1/*-
2 * SPDX-License-Identifier: Beerware
3 *
4 * ----------------------------------------------------------------------------
5 * "THE BEER-WARE LICENSE" (Revision 42):
6 * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
7 * can do whatever you want with this stuff. If we meet some day, and you think
8 * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
9 * ----------------------------------------------------------------------------
10 *
11 * Copyright (c) 2011, 2015, 2016 The FreeBSD Foundation
12 *
13 * Portions of this software were developed by Julien Ridoux at the University
14 * of Melbourne under sponsorship from the FreeBSD Foundation.
15 *
16 * Portions of this software were developed by Konstantin Belousov
17 * under sponsorship from the FreeBSD Foundation.
18 */
19
20#include <sys/cdefs.h>
21#include "opt_ntp.h"
22#include "opt_ffclock.h"
23
24#include <sys/param.h>
25#include <sys/kernel.h>
26#include <sys/limits.h>
27#include <sys/lock.h>
28#include <sys/mutex.h>
29#include <sys/proc.h>
30#include <sys/sbuf.h>
31#include <sys/sleepqueue.h>
32#include <sys/sysctl.h>
33#include <sys/syslog.h>
34#include <sys/systm.h>
35#include <sys/timeffc.h>
36#include <sys/timepps.h>
37#include <sys/timerfd.h>
38#include <sys/timetc.h>
39#include <sys/timex.h>
40#include <sys/vdso.h>
41
42/*
43 * A large step happens on boot.  This constant detects such steps.
44 * It is relatively small so that ntp_update_second gets called enough
45 * in the typical 'missed a couple of seconds' case, but doesn't loop
46 * forever when the time step is large.
47 */
48#define LARGE_STEP	200
49
50/*
51 * Implement a dummy timecounter which we can use until we get a real one
52 * in the air.  This allows the console and other early stuff to use
53 * time services.
54 */
55
56static u_int
57dummy_get_timecount(struct timecounter *tc)
58{
59	static u_int now;
60
61	return (++now);
62}
63
64static struct timecounter dummy_timecounter = {
65	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
66};
67
68struct timehands {
69	/* These fields must be initialized by the driver. */
70	struct timecounter	*th_counter;
71	int64_t			th_adjustment;
72	uint64_t		th_scale;
73	u_int			th_large_delta;
74	u_int	 		th_offset_count;
75	struct bintime		th_offset;
76	struct bintime		th_bintime;
77	struct timeval		th_microtime;
78	struct timespec		th_nanotime;
79	struct bintime		th_boottime;
80	/* Fields not to be copied in tc_windup start with th_generation. */
81	u_int			th_generation;
82	struct timehands	*th_next;
83};
84
85static struct timehands ths[16] = {
86    [0] =  {
87	.th_counter = &dummy_timecounter,
88	.th_scale = (uint64_t)-1 / 1000000,
89	.th_large_delta = 1000000,
90	.th_offset = { .sec = 1 },
91	.th_generation = 1,
92    },
93};
94
95static struct timehands *volatile timehands = &ths[0];
96struct timecounter *timecounter = &dummy_timecounter;
97static struct timecounter *timecounters = &dummy_timecounter;
98
99/* Mutex to protect the timecounter list. */
100static struct mtx tc_lock;
101
102int tc_min_ticktock_freq = 1;
103
104volatile time_t time_second = 1;
105volatile time_t time_uptime = 1;
106
107/*
108 * The system time is always computed by summing the estimated boot time and the
109 * system uptime. The timehands track boot time, but it changes when the system
110 * time is set by the user, stepped by ntpd or adjusted when resuming. It
111 * is set to new_time - uptime.
112 */
113static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
114SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime,
115    CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
116    sysctl_kern_boottime, "S,timeval",
117    "Estimated system boottime");
118
119SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
120    "");
121static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc,
122    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
123    "");
124
125static int timestepwarnings;
126SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RWTUN,
127    &timestepwarnings, 0, "Log time steps");
128
129static int timehands_count = 2;
130SYSCTL_INT(_kern_timecounter, OID_AUTO, timehands_count,
131    CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
132    &timehands_count, 0, "Count of timehands in rotation");
133
134struct bintime bt_timethreshold;
135struct bintime bt_tickthreshold;
136sbintime_t sbt_timethreshold;
137sbintime_t sbt_tickthreshold;
138struct bintime tc_tick_bt;
139sbintime_t tc_tick_sbt;
140int tc_precexp;
141int tc_timepercentage = TC_DEFAULTPERC;
142static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS);
143SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation,
144    CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0,
145    sysctl_kern_timecounter_adjprecision, "I",
146    "Allowed time interval deviation in percents");
147
148volatile int rtc_generation = 1;
149
150static int tc_chosen;	/* Non-zero if a specific tc was chosen via sysctl. */
151static char tc_from_tunable[16];
152
153static void tc_windup(struct bintime *new_boottimebin);
154static void cpu_tick_calibrate(int);
155
156void dtrace_getnanotime(struct timespec *tsp);
157void dtrace_getnanouptime(struct timespec *tsp);
158
159static int
160sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
161{
162	struct timeval boottime;
163
164	getboottime(&boottime);
165
166/* i386 is the only arch which uses a 32bits time_t */
167#ifdef __amd64__
168#ifdef SCTL_MASK32
169	int tv[2];
170
171	if (req->flags & SCTL_MASK32) {
172		tv[0] = boottime.tv_sec;
173		tv[1] = boottime.tv_usec;
174		return (SYSCTL_OUT(req, tv, sizeof(tv)));
175	}
176#endif
177#endif
178	return (SYSCTL_OUT(req, &boottime, sizeof(boottime)));
179}
180
181static int
182sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
183{
184	u_int ncount;
185	struct timecounter *tc = arg1;
186
187	ncount = tc->tc_get_timecount(tc);
188	return (sysctl_handle_int(oidp, &ncount, 0, req));
189}
190
191static int
192sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
193{
194	uint64_t freq;
195	struct timecounter *tc = arg1;
196
197	freq = tc->tc_frequency;
198	return (sysctl_handle_64(oidp, &freq, 0, req));
199}
200
201/*
202 * Return the difference between the timehands' counter value now and what
203 * was when we copied it to the timehands' offset_count.
204 */
205static __inline u_int
206tc_delta(struct timehands *th)
207{
208	struct timecounter *tc;
209
210	tc = th->th_counter;
211	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
212	    tc->tc_counter_mask);
213}
214
215static __inline void
216bintime_add_tc_delta(struct bintime *bt, uint64_t scale,
217    uint64_t large_delta, uint64_t delta)
218{
219	uint64_t x;
220
221	if (__predict_false(delta >= large_delta)) {
222		/* Avoid overflow for scale * delta. */
223		x = (scale >> 32) * delta;
224		bt->sec += x >> 32;
225		bintime_addx(bt, x << 32);
226		bintime_addx(bt, (scale & 0xffffffff) * delta);
227	} else {
228		bintime_addx(bt, scale * delta);
229	}
230}
231
232/*
233 * Functions for reading the time.  We have to loop until we are sure that
234 * the timehands that we operated on was not updated under our feet.  See
235 * the comment in <sys/time.h> for a description of these 12 functions.
