1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2002, Jeffrey Roberson <jeff@freebsd.org>
5 * Copyright (c) 2008-2009, Lawrence Stewart <lstewart@freebsd.org>
6 * Copyright (c) 2009-2010, The FreeBSD Foundation
7 * All rights reserved.
8 *
9 * Portions of this software were developed at the Centre for Advanced
10 * Internet Architectures, Swinburne University of Technology, Melbourne,
11 * Australia by Lawrence Stewart under sponsorship from the FreeBSD Foundation.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice unmodified, this list of conditions, and the following
18 *    disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35#include <sys/cdefs.h>
36#include "opt_mac.h"
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/alq.h>
41#include <sys/eventhandler.h>
42#include <sys/fcntl.h>
43#include <sys/kernel.h>
44#include <sys/kthread.h>
45#include <sys/lock.h>
46#include <sys/malloc.h>
47#include <sys/mount.h>
48#include <sys/mutex.h>
49#include <sys/namei.h>
50#include <sys/proc.h>
51#include <sys/reboot.h>
52#include <sys/unistd.h>
53#include <sys/vnode.h>
54
55#include <security/mac/mac_framework.h>
56
57/* Async. Logging Queue */
58struct alq {
59	char	*aq_entbuf;		/* Buffer for stored entries */
60	int	aq_entmax;		/* Max entries */
61	int	aq_entlen;		/* Entry length */
62	int	aq_freebytes;		/* Bytes available in buffer */
63	int	aq_buflen;		/* Total length of our buffer */
64	int	aq_writehead;		/* Location for next write */
65	int	aq_writetail;		/* Flush starts at this location */
66	int	aq_wrapearly;		/* # bytes left blank at end of buf */
67	int	aq_flags;		/* Queue flags */
68	int	aq_waiters;		/* Num threads waiting for resources
69					 * NB: Used as a wait channel so must
70					 * not be first field in the alq struct
71					 */
72	struct	ale	aq_getpost;	/* ALE for use by get/post */
73	struct mtx	aq_mtx;		/* Queue lock */
74	struct vnode	*aq_vp;		/* Open vnode handle */
75	struct ucred	*aq_cred;	/* Credentials of the opening thread */
76	LIST_ENTRY(alq)	aq_act;		/* List of active queues */
77	LIST_ENTRY(alq)	aq_link;	/* List of all queues */
78};
79
80#define	AQ_WANTED	0x0001		/* Wakeup sleeper when io is done */
81#define	AQ_ACTIVE	0x0002		/* on the active list */
82#define	AQ_FLUSHING	0x0004		/* doing IO */
83#define	AQ_SHUTDOWN	0x0008		/* Queue no longer valid */
84#define	AQ_ORDERED	0x0010		/* Queue enforces ordered writes */
85#define	AQ_LEGACY	0x0020		/* Legacy queue (fixed length writes) */
86
87#define	ALQ_LOCK(alq)	mtx_lock_spin(&(alq)->aq_mtx)
88#define	ALQ_UNLOCK(alq)	mtx_unlock_spin(&(alq)->aq_mtx)
89
90#define HAS_PENDING_DATA(alq) ((alq)->aq_freebytes != (alq)->aq_buflen)
91
92static MALLOC_DEFINE(M_ALD, "ALD", "ALD");
93
94/*
95 * The ald_mtx protects the ald_queues list and the ald_active list.
96 */
97static struct mtx ald_mtx;
98static LIST_HEAD(, alq) ald_queues;
99static LIST_HEAD(, alq) ald_active;
100static int ald_shutingdown = 0;
101struct thread *ald_thread;
102static struct proc *ald_proc;
103static eventhandler_tag alq_eventhandler_tag = NULL;
104
105#define	ALD_LOCK()	mtx_lock(&ald_mtx)
106#define	ALD_UNLOCK()	mtx_unlock(&ald_mtx)
107
108/* Daemon functions */
109static int ald_add(struct alq *);
110static int ald_rem(struct alq *);
111static void ald_startup(void *);
112static void ald_daemon(void);
113static void ald_shutdown(void *, int);
114static void ald_activate(struct alq *);
115static void ald_deactivate(struct alq *);
116
117/* Internal queue functions */
118static void alq_shutdown(struct alq *);
119static void alq_destroy(struct alq *);
120static int alq_doio(struct alq *);
121
122/*
123 * Add a new queue to the global list.  Fail if we're shutting down.
