1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2004-2006 Pawel Jakub Dawidek <pjd@FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29#include <sys/param.h>
30#include <sys/systm.h>
31#include <sys/bio.h>
32#include <sys/eventhandler.h>
33#include <sys/kernel.h>
34#include <sys/kthread.h>
35#include <sys/limits.h>
36#include <sys/lock.h>
37#include <sys/malloc.h>
38#include <sys/module.h>
39#include <sys/mutex.h>
40#include <sys/proc.h>
41#include <sys/reboot.h>
42#include <sys/sbuf.h>
43#include <sys/sched.h>
44#include <sys/sysctl.h>
45
46#include <vm/uma.h>
47
48#include <geom/geom.h>
49#include <geom/geom_dbg.h>
50#include <geom/raid3/g_raid3.h>
51
52FEATURE(geom_raid3, "GEOM RAID-3 functionality");
53
54static MALLOC_DEFINE(M_RAID3, "raid3_data", "GEOM_RAID3 Data");
55
56SYSCTL_DECL(_kern_geom);
57static SYSCTL_NODE(_kern_geom, OID_AUTO, raid3, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
58    "GEOM_RAID3 stuff");
59u_int g_raid3_debug = 0;
60SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, debug, CTLFLAG_RWTUN, &g_raid3_debug, 0,
61    "Debug level");
62static u_int g_raid3_timeout = 4;
63SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, timeout, CTLFLAG_RWTUN, &g_raid3_timeout,
64    0, "Time to wait on all raid3 components");
65static u_int g_raid3_idletime = 5;
66SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, idletime, CTLFLAG_RWTUN,
67    &g_raid3_idletime, 0, "Mark components as clean when idling");
68static u_int g_raid3_disconnect_on_failure = 1;
69SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, disconnect_on_failure, CTLFLAG_RWTUN,
70    &g_raid3_disconnect_on_failure, 0, "Disconnect component on I/O failure.");
71static u_int g_raid3_syncreqs = 2;
72SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, sync_requests, CTLFLAG_RDTUN,
73    &g_raid3_syncreqs, 0, "Parallel synchronization I/O requests.");
74static u_int g_raid3_use_malloc = 0;
75SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, use_malloc, CTLFLAG_RDTUN,
76    &g_raid3_use_malloc, 0, "Use malloc(9) instead of uma(9).");
77
78static u_int g_raid3_n64k = 50;
79SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n64k, CTLFLAG_RDTUN, &g_raid3_n64k, 0,
80    "Maximum number of 64kB allocations");
81static u_int g_raid3_n16k = 200;
82SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n16k, CTLFLAG_RDTUN, &g_raid3_n16k, 0,
83    "Maximum number of 16kB allocations");
84static u_int g_raid3_n4k = 1200;
85SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n4k, CTLFLAG_RDTUN, &g_raid3_n4k, 0,
86    "Maximum number of 4kB allocations");
87
88static SYSCTL_NODE(_kern_geom_raid3, OID_AUTO, stat,
89    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
90    "GEOM_RAID3 statistics");
91static u_int g_raid3_parity_mismatch = 0;
92SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, parity_mismatch, CTLFLAG_RD,
93    &g_raid3_parity_mismatch, 0, "Number of failures in VERIFY mode");
94
95#define	MSLEEP(ident, mtx, priority, wmesg, timeout)	do {		\
96	G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, (ident));	\
97	msleep((ident), (mtx), (priority), (wmesg), (timeout));		\
98	G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, (ident));	\
99} while (0)
100
101static eventhandler_tag g_raid3_post_sync = NULL;
102static int g_raid3_shutdown = 0;
103
104static int g_raid3_destroy_geom(struct gctl_req *req, struct g_class *mp,
105    struct g_geom *gp);
106static g_taste_t g_raid3_taste;
107static void g_raid3_init(struct g_class *mp);
108static void g_raid3_fini(struct g_class *mp);
109static void g_raid3_providergone(struct g_provider *pp);
110
111struct g_class g_raid3_class = {
112	.name = G_RAID3_CLASS_NAME,
113	.version = G_VERSION,
114	.ctlreq = g_raid3_config,
115	.taste = g_raid3_taste,
116	.destroy_geom = g_raid3_destroy_geom,
117	.init = g_raid3_init,
118	.fini = g_raid3_fini,
119	.providergone = g_raid3_providergone,
120};
121
122static void g_raid3_destroy_provider(struct g_raid3_softc *sc);
123static int g_raid3_update_disk(struct g_raid3_disk *disk, u_int state);
124static void g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force);
125static void g_raid3_dumpconf(struct sbuf *sb, const char *indent,
126    struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp);
127static void g_raid3_sync_stop(struct g_raid3_softc *sc, int type);
128static int g_raid3_register_request(struct bio *pbp);
129static void g_raid3_sync_release(struct g_raid3_softc *sc);
130static void g_raid3_timeout_drain(struct g_raid3_softc *sc);
131
132static const char *
133g_raid3_disk_state2str(int state)
134{
135
136	switch (state) {
137	case G_RAID3_DISK_STATE_NODISK:
138		return ("NODISK");
139	case G_RAID3_DISK_STATE_NONE:
140		return ("NONE");
141	case G_RAID3_DISK_STATE_NEW:
142		return ("NEW");
143	case G_RAID3_DISK_STATE_ACTIVE:
144		return ("ACTIVE");
145	case G_RAID3_DISK_STATE_STALE:
146		return ("STALE");
147	case G_RAID3_DISK_STATE_SYNCHRONIZING:
148		return ("SYNCHRONIZING");
149	case G_RAID3_DISK_STATE_DISCONNECTED:
150		return ("DISCONNECTED");
151	default:
152		return ("INVALID");
153	}
154}
155
156static const char *
157g_raid3_device_state2str(int state)
158{
159
160	switch (state) {
161	case G_RAID3_DEVICE_STATE_STARTING:
162		return ("STARTING");
163	case G_RAID3_DEVICE_STATE_DEGRADED:
164		return ("DEGRADED");
165	case G_RAID3_DEVICE_STATE_COMPLETE:
166		return ("COMPLETE");
167	default:
168		return ("INVALID");
169	}
170}
171
172const char *
173g_raid3_get_diskname(struct g_raid3_disk *disk)
174{
175
176	if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL)
177		return ("[unknown]");
178	return (disk->d_name);
179}
180
181static void *
182g_raid3_alloc(struct g_raid3_softc *sc, size_t size, int flags)
183{
184	void *ptr;
185	enum g_raid3_zones zone;
186
187	if (g_raid3_use_malloc ||
188	    (zone = g_raid3_zone(size)) == G_RAID3_NUM_ZONES)
189		ptr = malloc(size, M_RAID3, flags);
190	else {
191		ptr = uma_zalloc_arg(sc->sc_zones[zone].sz_zone,
192		   &sc->sc_zones[zone], flags);
193		sc->sc_zones[zone].sz_requested++;
194		if (ptr == NULL)
195			sc->sc_zones[zone].sz_failed++;
196	}
197	return (ptr);
198}
199
200static void
201g_raid3_free(struct g_raid3_softc *sc, void *ptr, size_t size)
202{
203	enum g_raid3_zones zone;
204
205	if (g_raid3_use_malloc ||
206	    (zone = g_raid3_zone(size)) == G_RAID3_NUM_ZONES)
207		free(ptr, M_RAID3);
208	else {
209		uma_zfree_arg(sc->sc_zones[zone].sz_zone,
210		    ptr, &sc->sc_zones[zone]);
211	}
212}
213
214static int
215g_raid3_uma_ctor(void *mem, int size, void *arg, int flags)
216{
217	struct g_raid3_zone *sz = arg;
218
219	if (sz->sz_max > 0 && sz->sz_inuse == sz->sz_max)
220		return (ENOMEM);
221	sz->sz_inuse++;
222	return (0);
223}
224
225static void
226g_raid3_uma_dtor(void *mem, int size, void *arg)
227{
228	struct g_raid3_zone *sz = arg;
229
230	sz->sz_inuse--;
231}
232
233#define	g_raid3_xor(src, dst, size)					\
234	_g_raid3_xor((uint64_t *)(src),					\
235	    (uint64_t *)(dst), (size_t)size)
236static void
237_g_raid3_xor(uint64_t *src, uint64_t *dst, size_t size)
238{
239
240	KASSERT((size % 128) == 0, ("Invalid size: %zu.", size));
241	for (; size > 0; size -= 128) {
242		*dst++ ^= (*src++);
243		*dst++ ^= (*src++);
244		*dst++ ^= (*src++);
245		*dst++ ^= (*src++);
246		*dst++ ^= (*src++);
247		*dst++ ^= (*src++);
248		*dst++ ^= (*src++);
249		*dst++ ^= (*src++);
250		*dst++ ^= (*src++);
251		*dst++ ^= (*src++);
252		*dst++ ^= (*src++);
253		*dst++ ^= (*src++);
254		*dst++ ^= (*src++);
255		*dst++ ^= (*src++);
256		*dst++ ^= (*src++);
257		*dst++ ^= (*src++);
258	}
259}
260
261static int
262g_raid3_is_zero(struct bio *bp)
263{
264	static const uint64_t zeros[] = {
265	    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
266	};
267	u_char *addr;
268	ssize_t size;
269
270	size = bp->bio_length;
271	addr = (u_char *)bp->bio_data;
272	for (; size > 0; size -= sizeof(zeros), addr += sizeof(zeros)) {
273		if (bcmp(addr, zeros, sizeof(zeros)) != 0)
274			return (0);
275	}
276	return (1);
277}
278
279/*
280 * --- Events handling functions ---
281 * Events in geom_raid3 are used to maintain disks and device status
282 * from one thread to simplify locking.
283 */
284static void
285g_raid3_event_free(struct g_raid3_event *ep)
286{
287
288	free(ep, M_RAID3);
289}
290
291static int
292g_raid3_event_dispatch(struct g_raid3_event *ep, void *arg, int state,
293    int flags)
294{
295	struct g_raid3_softc *sc;
296	struct g_raid3_disk *disk;
297	int error;
298
299	G_RAID3_DEBUG(4, "%s: Sending event %p.", __func__, ep);
300	if ((flags & G_RAID3_EVENT_DEVICE) != 0) {
301		disk = NULL;
302		sc = arg;
303	} else {
304		disk = arg;
305		sc = disk->d_softc;
306	}
307	ep->e_disk = disk;
308	ep->e_state = state;
309	ep->e_flags = flags;
310	ep->e_error = 0;
311	mtx_lock(&sc->sc_events_mtx);
312	TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next);
313	mtx_unlock(&sc->sc_events_mtx);
314	G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
315	mtx_lock(&sc->sc_queue_mtx);
316	wakeup(sc);
317	wakeup(&sc->sc_queue);
318	mtx_unlock(&sc->sc_queue_mtx);
319	if ((flags & G_RAID3_EVENT_DONTWAIT) != 0)
320		return (0);
321	sx_assert(&sc->sc_lock, SX_XLOCKED);
322	G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, ep);
323	sx_xunlock(&sc->sc_lock);
324	while ((ep->e_flags & G_RAID3_EVENT_DONE) == 0) {
325		mtx_lock(&sc->sc_events_mtx);
326		MSLEEP(ep, &sc->sc_events_mtx, PRIBIO | PDROP, "r3:event",
327		    hz * 5);
328	}
329	error = ep->e_error;
330	g_raid3_event_free(ep);
331	sx_xlock(&sc->sc_lock);
332	return (error);
333}
334
335int
336g_raid3_event_send(void *arg, int state, int flags)
337{
338	struct g_raid3_event *ep;
339
340	ep = malloc(sizeof(*ep), M_RAID3, M_WAITOK);
341	return (g_raid3_event_dispatch(ep, arg, state, flags));
342}
343
344static struct g_raid3_event *
345g_raid3_event_get(struct g_raid3_softc *sc)
346{
347	struct g_raid3_event *ep;
348
349	mtx_lock(&sc->sc_events_mtx);
350	ep = TAILQ_FIRST(&sc->sc_events);
351	mtx_unlock(&sc->sc_events_mtx);
352	return (ep);
353}
354
355static void
356g_raid3_event_remove(struct g_raid3_softc *sc, struct g_raid3_event *ep)
357{
358
359	mtx_lock(&sc->sc_events_mtx);
360	TAILQ_REMOVE(&sc->sc_events, ep, e_next);
361	mtx_unlock(&sc->sc_events_mtx);
362}
363
364static void
365g_raid3_event_cancel(struct g_raid3_disk *disk)
366{
367	struct g_raid3_softc *sc;
368	struct g_raid3_event *ep, *tmpep;
369
370	sc = disk->d_softc;
371	sx_assert(&sc->sc_lock, SX_XLOCKED);
372
373	mtx_lock(&sc->sc_events_mtx);
374	TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) {
375		if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0)
376			continue;
377		if (ep->e_disk != disk)
378			continue;
379		TAILQ_REMOVE(&sc->sc_events, ep, e_next);
380		if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0)
381			g_raid3_event_free(ep);
382		else {
383			ep->e_error = ECANCELED;
384			wakeup(ep);
385		}
386	}
387	mtx_unlock(&sc->sc_events_mtx);
388}
389
390/*
391 * Return the number of disks in the given state.
392 * If state is equal to -1, count all connected disks.
393 */
394u_int
395g_raid3_ndisks(struct g_raid3_softc *sc, int state)
396{
397	struct g_raid3_disk *disk;
398	u_int n, ndisks;
399
400	sx_assert(&sc->sc_lock, SX_LOCKED);
401
402	for (n = ndisks = 0; n < sc->sc_ndisks; n++) {
403		disk = &sc->sc_disks[n];
404		if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
405			continue;
406		if (state == -1 || disk->d_state == state)
407			ndisks++;
408	}
409	return (ndisks);
410}
411
412static u_int
413g_raid3_nrequests(struct g_raid3_softc *sc, struct g_consumer *cp)
414{
415	struct bio *bp;
416	u_int nreqs = 0;
417
418	mtx_lock(&sc->sc_queue_mtx);
419	TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
420		if (bp->bio_from == cp)
421			nreqs++;
422	}
423	mtx_unlock(&sc->sc_queue_mtx);
424	return (nreqs);
425}
426
427static int
428g_raid3_is_busy(struct g_raid3_softc *sc, struct g_consumer *cp)
429{
430
431	if (cp->index > 0) {
432		G_RAID3_DEBUG(2,
433		    "I/O requests for %s exist, can't destroy it now.",
434		    cp->provider->name);
435		return (1);
436	}
437	if (g_raid3_nrequests(sc, cp) > 0) {
438		G_RAID3_DEBUG(2,
439		    "I/O requests for %s in queue, can't destroy it now.",
440		    cp->provider->name);
441		return (1);
442	}
443	return (0);
444}
445
446static void
447g_raid3_destroy_consumer(void *arg, int flags __unused)
448{
449	struct g_consumer *cp;
450
451	g_topology_assert();
452
453	cp = arg;
454	G_RAID3_DEBUG(1, "Consumer %s destroyed.", cp->provider->name);
455	g_detach(cp);
456	g_destroy_consumer(cp);
457}
458
459static void
460g_raid3_kill_consumer(struct g_raid3_softc *sc, struct g_consumer *cp)
461{
462	struct g_provider *pp;
463	int retaste_wait;
464
465	g_topology_assert();
466
467	cp->private = NULL;
468	if (g_raid3_is_busy(sc, cp))
469		return;
470	G_RAID3_DEBUG(2, "Consumer %s destroyed.", cp->provider->name);
471	pp = cp->provider;
472	retaste_wait = 0;
473	if (cp->acw == 1) {
474		if ((pp->geom->flags & G_GEOM_WITHER) == 0)
475			retaste_wait = 1;
476	}
477	G_RAID3_DEBUG(2, "Access %s r%dw%de%d = %d", pp->name, -cp->acr,
478	    -cp->acw, -cp->ace, 0);
479	if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0)
480		g_access(cp, -cp->acr, -cp->acw, -cp->ace);
481	if (retaste_wait) {
482		/*
483		 * After retaste event was send (inside g_access()), we can send
484		 * event to detach and destroy consumer.
485		 * A class, which has consumer to the given provider connected
486		 * will not receive retaste event for the provider.
487		 * This is the way how I ignore retaste events when I close
488		 * consumers opened for write: I detach and destroy consumer
489		 * after retaste event is sent.
