzero.  Set only when
230 *                     cc_curr is non-NULL.
231 */
232
233/*
234 * Resets the execution entity tied to a specific callout cpu.
235 */
236static void
237cc_cce_cleanup(struct callout_cpu *cc, int direct)
238{
239
240	cc_exec_curr(cc, direct) = NULL;
241	cc_exec_cancel(cc, direct) = false;
242	cc_exec_waiting(cc, direct) = false;
243#ifdef SMP
244	cc_migration_cpu(cc, direct) = CPUBLOCK;
245	cc_migration_time(cc, direct) = 0;
246	cc_migration_prec(cc, direct) = 0;
247	cc_migration_func(cc, direct) = NULL;
248	cc_migration_arg(cc, direct) = NULL;
249#endif
250}
251
252/*
253 * Checks if migration is requested by a specific callout cpu.
254 */
255static int
256cc_cce_migrating(struct callout_cpu *cc, int direct)
257{
258
259#ifdef SMP
260	return (cc_migration_cpu(cc, direct) != CPUBLOCK);
261#else
262	return (0);
263#endif
264}
265
266/*
267 * Kernel low level callwheel initialization
268 * called on the BSP during kernel startup.
269 */
270static void
271callout_callwheel_init(void *dummy)
272{
273	struct callout_cpu *cc;
274	int cpu;
275
276	/*
277	 * Calculate the size of the callout wheel and the preallocated
278	 * timeout() structures.
279	 * XXX: Clip callout to result of previous function of maxusers
280	 * maximum 384.  This is still huge, but acceptable.
281	 */
282	ncallout = imin(16 + maxproc + maxfiles, 18508);
283	TUNABLE_INT_FETCH("kern.ncallout", &ncallout);
284
285	/*
286	 * Calculate callout wheel size, should be next power of two higher
287	 * than 'ncallout'.
288	 */
289	callwheelsize = 1 << fls(ncallout);
290	callwheelmask = callwheelsize - 1;
291
292	/*
293	 * Fetch whether we're pinning the swi's or not.
294	 */
295	TUNABLE_INT_FETCH("kern.pin_default_swi", &pin_default_swi);
296	TUNABLE_INT_FETCH("kern.pin_pcpu_swi", &pin_pcpu_swi);
297
298	/*
299	 * Initialize callout wheels.  The software interrupt threads
300	 * are created later.
301	 */
302	cc_default_cpu = PCPU_GET(cpuid);
303	CPU_FOREACH(cpu) {
304		cc = CC_CPU(cpu);
305		callout_cpu_init(cc, cpu);
306	}
307}
308SYSINIT(callwheel_init, SI_SUB_CPU, SI_ORDER_ANY, callout_callwheel_init, NULL);
309
310/*
311 * Initialize the per-cpu callout structures.
312 */
313static void
314callout_cpu_init(struct callout_cpu *cc, int cpu)
315{
316	int i;
317
318	mtx_init(&cc->cc_lock, "callout", NULL, MTX_SPIN);
319	cc->cc_callwheel = malloc_domainset(sizeof(struct callout_list) *
320	    callwheelsize, M_CALLOUT,
321	    DOMAINSET_PREF(pcpu_find(cpu)->pc_domain), M_WAITOK);
322	for (i = 0; i < callwheelsize; i++)
323		LIST_INIT(&cc->cc_callwheel[i]);
324	TAILQ_INIT(&cc->cc_expireq);
325	cc->cc_firstevent = SBT_MAX;
326	for (i = 0; i < 2; i++)
327		cc_cce_cleanup(cc, i);
328#ifdef KTR
329	snprintf(cc->cc_ktr_event_name, sizeof(cc->cc_ktr_event_name),
330	    "callwheel cpu %d", cpu);
331#endif
332}
333
334#ifdef SMP
335/*
336 * Switches the cpu tied to a specific callout.
337 * The function expects a locked incoming callout cpu and returns with
338 * locked outcoming callout cpu.
339 */
340static struct callout_cpu *
341callout_cpu_switch(struct callout *c, struct callout_cpu *cc, int new_cpu)
342{
343	struct callout_cpu *new_cc;
344
345	MPASS(c != NULL && cc != NULL);
346	CC_LOCK_ASSERT(cc);
347
348	/*
349	 * Avoid interrupts and preemption firing after the callout cpu
350	 * is blocked in order to avoid deadlocks as the new thread
351	 * may be willing to acquire the callout cpu lock.
352	 */
353	c->c_cpu = CPUBLOCK;
354	spinlock_enter();
355	CC_UNLOCK(cc);
356	new_cc = CC_CPU(new_cpu);
357	CC_LOCK(new_cc);
358	spinlock_exit();
359	c->c_cpu = new_cpu;
360	return (new_cc);
361}
362#endif
363
364/*
365 * Start softclock threads.
366 */
367static void
368start_softclock(void *dummy)
369{
370	struct proc *p;
371	struct thread *td;
372	struct callout_cpu *cc;
373	int cpu, error;
374	bool pin_swi;
375
376	p = NULL;
377	CPU_FOREACH(cpu) {
378		cc = CC_CPU(cpu);
379		error = kproc_kthread_add(softclock_thread, cc, &p, &td,
380		    RFSTOPPED, 0, "clock", "clock (%d)", cpu);
381		if (error != 0)
382			panic("failed to create softclock thread for cpu %d: %d",
383			    cpu, error);
384		CC_LOCK(cc);
385		cc->cc_thread = td;
386		thread_lock(td);
387		sched_class(td, PRI_ITHD);
388		sched_ithread_prio(td, PI_SOFTCLOCK);
389		TD_SET_IWAIT(td);
390		thread_lock_set(td, (struct mtx *)&cc->cc_lock);
391		thread_unlock(td);
392		if (cpu == cc_default_cpu)
393			pin_swi = pin_default_swi;
394		else
395			pin_swi = pin_pcpu_swi;
396		if (pin_swi) {
397			error = cpuset_setithread(td->td_tid, cpu);
398			if (error != 0)
399				printf("%s: %s clock couldn't be pinned to cpu %d: %d\n",
400				    __func__, cpu == cc_default_cpu ?
