1/*-
2 ***********************************************************************
3 *								       *
4 * Copyright (c) David L. Mills 1993-2001			       *
5 *								       *
6 * Permission to use, copy, modify, and distribute this software and   *
7 * its documentation for any purpose and without fee is hereby	       *
8 * granted, provided that the above copyright notice appears in all    *
9 * copies and that both the copyright notice and this permission       *
10 * notice appear in supporting documentation, and that the name	       *
11 * University of Delaware not be used in advertising or publicity      *
12 * pertaining to distribution of the software without specific,	       *
13 * written prior permission. The University of Delaware makes no       *
14 * representations about the suitability this software for any	       *
15 * purpose. It is provided "as is" without express or implied	       *
16 * warranty.							       *
17 *								       *
18 **********************************************************************/
19
20/*
21 * Adapted from the original sources for FreeBSD and timecounters by:
22 * Poul-Henning Kamp <phk@FreeBSD.org>.
23 *
24 * The 32bit version of the "LP" macros seems a bit past its "sell by"
25 * date so I have retained only the 64bit version and included it directly
26 * in this file.
27 *
28 * Only minor changes done to interface with the timecounters over in
29 * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
30 * confusing and/or plain wrong in that context.
31 */
32
33#include <sys/cdefs.h>
34#include "opt_ntp.h"
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/sysproto.h>
39#include <sys/eventhandler.h>
40#include <sys/kernel.h>
41#include <sys/priv.h>
42#include <sys/proc.h>
43#include <sys/lock.h>
44#include <sys/mutex.h>
45#include <sys/time.h>
46#include <sys/timex.h>
47#include <sys/timetc.h>
48#include <sys/timepps.h>
49#include <sys/syscallsubr.h>
50#include <sys/sysctl.h>
51
52#ifdef PPS_SYNC
53FEATURE(pps_sync, "Support usage of external PPS signal by kernel PLL");
54#endif
55
56/*
57 * Single-precision macros for 64-bit machines
58 */
59typedef int64_t l_fp;
60#define L_ADD(v, u)	((v) += (u))
61#define L_SUB(v, u)	((v) -= (u))
62#define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
63#define L_NEG(v)	((v) = -(v))
64#define L_RSHIFT(v, n) \
65	do { \
66		if ((v) < 0) \
67			(v) = -(-(v) >> (n)); \
68		else \
69			(v) = (v) >> (n); \
70	} while (0)
71#define L_MPY(v, a)	((v) *= (a))
72#define L_CLR(v)	((v) = 0)
73#define L_ISNEG(v)	((v) < 0)
74#define L_LINT(v, a) \
75	do { \
76		if ((a) < 0) \
77			((v) = -((int64_t)(-(a)) << 32)); \
78		else \
79			((v) = (int64_t)(a) << 32); \
80	} while (0)
81#define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
82
83/*
84 * Generic NTP kernel interface
85 *
86 * These routines constitute the Network Time Protocol (NTP) interfaces
87 * for user and daemon application programs. The ntp_gettime() routine
88 * provides the time, maximum error (synch distance) and estimated error
89 * (dispersion) to client user application programs. The ntp_adjtime()
90 * routine is used by the NTP daemon to adjust the system clock to an
91 * externally derived time. The time offset and related variables set by
92 * this routine are used by other routines in this module to adjust the
93 * phase and frequency of the clock discipline loop which controls the
94 * system clock.
95 *
96 * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
97 * defined), the time at each tick interrupt is derived directly from
98 * the kernel time variable. When the kernel time is reckoned in
99 * microseconds, (NTP_NANO undefined), the time is derived from the
100 * kernel time variable together with a variable representing the
101 * leftover nanoseconds at the last tick interrupt. In either case, the
102 * current nanosecond time is reckoned from these values plus an
103 * interpolated value derived by the clock routines in another
104 * architecture-specific module. The interpolation can use either a
105 * dedicated counter or a processor cycle counter (PCC) implemented in
106 * some architectures.
107 *
108 * Note that all routines must run at priority splclock or higher.
109 */
110/*
111 * Phase/frequency-lock loop (PLL/FLL) definitions
112 *
113 * The nanosecond clock discipline uses two variable types, time
114 * variables and frequency variables. Both types are represented as 64-
115 * bit fixed-point quantities with the decimal point between two 32-bit
116 * halves. On a 32-bit machine, each half is represented as a single
117 * word and mathematical operations are done using multiple-precision
118 * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
119 * used.
120 *
121 * A time variable is a signed 64-bit fixed-point number in ns and
122 * fraction. It represents the remaining time offset to be amortized
123 * over succeeding tick interrupts. The maximum time offset is about
124 * 0.5 s and the resolution is about 2.3e-10 ns.