236 */
237
238static __inline void
239bintime_off(struct bintime *bt, u_int off)
240{
241	struct timehands *th;
242	struct bintime *btp;
243	uint64_t scale;
244	u_int delta, gen, large_delta;
245
246	do {
247		th = timehands;
248		gen = atomic_load_acq_int(&th->th_generation);
249		btp = (struct bintime *)((vm_offset_t)th + off);
250		*bt = *btp;
251		scale = th->th_scale;
252		delta = tc_delta(th);
253		large_delta = th->th_large_delta;
254		atomic_thread_fence_acq();
255	} while (gen == 0 || gen != th->th_generation);
256
257	bintime_add_tc_delta(bt, scale, large_delta, delta);
258}
259#define	GETTHBINTIME(dst, member)					\
260do {									\
261	_Static_assert(_Generic(((struct timehands *)NULL)->member,	\
262	    struct bintime: 1, default: 0) == 1,			\
263	    "struct timehands member is not of struct bintime type");	\
264	bintime_off(dst, __offsetof(struct timehands, member));		\
265} while (0)
266
267static __inline void
268getthmember(void *out, size_t out_size, u_int off)
269{
270	struct timehands *th;
271	u_int gen;
272
273	do {
274		th = timehands;
275		gen = atomic_load_acq_int(&th->th_generation);
276		memcpy(out, (char *)th + off, out_size);
277		atomic_thread_fence_acq();
278	} while (gen == 0 || gen != th->th_generation);
279}
280#define	GETTHMEMBER(dst, member)					\
281do {									\
282	_Static_assert(_Generic(*dst,					\
283	    __typeof(((struct timehands *)NULL)->member): 1,		\
284	    default: 0) == 1,						\
285	    "*dst and struct timehands member have different types");	\
286	getthmember(dst, sizeof(*dst), __offsetof(struct timehands,	\
287	    member));							\
288} while (0)
289
290#ifdef FFCLOCK
291void
292fbclock_binuptime(struct bintime *bt)
293{
294
295	GETTHBINTIME(bt, th_offset);
296}
297
298void
299fbclock_nanouptime(struct timespec *tsp)
300{
301	struct bintime bt;
302
303	fbclock_binuptime(&bt);
304	bintime2timespec(&bt, tsp);
305}
306
307void
308fbclock_microuptime(struct timeval *tvp)
309{
310	struct bintime bt;
311
312	fbclock_binuptime(&bt);
313	bintime2timeval(&bt, tvp);
314}
315
316void
317fbclock_bintime(struct bintime *bt)
318{
319
320	GETTHBINTIME(bt, th_bintime);
321}
322
323void
324fbclock_nanotime(struct timespec *tsp)
325{
326	struct bintime bt;
327
328	fbclock_bintime(&bt);
329	bintime2timespec(&bt, tsp);
330}
331
332void
333fbclock_microtime(struct timeval *tvp)
334{
335	struct bintime bt;
336
337	fbclock_bintime(&bt);
338	bintime2timeval(&bt, tvp);
339}
340
341void
342fbclock_getbinuptime(struct bintime *bt)
343{
344
345	GETTHMEMBER(bt, th_offset);
346}
347
348void
349fbclock_getnanouptime(struct timespec *tsp)
350{
351	struct bintime bt;
352
353	GETTHMEMBER(&bt, th_offset);
354	bintime2timespec(&bt, tsp);
355}
356
357void
358fbclock_getmicrouptime(struct timeval *tvp)
359{
360	struct bintime bt;
361
362	GETTHMEMBER(&bt, th_offset);
363	bintime2timeval(&bt, tvp);
364}
365
366void
367fbclock_getbintime(struct bintime *bt)
368{
369
370	GETTHMEMBER(bt, th_bintime);
371}
372
373void
374fbclock_getnanotime(struct timespec *tsp)
375{
376
377	GETTHMEMBER(tsp, th_nanotime);
378}
379
380void
381fbclock_getmicrotime(struct timeval *tvp)
382{
383
384	GETTHMEMBER(tvp, th_microtime);
385}
386#else /* !FFCLOCK */
387
388void
389binuptime(struct bintime *bt)
390{
391
392	GETTHBINTIME(bt, th_offset);
393}
394
395void
396nanouptime(struct timespec *tsp)
397{
398	struct bintime bt;
399
400	binuptime(&bt);
401	bintime2timespec(&bt, tsp);
402}
403
404void
405microuptime(struct timeval *tvp)
406{
407	struct bintime bt;
408
409	binuptime(&bt);
410	bintime2timeval(&bt, tvp);
411}
412
413void
414bintime(struct bintime *bt)
415{
416
417	GETTHBINTIME(bt, th_bintime);
418}
419
420void
421nanotime(struct timespec *tsp)
422{
423	struct bintime bt;
424
425	bintime(&bt);
426	bintime2timespec(&bt, tsp);
427}
428
429void
430microtime(struct timeval *tvp)
431{
432	struct bintime bt;
433
434	bintime(&bt);
435	bintime2timeval(&bt, tvp);
436}
437
438void
439getbinuptime(struct bintime *bt)
440{
441
442	GETTHMEMBER(bt, th_offset);
443}
444
445void
446getnanouptime(struct timespec *tsp)
447{
448	struct bintime bt;
449
450	GETTHMEMBER(&bt, th_offset);
451	bintime2timespec(&bt, tsp);
452}
453
454void
455getmicrouptime(struct timeval *tvp)
456{
457	struct bintime bt;
458
459	GETTHMEMBER(&bt, th_offset);
460	bintime2timeval(&bt, tvp);
461}
462
463void
464getbintime(struct bintime *bt)
465{
466
467	GETTHMEMBER(bt, th_bintime);
468}
469
470void
471getnanotime(struct timespec *tsp)
472{
473
474	GETTHMEMBER(tsp, th_nanotime);
475}
476
477void
478getmicrotime(struct timeval *tvp)
479{
480
481	GETTHMEMBER(tvp, th_microtime);
482}
483#endif /* FFCLOCK */
484
485void
486getboottime(struct timeval *boottime)
487{
488	struct bintime boottimebin;
489
490	getboottimebin(&boottimebin);
491	bintime2timeval(&boottimebin, boottime);
492}
493
494void
495getboottimebin(struct bintime *boottimebin)
496{
497
498	GETTHMEMBER(boottimebin, th_boottime);
499}
500
501#ifdef FFCLOCK
502/*
503 * Support for feed-forward synchronization algorithms. This is heavily inspired
504 * by the timehands mechanism but kept independent from it. *_windup() functions
505 * have some connection to avoid accessing the timecounter hardware more than
506 * necessary.
507 */
508
509/* Feed-forward clock estimates kept updated by the synchronization daemon. */
510struct ffclock_estimate ffclock_estimate;
511struct bintime ffclock_boottime;	/* Feed-forward boot time estimate. */
512uint32_t ffclock_status;		/* Feed-forward clock status. */
513int8_t ffclock_updated;			/* New estimates are available. */
514struct mtx ffclock_mtx;			/* Mutex on ffclock_estimate. */
515
516struct fftimehands {
517	struct ffclock_estimate	cest;
518	struct bintime		tick_time;
519	struct bintime		tick_time_lerp;
520	ffcounter		tick_ffcount;
521	uint64_t		period_lerp;
522	volatile uint8_t	gen;
523	struct fftimehands	*next;
524};
525
526#define	NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x))
527
528static struct fftimehands ffth[10];
529static struct fftimehands *volatile fftimehands = ffth;
530
531static void
532ffclock_init(void)
533{
534	struct fftimehands *cur;
535	struct fftimehands *last;
536
537	memset(ffth, 0, sizeof(ffth));
538
539	last = ffth + NUM_ELEMENTS(ffth) - 1;
540	for (cur = ffth; cur < last; cur++)
541		cur->next = cur + 1;
542	last->next = ffth;
543
544	ffclock_updated = 0;
545	ffclock_status = FFCLOCK_STA_UNSYNC;
546	mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF);
547}
548
549/*
550 * Reset the feed-forward clock estimates. Called from inittodr() to get things
551 * kick started and uses the timecounter nominal frequency as a first period
552 * estimate. Note: this function may be called several time just after boot.
553 * Note: this is the only function that sets the value of boot time for the
554 * monotonic (i.e. uptime) version of the feed-forward clock.
555 */
556void
557ffclock_reset_clock(struct timespec *ts)
558{
559	struct timecounter *tc;
560	struct ffclock_estimate cest;
561
562	tc = timehands->th_counter;
563	memset(&cest, 0, sizeof(struct ffclock_estimate));
564
565	timespec2bintime(ts, &ffclock_boottime);
566	timespec2bintime(ts, &(cest.update_time));
567	ffclock_read_counter(&cest.update_ffcount);
568	cest.leapsec_next = 0;
569	cest.period = ((1ULL << 63) / tc->tc_frequency) << 1;
570	cest.errb_abs = 0;
571	cest.errb_rate = 0;
572	cest.status = FFCLOCK_STA_UNSYNC;
573	cest.leapsec_total = 0;
574	cest.leapsec = 0;
575
576	mtx_lock(&ffclock_mtx);
577	bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
578	ffclock_updated = INT8_MAX;
579	mtx_unlock(&ffclock_mtx);
580
581	printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name,
582	    (unsigned long long)tc->tc_frequency, (long)ts->tv_sec,
583	    (unsigned long)ts->tv_nsec);
584}
585
586/*
587 * Sub-routine to convert a time interval measured in RAW counter units to time
588 * in seconds stored in bintime format.
589 * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be
590 * larger than the max value of u_int (on 32 bit architecture). Loop to consume
591 * extra cycles.
592 */
593static void
594ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt)
595{
596	struct bintime bt2;
597	ffcounter delta, delta_max;
598
599	delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1;
600	bintime_clear(bt);
601	do {
602		if (ffdelta > delta_max)
603			delta = delta_max;
604		else
605			delta = ffdelta;
606		bt2.sec = 0;
607		bt2.frac = period;
608		bintime_mul(&bt2, (unsigned int)delta);
609		bintime_add(bt, &bt2);
610		ffdelta -= delta;
611	} while (ffdelta > 0);
612}
613
614/*
615 * Update the fftimehands.
616 * Push the tick ffcount and time(s) forward based on current clock estimate.
617 * The conversion from ffcounter to bintime relies on the difference clock
618 * principle, whose accuracy relies on computing small time intervals. If a new
619 * clock estimate has been passed by the synchronisation daemon, make it
620 * current, and compute the linear interpolation for monotonic time if needed.
621 */
622static void
623ffclock_windup(unsigned int delta)
624{
625	struct ffclock_estimate *cest;
626	struct fftimehands *ffth;
627	struct bintime bt, gap_lerp;
628	ffcounter ffdelta;
629	uint64_t frac;
630	unsigned int polling;
631	uint8_t forward_jump, ogen;
632
633	/*
634	 * Pick the next timehand, copy current ffclock estimates and move tick
635	 * times and counter forward.
636	 */
637	forward_jump = 0;
638	ffth = fftimehands->next;
639	ogen = ffth->gen;
640	ffth->gen = 0;
641	cest = &ffth->cest;
642	bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate));
643	ffdelta = (ffcounter)delta;
644	ffth->period_lerp = fftimehands->period_lerp;
645
646	ffth->tick_time = fftimehands->tick_time;
647	ffclock_convert_delta(ffdelta, cest->period, &bt);
648	bintime_add(&ffth->tick_time, &bt);
649
650	ffth->tick_time_lerp = fftimehands->tick_time_lerp;
651	ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt);
652	bintime_add(&ffth->tick_time_lerp, &bt);
653
654	ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta;
655
656	/*
657	 * Assess the status of the clock, if the last update is too old, it is
658	 * likely the synchronisation daemon is dead and the clock is free
659	 * running.