124 */
125static int
126ald_add(struct alq *alq)
127{
128	int error;
129
130	error = 0;
131
132	ALD_LOCK();
133	if (ald_shutingdown) {
134		error = EBUSY;
135		goto done;
136	}
137	LIST_INSERT_HEAD(&ald_queues, alq, aq_link);
138done:
139	ALD_UNLOCK();
140	return (error);
141}
142
143/*
144 * Remove a queue from the global list unless we're shutting down.  If so,
145 * the ald will take care of cleaning up it's resources.
146 */
147static int
148ald_rem(struct alq *alq)
149{
150	int error;
151
152	error = 0;
153
154	ALD_LOCK();
155	if (ald_shutingdown) {
156		error = EBUSY;
157		goto done;
158	}
159	LIST_REMOVE(alq, aq_link);
160done:
161	ALD_UNLOCK();
162	return (error);
163}
164
165/*
166 * Put a queue on the active list.  This will schedule it for writing.
167 */
168static void
169ald_activate(struct alq *alq)
170{
171	LIST_INSERT_HEAD(&ald_active, alq, aq_act);
172	wakeup(&ald_active);
173}
174
175static void
176ald_deactivate(struct alq *alq)
177{
178	LIST_REMOVE(alq, aq_act);
179	alq->aq_flags &= ~AQ_ACTIVE;
180}
181
182static void
183ald_startup(void *unused)
184{
185	mtx_init(&ald_mtx, "ALDmtx", NULL, MTX_DEF|MTX_QUIET);
186	LIST_INIT(&ald_queues);
187	LIST_INIT(&ald_active);
188}
189
190static void
191ald_daemon(void)
192{
193	int needwakeup;
194	struct alq *alq;
195
196	ald_thread = FIRST_THREAD_IN_PROC(ald_proc);
197
198	alq_eventhandler_tag = EVENTHANDLER_REGISTER(shutdown_pre_sync,
199	    ald_shutdown, NULL, SHUTDOWN_PRI_FIRST);
200
201	ALD_LOCK();
202
203	for (;;) {
204		while ((alq = LIST_FIRST(&ald_active)) == NULL &&
205		    !ald_shutingdown)
206			mtx_sleep(&ald_active, &ald_mtx, PWAIT, "aldslp", 0);
207
208		/* Don't shutdown until all active ALQs are flushed. */
209		if (ald_shutingdown && alq == NULL) {
210			ALD_UNLOCK();
211			break;
212		}
213
214		ALQ_LOCK(alq);
215		ald_deactivate(alq);
216		ALD_UNLOCK();
217		needwakeup = alq_doio(alq);
218		ALQ_UNLOCK(alq);
219		if (needwakeup)
220			wakeup_one(alq);
221		ALD_LOCK();
222	}
223
224	kproc_exit(0);
225}
226
227static void
228ald_shutdown(void *arg, int howto)
229{
230	struct alq *alq;
231
232	if ((howto & RB_NOSYNC) != 0 || SCHEDULER_STOPPED())
233		return;
234
235	ALD_LOCK();
236
237	/* Ensure no new queues can be created. */
238	ald_shutingdown = 1;
239
240	/* Shutdown all ALQs prior to terminating the ald_daemon. */
241	while ((alq = LIST_FIRST(&ald_queues)) != NULL) {
242		LIST_REMOVE(alq, aq_link);
243		ALD_UNLOCK();
244		alq_shutdown(alq);
245		ALD_LOCK();
246	}
247
248	/* At this point, all ALQs are flushed and shutdown. */
249
250	/*
251	 * Wake ald_daemon so that it exits. It won't be able to do
252	 * anything until we mtx_sleep because we hold the ald_mtx.
253	 */
254	wakeup(&ald_active);
255
256	/* Wait for ald_daemon to exit. */
257	mtx_sleep(ald_proc, &ald_mtx, PWAIT, "aldslp", 0);
258
259	ALD_UNLOCK();
260}
261
262static void
263alq_shutdown(struct alq *alq)
264{
265	ALQ_LOCK(alq);
266
267	/* Stop any new writers. */
268	alq->aq_flags |= AQ_SHUTDOWN;
269
270	/*
271	 * If the ALQ isn't active but has unwritten data (possible if
272	 * the ALQ_NOACTIVATE flag has been used), explicitly activate the
273	 * ALQ here so that the pending data gets flushed by the ald_daemon.
