1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 1997, Stefan Esser <se@freebsd.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice unmodified, this list of conditions, and the following
12 *    disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <sys/cdefs.h>
30#include "opt_ddb.h"
31#include "opt_hwpmc_hooks.h"
32#include "opt_kstack_usage_prof.h"
33
34#include <sys/param.h>
35#include <sys/bus.h>
36#include <sys/conf.h>
37#include <sys/cpuset.h>
38#include <sys/rtprio.h>
39#include <sys/systm.h>
40#include <sys/interrupt.h>
41#include <sys/kernel.h>
42#include <sys/kthread.h>
43#include <sys/ktr.h>
44#include <sys/limits.h>
45#include <sys/lock.h>
46#include <sys/malloc.h>
47#include <sys/mutex.h>
48#include <sys/priv.h>
49#include <sys/proc.h>
50#include <sys/epoch.h>
51#include <sys/random.h>
52#include <sys/resourcevar.h>
53#include <sys/sched.h>
54#include <sys/smp.h>
55#include <sys/sysctl.h>
56#include <sys/syslog.h>
57#include <sys/unistd.h>
58#include <sys/vmmeter.h>
59#include <machine/atomic.h>
60#include <machine/cpu.h>
61#include <machine/md_var.h>
62#include <machine/smp.h>
63#include <machine/stdarg.h>
64#ifdef DDB
65#include <ddb/ddb.h>
66#include <ddb/db_sym.h>
67#endif
68
69/*
70 * Describe an interrupt thread.  There is one of these per interrupt event.
71 */
72struct intr_thread {
73	struct intr_event *it_event;
74	struct thread *it_thread;	/* Kernel thread. */
75	int	it_flags;		/* (j) IT_* flags. */
76	int	it_need;		/* Needs service. */
77	int	it_waiting;		/* Waiting in the runq. */
78};
79
80/* Interrupt thread flags kept in it_flags */
81#define	IT_DEAD		0x000001	/* Thread is waiting to exit. */
82#define	IT_WAIT		0x000002	/* Thread is waiting for completion. */
83
84struct	intr_entropy {
85	struct	thread *td;
86	uintptr_t event;
87};
88
89struct	intr_event *clk_intr_event;
90struct proc *intrproc;
91
92static MALLOC_DEFINE(M_ITHREAD, "ithread", "Interrupt Threads");
93
94static int intr_storm_threshold = 0;
95SYSCTL_INT(_hw, OID_AUTO, intr_storm_threshold, CTLFLAG_RWTUN,
96    &intr_storm_threshold, 0,
97    "Number of consecutive interrupts before storm protection is enabled");
98static int intr_epoch_batch = 1000;
99SYSCTL_INT(_hw, OID_AUTO, intr_epoch_batch, CTLFLAG_RWTUN, &intr_epoch_batch,
100    0, "Maximum interrupt handler executions without re-entering epoch(9)");
101#ifdef HWPMC_HOOKS
102static int intr_hwpmc_waiting_report_threshold = 1;
103SYSCTL_INT(_hw, OID_AUTO, intr_hwpmc_waiting_report_threshold, CTLFLAG_RWTUN,
104    &intr_hwpmc_waiting_report_threshold, 1,
105    "Threshold for reporting number of events in a workq");
106#define	PMC_HOOK_INSTALLED_ANY() __predict_false(pmc_hook != NULL)
107#endif
108static TAILQ_HEAD(, intr_event) event_list =
109    TAILQ_HEAD_INITIALIZER(event_list);
110static struct mtx event_lock;
111MTX_SYSINIT(intr_event_list, &event_lock, "intr event list", MTX_DEF);
112
113static void	intr_event_update(struct intr_event *ie);
114static int	intr_event_schedule_thread(struct intr_event *ie, struct trapframe *frame);
115static struct intr_thread *ithread_create(const char *name);
116static void	ithread_destroy(struct intr_thread *ithread);
117static void	ithread_execute_handlers(struct proc *p,
118		    struct intr_event *ie);
119static void	ithread_loop(void *);
120static void	ithread_update(struct intr_thread *ithd);
121static void	start_softintr(void *);
122
123#ifdef HWPMC_HOOKS
124#include <sys/pmckern.h>
125PMC_SOFT_DEFINE( , , intr, all);
126PMC_SOFT_DEFINE( , , intr, ithread);
127PMC_SOFT_DEFINE( , , intr, filter);
128PMC_SOFT_DEFINE( , , intr, stray);
129PMC_SOFT_DEFINE( , , intr, schedule);
130PMC_SOFT_DEFINE( , , intr, waiting);
131
132#define PMC_SOFT_CALL_INTR_HLPR(event, frame)			\
133do {					\
134	if (frame != NULL)					\
135		PMC_SOFT_CALL_TF( , , intr, event, frame);	\
136	else							\
137		PMC_SOFT_CALL( , , intr, event);		\
138} while (0)
139#endif
140
141/* Map an interrupt type to an ithread priority. */
142u_char
143intr_priority(enum intr_type flags)
144{
145	u_char pri;
146
147	flags &= (INTR_TYPE_TTY | INTR_TYPE_BIO | INTR_TYPE_NET |
148	    INTR_TYPE_CAM | INTR_TYPE_MISC | INTR_TYPE_CLK | INTR_TYPE_AV);
149	switch (flags) {
150	case INTR_TYPE_TTY:
151		pri = PI_TTY;
152		break;
153	case INTR_TYPE_BIO:
154		pri = PI_DISK;
155		break;
156	case INTR_TYPE_NET:
157		pri = PI_NET;
158		break;
159	case INTR_TYPE_CAM:
160		pri = PI_DISK;
161		break;
162	case INTR_TYPE_AV:
163		pri = PI_AV;
164		break;
165	case INTR_TYPE_CLK:
166		pri = PI_REALTIME;
167		break;
168	case INTR_TYPE_MISC:
169		pri = PI_DULL;          /* don't care */
170		break;
171	default:
172		/* We didn't specify an interrupt level. */
173		panic("intr_priority: no interrupt type in flags");
174	}
175
176	return pri;
177}
178
179/*
180 * Update an ithread based on the associated intr_event.
181 */
182static void
183ithread_update(struct intr_thread *ithd)
184{
185	struct intr_event *ie;
186	struct thread *td;
187	u_char pri;
188
189	ie = ithd->it_event;
190	td = ithd->it_thread;
191	mtx_assert(&ie->ie_lock, MA_OWNED);
192
193	/* Determine the overall priority of this event. */
194	if (CK_SLIST_EMPTY(&ie->ie_handlers))
195		pri = PRI_MAX_ITHD;
196	else
197		pri = CK_SLIST_FIRST(&ie->ie_handlers)->ih_pri;
198
199	/* Update name and priority. */
200	strlcpy(td->td_name, ie->ie_fullname, sizeof(td->td_name));
201#ifdef KTR
202	sched_clear_tdname(td);
203#endif
204	thread_lock(td);
205	sched_ithread_prio(td, pri);
206	thread_unlock(td);
207}
208
209/*
210 * Regenerate the full name of an interrupt event and update its priority.
