1/******************************************************************************
2  SPDX-License-Identifier: BSD-3-Clause
3
4  Copyright (c) 2001-2020, Intel Corporation
5  All rights reserved.
6
7  Redistribution and use in source and binary forms, with or without
8  modification, are permitted provided that the following conditions are met:
9
10   1. Redistributions of source code must retain the above copyright notice,
11      this list of conditions and the following disclaimer.
12
13   2. Redistributions in binary form must reproduce the above copyright
14      notice, this list of conditions and the following disclaimer in the
15      documentation and/or other materials provided with the distribution.
16
17   3. Neither the name of the Intel Corporation nor the names of its
18      contributors may be used to endorse or promote products derived from
19      this software without specific prior written permission.
20
21  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  POSSIBILITY OF SUCH DAMAGE.
32
33******************************************************************************/
34
35#include "e1000_api.h"
36
37/**
38 *  e1000_init_mac_params - Initialize MAC function pointers
39 *  @hw: pointer to the HW structure
40 *
41 *  This function initializes the function pointers for the MAC
42 *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
43 **/
44s32 e1000_init_mac_params(struct e1000_hw *hw)
45{
46	s32 ret_val = E1000_SUCCESS;
47
48	if (hw->mac.ops.init_params) {
49		ret_val = hw->mac.ops.init_params(hw);
50		if (ret_val) {
51			DEBUGOUT("MAC Initialization Error\n");
52			goto out;
53		}
54	} else {
55		DEBUGOUT("mac.init_mac_params was NULL\n");
56		ret_val = -E1000_ERR_CONFIG;
57	}
58
59out:
60	return ret_val;
61}
62
63/**
64 *  e1000_init_nvm_params - Initialize NVM function pointers
65 *  @hw: pointer to the HW structure
66 *
67 *  This function initializes the function pointers for the NVM
68 *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
69 **/
70s32 e1000_init_nvm_params(struct e1000_hw *hw)
71{
72	s32 ret_val = E1000_SUCCESS;
73
74	if (hw->nvm.ops.init_params) {
75		ret_val = hw->nvm.ops.init_params(hw);
76		if (ret_val) {
77			DEBUGOUT("NVM Initialization Error\n");
78			goto out;
79		}
80	} else {
81		DEBUGOUT("nvm.init_nvm_params was NULL\n");
82		ret_val = -E1000_ERR_CONFIG;
83	}
84
85out:
86	return ret_val;
87}
88
89/**
90 *  e1000_init_phy_params - Initialize PHY function pointers
91 *  @hw: pointer to the HW structure
92 *
93 *  This function initializes the function pointers for the PHY
94 *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
95 **/
96s32 e1000_init_phy_params(struct e1000_hw *hw)
97{
98	s32 ret_val = E1000_SUCCESS;
99
100	if (hw->phy.ops.init_params) {
101		ret_val = hw->phy.ops.init_params(hw);
102		if (ret_val) {
103			DEBUGOUT("PHY Initialization Error\n");
104			goto out;
105		}
106	} else {
107		DEBUGOUT("phy.init_phy_params was NULL\n");
108		ret_val =  -E1000_ERR_CONFIG;
109	}
110
111out:
112	return ret_val;
113}
114
115/**
116 *  e1000_init_mbx_params - Initialize mailbox function pointers
117 *  @hw: pointer to the HW structure
118 *
119 *  This function initializes the function pointers for the PHY
120 *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
121 **/
122s32 e1000_init_mbx_params(struct e1000_hw *hw)
123{
124	s32 ret_val = E1000_SUCCESS;
125
126	if (hw->mbx.ops.init_params) {
127		ret_val = hw->mbx.ops.init_params(hw);
128		if (ret_val) {
129			DEBUGOUT("Mailbox Initialization Error\n");
130			goto out;
131		}
132	} else {
133		DEBUGOUT("mbx.init_mbx_params was NULL\n");
134		ret_val =  -E1000_ERR_CONFIG;
135	}
136
137out:
138	return ret_val;
139}
140
141/**
142 *  e1000_set_mac_type - Sets MAC type
143 *  @hw: pointer to the HW structure
144 *
145 *  This function sets the mac type of the adapter based on the
146 *  device ID stored in the hw structure.
147 *  MUST BE FIRST FUNCTION CALLED (explicitly or through
148 *  e1000_setup_init_funcs()).