125 *
126 *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
127 *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
128 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
129 * |s s s|			 ns				   |
130 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
131 * |			    fraction				   |
132 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
133 *
134 * A frequency variable is a signed 64-bit fixed-point number in ns/s
135 * and fraction. It represents the ns and fraction to be added to the
136 * kernel time variable at each second. The maximum frequency offset is
137 * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
138 *
139 *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
140 *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
141 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
142 * |s s s s s s s s s s s s s|	          ns/s			   |
143 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
144 * |			    fraction				   |
145 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
146 */
147/*
148 * The following variables establish the state of the PLL/FLL and the
149 * residual time and frequency offset of the local clock.
150 */
151#define SHIFT_PLL	4		/* PLL loop gain (shift) */
152#define SHIFT_FLL	2		/* FLL loop gain (shift) */
153
154static int time_state = TIME_OK;	/* clock state */
155int time_status = STA_UNSYNC;	/* clock status bits */
156static long time_tai;			/* TAI offset (s) */
157static long time_monitor;		/* last time offset scaled (ns) */
158static long time_constant;		/* poll interval (shift) (s) */
159static long time_precision = 1;		/* clock precision (ns) */
160static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
161long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
162static long time_reftime;		/* uptime at last adjustment (s) */
163static l_fp time_offset;		/* time offset (ns) */
164static l_fp time_freq;			/* frequency offset (ns/s) */
165static l_fp time_adj;			/* tick adjust (ns/s) */
166
167static int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
168
169static struct mtx ntp_lock;
170MTX_SYSINIT(ntp, &ntp_lock, "ntp", MTX_SPIN);
171
172#define	NTP_LOCK()		mtx_lock_spin(&ntp_lock)
173#define	NTP_UNLOCK()		mtx_unlock_spin(&ntp_lock)
174#define	NTP_ASSERT_LOCKED()	mtx_assert(&ntp_lock, MA_OWNED)
175
176#ifdef PPS_SYNC
177/*
178 * The following variables are used when a pulse-per-second (PPS) signal
179 * is available and connected via a modem control lead. They establish
180 * the engineering parameters of the clock discipline loop when
181 * controlled by the PPS signal.
182 */
183#define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
184#define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
185#define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
186#define PPS_PAVG	4		/* phase avg interval (s) (shift) */
187#define PPS_VALID	120		/* PPS signal watchdog max (s) */
188#define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
189#define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
190
191static struct timespec pps_tf[3];	/* phase median filter */
192static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
193static long pps_fcount;			/* frequency accumulator */
194static long pps_jitter;			/* nominal jitter (ns) */
195static long pps_stabil;			/* nominal stability (scaled ns/s) */
196static long pps_lastsec;		/* time at last calibration (s) */
197static int pps_valid;			/* signal watchdog counter */
198static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
199static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
200static int pps_intcnt;			/* wander counter */
201
202/*
203 * PPS signal quality monitors
204 */
205static long pps_calcnt;			/* calibration intervals */
206static long pps_jitcnt;			/* jitter limit exceeded */
207static long pps_stbcnt;			/* stability limit exceeded */
208static long pps_errcnt;			/* calibration errors */
209#endif /* PPS_SYNC */
210/*
211 * End of phase/frequency-lock loop (PLL/FLL) definitions
212 */
213
214static void hardupdate(long offset);
215static void ntp_gettime1(struct ntptimeval *ntvp);
216static bool ntp_is_time_error(int tsl);
217
218static bool
219ntp_is_time_error(int tsl)
220{
221
222	/*
223	 * Status word error decode. If any of these conditions occur,
224	 * an error is returned, instead of the status word. Most
225	 * applications will care only about the fact the system clock
226	 * may not be trusted, not about the details.