401				    "default" : "per-cpu", cpu, error);
402		}
403	}
404}
405SYSINIT(start_softclock, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softclock, NULL);
406
407#define	CC_HASH_SHIFT	8
408
409static inline u_int
410callout_hash(sbintime_t sbt)
411{
412
413	return (sbt >> (32 - CC_HASH_SHIFT));
414}
415
416static inline u_int
417callout_get_bucket(sbintime_t sbt)
418{
419
420	return (callout_hash(sbt) & callwheelmask);
421}
422
423void
424callout_process(sbintime_t now)
425{
426	struct callout_entropy {
427		struct callout_cpu *cc;
428		struct thread *td;
429		sbintime_t now;
430	} entropy;
431	struct callout *c, *next;
432	struct callout_cpu *cc;
433	struct callout_list *sc;
434	struct thread *td;
435	sbintime_t first, last, lookahead, max, tmp_max;
436	u_int firstb, lastb, nowb;
437#ifdef CALLOUT_PROFILING
438	int depth_dir = 0, mpcalls_dir = 0, lockcalls_dir = 0;
439#endif
440
441	cc = CC_SELF();
442	mtx_lock_spin_flags(&cc->cc_lock, MTX_QUIET);
443
444	/* Compute the buckets of the last scan and present times. */
445	firstb = callout_hash(cc->cc_lastscan);
446	cc->cc_lastscan = now;
447	nowb = callout_hash(now);
448
449	/* Compute the last bucket and minimum time of the bucket after it. */
450	if (nowb == firstb)
451		lookahead = (SBT_1S / 16);
452	else if (nowb - firstb == 1)
453		lookahead = (SBT_1S / 8);
454	else
455		lookahead = SBT_1S;
456	first = last = now;
457	first += (lookahead / 2);
458	last += lookahead;
459	last &= (0xffffffffffffffffLLU << (32 - CC_HASH_SHIFT));
460	lastb = callout_hash(last) - 1;
461	max = last;
462
463	/*
464	 * Check if we wrapped around the entire wheel from the last scan.
465	 * In case, we need to scan entirely the wheel for pending callouts.
466	 */
467	if (lastb - firstb >= callwheelsize) {
468		lastb = firstb + callwheelsize - 1;
469		if (nowb - firstb >= callwheelsize)
470			nowb = lastb;
471	}
472
473	/* Iterate callwheel from firstb to nowb and then up to lastb. */
474	do {
475		sc = &cc->cc_callwheel[firstb & callwheelmask];
476		LIST_FOREACH_SAFE(c, sc, c_links.le, next) {
477			/* Run the callout if present time within allowed. */
478			if (c->c_time <= now) {
479				/*
480				 * Consumer told us the callout may be run
481				 * directly from hardware interrupt context.
482				 */
483				if (c->c_iflags & CALLOUT_DIRECT) {
484#ifdef CALLOUT_PROFILING
485					++depth_dir;
486#endif
487					cc_exec_next(cc) = next;
488					cc->cc_bucket = firstb & callwheelmask;
489					LIST_REMOVE(c, c_links.le);
490					softclock_call_cc(c, cc,
491#ifdef CALLOUT_PROFILING
492					    &mpcalls_dir, &lockcalls_dir, NULL,
493#endif
494					    1);
495					next = cc_exec_next(cc);
496					cc_exec_next(cc) = NULL;
497				} else {
498					LIST_REMOVE(c, c_links.le);
499					TAILQ_INSERT_TAIL(&cc->cc_expireq,
500					    c, c_links.tqe);
501					c->c_iflags |= CALLOUT_PROCESSED;
502				}
503			} else if (c->c_time >= max) {
504				/*
505				 * Skip events in the distant future.
506				 */
507				;
508			} else if (c->c_time > last) {
509				/*
510				 * Event minimal time is bigger than present
511				 * maximal time, so it cannot be aggregated.
512				 */
513				lastb = nowb;
514			} else {
515				/*
516				 * Update first and last time, respecting this
517				 * event.
518				 */
519				if (c->c_time < first)
520					first = c->c_time;
521				tmp_max = c->c_time + c->c_precision;
522				if (tmp_max < last)
523					last = tmp_max;
524			}
525		}
526		/* Proceed with the next bucket. */
527		firstb++;
528		/*
529		 * Stop if we looked after present time and found
530		 * some event we can't execute at now.
531		 * Stop if we looked far enough into the future.
532		 */
533	} while (((int)(firstb - lastb)) <= 0);
534	cc->cc_firstevent = last;
535	cpu_new_callout(curcpu, last, first);
536
537#ifdef CALLOUT_PROFILING
538	avg_depth_dir += (depth_dir * 1000 - avg_depth_dir) >> 8;
539	avg_mpcalls_dir += (mpcalls_dir * 1000 - avg_mpcalls_dir) >> 8;
540	avg_lockcalls_dir += (lockcalls_dir * 1000 - avg_lockcalls_dir) >> 8;
541#endif
542	if (!TAILQ_EMPTY(&cc->cc_expireq)) {
543		entropy.cc = cc;
544		entropy.td = curthread;
545		entropy.now = now;
546		random_harvest_queue(&entropy, sizeof(entropy), RANDOM_CALLOUT);
547
548		td = cc->cc_thread;
549		if (TD_AWAITING_INTR(td)) {
550			thread_lock_block_wait(td);
551			THREAD_LOCK_ASSERT(td, MA_OWNED);
552			TD_CLR_IWAIT(td);
553			sched_wakeup(td, SRQ_INTR);
554		} else
555			mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET);
556	} else
557		mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET);
558}
559
560static struct callout_cpu *
561callout_lock(struct callout *c)
562{
563	struct callout_cpu *cc;
564	int cpu;
565
566	for (;;) {
567		cpu = c->c_cpu;
568#ifdef SMP
569		if (cpu == CPUBLOCK) {
570			while (c->c_cpu == CPUBLOCK)
571				cpu_spinwait();
572			continue;
573		}
574#endif
575		cc = CC_CPU(cpu);
576		CC_LOCK(cc);
577		if (cpu == c->c_cpu)
578			break;
579		CC_UNLOCK(cc);
580	}
581	return (cc);
582}
583
584static void
585callout_cc_add(struct callout *c, struct callout_cpu *cc,
586    sbintime_t sbt, sbintime_t precision, void (*func)(void *),
587    void *arg, int flags)
588{
589	int bucket;
590
591	CC_LOCK_ASSERT(cc);
592	if (sbt < cc->cc_lastscan)
593		sbt = cc->cc_lastscan;
594	c->c_arg = arg;
595	c->c_iflags |= CALLOUT_PENDING;
596	c->c_iflags &= ~CALLOUT_PROCESSED;
597	c->c_flags |= CALLOUT_ACTIVE;
598	if (flags & C_DIRECT_EXEC)
599		c->c_iflags |= CALLOUT_DIRECT;
600	c->c_func = func;
601	c->c_time = sbt;
602	c->c_precision = precision;
603	bucket = callout_get_bucket(c->c_time);
604	CTR3(KTR_CALLOUT, "precision set for %p: %d.%08x",
605	    c, (int)(c->c_precision >> 32),
606	    (u_int)(c->c_precision & 0xffffffff));
607	LIST_INSERT_HEAD(&cc->cc_callwheel[bucket], c, c_links.le);
608	if (cc->cc_bucket == bucket)
609		cc_exec_next(cc) = c;
610
611	/*
612	 * Inform the eventtimers(4) subsystem there's a new callout
613	 * that has been inserted, but only if really required.