149 **/
150s32 e1000_set_mac_type(struct e1000_hw *hw)
151{
152	struct e1000_mac_info *mac = &hw->mac;
153	s32 ret_val = E1000_SUCCESS;
154
155	DEBUGFUNC("e1000_set_mac_type");
156
157	switch (hw->device_id) {
158	case E1000_DEV_ID_82542:
159		mac->type = e1000_82542;
160		break;
161	case E1000_DEV_ID_82543GC_FIBER:
162	case E1000_DEV_ID_82543GC_COPPER:
163		mac->type = e1000_82543;
164		break;
165	case E1000_DEV_ID_82544EI_COPPER:
166	case E1000_DEV_ID_82544EI_FIBER:
167	case E1000_DEV_ID_82544GC_COPPER:
168	case E1000_DEV_ID_82544GC_LOM:
169		mac->type = e1000_82544;
170		break;
171	case E1000_DEV_ID_82540EM:
172	case E1000_DEV_ID_82540EM_LOM:
173	case E1000_DEV_ID_82540EP:
174	case E1000_DEV_ID_82540EP_LOM:
175	case E1000_DEV_ID_82540EP_LP:
176		mac->type = e1000_82540;
177		break;
178	case E1000_DEV_ID_82545EM_COPPER:
179	case E1000_DEV_ID_82545EM_FIBER:
180		mac->type = e1000_82545;
181		break;
182	case E1000_DEV_ID_82545GM_COPPER:
183	case E1000_DEV_ID_82545GM_FIBER:
184	case E1000_DEV_ID_82545GM_SERDES:
185		mac->type = e1000_82545_rev_3;
186		break;
187	case E1000_DEV_ID_82546EB_COPPER:
188	case E1000_DEV_ID_82546EB_FIBER:
189	case E1000_DEV_ID_82546EB_QUAD_COPPER:
190		mac->type = e1000_82546;
191		break;
192	case E1000_DEV_ID_82546GB_COPPER:
193	case E1000_DEV_ID_82546GB_FIBER:
194	case E1000_DEV_ID_82546GB_SERDES:
195	case E1000_DEV_ID_82546GB_PCIE:
196	case E1000_DEV_ID_82546GB_QUAD_COPPER:
197	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
198		mac->type = e1000_82546_rev_3;
199		break;
200	case E1000_DEV_ID_82541EI:
201	case E1000_DEV_ID_82541EI_MOBILE:
202	case E1000_DEV_ID_82541ER_LOM:
203		mac->type = e1000_82541;
204		break;
205	case E1000_DEV_ID_82541ER:
206	case E1000_DEV_ID_82541GI:
207	case E1000_DEV_ID_82541GI_LF:
208	case E1000_DEV_ID_82541GI_MOBILE:
209		mac->type = e1000_82541_rev_2;
210		break;
211	case E1000_DEV_ID_82547EI:
212	case E1000_DEV_ID_82547EI_MOBILE:
213		mac->type = e1000_82547;
214		break;
215	case E1000_DEV_ID_82547GI:
216		mac->type = e1000_82547_rev_2;
217		break;
218	case E1000_DEV_ID_82571EB_COPPER:
219	case E1000_DEV_ID_82571EB_FIBER:
220	case E1000_DEV_ID_82571EB_SERDES:
221	case E1000_DEV_ID_82571EB_SERDES_DUAL:
222	case E1000_DEV_ID_82571EB_SERDES_QUAD:
223	case E1000_DEV_ID_82571EB_QUAD_COPPER:
224	case E1000_DEV_ID_82571PT_QUAD_COPPER:
225	case E1000_DEV_ID_82571EB_QUAD_FIBER:
226	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
227		mac->type = e1000_82571;
228		break;
229	case E1000_DEV_ID_82572EI:
230	case E1000_DEV_ID_82572EI_COPPER:
231	case E1000_DEV_ID_82572EI_FIBER:
232	case E1000_DEV_ID_82572EI_SERDES:
233		mac->type = e1000_82572;
234		break;
235	case E1000_DEV_ID_82573E:
236	case E1000_DEV_ID_82573E_IAMT:
237	case E1000_DEV_ID_82573L:
238		mac->type = e1000_82573;
239		break;
240	case E1000_DEV_ID_82574L:
241	case E1000_DEV_ID_82574LA:
242		mac->type = e1000_82574;
243		break;
244	case E1000_DEV_ID_82583V:
245		mac->type = e1000_82583;
246		break;
247	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
248	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
249	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
250	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
251		mac->type = e1000_80003es2lan;
252		break;
253	case E1000_DEV_ID_ICH8_IFE:
254	case E1000_DEV_ID_ICH8_IFE_GT:
255	case E1000_DEV_ID_ICH8_IFE_G:
256	case E1000_DEV_ID_ICH8_IGP_M:
257	case E1000_DEV_ID_ICH8_IGP_M_AMT:
258	case E1000_DEV_ID_ICH8_IGP_AMT:
259	case E1000_DEV_ID_ICH8_IGP_C:
260	case E1000_DEV_ID_ICH8_82567V_3:
261		mac->type = e1000_ich8lan;
262		break;
263	case E1000_DEV_ID_ICH9_IFE:
264	case E1000_DEV_ID_ICH9_IFE_GT:
265	case E1000_DEV_ID_ICH9_IFE_G:
266	case E1000_DEV_ID_ICH9_IGP_M:
267	case E1000_DEV_ID_ICH9_IGP_M_AMT:
268	case E1000_DEV_ID_ICH9_IGP_M_V:
269	case E1000_DEV_ID_ICH9_IGP_AMT:
270	case E1000_DEV_ID_ICH9_BM:
271	case E1000_DEV_ID_ICH9_IGP_C:
272	case E1000_DEV_ID_ICH10_R_BM_LM:
273	case E1000_DEV_ID_ICH10_R_BM_LF:
274	case E1000_DEV_ID_ICH10_R_BM_V:
275		mac->type = e1000_ich9lan;
276		break;
277	case E1000_DEV_ID_ICH10_D_BM_LM:
278	case E1000_DEV_ID_ICH10_D_BM_LF:
279	case E1000_DEV_ID_ICH10_D_BM_V:
280		mac->type = e1000_ich10lan;
281		break;
282	case E1000_DEV_ID_PCH_D_HV_DM:
283	case E1000_DEV_ID_PCH_D_HV_DC:
284	case E1000_DEV_ID_PCH_M_HV_LM:
285	case E1000_DEV_ID_PCH_M_HV_LC:
286		mac->type = e1000_pchlan;
287		break;
288	case E1000_DEV_ID_PCH2_LV_LM:
289	case E1000_DEV_ID_PCH2_LV_V:
290		mac->type = e1000_pch2lan;
291		break;
292	case E1000_DEV_ID_PCH_LPT_I217_LM:
293	case E1000_DEV_ID_PCH_LPT_I217_V:
294	case E1000_DEV_ID_PCH_LPTLP_I218_LM:
295	case E1000_DEV_ID_PCH_LPTLP_I218_V:
296	case E1000_DEV_ID_PCH_I218_LM2:
297	case E1000_DEV_ID_PCH_I218_V2:
298	case E1000_DEV_ID_PCH_I218_LM3:
299	case E1000_DEV_ID_PCH_I218_V3:
300		mac->type = e1000_pch_lpt;
301		break;
302	case E1000_DEV_ID_PCH_SPT_I219_LM:
303	case E1000_DEV_ID_PCH_SPT_I219_V:
304	case E1000_DEV_ID_PCH_SPT_I219_LM2:
305	case E1000_DEV_ID_PCH_SPT_I219_V2:
306	case E1000_DEV_ID_PCH_LBG_I219_LM3:
307	case E1000_DEV_ID_PCH_SPT_I219_LM4:
308	case E1000_DEV_ID_PCH_SPT_I219_V4:
309	case E1000_DEV_ID_PCH_SPT_I219_LM5:
310	case E1000_DEV_ID_PCH_SPT_I219_V5:
311	case E1000_DEV_ID_PCH_CMP_I219_LM12:
312	case E1000_DEV_ID_PCH_CMP_I219_V12:
313		mac->type = e1000_pch_spt;
314		break;
315	case E1000_DEV_ID_PCH_CNP_I219_LM6:
316	case E1000_DEV_ID_PCH_CNP_I219_V6:
317	case E1000_DEV_ID_PCH_CNP_I219_LM7:
318	case E1000_DEV_ID_PCH_CNP_I219_V7:
319	case E1000_DEV_ID_PCH_ICP_I219_LM8:
320	case E1000_DEV_ID_PCH_ICP_I219_V8:
321	case E1000_DEV_ID_PCH_ICP_I219_LM9:
322	case E1000_DEV_ID_PCH_ICP_I219_V9:
323	case E1000_DEV_ID_PCH_CMP_I219_LM10:
324	case E1000_DEV_ID_PCH_CMP_I219_V10:
325	case E1000_DEV_ID_PCH_CMP_I219_LM11:
326	case E1000_DEV_ID_PCH_CMP_I219_V11:
327		mac->type = e1000_pch_cnp;
328		break;
329	case E1000_DEV_ID_PCH_TGP_I219_LM13:
330	case E1000_DEV_ID_PCH_TGP_I219_V13:
331	case E1000_DEV_ID_PCH_TGP_I219_LM14:
332	case E1000_DEV_ID_PCH_TGP_I219_V14:
333	case E1000_DEV_ID_PCH_TGP_I219_LM15:
334	case E1000_DEV_ID_PCH_TGP_I219_V15:
335		mac->type = e1000_pch_tgp;
336		break;
337	case E1000_DEV_ID_PCH_ADL_I219_LM16:
338	case E1000_DEV_ID_PCH_ADL_I219_V16:
339	case E1000_DEV_ID_PCH_ADL_I219_LM17:
340	case E1000_DEV_ID_PCH_ADL_I219_V17:
341	case E1000_DEV_ID_PCH_RPL_I219_LM22:
342	case E1000_DEV_ID_PCH_RPL_I219_V22:
343	case E1000_DEV_ID_PCH_RPL_I219_LM23:
344	case E1000_DEV_ID_PCH_RPL_I219_V23:
345		mac->type = e1000_pch_adp;
346		break;
347	case E1000_DEV_ID_PCH_MTP_I219_LM18:
348	case E1000_DEV_ID_PCH_MTP_I219_V18:
349	case E1000_DEV_ID_PCH_MTP_I219_LM19:
350	case E1000_DEV_ID_PCH_MTP_I219_V19:
351	case E1000_DEV_ID_PCH_LNL_I219_LM20:
352	case E1000_DEV_ID_PCH_LNL_I219_V20:
353	case E1000_DEV_ID_PCH_LNL_I219_LM21:
354	case E1000_DEV_ID_PCH_LNL_I219_V21:
355		mac->type = e1000_pch_mtp;
356		break;
357	case E1000_DEV_ID_PCH_ARL_I219_LM24:
358	case E1000_DEV_ID_PCH_ARL_I219_V24:
359	case E1000_DEV_ID_PCH_PTP_I219_LM25:
360	case E1000_DEV_ID_PCH_PTP_I219_V25:
361	case E1000_DEV_ID_PCH_PTP_I219_LM26:
362	case E1000_DEV_ID_PCH_PTP_I219_V26:
363	case E1000_DEV_ID_PCH_PTP_I219_LM27:
364	case E1000_DEV_ID_PCH_PTP_I219_V27:
365		mac->type = e1000_pch_ptp;
366		break;
367	case E1000_DEV_ID_82575EB_COPPER:
368	case E1000_DEV_ID_82575EB_FIBER_SERDES:
369	case E1000_DEV_ID_82575GB_QUAD_COPPER:
370		mac->type = e1000_82575;
371		break;
372	case E1000_DEV_ID_82576:
373	case E1000_DEV_ID_82576_FIBER:
374	case E1000_DEV_ID_82576_SERDES:
375	case E1000_DEV_ID_82576_QUAD_COPPER:
376	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
377	case E1000_DEV_ID_82576_NS:
378	case E1000_DEV_ID_82576_NS_SERDES:
379	case E1000_DEV_ID_82576_SERDES_QUAD:
380		mac->type = e1000_82576;
381		break;
382	case E1000_DEV_ID_82580_COPPER:
383	case E1000_DEV_ID_82580_FIBER:
384	case E1000_DEV_ID_82580_SERDES:
385	case E1000_DEV_ID_82580_SGMII:
386	case E1000_DEV_ID_82580_COPPER_DUAL:
387	case E1000_DEV_ID_82580_QUAD_FIBER:
388	case E1000_DEV_ID_DH89XXCC_SGMII:
389	case E1000_DEV_ID_DH89XXCC_SERDES:
390	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
391	case E1000_DEV_ID_DH89XXCC_SFP:
392		mac->type = e1000_82580;
393		break;
394	case E1000_DEV_ID_I350_COPPER:
395	case E1000_DEV_ID_I350_FIBER:
396	case E1000_DEV_ID_I350_SERDES:
397	case E1000_DEV_ID_I350_SGMII:
398	case E1000_DEV_ID_I350_DA4:
399		mac->type = e1000_i350;
400		break;
401	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
402	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
403	case E1000_DEV_ID_I210_SGMII_FLASHLESS:
404	case E1000_DEV_ID_I210_COPPER:
405	case E1000_DEV_ID_I210_COPPER_OEM1:
406	case E1000_DEV_ID_I210_COPPER_IT:
407	case E1000_DEV_ID_I210_FIBER:
408	case E1000_DEV_ID_I210_SERDES:
409	case E1000_DEV_ID_I210_SGMII:
410		mac->type = e1000_i210;
411		break;
412	case E1000_DEV_ID_I211_COPPER:
413		mac->type = e1000_i211;
414		break;
415	case E1000_DEV_ID_82576_VF:
416	case E1000_DEV_ID_82576_VF_HV:
417		mac->type = e1000_vfadapt;
418		break;
419	case E1000_DEV_ID_I350_VF:
420	case E1000_DEV_ID_I350_VF_HV:
421		mac->type = e1000_vfadapt_i350;
422		break;
423
424	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
425	case E1000_DEV_ID_I354_SGMII:
426	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
427		mac->type = e1000_i354;
428		break;
429	default:
430		/* Should never have loaded on this device */
431		ret_val = -E1000_ERR_MAC_INIT;
432		break;
433	}
434
435	return ret_val;
436}
437
438/**
439 *  e1000_setup_init_funcs - Initializes function pointers
440 *  @hw: pointer to the HW structure
441 *  @init_device: true will initialize the rest of the function pointers
442 *		  getting the device ready for use.  false will only set
443 *		  MAC type and the function pointers for the other init
444 *		  functions.  Passing false will not generate any hardware
445 *		  reads or writes.