211 */
212static void
213intr_event_update(struct intr_event *ie)
214{
215	struct intr_handler *ih;
216	char *last;
217	int missed, space, flags;
218
219	/* Start off with no entropy and just the name of the event. */
220	mtx_assert(&ie->ie_lock, MA_OWNED);
221	strlcpy(ie->ie_fullname, ie->ie_name, sizeof(ie->ie_fullname));
222	flags = 0;
223	missed = 0;
224	space = 1;
225
226	/* Run through all the handlers updating values. */
227	CK_SLIST_FOREACH(ih, &ie->ie_handlers, ih_next) {
228		if (strlen(ie->ie_fullname) + strlen(ih->ih_name) + 1 <
229		    sizeof(ie->ie_fullname)) {
230			strcat(ie->ie_fullname, " ");
231			strcat(ie->ie_fullname, ih->ih_name);
232			space = 0;
233		} else
234			missed++;
235		flags |= ih->ih_flags;
236	}
237	ie->ie_hflags = flags;
238
239	/*
240	 * If there is only one handler and its name is too long, just copy in
241	 * as much of the end of the name (includes the unit number) as will
242	 * fit.  Otherwise, we have multiple handlers and not all of the names
243	 * will fit.  Add +'s to indicate missing names.  If we run out of room
244	 * and still have +'s to add, change the last character from a + to a *.
245	 */
246	if (missed == 1 && space == 1) {
247		ih = CK_SLIST_FIRST(&ie->ie_handlers);
248		missed = strlen(ie->ie_fullname) + strlen(ih->ih_name) + 2 -
249		    sizeof(ie->ie_fullname);
250		strcat(ie->ie_fullname, (missed == 0) ? " " : "-");
251		strcat(ie->ie_fullname, &ih->ih_name[missed]);
252		missed = 0;
253	}
254	last = &ie->ie_fullname[sizeof(ie->ie_fullname) - 2];
255	while (missed-- > 0) {
256		if (strlen(ie->ie_fullname) + 1 == sizeof(ie->ie_fullname)) {
257			if (*last == '+') {
258				*last = '*';
259				break;
260			} else
261				*last = '+';
262		} else if (space) {
263			strcat(ie->ie_fullname, " +");
264			space = 0;
265		} else
266			strcat(ie->ie_fullname, "+");
267	}
268
269	/*
270	 * If this event has an ithread, update it's priority and
271	 * name.
272	 */
273	if (ie->ie_thread != NULL)
274		ithread_update(ie->ie_thread);
275	CTR2(KTR_INTR, "%s: updated %s", __func__, ie->ie_fullname);
276}
277
278int
279intr_event_create(struct intr_event **event, void *source, int flags, u_int irq,
280    void (*pre_ithread)(void *), void (*post_ithread)(void *),
281    void (*post_filter)(void *), int (*assign_cpu)(void *, int),
282    const char *fmt, ...)
283{
284	struct intr_event *ie;
285	va_list ap;
286
287	/* The only valid flag during creation is IE_SOFT. */
288	if ((flags & ~IE_SOFT) != 0)
289		return (EINVAL);
290	ie = malloc(sizeof(struct intr_event), M_ITHREAD, M_WAITOK | M_ZERO);
291	ie->ie_source = source;
292	ie->ie_pre_ithread = pre_ithread;
293	ie->ie_post_ithread = post_ithread;
294	ie->ie_post_filter = post_filter;
295	ie->ie_assign_cpu = assign_cpu;
296	ie->ie_flags = flags;
297	ie->ie_irq = irq;
298	ie->ie_cpu = NOCPU;
299	CK_SLIST_INIT(&ie->ie_handlers);
300	mtx_init(&ie->ie_lock, "intr event", NULL, MTX_DEF);
301
302	va_start(ap, fmt);
303	vsnprintf(ie->ie_name, sizeof(ie->ie_name), fmt, ap);
304	va_end(ap);
305	strlcpy(ie->ie_fullname, ie->ie_name, sizeof(ie->ie_fullname));
306	mtx_lock(&event_lock);
307	TAILQ_INSERT_TAIL(&event_list, ie, ie_list);
308	mtx_unlock(&event_lock);
309	if (event != NULL)
310		*event = ie;
311	CTR2(KTR_INTR, "%s: created %s", __func__, ie->ie_name);
312	return (0);
313}
314
315/*
316 * Bind an interrupt event to the specified CPU.  Note that not all
317 * platforms support binding an interrupt to a CPU.  For those
318 * platforms this request will fail.  Using a cpu id of NOCPU unbinds
319 * the interrupt event.
320 */
321static int
322_intr_event_bind(struct intr_event *ie, int cpu, bool bindirq, bool bindithread)
323{
324	lwpid_t id;
325	int error;
326
327	/* Need a CPU to bind to. */
328	if (cpu != NOCPU && CPU_ABSENT(cpu))
329		return (EINVAL);
330
331	if (ie->ie_assign_cpu == NULL)
332		return (EOPNOTSUPP);
333
334	error = priv_check(curthread, PRIV_SCHED_CPUSET_INTR);
335	if (error)
336		return (error);
337
338	/*
339	 * If we have any ithreads try to set their mask first to verify
340	 * permissions, etc.
341	 */
342	if (bindithread) {
343		mtx_lock(&ie->ie_lock);
344		if (ie->ie_thread != NULL) {
345			id = ie->ie_thread->it_thread->td_tid;
346			mtx_unlock(&ie->ie_lock);
347			error = cpuset_setithread(id, cpu);
348			if (error)
349				return (error);
350		} else
351			mtx_unlock(&ie->ie_lock);
352	}
353	if (bindirq)
354		error = ie->ie_assign_cpu(ie->ie_source, cpu);
355	if (error) {
356		if (bindithread) {
357			mtx_lock(&ie->ie_lock);
358			if (ie->ie_thread != NULL) {
359				cpu = ie->ie_cpu;
360				id = ie->ie_thread->it_thread->td_tid;
361				mtx_unlock(&ie->ie_lock);
362				(void)cpuset_setithread(id, cpu);
363			} else
364				mtx_unlock(&ie->ie_lock);
365		}
366		return (error);
367	}
368
369	if (bindirq) {
370		mtx_lock(&ie->ie_lock);
371		ie->ie_cpu = cpu;
372		mtx_unlock(&ie->ie_lock);
373	}
374
375	return (error);
376}
377
378/*
379 * Bind an interrupt event to the specified CPU.  For supported platforms, any
380 * associated ithreads as well as the primary interrupt context will be bound
381 * to the specificed CPU.
382 */
383int
384intr_event_bind(struct intr_event *ie, int cpu)
385{
386
387	return (_intr_event_bind(ie, cpu, true, true));
388}
389
390/*
391 * Bind an interrupt event to the specified CPU, but do not bind associated
392 * ithreads.
393 */
394int
395intr_event_bind_irqonly(struct intr_event *ie, int cpu)
396{
397
398	return (_intr_event_bind(ie, cpu, true, false));
399}
400
401/*
402 * Bind an interrupt event's ithread to the specified CPU.
403 */
404int
405intr_event_bind_ithread(struct intr_event *ie, int cpu)
406{
407
408	return (_intr_event_bind(ie, cpu, false, true));
409}
410
411/*
412 * Bind an interrupt event's ithread to the specified cpuset.
413 */
414int
415intr_event_bind_ithread_cpuset(struct intr_event *ie, cpuset_t *cs)
416{
417	lwpid_t id;
418
419	mtx_lock(&ie->ie_lock);
420	if (ie->ie_thread != NULL) {
421		id = ie->ie_thread->it_thread->td_tid;
422		mtx_unlock(&ie->ie_lock);
423		return (cpuset_setthread(id, cs));
424	} else {
425		mtx_unlock(&ie->ie_lock);
426	}
427	return (ENODEV);
428}
429
430static struct intr_event *
431intr_lookup(int irq)
432{
433	struct intr_event *ie;
434
435	mtx_lock(&event_lock);
436	TAILQ_FOREACH(ie, &event_list, ie_list)
437		if (ie->ie_irq == irq &&
438		    (ie->ie_flags & IE_SOFT) == 0 &&
439		    CK_SLIST_FIRST(&ie->ie_handlers) != NULL)
440			break;
441	mtx_unlock(&event_lock);
442	return (ie);
443}
444
445int
446intr_setaffinity(int irq, int mode, const void *m)
447{
448	struct intr_event *ie;
449	const cpuset_t *mask;
450	int cpu, n;
451
452	mask = m;
453	cpu = NOCPU;
454	/*
455	 * If we're setting all cpus we can unbind.  Otherwise make sure
456	 * only one cpu is in the set.