614	 */
615	if (SBT_MAX - c->c_time < c->c_precision)
616		c->c_precision = SBT_MAX - c->c_time;
617	sbt = c->c_time + c->c_precision;
618	if (sbt < cc->cc_firstevent) {
619		cc->cc_firstevent = sbt;
620		cpu_new_callout(c->c_cpu, sbt, c->c_time);
621	}
622}
623
624static void
625softclock_call_cc(struct callout *c, struct callout_cpu *cc,
626#ifdef CALLOUT_PROFILING
627    int *mpcalls, int *lockcalls, int *gcalls,
628#endif
629    int direct)
630{
631	struct rm_priotracker tracker;
632	callout_func_t *c_func;
633	void *c_arg;
634	struct lock_class *class;
635	struct lock_object *c_lock;
636	uintptr_t lock_status;
637	int c_iflags;
638#ifdef SMP
639	struct callout_cpu *new_cc;
640	callout_func_t *new_func;
641	void *new_arg;
642	int flags, new_cpu;
643	sbintime_t new_prec, new_time;
644#endif
645#if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
646	sbintime_t sbt1, sbt2;
647	struct timespec ts2;
648	static sbintime_t maxdt = 2 * SBT_1MS;	/* 2 msec */
649	static callout_func_t *lastfunc;
650#endif
651
652	KASSERT((c->c_iflags & CALLOUT_PENDING) == CALLOUT_PENDING,
653	    ("softclock_call_cc: pend %p %x", c, c->c_iflags));
654	KASSERT((c->c_flags & CALLOUT_ACTIVE) == CALLOUT_ACTIVE,
655	    ("softclock_call_cc: act %p %x", c, c->c_flags));
656	class = (c->c_lock != NULL) ? LOCK_CLASS(c->c_lock) : NULL;
657	lock_status = 0;
658	if (c->c_iflags & CALLOUT_SHAREDLOCK) {
659		if (class == &lock_class_rm)
660			lock_status = (uintptr_t)&tracker;
661		else
662			lock_status = 1;
663	}
664	c_lock = c->c_lock;
665	c_func = c->c_func;
666	c_arg = c->c_arg;
667	c_iflags = c->c_iflags;
668	c->c_iflags &= ~CALLOUT_PENDING;
669
670	cc_exec_curr(cc, direct) = c;
671	cc_exec_last_func(cc, direct) = c_func;
672	cc_exec_last_arg(cc, direct) = c_arg;
673	cc_exec_cancel(cc, direct) = false;
674	CC_UNLOCK(cc);
675	if (c_lock != NULL) {
676		class->lc_lock(c_lock, lock_status);
677		/*
678		 * The callout may have been cancelled
679		 * while we switched locks.
680		 */
681		if (cc_exec_cancel(cc, direct)) {
682			class->lc_unlock(c_lock);
683			goto skip;
684		}
685		/* The callout cannot be stopped now. */
686		cc_exec_cancel(cc, direct) = true;
687		if (c_lock == &Giant.lock_object) {
688#ifdef CALLOUT_PROFILING
689			(*gcalls)++;
690#endif
691			CTR3(KTR_CALLOUT, "callout giant %p func %p arg %p",
692			    c, c_func, c_arg);
693		} else {
694#ifdef CALLOUT_PROFILING
695			(*lockcalls)++;
696#endif
697			CTR3(KTR_CALLOUT, "callout lock %p func %p arg %p",
698			    c, c_func, c_arg);
699		}
700	} else {
701#ifdef CALLOUT_PROFILING
702		(*mpcalls)++;
703#endif
704		CTR3(KTR_CALLOUT, "callout %p func %p arg %p",
705		    c, c_func, c_arg);
706	}
707	KTR_STATE3(KTR_SCHED, "callout", cc->cc_ktr_event_name, "running",
708	    "func:%p", c_func, "arg:%p", c_arg, "direct:%d", direct);
709#if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
710	sbt1 = sbinuptime();
711#endif
712	THREAD_NO_SLEEPING();
713	SDT_PROBE1(callout_execute, , , callout__start, c);
714	c_func(c_arg);
715	SDT_PROBE1(callout_execute, , , callout__end, c);
716	THREAD_SLEEPING_OK();
717#if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
718	sbt2 = sbinuptime();
719	sbt2 -= sbt1;
720	if (sbt2 > maxdt) {
721		if (lastfunc != c_func || sbt2 > maxdt * 2) {
722			ts2 = sbttots(sbt2);
723			printf(
724		"Expensive callout(9) function: %p(%p) %jd.%09ld s\n",
725			    c_func, c_arg, (intmax_t)ts2.tv_sec, ts2.tv_nsec);
726		}
727		maxdt = sbt2;
728		lastfunc = c_func;
729	}
730#endif
731	KTR_STATE0(KTR_SCHED, "callout", cc->cc_ktr_event_name, "idle");
732	CTR1(KTR_CALLOUT, "callout %p finished", c);
733	if ((c_iflags & CALLOUT_RETURNUNLOCKED) == 0)
734		class->lc_unlock(c_lock);
735skip:
736	CC_LOCK(cc);
737	KASSERT(cc_exec_curr(cc, direct) == c, ("mishandled cc_curr"));
738	cc_exec_curr(cc, direct) = NULL;
739	if (cc_exec_waiting(cc, direct)) {
740		/*
741		 * There is someone waiting for the
742		 * callout to complete.