227	 *
228	 * Hardware or software error
229	 */
230	if ((tsl & (STA_UNSYNC | STA_CLOCKERR)) ||
231
232	/*
233	 * PPS signal lost when either time or frequency synchronization
234	 * requested
235	 */
236	    (tsl & (STA_PPSFREQ | STA_PPSTIME) &&
237	    !(tsl & STA_PPSSIGNAL)) ||
238
239	/*
240	 * PPS jitter exceeded when time synchronization requested
241	 */
242	    (tsl & STA_PPSTIME && tsl & STA_PPSJITTER) ||
243
244	/*
245	 * PPS wander exceeded or calibration error when frequency
246	 * synchronization requested
247	 */
248	    (tsl & STA_PPSFREQ &&
249	    tsl & (STA_PPSWANDER | STA_PPSERROR)))
250		return (true);
251
252	return (false);
253}
254
255static void
256ntp_gettime1(struct ntptimeval *ntvp)
257{
258	struct timespec atv;	/* nanosecond time */
259
260	NTP_ASSERT_LOCKED();
261
262	nanotime(&atv);
263	ntvp->time.tv_sec = atv.tv_sec;
264	ntvp->time.tv_nsec = atv.tv_nsec;
265	ntvp->maxerror = time_maxerror;
266	ntvp->esterror = time_esterror;
267	ntvp->tai = time_tai;
268	ntvp->time_state = time_state;
269
270	if (ntp_is_time_error(time_status))
271		ntvp->time_state = TIME_ERROR;
272}
273
274/*
275 * ntp_gettime() - NTP user application interface
276 *
277 * See the timex.h header file for synopsis and API description.  Note that
278 * the TAI offset is returned in the ntvtimeval.tai structure member.
279 */
280#ifndef _SYS_SYSPROTO_H_
281struct ntp_gettime_args {
282	struct ntptimeval *ntvp;
283};
284#endif
285/* ARGSUSED */
286int
287sys_ntp_gettime(struct thread *td, struct ntp_gettime_args *uap)
288{
289	struct ntptimeval ntv;
290
291	memset(&ntv, 0, sizeof(ntv));
292
293	NTP_LOCK();
294	ntp_gettime1(&ntv);
295	NTP_UNLOCK();
296
297	td->td_retval[0] = ntv.time_state;
298	return (copyout(&ntv, uap->ntvp, sizeof(ntv)));
299}
300
301static int
302ntp_sysctl(SYSCTL_HANDLER_ARGS)
303{
304	struct ntptimeval ntv;	/* temporary structure */
305
306	memset(&ntv, 0, sizeof(ntv));
307
308	NTP_LOCK();
309	ntp_gettime1(&ntv);
310	NTP_UNLOCK();
311
312	return (sysctl_handle_opaque(oidp, &ntv, sizeof(ntv), req));
313}
314
315SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
316    "");
317SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE | CTLFLAG_RD |
318    CTLFLAG_MPSAFE, 0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval",
319    "");
320
321#ifdef PPS_SYNC
322SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW,
323    &pps_shiftmax, 0, "Max interval duration (sec) (shift)");
324SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW,
325    &pps_shift, 0, "Interval duration (sec) (shift)");
326SYSCTL_LONG(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD,
327    &time_monitor, 0, "Last time offset scaled (ns)");
328
329SYSCTL_S64(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD | CTLFLAG_MPSAFE,
330    &pps_freq, 0,
331    "Scaled frequency offset (ns/sec)");
332SYSCTL_S64(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD | CTLFLAG_MPSAFE,
333    &time_freq, 0,
334    "Frequency offset (ns/sec)");
335#endif
336
337/*
338 * ntp_adjtime() - NTP daemon application interface
339 *
340 * See the timex.h header file for synopsis and API description.  Note that
341 * the timex.constant structure member has a dual purpose to set the time
342 * constant and to set the TAI offset.
343 */
344int
345kern_ntp_adjtime(struct thread *td, struct timex *ntv, int *retvalp)
346{
347	long freq;		/* frequency ns/s) */
348	int modes;		/* mode bits from structure */
349	int error, retval;
350
351	/*
352	 * Update selected clock variables - only the superuser can
353	 * change anything. Note that there is no error checking here on
354	 * the assumption the superuser should know what it is doing.
355	 * Note that either the time constant or TAI offset are loaded
356	 * from the ntv.constant member, depending on the mode bits. If
357	 * the STA_PLL bit in the status word is cleared, the state and
358	 * status words are reset to the initial values at boot.