660	 */
661	if (ffclock_updated == 0) {
662		ffdelta = ffth->tick_ffcount - cest->update_ffcount;
663		ffclock_convert_delta(ffdelta, cest->period, &bt);
664		if (bt.sec > 2 * FFCLOCK_SKM_SCALE)
665			ffclock_status |= FFCLOCK_STA_UNSYNC;
666	}
667
668	/*
669	 * If available, grab updated clock estimates and make them current.
670	 * Recompute time at this tick using the updated estimates. The clock
671	 * estimates passed the feed-forward synchronisation daemon may result
672	 * in time conversion that is not monotonically increasing (just after
673	 * the update). time_lerp is a particular linear interpolation over the
674	 * synchronisation algo polling period that ensures monotonicity for the
675	 * clock ids requesting it.
676	 */
677	if (ffclock_updated > 0) {
678		bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate));
679		ffdelta = ffth->tick_ffcount - cest->update_ffcount;
680		ffth->tick_time = cest->update_time;
681		ffclock_convert_delta(ffdelta, cest->period, &bt);
682		bintime_add(&ffth->tick_time, &bt);
683
684		/* ffclock_reset sets ffclock_updated to INT8_MAX */
685		if (ffclock_updated == INT8_MAX)
686			ffth->tick_time_lerp = ffth->tick_time;
687
688		if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >))
689			forward_jump = 1;
690		else
691			forward_jump = 0;
692
693		bintime_clear(&gap_lerp);
694		if (forward_jump) {
695			gap_lerp = ffth->tick_time;
696			bintime_sub(&gap_lerp, &ffth->tick_time_lerp);
697		} else {
698			gap_lerp = ffth->tick_time_lerp;
699			bintime_sub(&gap_lerp, &ffth->tick_time);
700		}
701
702		/*
703		 * The reset from the RTC clock may be far from accurate, and
704		 * reducing the gap between real time and interpolated time
705		 * could take a very long time if the interpolated clock insists
706		 * on strict monotonicity. The clock is reset under very strict
707		 * conditions (kernel time is known to be wrong and
708		 * synchronization daemon has been restarted recently.
709		 * ffclock_boottime absorbs the jump to ensure boot time is
710		 * correct and uptime functions stay consistent.
711		 */
712		if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) &&
713		    ((cest->status & FFCLOCK_STA_UNSYNC) == 0) &&
714		    ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) {
715			if (forward_jump)
716				bintime_add(&ffclock_boottime, &gap_lerp);
717			else
718				bintime_sub(&ffclock_boottime, &gap_lerp);
719			ffth->tick_time_lerp = ffth->tick_time;
720			bintime_clear(&gap_lerp);
721		}
722
723		ffclock_status = cest->status;
724		ffth->period_lerp = cest->period;
725
726		/*
727		 * Compute corrected period used for the linear interpolation of
728		 * time. The rate of linear interpolation is capped to 5000PPM
729		 * (5ms/s).
730		 */
731		if (bintime_isset(&gap_lerp)) {
732			ffdelta = cest->update_ffcount;
733			ffdelta -= fftimehands->cest.update_ffcount;
734			ffclock_convert_delta(ffdelta, cest->period, &bt);
735			polling = bt.sec;
736			bt.sec = 0;
737			bt.frac = 5000000 * (uint64_t)18446744073LL;
738			bintime_mul(&bt, polling);
739			if (bintime_cmp(&gap_lerp, &bt, >))
740				gap_lerp = bt;
741
742			/* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */
743			frac = 0;
744			if (gap_lerp.sec > 0) {
745				frac -= 1;
746				frac /= ffdelta / gap_lerp.sec;
747			}
748			frac += gap_lerp.frac / ffdelta;
749
750			if (forward_jump)
751				ffth->period_lerp += frac;
752			else
753				ffth->period_lerp -= frac;
754		}
755
756		ffclock_updated = 0;
757	}
758	if (++ogen == 0)
759		ogen = 1;
760	ffth->gen = ogen;
761	fftimehands = ffth;
762}
763
764/*
765 * Adjust the fftimehands when the timecounter is changed. Stating the obvious,
766 * the old and new hardware counter cannot be read simultaneously. tc_windup()
767 * does read the two counters 'back to back', but a few cycles are effectively
768 * lost, and not accumulated in tick_ffcount. This is a fairly radical
769 * operation for a feed-forward synchronization daemon, and it is its job to not
770 * pushing irrelevant data to the kernel. Because there is no locking here,
771 * simply force to ignore pending or next update to give daemon a chance to
772 * realize the counter has changed.
773 */
774static void
775ffclock_change_tc(struct timehands *th)
776{
777	struct fftimehands *ffth;
778	struct ffclock_estimate *cest;
779	struct timecounter *tc;
780	uint8_t ogen;
781
782	tc = th->th_counter;
783	ffth = fftimehands->next;
784	ogen = ffth->gen;
785	ffth->gen = 0;
786
787	cest = &ffth->cest;
788	bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate));
789	cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1;
790	cest->errb_abs = 0;
791	cest->errb_rate = 0;
792	cest->status |= FFCLOCK_STA_UNSYNC;
793
794	ffth->tick_ffcount = fftimehands->tick_ffcount;
795	ffth->tick_time_lerp = fftimehands->tick_time_lerp;
796	ffth->tick_time = fftimehands->tick_time;
797	ffth->period_lerp = cest->period;
798
799	/* Do not lock but ignore next update from synchronization daemon. */
800	ffclock_updated--;
801
802	if (++ogen == 0)
803		ogen = 1;
804	ffth->gen = ogen;
805	fftimehands = ffth;
806}
807
808/*
809 * Retrieve feed-forward counter and time of last kernel tick.
810 */
811void
812ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags)
813{
814	struct fftimehands *ffth;
815	uint8_t gen;
816
817	/*
818	 * No locking but check generation has not changed. Also need to make
819	 * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
820	 */
821	do {
822		ffth = fftimehands;
823		gen = ffth->gen;
824		if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP)
825			*bt = ffth->tick_time_lerp;
826		else
827			*bt = ffth->tick_time;
828		*ffcount = ffth->tick_ffcount;
829	} while (gen == 0 || gen != ffth->gen);
830}
831
832/*
833 * Absolute clock conversion. Low level function to convert ffcounter to
834 * bintime. The ffcounter is converted using the current ffclock period estimate
835 * or the "interpolated period" to ensure monotonicity.
836 * NOTE: this conversion may have been deferred, and the clock updated since the
837 * hardware counter has been read.
838 */
839void
840ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags)
841{
842	struct fftimehands *ffth;
843	struct bintime bt2;
844	ffcounter ffdelta;
845	uint8_t gen;
846
847	/*
848	 * No locking but check generation has not changed. Also need to make
849	 * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
850	 */
851	do {
852		ffth = fftimehands;
853		gen = ffth->gen;
854		if (ffcount > ffth->tick_ffcount)
855			ffdelta = ffcount - ffth->tick_ffcount;
856		else
857			ffdelta = ffth->tick_ffcount - ffcount;
858
859		if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) {
860			*bt = ffth->tick_time_lerp;
861			ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2);
862		} else {
863			*bt = ffth->tick_time;
864			ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2);
865		}
866
867		if (ffcount > ffth->tick_ffcount)
868			bintime_add(bt, &bt2);
869		else
870			bintime_sub(bt, &bt2);
871	} while (gen == 0 || gen != ffth->gen);
872}
873
874/*
875 * Difference clock conversion.
876 * Low level function to Convert a time interval measured in RAW counter units
877 * into bintime. The difference clock allows measuring small intervals much more
878 * reliably than the absolute clock.
879 */
880void
881ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt)
882{
883	struct fftimehands *ffth;
884	uint8_t gen;
885
886	/* No locking but check generation has not changed. */
887	do {
888		ffth = fftimehands;
889		gen = ffth->gen;
890		ffclock_convert_delta(ffdelta, ffth->cest.period, bt);
891	} while (gen == 0 || gen != ffth->gen);
892}
893
894/*
895 * Access to current ffcounter value.
896 */
897void
898ffclock_read_counter(ffcounter *ffcount)
899{
900	struct timehands *th;
901	struct fftimehands *ffth;
902	unsigned int gen, delta;
903
904	/*
905	 * ffclock_windup() called from tc_windup(), safe to rely on
906	 * th->th_generation only, for correct delta and ffcounter.