743		 * If the callout was scheduled for
744		 * migration just cancel it.
745		 */
746		if (cc_cce_migrating(cc, direct)) {
747			cc_cce_cleanup(cc, direct);
748
749			/*
750			 * It should be assert here that the callout is not
751			 * destroyed but that is not easy.
752			 */
753			c->c_iflags &= ~CALLOUT_DFRMIGRATION;
754		}
755		cc_exec_waiting(cc, direct) = false;
756		CC_UNLOCK(cc);
757		wakeup(&cc_exec_waiting(cc, direct));
758		CC_LOCK(cc);
759	} else if (cc_cce_migrating(cc, direct)) {
760#ifdef SMP
761		/*
762		 * If the callout was scheduled for
763		 * migration just perform it now.
764		 */
765		new_cpu = cc_migration_cpu(cc, direct);
766		new_time = cc_migration_time(cc, direct);
767		new_prec = cc_migration_prec(cc, direct);
768		new_func = cc_migration_func(cc, direct);
769		new_arg = cc_migration_arg(cc, direct);
770		cc_cce_cleanup(cc, direct);
771
772		/*
773		 * It should be assert here that the callout is not destroyed
774		 * but that is not easy.
775		 *
776		 * As first thing, handle deferred callout stops.
777		 */
778		if (!callout_migrating(c)) {
779			CTR3(KTR_CALLOUT,
780			     "deferred cancelled %p func %p arg %p",
781			     c, new_func, new_arg);
782			return;
783		}
784		c->c_iflags &= ~CALLOUT_DFRMIGRATION;
785
786		new_cc = callout_cpu_switch(c, cc, new_cpu);
787		flags = (direct) ? C_DIRECT_EXEC : 0;
788		callout_cc_add(c, new_cc, new_time, new_prec, new_func,
789		    new_arg, flags);
790		CC_UNLOCK(new_cc);
791		CC_LOCK(cc);
792#else
793		panic("migration should not happen");
794#endif
795	}
796}
797
798/*
799 * The callout mechanism is based on the work of Adam M. Costello and
800 * George Varghese, published in a technical report entitled "Redesigning
801 * the BSD Callout and Timer Facilities" and modified slightly for inclusion
802 * in FreeBSD by Justin T. Gibbs.  The original work on the data structures
803 * used in this implementation was published by G. Varghese and T. Lauck in
804 * the paper "Hashed and Hierarchical Timing Wheels: Data Structures for
805 * the Efficient Implementation of a Timer Facility" in the Proceedings of
806 * the 11th ACM Annual Symposium on Operating Systems Principles,
807 * Austin, Texas Nov 1987.
808 */
809
810/*
811 * Software (low priority) clock interrupt thread handler.
812 * Run periodic events from timeout queue.
813 */
814static void
815softclock_thread(void *arg)
816{
817	struct thread *td = curthread;
818	struct callout_cpu *cc;
819	struct callout *c;
820#ifdef CALLOUT_PROFILING
821	int depth, gcalls, lockcalls, mpcalls;
822#endif
823
824	cc = (struct callout_cpu *)arg;
825	CC_LOCK(cc);
826	for (;;) {
827		while (TAILQ_EMPTY(&cc->cc_expireq)) {
828			/*
829			 * Use CC_LOCK(cc) as the thread_lock while
830			 * idle.
831			 */
832			thread_lock(td);
833			thread_lock_set(td, (struct mtx *)&cc->cc_lock);
834			TD_SET_IWAIT(td);
835			mi_switch(SW_VOL | SWT_IWAIT);
836
837			/* mi_switch() drops thread_lock(). */
838			CC_LOCK(cc);
839		}
840
841#ifdef CALLOUT_PROFILING
842		depth = gcalls = lockcalls = mpcalls = 0;
843#endif
844		while ((c = TAILQ_FIRST(&cc->cc_expireq)) != NULL) {
845			TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
846			softclock_call_cc(c, cc,
847#ifdef CALLOUT_PROFILING
848			    &mpcalls, &lockcalls, &gcalls,
849#endif
850			    0);
851#ifdef CALLOUT_PROFILING
852			++depth;
853#endif
854		}
855#ifdef CALLOUT_PROFILING
856		avg_depth += (depth * 1000 - avg_depth) >> 8;
857		avg_mpcalls += (mpcalls * 1000 - avg_mpcalls) >> 8;
858		avg_lockcalls += (lockcalls * 1000 - avg_lockcalls) >> 8;
859		avg_gcalls += (gcalls * 1000 - avg_gcalls) >> 8;
860#endif
861	}
862}
863
864void
865callout_when(sbintime_t sbt, sbintime_t precision, int flags,
866    sbintime_t *res, sbintime_t *prec_res)
867{
868	sbintime_t to_sbt, to_pr;
869
870	if ((flags & (C_ABSOLUTE | C_PRECALC)) != 0) {
871		*res = sbt;
872		*prec_res = precision;
873		return;
874	}
875	if ((flags & C_HARDCLOCK) != 0 && sbt < tick_sbt)
876		sbt = tick_sbt;
877	if ((flags & C_HARDCLOCK) != 0 || sbt >= sbt_tickthreshold) {
878		/*
879		 * Obtain the time of the last hardclock() call on
880		 * this CPU directly from the kern_clocksource.c.
881		 * This value is per-CPU, but it is equal for all
882		 * active ones.
883		 */
884#ifdef __LP64__
885		to_sbt = DPCPU_GET(hardclocktime);
886#else
887		spinlock_enter();
888		to_sbt = DPCPU_GET(hardclocktime);
889		spinlock_exit();
890#endif
891		if (cold && to_sbt == 0)
892			to_sbt = sbinuptime();
893		if ((flags & C_HARDCLOCK) == 0)
894			to_sbt += tick_sbt;
895	} else
896		to_sbt = sbinuptime();
897	if (SBT_MAX - to_sbt < sbt)
898		to_sbt = SBT_MAX;
899	else
900		to_sbt += sbt;
901	*res = to_sbt;
902	to_pr = ((C_PRELGET(flags) < 0) ? sbt >> tc_precexp :
903	    sbt >> C_PRELGET(flags));
904	*prec_res = to_pr > precision ? to_pr : precision;
905}
906
907/*
908 * New interface; clients allocate their own callout structures.