457	 */
458	if (CPU_CMP(cpuset_root, mask)) {
459		for (n = 0; n < CPU_SETSIZE; n++) {
460			if (!CPU_ISSET(n, mask))
461				continue;
462			if (cpu != NOCPU)
463				return (EINVAL);
464			cpu = n;
465		}
466	}
467	ie = intr_lookup(irq);
468	if (ie == NULL)
469		return (ESRCH);
470	switch (mode) {
471	case CPU_WHICH_IRQ:
472		return (intr_event_bind(ie, cpu));
473	case CPU_WHICH_INTRHANDLER:
474		return (intr_event_bind_irqonly(ie, cpu));
475	case CPU_WHICH_ITHREAD:
476		return (intr_event_bind_ithread(ie, cpu));
477	default:
478		return (EINVAL);
479	}
480}
481
482int
483intr_getaffinity(int irq, int mode, void *m)
484{
485	struct intr_event *ie;
486	struct thread *td;
487	struct proc *p;
488	cpuset_t *mask;
489	lwpid_t id;
490	int error;
491
492	mask = m;
493	ie = intr_lookup(irq);
494	if (ie == NULL)
495		return (ESRCH);
496
497	error = 0;
498	CPU_ZERO(mask);
499	switch (mode) {
500	case CPU_WHICH_IRQ:
501	case CPU_WHICH_INTRHANDLER:
502		mtx_lock(&ie->ie_lock);
503		if (ie->ie_cpu == NOCPU)
504			CPU_COPY(cpuset_root, mask);
505		else
506			CPU_SET(ie->ie_cpu, mask);
507		mtx_unlock(&ie->ie_lock);
508		break;
509	case CPU_WHICH_ITHREAD:
510		mtx_lock(&ie->ie_lock);
511		if (ie->ie_thread == NULL) {
512			mtx_unlock(&ie->ie_lock);
513			CPU_COPY(cpuset_root, mask);
514		} else {
515			id = ie->ie_thread->it_thread->td_tid;
516			mtx_unlock(&ie->ie_lock);
517			error = cpuset_which(CPU_WHICH_TID, id, &p, &td, NULL);
518			if (error != 0)
519				return (error);
520			CPU_COPY(&td->td_cpuset->cs_mask, mask);
521			PROC_UNLOCK(p);
522		}
523	default:
524		return (EINVAL);
525	}
526	return (0);
527}
528
529int
530intr_event_destroy(struct intr_event *ie)
531{
532
533	if (ie == NULL)
534		return (EINVAL);
535
536	mtx_lock(&event_lock);
537	mtx_lock(&ie->ie_lock);
538	if (!CK_SLIST_EMPTY(&ie->ie_handlers)) {
539		mtx_unlock(&ie->ie_lock);
540		mtx_unlock(&event_lock);
541		return (EBUSY);
542	}
543	TAILQ_REMOVE(&event_list, ie, ie_list);
544#ifndef notyet
545	if (ie->ie_thread != NULL) {
546		ithread_destroy(ie->ie_thread);
547		ie->ie_thread = NULL;
548	}
549#endif
550	mtx_unlock(&ie->ie_lock);
551	mtx_unlock(&event_lock);
552	mtx_destroy(&ie->ie_lock);
553	free(ie, M_ITHREAD);
554	return (0);
555}
556
557static struct intr_thread *
558ithread_create(const char *name)
559{
560	struct intr_thread *ithd;
561	struct thread *td;
562	int error;
563
564	ithd = malloc(sizeof(struct intr_thread), M_ITHREAD, M_WAITOK | M_ZERO);
565
566	error = kproc_kthread_add(ithread_loop, ithd, &intrproc,
567		    &td, RFSTOPPED | RFHIGHPID,
568		    0, "intr", "%s", name);
569	if (error)
570		panic("kproc_create() failed with %d", error);
571	thread_lock(td);
572	sched_class(td, PRI_ITHD);
573	TD_SET_IWAIT(td);
574	thread_unlock(td);
575	td->td_pflags |= TDP_ITHREAD;
576	ithd->it_thread = td;
577	CTR2(KTR_INTR, "%s: created %s", __func__, name);
578	return (ithd);
579}
580
581static void
582ithread_destroy(struct intr_thread *ithread)
583{
584	struct thread *td;
585
586	CTR2(KTR_INTR, "%s: killing %s", __func__, ithread->it_event->ie_name);
587	td = ithread->it_thread;
588	thread_lock(td);
589	ithread->it_flags |= IT_DEAD;
590	if (TD_AWAITING_INTR(td)) {
591		TD_CLR_IWAIT(td);
592		sched_wakeup(td, SRQ_INTR);
593	} else
594		thread_unlock(td);
595}
596
597int
598intr_event_add_handler(struct intr_event *ie, const char *name,
599    driver_filter_t filter, driver_intr_t handler, void *arg, u_char pri,
600    enum intr_type flags, void **cookiep)
601{
602	struct intr_handler *ih, *temp_ih;
603	struct intr_handler **prevptr;
604	struct intr_thread *it;
605
606	if (ie == NULL || name == NULL || (handler == NULL && filter == NULL))
607		return (EINVAL);
608
609	/* Allocate and populate an interrupt handler structure. */
610	ih = malloc(sizeof(struct intr_handler), M_ITHREAD, M_WAITOK | M_ZERO);
611	ih->ih_filter = filter;
612	ih->ih_handler = handler;
613	ih->ih_argument = arg;
614	strlcpy(ih->ih_name, name, sizeof(ih->ih_name));
615	ih->ih_event = ie;
616	ih->ih_pri = pri;
617	if (flags & INTR_EXCL)
618		ih->ih_flags = IH_EXCLUSIVE;
619	if (flags & INTR_MPSAFE)
620		ih->ih_flags |= IH_MPSAFE;
621	if (flags & INTR_ENTROPY)
622		ih->ih_flags |= IH_ENTROPY;
623	if (flags & INTR_TYPE_NET)
624		ih->ih_flags |= IH_NET;
625
626	/* We can only have one exclusive handler in a event. */
627	mtx_lock(&ie->ie_lock);
628	if (!CK_SLIST_EMPTY(&ie->ie_handlers)) {
629		if ((flags & INTR_EXCL) ||
630		    (CK_SLIST_FIRST(&ie->ie_handlers)->ih_flags & IH_EXCLUSIVE)) {
631			mtx_unlock(&ie->ie_lock);
632			free(ih, M_ITHREAD);
633			return (EINVAL);
634		}
635	}
636
637	/* Create a thread if we need one. */
638	while (ie->ie_thread == NULL && handler != NULL) {
639		if (ie->ie_flags & IE_ADDING_THREAD)
640			msleep(ie, &ie->ie_lock, 0, "ithread", 0);
641		else {
642			ie->ie_flags |= IE_ADDING_THREAD;
643			mtx_unlock(&ie->ie_lock);
644			it = ithread_create("intr: newborn");
645			mtx_lock(&ie->ie_lock);
646			ie->ie_flags &= ~IE_ADDING_THREAD;
647			ie->ie_thread = it;
648			it->it_event = ie;
649			ithread_update(it);
650			wakeup(ie);
651		}
652	}
653
654	/* Add the new handler to the event in priority order. */
655	CK_SLIST_FOREACH_PREVPTR(temp_ih, prevptr, &ie->ie_handlers, ih_next) {
656		if (temp_ih->ih_pri > ih->ih_pri)
657			break;
658	}
659	CK_SLIST_INSERT_PREVPTR(prevptr, temp_ih, ih, ih_next);
660
661	intr_event_update(ie);
662
663	CTR3(KTR_INTR, "%s: added %s to %s", __func__, ih->ih_name,
664	    ie->ie_name);
665	mtx_unlock(&ie->ie_lock);
666
667	if (cookiep != NULL)
668		*cookiep = ih;
669	return (0);
670}
671
672/*
673 * Append a description preceded by a ':' to the name of the specified
674 * interrupt handler.