490		 */
491		g_post_event(g_raid3_destroy_consumer, cp, M_WAITOK, NULL);
492		return;
493	}
494	G_RAID3_DEBUG(1, "Consumer %s destroyed.", pp->name);
495	g_detach(cp);
496	g_destroy_consumer(cp);
497}
498
499static int
500g_raid3_connect_disk(struct g_raid3_disk *disk, struct g_provider *pp)
501{
502	struct g_consumer *cp;
503	int error;
504
505	g_topology_assert_not();
506	KASSERT(disk->d_consumer == NULL,
507	    ("Disk already connected (device %s).", disk->d_softc->sc_name));
508
509	g_topology_lock();
510	cp = g_new_consumer(disk->d_softc->sc_geom);
511	error = g_attach(cp, pp);
512	if (error != 0) {
513		g_destroy_consumer(cp);
514		g_topology_unlock();
515		return (error);
516	}
517	error = g_access(cp, 1, 1, 1);
518		g_topology_unlock();
519	if (error != 0) {
520		g_detach(cp);
521		g_destroy_consumer(cp);
522		G_RAID3_DEBUG(0, "Cannot open consumer %s (error=%d).",
523		    pp->name, error);
524		return (error);
525	}
526	disk->d_consumer = cp;
527	disk->d_consumer->private = disk;
528	disk->d_consumer->index = 0;
529	G_RAID3_DEBUG(2, "Disk %s connected.", g_raid3_get_diskname(disk));
530	return (0);
531}
532
533static void
534g_raid3_disconnect_consumer(struct g_raid3_softc *sc, struct g_consumer *cp)
535{
536
537	g_topology_assert();
538
539	if (cp == NULL)
540		return;
541	if (cp->provider != NULL)
542		g_raid3_kill_consumer(sc, cp);
543	else
544		g_destroy_consumer(cp);
545}
546
547/*
548 * Initialize disk. This means allocate memory, create consumer, attach it
549 * to the provider and open access (r1w1e1) to it.
550 */
551static struct g_raid3_disk *
552g_raid3_init_disk(struct g_raid3_softc *sc, struct g_provider *pp,
553    struct g_raid3_metadata *md, int *errorp)
554{
555	struct g_raid3_disk *disk;
556	int error;
557
558	disk = &sc->sc_disks[md->md_no];
559	error = g_raid3_connect_disk(disk, pp);
560	if (error != 0) {
561		if (errorp != NULL)
562			*errorp = error;
563		return (NULL);
564	}
565	disk->d_state = G_RAID3_DISK_STATE_NONE;
566	disk->d_flags = md->md_dflags;
567	if (md->md_provider[0] != '\0')
568		disk->d_flags |= G_RAID3_DISK_FLAG_HARDCODED;
569	disk->d_sync.ds_consumer = NULL;
570	disk->d_sync.ds_offset = md->md_sync_offset;
571	disk->d_sync.ds_offset_done = md->md_sync_offset;
572	disk->d_genid = md->md_genid;
573	disk->d_sync.ds_syncid = md->md_syncid;
574	if (errorp != NULL)
575		*errorp = 0;
576	return (disk);
577}
578
579static void
580g_raid3_destroy_disk(struct g_raid3_disk *disk)
581{
582	struct g_raid3_softc *sc;
583
584	g_topology_assert_not();
585	sc = disk->d_softc;
586	sx_assert(&sc->sc_lock, SX_XLOCKED);
587
588	if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
589		return;
590	g_raid3_event_cancel(disk);
591	switch (disk->d_state) {
592	case G_RAID3_DISK_STATE_SYNCHRONIZING:
593		if (sc->sc_syncdisk != NULL)
594			g_raid3_sync_stop(sc, 1);
595		/* FALLTHROUGH */
596	case G_RAID3_DISK_STATE_NEW:
597	case G_RAID3_DISK_STATE_STALE:
598	case G_RAID3_DISK_STATE_ACTIVE:
599		g_topology_lock();
600		g_raid3_disconnect_consumer(sc, disk->d_consumer);
601		g_topology_unlock();
602		disk->d_consumer = NULL;
603		break;
604	default:
605		KASSERT(0 == 1, ("Wrong disk state (%s, %s).",
606		    g_raid3_get_diskname(disk),
607		    g_raid3_disk_state2str(disk->d_state)));
608	}
609	disk->d_state = G_RAID3_DISK_STATE_NODISK;
610}
611
612static void
613g_raid3_free_device(struct g_raid3_softc *sc)
614{
615	KASSERT(sc->sc_refcnt == 0,
616	    ("%s: non-zero refcount %u", __func__, sc->sc_refcnt));
617
618	if (!g_raid3_use_malloc) {
619		uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone);
620		uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone);
621		uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone);
622	}
623	mtx_destroy(&sc->sc_queue_mtx);
624	mtx_destroy(&sc->sc_events_mtx);
625	sx_xunlock(&sc->sc_lock);
626	sx_destroy(&sc->sc_lock);
627	free(sc->sc_disks, M_RAID3);
628	free(sc, M_RAID3);
629}
630
631static void
632g_raid3_providergone(struct g_provider *pp)
633{
634	struct g_raid3_softc *sc = pp->private;
635
636	if (--sc->sc_refcnt == 0)
637		g_raid3_free_device(sc);
638}
639
640static void
641g_raid3_destroy_device(struct g_raid3_softc *sc)
642{
643	struct g_raid3_event *ep;
644	struct g_raid3_disk *disk;
645	struct g_geom *gp;
646	struct g_consumer *cp;
647	u_int n;
648
649	g_topology_assert_not();
650	sx_assert(&sc->sc_lock, SX_XLOCKED);
651
652	gp = sc->sc_geom;
653	if (sc->sc_provider != NULL)
654		g_raid3_destroy_provider(sc);
655	for (n = 0; n < sc->sc_ndisks; n++) {
656		disk = &sc->sc_disks[n];
657		if (disk->d_state != G_RAID3_DISK_STATE_NODISK) {
658			disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
659			g_raid3_update_metadata(disk);
660			g_raid3_destroy_disk(disk);
661		}
662	}
663	while ((ep = g_raid3_event_get(sc)) != NULL) {
664		g_raid3_event_remove(sc, ep);
665		if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0)
666			g_raid3_event_free(ep);
667		else {
668			ep->e_error = ECANCELED;
669			ep->e_flags |= G_RAID3_EVENT_DONE;
670			G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, ep);
671			mtx_lock(&sc->sc_events_mtx);
672			wakeup(ep);
673			mtx_unlock(&sc->sc_events_mtx);
674		}
675	}
676	g_raid3_timeout_drain(sc);
677	cp = LIST_FIRST(&sc->sc_sync.ds_geom->consumer);
678	g_topology_lock();
679	if (cp != NULL)
680		g_raid3_disconnect_consumer(sc, cp);
681	g_wither_geom(sc->sc_sync.ds_geom, ENXIO);
682	G_RAID3_DEBUG(0, "Device %s destroyed.", gp->name);
683	g_wither_geom(gp, ENXIO);
684	if (--sc->sc_refcnt == 0)
685		g_raid3_free_device(sc);
686	g_topology_unlock();
687}
688
689static void
690g_raid3_orphan(struct g_consumer *cp)
691{
692	struct g_raid3_disk *disk;
693
694	g_topology_assert();
695
696	disk = cp->private;
697	if (disk == NULL)
698		return;
699	disk->d_softc->sc_bump_id = G_RAID3_BUMP_SYNCID;
700	g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED,
701	    G_RAID3_EVENT_DONTWAIT);
702}
703
704static int
705g_raid3_write_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md)
706{
707	struct g_raid3_softc *sc;
708	struct g_consumer *cp;
709	off_t offset, length;
710	u_char *sector;
711	int error = 0;
712
713	g_topology_assert_not();
714	sc = disk->d_softc;
715	sx_assert(&sc->sc_lock, SX_LOCKED);
716
717	cp = disk->d_consumer;
718	KASSERT(cp != NULL, ("NULL consumer (%s).", sc->sc_name));
719	KASSERT(cp->provider != NULL, ("NULL provider (%s).", sc->sc_name));
720	KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
721	    ("Consumer %s closed? (r%dw%de%d).", cp->provider->name, cp->acr,
722	    cp->acw, cp->ace));
723	length = cp->provider->sectorsize;
724	offset = cp->provider->mediasize - length;
725	sector = malloc((size_t)length, M_RAID3, M_WAITOK | M_ZERO);
726	if (md != NULL)
727		raid3_metadata_encode(md, sector);
728	error = g_write_data(cp, offset, sector, length);
729	free(sector, M_RAID3);
730	if (error != 0) {
731		if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
732			G_RAID3_DEBUG(0, "Cannot write metadata on %s "
733			    "(device=%s, error=%d).",
734			    g_raid3_get_diskname(disk), sc->sc_name, error);
735			disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
736		} else {
737			G_RAID3_DEBUG(1, "Cannot write metadata on %s "
738			    "(device=%s, error=%d).",
739			    g_raid3_get_diskname(disk), sc->sc_name, error);
740		}
741		if (g_raid3_disconnect_on_failure &&
742		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
743			sc->sc_bump_id |= G_RAID3_BUMP_GENID;
744			g_raid3_event_send(disk,
745			    G_RAID3_DISK_STATE_DISCONNECTED,
746			    G_RAID3_EVENT_DONTWAIT);
747		}
748	}
749	return (error);
750}
751
752int
753g_raid3_clear_metadata(struct g_raid3_disk *disk)
754{
755	int error;
756
757	g_topology_assert_not();
758	sx_assert(&disk->d_softc->sc_lock, SX_LOCKED);
759
760	error = g_raid3_write_metadata(disk, NULL);
761	if (error == 0) {
762		G_RAID3_DEBUG(2, "Metadata on %s cleared.",
763		    g_raid3_get_diskname(disk));
764	} else {
765		G_RAID3_DEBUG(0,
766		    "Cannot clear metadata on disk %s (error=%d).",
767		    g_raid3_get_diskname(disk), error);
768	}
769	return (error);
770}
771
772void
773g_raid3_fill_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md)
774{
775	struct g_raid3_softc *sc;
776	struct g_provider *pp;
777
778	bzero(md, sizeof(*md));
779	sc = disk->d_softc;
780	strlcpy(md->md_magic, G_RAID3_MAGIC, sizeof(md->md_magic));
781	md->md_version = G_RAID3_VERSION;
782	strlcpy(md->md_name, sc->sc_name, sizeof(md->md_name));
783	md->md_id = sc->sc_id;
784	md->md_all = sc->sc_ndisks;
785	md->md_genid = sc->sc_genid;
786	md->md_mediasize = sc->sc_mediasize;
787	md->md_sectorsize = sc->sc_sectorsize;
788	md->md_mflags = (sc->sc_flags & G_RAID3_DEVICE_FLAG_MASK);
789	md->md_no = disk->d_no;
790	md->md_syncid = disk->d_sync.ds_syncid;
791	md->md_dflags = (disk->d_flags & G_RAID3_DISK_FLAG_MASK);
792	if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
793		md->md_sync_offset =
794		    disk->d_sync.ds_offset_done / (sc->sc_ndisks - 1);
795	}
796	if (disk->d_consumer != NULL && disk->d_consumer->provider != NULL)
797		pp = disk->d_consumer->provider;
798	else
799		pp = NULL;
800	if ((disk->d_flags & G_RAID3_DISK_FLAG_HARDCODED) != 0 && pp != NULL)
801		strlcpy(md->md_provider, pp->name, sizeof(md->md_provider));
802	if (pp != NULL)
803		md->md_provsize = pp->mediasize;
804}
805
806void
807g_raid3_update_metadata(struct g_raid3_disk *disk)
808{
809	struct g_raid3_softc *sc __diagused;
810	struct g_raid3_metadata md;
811	int error;
812
813	g_topology_assert_not();
814	sc = disk->d_softc;
815	sx_assert(&sc->sc_lock, SX_LOCKED);
816
817	g_raid3_fill_metadata(disk, &md);
818	error = g_raid3_write_metadata(disk, &md);
819	if (error == 0) {
820		G_RAID3_DEBUG(2, "Metadata on %s updated.",
821		    g_raid3_get_diskname(disk));
822	} else {
823		G_RAID3_DEBUG(0,
824		    "Cannot update metadata on disk %s (error=%d).",
825		    g_raid3_get_diskname(disk), error);
826	}
827}
828
829static void
830g_raid3_bump_syncid(struct g_raid3_softc *sc)
831{
832	struct g_raid3_disk *disk;
833	u_int n;
834
835	g_topology_assert_not();
836	sx_assert(&sc->sc_lock, SX_XLOCKED);
837	KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0,
838	    ("%s called with no active disks (device=%s).", __func__,
839	    sc->sc_name));
840
841	sc->sc_syncid++;
842	G_RAID3_DEBUG(1, "Device %s: syncid bumped to %u.", sc->sc_name,
843	    sc->sc_syncid);
844	for (n = 0; n < sc->sc_ndisks; n++) {
845		disk = &sc->sc_disks[n];
846		if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
847		    disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
848			disk->d_sync.ds_syncid = sc->sc_syncid;
849			g_raid3_update_metadata(disk);
850		}
851	}
852}
853
854static void
855g_raid3_bump_genid(struct g_raid3_softc *sc)
856{
857	struct g_raid3_disk *disk;
858	u_int n;
859
860	g_topology_assert_not();
861	sx_assert(&sc->sc_lock, SX_XLOCKED);
862	KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0,
863	    ("%s called with no active disks (device=%s).", __func__,
864	    sc->sc_name));
865
866	sc->sc_genid++;
867	G_RAID3_DEBUG(1, "Device %s: genid bumped to %u.", sc->sc_name,
868	    sc->sc_genid);
869	for (n = 0; n < sc->sc_ndisks; n++) {
870		disk = &sc->sc_disks[n];
871		if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
872		    disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
873			disk->d_genid = sc->sc_genid;
874			g_raid3_update_metadata(disk);
875		}
876	}
877}
878
879static int
880g_raid3_idle(struct g_raid3_softc *sc, int acw)
881{
882	struct g_raid3_disk *disk;
883	u_int i;
884	int timeout;
885
886	g_topology_assert_not();
887	sx_assert(&sc->sc_lock, SX_XLOCKED);
888
889	if (sc->sc_provider == NULL)
890		return (0);
891	if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
892		return (0);
893	if (sc->sc_idle)
894		return (0);
895	if (sc->sc_writes > 0)
896		return (0);
897	if (acw > 0 || (acw == -1 && sc->sc_provider->acw > 0)) {
898		timeout = g_raid3_idletime - (time_uptime - sc->sc_last_write);
899		if (!g_raid3_shutdown && timeout > 0)
900			return (timeout);
901	}
902	sc->sc_idle = 1;
903	for (i = 0; i < sc->sc_ndisks; i++) {
904		disk = &sc->sc_disks[i];
905		if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
906			continue;
907		G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.",
908		    g_raid3_get_diskname(disk), sc->sc_name);
909		disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
910		g_raid3_update_metadata(disk);
911	}
912	return (0);
913}
914
915static void
916g_raid3_unidle(struct g_raid3_softc *sc)
917{
918	struct g_raid3_disk *disk;
919	u_int i;
920
921	g_topology_assert_not();
922	sx_assert(&sc->sc_lock, SX_XLOCKED);
923
924	if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
925		return;
926	sc->sc_idle = 0;
927	sc->sc_last_write = time_uptime;
928	for (i = 0; i < sc->sc_ndisks; i++) {
929		disk = &sc->sc_disks[i];
930		if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
931			continue;
932		G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.",
933		    g_raid3_get_diskname(disk), sc->sc_name);
934		disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
935		g_raid3_update_metadata(disk);
936	}
937}
938
939/*
940 * Treat bio_driver1 field in parent bio as list head and field bio_caller1
941 * in child bio as pointer to the next element on the list.