909 *
910 * callout_reset() - establish or change a timeout
911 * callout_stop() - disestablish a timeout
912 * callout_init() - initialize a callout structure so that it can
913 *	safely be passed to callout_reset() and callout_stop()
914 *
915 * <sys/callout.h> defines three convenience macros:
916 *
917 * callout_active() - returns truth if callout has not been stopped,
918 *	drained, or deactivated since the last time the callout was
919 *	reset.
920 * callout_pending() - returns truth if callout is still waiting for timeout
921 * callout_deactivate() - marks the callout as having been serviced
922 */
923int
924callout_reset_sbt_on(struct callout *c, sbintime_t sbt, sbintime_t prec,
925    callout_func_t *ftn, void *arg, int cpu, int flags)
926{
927	sbintime_t to_sbt, precision;
928	struct callout_cpu *cc;
929	int cancelled, direct;
930
931	cancelled = 0;
932	callout_when(sbt, prec, flags, &to_sbt, &precision);
933
934	/*
935	 * This flag used to be added by callout_cc_add, but the
936	 * first time you call this we could end up with the
937	 * wrong direct flag if we don't do it before we add.
938	 */
939	if (flags & C_DIRECT_EXEC) {
940		direct = 1;
941	} else {
942		direct = 0;
943	}
944	KASSERT(!direct || c->c_lock == NULL ||
945	    (LOCK_CLASS(c->c_lock)->lc_flags & LC_SPINLOCK),
946	    ("%s: direct callout %p has non-spin lock", __func__, c));
947
948	cc = callout_lock(c);
949	if (cpu == -1)
950		cpu = c->c_cpu;
951	KASSERT(cpu >= 0 && cpu <= mp_maxid && !CPU_ABSENT(cpu),
952	    ("%s: invalid cpu %d", __func__, cpu));
953
954	if (cc_exec_curr(cc, direct) == c) {
955		/*
956		 * We're being asked to reschedule a callout which is
957		 * currently in progress.  If there is a lock then we
958		 * can cancel the callout if it has not really started.
959		 */
960		if (c->c_lock != NULL && !cc_exec_cancel(cc, direct))
961			cancelled = cc_exec_cancel(cc, direct) = true;
962		if (cc_exec_waiting(cc, direct)) {
963			/*
964			 * Someone has called callout_drain to kill this
965			 * callout.  Don't reschedule.
966			 */
967			CTR4(KTR_CALLOUT, "%s %p func %p arg %p",
968			    cancelled ? "cancelled" : "failed to cancel",
969			    c, c->c_func, c->c_arg);
970			CC_UNLOCK(cc);
971			return (cancelled);
972		}
973#ifdef SMP
974		if (callout_migrating(c)) {
975			/*
976			 * This only occurs when a second callout_reset_sbt_on
977			 * is made after a previous one moved it into
978			 * deferred migration (below). Note we do *not* change
979			 * the prev_cpu even though the previous target may
980			 * be different.
981			 */
982			cc_migration_cpu(cc, direct) = cpu;
983			cc_migration_time(cc, direct) = to_sbt;
984			cc_migration_prec(cc, direct) = precision;
985			cc_migration_func(cc, direct) = ftn;
986			cc_migration_arg(cc, direct) = arg;
987			cancelled = 1;
988			CC_UNLOCK(cc);
989			return (cancelled);
990		}
991#endif
992	}
993	if (c->c_iflags & CALLOUT_PENDING) {
994		if ((c->c_iflags & CALLOUT_PROCESSED) == 0) {
995			if (cc_exec_next(cc) == c)
996				cc_exec_next(cc) = LIST_NEXT(c, c_links.le);
997			LIST_REMOVE(c, c_links.le);
998		} else {
999			TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
1000		}
1001		cancelled = 1;
1002		c->c_iflags &= ~ CALLOUT_PENDING;
1003		c->c_flags &= ~ CALLOUT_ACTIVE;
1004	}
1005
1006#ifdef SMP
1007	/*
1008	 * If the callout must migrate try to perform it immediately.
1009	 * If the callout is currently running, just defer the migration
1010	 * to a more appropriate moment.
1011	 */
1012	if (c->c_cpu != cpu) {
1013		if (cc_exec_curr(cc, direct) == c) {
1014			/*
1015			 * Pending will have been removed since we are
1016			 * actually executing the callout on another
1017			 * CPU. That callout should be waiting on the
1018			 * lock the caller holds. If we set both
1019			 * active/and/pending after we return and the
1020			 * lock on the executing callout proceeds, it
1021			 * will then see pending is true and return.
1022			 * At the return from the actual callout execution
1023			 * the migration will occur in softclock_call_cc
1024			 * and this new callout will be placed on the
1025			 * new CPU via a call to callout_cpu_switch() which
1026			 * will get the lock on the right CPU followed
1027			 * by a call callout_cc_add() which will add it there.
1028			 * (see above in softclock_call_cc()).
1029			 */
1030			cc_migration_cpu(cc, direct) = cpu;
1031			cc_migration_time(cc, direct) = to_sbt;
1032			cc_migration_prec(cc, direct) = precision;
1033			cc_migration_func(cc, direct) = ftn;
1034			cc_migration_arg(cc, direct) = arg;
1035			c->c_iflags |= (CALLOUT_DFRMIGRATION | CALLOUT_PENDING);
1036			c->c_flags |= CALLOUT_ACTIVE;
1037			CTR6(KTR_CALLOUT,
1038		    "migration of %p func %p arg %p in %d.%08x to %u deferred",
1039			    c, c->c_func, c->c_arg, (int)(to_sbt >> 32),
1040			    (u_int)(to_sbt & 0xffffffff), cpu);
1041			CC_UNLOCK(cc);
1042			return (cancelled);
1043		}
1044		cc = callout_cpu_switch(c, cc, cpu);
1045	}
1046#endif
1047
1048	callout_cc_add(c, cc, to_sbt, precision, ftn, arg, flags);
1049	CTR6(KTR_CALLOUT, "%sscheduled %p func %p arg %p in %d.%08x",
1050	    cancelled ? "re" : "", c, c->c_func, c->c_arg, (int)(to_sbt >> 32),
1051	    (u_int)(to_sbt & 0xffffffff));
1052	CC_UNLOCK(cc);
1053
1054	return (cancelled);
1055}
1056
1057/*
1058 * Common idioms that can be optimized in the future.