359	 */
360	modes = ntv->modes;
361	error = 0;
362	if (modes)
363		error = priv_check(td, PRIV_NTP_ADJTIME);
364	if (error != 0)
365		return (error);
366	NTP_LOCK();
367	if (modes & MOD_MAXERROR)
368		time_maxerror = ntv->maxerror;
369	if (modes & MOD_ESTERROR)
370		time_esterror = ntv->esterror;
371	if (modes & MOD_STATUS) {
372		if (time_status & STA_PLL && !(ntv->status & STA_PLL)) {
373			time_state = TIME_OK;
374			time_status = STA_UNSYNC;
375#ifdef PPS_SYNC
376			pps_shift = PPS_FAVG;
377#endif /* PPS_SYNC */
378		}
379		time_status &= STA_RONLY;
380		time_status |= ntv->status & ~STA_RONLY;
381	}
382	if (modes & MOD_TIMECONST) {
383		if (ntv->constant < 0)
384			time_constant = 0;
385		else if (ntv->constant > MAXTC)
386			time_constant = MAXTC;
387		else
388			time_constant = ntv->constant;
389	}
390	if (modes & MOD_TAI) {
391		if (ntv->constant > 0) /* XXX zero & negative numbers ? */
392			time_tai = ntv->constant;
393	}
394#ifdef PPS_SYNC
395	if (modes & MOD_PPSMAX) {
396		if (ntv->shift < PPS_FAVG)
397			pps_shiftmax = PPS_FAVG;
398		else if (ntv->shift > PPS_FAVGMAX)
399			pps_shiftmax = PPS_FAVGMAX;
400		else
401			pps_shiftmax = ntv->shift;
402	}
403#endif /* PPS_SYNC */
404	if (modes & MOD_NANO)
405		time_status |= STA_NANO;
406	if (modes & MOD_MICRO)
407		time_status &= ~STA_NANO;
408	if (modes & MOD_CLKB)
409		time_status |= STA_CLK;
410	if (modes & MOD_CLKA)
411		time_status &= ~STA_CLK;
412	if (modes & MOD_FREQUENCY) {
413		freq = (ntv->freq * 1000LL) >> 16;
414		if (freq > MAXFREQ)
415			L_LINT(time_freq, MAXFREQ);
416		else if (freq < -MAXFREQ)
417			L_LINT(time_freq, -MAXFREQ);
418		else {
419			/*
420			 * ntv->freq is [PPM * 2^16] = [us/s * 2^16]
421			 * time_freq is [ns/s * 2^32]
422			 */
423			time_freq = ntv->freq * 1000LL * 65536LL;
424		}
425#ifdef PPS_SYNC
426		pps_freq = time_freq;
427#endif /* PPS_SYNC */
428	}
429	if (modes & MOD_OFFSET) {
430		if (time_status & STA_NANO)
431			hardupdate(ntv->offset);
432		else
433			hardupdate(ntv->offset * 1000);
434	}
435
436	/*
437	 * Retrieve all clock variables. Note that the TAI offset is
438	 * returned only by ntp_gettime();
439	 */
440	if (time_status & STA_NANO)
441		ntv->offset = L_GINT(time_offset);
442	else
443		ntv->offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
444	ntv->freq = L_GINT((time_freq / 1000LL) << 16);
445	ntv->maxerror = time_maxerror;
446	ntv->esterror = time_esterror;
447	ntv->status = time_status;
448	ntv->constant = time_constant;
449	if (time_status & STA_NANO)
450		ntv->precision = time_precision;
451	else
452		ntv->precision = time_precision / 1000;
453	ntv->tolerance = MAXFREQ * SCALE_PPM;
454#ifdef PPS_SYNC
455	ntv->shift = pps_shift;
456	ntv->ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
457	if (time_status & STA_NANO)
458		ntv->jitter = pps_jitter;
459	else
460		ntv->jitter = pps_jitter / 1000;
461	ntv->stabil = pps_stabil;
462	ntv->calcnt = pps_calcnt;
463	ntv->errcnt = pps_errcnt;
464	ntv->jitcnt = pps_jitcnt;
465	ntv->stbcnt = pps_stbcnt;
466#endif /* PPS_SYNC */
467	retval = ntp_is_time_error(time_status) ? TIME_ERROR : time_state;
468	NTP_UNLOCK();
469
470	*retvalp = retval;
471	return (0);
472}
473
474#ifndef _SYS_SYSPROTO_H_
475struct ntp_adjtime_args {
476	struct timex *tp;
477};
478#endif
479
480int
481sys_ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
482{
483	struct timex ntv;
484	int error, retval;
485
486	error = copyin(uap->tp, &ntv, sizeof(ntv));
487	if (error == 0) {
488		error = kern_ntp_adjtime(td, &ntv, &retval);
489		if (error == 0) {
490			error = copyout(&ntv, uap->tp, sizeof(ntv));
491			if (error == 0)
492				td->td_retval[0] = retval;
493		}
494	}
495	return (error);
496}
497
498/*
499 * second_overflow() - called after ntp_tick_adjust()
500 *
501 * This routine is ordinarily called immediately following the above
502 * routine ntp_tick_adjust(). While these two routines are normally
503 * combined, they are separated here only for the purposes of
504 * simulation.
505 */
506void
507ntp_update_second(int64_t *adjustment, time_t *newsec)
508{
509	int tickrate;
510	l_fp ftemp;		/* 32/64-bit temporary */
511
512	NTP_LOCK();
513
514	/*
515	 * On rollover of the second both the nanosecond and microsecond
516	 * clocks are updated and the state machine cranked as
517	 * necessary. The phase adjustment to be used for the next
518	 * second is calculated and the maximum error is increased by
519	 * the tolerance.