907	 */
908	do {
909		th = timehands;
910		gen = atomic_load_acq_int(&th->th_generation);
911		ffth = fftimehands;
912		delta = tc_delta(th);
913		*ffcount = ffth->tick_ffcount;
914		atomic_thread_fence_acq();
915	} while (gen == 0 || gen != th->th_generation);
916
917	*ffcount += delta;
918}
919
920void
921binuptime(struct bintime *bt)
922{
923
924	binuptime_fromclock(bt, sysclock_active);
925}
926
927void
928nanouptime(struct timespec *tsp)
929{
930
931	nanouptime_fromclock(tsp, sysclock_active);
932}
933
934void
935microuptime(struct timeval *tvp)
936{
937
938	microuptime_fromclock(tvp, sysclock_active);
939}
940
941void
942bintime(struct bintime *bt)
943{
944
945	bintime_fromclock(bt, sysclock_active);
946}
947
948void
949nanotime(struct timespec *tsp)
950{
951
952	nanotime_fromclock(tsp, sysclock_active);
953}
954
955void
956microtime(struct timeval *tvp)
957{
958
959	microtime_fromclock(tvp, sysclock_active);
960}
961
962void
963getbinuptime(struct bintime *bt)
964{
965
966	getbinuptime_fromclock(bt, sysclock_active);
967}
968
969void
970getnanouptime(struct timespec *tsp)
971{
972
973	getnanouptime_fromclock(tsp, sysclock_active);
974}
975
976void
977getmicrouptime(struct timeval *tvp)
978{
979
980	getmicrouptime_fromclock(tvp, sysclock_active);
981}
982
983void
984getbintime(struct bintime *bt)
985{
986
987	getbintime_fromclock(bt, sysclock_active);
988}
989
990void
991getnanotime(struct timespec *tsp)
992{
993
994	getnanotime_fromclock(tsp, sysclock_active);
995}
996
997void
998getmicrotime(struct timeval *tvp)
999{
1000
1001	getmicrouptime_fromclock(tvp, sysclock_active);
1002}
1003
1004#endif /* FFCLOCK */
1005
1006/*
1007 * This is a clone of getnanotime and used for walltimestamps.
1008 * The dtrace_ prefix prevents fbt from creating probes for
1009 * it so walltimestamp can be safely used in all fbt probes.
1010 */
1011void
1012dtrace_getnanotime(struct timespec *tsp)
1013{
1014
1015	GETTHMEMBER(tsp, th_nanotime);
1016}
1017
1018/*
1019 * This is a clone of getnanouptime used for time since boot.
1020 * The dtrace_ prefix prevents fbt from creating probes for
1021 * it so an uptime that can be safely used in all fbt probes.
1022 */
1023void
1024dtrace_getnanouptime(struct timespec *tsp)
1025{
1026	struct bintime bt;
1027
1028	GETTHMEMBER(&bt, th_offset);
1029	bintime2timespec(&bt, tsp);
1030}
1031
1032/*
1033 * System clock currently providing time to the system. Modifiable via sysctl
1034 * when the FFCLOCK option is defined.
1035 */
1036int sysclock_active = SYSCLOCK_FBCK;
1037
1038/* Internal NTP status and error estimates. */
1039extern int time_status;
1040extern long time_esterror;
1041
1042/*
1043 * Take a snapshot of sysclock data which can be used to compare system clocks
1044 * and generate timestamps after the fact.
1045 */
1046void
1047sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast)
1048{
1049	struct fbclock_info *fbi;
1050	struct timehands *th;
1051	struct bintime bt;
1052	unsigned int delta, gen;
1053#ifdef FFCLOCK
1054	ffcounter ffcount;
1055	struct fftimehands *ffth;
1056	struct ffclock_info *ffi;
1057	struct ffclock_estimate cest;
1058
1059	ffi = &clock_snap->ff_info;
1060#endif
1061
1062	fbi = &clock_snap->fb_info;
1063	delta = 0;
1064
1065	do {
1066		th = timehands;
1067		gen = atomic_load_acq_int(&th->th_generation);
1068		fbi->th_scale = th->th_scale;
1069		fbi->tick_time = th->th_offset;
1070#ifdef FFCLOCK
1071		ffth = fftimehands;
1072		ffi->tick_time = ffth->tick_time_lerp;
1073		ffi->tick_time_lerp = ffth->tick_time_lerp;
1074		ffi->period = ffth->cest.period;
1075		ffi->period_lerp = ffth->period_lerp;
1076		clock_snap->ffcount = ffth->tick_ffcount;
1077		cest = ffth->cest;
1078#endif
1079		if (!fast)
1080			delta = tc_delta(th);
1081		atomic_thread_fence_acq();
1082	} while (gen == 0 || gen != th->th_generation);
1083
1084	clock_snap->delta = delta;
1085	clock_snap->sysclock_active = sysclock_active;
1086
1087	/* Record feedback clock status and error. */
1088	clock_snap->fb_info.status = time_status;
1089	/* XXX: Very crude estimate of feedback clock error. */
1090	bt.sec = time_esterror / 1000000;
1091	bt.frac = ((time_esterror - bt.sec) * 1000000) *
1092	    (uint64_t)18446744073709ULL;
1093	clock_snap->fb_info.error = bt;
1094
1095#ifdef FFCLOCK
1096	if (!fast)
1097		clock_snap->ffcount += delta;
1098
1099	/* Record feed-forward clock leap second adjustment. */
1100	ffi->leapsec_adjustment = cest.leapsec_total;
1101	if (clock_snap->ffcount > cest.leapsec_next)
1102		ffi->leapsec_adjustment -= cest.leapsec;
1103
1104	/* Record feed-forward clock status and error. */
1105	clock_snap->ff_info.status = cest.status;
1106	ffcount = clock_snap->ffcount - cest.update_ffcount;
1107	ffclock_convert_delta(ffcount, cest.period, &bt);
1108	/* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */
1109	bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL);
1110	/* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */
1111	bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL);
1112	clock_snap->ff_info.error = bt;
1113#endif
1114}
1115
1116/*
1117 * Convert a sysclock snapshot into a struct bintime based on the specified
1118 * clock source and flags.
1119 */
1120int
1121sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt,
1122    int whichclock, uint32_t flags)
1123{
1124	struct bintime boottimebin;
1125#ifdef FFCLOCK
1126	struct bintime bt2;
1127	uint64_t period;
1128#endif
1129
1130	switch (whichclock) {
1131	case SYSCLOCK_FBCK:
1132		*bt = cs->fb_info.tick_time;
1133
1134		/* If snapshot was created with !fast, delta will be >0. */
1135		if (cs->delta > 0)
1136			bintime_addx(bt, cs->fb_info.th_scale * cs->delta);
1137
1138		if ((flags & FBCLOCK_UPTIME) == 0) {
1139			getboottimebin(&boottimebin);
1140			bintime_add(bt, &boottimebin);
1141		}
1142		break;
1143#ifdef FFCLOCK
1144	case SYSCLOCK_FFWD:
1145		if (flags & FFCLOCK_LERP) {
1146			*bt = cs->ff_info.tick_time_lerp;
1147			period = cs->ff_info.period_lerp;
1148		} else {
1149			*bt = cs->ff_info.tick_time;
1150			period = cs->ff_info.period;
1151		}
1152
1153		/* If snapshot was created with !fast, delta will be >0. */
1154		if (cs->delta > 0) {
1155			ffclock_convert_delta(cs->delta, period, &bt2);
1156			bintime_add(bt, &bt2);
1157		}
1158
1159		/* Leap second adjustment. */
1160		if (flags & FFCLOCK_LEAPSEC)
1161			bt->sec -= cs->ff_info.leapsec_adjustment;
1162
1163		/* Boot time adjustment, for uptime/monotonic clocks. */
1164		if (flags & FFCLOCK_UPTIME)
1165			bintime_sub(bt, &ffclock_boottime);
1166		break;
1167#endif
1168	default:
1169		return (EINVAL);
1170		break;
1171	}
1172
1173	return (0);
1174}
1175
1176/*
1177 * Initialize a new timecounter and possibly use it.
1178 */
1179void
1180tc_init(struct timecounter *tc)
1181{
1182	u_int u;
1183	struct sysctl_oid *tc_root;
1184
1185	u = tc->tc_frequency / tc->tc_counter_mask;
1186	/* XXX: We need some margin here, 10% is a guess */
1187	u *= 11;
1188	u /= 10;
1189	if (u > hz && tc->tc_quality >= 0) {
1190		tc->tc_quality = -2000;
1191		if (bootverbose) {
1192			printf("Timecounter \"%s\" frequency %ju Hz",
1193			    tc->tc_name, (uintmax_t)tc->tc_frequency);
1194			printf(" -- Insufficient hz, needs at least %u\n", u);
1195		}
1196	} else if (tc->tc_quality >= 0 || bootverbose) {
1197		printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
1198		    tc->tc_name, (uintmax_t)tc->tc_frequency,
1199		    tc->tc_quality);
1200	}
1201
1202	/*
1203	 * Set up sysctl tree for this counter.
1204	 */
1205	tc_root = SYSCTL_ADD_NODE_WITH_LABEL(NULL,
1206	    SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
1207	    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1208	    "timecounter description", "timecounter");
1209	SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1210	    "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
1211	    "mask for implemented bits");
1212	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1213	    "counter", CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, tc,
1214	    sizeof(*tc), sysctl_kern_timecounter_get, "IU",
1215	    "current timecounter value");
1216	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1217	    "frequency", CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, tc,
1218	    sizeof(*tc), sysctl_kern_timecounter_freq, "QU",
1219	    "timecounter frequency");
1220	SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1221	    "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
1222	    "goodness of time counter");
1223
1224	mtx_lock(&tc_lock);
1225	tc->tc_next = timecounters;
1226	timecounters = tc;
1227
1228	/*
1229	 * Do not automatically switch if the current tc was specifically
1230	 * chosen.  Never automatically use a timecounter with negative quality.
1231	 * Even though we run on the dummy counter, switching here may be
1232	 * worse since this timecounter may not be monotonic.