274	 */
275	if (!(alq->aq_flags & AQ_ACTIVE) && HAS_PENDING_DATA(alq)) {
276		alq->aq_flags |= AQ_ACTIVE;
277		ALQ_UNLOCK(alq);
278		ALD_LOCK();
279		ald_activate(alq);
280		ALD_UNLOCK();
281		ALQ_LOCK(alq);
282	}
283
284	/* Drain IO */
285	while (alq->aq_flags & AQ_ACTIVE) {
286		alq->aq_flags |= AQ_WANTED;
287		msleep_spin(alq, &alq->aq_mtx, "aldclose", 0);
288	}
289	ALQ_UNLOCK(alq);
290
291	vn_close(alq->aq_vp, FWRITE, alq->aq_cred,
292	    curthread);
293	crfree(alq->aq_cred);
294}
295
296void
297alq_destroy(struct alq *alq)
298{
299	/* Drain all pending IO. */
300	alq_shutdown(alq);
301
302	mtx_destroy(&alq->aq_mtx);
303	free(alq->aq_entbuf, M_ALD);
304	free(alq, M_ALD);
305}
306
307/*
308 * Flush all pending data to disk.  This operation will block.
309 */
310static int
311alq_doio(struct alq *alq)
312{
313	struct thread *td;
314	struct mount *mp;
315	struct vnode *vp;
316	struct uio auio;
317	struct iovec aiov[2];
318	int totlen;
319	int iov;
320	int wrapearly;
321
322	KASSERT((HAS_PENDING_DATA(alq)), ("%s: queue empty!", __func__));
323
324	vp = alq->aq_vp;
325	td = curthread;
326	totlen = 0;
327	iov = 1;
328	wrapearly = alq->aq_wrapearly;
329
330	bzero(&aiov, sizeof(aiov));
331	bzero(&auio, sizeof(auio));
332
333	/* Start the write from the location of our buffer tail pointer. */
334	aiov[0].iov_base = alq->aq_entbuf + alq->aq_writetail;
335
336	if (alq->aq_writetail < alq->aq_writehead) {
337		/* Buffer not wrapped. */
338		totlen = aiov[0].iov_len = alq->aq_writehead - alq->aq_writetail;
339	} else if (alq->aq_writehead == 0) {
340		/* Buffer not wrapped (special case to avoid an empty iov). */
341		totlen = aiov[0].iov_len = alq->aq_buflen - alq->aq_writetail -
342		    wrapearly;
343	} else {
344		/*
345		 * Buffer wrapped, requires 2 aiov entries:
346		 * - first is from writetail to end of buffer
347		 * - second is from start of buffer to writehead
348		 */
349		aiov[0].iov_len = alq->aq_buflen - alq->aq_writetail -
350		    wrapearly;
351		iov++;
352		aiov[1].iov_base = alq->aq_entbuf;
353		aiov[1].iov_len =  alq->aq_writehead;
354		totlen = aiov[0].iov_len + aiov[1].iov_len;
355	}
356
357	alq->aq_flags |= AQ_FLUSHING;
358	ALQ_UNLOCK(alq);
359
360	auio.uio_iov = &aiov[0];
361	auio.uio_offset = 0;
362	auio.uio_segflg = UIO_SYSSPACE;
363	auio.uio_rw = UIO_WRITE;
364	auio.uio_iovcnt = iov;
365	auio.uio_resid = totlen;
366	auio.uio_td = td;
367
368	/*
369	 * Do all of the junk required to write now.
370	 */
371	vn_start_write(vp, &mp, V_WAIT);
372	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
373	/*
374	 * XXX: VOP_WRITE error checks are ignored.
375	 */
376#ifdef MAC
377	if (mac_vnode_check_write(alq->aq_cred, NOCRED, vp) == 0)
378#endif
379		VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, alq->aq_cred);
380	VOP_UNLOCK(vp);
381	vn_finished_write(mp);
382
383	ALQ_LOCK(alq);
384	alq->aq_flags &= ~AQ_FLUSHING;
385
386	/* Adjust writetail as required, taking into account wrapping. */
387	alq->aq_writetail = (alq->aq_writetail + totlen + wrapearly) %
388	    alq->aq_buflen;
389	alq->aq_freebytes += totlen + wrapearly;
390
391	/*
392	 * If we just flushed part of the buffer which wrapped, reset the
393	 * wrapearly indicator.