520	 */
521	time_maxerror += MAXFREQ / 1000;
522
523	/*
524	 * Leap second processing. If in leap-insert state at
525	 * the end of the day, the system clock is set back one
526	 * second; if in leap-delete state, the system clock is
527	 * set ahead one second. The nano_time() routine or
528	 * external clock driver will insure that reported time
529	 * is always monotonic.
530	 */
531	switch (time_state) {
532		/*
533		 * No warning.
534		 */
535		case TIME_OK:
536		if (time_status & STA_INS)
537			time_state = TIME_INS;
538		else if (time_status & STA_DEL)
539			time_state = TIME_DEL;
540		break;
541
542		/*
543		 * Insert second 23:59:60 following second
544		 * 23:59:59.
545		 */
546		case TIME_INS:
547		if (!(time_status & STA_INS))
548			time_state = TIME_OK;
549		else if ((*newsec) % 86400 == 0) {
550			(*newsec)--;
551			time_state = TIME_OOP;
552			time_tai++;
553		}
554		break;
555
556		/*
557		 * Delete second 23:59:59.
558		 */
559		case TIME_DEL:
560		if (!(time_status & STA_DEL))
561			time_state = TIME_OK;
562		else if (((*newsec) + 1) % 86400 == 0) {
563			(*newsec)++;
564			time_tai--;
565			time_state = TIME_WAIT;
566		}
567		break;
568
569		/*
570		 * Insert second in progress.
571		 */
572		case TIME_OOP:
573			time_state = TIME_WAIT;
574		break;
575
576		/*
577		 * Wait for status bits to clear.
578		 */
579		case TIME_WAIT:
580		if (!(time_status & (STA_INS | STA_DEL)))
581			time_state = TIME_OK;
582	}
583
584	/*
585	 * Compute the total time adjustment for the next second
586	 * in ns. The offset is reduced by a factor depending on
587	 * whether the PPS signal is operating. Note that the
588	 * value is in effect scaled by the clock frequency,
589	 * since the adjustment is added at each tick interrupt.
590	 */
591	ftemp = time_offset;
592#ifdef PPS_SYNC
593	/* XXX even if PPS signal dies we should finish adjustment ? */
594	if (time_status & STA_PPSTIME && time_status &
595	    STA_PPSSIGNAL)
596		L_RSHIFT(ftemp, pps_shift);
597	else
598		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
599#else
600		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
601#endif /* PPS_SYNC */
602	time_adj = ftemp;
603	L_SUB(time_offset, ftemp);
604	L_ADD(time_adj, time_freq);
605
606	/*
607	 * Apply any correction from adjtime(2).  If more than one second
608	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500 PPM)
609	 * until the last second is slewed the final < 500 usecs.
610	 */
611	if (time_adjtime != 0) {
612		if (time_adjtime > 1000000)
613			tickrate = 5000;
614		else if (time_adjtime < -1000000)
615			tickrate = -5000;
616		else if (time_adjtime > 500)
617			tickrate = 500;
618		else if (time_adjtime < -500)
619			tickrate = -500;
620		else
621			tickrate = time_adjtime;
622		time_adjtime -= tickrate;
623		L_LINT(ftemp, tickrate * 1000);
624		L_ADD(time_adj, ftemp);
625	}
626	*adjustment = time_adj;
627
628#ifdef PPS_SYNC
629	if (pps_valid > 0)
630		pps_valid--;
631	else
632		time_status &= ~STA_PPSSIGNAL;
633#endif /* PPS_SYNC */
634
635	NTP_UNLOCK();
636}
637
638/*
639 * hardupdate() - local clock update
640 *
641 * This routine is called by ntp_adjtime() to update the local clock
642 * phase and frequency. The implementation is of an adaptive-parameter,
643 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
644 * time and frequency offset estimates for each call. If the kernel PPS
645 * discipline code is configured (PPS_SYNC), the PPS signal itself
646 * determines the new time offset, instead of the calling argument.
647 * Presumably, calls to ntp_adjtime() occur only when the caller
648 * believes the local clock is valid within some bound (+-128 ms with
649 * NTP). If the caller's time is far different than the PPS time, an
650 * argument will ensue, and it's not clear who will lose.
651 *
652 * For uncompensated quartz crystal oscillators and nominal update
653 * intervals less than 256 s, operation should be in phase-lock mode,
654 * where the loop is disciplined to phase. For update intervals greater
655 * than 1024 s, operation should be in frequency-lock mode, where the
656 * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
657 * is selected by the STA_MODE status bit.