942 */
943#define	G_RAID3_HEAD_BIO(pbp)	(pbp)->bio_driver1
944
945#define	G_RAID3_NEXT_BIO(cbp)	(cbp)->bio_caller1
946
947#define	G_RAID3_FOREACH_BIO(pbp, bp)					\
948	for ((bp) = G_RAID3_HEAD_BIO(pbp); (bp) != NULL;		\
949	    (bp) = G_RAID3_NEXT_BIO(bp))
950
951#define	G_RAID3_FOREACH_SAFE_BIO(pbp, bp, tmpbp)			\
952	for ((bp) = G_RAID3_HEAD_BIO(pbp);				\
953	    (bp) != NULL && ((tmpbp) = G_RAID3_NEXT_BIO(bp), 1);	\
954	    (bp) = (tmpbp))
955
956static void
957g_raid3_init_bio(struct bio *pbp)
958{
959
960	G_RAID3_HEAD_BIO(pbp) = NULL;
961}
962
963static void
964g_raid3_remove_bio(struct bio *cbp)
965{
966	struct bio *pbp, *bp;
967
968	pbp = cbp->bio_parent;
969	if (G_RAID3_HEAD_BIO(pbp) == cbp)
970		G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp);
971	else {
972		G_RAID3_FOREACH_BIO(pbp, bp) {
973			if (G_RAID3_NEXT_BIO(bp) == cbp) {
974				G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp);
975				break;
976			}
977		}
978	}
979	G_RAID3_NEXT_BIO(cbp) = NULL;
980}
981
982static void
983g_raid3_replace_bio(struct bio *sbp, struct bio *dbp)
984{
985	struct bio *pbp, *bp;
986
987	g_raid3_remove_bio(sbp);
988	pbp = dbp->bio_parent;
989	G_RAID3_NEXT_BIO(sbp) = G_RAID3_NEXT_BIO(dbp);
990	if (G_RAID3_HEAD_BIO(pbp) == dbp)
991		G_RAID3_HEAD_BIO(pbp) = sbp;
992	else {
993		G_RAID3_FOREACH_BIO(pbp, bp) {
994			if (G_RAID3_NEXT_BIO(bp) == dbp) {
995				G_RAID3_NEXT_BIO(bp) = sbp;
996				break;
997			}
998		}
999	}
1000	G_RAID3_NEXT_BIO(dbp) = NULL;
1001}
1002
1003static void
1004g_raid3_destroy_bio(struct g_raid3_softc *sc, struct bio *cbp)
1005{
1006	struct bio *bp, *pbp;
1007	size_t size;
1008
1009	pbp = cbp->bio_parent;
1010	pbp->bio_children--;
1011	KASSERT(cbp->bio_data != NULL, ("NULL bio_data"));
1012	size = pbp->bio_length / (sc->sc_ndisks - 1);
1013	g_raid3_free(sc, cbp->bio_data, size);
1014	if (G_RAID3_HEAD_BIO(pbp) == cbp) {
1015		G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp);
1016		G_RAID3_NEXT_BIO(cbp) = NULL;
1017		g_destroy_bio(cbp);
1018	} else {
1019		G_RAID3_FOREACH_BIO(pbp, bp) {
1020			if (G_RAID3_NEXT_BIO(bp) == cbp)
1021				break;
1022		}
1023		if (bp != NULL) {
1024			KASSERT(G_RAID3_NEXT_BIO(bp) != NULL,
1025			    ("NULL bp->bio_driver1"));
1026			G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp);
1027			G_RAID3_NEXT_BIO(cbp) = NULL;
1028		}
1029		g_destroy_bio(cbp);
1030	}
1031}
1032
1033static struct bio *
1034g_raid3_clone_bio(struct g_raid3_softc *sc, struct bio *pbp)
1035{
1036	struct bio *bp, *cbp;
1037	size_t size;
1038	int memflag;
1039
1040	cbp = g_clone_bio(pbp);
1041	if (cbp == NULL)
1042		return (NULL);
1043	size = pbp->bio_length / (sc->sc_ndisks - 1);
1044	if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0)
1045		memflag = M_WAITOK;
1046	else
1047		memflag = M_NOWAIT;
1048	cbp->bio_data = g_raid3_alloc(sc, size, memflag);
1049	if (cbp->bio_data == NULL) {
1050		pbp->bio_children--;
1051		g_destroy_bio(cbp);
1052		return (NULL);
1053	}
1054	G_RAID3_NEXT_BIO(cbp) = NULL;
1055	if (G_RAID3_HEAD_BIO(pbp) == NULL)
1056		G_RAID3_HEAD_BIO(pbp) = cbp;
1057	else {
1058		G_RAID3_FOREACH_BIO(pbp, bp) {
1059			if (G_RAID3_NEXT_BIO(bp) == NULL) {
1060				G_RAID3_NEXT_BIO(bp) = cbp;
1061				break;
1062			}
1063		}
1064	}
1065	return (cbp);
1066}
1067
1068static void
1069g_raid3_scatter(struct bio *pbp)
1070{
1071	struct g_raid3_softc *sc;
1072	struct g_raid3_disk *disk;
1073	struct bio *bp, *cbp, *tmpbp;
1074	off_t atom, cadd, padd, left;
1075	int first;
1076
1077	sc = pbp->bio_to->private;
1078	bp = NULL;
1079	if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) {
1080		/*
1081		 * Find bio for which we should calculate data.
1082		 */
1083		G_RAID3_FOREACH_BIO(pbp, cbp) {
1084			if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) {
1085				bp = cbp;
1086				break;
1087			}
1088		}
1089		KASSERT(bp != NULL, ("NULL parity bio."));
1090	}
1091	atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
1092	cadd = padd = 0;
1093	for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) {
1094		G_RAID3_FOREACH_BIO(pbp, cbp) {
1095			if (cbp == bp)
1096				continue;
1097			bcopy(pbp->bio_data + padd, cbp->bio_data + cadd, atom);
1098			padd += atom;
1099		}
1100		cadd += atom;
1101	}
1102	if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) {
1103		/*
1104		 * Calculate parity.
1105		 */
1106		first = 1;
1107		G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
1108			if (cbp == bp)
1109				continue;
1110			if (first) {
1111				bcopy(cbp->bio_data, bp->bio_data,
1112				    bp->bio_length);
1113				first = 0;
1114			} else {
1115				g_raid3_xor(cbp->bio_data, bp->bio_data,
1116				    bp->bio_length);
1117			}
1118			if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_NODISK) != 0)
1119				g_raid3_destroy_bio(sc, cbp);
1120		}
1121	}
1122	G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
1123		struct g_consumer *cp;
1124
1125		disk = cbp->bio_caller2;
1126		cp = disk->d_consumer;
1127		cbp->bio_to = cp->provider;
1128		G_RAID3_LOGREQ(3, cbp, "Sending request.");
1129		KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1130		    ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
1131		    cp->acr, cp->acw, cp->ace));
1132		cp->index++;
1133		sc->sc_writes++;
1134		g_io_request(cbp, cp);
1135	}
1136}
1137
1138static void
1139g_raid3_gather(struct bio *pbp)
1140{
1141	struct g_raid3_softc *sc;
1142	struct g_raid3_disk *disk;
1143	struct bio *xbp, *fbp, *cbp;
1144	off_t atom, cadd, padd, left;
1145
1146	sc = pbp->bio_to->private;
1147	/*
1148	 * Find bio for which we have to calculate data.
1149	 * While going through this path, check if all requests
1150	 * succeeded, if not, deny whole request.
1151	 * If we're in COMPLETE mode, we allow one request to fail,
1152	 * so if we find one, we're sending it to the parity consumer.
1153	 * If there are more failed requests, we deny whole request.
1154	 */
1155	xbp = fbp = NULL;
1156	G_RAID3_FOREACH_BIO(pbp, cbp) {
1157		if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) {
1158			KASSERT(xbp == NULL, ("More than one parity bio."));
1159			xbp = cbp;
1160		}
1161		if (cbp->bio_error == 0)
1162			continue;
1163		/*
1164		 * Found failed request.
1165		 */
1166		if (fbp == NULL) {
1167			if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_DEGRADED) != 0) {
1168				/*
1169				 * We are already in degraded mode, so we can't
1170				 * accept any failures.
1171				 */
1172				if (pbp->bio_error == 0)
1173					pbp->bio_error = cbp->bio_error;
1174			} else {
1175				fbp = cbp;
1176			}
1177		} else {
1178			/*
1179			 * Next failed request, that's too many.
1180			 */
1181			if (pbp->bio_error == 0)
1182				pbp->bio_error = fbp->bio_error;
1183		}
1184		disk = cbp->bio_caller2;
1185		if (disk == NULL)
1186			continue;
1187		if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
1188			disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
1189			G_RAID3_LOGREQ(0, cbp, "Request failed (error=%d).",
1190			    cbp->bio_error);
1191		} else {
1192			G_RAID3_LOGREQ(1, cbp, "Request failed (error=%d).",
1193			    cbp->bio_error);
1194		}
1195		if (g_raid3_disconnect_on_failure &&
1196		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
1197			sc->sc_bump_id |= G_RAID3_BUMP_GENID;
1198			g_raid3_event_send(disk,
1199			    G_RAID3_DISK_STATE_DISCONNECTED,
1200			    G_RAID3_EVENT_DONTWAIT);
1201		}
1202	}
1203	if (pbp->bio_error != 0)
1204		goto finish;
1205	if (fbp != NULL && (pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) {
1206		pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_VERIFY;
1207		if (xbp != fbp)
1208			g_raid3_replace_bio(xbp, fbp);
1209		g_raid3_destroy_bio(sc, fbp);
1210	} else if (fbp != NULL) {
1211		struct g_consumer *cp;
1212
1213		/*
1214		 * One request failed, so send the same request to
1215		 * the parity consumer.
1216		 */
1217		disk = pbp->bio_driver2;
1218		if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) {
1219			pbp->bio_error = fbp->bio_error;
1220			goto finish;
1221		}
1222		pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
1223		pbp->bio_inbed--;
1224		fbp->bio_flags &= ~(BIO_DONE | BIO_ERROR);
1225		if (disk->d_no == sc->sc_ndisks - 1)
1226			fbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
1227		fbp->bio_error = 0;
1228		fbp->bio_completed = 0;
1229		fbp->bio_children = 0;
1230		fbp->bio_inbed = 0;
1231		cp = disk->d_consumer;
1232		fbp->bio_caller2 = disk;
1233		fbp->bio_to = cp->provider;
1234		G_RAID3_LOGREQ(3, fbp, "Sending request (recover).");
1235		KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1236		    ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
1237		    cp->acr, cp->acw, cp->ace));
1238		cp->index++;
1239		g_io_request(fbp, cp);
1240		return;
1241	}
1242	if (xbp != NULL) {
1243		/*
1244		 * Calculate parity.
1245		 */
1246		G_RAID3_FOREACH_BIO(pbp, cbp) {
1247			if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0)
1248				continue;
1249			g_raid3_xor(cbp->bio_data, xbp->bio_data,
1250			    xbp->bio_length);
1251		}
1252		xbp->bio_cflags &= ~G_RAID3_BIO_CFLAG_PARITY;
1253		if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) {
1254			if (!g_raid3_is_zero(xbp)) {
1255				g_raid3_parity_mismatch++;
1256				pbp->bio_error = EIO;
1257				goto finish;
1258			}
1259			g_raid3_destroy_bio(sc, xbp);
1260		}
1261	}
1262	atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
1263	cadd = padd = 0;
1264	for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) {
1265		G_RAID3_FOREACH_BIO(pbp, cbp) {
1266			bcopy(cbp->bio_data + cadd, pbp->bio_data + padd, atom);
1267			pbp->bio_completed += atom;
1268			padd += atom;
1269		}
1270		cadd += atom;
1271	}
1272finish:
1273	if (pbp->bio_error == 0)
1274		G_RAID3_LOGREQ(3, pbp, "Request finished.");
1275	else {
1276		if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0)
1277			G_RAID3_LOGREQ(1, pbp, "Verification error.");
1278		else
1279			G_RAID3_LOGREQ(0, pbp, "Request failed.");
1280	}
1281	pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_MASK;
1282	while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL)
1283		g_raid3_destroy_bio(sc, cbp);
1284	g_io_deliver(pbp, pbp->bio_error);
1285}
1286
1287static void
1288g_raid3_done(struct bio *bp)
1289{
1290	struct g_raid3_softc *sc;
1291
1292	sc = bp->bio_from->geom->softc;
1293	bp->bio_cflags |= G_RAID3_BIO_CFLAG_REGULAR;
1294	G_RAID3_LOGREQ(3, bp, "Regular request done (error=%d).", bp->bio_error);
1295	mtx_lock(&sc->sc_queue_mtx);
1296	bioq_insert_head(&sc->sc_queue, bp);
1297	mtx_unlock(&sc->sc_queue_mtx);
1298	wakeup(sc);
1299	wakeup(&sc->sc_queue);
1300}
1301
1302static void
1303g_raid3_regular_request(struct bio *cbp)
1304{
1305	struct g_raid3_softc *sc;
1306	struct g_raid3_disk *disk;
1307	struct bio *pbp;
1308
1309	g_topology_assert_not();
1310
1311	pbp = cbp->bio_parent;
1312	sc = pbp->bio_to->private;
1313	cbp->bio_from->index--;
1314	if (cbp->bio_cmd == BIO_WRITE)
1315		sc->sc_writes--;
1316	disk = cbp->bio_from->private;
1317	if (disk == NULL) {
1318		g_topology_lock();
1319		g_raid3_kill_consumer(sc, cbp->bio_from);
1320		g_topology_unlock();
1321	}
1322
1323	G_RAID3_LOGREQ(3, cbp, "Request finished.");
1324	pbp->bio_inbed++;
1325	KASSERT(pbp->bio_inbed <= pbp->bio_children,
1326	    ("bio_inbed (%u) is bigger than bio_children (%u).", pbp->bio_inbed,
1327	    pbp->bio_children));
1328	if (pbp->bio_inbed != pbp->bio_children)
1329		return;
1330	switch (pbp->bio_cmd) {
1331	case BIO_READ:
1332		g_raid3_gather(pbp);
1333		break;
1334	case BIO_WRITE:
1335	case BIO_DELETE:
1336	    {
1337		int error = 0;
1338
1339		pbp->bio_completed = pbp->bio_length;
1340		while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) {
1341			if (cbp->bio_error == 0) {
1342				g_raid3_destroy_bio(sc, cbp);
1343				continue;
1344			}
1345
1346			if (error == 0)
1347				error = cbp->bio_error;
1348			else if (pbp->bio_error == 0) {
1349				/*
1350				 * Next failed request, that's too many.
1351				 */
1352				pbp->bio_error = error;
1353			}
1354
1355			disk = cbp->bio_caller2;
1356			if (disk == NULL) {
1357				g_raid3_destroy_bio(sc, cbp);
1358				continue;
1359			}
1360
1361			if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
1362				disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
1363				G_RAID3_LOGREQ(0, cbp,
1364				    "Request failed (error=%d).",
1365				    cbp->bio_error);
1366			} else {
1367				G_RAID3_LOGREQ(1, cbp,
1368				    "Request failed (error=%d).",
1369				    cbp->bio_error);
1370			}
1371			if (g_raid3_disconnect_on_failure &&
1372			    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
1373				sc->sc_bump_id |= G_RAID3_BUMP_GENID;
1374				g_raid3_event_send(disk,
1375				    G_RAID3_DISK_STATE_DISCONNECTED,
1376				    G_RAID3_EVENT_DONTWAIT);
1377			}
1378			g_raid3_destroy_bio(sc, cbp);
1379		}
1380		if (pbp->bio_error == 0)
1381			G_RAID3_LOGREQ(3, pbp, "Request finished.");
1382		else
1383			G_RAID3_LOGREQ(0, pbp, "Request failed.");
1384		pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_DEGRADED;
1385		pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_NOPARITY;
1386		bioq_remove(&sc->sc_inflight, pbp);
1387		/* Release delayed sync requests if possible. */
1388		g_raid3_sync_release(sc);
1389		g_io_deliver(pbp, pbp->bio_error);
1390		break;
1391	    }
1392	}
1393}
1394
1395static void
1396g_raid3_sync_done(struct bio *bp)
1397{
1398	struct g_raid3_softc *sc;
1399
1400	G_RAID3_LOGREQ(3, bp, "Synchronization request delivered.");
1401	sc = bp->bio_from->geom->softc;
1402	bp->bio_cflags |= G_RAID3_BIO_CFLAG_SYNC;
1403	mtx_lock(&sc->sc_queue_mtx);
1404	bioq_insert_head(&sc->sc_queue, bp);
1405	mtx_unlock(&sc->sc_queue_mtx);
1406	wakeup(sc);
1407	wakeup(&sc->sc_queue);
1408}
1409
1410static void
1411g_raid3_flush(struct g_raid3_softc *sc, struct bio *bp)
1412{
1413	struct bio_queue_head queue;
1414	struct g_raid3_disk *disk;
1415	struct g_consumer *cp __diagused;
1416	struct bio *cbp;
1417	u_int i;
1418
1419	bioq_init(&queue);
1420	for (i = 0; i < sc->sc_ndisks; i++) {
1421		disk = &sc->sc_disks[i];
1422		if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
1423			continue;
1424		cbp = g_clone_bio(bp);
1425		if (cbp == NULL) {
1426			for (cbp = bioq_first(&queue); cbp != NULL;
1427			    cbp = bioq_first(&queue)) {
1428				bioq_remove(&queue, cbp);
1429				g_destroy_bio(cbp);
1430			}
1431			if (bp->bio_error == 0)
1432				bp->bio_error = ENOMEM;
1433			g_io_deliver(bp, bp->bio_error);
1434			return;
1435		}
1436		bioq_insert_tail(&queue, cbp);
1437		cbp->bio_done = g_std_done;
1438		cbp->bio_caller1 = disk;
1439		cbp->bio_to = disk->d_consumer->provider;
1440	}
1441	for (cbp = bioq_first(&queue); cbp != NULL; cbp = bioq_first(&queue)) {
1442		bioq_remove(&queue, cbp);
1443		G_RAID3_LOGREQ(3, cbp, "Sending request.");
1444		disk = cbp->bio_caller1;
1445		cbp->bio_caller1 = NULL;
1446		cp = disk->d_consumer;
1447		KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1448		    ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
1449		    cp->acr, cp->acw, cp->ace));
1450		g_io_request(cbp, disk->d_consumer);
1451	}
1452}
1453
1454static void
1455g_raid3_start(struct bio *bp)
1456{
1457	struct g_raid3_softc *sc;
1458
1459	sc = bp->bio_to->private;
1460	/*
1461	 * If sc == NULL or there are no valid disks, provider's error
1462	 * should be set and g_raid3_start() should not be called at all.