394	 */
395	if (wrapearly)
396		alq->aq_wrapearly = 0;
397
398	/*
399	 * If we just flushed the buffer completely, reset indexes to 0 to
400	 * minimise buffer wraps.
401	 * This is also required to ensure alq_getn() can't wedge itself.
402	 */
403	if (!HAS_PENDING_DATA(alq))
404		alq->aq_writehead = alq->aq_writetail = 0;
405
406	KASSERT((alq->aq_writetail >= 0 && alq->aq_writetail < alq->aq_buflen),
407	    ("%s: aq_writetail < 0 || aq_writetail >= aq_buflen", __func__));
408
409	if (alq->aq_flags & AQ_WANTED) {
410		alq->aq_flags &= ~AQ_WANTED;
411		return (1);
412	}
413
414	return(0);
415}
416
417static struct kproc_desc ald_kp = {
418        "ALQ Daemon",
419        ald_daemon,
420        &ald_proc
421};
422
423SYSINIT(aldthread, SI_SUB_KTHREAD_IDLE, SI_ORDER_ANY, kproc_start, &ald_kp);
424SYSINIT(ald, SI_SUB_LOCK, SI_ORDER_ANY, ald_startup, NULL);
425
426/* User visible queue functions */
427
428/*
429 * Create the queue data structure, allocate the buffer, and open the file.
430 */
431
432int
433alq_open_flags(struct alq **alqp, const char *file, struct ucred *cred, int cmode,
434    int size, int flags)
435{
436	struct nameidata nd;
437	struct alq *alq;
438	int oflags;
439	int error;
440
441	KASSERT((size > 0), ("%s: size <= 0", __func__));
442
443	*alqp = NULL;
444
445	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, file);
446	oflags = FWRITE | O_NOFOLLOW | O_CREAT;
447
448	error = vn_open_cred(&nd, &oflags, cmode, 0, cred, NULL);
449	if (error)
450		return (error);
451
452	NDFREE_PNBUF(&nd);
453	/* We just unlock so we hold a reference */
454	VOP_UNLOCK(nd.ni_vp);
455
456	alq = malloc(sizeof(*alq), M_ALD, M_WAITOK|M_ZERO);
457	alq->aq_vp = nd.ni_vp;
458	alq->aq_cred = crhold(cred);
459
460	mtx_init(&alq->aq_mtx, "ALD Queue", NULL, MTX_SPIN|MTX_QUIET);
461
462	alq->aq_buflen = size;
463	alq->aq_entmax = 0;
464	alq->aq_entlen = 0;
465
466	alq->aq_freebytes = alq->aq_buflen;
467	alq->aq_entbuf = malloc(alq->aq_buflen, M_ALD, M_WAITOK|M_ZERO);
468	alq->aq_writehead = alq->aq_writetail = 0;
469	if (flags & ALQ_ORDERED)
470		alq->aq_flags |= AQ_ORDERED;
471
472	if ((error = ald_add(alq)) != 0) {
473		alq_destroy(alq);
474		return (error);
475	}
476
477	*alqp = alq;
478
479	return (0);
480}
481
482int
483alq_open(struct alq **alqp, const char *file, struct ucred *cred, int cmode,
484    int size, int count)
485{
486	int ret;
487
488	KASSERT((count >= 0), ("%s: count < 0", __func__));
489
490	if (count > 0) {
491		if ((ret = alq_open_flags(alqp, file, cred, cmode,
492		    size*count, 0)) == 0) {
493			(*alqp)->aq_flags |= AQ_LEGACY;
494			(*alqp)->aq_entmax = count;
495			(*alqp)->aq_entlen = size;
496		}
497	} else
498		ret = alq_open_flags(alqp, file, cred, cmode, size, 0);
499
500	return (ret);
501}
502
503/*
504 * Copy a new entry into the queue.  If the operation would block either
505 * wait or return an error depending on the value of waitok.
506 */
507int
508alq_writen(struct alq *alq, void *data, int len, int flags)
509{
510	int activate, copy, ret;
511	void *waitchan;
512
513	KASSERT((len > 0 && len <= alq->aq_buflen),
514	    ("%s: len <= 0 || len > aq_buflen", __func__));
515
516	activate = ret = 0;
517	copy = len;
518	waitchan = NULL;
519
520	ALQ_LOCK(alq);
521
522	/*
523	 * Fail to perform the write and return EWOULDBLOCK if:
524	 * - The message is larger than our underlying buffer.