1059 */
1060int
1061callout_schedule_on(struct callout *c, int to_ticks, int cpu)
1062{
1063	return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, cpu);
1064}
1065
1066int
1067callout_schedule(struct callout *c, int to_ticks)
1068{
1069	return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, c->c_cpu);
1070}
1071
1072int
1073_callout_stop_safe(struct callout *c, int flags)
1074{
1075	struct callout_cpu *cc, *old_cc;
1076	struct lock_class *class;
1077	int direct, sq_locked, use_lock;
1078	int cancelled, not_on_a_list;
1079
1080	if ((flags & CS_DRAIN) != 0)
1081		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, c->c_lock,
1082		    "calling %s", __func__);
1083
1084	/*
1085	 * Some old subsystems don't hold Giant while running a callout_stop(),
1086	 * so just discard this check for the moment.
1087	 */
1088	if ((flags & CS_DRAIN) == 0 && c->c_lock != NULL) {
1089		if (c->c_lock == &Giant.lock_object)
1090			use_lock = mtx_owned(&Giant);
1091		else {
1092			use_lock = 1;
1093			class = LOCK_CLASS(c->c_lock);
1094			class->lc_assert(c->c_lock, LA_XLOCKED);
1095		}
1096	} else
1097		use_lock = 0;
1098	if (c->c_iflags & CALLOUT_DIRECT) {
1099		direct = 1;
1100	} else {
1101		direct = 0;
1102	}
1103	sq_locked = 0;
1104	old_cc = NULL;
1105again:
1106	cc = callout_lock(c);
1107
1108	if ((c->c_iflags & (CALLOUT_DFRMIGRATION | CALLOUT_PENDING)) ==
1109	    (CALLOUT_DFRMIGRATION | CALLOUT_PENDING) &&
1110	    ((c->c_flags & CALLOUT_ACTIVE) == CALLOUT_ACTIVE)) {
1111		/*
1112		 * Special case where this slipped in while we
1113		 * were migrating *as* the callout is about to
1114		 * execute. The caller probably holds the lock
1115		 * the callout wants.
1116		 *
1117		 * Get rid of the migration first. Then set
1118		 * the flag that tells this code *not* to
1119		 * try to remove it from any lists (its not
1120		 * on one yet). When the callout wheel runs,
1121		 * it will ignore this callout.
1122		 */
1123		c->c_iflags &= ~CALLOUT_PENDING;
1124		c->c_flags &= ~CALLOUT_ACTIVE;
1125		not_on_a_list = 1;
1126	} else {
1127		not_on_a_list = 0;
1128	}
1129
1130	/*
1131	 * If the callout was migrating while the callout cpu lock was
1132	 * dropped,  just drop the sleepqueue lock and check the states
1133	 * again.
1134	 */
1135	if (sq_locked != 0 && cc != old_cc) {
1136#ifdef SMP
1137		CC_UNLOCK(cc);
1138		sleepq_release(&cc_exec_waiting(old_cc, direct));
1139		sq_locked = 0;
1140		old_cc = NULL;
1141		goto again;
1142#else
1143		panic("migration should not happen");
1144#endif
1145	}
1146
1147	/*
1148	 * If the callout is running, try to stop it or drain it.
1149	 */
1150	if (cc_exec_curr(cc, direct) == c) {
1151		/*
1152		 * Succeed we to stop it or not, we must clear the
1153		 * active flag - this is what API users expect.  If we're
1154		 * draining and the callout is currently executing, first wait
1155		 * until it finishes.
1156		 */
1157		if ((flags & CS_DRAIN) == 0)
1158			c->c_flags &= ~CALLOUT_ACTIVE;
1159
1160		if ((flags & CS_DRAIN) != 0) {
1161			/*
1162			 * The current callout is running (or just
1163			 * about to run) and blocking is allowed, so
1164			 * just wait for the current invocation to
1165			 * finish.
1166			 */
1167			if (cc_exec_curr(cc, direct) == c) {
1168				/*
1169				 * Use direct calls to sleepqueue interface
1170				 * instead of cv/msleep in order to avoid
1171				 * a LOR between cc_lock and sleepqueue
1172				 * chain spinlocks.  This piece of code
1173				 * emulates a msleep_spin() call actually.
1174				 *
1175				 * If we already have the sleepqueue chain
1176				 * locked, then we can safely block.  If we
1177				 * don't already have it locked, however,
1178				 * we have to drop the cc_lock to lock
1179				 * it.  This opens several races, so we
1180				 * restart at the beginning once we have
1181				 * both locks.  If nothing has changed, then
1182				 * we will end up back here with sq_locked
1183				 * set.
1184				 */
1185				if (!sq_locked) {
1186					CC_UNLOCK(cc);
1187					sleepq_lock(
1188					    &cc_exec_waiting(cc, direct));
1189					sq_locked = 1;
1190					old_cc = cc;
1191					goto again;
1192				}
1193
1194				/*
1195				 * Migration could be cancelled here, but
1196				 * as long as it is still not sure when it
1197				 * will be packed up, just let softclock()
1198				 * take care of it.
1199				 */
1200				cc_exec_waiting(cc, direct) = true;
1201				DROP_GIANT();
1202				CC_UNLOCK(cc);
1203				sleepq_add(
1204				    &cc_exec_waiting(cc, direct),
1205				    &cc->cc_lock.lock_object, "codrain",
1206				    SLEEPQ_SLEEP, 0);
1207				sleepq_wait(
1208				    &cc_exec_waiting(cc, direct),
1209					     0);
1210				sq_locked = 0;
1211				old_cc = NULL;
1212
1213				/* Reacquire locks previously released. */
1214				PICKUP_GIANT();
1215				goto again;
1216			}
1217			c->c_flags &= ~CALLOUT_ACTIVE;
1218		} else if (use_lock && !cc_exec_cancel(cc, direct)) {
1219
1220			/*
1221			 * The current callout is waiting for its
1222			 * lock which we hold.  Cancel the callout
1223			 * and return.  After our caller drops the
1224			 * lock, the callout will be skipped in
1225			 * softclock(). This *only* works with a
1226			 * callout_stop() *not* with callout_drain().