1463	 */
1464	KASSERT(sc != NULL && (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
1465	    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE),
1466	    ("Provider's error should be set (error=%d)(device=%s).",
1467	    bp->bio_to->error, bp->bio_to->name));
1468	G_RAID3_LOGREQ(3, bp, "Request received.");
1469
1470	switch (bp->bio_cmd) {
1471	case BIO_READ:
1472	case BIO_WRITE:
1473	case BIO_DELETE:
1474		break;
1475	case BIO_SPEEDUP:
1476	case BIO_FLUSH:
1477		g_raid3_flush(sc, bp);
1478		return;
1479	case BIO_GETATTR:
1480	default:
1481		g_io_deliver(bp, EOPNOTSUPP);
1482		return;
1483	}
1484	mtx_lock(&sc->sc_queue_mtx);
1485	bioq_insert_tail(&sc->sc_queue, bp);
1486	mtx_unlock(&sc->sc_queue_mtx);
1487	G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
1488	wakeup(sc);
1489}
1490
1491/*
1492 * Return TRUE if the given request is colliding with a in-progress
1493 * synchronization request.
1494 */
1495static int
1496g_raid3_sync_collision(struct g_raid3_softc *sc, struct bio *bp)
1497{
1498	struct g_raid3_disk *disk;
1499	struct bio *sbp;
1500	off_t rstart, rend, sstart, send;
1501	int i;
1502
1503	disk = sc->sc_syncdisk;
1504	if (disk == NULL)
1505		return (0);
1506	rstart = bp->bio_offset;
1507	rend = bp->bio_offset + bp->bio_length;
1508	for (i = 0; i < g_raid3_syncreqs; i++) {
1509		sbp = disk->d_sync.ds_bios[i];
1510		if (sbp == NULL)
1511			continue;
1512		sstart = sbp->bio_offset;
1513		send = sbp->bio_length;
1514		if (sbp->bio_cmd == BIO_WRITE) {
1515			sstart *= sc->sc_ndisks - 1;
1516			send *= sc->sc_ndisks - 1;
1517		}
1518		send += sstart;
1519		if (rend > sstart && rstart < send)
1520			return (1);
1521	}
1522	return (0);
1523}
1524
1525/*
1526 * Return TRUE if the given sync request is colliding with a in-progress regular
1527 * request.
1528 */
1529static int
1530g_raid3_regular_collision(struct g_raid3_softc *sc, struct bio *sbp)
1531{
1532	off_t rstart, rend, sstart, send;
1533	struct bio *bp;
1534
1535	if (sc->sc_syncdisk == NULL)
1536		return (0);
1537	sstart = sbp->bio_offset;
1538	send = sstart + sbp->bio_length;
1539	TAILQ_FOREACH(bp, &sc->sc_inflight.queue, bio_queue) {
1540		rstart = bp->bio_offset;
1541		rend = bp->bio_offset + bp->bio_length;
1542		if (rend > sstart && rstart < send)
1543			return (1);
1544	}
1545	return (0);
1546}
1547
1548/*
1549 * Puts request onto delayed queue.
1550 */
1551static void
1552g_raid3_regular_delay(struct g_raid3_softc *sc, struct bio *bp)
1553{
1554
1555	G_RAID3_LOGREQ(2, bp, "Delaying request.");
1556	bioq_insert_head(&sc->sc_regular_delayed, bp);
1557}
1558
1559/*
1560 * Puts synchronization request onto delayed queue.
1561 */
1562static void
1563g_raid3_sync_delay(struct g_raid3_softc *sc, struct bio *bp)
1564{
1565
1566	G_RAID3_LOGREQ(2, bp, "Delaying synchronization request.");
1567	bioq_insert_tail(&sc->sc_sync_delayed, bp);
1568}
1569
1570/*
1571 * Releases delayed regular requests which don't collide anymore with sync
1572 * requests.
1573 */
1574static void
1575g_raid3_regular_release(struct g_raid3_softc *sc)
1576{
1577	struct bio *bp, *bp2;
1578
1579	TAILQ_FOREACH_SAFE(bp, &sc->sc_regular_delayed.queue, bio_queue, bp2) {
1580		if (g_raid3_sync_collision(sc, bp))
1581			continue;
1582		bioq_remove(&sc->sc_regular_delayed, bp);
1583		G_RAID3_LOGREQ(2, bp, "Releasing delayed request (%p).", bp);
1584		mtx_lock(&sc->sc_queue_mtx);
1585		bioq_insert_head(&sc->sc_queue, bp);
1586#if 0
1587		/*
1588		 * wakeup() is not needed, because this function is called from
1589		 * the worker thread.
1590		 */
1591		wakeup(&sc->sc_queue);
1592#endif
1593		mtx_unlock(&sc->sc_queue_mtx);
1594	}
1595}
1596
1597/*
1598 * Releases delayed sync requests which don't collide anymore with regular
1599 * requests.
1600 */
1601static void
1602g_raid3_sync_release(struct g_raid3_softc *sc)
1603{
1604	struct bio *bp, *bp2;
1605
1606	TAILQ_FOREACH_SAFE(bp, &sc->sc_sync_delayed.queue, bio_queue, bp2) {
1607		if (g_raid3_regular_collision(sc, bp))
1608			continue;
1609		bioq_remove(&sc->sc_sync_delayed, bp);
1610		G_RAID3_LOGREQ(2, bp,
1611		    "Releasing delayed synchronization request.");
1612		g_io_request(bp, bp->bio_from);
1613	}
1614}
1615
1616/*
1617 * Handle synchronization requests.
1618 * Every synchronization request is two-steps process: first, READ request is
1619 * send to active provider and then WRITE request (with read data) to the provider
1620 * being synchronized. When WRITE is finished, new synchronization request is
1621 * send.
1622 */
1623static void
1624g_raid3_sync_request(struct bio *bp)
1625{
1626	struct g_raid3_softc *sc;
1627	struct g_raid3_disk *disk;
1628
1629	bp->bio_from->index--;
1630	sc = bp->bio_from->geom->softc;
1631	disk = bp->bio_from->private;
1632	if (disk == NULL) {
1633		sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */
1634		g_topology_lock();
1635		g_raid3_kill_consumer(sc, bp->bio_from);
1636		g_topology_unlock();
1637		free(bp->bio_data, M_RAID3);
1638		g_destroy_bio(bp);
1639		sx_xlock(&sc->sc_lock);
1640		return;
1641	}
1642
1643	/*
1644	 * Synchronization request.
1645	 */
1646	switch (bp->bio_cmd) {
1647	case BIO_READ:
1648	    {
1649		struct g_consumer *cp;
1650		u_char *dst, *src;
1651		off_t left;
1652		u_int atom;
1653
1654		if (bp->bio_error != 0) {
1655			G_RAID3_LOGREQ(0, bp,
1656			    "Synchronization request failed (error=%d).",
1657			    bp->bio_error);
1658			g_destroy_bio(bp);
1659			return;
1660		}
1661		G_RAID3_LOGREQ(3, bp, "Synchronization request finished.");
1662		atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
1663		dst = src = bp->bio_data;
1664		if (disk->d_no == sc->sc_ndisks - 1) {
1665			u_int n;
1666
1667			/* Parity component. */
1668			for (left = bp->bio_length; left > 0;
1669			    left -= sc->sc_sectorsize) {
1670				bcopy(src, dst, atom);
1671				src += atom;
1672				for (n = 1; n < sc->sc_ndisks - 1; n++) {
1673					g_raid3_xor(src, dst, atom);
1674					src += atom;
1675				}
1676				dst += atom;
1677			}
1678		} else {
1679			/* Regular component. */
1680			src += atom * disk->d_no;
1681			for (left = bp->bio_length; left > 0;
1682			    left -= sc->sc_sectorsize) {
1683				bcopy(src, dst, atom);
1684				src += sc->sc_sectorsize;
1685				dst += atom;
1686			}
1687		}
1688		bp->bio_driver1 = bp->bio_driver2 = NULL;
1689		bp->bio_pflags = 0;
1690		bp->bio_offset /= sc->sc_ndisks - 1;
1691		bp->bio_length /= sc->sc_ndisks - 1;
1692		bp->bio_cmd = BIO_WRITE;
1693		bp->bio_cflags = 0;
1694		bp->bio_children = bp->bio_inbed = 0;
1695		cp = disk->d_consumer;
1696		KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1697		    ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
1698		    cp->acr, cp->acw, cp->ace));
1699		cp->index++;
1700		g_io_request(bp, cp);
1701		return;
1702	    }
1703	case BIO_WRITE:
1704	    {
1705		struct g_raid3_disk_sync *sync;
1706		off_t boffset, moffset;
1707		void *data;
1708		int i;
1709
1710		if (bp->bio_error != 0) {
1711			G_RAID3_LOGREQ(0, bp,
1712			    "Synchronization request failed (error=%d).",
1713			    bp->bio_error);
1714			g_destroy_bio(bp);
1715			sc->sc_bump_id |= G_RAID3_BUMP_GENID;
1716			g_raid3_event_send(disk,
1717			    G_RAID3_DISK_STATE_DISCONNECTED,
1718			    G_RAID3_EVENT_DONTWAIT);
1719			return;
1720		}
1721		G_RAID3_LOGREQ(3, bp, "Synchronization request finished.");
1722		sync = &disk->d_sync;
1723		if (sync->ds_offset == sc->sc_mediasize / (sc->sc_ndisks - 1) ||
1724		    sync->ds_consumer == NULL ||
1725		    (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
1726			/* Don't send more synchronization requests. */
1727			sync->ds_inflight--;
1728			if (sync->ds_bios != NULL) {
1729				i = (int)(uintptr_t)bp->bio_caller1;
1730				sync->ds_bios[i] = NULL;
1731			}
1732			free(bp->bio_data, M_RAID3);
1733			g_destroy_bio(bp);
1734			if (sync->ds_inflight > 0)
1735				return;
1736			if (sync->ds_consumer == NULL ||
1737			    (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
1738				return;
1739			}
1740			/*
1741			 * Disk up-to-date, activate it.
1742			 */
1743			g_raid3_event_send(disk, G_RAID3_DISK_STATE_ACTIVE,
1744			    G_RAID3_EVENT_DONTWAIT);
1745			return;
1746		}
1747
1748		/* Send next synchronization request. */
1749		data = bp->bio_data;
1750		g_reset_bio(bp);
1751		bp->bio_cmd = BIO_READ;
1752		bp->bio_offset = sync->ds_offset * (sc->sc_ndisks - 1);
1753		bp->bio_length = MIN(maxphys, sc->sc_mediasize - bp->bio_offset);
1754		sync->ds_offset += bp->bio_length / (sc->sc_ndisks - 1);
1755		bp->bio_done = g_raid3_sync_done;
1756		bp->bio_data = data;
1757		bp->bio_from = sync->ds_consumer;
1758		bp->bio_to = sc->sc_provider;
1759		G_RAID3_LOGREQ(3, bp, "Sending synchronization request.");
1760		sync->ds_consumer->index++;
1761		/*
1762		 * Delay the request if it is colliding with a regular request.
1763		 */
1764		if (g_raid3_regular_collision(sc, bp))
1765			g_raid3_sync_delay(sc, bp);
1766		else
1767			g_io_request(bp, sync->ds_consumer);
1768
1769		/* Release delayed requests if possible. */
1770		g_raid3_regular_release(sc);
1771
1772		/* Find the smallest offset. */
1773		moffset = sc->sc_mediasize;
1774		for (i = 0; i < g_raid3_syncreqs; i++) {
1775			bp = sync->ds_bios[i];
1776			boffset = bp->bio_offset;
1777			if (bp->bio_cmd == BIO_WRITE)
1778				boffset *= sc->sc_ndisks - 1;
1779			if (boffset < moffset)
1780				moffset = boffset;
1781		}
1782		if (sync->ds_offset_done + maxphys * 100 < moffset) {
1783			/* Update offset_done on every 100 blocks. */
1784			sync->ds_offset_done = moffset;
1785			g_raid3_update_metadata(disk);
1786		}
1787		return;
1788	    }
1789	default:
1790		KASSERT(1 == 0, ("Invalid command here: %u (device=%s)",
1791		    bp->bio_cmd, sc->sc_name));
1792		break;
1793	}
1794}
1795
1796static int
1797g_raid3_register_request(struct bio *pbp)
1798{
1799	struct g_raid3_softc *sc;
1800	struct g_raid3_disk *disk;
1801	struct g_consumer *cp;
1802	struct bio *cbp, *tmpbp;
1803	off_t offset, length;
1804	u_int n, ndisks;
1805	int round_robin, verify;
1806
1807	ndisks = 0;
1808	sc = pbp->bio_to->private;
1809	if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGSYNC) != 0 &&
1810	    sc->sc_syncdisk == NULL) {
1811		g_io_deliver(pbp, EIO);
1812		return (0);
1813	}
1814	g_raid3_init_bio(pbp);
1815	length = pbp->bio_length / (sc->sc_ndisks - 1);
1816	offset = pbp->bio_offset / (sc->sc_ndisks - 1);
1817	round_robin = verify = 0;
1818	switch (pbp->bio_cmd) {
1819	case BIO_READ:
1820		if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 &&
1821		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
1822			pbp->bio_pflags |= G_RAID3_BIO_PFLAG_VERIFY;
1823			verify = 1;
1824			ndisks = sc->sc_ndisks;
1825		} else {
1826			verify = 0;
1827			ndisks = sc->sc_ndisks - 1;
1828		}
1829		if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0 &&
1830		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
1831			round_robin = 1;
1832		} else {
1833			round_robin = 0;
1834		}
1835		KASSERT(!round_robin || !verify,
1836		    ("ROUND-ROBIN and VERIFY are mutually exclusive."));
1837		pbp->bio_driver2 = &sc->sc_disks[sc->sc_ndisks - 1];
1838		break;
1839	case BIO_WRITE:
1840	case BIO_DELETE:
1841		/*
1842		 * Delay the request if it is colliding with a synchronization
1843		 * request.
1844		 */
1845		if (g_raid3_sync_collision(sc, pbp)) {
1846			g_raid3_regular_delay(sc, pbp);
1847			return (0);
1848		}
1849
1850		if (sc->sc_idle)
1851			g_raid3_unidle(sc);
1852		else
1853			sc->sc_last_write = time_uptime;
1854
1855		ndisks = sc->sc_ndisks;
1856		break;
1857	}
1858	for (n = 0; n < ndisks; n++) {
1859		disk = &sc->sc_disks[n];
1860		cbp = g_raid3_clone_bio(sc, pbp);
1861		if (cbp == NULL) {
1862			while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL)
1863				g_raid3_destroy_bio(sc, cbp);
1864			/*
1865			 * To prevent deadlock, we must run back up
1866			 * with the ENOMEM for failed requests of any
1867			 * of our consumers.  Our own sync requests
1868			 * can stick around, as they are finite.
1869			 */
1870			if ((pbp->bio_cflags &
1871			    G_RAID3_BIO_CFLAG_REGULAR) != 0) {
1872				g_io_deliver(pbp, ENOMEM);
1873				return (0);
1874			}
1875			return (ENOMEM);
1876		}
1877		cbp->bio_offset = offset;
1878		cbp->bio_length = length;
1879		cbp->bio_done = g_raid3_done;
1880		switch (pbp->bio_cmd) {
1881		case BIO_READ:
1882			if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) {
1883				/*
1884				 * Replace invalid component with the parity
1885				 * component.
1886				 */
1887				disk = &sc->sc_disks[sc->sc_ndisks - 1];
1888				cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
1889				pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
1890			} else if (round_robin &&
1891			    disk->d_no == sc->sc_round_robin) {
1892				/*
1893				 * In round-robin mode skip one data component
1894				 * and use parity component when reading.
1895				 */
1896				pbp->bio_driver2 = disk;
1897				disk = &sc->sc_disks[sc->sc_ndisks - 1];
1898				cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
1899				sc->sc_round_robin++;
1900				round_robin = 0;
1901			} else if (verify && disk->d_no == sc->sc_ndisks - 1) {
1902				cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
1903			}
1904			break;
1905		case BIO_WRITE:
1906		case BIO_DELETE:
1907			if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
1908			    disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
1909				if (n == ndisks - 1) {
1910					/*
1911					 * Active parity component, mark it as such.
1912					 */
1913					cbp->bio_cflags |=
1914					    G_RAID3_BIO_CFLAG_PARITY;
1915				}
1916			} else {
1917				pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
1918				if (n == ndisks - 1) {
1919					/*
1920					 * Parity component is not connected,
1921					 * so destroy its request.