1233	 */
1234	if (tc_chosen)
1235		goto unlock;
1236	if (tc->tc_quality < 0)
1237		goto unlock;
1238	if (tc_from_tunable[0] != '\0' &&
1239	    strcmp(tc->tc_name, tc_from_tunable) == 0) {
1240		tc_chosen = 1;
1241		tc_from_tunable[0] = '\0';
1242	} else {
1243		if (tc->tc_quality < timecounter->tc_quality)
1244			goto unlock;
1245		if (tc->tc_quality == timecounter->tc_quality &&
1246		    tc->tc_frequency < timecounter->tc_frequency)
1247			goto unlock;
1248	}
1249	(void)tc->tc_get_timecount(tc);
1250	timecounter = tc;
1251unlock:
1252	mtx_unlock(&tc_lock);
1253}
1254
1255/* Report the frequency of the current timecounter. */
1256uint64_t
1257tc_getfrequency(void)
1258{
1259
1260	return (timehands->th_counter->tc_frequency);
1261}
1262
1263static bool
1264sleeping_on_old_rtc(struct thread *td)
1265{
1266
1267	/*
1268	 * td_rtcgen is modified by curthread when it is running,
1269	 * and by other threads in this function.  By finding the thread
1270	 * on a sleepqueue and holding the lock on the sleepqueue
1271	 * chain, we guarantee that the thread is not running and that
1272	 * modifying td_rtcgen is safe.  Setting td_rtcgen to zero informs
1273	 * the thread that it was woken due to a real-time clock adjustment.
1274	 * (The declaration of td_rtcgen refers to this comment.)
1275	 */
1276	if (td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation) {
1277		td->td_rtcgen = 0;
1278		return (true);
1279	}
1280	return (false);
1281}
1282
1283static struct mtx tc_setclock_mtx;
1284MTX_SYSINIT(tc_setclock_init, &tc_setclock_mtx, "tcsetc", MTX_SPIN);
1285
1286/*
1287 * Step our concept of UTC.  This is done by modifying our estimate of
1288 * when we booted.
1289 */
1290void
1291tc_setclock(struct timespec *ts)
1292{
1293	struct timespec tbef, taft;
1294	struct bintime bt, bt2;
1295
1296	timespec2bintime(ts, &bt);
1297	nanotime(&tbef);
1298	mtx_lock_spin(&tc_setclock_mtx);
1299	cpu_tick_calibrate(1);
1300	binuptime(&bt2);
1301	bintime_sub(&bt, &bt2);
1302
1303	/* XXX fiddle all the little crinkly bits around the fiords... */
1304	tc_windup(&bt);
1305	mtx_unlock_spin(&tc_setclock_mtx);
1306
1307	/* Avoid rtc_generation == 0, since td_rtcgen == 0 is special. */
1308	atomic_add_rel_int(&rtc_generation, 2);
1309	timerfd_jumped();
1310	sleepq_chains_remove_matching(sleeping_on_old_rtc);
1311	if (timestepwarnings) {
1312		nanotime(&taft);
1313		log(LOG_INFO,
1314		    "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
1315		    (intmax_t)tbef.tv_sec, tbef.tv_nsec,
1316		    (intmax_t)taft.tv_sec, taft.tv_nsec,
1317		    (intmax_t)ts->tv_sec, ts->tv_nsec);
1318	}
1319}
1320
1321/*
1322 * Recalculate the scaling factor.  We want the number of 1/2^64
1323 * fractions of a second per period of the hardware counter, taking
1324 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
1325 * processing provides us with.
1326 *
1327 * The th_adjustment is nanoseconds per second with 32 bit binary
1328 * fraction and we want 64 bit binary fraction of second:
1329 *
1330 *	 x = a * 2^32 / 10^9 = a * 4.294967296
1331 *
1332 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
1333 * we can only multiply by about 850 without overflowing, that
1334 * leaves no suitably precise fractions for multiply before divide.
1335 *
1336 * Divide before multiply with a fraction of 2199/512 results in a
1337 * systematic undercompensation of 10PPM of th_adjustment.  On a
1338 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
1339 *
1340 * We happily sacrifice the lowest of the 64 bits of our result
1341 * to the goddess of code clarity.
1342 */
1343static void
1344recalculate_scaling_factor_and_large_delta(struct timehands *th)
1345{
1346	uint64_t scale;
1347
1348	scale = (uint64_t)1 << 63;
1349	scale += (th->th_adjustment / 1024) * 2199;
1350	scale /= th->th_counter->tc_frequency;
1351	th->th_scale = scale * 2;
1352	th->th_large_delta = MIN(((uint64_t)1 << 63) / scale, UINT_MAX);
1353}
1354
1355/*
1356 * Initialize the next struct timehands in the ring and make
1357 * it the active timehands.  Along the way we might switch to a different
1358 * timecounter and/or do seconds processing in NTP.  Slightly magic.
1359 */
1360static void
1361tc_windup(struct bintime *new_boottimebin)
1362{
1363	struct bintime bt;
1364	struct timecounter *tc;
1365	struct timehands *th, *tho;
1366	u_int delta, ncount, ogen;
1367	int i;
1368	time_t t;
1369
1370	/*
1371	 * Make the next timehands a copy of the current one, but do
1372	 * not overwrite the generation or next pointer.  While we
1373	 * update the contents, the generation must be zero.  We need
1374	 * to ensure that the zero generation is visible before the
1375	 * data updates become visible, which requires release fence.
1376	 * For similar reasons, re-reading of the generation after the
1377	 * data is read should use acquire fence.
1378	 */
1379	tho = timehands;
1380	th = tho->th_next;
1381	ogen = th->th_generation;
1382	th->th_generation = 0;
1383	atomic_thread_fence_rel();
1384	memcpy(th, tho, offsetof(struct timehands, th_generation));
1385	if (new_boottimebin != NULL)
1386		th->th_boottime = *new_boottimebin;
1387
1388	/*
1389	 * Capture a timecounter delta on the current timecounter and if
1390	 * changing timecounters, a counter value from the new timecounter.
1391	 * Update the offset fields accordingly.
1392	 */
1393	tc = atomic_load_ptr(&timecounter);
1394	delta = tc_delta(th);
1395	if (th->th_counter != tc)
1396		ncount = tc->tc_get_timecount(tc);
1397	else
1398		ncount = 0;
1399#ifdef FFCLOCK
1400	ffclock_windup(delta);
1401#endif
1402	th->th_offset_count += delta;
1403	th->th_offset_count &= th->th_counter->tc_counter_mask;
1404	bintime_add_tc_delta(&th->th_offset, th->th_scale,
1405	    th->th_large_delta, delta);
1406
1407	/*
1408	 * Hardware latching timecounters may not generate interrupts on
1409	 * PPS events, so instead we poll them.  There is a finite risk that
1410	 * the hardware might capture a count which is later than the one we
1411	 * got above, and therefore possibly in the next NTP second which might
1412	 * have a different rate than the current NTP second.  It doesn't
1413	 * matter in practice.
1414	 */
1415	if (tho->th_counter->tc_poll_pps)
1416		tho->th_counter->tc_poll_pps(tho->th_counter);
1417
1418	/*
1419	 * Deal with NTP second processing.  The loop normally
1420	 * iterates at most once, but in extreme situations it might
1421	 * keep NTP sane if timeouts are not run for several seconds.
1422	 * At boot, the time step can be large when the TOD hardware
1423	 * has been read, so on really large steps, we call
1424	 * ntp_update_second only twice.  We need to call it twice in
1425	 * case we missed a leap second.
1426	 */
1427	bt = th->th_offset;
1428	bintime_add(&bt, &th->th_boottime);
1429	i = bt.sec - tho->th_microtime.tv_sec;
1430	if (i > 0) {
1431		if (i > LARGE_STEP)
1432			i = 2;
1433
1434		do {
1435			t = bt.sec;
1436			ntp_update_second(&th->th_adjustment, &bt.sec);
1437			if (bt.sec != t)
1438				th->th_boottime.sec += bt.sec - t;
1439			--i;
1440		} while (i > 0);
1441
1442		recalculate_scaling_factor_and_large_delta(th);
1443	}
1444
1445	/* Update the UTC timestamps used by the get*() functions. */
1446	th->th_bintime = bt;
1447	bintime2timeval(&bt, &th->th_microtime);
1448	bintime2timespec(&bt, &th->th_nanotime);
1449
1450	/* Now is a good time to change timecounters. */
1451	if (th->th_counter != tc) {
1452#ifndef __arm__
1453		if ((tc->tc_flags & TC_FLAGS_C2STOP) != 0)
1454			cpu_disable_c2_sleep++;
1455		if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0)
1456			cpu_disable_c2_sleep--;
1457#endif
1458		th->th_counter = tc;
1459		th->th_offset_count = ncount;
1460		tc_min_ticktock_freq = max(1, tc->tc_frequency /
1461		    (((uint64_t)tc->tc_counter_mask + 1) / 3));
1462		recalculate_scaling_factor_and_large_delta(th);
1463#ifdef FFCLOCK
1464		ffclock_change_tc(th);
1465#endif
1466	}
1467
1468	/*
1469	 * Now that the struct timehands is again consistent, set the new
1470	 * generation number, making sure to not make it zero.