675 */
676int
677intr_event_describe_handler(struct intr_event *ie, void *cookie,
678    const char *descr)
679{
680	struct intr_handler *ih;
681	size_t space;
682	char *start;
683
684	mtx_lock(&ie->ie_lock);
685#ifdef INVARIANTS
686	CK_SLIST_FOREACH(ih, &ie->ie_handlers, ih_next) {
687		if (ih == cookie)
688			break;
689	}
690	if (ih == NULL) {
691		mtx_unlock(&ie->ie_lock);
692		panic("handler %p not found in interrupt event %p", cookie, ie);
693	}
694#endif
695	ih = cookie;
696
697	/*
698	 * Look for an existing description by checking for an
699	 * existing ":".  This assumes device names do not include
700	 * colons.  If one is found, prepare to insert the new
701	 * description at that point.  If one is not found, find the
702	 * end of the name to use as the insertion point.
703	 */
704	start = strchr(ih->ih_name, ':');
705	if (start == NULL)
706		start = strchr(ih->ih_name, 0);
707
708	/*
709	 * See if there is enough remaining room in the string for the
710	 * description + ":".  The "- 1" leaves room for the trailing
711	 * '\0'.  The "+ 1" accounts for the colon.
712	 */
713	space = sizeof(ih->ih_name) - (start - ih->ih_name) - 1;
714	if (strlen(descr) + 1 > space) {
715		mtx_unlock(&ie->ie_lock);
716		return (ENOSPC);
717	}
718
719	/* Append a colon followed by the description. */
720	*start = ':';
721	strcpy(start + 1, descr);
722	intr_event_update(ie);
723	mtx_unlock(&ie->ie_lock);
724	return (0);
725}
726
727/*
728 * Return the ie_source field from the intr_event an intr_handler is
729 * associated with.
730 */
731void *
732intr_handler_source(void *cookie)
733{
734	struct intr_handler *ih;
735	struct intr_event *ie;
736
737	ih = (struct intr_handler *)cookie;
738	if (ih == NULL)
739		return (NULL);
740	ie = ih->ih_event;
741	KASSERT(ie != NULL,
742	    ("interrupt handler \"%s\" has a NULL interrupt event",
743	    ih->ih_name));
744	return (ie->ie_source);
745}
746
747/*
748 * If intr_event_handle() is running in the ISR context at the time of the call,
749 * then wait for it to complete.
750 */
751static void
752intr_event_barrier(struct intr_event *ie)
753{
754	int phase;
755
756	mtx_assert(&ie->ie_lock, MA_OWNED);
757	phase = ie->ie_phase;
758
759	/*
760	 * Switch phase to direct future interrupts to the other active counter.
761	 * Make sure that any preceding stores are visible before the switch.
762	 */
763	KASSERT(ie->ie_active[!phase] == 0, ("idle phase has activity"));
764	atomic_store_rel_int(&ie->ie_phase, !phase);
765
766	/*
767	 * This code cooperates with wait-free iteration of ie_handlers
768	 * in intr_event_handle.
769	 * Make sure that the removal and the phase update are not reordered
770	 * with the active count check.
771	 * Note that no combination of acquire and release fences can provide
772	 * that guarantee as Store->Load sequences can always be reordered.
773	 */
774	atomic_thread_fence_seq_cst();
775
776	/*
777	 * Now wait on the inactive phase.
778	 * The acquire fence is needed so that all post-barrier accesses
779	 * are after the check.
780	 */
781	while (ie->ie_active[phase] > 0)
782		cpu_spinwait();
783	atomic_thread_fence_acq();
784}
785
786static void
787intr_handler_barrier(struct intr_handler *handler)
788{
789	struct intr_event *ie;
790
791	ie = handler->ih_event;
792	mtx_assert(&ie->ie_lock, MA_OWNED);
793	KASSERT((handler->ih_flags & IH_DEAD) == 0,
794	    ("update for a removed handler"));
795
796	if (ie->ie_thread == NULL) {
797		intr_event_barrier(ie);
798		return;
799	}
800	if ((handler->ih_flags & IH_CHANGED) == 0) {
801		handler->ih_flags |= IH_CHANGED;
802		intr_event_schedule_thread(ie, NULL);
803	}
804	while ((handler->ih_flags & IH_CHANGED) != 0)
805		msleep(handler, &ie->ie_lock, 0, "ih_barr", 0);
806}
807
808/*
809 * Sleep until an ithread finishes executing an interrupt handler.
810 *
811 * XXX Doesn't currently handle interrupt filters or fast interrupt
812 * handlers. This is intended for LinuxKPI drivers only.
813 * Do not use in BSD code.
814 */
815void
816_intr_drain(int irq)
817{
818	struct intr_event *ie;
819	struct intr_thread *ithd;
820	struct thread *td;
821
822	ie = intr_lookup(irq);
823	if (ie == NULL)
824		return;
825	if (ie->ie_thread == NULL)
826		return;
827	ithd = ie->ie_thread;
828	td = ithd->it_thread;
829	/*
830	 * We set the flag and wait for it to be cleared to avoid
831	 * long delays with potentially busy interrupt handlers
832	 * were we to only sample TD_AWAITING_INTR() every tick.
833	 */
834	thread_lock(td);
835	if (!TD_AWAITING_INTR(td)) {
836		ithd->it_flags |= IT_WAIT;
837		while (ithd->it_flags & IT_WAIT) {
838			thread_unlock(td);
839			pause("idrain", 1);
840			thread_lock(td);
841		}
842	}
843	thread_unlock(td);
844	return;
845}
846
847int
848intr_event_remove_handler(void *cookie)
849{
850	struct intr_handler *handler = (struct intr_handler *)cookie;
851	struct intr_event *ie;
852	struct intr_handler *ih;
853	struct intr_handler **prevptr;
854#ifdef notyet
855	int dead;
856#endif
857
858	if (handler == NULL)
859		return (EINVAL);
860	ie = handler->ih_event;
861	KASSERT(ie != NULL,
862	    ("interrupt handler \"%s\" has a NULL interrupt event",
863	    handler->ih_name));
864
865	mtx_lock(&ie->ie_lock);
866	CTR3(KTR_INTR, "%s: removing %s from %s", __func__, handler->ih_name,
867	    ie->ie_name);
868	CK_SLIST_FOREACH_PREVPTR(ih, prevptr, &ie->ie_handlers, ih_next) {
869		if (ih == handler)
870			break;
871	}
872	if (ih == NULL) {
873		panic("interrupt handler \"%s\" not found in "
874		    "interrupt event \"%s\"", handler->ih_name, ie->ie_name);
875	}
876
877	/*
878	 * If there is no ithread, then directly remove the handler.  Note that
879	 * intr_event_handle() iterates ie_handlers in a lock-less fashion, so
880	 * care needs to be taken to keep ie_handlers consistent and to free
881	 * the removed handler only when ie_handlers is quiescent.