1922					 */
1923					pbp->bio_pflags |=
1924					    G_RAID3_BIO_PFLAG_NOPARITY;
1925					g_raid3_destroy_bio(sc, cbp);
1926					cbp = NULL;
1927				} else {
1928					cbp->bio_cflags |=
1929					    G_RAID3_BIO_CFLAG_NODISK;
1930					disk = NULL;
1931				}
1932			}
1933			break;
1934		}
1935		if (cbp != NULL)
1936			cbp->bio_caller2 = disk;
1937	}
1938	switch (pbp->bio_cmd) {
1939	case BIO_READ:
1940		if (round_robin) {
1941			/*
1942			 * If we are in round-robin mode and 'round_robin' is
1943			 * still 1, it means, that we skipped parity component
1944			 * for this read and must reset sc_round_robin field.
1945			 */
1946			sc->sc_round_robin = 0;
1947		}
1948		G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
1949			disk = cbp->bio_caller2;
1950			cp = disk->d_consumer;
1951			cbp->bio_to = cp->provider;
1952			G_RAID3_LOGREQ(3, cbp, "Sending request.");
1953			KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1954			    ("Consumer %s not opened (r%dw%de%d).",
1955			    cp->provider->name, cp->acr, cp->acw, cp->ace));
1956			cp->index++;
1957			g_io_request(cbp, cp);
1958		}
1959		break;
1960	case BIO_WRITE:
1961	case BIO_DELETE:
1962		/*
1963		 * Put request onto inflight queue, so we can check if new
1964		 * synchronization requests don't collide with it.
1965		 */
1966		bioq_insert_tail(&sc->sc_inflight, pbp);
1967
1968		/*
1969		 * Bump syncid on first write.
1970		 */
1971		if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0) {
1972			sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID;
1973			g_raid3_bump_syncid(sc);
1974		}
1975		g_raid3_scatter(pbp);
1976		break;
1977	}
1978	return (0);
1979}
1980
1981static int
1982g_raid3_can_destroy(struct g_raid3_softc *sc)
1983{
1984	struct g_geom *gp;
1985	struct g_consumer *cp;
1986
1987	g_topology_assert();
1988	gp = sc->sc_geom;
1989	if (gp->softc == NULL)
1990		return (1);
1991	LIST_FOREACH(cp, &gp->consumer, consumer) {
1992		if (g_raid3_is_busy(sc, cp))
1993			return (0);
1994	}
1995	gp = sc->sc_sync.ds_geom;
1996	LIST_FOREACH(cp, &gp->consumer, consumer) {
1997		if (g_raid3_is_busy(sc, cp))
1998			return (0);
1999	}
2000	G_RAID3_DEBUG(2, "No I/O requests for %s, it can be destroyed.",
2001	    sc->sc_name);
2002	return (1);
2003}
2004
2005static int
2006g_raid3_try_destroy(struct g_raid3_softc *sc)
2007{
2008
2009	g_topology_assert_not();
2010	sx_assert(&sc->sc_lock, SX_XLOCKED);
2011
2012	if (sc->sc_rootmount != NULL) {
2013		G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
2014		    sc->sc_rootmount);
2015		root_mount_rel(sc->sc_rootmount);
2016		sc->sc_rootmount = NULL;
2017	}
2018
2019	g_topology_lock();
2020	if (!g_raid3_can_destroy(sc)) {
2021		g_topology_unlock();
2022		return (0);
2023	}
2024	sc->sc_geom->softc = NULL;
2025	sc->sc_sync.ds_geom->softc = NULL;
2026	if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_WAIT) != 0) {
2027		g_topology_unlock();
2028		G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__,
2029		    &sc->sc_worker);
2030		/* Unlock sc_lock here, as it can be destroyed after wakeup. */
2031		sx_xunlock(&sc->sc_lock);
2032		wakeup(&sc->sc_worker);
2033		sc->sc_worker = NULL;
2034	} else {
2035		g_topology_unlock();
2036		g_raid3_destroy_device(sc);
2037	}
2038	return (1);
2039}
2040
2041/*
2042 * Worker thread.
2043 */
2044static void
2045g_raid3_worker(void *arg)
2046{
2047	struct g_raid3_softc *sc;
2048	struct g_raid3_event *ep;
2049	struct bio *bp;
2050	int timeout;
2051
2052	sc = arg;
2053	thread_lock(curthread);
2054	sched_prio(curthread, PRIBIO);
2055	thread_unlock(curthread);
2056
2057	sx_xlock(&sc->sc_lock);
2058	for (;;) {
2059		G_RAID3_DEBUG(5, "%s: Let's see...", __func__);
2060		/*
2061		 * First take a look at events.
2062		 * This is important to handle events before any I/O requests.
2063		 */
2064		ep = g_raid3_event_get(sc);
2065		if (ep != NULL) {
2066			g_raid3_event_remove(sc, ep);
2067			if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0) {
2068				/* Update only device status. */
2069				G_RAID3_DEBUG(3,
2070				    "Running event for device %s.",
2071				    sc->sc_name);
2072				ep->e_error = 0;
2073				g_raid3_update_device(sc, 1);
2074			} else {
2075				/* Update disk status. */
2076				G_RAID3_DEBUG(3, "Running event for disk %s.",
2077				     g_raid3_get_diskname(ep->e_disk));
2078				ep->e_error = g_raid3_update_disk(ep->e_disk,
2079				    ep->e_state);
2080				if (ep->e_error == 0)
2081					g_raid3_update_device(sc, 0);
2082			}
2083			if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) {
2084				KASSERT(ep->e_error == 0,
2085				    ("Error cannot be handled."));
2086				g_raid3_event_free(ep);
2087			} else {
2088				ep->e_flags |= G_RAID3_EVENT_DONE;
2089				G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__,
2090				    ep);
2091				mtx_lock(&sc->sc_events_mtx);
2092				wakeup(ep);
2093				mtx_unlock(&sc->sc_events_mtx);
2094			}
2095			if ((sc->sc_flags &
2096			    G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
2097				if (g_raid3_try_destroy(sc)) {
2098					curthread->td_pflags &= ~TDP_GEOM;
2099					G_RAID3_DEBUG(1, "Thread exiting.");
2100					kproc_exit(0);
2101				}
2102			}
2103			G_RAID3_DEBUG(5, "%s: I'm here 1.", __func__);
2104			continue;
2105		}
2106		/*
2107		 * Check if we can mark array as CLEAN and if we can't take
2108		 * how much seconds should we wait.
2109		 */
2110		timeout = g_raid3_idle(sc, -1);
2111		/*
2112		 * Now I/O requests.
2113		 */
2114		/* Get first request from the queue. */
2115		mtx_lock(&sc->sc_queue_mtx);
2116		bp = bioq_first(&sc->sc_queue);
2117		if (bp == NULL) {
2118			if ((sc->sc_flags &
2119			    G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
2120				mtx_unlock(&sc->sc_queue_mtx);
2121				if (g_raid3_try_destroy(sc)) {
2122					curthread->td_pflags &= ~TDP_GEOM;
2123					G_RAID3_DEBUG(1, "Thread exiting.");
2124					kproc_exit(0);
2125				}
2126				mtx_lock(&sc->sc_queue_mtx);
2127			}
2128			sx_xunlock(&sc->sc_lock);
2129			/*
2130			 * XXX: We can miss an event here, because an event
2131			 *      can be added without sx-device-lock and without
2132			 *      mtx-queue-lock. Maybe I should just stop using
2133			 *      dedicated mutex for events synchronization and
2134			 *      stick with the queue lock?
2135			 *      The event will hang here until next I/O request
2136			 *      or next event is received.
2137			 */
2138			MSLEEP(sc, &sc->sc_queue_mtx, PRIBIO | PDROP, "r3:w1",
2139			    timeout * hz);
2140			sx_xlock(&sc->sc_lock);
2141			G_RAID3_DEBUG(5, "%s: I'm here 4.", __func__);
2142			continue;
2143		}
2144process:
2145		bioq_remove(&sc->sc_queue, bp);
2146		mtx_unlock(&sc->sc_queue_mtx);
2147
2148		if (bp->bio_from->geom == sc->sc_sync.ds_geom &&
2149		    (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0) {
2150			g_raid3_sync_request(bp);	/* READ */
2151		} else if (bp->bio_to != sc->sc_provider) {
2152			if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0)
2153				g_raid3_regular_request(bp);
2154			else if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0)
2155				g_raid3_sync_request(bp);	/* WRITE */
2156			else {
2157				KASSERT(0,
2158				    ("Invalid request cflags=0x%hx to=%s.",
2159				    bp->bio_cflags, bp->bio_to->name));
2160			}
2161		} else if (g_raid3_register_request(bp) != 0) {
2162			mtx_lock(&sc->sc_queue_mtx);
2163			bioq_insert_head(&sc->sc_queue, bp);
2164			/*
2165			 * We are short in memory, let see if there are finished
2166			 * request we can free.
2167			 */
2168			TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
2169				if (bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR)
2170					goto process;
2171			}
2172			/*
2173			 * No finished regular request, so at least keep
2174			 * synchronization running.
2175			 */
2176			TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
2177				if (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC)
2178					goto process;
2179			}
2180			sx_xunlock(&sc->sc_lock);
2181			MSLEEP(&sc->sc_queue, &sc->sc_queue_mtx, PRIBIO | PDROP,
2182			    "r3:lowmem", hz / 10);
2183			sx_xlock(&sc->sc_lock);
2184		}
2185		G_RAID3_DEBUG(5, "%s: I'm here 9.", __func__);
2186	}
2187}
2188
2189static void
2190g_raid3_update_idle(struct g_raid3_softc *sc, struct g_raid3_disk *disk)
2191{
2192
2193	sx_assert(&sc->sc_lock, SX_LOCKED);
2194	if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
2195		return;
2196	if (!sc->sc_idle && (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) == 0) {
2197		G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.",
2198		    g_raid3_get_diskname(disk), sc->sc_name);
2199		disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
2200	} else if (sc->sc_idle &&
2201	    (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0) {
2202		G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.",
2203		    g_raid3_get_diskname(disk), sc->sc_name);
2204		disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
2205	}
2206}
2207
2208static void
2209g_raid3_sync_start(struct g_raid3_softc *sc)
2210{
2211	struct g_raid3_disk *disk;
2212	struct g_consumer *cp;
2213	struct bio *bp;
2214	int error __diagused;
2215	u_int n;
2216
2217	g_topology_assert_not();
2218	sx_assert(&sc->sc_lock, SX_XLOCKED);
2219
2220	KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED,
2221	    ("Device not in DEGRADED state (%s, %u).", sc->sc_name,
2222	    sc->sc_state));
2223	KASSERT(sc->sc_syncdisk == NULL, ("Syncdisk is not NULL (%s, %u).",
2224	    sc->sc_name, sc->sc_state));
2225	disk = NULL;
2226	for (n = 0; n < sc->sc_ndisks; n++) {
2227		if (sc->sc_disks[n].d_state != G_RAID3_DISK_STATE_SYNCHRONIZING)
2228			continue;
2229		disk = &sc->sc_disks[n];
2230		break;
2231	}
2232	if (disk == NULL)
2233		return;
2234
2235	sx_xunlock(&sc->sc_lock);
2236	g_topology_lock();
2237	cp = g_new_consumer(sc->sc_sync.ds_geom);
2238	error = g_attach(cp, sc->sc_provider);
2239	KASSERT(error == 0,
2240	    ("Cannot attach to %s (error=%d).", sc->sc_name, error));
2241	error = g_access(cp, 1, 0, 0);
2242	KASSERT(error == 0, ("Cannot open %s (error=%d).", sc->sc_name, error));
2243	g_topology_unlock();
2244	sx_xlock(&sc->sc_lock);
2245
2246	G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s.", sc->sc_name,
2247	    g_raid3_get_diskname(disk));
2248	if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) == 0)
2249		disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
2250	KASSERT(disk->d_sync.ds_consumer == NULL,
2251	    ("Sync consumer already exists (device=%s, disk=%s).",
2252	    sc->sc_name, g_raid3_get_diskname(disk)));
2253
2254	disk->d_sync.ds_consumer = cp;
2255	disk->d_sync.ds_consumer->private = disk;
2256	disk->d_sync.ds_consumer->index = 0;
2257	sc->sc_syncdisk = disk;
2258
2259	/*
2260	 * Allocate memory for synchronization bios and initialize them.
2261	 */
2262	disk->d_sync.ds_bios = malloc(sizeof(struct bio *) * g_raid3_syncreqs,
2263	    M_RAID3, M_WAITOK);
2264	for (n = 0; n < g_raid3_syncreqs; n++) {
2265		bp = g_alloc_bio();
2266		disk->d_sync.ds_bios[n] = bp;
2267		bp->bio_parent = NULL;
2268		bp->bio_cmd = BIO_READ;
2269		bp->bio_data = malloc(maxphys, M_RAID3, M_WAITOK);
2270		bp->bio_cflags = 0;
2271		bp->bio_offset = disk->d_sync.ds_offset * (sc->sc_ndisks - 1);
2272		bp->bio_length = MIN(maxphys, sc->sc_mediasize - bp->bio_offset);
2273		disk->d_sync.ds_offset += bp->bio_length / (sc->sc_ndisks - 1);
2274		bp->bio_done = g_raid3_sync_done;
2275		bp->bio_from = disk->d_sync.ds_consumer;
2276		bp->bio_to = sc->sc_provider;
2277		bp->bio_caller1 = (void *)(uintptr_t)n;
2278	}
2279
2280	/* Set the number of in-flight synchronization requests. */
2281	disk->d_sync.ds_inflight = g_raid3_syncreqs;
2282
2283	/*
2284	 * Fire off first synchronization requests.
2285	 */
2286	for (n = 0; n < g_raid3_syncreqs; n++) {
2287		bp = disk->d_sync.ds_bios[n];
2288		G_RAID3_LOGREQ(3, bp, "Sending synchronization request.");
2289		disk->d_sync.ds_consumer->index++;
2290		/*
2291		 * Delay the request if it is colliding with a regular request.
2292		 */
2293		if (g_raid3_regular_collision(sc, bp))
2294			g_raid3_sync_delay(sc, bp);
2295		else
2296			g_io_request(bp, disk->d_sync.ds_consumer);
2297	}
2298}
2299
2300/*
2301 * Stop synchronization process.