525	 * - The ALQ is being shutdown.
526	 * - There is insufficient free space in our underlying buffer
527	 *   to accept the message and the user can't wait for space.
528	 * - There is insufficient free space in our underlying buffer
529	 *   to accept the message and the alq is inactive due to prior
530	 *   use of the ALQ_NOACTIVATE flag (which would lead to deadlock).
531	 */
532	if (len > alq->aq_buflen ||
533	    alq->aq_flags & AQ_SHUTDOWN ||
534	    (((flags & ALQ_NOWAIT) || (!(alq->aq_flags & AQ_ACTIVE) &&
535	    HAS_PENDING_DATA(alq))) && alq->aq_freebytes < len)) {
536		ALQ_UNLOCK(alq);
537		return (EWOULDBLOCK);
538	}
539
540	/*
541	 * If we want ordered writes and there is already at least one thread
542	 * waiting for resources to become available, sleep until we're woken.
543	 */
544	if (alq->aq_flags & AQ_ORDERED && alq->aq_waiters > 0) {
545		KASSERT(!(flags & ALQ_NOWAIT),
546		    ("%s: ALQ_NOWAIT set but incorrectly ignored!", __func__));
547		alq->aq_waiters++;
548		msleep_spin(&alq->aq_waiters, &alq->aq_mtx, "alqwnord", 0);
549		alq->aq_waiters--;
550	}
551
552	/*
553	 * (ALQ_WAITOK && aq_freebytes < len) or aq_freebytes >= len, either
554	 * enter while loop and sleep until we have enough free bytes (former)
555	 * or skip (latter). If AQ_ORDERED is set, only 1 thread at a time will
556	 * be in this loop. Otherwise, multiple threads may be sleeping here
557	 * competing for ALQ resources.
558	 */
559	while (alq->aq_freebytes < len && !(alq->aq_flags & AQ_SHUTDOWN)) {
560		KASSERT(!(flags & ALQ_NOWAIT),
561		    ("%s: ALQ_NOWAIT set but incorrectly ignored!", __func__));
562		alq->aq_flags |= AQ_WANTED;
563		alq->aq_waiters++;
564		if (waitchan)
565			wakeup(waitchan);
566		msleep_spin(alq, &alq->aq_mtx, "alqwnres", 0);
567		alq->aq_waiters--;
568
569		/*
570		 * If we're the first thread to wake after an AQ_WANTED wakeup
571		 * but there isn't enough free space for us, we're going to loop
572		 * and sleep again. If there are other threads waiting in this
573		 * loop, schedule a wakeup so that they can see if the space
574		 * they require is available.
575		 */
576		if (alq->aq_waiters > 0 && !(alq->aq_flags & AQ_ORDERED) &&
577		    alq->aq_freebytes < len && !(alq->aq_flags & AQ_WANTED))
578			waitchan = alq;
579		else
580			waitchan = NULL;
581	}
582
583	/*
584	 * If there are waiters, we need to signal the waiting threads after we
585	 * complete our work. The alq ptr is used as a wait channel for threads
586	 * requiring resources to be freed up. In the AQ_ORDERED case, threads
587	 * are not allowed to concurrently compete for resources in the above
588	 * while loop, so we use a different wait channel in this case.
589	 */
590	if (alq->aq_waiters > 0) {
591		if (alq->aq_flags & AQ_ORDERED)
592			waitchan = &alq->aq_waiters;
593		else
594			waitchan = alq;
595	} else
596		waitchan = NULL;
597
598	/* Bail if we're shutting down. */
599	if (alq->aq_flags & AQ_SHUTDOWN) {
600		ret = EWOULDBLOCK;
601		goto unlock;
602	}
603
604	/*
605	 * If we need to wrap the buffer to accommodate the write,
606	 * we'll need 2 calls to bcopy.