882	 */
883	if (ie->ie_thread == NULL) {
884		CK_SLIST_REMOVE_PREVPTR(prevptr, ih, ih_next);
885		intr_event_barrier(ie);
886		intr_event_update(ie);
887		mtx_unlock(&ie->ie_lock);
888		free(handler, M_ITHREAD);
889		return (0);
890	}
891
892	/*
893	 * Let the interrupt thread do the job.
894	 * The interrupt source is disabled when the interrupt thread is
895	 * running, so it does not have to worry about interaction with
896	 * intr_event_handle().
897	 */
898	KASSERT((handler->ih_flags & IH_DEAD) == 0,
899	    ("duplicate handle remove"));
900	handler->ih_flags |= IH_DEAD;
901	intr_event_schedule_thread(ie, NULL);
902	while (handler->ih_flags & IH_DEAD)
903		msleep(handler, &ie->ie_lock, 0, "iev_rmh", 0);
904	intr_event_update(ie);
905
906#ifdef notyet
907	/*
908	 * XXX: This could be bad in the case of ppbus(8).  Also, I think
909	 * this could lead to races of stale data when servicing an
910	 * interrupt.
911	 */
912	dead = 1;
913	CK_SLIST_FOREACH(ih, &ie->ie_handlers, ih_next) {
914		if (ih->ih_handler != NULL) {
915			dead = 0;
916			break;
917		}
918	}
919	if (dead) {
920		ithread_destroy(ie->ie_thread);
921		ie->ie_thread = NULL;
922	}
923#endif
924	mtx_unlock(&ie->ie_lock);
925	free(handler, M_ITHREAD);
926	return (0);
927}
928
929int
930intr_event_suspend_handler(void *cookie)
931{
932	struct intr_handler *handler = (struct intr_handler *)cookie;
933	struct intr_event *ie;
934
935	if (handler == NULL)
936		return (EINVAL);
937	ie = handler->ih_event;
938	KASSERT(ie != NULL,
939	    ("interrupt handler \"%s\" has a NULL interrupt event",
940	    handler->ih_name));
941	mtx_lock(&ie->ie_lock);
942	handler->ih_flags |= IH_SUSP;
943	intr_handler_barrier(handler);
944	mtx_unlock(&ie->ie_lock);
945	return (0);
946}
947
948int
949intr_event_resume_handler(void *cookie)
950{
951	struct intr_handler *handler = (struct intr_handler *)cookie;
952	struct intr_event *ie;
953
954	if (handler == NULL)
955		return (EINVAL);
956	ie = handler->ih_event;
957	KASSERT(ie != NULL,
958	    ("interrupt handler \"%s\" has a NULL interrupt event",
959	    handler->ih_name));
960
961	/*
962	 * intr_handler_barrier() acts not only as a barrier,
963	 * it also allows to check for any pending interrupts.
964	 */
965	mtx_lock(&ie->ie_lock);
966	handler->ih_flags &= ~IH_SUSP;
967	intr_handler_barrier(handler);
968	mtx_unlock(&ie->ie_lock);
969	return (0);
970}
971
972static int
973intr_event_schedule_thread(struct intr_event *ie, struct trapframe *frame)
974{
975	struct intr_entropy entropy;
976	struct intr_thread *it;
977	struct thread *td;
978	struct thread *ctd;
979
980	/*
981	 * If no ithread or no handlers, then we have a stray interrupt.
982	 */
983	if (ie == NULL || CK_SLIST_EMPTY(&ie->ie_handlers) ||
984	    ie->ie_thread == NULL)
985		return (EINVAL);
986
987	ctd = curthread;
988	it = ie->ie_thread;
989	td = it->it_thread;
990
991	/*
992	 * If any of the handlers for this ithread claim to be good
993	 * sources of entropy, then gather some.
994	 */
995	if (ie->ie_hflags & IH_ENTROPY) {
996		entropy.event = (uintptr_t)ie;
997		entropy.td = ctd;
998		random_harvest_queue(&entropy, sizeof(entropy), RANDOM_INTERRUPT);
999	}
1000
1001	KASSERT(td->td_proc != NULL, ("ithread %s has no process", ie->ie_name));
1002
1003	/*
1004	 * Set it_need to tell the thread to keep running if it is already
1005	 * running.  Then, lock the thread and see if we actually need to
1006	 * put it on the runqueue.
1007	 *
1008	 * Use store_rel to arrange that the store to ih_need in
1009	 * swi_sched() is before the store to it_need and prepare for
1010	 * transfer of this order to loads in the ithread.
1011	 */
1012	atomic_store_rel_int(&it->it_need, 1);
1013	thread_lock(td);
1014	if (TD_AWAITING_INTR(td)) {
1015#ifdef HWPMC_HOOKS
1016		it->it_waiting = 0;
1017		if (PMC_HOOK_INSTALLED_ANY())
1018			PMC_SOFT_CALL_INTR_HLPR(schedule, frame);
1019#endif
1020		CTR3(KTR_INTR, "%s: schedule pid %d (%s)", __func__, td->td_proc->p_pid,
1021		    td->td_name);
1022		TD_CLR_IWAIT(td);
1023		sched_wakeup(td, SRQ_INTR);
1024	} else {
1025#ifdef HWPMC_HOOKS
1026		it->it_waiting++;
1027		if (PMC_HOOK_INSTALLED_ANY() &&
1028		    (it->it_waiting >= intr_hwpmc_waiting_report_threshold))
1029			PMC_SOFT_CALL_INTR_HLPR(waiting, frame);
1030#endif
1031		CTR5(KTR_INTR, "%s: pid %d (%s): it_need %d, state %d",
1032		    __func__, td->td_proc->p_pid, td->td_name, it->it_need, TD_GET_STATE(td));
1033		thread_unlock(td);
1034	}
1035
1036	return (0);
1037}
1038
1039/*
1040 * Allow interrupt event binding for software interrupt handlers -- a no-op,
1041 * since interrupts are generated in software rather than being directed by
1042 * a PIC.
1043 */
1044static int
1045swi_assign_cpu(void *arg, int cpu)
1046{
1047
1048	return (0);
1049}
1050
1051/*
1052 * Add a software interrupt handler to a specified event.  If a given event
1053 * is not specified, then a new event is created.
1054 */
1055int
1056swi_add(struct intr_event **eventp, const char *name, driver_intr_t handler,
1057	    void *arg, int pri, enum intr_type flags, void **cookiep)
1058{
1059	struct intr_event *ie;
1060	int error = 0;
1061
1062	if (flags & INTR_ENTROPY)
1063		return (EINVAL);
1064
1065	ie = (eventp != NULL) ? *eventp : NULL;
1066
1067	if (ie != NULL) {
1068		if (!(ie->ie_flags & IE_SOFT))
1069			return (EINVAL);
1070	} else {
1071		error = intr_event_create(&ie, NULL, IE_SOFT, 0,
1072		    NULL, NULL, NULL, swi_assign_cpu, "swi%d:", pri);
1073		if (error)
1074			return (error);
1075		if (eventp != NULL)
1076			*eventp = ie;
1077	}
1078	if (handler != NULL) {
1079		error = intr_event_add_handler(ie, name, NULL, handler, arg,
1080		    PI_SWI(pri), flags, cookiep);
1081	}
1082	return (error);
1083}
1084
1085/*
1086 * Schedule a software interrupt thread.