2302 * type: 0 - synchronization finished
2303 *       1 - synchronization stopped
2304 */
2305static void
2306g_raid3_sync_stop(struct g_raid3_softc *sc, int type)
2307{
2308	struct g_raid3_disk *disk;
2309	struct g_consumer *cp;
2310
2311	g_topology_assert_not();
2312	sx_assert(&sc->sc_lock, SX_LOCKED);
2313
2314	KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED,
2315	    ("Device not in DEGRADED state (%s, %u).", sc->sc_name,
2316	    sc->sc_state));
2317	disk = sc->sc_syncdisk;
2318	sc->sc_syncdisk = NULL;
2319	KASSERT(disk != NULL, ("No disk was synchronized (%s).", sc->sc_name));
2320	KASSERT(disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
2321	    ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2322	    g_raid3_disk_state2str(disk->d_state)));
2323	if (disk->d_sync.ds_consumer == NULL)
2324		return;
2325
2326	if (type == 0) {
2327		G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s finished.",
2328		    sc->sc_name, g_raid3_get_diskname(disk));
2329	} else /* if (type == 1) */ {
2330		G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s stopped.",
2331		    sc->sc_name, g_raid3_get_diskname(disk));
2332	}
2333	free(disk->d_sync.ds_bios, M_RAID3);
2334	disk->d_sync.ds_bios = NULL;
2335	cp = disk->d_sync.ds_consumer;
2336	disk->d_sync.ds_consumer = NULL;
2337	disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
2338	sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */
2339	g_topology_lock();
2340	g_raid3_kill_consumer(sc, cp);
2341	g_topology_unlock();
2342	sx_xlock(&sc->sc_lock);
2343}
2344
2345static void
2346g_raid3_launch_provider(struct g_raid3_softc *sc)
2347{
2348	struct g_provider *pp;
2349	struct g_raid3_disk *disk;
2350	int n;
2351
2352	sx_assert(&sc->sc_lock, SX_LOCKED);
2353
2354	g_topology_lock();
2355	pp = g_new_providerf(sc->sc_geom, "raid3/%s", sc->sc_name);
2356	pp->mediasize = sc->sc_mediasize;
2357	pp->sectorsize = sc->sc_sectorsize;
2358	pp->stripesize = 0;
2359	pp->stripeoffset = 0;
2360	for (n = 0; n < sc->sc_ndisks; n++) {
2361		disk = &sc->sc_disks[n];
2362		if (disk->d_consumer && disk->d_consumer->provider &&
2363		    disk->d_consumer->provider->stripesize > pp->stripesize) {
2364			pp->stripesize = disk->d_consumer->provider->stripesize;
2365			pp->stripeoffset = disk->d_consumer->provider->stripeoffset;
2366		}
2367	}
2368	pp->stripesize *= sc->sc_ndisks - 1;
2369	pp->stripeoffset *= sc->sc_ndisks - 1;
2370	pp->private = sc;
2371	sc->sc_refcnt++;
2372	sc->sc_provider = pp;
2373	g_error_provider(pp, 0);
2374	g_topology_unlock();
2375	G_RAID3_DEBUG(0, "Device %s launched (%u/%u).", pp->name,
2376	    g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE), sc->sc_ndisks);
2377
2378	if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED)
2379		g_raid3_sync_start(sc);
2380}
2381
2382static void
2383g_raid3_destroy_provider(struct g_raid3_softc *sc)
2384{
2385	struct bio *bp;
2386
2387	g_topology_assert_not();
2388	KASSERT(sc->sc_provider != NULL, ("NULL provider (device=%s).",
2389	    sc->sc_name));
2390
2391	g_topology_lock();
2392	g_error_provider(sc->sc_provider, ENXIO);
2393	mtx_lock(&sc->sc_queue_mtx);
2394	while ((bp = bioq_first(&sc->sc_queue)) != NULL) {
2395		bioq_remove(&sc->sc_queue, bp);
2396		g_io_deliver(bp, ENXIO);
2397	}
2398	mtx_unlock(&sc->sc_queue_mtx);
2399	G_RAID3_DEBUG(0, "Device %s: provider %s destroyed.", sc->sc_name,
2400	    sc->sc_provider->name);
2401	g_wither_provider(sc->sc_provider, ENXIO);
2402	g_topology_unlock();
2403	sc->sc_provider = NULL;
2404	if (sc->sc_syncdisk != NULL)
2405		g_raid3_sync_stop(sc, 1);
2406}
2407
2408static void
2409g_raid3_go(void *arg)
2410{
2411	struct g_raid3_softc *sc;
2412	struct g_raid3_event *ep;
2413
2414	sc = arg;
2415	G_RAID3_DEBUG(0, "Force device %s start due to timeout.", sc->sc_name);
2416	ep = sc->sc_timeout_event;
2417	sc->sc_timeout_event = NULL;
2418	g_raid3_event_dispatch(ep, sc, 0,
2419	    G_RAID3_EVENT_DONTWAIT | G_RAID3_EVENT_DEVICE);
2420}
2421
2422static void
2423g_raid3_timeout_drain(struct g_raid3_softc *sc)
2424{
2425	sx_assert(&sc->sc_lock, SX_XLOCKED);
2426
2427	callout_drain(&sc->sc_callout);
2428	g_raid3_event_free(sc->sc_timeout_event);
2429	sc->sc_timeout_event = NULL;
2430}
2431
2432static u_int
2433g_raid3_determine_state(struct g_raid3_disk *disk)
2434{
2435	struct g_raid3_softc *sc;
2436	u_int state;
2437
2438	sc = disk->d_softc;
2439	if (sc->sc_syncid == disk->d_sync.ds_syncid) {
2440		if ((disk->d_flags &
2441		    G_RAID3_DISK_FLAG_SYNCHRONIZING) == 0) {
2442			/* Disk does not need synchronization. */
2443			state = G_RAID3_DISK_STATE_ACTIVE;
2444		} else {
2445			if ((sc->sc_flags &
2446			     G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 ||
2447			    (disk->d_flags &
2448			     G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) {
2449				/*
2450				 * We can start synchronization from
2451				 * the stored offset.
2452				 */
2453				state = G_RAID3_DISK_STATE_SYNCHRONIZING;
2454			} else {
2455				state = G_RAID3_DISK_STATE_STALE;
2456			}
2457		}
2458	} else if (disk->d_sync.ds_syncid < sc->sc_syncid) {
2459		/*
2460		 * Reset all synchronization data for this disk,
2461		 * because if it even was synchronized, it was
2462		 * synchronized to disks with different syncid.
2463		 */
2464		disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING;
2465		disk->d_sync.ds_offset = 0;
2466		disk->d_sync.ds_offset_done = 0;
2467		disk->d_sync.ds_syncid = sc->sc_syncid;
2468		if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 ||
2469		    (disk->d_flags & G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) {
2470			state = G_RAID3_DISK_STATE_SYNCHRONIZING;
2471		} else {
2472			state = G_RAID3_DISK_STATE_STALE;
2473		}
2474	} else /* if (sc->sc_syncid < disk->d_sync.ds_syncid) */ {
2475		/*
2476		 * Not good, NOT GOOD!
2477		 * It means that device was started on stale disks
2478		 * and more fresh disk just arrive.
2479		 * If there were writes, device is broken, sorry.
2480		 * I think the best choice here is don't touch
2481		 * this disk and inform the user loudly.
2482		 */
2483		G_RAID3_DEBUG(0, "Device %s was started before the freshest "
2484		    "disk (%s) arrives!! It will not be connected to the "
2485		    "running device.", sc->sc_name,
2486		    g_raid3_get_diskname(disk));
2487		g_raid3_destroy_disk(disk);
2488		state = G_RAID3_DISK_STATE_NONE;
2489		/* Return immediately, because disk was destroyed. */
2490		return (state);
2491	}
2492	G_RAID3_DEBUG(3, "State for %s disk: %s.",
2493	    g_raid3_get_diskname(disk), g_raid3_disk_state2str(state));
2494	return (state);
2495}
2496
2497/*
2498 * Update device state.
2499 */
2500static void
2501g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force)
2502{
2503	struct g_raid3_disk *disk;
2504	u_int state;
2505
2506	sx_assert(&sc->sc_lock, SX_XLOCKED);
2507
2508	switch (sc->sc_state) {
2509	case G_RAID3_DEVICE_STATE_STARTING:
2510	    {
2511		u_int n, ndirty, ndisks, genid, syncid;
2512
2513		KASSERT(sc->sc_provider == NULL,
2514		    ("Non-NULL provider in STARTING state (%s).", sc->sc_name));
2515		/*
2516		 * Are we ready? We are, if all disks are connected or
2517		 * one disk is missing and 'force' is true.
2518		 */
2519		if (g_raid3_ndisks(sc, -1) + force == sc->sc_ndisks) {
2520			if (!force)
2521				g_raid3_timeout_drain(sc);
2522		} else {
2523			if (force) {
2524				/*
2525				 * Timeout expired, so destroy device.
2526				 */
2527				sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
2528				G_RAID3_DEBUG(1, "root_mount_rel[%u] %p",
2529				    __LINE__, sc->sc_rootmount);
2530				root_mount_rel(sc->sc_rootmount);
2531				sc->sc_rootmount = NULL;
2532			}
2533			return;
2534		}
2535
2536		/*
2537		 * Find the biggest genid.
2538		 */
2539		genid = 0;
2540		for (n = 0; n < sc->sc_ndisks; n++) {
2541			disk = &sc->sc_disks[n];
2542			if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
2543				continue;
2544			if (disk->d_genid > genid)
2545				genid = disk->d_genid;
2546		}
2547		sc->sc_genid = genid;
2548		/*
2549		 * Remove all disks without the biggest genid.
2550		 */
2551		for (n = 0; n < sc->sc_ndisks; n++) {
2552			disk = &sc->sc_disks[n];
2553			if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
2554				continue;
2555			if (disk->d_genid < genid) {
2556				G_RAID3_DEBUG(0,
2557				    "Component %s (device %s) broken, skipping.",
2558				    g_raid3_get_diskname(disk), sc->sc_name);
2559				g_raid3_destroy_disk(disk);
2560			}
2561		}
2562
2563		/*
2564		 * There must be at least 'sc->sc_ndisks - 1' components
2565		 * with the same syncid and without SYNCHRONIZING flag.
2566		 */
2567
2568		/*
2569		 * Find the biggest syncid, number of valid components and
2570		 * number of dirty components.
2571		 */
2572		ndirty = ndisks = syncid = 0;
2573		for (n = 0; n < sc->sc_ndisks; n++) {
2574			disk = &sc->sc_disks[n];
2575			if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
2576				continue;
2577			if ((disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0)
2578				ndirty++;
2579			if (disk->d_sync.ds_syncid > syncid) {
2580				syncid = disk->d_sync.ds_syncid;
2581				ndisks = 0;
2582			} else if (disk->d_sync.ds_syncid < syncid) {
2583				continue;
2584			}
2585			if ((disk->d_flags &
2586			    G_RAID3_DISK_FLAG_SYNCHRONIZING) != 0) {
2587				continue;
2588			}
2589			ndisks++;
2590		}
2591		/*
2592		 * Do we have enough valid components?
2593		 */
2594		if (ndisks + 1 < sc->sc_ndisks) {
2595			G_RAID3_DEBUG(0,
2596			    "Device %s is broken, too few valid components.",
2597			    sc->sc_name);
2598			sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
2599			return;
2600		}
2601		/*
2602		 * If there is one DIRTY component and all disks are present,
2603		 * mark it for synchronization. If there is more than one DIRTY
2604		 * component, mark parity component for synchronization.
2605		 */
2606		if (ndisks == sc->sc_ndisks && ndirty == 1) {
2607			for (n = 0; n < sc->sc_ndisks; n++) {
2608				disk = &sc->sc_disks[n];
2609				if ((disk->d_flags &
2610				    G_RAID3_DISK_FLAG_DIRTY) == 0) {
2611					continue;
2612				}
2613				disk->d_flags |=
2614				    G_RAID3_DISK_FLAG_SYNCHRONIZING;
2615			}
2616		} else if (ndisks == sc->sc_ndisks && ndirty > 1) {
2617			disk = &sc->sc_disks[sc->sc_ndisks - 1];
2618			disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING;
2619		}
2620
2621		sc->sc_syncid = syncid;
2622		if (force) {
2623			/* Remember to bump syncid on first write. */
2624			sc->sc_bump_id |= G_RAID3_BUMP_SYNCID;
2625		}
2626		if (ndisks == sc->sc_ndisks)
2627			state = G_RAID3_DEVICE_STATE_COMPLETE;
2628		else /* if (ndisks == sc->sc_ndisks - 1) */
2629			state = G_RAID3_DEVICE_STATE_DEGRADED;
2630		G_RAID3_DEBUG(1, "Device %s state changed from %s to %s.",
2631		    sc->sc_name, g_raid3_device_state2str(sc->sc_state),
2632		    g_raid3_device_state2str(state));
2633		sc->sc_state = state;
2634		for (n = 0; n < sc->sc_ndisks; n++) {
2635			disk = &sc->sc_disks[n];
2636			if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
2637				continue;
2638			state = g_raid3_determine_state(disk);
2639			g_raid3_event_send(disk, state, G_RAID3_EVENT_DONTWAIT);
2640			if (state == G_RAID3_DISK_STATE_STALE)
2641				sc->sc_bump_id |= G_RAID3_BUMP_SYNCID;
2642		}
2643		break;
2644	    }
2645	case G_RAID3_DEVICE_STATE_DEGRADED:
2646		/*
2647		 * Genid need to be bumped immediately, so do it here.
2648		 */
2649		if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) {
2650			sc->sc_bump_id &= ~G_RAID3_BUMP_GENID;
2651			g_raid3_bump_genid(sc);
2652		}
2653
2654		if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0)
2655			return;
2656		if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) <
2657		    sc->sc_ndisks - 1) {
2658			if (sc->sc_provider != NULL)
2659				g_raid3_destroy_provider(sc);
2660			sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
2661			return;
2662		}
2663		if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) ==
2664		    sc->sc_ndisks) {
2665			state = G_RAID3_DEVICE_STATE_COMPLETE;
2666			G_RAID3_DEBUG(1,
2667			    "Device %s state changed from %s to %s.",
2668			    sc->sc_name, g_raid3_device_state2str(sc->sc_state),
2669			    g_raid3_device_state2str(state));
2670			sc->sc_state = state;
2671		}
2672		if (sc->sc_provider == NULL)
2673			g_raid3_launch_provider(sc);
2674		if (sc->sc_rootmount != NULL) {
2675			G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
2676			    sc->sc_rootmount);
2677			root_mount_rel(sc->sc_rootmount);
2678			sc->sc_rootmount = NULL;
2679		}
2680		break;
2681	case G_RAID3_DEVICE_STATE_COMPLETE:
2682		/*
2683		 * Genid need to be bumped immediately, so do it here.
2684		 */
2685		if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) {
2686			sc->sc_bump_id &= ~G_RAID3_BUMP_GENID;
2687			g_raid3_bump_genid(sc);
2688		}
2689
2690		if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0)
2691			return;
2692		KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) >=
2693		    sc->sc_ndisks - 1,
2694		    ("Too few ACTIVE components in COMPLETE state (device %s).",
2695		    sc->sc_name));
2696		if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) ==
2697		    sc->sc_ndisks - 1) {
2698			state = G_RAID3_DEVICE_STATE_DEGRADED;
2699			G_RAID3_DEBUG(1,
2700			    "Device %s state changed from %s to %s.",
2701			    sc->sc_name, g_raid3_device_state2str(sc->sc_state),
2702			    g_raid3_device_state2str(state));
2703			sc->sc_state = state;
2704		}
2705		if (sc->sc_provider == NULL)
2706			g_raid3_launch_provider(sc);
2707		if (sc->sc_rootmount != NULL) {
2708			G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
2709			    sc->sc_rootmount);
2710			root_mount_rel(sc->sc_rootmount);
2711			sc->sc_rootmount = NULL;
2712		}
2713		break;
2714	default:
2715		KASSERT(1 == 0, ("Wrong device state (%s, %s).", sc->sc_name,
2716		    g_raid3_device_state2str(sc->sc_state)));
2717		break;
2718	}
2719}
2720
2721/*
2722 * Update disk state and device state if needed.
2723 */
2724#define	DISK_STATE_CHANGED()	G_RAID3_DEBUG(1,			\
2725	"Disk %s state changed from %s to %s (device %s).",		\
2726	g_raid3_get_diskname(disk),					\
2727	g_raid3_disk_state2str(disk->d_state),				\
2728	g_raid3_disk_state2str(state), sc->sc_name)
2729static int
2730g_raid3_update_disk(struct g_raid3_disk *disk, u_int state)
2731{
2732	struct g_raid3_softc *sc;
2733
2734	sc = disk->d_softc;
2735	sx_assert(&sc->sc_lock, SX_XLOCKED);
2736
2737again:
2738	G_RAID3_DEBUG(3, "Changing disk %s state from %s to %s.",
2739	    g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state),
2740	    g_raid3_disk_state2str(state));
2741	switch (state) {
2742	case G_RAID3_DISK_STATE_NEW:
2743		/*
2744		 * Possible scenarios:
2745		 * 1. New disk arrive.
2746		 */
2747		/* Previous state should be NONE. */
2748		KASSERT(disk->d_state == G_RAID3_DISK_STATE_NONE,
2749		    ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2750		    g_raid3_disk_state2str(disk->d_state)));
2751		DISK_STATE_CHANGED();
2752
2753		disk->d_state = state;
2754		G_RAID3_DEBUG(1, "Device %s: provider %s detected.",
2755		    sc->sc_name, g_raid3_get_diskname(disk));
2756		if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING)
2757			break;
2758		KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2759		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
2760		    ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2761		    g_raid3_device_state2str(sc->sc_state),
2762		    g_raid3_get_diskname(disk),
2763		    g_raid3_disk_state2str(disk->d_state)));
2764		state = g_raid3_determine_state(disk);
2765		if (state != G_RAID3_DISK_STATE_NONE)
2766			goto again;
2767		break;
2768	case G_RAID3_DISK_STATE_ACTIVE:
2769		/*
2770		 * Possible scenarios:
2771		 * 1. New disk does not need synchronization.
2772		 * 2. Synchronization process finished successfully.
2773		 */
2774		KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2775		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
2776		    ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2777		    g_raid3_device_state2str(sc->sc_state),
2778		    g_raid3_get_diskname(disk),
2779		    g_raid3_disk_state2str(disk->d_state)));
2780		/* Previous state should be NEW or SYNCHRONIZING. */
2781		KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW ||
2782		    disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
2783		    ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2784		    g_raid3_disk_state2str(disk->d_state)));
2785		DISK_STATE_CHANGED();
2786
2787		if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
2788			disk->d_flags &= ~G_RAID3_DISK_FLAG_SYNCHRONIZING;
2789			disk->d_flags &= ~G_RAID3_DISK_FLAG_FORCE_SYNC;
2790			g_raid3_sync_stop(sc, 0);
2791		}
2792		disk->d_state = state;
2793		disk->d_sync.ds_offset = 0;
2794		disk->d_sync.ds_offset_done = 0;
2795		g_raid3_update_idle(sc, disk);
2796		g_raid3_update_metadata(disk);
2797		G_RAID3_DEBUG(1, "Device %s: provider %s activated.",
2798		    sc->sc_name, g_raid3_get_diskname(disk));
2799		break;
2800	case G_RAID3_DISK_STATE_STALE:
2801		/*
2802		 * Possible scenarios:
2803		 * 1. Stale disk was connected.