658 */
659static void
660hardupdate(long offset /* clock offset (ns) */)
661{
662	long mtemp;
663	l_fp ftemp;
664
665	NTP_ASSERT_LOCKED();
666
667	/*
668	 * Select how the phase is to be controlled and from which
669	 * source. If the PPS signal is present and enabled to
670	 * discipline the time, the PPS offset is used; otherwise, the
671	 * argument offset is used.
672	 */
673	if (!(time_status & STA_PLL))
674		return;
675	if (!(time_status & STA_PPSTIME && time_status &
676	    STA_PPSSIGNAL)) {
677		if (offset > MAXPHASE)
678			time_monitor = MAXPHASE;
679		else if (offset < -MAXPHASE)
680			time_monitor = -MAXPHASE;
681		else
682			time_monitor = offset;
683		L_LINT(time_offset, time_monitor);
684	}
685
686	/*
687	 * Select how the frequency is to be controlled and in which
688	 * mode (PLL or FLL). If the PPS signal is present and enabled
689	 * to discipline the frequency, the PPS frequency is used;
690	 * otherwise, the argument offset is used to compute it.
691	 */
692	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
693		time_reftime = time_uptime;
694		return;
695	}
696	if (time_status & STA_FREQHOLD || time_reftime == 0)
697		time_reftime = time_uptime;
698	mtemp = time_uptime - time_reftime;
699	L_LINT(ftemp, time_monitor);
700	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
701	L_MPY(ftemp, mtemp);
702	L_ADD(time_freq, ftemp);
703	time_status &= ~STA_MODE;
704	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
705	    MAXSEC)) {
706		L_LINT(ftemp, (time_monitor << 4) / mtemp);
707		L_RSHIFT(ftemp, SHIFT_FLL + 4);
708		L_ADD(time_freq, ftemp);
709		time_status |= STA_MODE;
710	}
711	time_reftime = time_uptime;
712	if (L_GINT(time_freq) > MAXFREQ)
713		L_LINT(time_freq, MAXFREQ);
714	else if (L_GINT(time_freq) < -MAXFREQ)
715		L_LINT(time_freq, -MAXFREQ);
716}
717
718#ifdef PPS_SYNC
719/*
720 * hardpps() - discipline CPU clock oscillator to external PPS signal
721 *
722 * This routine is called at each PPS interrupt in order to discipline
723 * the CPU clock oscillator to the PPS signal. There are two independent
724 * first-order feedback loops, one for the phase, the other for the
725 * frequency. The phase loop measures and grooms the PPS phase offset
726 * and leaves it in a handy spot for the seconds overflow routine. The
727 * frequency loop averages successive PPS phase differences and
728 * calculates the PPS frequency offset, which is also processed by the
729 * seconds overflow routine. The code requires the caller to capture the
730 * time and architecture-dependent hardware counter values in
731 * nanoseconds at the on-time PPS signal transition.
732 *
733 * Note that, on some Unix systems this routine runs at an interrupt
734 * priority level higher than the timer interrupt routine hardclock().
735 * Therefore, the variables used are distinct from the hardclock()
736 * variables, except for the actual time and frequency variables, which
737 * are determined by this routine and updated atomically.
738 *
739 * tsp  - time at current PPS event
740 * delta_nsec - time elapsed between the previous and current PPS event
741 */
742void
743hardpps(struct timespec *tsp, long delta_nsec)
744{
745	long u_sec, u_nsec, v_nsec; /* temps */
746	l_fp ftemp;
747
748	NTP_LOCK();
749
750	/*
751	 * The signal is first processed by a range gate and frequency
752	 * discriminator. The range gate rejects noise spikes outside
753	 * the range +-500 us. The frequency discriminator rejects input
754	 * signals with apparent frequency outside the range 1 +-500
755	 * PPM. If two hits occur in the same second, we ignore the
756	 * later hit; if not and a hit occurs outside the range gate,
757	 * keep the later hit for later comparison, but do not process
758	 * it.
759	 */
760	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
761	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
762	pps_valid = PPS_VALID;
763	u_sec = tsp->tv_sec;
764	u_nsec = tsp->tv_nsec;
765	if (u_nsec >= (NANOSECOND >> 1)) {
766		u_nsec -= NANOSECOND;
767		u_sec++;
768	}
769	v_nsec = u_nsec - pps_tf[0].tv_nsec;
770	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND - MAXFREQ)
771		goto out;
772	pps_tf[2] = pps_tf[1];
773	pps_tf[1] = pps_tf[0];
774	pps_tf[0].tv_sec = u_sec;
775	pps_tf[0].tv_nsec = u_nsec;
776
777	/*
778	 * Update the frequency accumulator using the difference between the
779	 * current and previous PPS event measured directly by the timecounter.