1087 */
1088void
1089swi_sched(void *cookie, int flags)
1090{
1091	struct intr_handler *ih = (struct intr_handler *)cookie;
1092	struct intr_event *ie = ih->ih_event;
1093	struct intr_entropy entropy;
1094	int error __unused;
1095
1096	CTR3(KTR_INTR, "swi_sched: %s %s need=%d", ie->ie_name, ih->ih_name,
1097	    ih->ih_need);
1098
1099	if ((flags & SWI_FROMNMI) == 0) {
1100		entropy.event = (uintptr_t)ih;
1101		entropy.td = curthread;
1102		random_harvest_queue(&entropy, sizeof(entropy), RANDOM_SWI);
1103	}
1104
1105	/*
1106	 * Set ih_need for this handler so that if the ithread is already
1107	 * running it will execute this handler on the next pass.  Otherwise,
1108	 * it will execute it the next time it runs.
1109	 */
1110	ih->ih_need = 1;
1111
1112	if (flags & SWI_DELAY)
1113		return;
1114
1115	if (flags & SWI_FROMNMI) {
1116#if defined(SMP) && (defined(__i386__) || defined(__amd64__))
1117		KASSERT(ie == clk_intr_event,
1118		    ("SWI_FROMNMI used not with clk_intr_event"));
1119		ipi_self_from_nmi(IPI_SWI);
1120#endif
1121	} else {
1122		VM_CNT_INC(v_soft);
1123		error = intr_event_schedule_thread(ie, NULL);
1124		KASSERT(error == 0, ("stray software interrupt"));
1125	}
1126}
1127
1128/*
1129 * Remove a software interrupt handler.  Currently this code does not
1130 * remove the associated interrupt event if it becomes empty.  Calling code
1131 * may do so manually via intr_event_destroy(), but that's not really
1132 * an optimal interface.
1133 */
1134int
1135swi_remove(void *cookie)
1136{
1137
1138	return (intr_event_remove_handler(cookie));
1139}
1140
1141static void
1142intr_event_execute_handlers(struct proc *p, struct intr_event *ie)
1143{
1144	struct intr_handler *ih, *ihn, *ihp;
1145
1146	ihp = NULL;
1147	CK_SLIST_FOREACH_SAFE(ih, &ie->ie_handlers, ih_next, ihn) {
1148		/*
1149		 * If this handler is marked for death, remove it from
1150		 * the list of handlers and wake up the sleeper.
1151		 */
1152		if (ih->ih_flags & IH_DEAD) {
1153			mtx_lock(&ie->ie_lock);
1154			if (ihp == NULL)
1155				CK_SLIST_REMOVE_HEAD(&ie->ie_handlers, ih_next);
1156			else
1157				CK_SLIST_REMOVE_AFTER(ihp, ih_next);
1158			ih->ih_flags &= ~IH_DEAD;
1159			wakeup(ih);
1160			mtx_unlock(&ie->ie_lock);
1161			continue;
1162		}
1163
1164		/*
1165		 * Now that we know that the current element won't be removed
1166		 * update the previous element.
1167		 */
1168		ihp = ih;
1169
1170		if ((ih->ih_flags & IH_CHANGED) != 0) {
1171			mtx_lock(&ie->ie_lock);
1172			ih->ih_flags &= ~IH_CHANGED;
1173			wakeup(ih);
1174			mtx_unlock(&ie->ie_lock);
1175		}
1176
1177		/* Skip filter only handlers */
1178		if (ih->ih_handler == NULL)
1179			continue;
1180
1181		/* Skip suspended handlers */
1182		if ((ih->ih_flags & IH_SUSP) != 0)
1183			continue;
1184
1185		/*
1186		 * For software interrupt threads, we only execute
1187		 * handlers that have their need flag set.  Hardware
1188		 * interrupt threads always invoke all of their handlers.
1189		 *
1190		 * ih_need can only be 0 or 1.  Failed cmpset below
1191		 * means that there is no request to execute handlers,
1192		 * so a retry of the cmpset is not needed.
1193		 */
1194		if ((ie->ie_flags & IE_SOFT) != 0 &&
1195		    atomic_cmpset_int(&ih->ih_need, 1, 0) == 0)
1196			continue;
1197
1198		/* Execute this handler. */
1199		CTR6(KTR_INTR, "%s: pid %d exec %p(%p) for %s flg=%x",
1200		    __func__, p->p_pid, (void *)ih->ih_handler,
1201		    ih->ih_argument, ih->ih_name, ih->ih_flags);
1202
1203		if (!(ih->ih_flags & IH_MPSAFE))
1204			mtx_lock(&Giant);
1205		ih->ih_handler(ih->ih_argument);
1206		if (!(ih->ih_flags & IH_MPSAFE))
1207			mtx_unlock(&Giant);
1208	}
1209}
1210
1211static void
1212ithread_execute_handlers(struct proc *p, struct intr_event *ie)
1213{
1214
1215	/* Interrupt handlers should not sleep. */
1216	if (!(ie->ie_flags & IE_SOFT))
1217		THREAD_NO_SLEEPING();
1218	intr_event_execute_handlers(p, ie);
1219	if (!(ie->ie_flags & IE_SOFT))
1220		THREAD_SLEEPING_OK();
1221
1222	/*
1223	 * Interrupt storm handling:
1224	 *
1225	 * If this interrupt source is currently storming, then throttle
1226	 * it to only fire the handler once  per clock tick.
1227	 *
1228	 * If this interrupt source is not currently storming, but the
1229	 * number of back to back interrupts exceeds the storm threshold,
1230	 * then enter storming mode.
1231	 */
1232	if (intr_storm_threshold != 0 && ie->ie_count >= intr_storm_threshold &&
1233	    !(ie->ie_flags & IE_SOFT)) {
1234		/* Report the message only once every second. */
1235		if (ppsratecheck(&ie->ie_warntm, &ie->ie_warncnt, 1)) {
1236			printf(
1237	"interrupt storm detected on \"%s\"; throttling interrupt source\n",
1238			    ie->ie_name);
1239		}
1240		pause("istorm", 1);
1241	} else
1242		ie->ie_count++;
1243
1244	/*
1245	 * Now that all the handlers have had a chance to run, reenable
1246	 * the interrupt source.
1247	 */
1248	if (ie->ie_post_ithread != NULL)
1249		ie->ie_post_ithread(ie->ie_source);
1250}
1251
1252/*
1253 * This is the main code for interrupt threads.
1254 */
1255static void
1256ithread_loop(void *arg)
1257{
1258	struct epoch_tracker et;
1259	struct intr_thread *ithd;
1260	struct intr_event *ie;
1261	struct thread *td;
1262	struct proc *p;
1263	int wake, epoch_count;
1264	bool needs_epoch;
1265
1266	td = curthread;
1267	p = td->td_proc;
1268	ithd = (struct intr_thread *)arg;
1269	KASSERT(ithd->it_thread == td,
1270	    ("%s: ithread and proc linkage out of sync", __func__));
1271	ie = ithd->it_event;
1272	ie->ie_count = 0;
1273	wake = 0;
1274
1275	/*
1276	 * As long as we have interrupts outstanding, go through the
1277	 * list of handlers, giving each one a go at it.
1278	 */
1279	for (;;) {
1280		/*
1281		 * If we are an orphaned thread, then just die.