446 *
447 *  This function must be called by a driver in order to use the rest
448 *  of the 'shared' code files. Called by drivers only.
449 **/
450s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
451{
452	s32 ret_val;
453
454	/* Can't do much good without knowing the MAC type. */
455	ret_val = e1000_set_mac_type(hw);
456	if (ret_val) {
457		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
458		goto out;
459	}
460
461	if (!hw->hw_addr) {
462		DEBUGOUT("ERROR: Registers not mapped\n");
463		ret_val = -E1000_ERR_CONFIG;
464		goto out;
465	}
466
467	/*
468	 * Init function pointers to generic implementations. We do this first
469	 * allowing a driver module to override it afterward.
470	 */
471	e1000_init_mac_ops_generic(hw);
472	e1000_init_phy_ops_generic(hw);
473	e1000_init_nvm_ops_generic(hw);
474	e1000_init_mbx_ops_generic(hw);
475
476	/*
477	 * Set up the init function pointers. These are functions within the
478	 * adapter family file that sets up function pointers for the rest of
479	 * the functions in that family.
480	 */
481	switch (hw->mac.type) {
482	case e1000_82542:
483		e1000_init_function_pointers_82542(hw);
484		break;
485	case e1000_82543:
486	case e1000_82544:
487		e1000_init_function_pointers_82543(hw);
488		break;
489	case e1000_82540:
490	case e1000_82545:
491	case e1000_82545_rev_3:
492	case e1000_82546:
493	case e1000_82546_rev_3:
494		e1000_init_function_pointers_82540(hw);
495		break;
496	case e1000_82541:
497	case e1000_82541_rev_2:
498	case e1000_82547:
499	case e1000_82547_rev_2:
500		e1000_init_function_pointers_82541(hw);
501		break;
502	case e1000_82571:
503	case e1000_82572:
504	case e1000_82573:
505	case e1000_82574:
506	case e1000_82583:
507		e1000_init_function_pointers_82571(hw);
508		break;
509	case e1000_80003es2lan:
510		e1000_init_function_pointers_80003es2lan(hw);
511		break;
512	case e1000_ich8lan:
513	case e1000_ich9lan:
514	case e1000_ich10lan:
515	case e1000_pchlan:
516	case e1000_pch2lan:
517	case e1000_pch_lpt:
518	case e1000_pch_spt:
519	case e1000_pch_cnp:
520	case e1000_pch_tgp:
521	case e1000_pch_adp:
522	case e1000_pch_mtp:
523	case e1000_pch_ptp:
524		e1000_init_function_pointers_ich8lan(hw);
525		break;
526	case e1000_82575:
527	case e1000_82576:
528	case e1000_82580:
529	case e1000_i350:
530	case e1000_i354:
531		e1000_init_function_pointers_82575(hw);
532		break;
533	case e1000_i210:
534	case e1000_i211:
535		e1000_init_function_pointers_i210(hw);
536		break;
537	case e1000_vfadapt:
538		e1000_init_function_pointers_vf(hw);
539		break;
540	case e1000_vfadapt_i350:
541		e1000_init_function_pointers_vf(hw);
542		break;
543	default:
544		DEBUGOUT("Hardware not supported\n");
545		ret_val = -E1000_ERR_CONFIG;
546		break;
547	}
548
549	/*
550	 * Initialize the rest of the function pointers. These require some
551	 * register reads/writes in some cases.
552	 */
553	if (!(ret_val) && init_device) {
554		ret_val = e1000_init_mac_params(hw);
555		if (ret_val)
556			goto out;
557
558		ret_val = e1000_init_nvm_params(hw);
559		if (ret_val)
560			goto out;
561
562		ret_val = e1000_init_phy_params(hw);
563		if (ret_val)
564			goto out;
565
566		ret_val = e1000_init_mbx_params(hw);
567		if (ret_val)
568			goto out;
569	}
570
571out:
572	return ret_val;
573}
574
575/**
576 *  e1000_get_bus_info - Obtain bus information for adapter
577 *  @hw: pointer to the HW structure
578 *
579 *  This will obtain information about the HW bus for which the
580 *  adapter is attached and stores it in the hw structure. This is a
581 *  function pointer entry point called by drivers.
582 **/
583s32 e1000_get_bus_info(struct e1000_hw *hw)
584{
585	if (hw->mac.ops.get_bus_info)
586		return hw->mac.ops.get_bus_info(hw);
587
588	return E1000_SUCCESS;
589}
590
591/**
592 *  e1000_clear_vfta - Clear VLAN filter table
593 *  @hw: pointer to the HW structure
594 *
595 *  This clears the VLAN filter table on the adapter. This is a function
596 *  pointer entry point called by drivers.