607	 */
608	if ((alq->aq_buflen - alq->aq_writehead) < len)
609		copy = alq->aq_buflen - alq->aq_writehead;
610
611	/* Copy message (or part thereof if wrap required) to the buffer. */
612	bcopy(data, alq->aq_entbuf + alq->aq_writehead, copy);
613	alq->aq_writehead += copy;
614
615	if (alq->aq_writehead >= alq->aq_buflen) {
616		KASSERT((alq->aq_writehead == alq->aq_buflen),
617		    ("%s: alq->aq_writehead (%d) > alq->aq_buflen (%d)",
618		    __func__,
619		    alq->aq_writehead,
620		    alq->aq_buflen));
621		alq->aq_writehead = 0;
622	}
623
624	if (copy != len) {
625		/*
626		 * Wrap the buffer by copying the remainder of our message
627		 * to the start of the buffer and resetting aq_writehead.
628		 */
629		bcopy(((uint8_t *)data)+copy, alq->aq_entbuf, len - copy);
630		alq->aq_writehead = len - copy;
631	}
632
633	KASSERT((alq->aq_writehead >= 0 && alq->aq_writehead < alq->aq_buflen),
634	    ("%s: aq_writehead < 0 || aq_writehead >= aq_buflen", __func__));
635
636	alq->aq_freebytes -= len;
637
638	if (!(alq->aq_flags & AQ_ACTIVE) && !(flags & ALQ_NOACTIVATE)) {
639		alq->aq_flags |= AQ_ACTIVE;
640		activate = 1;
641	}
642
643	KASSERT((HAS_PENDING_DATA(alq)), ("%s: queue empty!", __func__));
644
645unlock:
646	ALQ_UNLOCK(alq);
647
648	if (activate) {
649		ALD_LOCK();
650		ald_activate(alq);
651		ALD_UNLOCK();
652	}
653
654	/* NB: We rely on wakeup_one waking threads in a FIFO manner. */
655	if (waitchan != NULL)
656		wakeup_one(waitchan);
657
658	return (ret);
659}
660
661int
662alq_write(struct alq *alq, void *data, int flags)
663{
664	/* Should only be called in fixed length message (legacy) mode. */
665	KASSERT((alq->aq_flags & AQ_LEGACY),
666	    ("%s: fixed length write on variable length queue", __func__));
667	return (alq_writen(alq, data, alq->aq_entlen, flags));
668}
669
670/*
671 * Retrieve a pointer for the ALQ to write directly into, avoiding bcopy.
672 */
673struct ale *
674alq_getn(struct alq *alq, int len, int flags)
675{
676	int contigbytes;
677	void *waitchan;
678
679	KASSERT((len > 0 && len <= alq->aq_buflen),
680	    ("%s: len <= 0 || len > alq->aq_buflen", __func__));
681
682	waitchan = NULL;
683
684	ALQ_LOCK(alq);
685
686	/*
687	 * Determine the number of free contiguous bytes.
688	 * We ensure elsewhere that if aq_writehead == aq_writetail because
689	 * the buffer is empty, they will both be set to 0 and therefore
690	 * aq_freebytes == aq_buflen and is fully contiguous.
691	 * If they are equal and the buffer is not empty, aq_freebytes will
692	 * be 0 indicating the buffer is full.
693	 */
694	if (alq->aq_writehead <= alq->aq_writetail)
695		contigbytes = alq->aq_freebytes;
696	else {
697		contigbytes = alq->aq_buflen - alq->aq_writehead;
698
699		if (contigbytes < len) {
700			/*
701			 * Insufficient space at end of buffer to handle a
702			 * contiguous write. Wrap early if there's space at
703			 * the beginning. This will leave a hole at the end
704			 * of the buffer which we will have to skip over when
705			 * flushing the buffer to disk.
706			 */
707			if (alq->aq_writetail >= len || flags & ALQ_WAITOK) {
708				/* Keep track of # bytes left blank. */
709				alq->aq_wrapearly = contigbytes;
710				/* Do the wrap and adjust counters. */
711				contigbytes = alq->aq_freebytes =
712				    alq->aq_writetail;
713				alq->aq_writehead = 0;
714			}
715		}
716	}
717
718	/*
719	 * Return a NULL ALE if:
720	 * - The message is larger than our underlying buffer.
721	 * - The ALQ is being shutdown.
722	 * - There is insufficient free space in our underlying buffer
723	 *   to accept the message and the user can't wait for space.
724	 * - There is insufficient free space in our underlying buffer
725	 *   to accept the message and the alq is inactive due to prior
726	 *   use of the ALQ_NOACTIVATE flag (which would lead to deadlock).