1471	 */
1472	if (++ogen == 0)
1473		ogen = 1;
1474	atomic_store_rel_int(&th->th_generation, ogen);
1475
1476	/* Go live with the new struct timehands. */
1477#ifdef FFCLOCK
1478	switch (sysclock_active) {
1479	case SYSCLOCK_FBCK:
1480#endif
1481		time_second = th->th_microtime.tv_sec;
1482		time_uptime = th->th_offset.sec;
1483#ifdef FFCLOCK
1484		break;
1485	case SYSCLOCK_FFWD:
1486		time_second = fftimehands->tick_time_lerp.sec;
1487		time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec;
1488		break;
1489	}
1490#endif
1491
1492	timehands = th;
1493	timekeep_push_vdso();
1494}
1495
1496/* Report or change the active timecounter hardware. */
1497static int
1498sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
1499{
1500	char newname[32];
1501	struct timecounter *newtc, *tc;
1502	int error;
1503
1504	mtx_lock(&tc_lock);
1505	tc = timecounter;
1506	strlcpy(newname, tc->tc_name, sizeof(newname));
1507	mtx_unlock(&tc_lock);
1508
1509	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
1510	if (error != 0 || req->newptr == NULL)
1511		return (error);
1512
1513	mtx_lock(&tc_lock);
1514	/* Record that the tc in use now was specifically chosen. */
1515	tc_chosen = 1;
1516	if (strcmp(newname, tc->tc_name) == 0) {
1517		mtx_unlock(&tc_lock);
1518		return (0);
1519	}
1520	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
1521		if (strcmp(newname, newtc->tc_name) != 0)
1522			continue;
1523
1524		/* Warm up new timecounter. */
1525		(void)newtc->tc_get_timecount(newtc);
1526
1527		timecounter = newtc;
1528
1529		/*
1530		 * The vdso timehands update is deferred until the next
1531		 * 'tc_windup()'.
1532		 *
1533		 * This is prudent given that 'timekeep_push_vdso()' does not
1534		 * use any locking and that it can be called in hard interrupt
1535		 * context via 'tc_windup()'.
1536		 */
1537		break;
1538	}
1539	mtx_unlock(&tc_lock);
1540	return (newtc != NULL ? 0 : EINVAL);
1541}
1542SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware,
1543    CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, 0, 0,
1544    sysctl_kern_timecounter_hardware, "A",
1545    "Timecounter hardware selected");
1546
1547/* Report the available timecounter hardware. */
1548static int
1549sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
1550{
1551	struct sbuf sb;
1552	struct timecounter *tc;
1553	int error;
1554
1555	error = sysctl_wire_old_buffer(req, 0);
1556	if (error != 0)
1557		return (error);
1558	sbuf_new_for_sysctl(&sb, NULL, 0, req);
1559	mtx_lock(&tc_lock);
1560	for (tc = timecounters; tc != NULL; tc = tc->tc_next) {
1561		if (tc != timecounters)
1562			sbuf_putc(&sb, ' ');
1563		sbuf_printf(&sb, "%s(%d)", tc->tc_name, tc->tc_quality);
1564	}
1565	mtx_unlock(&tc_lock);
1566	error = sbuf_finish(&sb);
1567	sbuf_delete(&sb);
1568	return (error);
1569}
1570
1571SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice,
1572    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0,
1573    sysctl_kern_timecounter_choice, "A",
1574    "Timecounter hardware detected");
1575
1576/*
1577 * RFC 2783 PPS-API implementation.
1578 */
1579
1580/*
1581 *  Return true if the driver is aware of the abi version extensions in the
1582 *  pps_state structure, and it supports at least the given abi version number.
1583 */
1584static inline int
1585abi_aware(struct pps_state *pps, int vers)
1586{
1587
1588	return ((pps->kcmode & KCMODE_ABIFLAG) && pps->driver_abi >= vers);
1589}
1590
1591static int
1592pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps)
1593{
1594	int err, timo;
1595	pps_seq_t aseq, cseq;
1596	struct timeval tv;
1597
1598	if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1599		return (EINVAL);
1600
1601	/*
1602	 * If no timeout is requested, immediately return whatever values were
1603	 * most recently captured.  If timeout seconds is -1, that's a request
1604	 * to block without a timeout.  WITNESS won't let us sleep forever
1605	 * without a lock (we really don't need a lock), so just repeatedly
1606	 * sleep a long time.
1607	 */
1608	if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) {
1609		if (fapi->timeout.tv_sec == -1)
1610			timo = 0x7fffffff;
1611		else {
1612			tv.tv_sec = fapi->timeout.tv_sec;
1613			tv.tv_usec = fapi->timeout.tv_nsec / 1000;
1614			timo = tvtohz(&tv);
1615		}
1616		aseq = atomic_load_int(&pps->ppsinfo.assert_sequence);
1617		cseq = atomic_load_int(&pps->ppsinfo.clear_sequence);
1618		while (aseq == atomic_load_int(&pps->ppsinfo.assert_sequence) &&
1619		    cseq == atomic_load_int(&pps->ppsinfo.clear_sequence)) {
1620			if (abi_aware(pps, 1) && pps->driver_mtx != NULL) {
1621				if (pps->flags & PPSFLAG_MTX_SPIN) {
1622					err = msleep_spin(pps, pps->driver_mtx,
1623					    "ppsfch", timo);
1624				} else {
1625					err = msleep(pps, pps->driver_mtx, PCATCH,
1626					    "ppsfch", timo);
1627				}
1628			} else {
1629				err = tsleep(pps, PCATCH, "ppsfch", timo);
1630			}
1631			if (err == EWOULDBLOCK) {
1632				if (fapi->timeout.tv_sec == -1) {
1633					continue;
1634				} else {
1635					return (ETIMEDOUT);
1636				}
1637			} else if (err != 0) {
1638				return (err);
1639			}
1640		}
1641	}
1642
1643	pps->ppsinfo.current_mode = pps->ppsparam.mode;
1644	fapi->pps_info_buf = pps->ppsinfo;
1645
1646	return (0);
1647}
1648
1649int
1650pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1651{
1652	pps_params_t *app;
1653	struct pps_fetch_args *fapi;
1654#ifdef FFCLOCK
1655	struct pps_fetch_ffc_args *fapi_ffc;
1656#endif
1657#ifdef PPS_SYNC
1658	struct pps_kcbind_args *kapi;
1659#endif
1660
1661	KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
1662	switch (cmd) {
1663	case PPS_IOC_CREATE:
1664		return (0);
1665	case PPS_IOC_DESTROY:
1666		return (0);
1667	case PPS_IOC_SETPARAMS:
1668		app = (pps_params_t *)data;
1669		if (app->mode & ~pps->ppscap)
1670			return (EINVAL);
1671#ifdef FFCLOCK
1672		/* Ensure only a single clock is selected for ffc timestamp. */
1673		if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK)
1674			return (EINVAL);
1675#endif
1676		pps->ppsparam = *app;
1677		return (0);
1678	case PPS_IOC_GETPARAMS:
1679		app = (pps_params_t *)data;
1680		*app = pps->ppsparam;
1681		app->api_version = PPS_API_VERS_1;
1682		return (0);
1683	case PPS_IOC_GETCAP:
1684		*(int*)data = pps->ppscap;
1685		return (0);
1686	case PPS_IOC_FETCH:
1687		fapi = (struct pps_fetch_args *)data;
1688		return (pps_fetch(fapi, pps));
1689#ifdef FFCLOCK
1690	case PPS_IOC_FETCH_FFCOUNTER:
1691		fapi_ffc = (struct pps_fetch_ffc_args *)data;
1692		if (fapi_ffc->tsformat && fapi_ffc->tsformat !=
1693		    PPS_TSFMT_TSPEC)
1694			return (EINVAL);
1695		if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec)
1696			return (EOPNOTSUPP);
1697		pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode;
1698		fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc;
1699		/* Overwrite timestamps if feedback clock selected. */
1700		switch (pps->ppsparam.mode & PPS_TSCLK_MASK) {
1701		case PPS_TSCLK_FBCK:
1702			fapi_ffc->pps_info_buf_ffc.assert_timestamp =
1703			    pps->ppsinfo.assert_timestamp;
1704			fapi_ffc->pps_info_buf_ffc.clear_timestamp =
1705			    pps->ppsinfo.clear_timestamp;
1706			break;
1707		case PPS_TSCLK_FFWD:
1708			break;
1709		default:
1710			break;
1711		}
1712		return (0);
1713#endif /* FFCLOCK */
1714	case PPS_IOC_KCBIND:
1715#ifdef PPS_SYNC
1716		kapi = (struct pps_kcbind_args *)data;
1717		/* XXX Only root should be able to do this */
1718		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1719			return (EINVAL);
1720		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1721			return (EINVAL);
1722		if (kapi->edge & ~pps->ppscap)
1723			return (EINVAL);
1724		pps->kcmode = (kapi->edge & KCMODE_EDGEMASK) |