597 **/
598void e1000_clear_vfta(struct e1000_hw *hw)
599{
600	if (hw->mac.ops.clear_vfta)
601		hw->mac.ops.clear_vfta(hw);
602}
603
604/**
605 *  e1000_write_vfta - Write value to VLAN filter table
606 *  @hw: pointer to the HW structure
607 *  @offset: the 32-bit offset in which to write the value to.
608 *  @value: the 32-bit value to write at location offset.
609 *
610 *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
611 *  table. This is a function pointer entry point called by drivers.
612 **/
613void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
614{
615	if (hw->mac.ops.write_vfta)
616		hw->mac.ops.write_vfta(hw, offset, value);
617}
618
619/**
620 *  e1000_update_mc_addr_list - Update Multicast addresses
621 *  @hw: pointer to the HW structure
622 *  @mc_addr_list: array of multicast addresses to program
623 *  @mc_addr_count: number of multicast addresses to program
624 *
625 *  Updates the Multicast Table Array.
626 *  The caller must have a packed mc_addr_list of multicast addresses.
627 **/
628void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
629			       u32 mc_addr_count)
630{
631	if (hw->mac.ops.update_mc_addr_list)
632		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
633						mc_addr_count);
634}
635
636/**
637 *  e1000_force_mac_fc - Force MAC flow control
638 *  @hw: pointer to the HW structure
639 *
640 *  Force the MAC's flow control settings. Currently no func pointer exists
641 *  and all implementations are handled in the generic version of this
642 *  function.
643 **/
644s32 e1000_force_mac_fc(struct e1000_hw *hw)
645{
646	return e1000_force_mac_fc_generic(hw);
647}
648
649/**
650 *  e1000_check_for_link - Check/Store link connection
651 *  @hw: pointer to the HW structure
652 *
653 *  This checks the link condition of the adapter and stores the
654 *  results in the hw->mac structure. This is a function pointer entry
655 *  point called by drivers.
656 **/
657s32 e1000_check_for_link(struct e1000_hw *hw)
658{
659	if (hw->mac.ops.check_for_link)
660		return hw->mac.ops.check_for_link(hw);
661
662	return -E1000_ERR_CONFIG;
663}
664
665/**
666 *  e1000_check_mng_mode - Check management mode
667 *  @hw: pointer to the HW structure
668 *
669 *  This checks if the adapter has manageability enabled.
670 *  This is a function pointer entry point called by drivers.
671 **/
672bool e1000_check_mng_mode(struct e1000_hw *hw)
673{
674	if (hw->mac.ops.check_mng_mode)
675		return hw->mac.ops.check_mng_mode(hw);
676
677	return false;
678}
679
680/**
681 *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
682 *  @hw: pointer to the HW structure
683 *  @buffer: pointer to the host interface
684 *  @length: size of the buffer
685 *
686 *  Writes the DHCP information to the host interface.
687 **/
688s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
689{
690	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
691}
692
693/**
694 *  e1000_reset_hw - Reset hardware
695 *  @hw: pointer to the HW structure
696 *
697 *  This resets the hardware into a known state. This is a function pointer
698 *  entry point called by drivers.
699 **/
700s32 e1000_reset_hw(struct e1000_hw *hw)
701{
702	if (hw->mac.ops.reset_hw)
703		return hw->mac.ops.reset_hw(hw);
704
705	return -E1000_ERR_CONFIG;
706}
707
708/**
709 *  e1000_init_hw - Initialize hardware
710 *  @hw: pointer to the HW structure
711 *
712 *  This inits the hardware readying it for operation. This is a function
713 *  pointer entry point called by drivers.
714 **/
715s32 e1000_init_hw(struct e1000_hw *hw)
716{
717	if (hw->mac.ops.init_hw)
718		return hw->mac.ops.init_hw(hw);
719
720	return -E1000_ERR_CONFIG;
721}
722
723/**
724 *  e1000_setup_link - Configures link and flow control
725 *  @hw: pointer to the HW structure
726 *
727 *  This configures link and flow control settings for the adapter. This
728 *  is a function pointer entry point called by drivers. While modules can
729 *  also call this, they probably call their own version of this function.
730 **/
731s32 e1000_setup_link(struct e1000_hw *hw)
732{
733	if (hw->mac.ops.setup_link)
734		return hw->mac.ops.setup_link(hw);
735
736	return -E1000_ERR_CONFIG;
737}
738
739/**
740 *  e1000_get_speed_and_duplex - Returns current speed and duplex
741 *  @hw: pointer to the HW structure
742 *  @speed: pointer to a 16-bit value to store the speed
743 *  @duplex: pointer to a 16-bit value to store the duplex.