727	 */
728	if (len > alq->aq_buflen ||
729	    alq->aq_flags & AQ_SHUTDOWN ||
730	    (((flags & ALQ_NOWAIT) || (!(alq->aq_flags & AQ_ACTIVE) &&
731	    HAS_PENDING_DATA(alq))) && contigbytes < len)) {
732		ALQ_UNLOCK(alq);
733		return (NULL);
734	}
735
736	/*
737	 * If we want ordered writes and there is already at least one thread
738	 * waiting for resources to become available, sleep until we're woken.
739	 */
740	if (alq->aq_flags & AQ_ORDERED && alq->aq_waiters > 0) {
741		KASSERT(!(flags & ALQ_NOWAIT),
742		    ("%s: ALQ_NOWAIT set but incorrectly ignored!", __func__));
743		alq->aq_waiters++;
744		msleep_spin(&alq->aq_waiters, &alq->aq_mtx, "alqgnord", 0);
745		alq->aq_waiters--;
746	}
747
748	/*
749	 * (ALQ_WAITOK && contigbytes < len) or contigbytes >= len, either enter
750	 * while loop and sleep until we have enough contiguous free bytes
751	 * (former) or skip (latter). If AQ_ORDERED is set, only 1 thread at a
752	 * time will be in this loop. Otherwise, multiple threads may be
753	 * sleeping here competing for ALQ resources.
754	 */
755	while (contigbytes < len && !(alq->aq_flags & AQ_SHUTDOWN)) {
756		KASSERT(!(flags & ALQ_NOWAIT),
757		    ("%s: ALQ_NOWAIT set but incorrectly ignored!", __func__));
758		alq->aq_flags |= AQ_WANTED;
759		alq->aq_waiters++;
760		if (waitchan)
761			wakeup(waitchan);
762		msleep_spin(alq, &alq->aq_mtx, "alqgnres", 0);
763		alq->aq_waiters--;
764
765		if (alq->aq_writehead <= alq->aq_writetail)
766			contigbytes = alq->aq_freebytes;
767		else
768			contigbytes = alq->aq_buflen - alq->aq_writehead;
769
770		/*
771		 * If we're the first thread to wake after an AQ_WANTED wakeup
772		 * but there isn't enough free space for us, we're going to loop
773		 * and sleep again. If there are other threads waiting in this
774		 * loop, schedule a wakeup so that they can see if the space
775		 * they require is available.
776		 */
777		if (alq->aq_waiters > 0 && !(alq->aq_flags & AQ_ORDERED) &&
778		    contigbytes < len && !(alq->aq_flags & AQ_WANTED))
779			waitchan = alq;
780		else
781			waitchan = NULL;
782	}
783
784	/*
785	 * If there are waiters, we need to signal the waiting threads after we
786	 * complete our work. The alq ptr is used as a wait channel for threads
787	 * requiring resources to be freed up. In the AQ_ORDERED case, threads
788	 * are not allowed to concurrently compete for resources in the above
789	 * while loop, so we use a different wait channel in this case.
790	 */
791	if (alq->aq_waiters > 0) {
792		if (alq->aq_flags & AQ_ORDERED)
793			waitchan = &alq->aq_waiters;
794		else
795			waitchan = alq;
796	} else
797		waitchan = NULL;
798
799	/* Bail if we're shutting down. */
800	if (alq->aq_flags & AQ_SHUTDOWN) {
801		ALQ_UNLOCK(alq);
802		if (waitchan != NULL)
803			wakeup_one(waitchan);
804		return (NULL);
805	}
806
807	/*
808	 * If we are here, we have a contiguous number of bytes >= len
809	 * available in our buffer starting at aq_writehead.