1282		 */
1283		if (ithd->it_flags & IT_DEAD) {
1284			CTR3(KTR_INTR, "%s: pid %d (%s) exiting", __func__,
1285			    p->p_pid, td->td_name);
1286			free(ithd, M_ITHREAD);
1287			kthread_exit();
1288		}
1289
1290		/*
1291		 * Service interrupts.  If another interrupt arrives while
1292		 * we are running, it will set it_need to note that we
1293		 * should make another pass.
1294		 *
1295		 * The load_acq part of the following cmpset ensures
1296		 * that the load of ih_need in ithread_execute_handlers()
1297		 * is ordered after the load of it_need here.
1298		 */
1299		needs_epoch =
1300		    (atomic_load_int(&ie->ie_hflags) & IH_NET) != 0;
1301		if (needs_epoch) {
1302			epoch_count = 0;
1303			NET_EPOCH_ENTER(et);
1304		}
1305		while (atomic_cmpset_acq_int(&ithd->it_need, 1, 0) != 0) {
1306			ithread_execute_handlers(p, ie);
1307			if (needs_epoch &&
1308			    ++epoch_count >= intr_epoch_batch) {
1309				NET_EPOCH_EXIT(et);
1310				epoch_count = 0;
1311				NET_EPOCH_ENTER(et);
1312			}
1313		}
1314		if (needs_epoch)
1315			NET_EPOCH_EXIT(et);
1316		WITNESS_WARN(WARN_PANIC, NULL, "suspending ithread");
1317		mtx_assert(&Giant, MA_NOTOWNED);
1318
1319		/*
1320		 * Processed all our interrupts.  Now get the sched
1321		 * lock.  This may take a while and it_need may get
1322		 * set again, so we have to check it again.
1323		 */
1324		thread_lock(td);
1325		if (atomic_load_acq_int(&ithd->it_need) == 0 &&
1326		    (ithd->it_flags & (IT_DEAD | IT_WAIT)) == 0) {
1327			TD_SET_IWAIT(td);
1328			ie->ie_count = 0;
1329			mi_switch(SW_VOL | SWT_IWAIT);
1330		} else {
1331			if (ithd->it_flags & IT_WAIT) {
1332				wake = 1;
1333				ithd->it_flags &= ~IT_WAIT;
1334			}
1335			thread_unlock(td);
1336		}
1337		if (wake) {
1338			wakeup(ithd);
1339			wake = 0;
1340		}
1341	}
1342}
1343
1344/*
1345 * Main interrupt handling body.
1346 *
1347 * Input:
1348 * o ie:                        the event connected to this interrupt.
1349--------------------------------------------------------------------------------
1350 * o frame:                     the current trap frame. If the client interrupt
1351 *				handler needs this frame, they should get it
1352 *				via curthread->td_intr_frame.
1353 *
1354 * Return value:
1355 * o 0:                         everything ok.
1356 * o EINVAL:                    stray interrupt.
1357 */
1358int
1359intr_event_handle(struct intr_event *ie, struct trapframe *frame)
1360{
1361	struct intr_handler *ih;
1362	struct trapframe *oldframe;
1363	struct thread *td;
1364	int phase;
1365	int ret;
1366	bool filter, thread;
1367
1368	td = curthread;
1369
1370#ifdef KSTACK_USAGE_PROF
1371	intr_prof_stack_use(td, frame);
1372#endif
1373
1374	/* An interrupt with no event or handlers is a stray interrupt. */
1375	if (ie == NULL || CK_SLIST_EMPTY(&ie->ie_handlers))
1376		return (EINVAL);
1377
1378	/*
1379	 * Execute fast interrupt handlers directly.
1380	 */
1381	td->td_intr_nesting_level++;
1382	filter = false;
1383	thread = false;
1384	ret = 0;
1385	critical_enter();
1386	oldframe = td->td_intr_frame;
1387	td->td_intr_frame = frame;
1388
1389	phase = ie->ie_phase;
1390	atomic_add_int(&ie->ie_active[phase], 1);
1391
1392	/*
1393	 * This fence is required to ensure that no later loads are
1394	 * re-ordered before the ie_active store.
1395	 */
1396	atomic_thread_fence_seq_cst();
1397
1398	CK_SLIST_FOREACH(ih, &ie->ie_handlers, ih_next) {
1399		if ((ih->ih_flags & IH_SUSP) != 0)
1400			continue;
1401		if ((ie->ie_flags & IE_SOFT) != 0 && ih->ih_need == 0)
1402			continue;
1403		if (ih->ih_filter == NULL) {
1404			thread = true;
1405			continue;
1406		}
1407		CTR4(KTR_INTR, "%s: exec %p(%p) for %s", __func__,
1408		    ih->ih_filter, ih->ih_argument, ih->ih_name);
1409		ret = ih->ih_filter(ih->ih_argument);
1410#ifdef HWPMC_HOOKS
1411		PMC_SOFT_CALL_TF( , , intr, all, frame);
1412#endif
1413		KASSERT(ret == FILTER_STRAY ||
1414		    ((ret & (FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) != 0 &&
1415		    (ret & ~(FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) == 0),
1416		    ("%s: incorrect return value %#x from %s", __func__, ret,
1417		    ih->ih_name));
1418		filter = filter || ret == FILTER_HANDLED;
1419#ifdef HWPMC_HOOKS
1420		if (ret & FILTER_SCHEDULE_THREAD)
1421			PMC_SOFT_CALL_TF( , , intr, ithread, frame);
1422		else if (ret & FILTER_HANDLED)
1423			PMC_SOFT_CALL_TF( , , intr, filter, frame);
1424		else if (ret == FILTER_STRAY)
1425			PMC_SOFT_CALL_TF( , , intr, stray, frame);
1426#endif
1427
1428		/*
1429		 * Wrapper handler special handling:
1430		 *
1431		 * in some particular cases (like pccard and pccbb),
1432		 * the _real_ device handler is wrapped in a couple of
1433		 * functions - a filter wrapper and an ithread wrapper.
1434		 * In this case (and just in this case), the filter wrapper
1435		 * could ask the system to schedule the ithread and mask
1436		 * the interrupt source if the wrapped handler is composed
1437		 * of just an ithread handler.
1438		 *
1439		 * TODO: write a generic wrapper to avoid people rolling
1440		 * their own.