780	 */
781	pps_fcount += delta_nsec - NANOSECOND;
782	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
783		goto out;
784	time_status &= ~STA_PPSJITTER;
785
786	/*
787	 * A three-stage median filter is used to help denoise the PPS
788	 * time. The median sample becomes the time offset estimate; the
789	 * difference between the other two samples becomes the time
790	 * dispersion (jitter) estimate.
791	 */
792	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
793		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
794			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
795			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
796		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
797			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
798			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
799		} else {
800			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
801			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
802		}
803	} else {
804		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
805			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
806			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
807		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
808			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
809			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
810		} else {
811			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
812			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
813		}
814	}
815
816	/*
817	 * Nominal jitter is due to PPS signal noise and interrupt
818	 * latency. If it exceeds the popcorn threshold, the sample is
819	 * discarded. otherwise, if so enabled, the time offset is
820	 * updated. We can tolerate a modest loss of data here without
821	 * much degrading time accuracy.
822	 *
823	 * The measurements being checked here were made with the system
824	 * timecounter, so the popcorn threshold is not allowed to fall below
825	 * the number of nanoseconds in two ticks of the timecounter.  For a
826	 * timecounter running faster than 1 GHz the lower bound is 2ns, just
827	 * to avoid a nonsensical threshold of zero.
828	*/
829	if (u_nsec > lmax(pps_jitter << PPS_POPCORN,
830	    2 * (NANOSECOND / (long)qmin(NANOSECOND, tc_getfrequency())))) {
831		time_status |= STA_PPSJITTER;
832		pps_jitcnt++;
833	} else if (time_status & STA_PPSTIME) {
834		time_monitor = -v_nsec;
835		L_LINT(time_offset, time_monitor);
836	}
837	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
838	u_sec = pps_tf[0].tv_sec - pps_lastsec;
839	if (u_sec < (1 << pps_shift))
840		goto out;
841
842	/*
843	 * At the end of the calibration interval the difference between
844	 * the first and last counter values becomes the scaled
845	 * frequency. It will later be divided by the length of the
846	 * interval to determine the frequency update. If the frequency
847	 * exceeds a sanity threshold, or if the actual calibration
848	 * interval is not equal to the expected length, the data are
849	 * discarded. We can tolerate a modest loss of data here without
850	 * much degrading frequency accuracy.
851	 */
852	pps_calcnt++;
853	v_nsec = -pps_fcount;
854	pps_lastsec = pps_tf[0].tv_sec;
855	pps_fcount = 0;
856	u_nsec = MAXFREQ << pps_shift;
857	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 << pps_shift)) {
858		time_status |= STA_PPSERROR;
859		pps_errcnt++;
860		goto out;
861	}
862
863	/*
864	 * Here the raw frequency offset and wander (stability) is
865	 * calculated. If the wander is less than the wander threshold
866	 * for four consecutive averaging intervals, the interval is
867	 * doubled; if it is greater than the threshold for four
868	 * consecutive intervals, the interval is halved. The scaled
869	 * frequency offset is converted to frequency offset. The
870	 * stability metric is calculated as the average of recent
871	 * frequency changes, but is used only for performance
872	 * monitoring.
873	 */
874	L_LINT(ftemp, v_nsec);
875	L_RSHIFT(ftemp, pps_shift);
876	L_SUB(ftemp, pps_freq);
877	u_nsec = L_GINT(ftemp);
878	if (u_nsec > PPS_MAXWANDER) {
879		L_LINT(ftemp, PPS_MAXWANDER);
880		pps_intcnt--;
881		time_status |= STA_PPSWANDER;
882		pps_stbcnt++;
883	} else if (u_nsec < -PPS_MAXWANDER) {
884		L_LINT(ftemp, -PPS_MAXWANDER);
885		pps_intcnt--;
886		time_status |= STA_PPSWANDER;
887		pps_stbcnt++;
888	} else {
889		pps_intcnt++;
890	}
891	if (pps_intcnt >= 4) {
892		pps_intcnt = 4;
893		if (pps_shift < pps_shiftmax) {
894			pps_shift++;
895			pps_intcnt = 0;
896		}
897	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
898		pps_intcnt = -4;
899		if (pps_shift > PPS_FAVG) {
900			pps_shift--;
901			pps_intcnt = 0;
902		}
903	}
904	if (u_nsec < 0)
905		u_nsec = -u_nsec;
906	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
907
908	/*
909	 * The PPS frequency is recalculated and clamped to the maximum
910	 * MAXFREQ. If enabled, the system clock frequency is updated as
911	 * well.