2804		 */
2805		/* Previous state should be NEW. */
2806		KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
2807		    ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2808		    g_raid3_disk_state2str(disk->d_state)));
2809		KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2810		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
2811		    ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2812		    g_raid3_device_state2str(sc->sc_state),
2813		    g_raid3_get_diskname(disk),
2814		    g_raid3_disk_state2str(disk->d_state)));
2815		/*
2816		 * STALE state is only possible if device is marked
2817		 * NOAUTOSYNC.
2818		 */
2819		KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) != 0,
2820		    ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2821		    g_raid3_device_state2str(sc->sc_state),
2822		    g_raid3_get_diskname(disk),
2823		    g_raid3_disk_state2str(disk->d_state)));
2824		DISK_STATE_CHANGED();
2825
2826		disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
2827		disk->d_state = state;
2828		g_raid3_update_metadata(disk);
2829		G_RAID3_DEBUG(0, "Device %s: provider %s is stale.",
2830		    sc->sc_name, g_raid3_get_diskname(disk));
2831		break;
2832	case G_RAID3_DISK_STATE_SYNCHRONIZING:
2833		/*
2834		 * Possible scenarios:
2835		 * 1. Disk which needs synchronization was connected.
2836		 */
2837		/* Previous state should be NEW. */
2838		KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
2839		    ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2840		    g_raid3_disk_state2str(disk->d_state)));
2841		KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2842		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
2843		    ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2844		    g_raid3_device_state2str(sc->sc_state),
2845		    g_raid3_get_diskname(disk),
2846		    g_raid3_disk_state2str(disk->d_state)));
2847		DISK_STATE_CHANGED();
2848
2849		if (disk->d_state == G_RAID3_DISK_STATE_NEW)
2850			disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
2851		disk->d_state = state;
2852		if (sc->sc_provider != NULL) {
2853			g_raid3_sync_start(sc);
2854			g_raid3_update_metadata(disk);
2855		}
2856		break;
2857	case G_RAID3_DISK_STATE_DISCONNECTED:
2858		/*
2859		 * Possible scenarios:
2860		 * 1. Device wasn't running yet, but disk disappear.
2861		 * 2. Disk was active and disapppear.
2862		 * 3. Disk disappear during synchronization process.
2863		 */
2864		if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2865		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
2866			/*
2867			 * Previous state should be ACTIVE, STALE or
2868			 * SYNCHRONIZING.
2869			 */
2870			KASSERT(disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
2871			    disk->d_state == G_RAID3_DISK_STATE_STALE ||
2872			    disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
2873			    ("Wrong disk state (%s, %s).",
2874			    g_raid3_get_diskname(disk),
2875			    g_raid3_disk_state2str(disk->d_state)));
2876		} else if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING) {
2877			/* Previous state should be NEW. */
2878			KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
2879			    ("Wrong disk state (%s, %s).",
2880			    g_raid3_get_diskname(disk),
2881			    g_raid3_disk_state2str(disk->d_state)));
2882			/*
2883			 * Reset bumping syncid if disk disappeared in STARTING
2884			 * state.
2885			 */
2886			if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0)
2887				sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID;
2888#ifdef	INVARIANTS
2889		} else {
2890			KASSERT(1 == 0, ("Wrong device state (%s, %s, %s, %s).",
2891			    sc->sc_name,
2892			    g_raid3_device_state2str(sc->sc_state),
2893			    g_raid3_get_diskname(disk),
2894			    g_raid3_disk_state2str(disk->d_state)));
2895#endif
2896		}
2897		DISK_STATE_CHANGED();
2898		G_RAID3_DEBUG(0, "Device %s: provider %s disconnected.",
2899		    sc->sc_name, g_raid3_get_diskname(disk));
2900
2901		g_raid3_destroy_disk(disk);
2902		break;
2903	default:
2904		KASSERT(1 == 0, ("Unknown state (%u).", state));
2905		break;
2906	}
2907	return (0);
2908}
2909#undef	DISK_STATE_CHANGED
2910
2911int
2912g_raid3_read_metadata(struct g_consumer *cp, struct g_raid3_metadata *md)
2913{
2914	struct g_provider *pp;
2915	u_char *buf;
2916	int error;
2917
2918	g_topology_assert();
2919
2920	error = g_access(cp, 1, 0, 0);
2921	if (error != 0)
2922		return (error);
2923	pp = cp->provider;
2924	g_topology_unlock();
2925	/* Metadata are stored on last sector. */
2926	buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
2927	    &error);
2928	g_topology_lock();
2929	g_access(cp, -1, 0, 0);
2930	if (buf == NULL) {
2931		G_RAID3_DEBUG(1, "Cannot read metadata from %s (error=%d).",
2932		    cp->provider->name, error);
2933		return (error);
2934	}
2935
2936	/* Decode metadata. */
2937	error = raid3_metadata_decode(buf, md);
2938	g_free(buf);
2939	if (strcmp(md->md_magic, G_RAID3_MAGIC) != 0)
2940		return (EINVAL);
2941	if (md->md_version > G_RAID3_VERSION) {
2942		G_RAID3_DEBUG(0,
2943		    "Kernel module is too old to handle metadata from %s.",
2944		    cp->provider->name);
2945		return (EINVAL);
2946	}
2947	if (error != 0) {
2948		G_RAID3_DEBUG(1, "MD5 metadata hash mismatch for provider %s.",
2949		    cp->provider->name);
2950		return (error);
2951	}
2952	if (md->md_sectorsize > maxphys) {
2953		G_RAID3_DEBUG(0, "The blocksize is too big.");
2954		return (EINVAL);
2955	}
2956
2957	return (0);
2958}
2959
2960static int
2961g_raid3_check_metadata(struct g_raid3_softc *sc, struct g_provider *pp,
2962    struct g_raid3_metadata *md)
2963{
2964
2965	if (md->md_no >= sc->sc_ndisks) {
2966		G_RAID3_DEBUG(1, "Invalid disk %s number (no=%u), skipping.",
2967		    pp->name, md->md_no);
2968		return (EINVAL);
2969	}
2970	if (sc->sc_disks[md->md_no].d_state != G_RAID3_DISK_STATE_NODISK) {
2971		G_RAID3_DEBUG(1, "Disk %s (no=%u) already exists, skipping.",
2972		    pp->name, md->md_no);
2973		return (EEXIST);
2974	}
2975	if (md->md_all != sc->sc_ndisks) {
2976		G_RAID3_DEBUG(1,
2977		    "Invalid '%s' field on disk %s (device %s), skipping.",
2978		    "md_all", pp->name, sc->sc_name);
2979		return (EINVAL);
2980	}
2981	if ((md->md_mediasize % md->md_sectorsize) != 0) {
2982		G_RAID3_DEBUG(1, "Invalid metadata (mediasize %% sectorsize != "
2983		    "0) on disk %s (device %s), skipping.", pp->name,
2984		    sc->sc_name);
2985		return (EINVAL);
2986	}
2987	if (md->md_mediasize != sc->sc_mediasize) {
2988		G_RAID3_DEBUG(1,
2989		    "Invalid '%s' field on disk %s (device %s), skipping.",
2990		    "md_mediasize", pp->name, sc->sc_name);
2991		return (EINVAL);
2992	}
2993	if ((md->md_mediasize % (sc->sc_ndisks - 1)) != 0) {
2994		G_RAID3_DEBUG(1,
2995		    "Invalid '%s' field on disk %s (device %s), skipping.",
2996		    "md_mediasize", pp->name, sc->sc_name);
2997		return (EINVAL);
2998	}
2999	if ((sc->sc_mediasize / (sc->sc_ndisks - 1)) > pp->mediasize) {
3000		G_RAID3_DEBUG(1,
3001		    "Invalid size of disk %s (device %s), skipping.", pp->name,
3002		    sc->sc_name);
3003		return (EINVAL);
3004	}
3005	if ((md->md_sectorsize / pp->sectorsize) < sc->sc_ndisks - 1) {
3006		G_RAID3_DEBUG(1,
3007		    "Invalid '%s' field on disk %s (device %s), skipping.",
3008		    "md_sectorsize", pp->name, sc->sc_name);
3009		return (EINVAL);
3010	}
3011	if (md->md_sectorsize != sc->sc_sectorsize) {
3012		G_RAID3_DEBUG(1,
3013		    "Invalid '%s' field on disk %s (device %s), skipping.",
3014		    "md_sectorsize", pp->name, sc->sc_name);
3015		return (EINVAL);
3016	}
3017	if ((sc->sc_sectorsize % pp->sectorsize) != 0) {
3018		G_RAID3_DEBUG(1,
3019		    "Invalid sector size of disk %s (device %s), skipping.",
3020		    pp->name, sc->sc_name);
3021		return (EINVAL);
3022	}
3023	if ((md->md_mflags & ~G_RAID3_DEVICE_FLAG_MASK) != 0) {
3024		G_RAID3_DEBUG(1,
3025		    "Invalid device flags on disk %s (device %s), skipping.",
3026		    pp->name, sc->sc_name);
3027		return (EINVAL);
3028	}
3029	if ((md->md_mflags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 &&
3030	    (md->md_mflags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0) {
3031		/*
3032		 * VERIFY and ROUND-ROBIN options are mutally exclusive.
3033		 */
3034		G_RAID3_DEBUG(1, "Both VERIFY and ROUND-ROBIN flags exist on "
3035		    "disk %s (device %s), skipping.", pp->name, sc->sc_name);
3036		return (EINVAL);
3037	}
3038	if ((md->md_dflags & ~G_RAID3_DISK_FLAG_MASK) != 0) {
3039		G_RAID3_DEBUG(1,
3040		    "Invalid disk flags on disk %s (device %s), skipping.",
3041		    pp->name, sc->sc_name);
3042		return (EINVAL);
3043	}
3044	return (0);
3045}
3046
3047int
3048g_raid3_add_disk(struct g_raid3_softc *sc, struct g_provider *pp,
3049    struct g_raid3_metadata *md)
3050{
3051	struct g_raid3_disk *disk;
3052	int error;
3053
3054	g_topology_assert_not();
3055	G_RAID3_DEBUG(2, "Adding disk %s.", pp->name);
3056
3057	error = g_raid3_check_metadata(sc, pp, md);
3058	if (error != 0)
3059		return (error);
3060	if (sc->sc_state != G_RAID3_DEVICE_STATE_STARTING &&
3061	    md->md_genid < sc->sc_genid) {
3062		G_RAID3_DEBUG(0, "Component %s (device %s) broken, skipping.",
3063		    pp->name, sc->sc_name);
3064		return (EINVAL);
3065	}
3066	disk = g_raid3_init_disk(sc, pp, md, &error);
3067	if (disk == NULL)
3068		return (error);
3069	error = g_raid3_event_send(disk, G_RAID3_DISK_STATE_NEW,
3070	    G_RAID3_EVENT_WAIT);
3071	if (error != 0)
3072		return (error);
3073	if (md->md_version < G_RAID3_VERSION) {
3074		G_RAID3_DEBUG(0, "Upgrading metadata on %s (v%d->v%d).",
3075		    pp->name, md->md_version, G_RAID3_VERSION);
3076		g_raid3_update_metadata(disk);
3077	}
3078	return (0);
3079}
3080
3081static void
3082g_raid3_destroy_delayed(void *arg, int flag)
3083{
3084	struct g_raid3_softc *sc;
3085	int error;
3086
3087	if (flag == EV_CANCEL) {
3088		G_RAID3_DEBUG(1, "Destroying canceled.");
3089		return;
3090	}
3091	sc = arg;
3092	g_topology_unlock();
3093	sx_xlock(&sc->sc_lock);
3094	KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) == 0,
3095	    ("DESTROY flag set on %s.", sc->sc_name));
3096	KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0,
3097	    ("DESTROYING flag not set on %s.", sc->sc_name));
3098	G_RAID3_DEBUG(0, "Destroying %s (delayed).", sc->sc_name);
3099	error = g_raid3_destroy(sc, G_RAID3_DESTROY_SOFT);
3100	if (error != 0) {
3101		G_RAID3_DEBUG(0, "Cannot destroy %s.", sc->sc_name);
3102		sx_xunlock(&sc->sc_lock);
3103	}
3104	g_topology_lock();
3105}
3106
3107static int
3108g_raid3_access(struct g_provider *pp, int acr, int acw, int ace)
3109{
3110	struct g_raid3_softc *sc;
3111	int dcr, dcw, dce, error = 0;
3112
3113	g_topology_assert();
3114	G_RAID3_DEBUG(2, "Access request for %s: r%dw%de%d.", pp->name, acr,
3115	    acw, ace);
3116
3117	sc = pp->private;
3118	KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name));
3119
3120	dcr = pp->acr + acr;
3121	dcw = pp->acw + acw;
3122	dce = pp->ace + ace;
3123
3124	g_topology_unlock();
3125	sx_xlock(&sc->sc_lock);
3126	if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0 ||
3127	    g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) < sc->sc_ndisks - 1) {
3128		if (acr > 0 || acw > 0 || ace > 0)
3129			error = ENXIO;
3130		goto end;
3131	}
3132	if (dcw == 0)
3133		g_raid3_idle(sc, dcw);
3134	if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0) {
3135		if (acr > 0 || acw > 0 || ace > 0) {
3136			error = ENXIO;
3137			goto end;
3138		}
3139		if (dcr == 0 && dcw == 0 && dce == 0) {
3140			g_post_event(g_raid3_destroy_delayed, sc, M_WAITOK,
3141			    sc, NULL);
3142		}
3143	}
3144end:
3145	sx_xunlock(&sc->sc_lock);
3146	g_topology_lock();
3147	return (error);
3148}
3149
3150static struct g_geom *
3151g_raid3_create(struct g_class *mp, const struct g_raid3_metadata *md)
3152{
3153	struct g_raid3_softc *sc;
3154	struct g_geom *gp;
3155	int error, timeout;
3156	u_int n;
3157
3158	g_topology_assert();
3159	G_RAID3_DEBUG(1, "Creating device %s (id=%u).", md->md_name, md->md_id);
3160
3161	/* One disk is minimum. */
3162	if (md->md_all < 1)
3163		return (NULL);
3164	/*
3165	 * Action geom.
3166	 */
3167	gp = g_new_geomf(mp, "%s", md->md_name);
3168	sc = malloc(sizeof(*sc), M_RAID3, M_WAITOK | M_ZERO);
3169	sc->sc_disks = malloc(sizeof(struct g_raid3_disk) * md->md_all, M_RAID3,
3170	    M_WAITOK | M_ZERO);
3171	gp->start = g_raid3_start;
3172	gp->orphan = g_raid3_orphan;
3173	gp->access = g_raid3_access;
3174	gp->dumpconf = g_raid3_dumpconf;
3175
3176	sc->sc_id = md->md_id;
3177	sc->sc_mediasize = md->md_mediasize;
3178	sc->sc_sectorsize = md->md_sectorsize;
3179	sc->sc_ndisks = md->md_all;
3180	sc->sc_round_robin = 0;
3181	sc->sc_flags = md->md_mflags;
3182	sc->sc_bump_id = 0;
3183	sc->sc_idle = 1;
3184	sc->sc_last_write = time_uptime;
3185	sc->sc_writes = 0;
3186	sc->sc_refcnt = 1;
3187	for (n = 0; n < sc->sc_ndisks; n++) {
3188		sc->sc_disks[n].d_softc = sc;
3189		sc->sc_disks[n].d_no = n;
3190		sc->sc_disks[n].d_state = G_RAID3_DISK_STATE_NODISK;
3191	}
3192	sx_init(&sc->sc_lock, "graid3:lock");
3193	bioq_init(&sc->sc_queue);
3194	mtx_init(&sc->sc_queue_mtx, "graid3:queue", NULL, MTX_DEF);
3195	bioq_init(&sc->sc_regular_delayed);
3196	bioq_init(&sc->sc_inflight);
3197	bioq_init(&sc->sc_sync_delayed);
3198	TAILQ_INIT(&sc->sc_events);
3199	mtx_init(&sc->sc_events_mtx, "graid3:events", NULL, MTX_DEF);
3200	callout_init(&sc->sc_callout, 1);
3201	sc->sc_state = G_RAID3_DEVICE_STATE_STARTING;
3202	gp->softc = sc;
3203	sc->sc_geom = gp;
3204	sc->sc_provider = NULL;
3205	/*
3206	 * Synchronization geom.