1441		 */
1442		if (!thread) {
1443			if (ret == FILTER_SCHEDULE_THREAD)
1444				thread = true;
1445		}
1446	}
1447	atomic_add_rel_int(&ie->ie_active[phase], -1);
1448
1449	td->td_intr_frame = oldframe;
1450
1451	if (thread) {
1452		if (ie->ie_pre_ithread != NULL)
1453			ie->ie_pre_ithread(ie->ie_source);
1454	} else {
1455		if (ie->ie_post_filter != NULL)
1456			ie->ie_post_filter(ie->ie_source);
1457	}
1458
1459	/* Schedule the ithread if needed. */
1460	if (thread) {
1461		int error __unused;
1462
1463		error =  intr_event_schedule_thread(ie, frame);
1464		KASSERT(error == 0, ("bad stray interrupt"));
1465	}
1466	critical_exit();
1467	td->td_intr_nesting_level--;
1468#ifdef notyet
1469	/* The interrupt is not aknowledged by any filter and has no ithread. */
1470	if (!thread && !filter)
1471		return (EINVAL);
1472#endif
1473	return (0);
1474}
1475
1476#ifdef DDB
1477/*
1478 * Dump details about an interrupt handler
1479 */
1480static void
1481db_dump_intrhand(struct intr_handler *ih)
1482{
1483	int comma;
1484
1485	db_printf("\t%-10s ", ih->ih_name);
1486	switch (ih->ih_pri) {
1487	case PI_REALTIME:
1488		db_printf("CLK ");
1489		break;
1490	case PI_INTR:
1491		db_printf("INTR");
1492		break;
1493	default:
1494		if (ih->ih_pri >= PI_SOFT)
1495			db_printf("SWI ");
1496		else
1497			db_printf("%4u", ih->ih_pri);
1498		break;
1499	}
1500	db_printf(" ");
1501	if (ih->ih_filter != NULL) {
1502		db_printf("[F]");
1503		db_printsym((uintptr_t)ih->ih_filter, DB_STGY_PROC);
1504	}
1505	if (ih->ih_handler != NULL) {
1506		if (ih->ih_filter != NULL)
1507			db_printf(",");
1508		db_printf("[H]");
1509		db_printsym((uintptr_t)ih->ih_handler, DB_STGY_PROC);
1510	}
1511	db_printf("(%p)", ih->ih_argument);
1512	if (ih->ih_need ||
1513	    (ih->ih_flags & (IH_EXCLUSIVE | IH_ENTROPY | IH_DEAD |
1514	    IH_MPSAFE)) != 0) {
1515		db_printf(" {");
1516		comma = 0;
1517		if (ih->ih_flags & IH_EXCLUSIVE) {
1518			if (comma)
1519				db_printf(", ");
1520			db_printf("EXCL");
1521			comma = 1;
1522		}
1523		if (ih->ih_flags & IH_ENTROPY) {
1524			if (comma)
1525				db_printf(", ");
1526			db_printf("ENTROPY");
1527			comma = 1;
1528		}
1529		if (ih->ih_flags & IH_DEAD) {
1530			if (comma)
1531				db_printf(", ");
1532			db_printf("DEAD");
1533			comma = 1;
1534		}
1535		if (ih->ih_flags & IH_MPSAFE) {
1536			if (comma)
1537				db_printf(", ");
1538			db_printf("MPSAFE");
1539			comma = 1;
1540		}
1541		if (ih->ih_need) {
1542			if (comma)
1543				db_printf(", ");
1544			db_printf("NEED");
1545		}
1546		db_printf("}");
1547	}
1548	db_printf("\n");
1549}
1550
1551/*
1552 * Dump details about a event.
1553 */
1554void
1555db_dump_intr_event(struct intr_event *ie, int handlers)
1556{
1557	struct intr_handler *ih;
1558	struct intr_thread *it;
1559	int comma;
1560
1561	db_printf("%s ", ie->ie_fullname);
1562	it = ie->ie_thread;
1563	if (it != NULL)
1564		db_printf("(pid %d)", it->it_thread->td_proc->p_pid);
1565	else
1566		db_printf("(no thread)");
1567	if ((ie->ie_flags & (IE_SOFT | IE_ADDING_THREAD)) != 0 ||
1568	    (it != NULL && it->it_need)) {
1569		db_printf(" {");
1570		comma = 0;
1571		if (ie->ie_flags & IE_SOFT) {
1572			db_printf("SOFT");
1573			comma = 1;
1574		}
1575		if (ie->ie_flags & IE_ADDING_THREAD) {
1576			if (comma)
1577				db_printf(", ");
1578			db_printf("ADDING_THREAD");
1579			comma = 1;
1580		}
1581		if (it != NULL && it->it_need) {
1582			if (comma)
1583				db_printf(", ");
1584			db_printf("NEED");
1585		}
1586		db_printf("}");
1587	}
1588	db_printf("\n");
1589
1590	if (handlers)
1591		CK_SLIST_FOREACH(ih, &ie->ie_handlers, ih_next)
1592		    db_dump_intrhand(ih);
1593}
1594
1595/*
1596 * Dump data about interrupt handlers
1597 */
1598DB_SHOW_COMMAND_FLAGS(intr, db_show_intr, DB_CMD_MEMSAFE)
1599{
1600	struct intr_event *ie;
1601	int all, verbose;
1602
1603	verbose = strchr(modif, 'v') != NULL;
1604	all = strchr(modif, 'a') != NULL;
1605	TAILQ_FOREACH(ie, &event_list, ie_list) {
1606		if (!all && CK_SLIST_EMPTY(&ie->ie_handlers))
1607			continue;
1608		db_dump_intr_event(ie, verbose);
1609		if (db_pager_quit)
1610			break;
1611	}
1612}
1613#endif /* DDB */
1614
1615/*
1616 * Start standard software interrupt threads
1617 */
1618static void
1619start_softintr(void *dummy)
1620{
1621
1622	if (swi_add(&clk_intr_event, "clk", NULL, NULL, SWI_CLOCK,
1623	    INTR_MPSAFE, NULL))
1624		panic("died while creating clk swi ithread");
1625}
1626SYSINIT(start_softintr, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softintr,
1627    NULL);
1628
1629/*
1630 * Sysctls used by systat and others: hw.intrnames and hw.intrcnt.
1631 * The data for this machine dependent, and the declarations are in machine
1632 * dependent code.  The layout of intrnames and intrcnt however is machine
1633 * independent.
1634 *
1635 * We do not know the length of intrcnt and intrnames at compile time, so
1636 * calculate things at run time.
1637 */
1638static int
1639sysctl_intrnames(SYSCTL_HANDLER_ARGS)
1640{
1641	return (sysctl_handle_opaque(oidp, intrnames, sintrnames, req));
1642}
1643
1644SYSCTL_PROC(_hw, OID_AUTO, intrnames,
1645    CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
1646    sysctl_intrnames, "",
1647    "Interrupt Names");
1648
1649static int
1650sysctl_intrcnt(SYSCTL_HANDLER_ARGS)
1651{
1652#ifdef SCTL_MASK32
1653	uint32_t *intrcnt32;
1654	unsigned i;
1655	int error;
1656
1657	if (req->flags & SCTL_MASK32) {
1658		if (!req->oldptr)
1659			return (sysctl_handle_opaque(oidp, NULL, sintrcnt / 2, req));
1660		intrcnt32 = malloc(sintrcnt / 2, M_TEMP, M_NOWAIT);
1661		if (intrcnt32 == NULL)
1662			return (ENOMEM);
1663		for (i = 0; i < sintrcnt / sizeof (u_long); i++)
1664			intrcnt32[i] = intrcnt[i];
1665		error = sysctl_handle_opaque(oidp, intrcnt32, sintrcnt / 2, req);
1666		free(intrcnt32, M_TEMP);
1667		return (error);
1668	}
1669#endif
1670	return (sysctl_handle_opaque(oidp, intrcnt, sintrcnt, req));
1671}
1672
1673SYSCTL_PROC(_hw, OID_AUTO, intrcnt,
1674    CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
1675    sysctl_intrcnt, "",
1676    "Interrupt Counts");
1677
1678#ifdef DDB
1679/*
1680 * DDB command to dump the interrupt statistics.
1681 */
1682DB_SHOW_COMMAND_FLAGS(intrcnt, db_show_intrcnt, DB_CMD_MEMSAFE)
1683{
1684	u_long *i;
1685	char *cp;
1686	u_int j;
1687
1688	cp = intrnames;
1689	j = 0;
1690	for (i = intrcnt; j < (sintrcnt / sizeof(u_long)) && !db_pager_quit;
1691	    i++, j++) {
1692		if (*cp == '\0')
1693			break;
1694		if (*i != 0)
1695			db_printf("%s\t%lu\n", cp, *i);
1696		cp += strlen(cp) + 1;
1697	}
1698}
1699#endif
1700