1725		    (pps->kcmode & KCMODE_ABIFLAG);
1726		return (0);
1727#else
1728		return (EOPNOTSUPP);
1729#endif
1730	default:
1731		return (ENOIOCTL);
1732	}
1733}
1734
1735void
1736pps_init(struct pps_state *pps)
1737{
1738	pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT;
1739	if (pps->ppscap & PPS_CAPTUREASSERT)
1740		pps->ppscap |= PPS_OFFSETASSERT;
1741	if (pps->ppscap & PPS_CAPTURECLEAR)
1742		pps->ppscap |= PPS_OFFSETCLEAR;
1743#ifdef FFCLOCK
1744	pps->ppscap |= PPS_TSCLK_MASK;
1745#endif
1746	pps->kcmode &= ~KCMODE_ABIFLAG;
1747}
1748
1749void
1750pps_init_abi(struct pps_state *pps)
1751{
1752
1753	pps_init(pps);
1754	if (pps->driver_abi > 0) {
1755		pps->kcmode |= KCMODE_ABIFLAG;
1756		pps->kernel_abi = PPS_ABI_VERSION;
1757	}
1758}
1759
1760void
1761pps_capture(struct pps_state *pps)
1762{
1763	struct timehands *th;
1764	struct timecounter *tc;
1765
1766	KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
1767	th = timehands;
1768	pps->capgen = atomic_load_acq_int(&th->th_generation);
1769	pps->capth = th;
1770#ifdef FFCLOCK
1771	pps->capffth = fftimehands;
1772#endif
1773	tc = th->th_counter;
1774	pps->capcount = tc->tc_get_timecount(tc);
1775}
1776
1777void
1778pps_event(struct pps_state *pps, int event)
1779{
1780	struct timehands *capth;
1781	struct timecounter *captc;
1782	uint64_t capth_scale;
1783	struct bintime bt;
1784	struct timespec *tsp, *osp;
1785	u_int tcount, *pcount;
1786	int foff;
1787	pps_seq_t *pseq;
1788#ifdef FFCLOCK
1789	struct timespec *tsp_ffc;
1790	pps_seq_t *pseq_ffc;
1791	ffcounter *ffcount;
1792#endif
1793#ifdef PPS_SYNC
1794	int fhard;
1795#endif
1796
1797	KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
1798	/* Nothing to do if not currently set to capture this event type. */
1799	if ((event & pps->ppsparam.mode) == 0)
1800		return;
1801
1802	/* Make a snapshot of the captured timehand */
1803	capth = pps->capth;
1804	captc = capth->th_counter;
1805	capth_scale = capth->th_scale;
1806	tcount = capth->th_offset_count;
1807	bt = capth->th_bintime;
1808
1809	/* If the timecounter was wound up underneath us, bail out. */
1810	atomic_thread_fence_acq();
1811	if (pps->capgen == 0 || pps->capgen != capth->th_generation)
1812		return;
1813
1814	/* Things would be easier with arrays. */
1815	if (event == PPS_CAPTUREASSERT) {
1816		tsp = &pps->ppsinfo.assert_timestamp;
1817		osp = &pps->ppsparam.assert_offset;
1818		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1819#ifdef PPS_SYNC
1820		fhard = pps->kcmode & PPS_CAPTUREASSERT;
1821#endif
1822		pcount = &pps->ppscount[0];
1823		pseq = &pps->ppsinfo.assert_sequence;
1824#ifdef FFCLOCK
1825		ffcount = &pps->ppsinfo_ffc.assert_ffcount;
1826		tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp;
1827		pseq_ffc = &pps->ppsinfo_ffc.assert_sequence;
1828#endif
1829	} else {
1830		tsp = &pps->ppsinfo.clear_timestamp;
1831		osp = &pps->ppsparam.clear_offset;
1832		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1833#ifdef PPS_SYNC
1834		fhard = pps->kcmode & PPS_CAPTURECLEAR;
1835#endif
1836		pcount = &pps->ppscount[1];
1837		pseq = &pps->ppsinfo.clear_sequence;
1838#ifdef FFCLOCK
1839		ffcount = &pps->ppsinfo_ffc.clear_ffcount;
1840		tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp;
1841		pseq_ffc = &pps->ppsinfo_ffc.clear_sequence;
1842#endif
1843	}
1844
1845	*pcount = pps->capcount;
1846
1847	/*
1848	 * If the timecounter changed, we cannot compare the count values, so
1849	 * we have to drop the rest of the PPS-stuff until the next event.
1850	 */
1851	if (__predict_false(pps->ppstc != captc)) {
1852		pps->ppstc = captc;
1853		pps->ppscount[2] = pps->capcount;
1854		return;
1855	}
1856
1857	(*pseq)++;
1858
1859	/* Convert the count to a timespec. */
1860	tcount = pps->capcount - tcount;
1861	tcount &= captc->tc_counter_mask;
1862	bintime_addx(&bt, capth_scale * tcount);
1863	bintime2timespec(&bt, tsp);
1864
1865	if (foff) {
1866		timespecadd(tsp, osp, tsp);
1867		if (tsp->tv_nsec < 0) {
1868			tsp->tv_nsec += 1000000000;
1869			tsp->tv_sec -= 1;
1870		}
1871	}
1872
1873#ifdef FFCLOCK
1874	*ffcount = pps->capffth->tick_ffcount + tcount;
1875	bt = pps->capffth->tick_time;
1876	ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt);
1877	bintime_add(&bt, &pps->capffth->tick_time);
1878	(*pseq_ffc)++;
1879	bintime2timespec(&bt, tsp_ffc);
1880#endif
1881
1882#ifdef PPS_SYNC
1883	if (fhard) {
1884		uint64_t delta_nsec;
1885		uint64_t freq;
1886
1887		/*
1888		 * Feed the NTP PLL/FLL.
1889		 * The FLL wants to know how many (hardware) nanoseconds
1890		 * elapsed since the previous event.
1891		 */
1892		tcount = pps->capcount - pps->ppscount[2];
1893		pps->ppscount[2] = pps->capcount;
1894		tcount &= captc->tc_counter_mask;
1895		delta_nsec = 1000000000;
1896		delta_nsec *= tcount;
1897		freq = captc->tc_frequency;
1898		delta_nsec = (delta_nsec + freq / 2) / freq;
1899		hardpps(tsp, (long)delta_nsec);
1900	}
1901#endif
1902
1903	/* Wakeup anyone sleeping in pps_fetch().  */
1904	wakeup(pps);
1905}
1906
1907/*
1908 * Timecounters need to be updated every so often to prevent the hardware
1909 * counter from overflowing.  Updating also recalculates the cached values
1910 * used by the get*() family of functions, so their precision depends on
1911 * the update frequency.
1912 */
1913
1914static int tc_tick;
1915SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
1916    "Approximate number of hardclock ticks in a millisecond");
1917
1918void
1919tc_ticktock(int cnt)
1920{
1921	static int count;
1922
1923	if (mtx_trylock_spin(&tc_setclock_mtx)) {
1924		count += cnt;
1925		if (count >= tc_tick) {
1926			count = 0;
1927			tc_windup(NULL);
1928		}
1929		mtx_unlock_spin(&tc_setclock_mtx);
1930	}
1931}
1932
1933static void __inline
1934tc_adjprecision(void)
1935{
1936	int t;
1937
1938	if (tc_timepercentage > 0) {
1939		t = (99 + tc_timepercentage) / tc_timepercentage;
1940		tc_precexp = fls(t + (t >> 1)) - 1;
1941		FREQ2BT(hz / tc_tick, &bt_timethreshold);
1942		FREQ2BT(hz, &bt_tickthreshold);
1943		bintime_shift(&bt_timethreshold, tc_precexp);
1944		bintime_shift(&bt_tickthreshold, tc_precexp);
1945	} else {
1946		tc_precexp = 31;
1947		bt_timethreshold.sec = INT_MAX;
1948		bt_timethreshold.frac = ~(uint64_t)0;
1949		bt_tickthreshold = bt_timethreshold;
1950	}
1951	sbt_timethreshold = bttosbt(bt_timethreshold);
1952	sbt_tickthreshold = bttosbt(bt_tickthreshold);
1953}
1954
1955static int
1956sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS)
1957{
1958	int error, val;
1959
1960	val = tc_timepercentage;
1961	error = sysctl_handle_int(oidp, &val, 0, req);
1962	if (error != 0 || req->newptr == NULL)
1963		return (error);
1964	tc_timepercentage = val;
1965	if (cold)
1966		goto done;
1967	tc_adjprecision();
1968done:
1969	return (0);
1970}
1971
1972/* Set up the requested number of timehands. */
1973static void
1974inittimehands(void *dummy)
1975{
1976	struct timehands *thp;
1977	int i;
1978
1979	TUNABLE_INT_FETCH("kern.timecounter.timehands_count",
1980	    &timehands_count);
1981	if (timehands_count < 1)
1982		timehands_count = 1;
1983	if (timehands_count > nitems(ths))
1984		timehands_count = nitems(ths);
1985	for (i = 1, thp = &ths[0]; i < timehands_count;  thp = &ths[i++])
1986		thp->th_next = &ths[i];
1987	thp->th_next = &ths[0];
1988
1989	TUNABLE_STR_FETCH("kern.timecounter.hardware", tc_from_tunable,
1990	    sizeof(tc_from_tunable));
1991
1992	mtx_init(&tc_lock, "tc", NULL, MTX_DEF);
1993}
1994SYSINIT(timehands, SI_SUB_TUNABLES, SI_ORDER_ANY, inittimehands, NULL);
1995
1996static void
1997inittimecounter(void *dummy)
1998{
1999	u_int p;
2000	int tick_rate;
2001
2002	/*
2003	 * Set the initial timeout to
2004	 * max(1, <approx. number of hardclock ticks in a millisecond>).