912	 */
913	L_ADD(pps_freq, ftemp);
914	u_nsec = L_GINT(pps_freq);
915	if (u_nsec > MAXFREQ)
916		L_LINT(pps_freq, MAXFREQ);
917	else if (u_nsec < -MAXFREQ)
918		L_LINT(pps_freq, -MAXFREQ);
919	if (time_status & STA_PPSFREQ)
920		time_freq = pps_freq;
921
922out:
923	NTP_UNLOCK();
924}
925#endif /* PPS_SYNC */
926
927#ifndef _SYS_SYSPROTO_H_
928struct adjtime_args {
929	struct timeval *delta;
930	struct timeval *olddelta;
931};
932#endif
933/* ARGSUSED */
934int
935sys_adjtime(struct thread *td, struct adjtime_args *uap)
936{
937	struct timeval delta, olddelta, *deltap;
938	int error;
939
940	if (uap->delta) {
941		error = copyin(uap->delta, &delta, sizeof(delta));
942		if (error)
943			return (error);
944		deltap = &delta;
945	} else
946		deltap = NULL;
947	error = kern_adjtime(td, deltap, &olddelta);
948	if (uap->olddelta && error == 0)
949		error = copyout(&olddelta, uap->olddelta, sizeof(olddelta));
950	return (error);
951}
952
953int
954kern_adjtime(struct thread *td, struct timeval *delta, struct timeval *olddelta)
955{
956	struct timeval atv;
957	int64_t ltr, ltw;
958	int error;
959
960	if (delta != NULL) {
961		error = priv_check(td, PRIV_ADJTIME);
962		if (error != 0)
963			return (error);
964		ltw = (int64_t)delta->tv_sec * 1000000 + delta->tv_usec;
965	}
966	NTP_LOCK();
967	ltr = time_adjtime;
968	if (delta != NULL)
969		time_adjtime = ltw;
970	NTP_UNLOCK();
971	if (olddelta != NULL) {
972		atv.tv_sec = ltr / 1000000;
973		atv.tv_usec = ltr % 1000000;
974		if (atv.tv_usec < 0) {
975			atv.tv_usec += 1000000;
976			atv.tv_sec--;
977		}
978		*olddelta = atv;
979	}
980	return (0);
981}
982
983static struct callout resettodr_callout;
984static int resettodr_period = 1800;
985
986static void
987periodic_resettodr(void *arg __unused)
988{
989
990	/*
991	 * Read of time_status is lock-less, which is fine since
992	 * ntp_is_time_error() operates on the consistent read value.
993	 */
994	if (!ntp_is_time_error(time_status))
995		resettodr();
996	if (resettodr_period > 0)
997		callout_schedule(&resettodr_callout, resettodr_period * hz);
998}
999
1000static void
1001shutdown_resettodr(void *arg __unused, int howto __unused)
1002{
1003
1004	callout_drain(&resettodr_callout);
1005	/* Another unlocked read of time_status */
1006	if (resettodr_period > 0 && !ntp_is_time_error(time_status))
1007		resettodr();
1008}
1009
1010static int
1011sysctl_resettodr_period(SYSCTL_HANDLER_ARGS)
1012{
1013	int error;
1014
1015	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
1016	if (error || !req->newptr)
1017		return (error);
1018	if (cold)
1019		goto done;
1020	if (resettodr_period == 0)
1021		callout_stop(&resettodr_callout);
1022	else
1023		callout_reset(&resettodr_callout, resettodr_period * hz,
1024		    periodic_resettodr, NULL);
1025done:
1026	return (0);
1027}
1028
1029SYSCTL_PROC(_machdep, OID_AUTO, rtc_save_period, CTLTYPE_INT | CTLFLAG_RWTUN |
1030    CTLFLAG_MPSAFE, &resettodr_period, 1800, sysctl_resettodr_period, "I",
1031    "Save system time to RTC with this period (in seconds)");
1032
1033static void
1034start_periodic_resettodr(void *arg __unused)
1035{
1036
1037	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_resettodr, NULL,
1038	    SHUTDOWN_PRI_FIRST);
1039	callout_init(&resettodr_callout, 1);
1040	if (resettodr_period == 0)
1041		return;
1042	callout_reset(&resettodr_callout, resettodr_period * hz,
1043	    periodic_resettodr, NULL);
1044}
1045
1046SYSINIT(periodic_resettodr, SI_SUB_LAST, SI_ORDER_MIDDLE,
1047	start_periodic_resettodr, NULL);
1048