744 *
745 *  This returns the speed and duplex of the adapter in the two 'out'
746 *  variables passed in. This is a function pointer entry point called
747 *  by drivers.
748 **/
749s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
750{
751	if (hw->mac.ops.get_link_up_info)
752		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
753
754	return -E1000_ERR_CONFIG;
755}
756
757/**
758 *  e1000_setup_led - Configures SW controllable LED
759 *  @hw: pointer to the HW structure
760 *
761 *  This prepares the SW controllable LED for use and saves the current state
762 *  of the LED so it can be later restored. This is a function pointer entry
763 *  point called by drivers.
764 **/
765s32 e1000_setup_led(struct e1000_hw *hw)
766{
767	if (hw->mac.ops.setup_led)
768		return hw->mac.ops.setup_led(hw);
769
770	return E1000_SUCCESS;
771}
772
773/**
774 *  e1000_cleanup_led - Restores SW controllable LED
775 *  @hw: pointer to the HW structure
776 *
777 *  This restores the SW controllable LED to the value saved off by
778 *  e1000_setup_led. This is a function pointer entry point called by drivers.
779 **/
780s32 e1000_cleanup_led(struct e1000_hw *hw)
781{
782	if (hw->mac.ops.cleanup_led)
783		return hw->mac.ops.cleanup_led(hw);
784
785	return E1000_SUCCESS;
786}
787
788/**
789 *  e1000_blink_led - Blink SW controllable LED
790 *  @hw: pointer to the HW structure
791 *
792 *  This starts the adapter LED blinking. Request the LED to be setup first
793 *  and cleaned up after. This is a function pointer entry point called by
794 *  drivers.
795 **/
796s32 e1000_blink_led(struct e1000_hw *hw)
797{
798	if (hw->mac.ops.blink_led)
799		return hw->mac.ops.blink_led(hw);
800
801	return E1000_SUCCESS;
802}
803
804/**
805 *  e1000_id_led_init - store LED configurations in SW
806 *  @hw: pointer to the HW structure
807 *
808 *  Initializes the LED config in SW. This is a function pointer entry point
809 *  called by drivers.
810 **/
811s32 e1000_id_led_init(struct e1000_hw *hw)
812{
813	if (hw->mac.ops.id_led_init)
814		return hw->mac.ops.id_led_init(hw);
815
816	return E1000_SUCCESS;
817}
818
819/**
820 *  e1000_led_on - Turn on SW controllable LED
821 *  @hw: pointer to the HW structure
822 *
823 *  Turns the SW defined LED on. This is a function pointer entry point
824 *  called by drivers.
825 **/
826s32 e1000_led_on(struct e1000_hw *hw)
827{
828	if (hw->mac.ops.led_on)
829		return hw->mac.ops.led_on(hw);
830
831	return E1000_SUCCESS;
832}
833
834/**
835 *  e1000_led_off - Turn off SW controllable LED
836 *  @hw: pointer to the HW structure
837 *
838 *  Turns the SW defined LED off. This is a function pointer entry point
839 *  called by drivers.
840 **/
841s32 e1000_led_off(struct e1000_hw *hw)
842{
843	if (hw->mac.ops.led_off)
844		return hw->mac.ops.led_off(hw);
845
846	return E1000_SUCCESS;
847}
848
849/**
850 *  e1000_reset_adaptive - Reset adaptive IFS
851 *  @hw: pointer to the HW structure
852 *
853 *  Resets the adaptive IFS. Currently no func pointer exists and all
854 *  implementations are handled in the generic version of this function.
855 **/
856void e1000_reset_adaptive(struct e1000_hw *hw)
857{
858	e1000_reset_adaptive_generic(hw);
859}
860
861/**
862 *  e1000_update_adaptive - Update adaptive IFS
863 *  @hw: pointer to the HW structure
864 *
865 *  Updates adapter IFS. Currently no func pointer exists and all
866 *  implementations are handled in the generic version of this function.
867 **/
868void e1000_update_adaptive(struct e1000_hw *hw)
869{
870	e1000_update_adaptive_generic(hw);
871}
872
873/**
874 *  e1000_disable_pcie_master - Disable PCI-Express master access
875 *  @hw: pointer to the HW structure
876 *
877 *  Disables PCI-Express master access and verifies there are no pending
878 *  requests. Currently no func pointer exists and all implementations are
879 *  handled in the generic version of this function.
880 **/
881s32 e1000_disable_pcie_master(struct e1000_hw *hw)
882{
883	return e1000_disable_pcie_master_generic(hw);
884}
885
886/**
887 *  e1000_config_collision_dist - Configure collision distance
888 *  @hw: pointer to the HW structure
889 *
890 *  Configures the collision distance to the default value and is used
891 *  during link setup.