3207	 */
3208	gp = g_new_geomf(mp, "%s.sync", md->md_name);
3209	gp->softc = sc;
3210	gp->orphan = g_raid3_orphan;
3211	sc->sc_sync.ds_geom = gp;
3212
3213	if (!g_raid3_use_malloc) {
3214		sc->sc_zones[G_RAID3_ZONE_64K].sz_zone = uma_zcreate("gr3:64k",
3215		    65536, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
3216		    UMA_ALIGN_PTR, 0);
3217		sc->sc_zones[G_RAID3_ZONE_64K].sz_inuse = 0;
3218		sc->sc_zones[G_RAID3_ZONE_64K].sz_max = g_raid3_n64k;
3219		sc->sc_zones[G_RAID3_ZONE_64K].sz_requested =
3220		    sc->sc_zones[G_RAID3_ZONE_64K].sz_failed = 0;
3221		sc->sc_zones[G_RAID3_ZONE_16K].sz_zone = uma_zcreate("gr3:16k",
3222		    16384, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
3223		    UMA_ALIGN_PTR, 0);
3224		sc->sc_zones[G_RAID3_ZONE_16K].sz_inuse = 0;
3225		sc->sc_zones[G_RAID3_ZONE_16K].sz_max = g_raid3_n16k;
3226		sc->sc_zones[G_RAID3_ZONE_16K].sz_requested =
3227		    sc->sc_zones[G_RAID3_ZONE_16K].sz_failed = 0;
3228		sc->sc_zones[G_RAID3_ZONE_4K].sz_zone = uma_zcreate("gr3:4k",
3229		    4096, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
3230		    UMA_ALIGN_PTR, 0);
3231		sc->sc_zones[G_RAID3_ZONE_4K].sz_inuse = 0;
3232		sc->sc_zones[G_RAID3_ZONE_4K].sz_max = g_raid3_n4k;
3233		sc->sc_zones[G_RAID3_ZONE_4K].sz_requested =
3234		    sc->sc_zones[G_RAID3_ZONE_4K].sz_failed = 0;
3235	}
3236
3237	error = kproc_create(g_raid3_worker, sc, &sc->sc_worker, 0, 0,
3238	    "g_raid3 %s", md->md_name);
3239	if (error != 0) {
3240		G_RAID3_DEBUG(1, "Cannot create kernel thread for %s.",
3241		    sc->sc_name);
3242		g_destroy_geom(sc->sc_geom);
3243		g_raid3_free_device(sc);
3244		return (NULL);
3245	}
3246
3247	G_RAID3_DEBUG(1, "Device %s created (%u components, id=%u).",
3248	    sc->sc_name, sc->sc_ndisks, sc->sc_id);
3249
3250	sc->sc_rootmount = root_mount_hold("GRAID3");
3251	G_RAID3_DEBUG(1, "root_mount_hold %p", sc->sc_rootmount);
3252
3253	/*
3254	 * Schedule startup timeout.
3255	 */
3256	timeout = atomic_load_acq_int(&g_raid3_timeout);
3257	sc->sc_timeout_event = malloc(sizeof(struct g_raid3_event), M_RAID3,
3258	    M_WAITOK);
3259	callout_reset(&sc->sc_callout, timeout * hz, g_raid3_go, sc);
3260	return (sc->sc_geom);
3261}
3262
3263int
3264g_raid3_destroy(struct g_raid3_softc *sc, int how)
3265{
3266	struct g_provider *pp;
3267
3268	g_topology_assert_not();
3269	sx_assert(&sc->sc_lock, SX_XLOCKED);
3270
3271	pp = sc->sc_provider;
3272	if (pp != NULL && (pp->acr != 0 || pp->acw != 0 || pp->ace != 0)) {
3273		switch (how) {
3274		case G_RAID3_DESTROY_SOFT:
3275			G_RAID3_DEBUG(1,
3276			    "Device %s is still open (r%dw%de%d).", pp->name,
3277			    pp->acr, pp->acw, pp->ace);
3278			return (EBUSY);
3279		case G_RAID3_DESTROY_DELAYED:
3280			G_RAID3_DEBUG(1,
3281			    "Device %s will be destroyed on last close.",
3282			    pp->name);
3283			if (sc->sc_syncdisk != NULL)
3284				g_raid3_sync_stop(sc, 1);
3285			sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROYING;
3286			return (EBUSY);
3287		case G_RAID3_DESTROY_HARD:
3288			G_RAID3_DEBUG(1, "Device %s is still open, so it "
3289			    "can't be definitely removed.", pp->name);
3290			break;
3291		}
3292	}
3293
3294	g_topology_lock();
3295	if (sc->sc_geom->softc == NULL) {
3296		g_topology_unlock();
3297		return (0);
3298	}
3299	sc->sc_geom->softc = NULL;
3300	sc->sc_sync.ds_geom->softc = NULL;
3301	g_topology_unlock();
3302
3303	sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
3304	sc->sc_flags |= G_RAID3_DEVICE_FLAG_WAIT;
3305	G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
3306	sx_xunlock(&sc->sc_lock);
3307	mtx_lock(&sc->sc_queue_mtx);
3308	wakeup(sc);
3309	wakeup(&sc->sc_queue);
3310	mtx_unlock(&sc->sc_queue_mtx);
3311	G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, &sc->sc_worker);
3312	while (sc->sc_worker != NULL)
3313		tsleep(&sc->sc_worker, PRIBIO, "r3:destroy", hz / 5);
3314	G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, &sc->sc_worker);
3315	sx_xlock(&sc->sc_lock);
3316	g_raid3_destroy_device(sc);
3317	return (0);
3318}
3319
3320static void
3321g_raid3_taste_orphan(struct g_consumer *cp)
3322{
3323
3324	KASSERT(1 == 0, ("%s called while tasting %s.", __func__,
3325	    cp->provider->name));
3326}
3327
3328static struct g_geom *
3329g_raid3_taste(struct g_class *mp, struct g_provider *pp, int flags __unused)
3330{
3331	struct g_raid3_metadata md;
3332	struct g_raid3_softc *sc;
3333	struct g_consumer *cp;
3334	struct g_geom *gp;
3335	int error;
3336
3337	g_topology_assert();
3338	g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name);
3339	G_RAID3_DEBUG(2, "Tasting %s.", pp->name);
3340
3341	gp = g_new_geomf(mp, "raid3:taste");
3342	/* This orphan function should be never called. */
3343	gp->orphan = g_raid3_taste_orphan;
3344	cp = g_new_consumer(gp);
3345	cp->flags |= G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
3346	error = g_attach(cp, pp);
3347	if (error == 0) {
3348		error = g_raid3_read_metadata(cp, &md);
3349		g_detach(cp);
3350	}
3351	g_destroy_consumer(cp);
3352	g_destroy_geom(gp);
3353	if (error != 0)
3354		return (NULL);
3355	gp = NULL;
3356
3357	if (md.md_provider[0] != '\0' &&
3358	    !g_compare_names(md.md_provider, pp->name))
3359		return (NULL);
3360	if (md.md_provsize != 0 && md.md_provsize != pp->mediasize)
3361		return (NULL);
3362	if (g_raid3_debug >= 2)
3363		raid3_metadata_dump(&md);
3364
3365	/*
3366	 * Let's check if device already exists.
3367	 */
3368	sc = NULL;
3369	LIST_FOREACH(gp, &mp->geom, geom) {
3370		sc = gp->softc;
3371		if (sc == NULL)
3372			continue;
3373		if (sc->sc_sync.ds_geom == gp)
3374			continue;
3375		if (strcmp(md.md_name, sc->sc_name) != 0)
3376			continue;
3377		if (md.md_id != sc->sc_id) {
3378			G_RAID3_DEBUG(0, "Device %s already configured.",
3379			    sc->sc_name);
3380			return (NULL);
3381		}
3382		break;
3383	}
3384	if (gp == NULL) {
3385		gp = g_raid3_create(mp, &md);
3386		if (gp == NULL) {
3387			G_RAID3_DEBUG(0, "Cannot create device %s.",
3388			    md.md_name);
3389			return (NULL);
3390		}
3391		sc = gp->softc;
3392	}
3393	G_RAID3_DEBUG(1, "Adding disk %s to %s.", pp->name, gp->name);
3394	g_topology_unlock();
3395	sx_xlock(&sc->sc_lock);
3396	error = g_raid3_add_disk(sc, pp, &md);
3397	if (error != 0) {
3398		G_RAID3_DEBUG(0, "Cannot add disk %s to %s (error=%d).",
3399		    pp->name, gp->name, error);
3400		if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NODISK) ==
3401		    sc->sc_ndisks) {
3402			g_cancel_event(sc);
3403			g_raid3_destroy(sc, G_RAID3_DESTROY_HARD);
3404			g_topology_lock();
3405			return (NULL);
3406		}
3407		gp = NULL;
3408	}
3409	sx_xunlock(&sc->sc_lock);
3410	g_topology_lock();
3411	return (gp);
3412}
3413
3414static int
3415g_raid3_destroy_geom(struct gctl_req *req __unused, struct g_class *mp __unused,
3416    struct g_geom *gp)
3417{
3418	struct g_raid3_softc *sc;
3419	int error;
3420
3421	g_topology_unlock();
3422	sc = gp->softc;
3423	sx_xlock(&sc->sc_lock);
3424	g_cancel_event(sc);
3425	error = g_raid3_destroy(gp->softc, G_RAID3_DESTROY_SOFT);
3426	if (error != 0)
3427		sx_xunlock(&sc->sc_lock);
3428	g_topology_lock();
3429	return (error);
3430}
3431
3432static void
3433g_raid3_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp,
3434    struct g_consumer *cp, struct g_provider *pp)
3435{
3436	struct g_raid3_softc *sc;
3437
3438	g_topology_assert();
3439
3440	sc = gp->softc;
3441	if (sc == NULL)
3442		return;
3443	/* Skip synchronization geom. */
3444	if (gp == sc->sc_sync.ds_geom)
3445		return;
3446	if (pp != NULL) {
3447		/* Nothing here. */
3448	} else if (cp != NULL) {
3449		struct g_raid3_disk *disk;
3450
3451		disk = cp->private;
3452		if (disk == NULL)
3453			return;
3454		g_topology_unlock();
3455		sx_xlock(&sc->sc_lock);
3456		sbuf_printf(sb, "%s<Type>", indent);
3457		if (disk->d_no == sc->sc_ndisks - 1)
3458			sbuf_cat(sb, "PARITY");
3459		else
3460			sbuf_cat(sb, "DATA");
3461		sbuf_cat(sb, "</Type>\n");
3462		sbuf_printf(sb, "%s<Number>%u</Number>\n", indent,
3463		    (u_int)disk->d_no);
3464		if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
3465			sbuf_printf(sb, "%s<Synchronized>", indent);
3466			if (disk->d_sync.ds_offset == 0)
3467				sbuf_cat(sb, "0%");
3468			else {
3469				sbuf_printf(sb, "%u%%",
3470				    (u_int)((disk->d_sync.ds_offset * 100) /
3471				    (sc->sc_mediasize / (sc->sc_ndisks - 1))));
3472			}
3473			sbuf_cat(sb, "</Synchronized>\n");
3474			if (disk->d_sync.ds_offset > 0) {
3475				sbuf_printf(sb, "%s<BytesSynced>%jd"
3476				    "</BytesSynced>\n", indent,
3477				    (intmax_t)disk->d_sync.ds_offset);
3478			}
3479		}
3480		sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent,
3481		    disk->d_sync.ds_syncid);
3482		sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, disk->d_genid);
3483		sbuf_printf(sb, "%s<Flags>", indent);
3484		if (disk->d_flags == 0)
3485			sbuf_cat(sb, "NONE");
3486		else {
3487			int first = 1;
3488
3489#define	ADD_FLAG(flag, name)	do {					\
3490	if ((disk->d_flags & (flag)) != 0) {				\
3491		if (!first)						\
3492			sbuf_cat(sb, ", ");				\
3493		else							\
3494			first = 0;					\
3495		sbuf_cat(sb, name);					\
3496	}								\
3497} while (0)
3498			ADD_FLAG(G_RAID3_DISK_FLAG_DIRTY, "DIRTY");
3499			ADD_FLAG(G_RAID3_DISK_FLAG_HARDCODED, "HARDCODED");
3500			ADD_FLAG(G_RAID3_DISK_FLAG_SYNCHRONIZING,
3501			    "SYNCHRONIZING");
3502			ADD_FLAG(G_RAID3_DISK_FLAG_FORCE_SYNC, "FORCE_SYNC");
3503			ADD_FLAG(G_RAID3_DISK_FLAG_BROKEN, "BROKEN");
3504#undef	ADD_FLAG
3505		}
3506		sbuf_cat(sb, "</Flags>\n");
3507		sbuf_printf(sb, "%s<State>%s</State>\n", indent,
3508		    g_raid3_disk_state2str(disk->d_state));
3509		sx_xunlock(&sc->sc_lock);
3510		g_topology_lock();
3511	} else {
3512		g_topology_unlock();
3513		sx_xlock(&sc->sc_lock);
3514		if (!g_raid3_use_malloc) {
3515			sbuf_printf(sb,
3516			    "%s<Zone4kRequested>%u</Zone4kRequested>\n", indent,
3517			    sc->sc_zones[G_RAID3_ZONE_4K].sz_requested);
3518			sbuf_printf(sb,
3519			    "%s<Zone4kFailed>%u</Zone4kFailed>\n", indent,
3520			    sc->sc_zones[G_RAID3_ZONE_4K].sz_failed);
3521			sbuf_printf(sb,
3522			    "%s<Zone16kRequested>%u</Zone16kRequested>\n", indent,
3523			    sc->sc_zones[G_RAID3_ZONE_16K].sz_requested);
3524			sbuf_printf(sb,
3525			    "%s<Zone16kFailed>%u</Zone16kFailed>\n", indent,
3526			    sc->sc_zones[G_RAID3_ZONE_16K].sz_failed);
3527			sbuf_printf(sb,
3528			    "%s<Zone64kRequested>%u</Zone64kRequested>\n", indent,
3529			    sc->sc_zones[G_RAID3_ZONE_64K].sz_requested);
3530			sbuf_printf(sb,
3531			    "%s<Zone64kFailed>%u</Zone64kFailed>\n", indent,
3532			    sc->sc_zones[G_RAID3_ZONE_64K].sz_failed);
3533		}
3534		sbuf_printf(sb, "%s<ID>%u</ID>\n", indent, (u_int)sc->sc_id);
3535		sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent, sc->sc_syncid);
3536		sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, sc->sc_genid);
3537		sbuf_printf(sb, "%s<Flags>", indent);
3538		if (sc->sc_flags == 0)
3539			sbuf_cat(sb, "NONE");
3540		else {
3541			int first = 1;
3542
3543#define	ADD_FLAG(flag, name)	do {					\
3544	if ((sc->sc_flags & (flag)) != 0) {				\
3545		if (!first)						\
3546			sbuf_cat(sb, ", ");				\
3547		else							\
3548			first = 0;					\
3549		sbuf_cat(sb, name);					\
3550	}								\
3551} while (0)
3552			ADD_FLAG(G_RAID3_DEVICE_FLAG_NOFAILSYNC, "NOFAILSYNC");
3553			ADD_FLAG(G_RAID3_DEVICE_FLAG_NOAUTOSYNC, "NOAUTOSYNC");
3554			ADD_FLAG(G_RAID3_DEVICE_FLAG_ROUND_ROBIN,
3555			    "ROUND-ROBIN");
3556			ADD_FLAG(G_RAID3_DEVICE_FLAG_VERIFY, "VERIFY");
3557#undef	ADD_FLAG
3558		}
3559		sbuf_cat(sb, "</Flags>\n");
3560		sbuf_printf(sb, "%s<Components>%u</Components>\n", indent,
3561		    sc->sc_ndisks);
3562		sbuf_printf(sb, "%s<State>%s</State>\n", indent,
3563		    g_raid3_device_state2str(sc->sc_state));
3564		sx_xunlock(&sc->sc_lock);
3565		g_topology_lock();
3566	}
3567}
3568
3569static void
3570g_raid3_shutdown_post_sync(void *arg, int howto)
3571{
3572	struct g_class *mp;
3573	struct g_geom *gp, *gp2;
3574	struct g_raid3_softc *sc;
3575	int error;
3576
3577	if ((howto & RB_NOSYNC) != 0)
3578		return;
3579
3580	mp = arg;
3581	g_topology_lock();
3582	g_raid3_shutdown = 1;
3583	LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) {
3584		if ((sc = gp->softc) == NULL)
3585			continue;
3586		/* Skip synchronization geom. */
3587		if (gp == sc->sc_sync.ds_geom)
3588			continue;
3589		g_topology_unlock();
3590		sx_xlock(&sc->sc_lock);
3591		g_raid3_idle(sc, -1);
3592		g_cancel_event(sc);
3593		error = g_raid3_destroy(sc, G_RAID3_DESTROY_DELAYED);
3594		if (error != 0)
3595			sx_xunlock(&sc->sc_lock);
3596		g_topology_lock();
3597	}
3598	g_topology_unlock();
3599}
3600
3601static void
3602g_raid3_init(struct g_class *mp)
3603{
3604
3605	g_raid3_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync,
3606	    g_raid3_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST);
3607	if (g_raid3_post_sync == NULL)
3608		G_RAID3_DEBUG(0, "Warning! Cannot register shutdown event.");
3609}
3610
3611static void
3612g_raid3_fini(struct g_class *mp)
3613{
3614
3615	if (g_raid3_post_sync != NULL)
3616		EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid3_post_sync);
3617}
3618
3619DECLARE_GEOM_CLASS(g_raid3_class, g_raid3);
3620MODULE_VERSION(geom_raid3, 0);
3621