2005	 * People should probably not use the sysctl to set the timeout
2006	 * to smaller than its initial value, since that value is the
2007	 * smallest reasonable one.  If they want better timestamps they
2008	 * should use the non-"get"* functions.
2009	 */
2010	if (hz > 1000)
2011		tc_tick = (hz + 500) / 1000;
2012	else
2013		tc_tick = 1;
2014	tc_adjprecision();
2015	FREQ2BT(hz, &tick_bt);
2016	tick_sbt = bttosbt(tick_bt);
2017	tick_rate = hz / tc_tick;
2018	FREQ2BT(tick_rate, &tc_tick_bt);
2019	tc_tick_sbt = bttosbt(tc_tick_bt);
2020	p = (tc_tick * 1000000) / hz;
2021	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
2022
2023#ifdef FFCLOCK
2024	ffclock_init();
2025#endif
2026
2027	/* warm up new timecounter (again) and get rolling. */
2028	(void)timecounter->tc_get_timecount(timecounter);
2029	mtx_lock_spin(&tc_setclock_mtx);
2030	tc_windup(NULL);
2031	mtx_unlock_spin(&tc_setclock_mtx);
2032}
2033
2034SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
2035
2036/* Cpu tick handling -------------------------------------------------*/
2037
2038static bool cpu_tick_variable;
2039static uint64_t	cpu_tick_frequency;
2040
2041DPCPU_DEFINE_STATIC(uint64_t, tc_cpu_ticks_base);
2042DPCPU_DEFINE_STATIC(unsigned, tc_cpu_ticks_last);
2043
2044static uint64_t
2045tc_cpu_ticks(void)
2046{
2047	struct timecounter *tc;
2048	uint64_t res, *base;
2049	unsigned u, *last;
2050
2051	critical_enter();
2052	base = DPCPU_PTR(tc_cpu_ticks_base);
2053	last = DPCPU_PTR(tc_cpu_ticks_last);
2054	tc = timehands->th_counter;
2055	u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
2056	if (u < *last)
2057		*base += (uint64_t)tc->tc_counter_mask + 1;
2058	*last = u;
2059	res = u + *base;
2060	critical_exit();
2061	return (res);
2062}
2063
2064void
2065cpu_tick_calibration(void)
2066{
2067	static time_t last_calib;
2068
2069	if (time_uptime != last_calib && !(time_uptime & 0xf)) {
2070		cpu_tick_calibrate(0);
2071		last_calib = time_uptime;
2072	}
2073}
2074
2075/*
2076 * This function gets called every 16 seconds on only one designated
2077 * CPU in the system from hardclock() via cpu_tick_calibration()().
2078 *
2079 * Whenever the real time clock is stepped we get called with reset=1
2080 * to make sure we handle suspend/resume and similar events correctly.
2081 */
2082
2083static void
2084cpu_tick_calibrate(int reset)
2085{
2086	static uint64_t c_last;
2087	uint64_t c_this, c_delta;
2088	static struct bintime  t_last;
2089	struct bintime t_this, t_delta;
2090	uint32_t divi;
2091
2092	if (reset) {
2093		/* The clock was stepped, abort & reset */
2094		t_last.sec = 0;
2095		return;
2096	}
2097
2098	/* we don't calibrate fixed rate cputicks */
2099	if (!cpu_tick_variable)
2100		return;
2101
2102	getbinuptime(&t_this);
2103	c_this = cpu_ticks();
2104	if (t_last.sec != 0) {
2105		c_delta = c_this - c_last;
2106		t_delta = t_this;
2107		bintime_sub(&t_delta, &t_last);
2108		/*
2109		 * Headroom:
2110		 * 	2^(64-20) / 16[s] =
2111		 * 	2^(44) / 16[s] =
2112		 * 	17.592.186.044.416 / 16 =
2113		 * 	1.099.511.627.776 [Hz]
2114		 */
2115		divi = t_delta.sec << 20;
2116		divi |= t_delta.frac >> (64 - 20);
2117		c_delta <<= 20;
2118		c_delta /= divi;
2119		if (c_delta > cpu_tick_frequency) {
2120			if (0 && bootverbose)
2121				printf("cpu_tick increased to %ju Hz\n",
2122				    c_delta);
2123			cpu_tick_frequency = c_delta;
2124		}
2125	}
2126	c_last = c_this;
2127	t_last = t_this;
2128}
2129
2130void
2131set_cputicker(cpu_tick_f *func, uint64_t freq, bool isvariable)
2132{
2133
2134	if (func == NULL) {
2135		cpu_ticks = tc_cpu_ticks;
2136	} else {
2137		cpu_tick_frequency = freq;
2138		cpu_tick_variable = isvariable;
2139		cpu_ticks = func;
2140	}
2141}
2142
2143uint64_t
2144cpu_tickrate(void)
2145{
2146
2147	if (cpu_ticks == tc_cpu_ticks)
2148		return (tc_getfrequency());
2149	return (cpu_tick_frequency);
2150}
2151
2152/*
2153 * We need to be slightly careful converting cputicks to microseconds.
2154 * There is plenty of margin in 64 bits of microseconds (half a million
2155 * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
2156 * before divide conversion (to retain precision) we find that the
2157 * margin shrinks to 1.5 hours (one millionth of 146y).
2158 */
2159
2160uint64_t
2161cputick2usec(uint64_t tick)
2162{
2163	uint64_t tr;
2164	tr = cpu_tickrate();
2165	return ((tick / tr) * 1000000ULL) + ((tick % tr) * 1000000ULL) / tr;
2166}
2167
2168cpu_tick_f	*cpu_ticks = tc_cpu_ticks;
2169
2170static int vdso_th_enable = 1;
2171static int
2172sysctl_fast_gettime(SYSCTL_HANDLER_ARGS)
2173{
2174	int old_vdso_th_enable, error;
2175
2176	old_vdso_th_enable = vdso_th_enable;
2177	error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req);
2178	if (error != 0)
2179		return (error);
2180	vdso_th_enable = old_vdso_th_enable;
2181	return (0);
2182}
2183SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime,
2184    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
2185    NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day");
2186
2187uint32_t
2188tc_fill_vdso_timehands(struct vdso_timehands *vdso_th)
2189{
2190	struct timehands *th;
2191	uint32_t enabled;
2192
2193	th = timehands;
2194	vdso_th->th_scale = th->th_scale;
2195	vdso_th->th_offset_count = th->th_offset_count;
2196	vdso_th->th_counter_mask = th->th_counter->tc_counter_mask;
2197	vdso_th->th_offset = th->th_offset;
2198	vdso_th->th_boottime = th->th_boottime;
2199	if (th->th_counter->tc_fill_vdso_timehands != NULL) {
2200		enabled = th->th_counter->tc_fill_vdso_timehands(vdso_th,
2201		    th->th_counter);
2202	} else
2203		enabled = 0;
2204	if (!vdso_th_enable)
2205		enabled = 0;
2206	return (enabled);
2207}
2208
2209#ifdef COMPAT_FREEBSD32
2210uint32_t
2211tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32)
2212{
2213	struct timehands *th;
2214	uint32_t enabled;
2215
2216	th = timehands;
2217	*(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale;
2218	vdso_th32->th_offset_count = th->th_offset_count;
2219	vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask;
2220	vdso_th32->th_offset.sec = th->th_offset.sec;
2221	*(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac;
2222	vdso_th32->th_boottime.sec = th->th_boottime.sec;
2223	*(uint64_t *)&vdso_th32->th_boottime.frac[0] = th->th_boottime.frac;
2224	if (th->th_counter->tc_fill_vdso_timehands32 != NULL) {
2225		enabled = th->th_counter->tc_fill_vdso_timehands32(vdso_th32,
2226		    th->th_counter);
2227	} else
2228		enabled = 0;
2229	if (!vdso_th_enable)
2230		enabled = 0;
2231	return (enabled);
2232}
2233#endif
2234
2235#include "opt_ddb.h"
2236#ifdef DDB
2237#include <ddb/ddb.h>
2238
2239DB_SHOW_COMMAND(timecounter, db_show_timecounter)
2240{
2241	struct timehands *th;
2242	struct timecounter *tc;
2243	u_int val1, val2;
2244
2245	th = timehands;
2246	tc = th->th_counter;
2247	val1 = tc->tc_get_timecount(tc);
2248	__compiler_membar();
2249	val2 = tc->tc_get_timecount(tc);
2250
2251	db_printf("timecounter %p %s\n", tc, tc->tc_name);
2252	db_printf("  mask %#x freq %ju qual %d flags %#x priv %p\n",
2253	    tc->tc_counter_mask, (uintmax_t)tc->tc_frequency, tc->tc_quality,
2254	    tc->tc_flags, tc->tc_priv);
2255	db_printf("  val %#x %#x\n", val1, val2);
2256	db_printf("timehands adj %#jx scale %#jx ldelta %d off_cnt %d gen %d\n",
2257	    (uintmax_t)th->th_adjustment, (uintmax_t)th->th_scale,
2258	    th->th_large_delta, th->th_offset_count, th->th_generation);
2259	db_printf("  offset %jd %jd boottime %jd %jd\n",
2260	    (intmax_t)th->th_offset.sec, (uintmax_t)th->th_offset.frac,
2261	    (intmax_t)th->th_boottime.sec, (uintmax_t)th->th_boottime.frac);
2262}
2263#endif
2264