810	 */
811	alq->aq_getpost.ae_data = alq->aq_entbuf + alq->aq_writehead;
812	alq->aq_getpost.ae_bytesused = len;
813
814	return (&alq->aq_getpost);
815}
816
817struct ale *
818alq_get(struct alq *alq, int flags)
819{
820	/* Should only be called in fixed length message (legacy) mode. */
821	KASSERT((alq->aq_flags & AQ_LEGACY),
822	    ("%s: fixed length get on variable length queue", __func__));
823	return (alq_getn(alq, alq->aq_entlen, flags));
824}
825
826void
827alq_post_flags(struct alq *alq, struct ale *ale, int flags)
828{
829	int activate;
830	void *waitchan;
831
832	activate = 0;
833
834	if (ale->ae_bytesused > 0) {
835		if (!(alq->aq_flags & AQ_ACTIVE) &&
836		    !(flags & ALQ_NOACTIVATE)) {
837			alq->aq_flags |= AQ_ACTIVE;
838			activate = 1;
839		}
840
841		alq->aq_writehead += ale->ae_bytesused;
842		alq->aq_freebytes -= ale->ae_bytesused;
843
844		/* Wrap aq_writehead if we filled to the end of the buffer. */
845		if (alq->aq_writehead == alq->aq_buflen)
846			alq->aq_writehead = 0;
847
848		KASSERT((alq->aq_writehead >= 0 &&
849		    alq->aq_writehead < alq->aq_buflen),
850		    ("%s: aq_writehead < 0 || aq_writehead >= aq_buflen",
851		    __func__));
852
853		KASSERT((HAS_PENDING_DATA(alq)), ("%s: queue empty!", __func__));
854	}
855
856	/*
857	 * If there are waiters, we need to signal the waiting threads after we
858	 * complete our work. The alq ptr is used as a wait channel for threads
859	 * requiring resources to be freed up. In the AQ_ORDERED case, threads
860	 * are not allowed to concurrently compete for resources in the
861	 * alq_getn() while loop, so we use a different wait channel in this case.
862	 */
863	if (alq->aq_waiters > 0) {
864		if (alq->aq_flags & AQ_ORDERED)
865			waitchan = &alq->aq_waiters;
866		else
867			waitchan = alq;
868	} else
869		waitchan = NULL;
870
871	ALQ_UNLOCK(alq);
872
873	if (activate) {
874		ALD_LOCK();
875		ald_activate(alq);
876		ALD_UNLOCK();
877	}
878
879	/* NB: We rely on wakeup_one waking threads in a FIFO manner. */
880	if (waitchan != NULL)
881		wakeup_one(waitchan);
882}
883
884void
885alq_flush(struct alq *alq)
886{
887	int needwakeup = 0;
888
889	ALD_LOCK();
890	ALQ_LOCK(alq);
891
892	/*
893	 * Pull the lever iff there is data to flush and we're
894	 * not already in the middle of a flush operation.
895	 */
896	if (HAS_PENDING_DATA(alq) && !(alq->aq_flags & AQ_FLUSHING)) {
897		if (alq->aq_flags & AQ_ACTIVE)
898			ald_deactivate(alq);
899
900		ALD_UNLOCK();
901		needwakeup = alq_doio(alq);
902	} else
903		ALD_UNLOCK();
904
905	ALQ_UNLOCK(alq);
906
907	if (needwakeup)
908		wakeup_one(alq);
909}
910
911/*
912 * Flush remaining data, close the file and free all resources.
913 */
914void
915alq_close(struct alq *alq)
916{
917	/* Only flush and destroy alq if not already shutting down. */
918	if (ald_rem(alq) == 0)
919		alq_destroy(alq);
920}
921
922static int
923alq_load_handler(module_t mod, int what, void *arg)
924{
925	int ret;
926
927	ret = 0;
928
929	switch (what) {
930	case MOD_LOAD:
931	case MOD_SHUTDOWN:
932		break;
933
934	case MOD_QUIESCE:
935		ALD_LOCK();
936		/* Only allow unload if there are no open queues. */
937		if (LIST_FIRST(&ald_queues) == NULL) {
938			ald_shutingdown = 1;
939			ALD_UNLOCK();
940			EVENTHANDLER_DEREGISTER(shutdown_pre_sync,
941			    alq_eventhandler_tag);
942			ald_shutdown(NULL, 0);
943			mtx_destroy(&ald_mtx);
944		} else {
945			ALD_UNLOCK();
946			ret = EBUSY;
947		}
948		break;
949
950	case MOD_UNLOAD:
951		/* If MOD_QUIESCE failed we must fail here too. */
952		if (ald_shutingdown == 0)
953			ret = EBUSY;
954		break;
955
956	default:
957		ret = EINVAL;
958		break;
959	}
960
961	return (ret);
962}
963
964static moduledata_t alq_mod =
965{
966	"alq",
967	alq_load_handler,
968	NULL
969};
970
971DECLARE_MODULE(alq, alq_mod, SI_SUB_LAST, SI_ORDER_ANY);
972MODULE_VERSION(alq, 1);
973