1227			 */
1228			cc_exec_cancel(cc, direct) = true;
1229			CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
1230			    c, c->c_func, c->c_arg);
1231			KASSERT(!cc_cce_migrating(cc, direct),
1232			    ("callout wrongly scheduled for migration"));
1233			if (callout_migrating(c)) {
1234				c->c_iflags &= ~CALLOUT_DFRMIGRATION;
1235#ifdef SMP
1236				cc_migration_cpu(cc, direct) = CPUBLOCK;
1237				cc_migration_time(cc, direct) = 0;
1238				cc_migration_prec(cc, direct) = 0;
1239				cc_migration_func(cc, direct) = NULL;
1240				cc_migration_arg(cc, direct) = NULL;
1241#endif
1242			}
1243			CC_UNLOCK(cc);
1244			KASSERT(!sq_locked, ("sleepqueue chain locked"));
1245			return (1);
1246		} else if (callout_migrating(c)) {
1247			/*
1248			 * The callout is currently being serviced
1249			 * and the "next" callout is scheduled at
1250			 * its completion with a migration. We remove
1251			 * the migration flag so it *won't* get rescheduled,
1252			 * but we can't stop the one thats running so
1253			 * we return 0.
1254			 */
1255			c->c_iflags &= ~CALLOUT_DFRMIGRATION;
1256#ifdef SMP
1257			/*
1258			 * We can't call cc_cce_cleanup here since
1259			 * if we do it will remove .ce_curr and
1260			 * its still running. This will prevent a
1261			 * reschedule of the callout when the
1262			 * execution completes.
1263			 */
1264			cc_migration_cpu(cc, direct) = CPUBLOCK;
1265			cc_migration_time(cc, direct) = 0;
1266			cc_migration_prec(cc, direct) = 0;
1267			cc_migration_func(cc, direct) = NULL;
1268			cc_migration_arg(cc, direct) = NULL;
1269#endif
1270			CTR3(KTR_CALLOUT, "postponing stop %p func %p arg %p",
1271			    c, c->c_func, c->c_arg);
1272			CC_UNLOCK(cc);
1273			return (0);
1274		} else {
1275			CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
1276			    c, c->c_func, c->c_arg);
1277		}
1278		KASSERT(!sq_locked, ("sleepqueue chain still locked"));
1279		cancelled = 0;
1280	} else
1281		cancelled = 1;
1282
1283	if (sq_locked)
1284		sleepq_release(&cc_exec_waiting(cc, direct));
1285
1286	if ((c->c_iflags & CALLOUT_PENDING) == 0) {
1287		CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
1288		    c, c->c_func, c->c_arg);
1289		/*
1290		 * For not scheduled and not executing callout return
1291		 * negative value.
1292		 */
1293		if (cc_exec_curr(cc, direct) != c)
1294			cancelled = -1;
1295		CC_UNLOCK(cc);
1296		return (cancelled);
1297	}
1298
1299	c->c_iflags &= ~CALLOUT_PENDING;
1300	c->c_flags &= ~CALLOUT_ACTIVE;
1301
1302	CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
1303	    c, c->c_func, c->c_arg);
1304	if (not_on_a_list == 0) {
1305		if ((c->c_iflags & CALLOUT_PROCESSED) == 0) {
1306			if (cc_exec_next(cc) == c)
1307				cc_exec_next(cc) = LIST_NEXT(c, c_links.le);
1308			LIST_REMOVE(c, c_links.le);
1309		} else {
1310			TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
1311		}
1312	}
1313	CC_UNLOCK(cc);
1314	return (cancelled);
1315}
1316
1317void
1318callout_init(struct callout *c, int mpsafe)
1319{
1320	bzero(c, sizeof *c);
1321	if (mpsafe) {
1322		c->c_lock = NULL;
1323		c->c_iflags = CALLOUT_RETURNUNLOCKED;
1324	} else {
1325		c->c_lock = &Giant.lock_object;
1326		c->c_iflags = 0;
1327	}
1328	c->c_cpu = cc_default_cpu;
1329}
1330
1331void
1332_callout_init_lock(struct callout *c, struct lock_object *lock, int flags)
1333{
1334	bzero(c, sizeof *c);
1335	c->c_lock = lock;
1336	KASSERT((flags & ~(CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK)) == 0,
1337	    ("callout_init_lock: bad flags %d", flags));
1338	KASSERT(lock != NULL || (flags & CALLOUT_RETURNUNLOCKED) == 0,
1339	    ("callout_init_lock: CALLOUT_RETURNUNLOCKED with no lock"));
1340	KASSERT(lock == NULL || !(LOCK_CLASS(lock)->lc_flags & LC_SLEEPABLE),
1341	    ("%s: callout %p has sleepable lock", __func__, c));
1342	c->c_iflags = flags & (CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK);
1343	c->c_cpu = cc_default_cpu;
1344}
1345
1346static int
1347flssbt(sbintime_t sbt)
1348{
1349
1350	sbt += (uint64_t)sbt >> 1;
1351	if (sizeof(long) >= sizeof(sbintime_t))
1352		return (flsl(sbt));
1353	if (sbt >= SBT_1S)
1354		return (flsl(((uint64_t)sbt) >> 32) + 32);
1355	return (flsl(sbt));
1356}
1357
1358/*
1359 * Dump immediate statistic snapshot of the scheduled callouts.
1360 */
1361static int
1362sysctl_kern_callout_stat(SYSCTL_HANDLER_ARGS)
1363{
1364	struct callout *tmp;
1365	struct callout_cpu *cc;
1366	struct callout_list *sc;
1367	sbintime_t maxpr, maxt, medpr, medt, now, spr, st, t;
1368	int ct[64], cpr[64], ccpbk[32];
1369	int error, val, i, count, tcum, pcum, maxc, c, medc;
1370	int cpu;
1371
1372	val = 0;
1373	error = sysctl_handle_int(oidp, &val, 0, req);
1374	if (error != 0 || req->newptr == NULL)
1375		return (error);
1376	count = maxc = 0;
1377	st = spr = maxt = maxpr = 0;
1378	bzero(ccpbk, sizeof(ccpbk));
1379	bzero(ct, sizeof(ct));
1380	bzero(cpr, sizeof(cpr));
1381	now = sbinuptime();
1382	CPU_FOREACH(cpu) {
1383		cc = CC_CPU(cpu);
1384		CC_LOCK(cc);
1385		for (i = 0; i < callwheelsize; i++) {
1386			sc = &cc->cc_callwheel[i];
1387			c = 0;
1388			LIST_FOREACH(tmp, sc, c_links.le) {
1389				c++;
1390				t = tmp->c_time - now;
1391				if (t < 0)
1392					t = 0;
1393				st += t / SBT_1US;
1394				spr += tmp->c_precision / SBT_1US;
1395				if (t > maxt)
1396					maxt = t;
1397				if (tmp->c_precision > maxpr)
1398					maxpr = tmp->c_precision;
1399				ct[flssbt(t)]++;
1400				cpr[flssbt(tmp->c_precision)]++;
1401			}
1402			if (c > maxc)
1403				maxc = c;
1404			ccpbk[fls(c + c / 2)]++;
1405			count += c;
1406		}
1407		CC_UNLOCK(cc);
1408	}
1409
1410	for (i = 0, tcum = 0; i < 64 && tcum < count / 2; i++)
1411		tcum += ct[i];
1412	medt = (i >= 2) ? (((sbintime_t)1) << (i - 2)) : 0;
1413	for (i = 0, pcum = 0; i < 64 && pcum < count / 2; i++)
1414		pcum += cpr[i];
1415	medpr = (i >= 2) ? (((sbintime_t)1) << (i - 2)) : 0;
1416	for (i = 0, c = 0; i < 32 && c < count / 2; i++)
1417		c += ccpbk[i];
1418	medc = (i >= 2) ? (1 << (i - 2)) : 0;
1419
1420	printf("Scheduled callouts statistic snapshot:\n");
1421	printf("  Callouts: %6d  Buckets: %6d*%-3d  Bucket size: 0.%06ds\n",
1422	    count, callwheelsize, mp_ncpus, 1000000 >> CC_HASH_SHIFT);
1423	printf("  C/Bk: med %5d         avg %6d.%06jd  max %6d\n",
1424	    medc,
1425	    count / callwheelsize / mp_ncpus,
1426	    (uint64_t)count * 1000000 / callwheelsize / mp_ncpus % 1000000,
1427	    maxc);
1428	printf("  Time: med %5jd.%06jds avg %6jd.%06jds max %6jd.%06jds\n",
1429	    medt / SBT_1S, (medt & 0xffffffff) * 1000000 >> 32,
1430	    (st / count) / 1000000, (st / count) % 1000000,
1431	    maxt / SBT_1S, (maxt & 0xffffffff) * 1000000 >> 32);
1432	printf("  Prec: med %5jd.%06jds avg %6jd.%06jds max %6jd.%06jds\n",
1433	    medpr / SBT_1S, (medpr & 0xffffffff) * 1000000 >> 32,
1434	    (spr / count) / 1000000, (spr / count) % 1000000,
1435	    maxpr / SBT_1S, (maxpr & 0xffffffff) * 1000000 >> 32);
1436	printf("  Distribution:       \tbuckets\t   time\t   tcum\t"
1437	    "   prec\t   pcum\n");
1438	for (i = 0, tcum = pcum = 0; i < 64; i++) {
1439		if (ct[i] == 0 && cpr[i] == 0)
1440			continue;
1441		t = (i != 0) ? (((sbintime_t)1) << (i - 1)) : 0;
1442		tcum += ct[i];
1443		pcum += cpr[i];
1444		printf("  %10jd.%06jds\t 2**%d\t%7d\t%7d\t%7d\t%7d\n",
1445		    t / SBT_1S, (t & 0xffffffff) * 1000000 >> 32,
1446		    i - 1 - (32 - CC_HASH_SHIFT),
1447		    ct[i], tcum, cpr[i], pcum);
1448	}
1449	return (error);
1450}
1451SYSCTL_PROC(_kern, OID_AUTO, callout_stat,
1452    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1453    0, 0, sysctl_kern_callout_stat, "I",
1454    "Dump immediate statistic snapshot of the scheduled callouts");
1455
1456#ifdef DDB
1457static void
1458_show_callout(struct callout *c)
1459{
1460
1461	db_printf("callout %p\n", c);
1462#define	C_DB_PRINTF(f, e)	db_printf("   %s = " f "\n", #e, c->e);
1463	db_printf("   &c_links = %p\n", &(c->c_links));
1464	C_DB_PRINTF("%" PRId64,	c_time);
1465	C_DB_PRINTF("%" PRId64,	c_precision);
1466	C_DB_PRINTF("%p",	c_arg);
1467	C_DB_PRINTF("%p",	c_func);
1468	C_DB_PRINTF("%p",	c_lock);
1469	C_DB_PRINTF("%#x",	c_flags);
1470	C_DB_PRINTF("%#x",	c_iflags);
1471	C_DB_PRINTF("%d",	c_cpu);
1472#undef	C_DB_PRINTF
1473}
1474
1475DB_SHOW_COMMAND(callout, db_show_callout)
1476{
1477
1478	if (!have_addr) {
1479		db_printf("usage: show callout <struct callout *>\n");
1480		return;
1481	}
1482
1483	_show_callout((struct callout *)addr);
1484}
1485
1486static void
1487_show_last_callout(int cpu, int direct, const char *dirstr)
1488{
1489	struct callout_cpu *cc;
1490	void *func, *arg;
1491
1492	cc = CC_CPU(cpu);
1493	func = cc_exec_last_func(cc, direct);
1494	arg = cc_exec_last_arg(cc, direct);
1495	db_printf("cpu %d last%s callout function: %p ", cpu, dirstr, func);
1496	db_printsym((db_expr_t)func, DB_STGY_ANY);
1497	db_printf("\ncpu %d last%s callout argument: %p\n", cpu, dirstr, arg);
1498}
1499
1500DB_SHOW_COMMAND_FLAGS(callout_last, db_show_callout_last, DB_CMD_MEMSAFE)
1501{
1502	int cpu, last;
1503
1504	if (have_addr) {
1505		if (addr < 0 || addr > mp_maxid || CPU_ABSENT(addr)) {
1506			db_printf("no such cpu: %d\n", (int)addr);
1507			return;
1508		}
1509		cpu = last = addr;
1510	} else {
1511		cpu = 0;
1512		last = mp_maxid;
1513	}
1514
1515	while (cpu <= last) {
1516		if (!CPU_ABSENT(cpu)) {
1517			_show_last_callout(cpu, 0, "");
1518			_show_last_callout(cpu, 1, " direct");
1519		}
1520		cpu++;
1521	}
1522}
1523#endif /* DDB */
1524