892 **/
893void e1000_config_collision_dist(struct e1000_hw *hw)
894{
895	if (hw->mac.ops.config_collision_dist)
896		hw->mac.ops.config_collision_dist(hw);
897}
898
899/**
900 *  e1000_rar_set - Sets a receive address register
901 *  @hw: pointer to the HW structure
902 *  @addr: address to set the RAR to
903 *  @index: the RAR to set
904 *
905 *  Sets a Receive Address Register (RAR) to the specified address.
906 **/
907int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
908{
909	if (hw->mac.ops.rar_set)
910		return hw->mac.ops.rar_set(hw, addr, index);
911
912	return E1000_SUCCESS;
913}
914
915/**
916 *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
917 *  @hw: pointer to the HW structure
918 *
919 *  Ensures that the MDI/MDIX SW state is valid.
920 **/
921s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
922{
923	if (hw->mac.ops.validate_mdi_setting)
924		return hw->mac.ops.validate_mdi_setting(hw);
925
926	return E1000_SUCCESS;
927}
928
929/**
930 *  e1000_hash_mc_addr - Determines address location in multicast table
931 *  @hw: pointer to the HW structure
932 *  @mc_addr: Multicast address to hash.
933 *
934 *  This hashes an address to determine its location in the multicast
935 *  table. Currently no func pointer exists and all implementations
936 *  are handled in the generic version of this function.
937 **/
938u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
939{
940	return e1000_hash_mc_addr_generic(hw, mc_addr);
941}
942
943/**
944 *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
945 *  @hw: pointer to the HW structure
946 *
947 *  Enables packet filtering on transmit packets if manageability is enabled
948 *  and host interface is enabled.
949 *  Currently no func pointer exists and all implementations are handled in the
950 *  generic version of this function.
951 **/
952bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
953{
954	return e1000_enable_tx_pkt_filtering_generic(hw);
955}
956
957/**
958 *  e1000_mng_host_if_write - Writes to the manageability host interface
959 *  @hw: pointer to the HW structure
960 *  @buffer: pointer to the host interface buffer
961 *  @length: size of the buffer
962 *  @offset: location in the buffer to write to
963 *  @sum: sum of the data (not checksum)
964 *
965 *  This function writes the buffer content at the offset given on the host if.
966 *  It also does alignment considerations to do the writes in most efficient
967 *  way.  Also fills up the sum of the buffer in *buffer parameter.
968 **/
969s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
970			    u16 offset, u8 *sum)
971{
972	return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
973}
974
975/**
976 *  e1000_mng_write_cmd_header - Writes manageability command header
977 *  @hw: pointer to the HW structure
978 *  @hdr: pointer to the host interface command header
979 *
980 *  Writes the command header after does the checksum calculation.
981 **/
982s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
983			       struct e1000_host_mng_command_header *hdr)
984{
985	return e1000_mng_write_cmd_header_generic(hw, hdr);
986}
987
988/**
989 *  e1000_mng_enable_host_if - Checks host interface is enabled
990 *  @hw: pointer to the HW structure
991 *
992 *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
993 *
994 *  This function checks whether the HOST IF is enabled for command operation
995 *  and also checks whether the previous command is completed.  It busy waits
996 *  in case of previous command is not completed.
997 **/
998s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
999{
1000	return e1000_mng_enable_host_if_generic(hw);
1001}
1002
1003/**
1004 *  e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
1005 *  @hw: pointer to the HW structure
1006 *  @itr: u32 indicating itr value
1007 *
1008 *  Set the OBFF timer based on the given interrupt rate.
1009 **/
1010s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
1011{
1012	if (hw->mac.ops.set_obff_timer)
1013		return hw->mac.ops.set_obff_timer(hw, itr);
1014
1015	return E1000_SUCCESS;
1016}
1017
1018/**
1019 *  e1000_check_reset_block - Verifies PHY can be reset
1020 *  @hw: pointer to the HW structure
1021 *
1022 *  Checks if the PHY is in a state that can be reset or if manageability
1023 *  has it tied up. This is a function pointer entry point called by drivers.
1024 **/
1025s32 e1000_check_reset_block(struct e1000_hw *hw)
1026{
1027	if (hw->phy.ops.check_reset_block)
1028		return hw->phy.ops.check_reset_block(hw);
1029
1030	return E1000_SUCCESS;
1031}
1032
1033/**
1034 *  e1000_read_phy_reg - Reads PHY register
1035 *  @hw: pointer to the HW structure
1036 *  @offset: the register to read
1037 *  @data: the buffer to store the 16-bit read.
1038 *
1039 *  Reads the PHY register and returns the value in data.
1040 *  This is a function pointer entry point called by drivers.
1041 **/
1042s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1043{
1044	if (hw->phy.ops.read_reg)
1045		return hw->phy.ops.read_reg(hw, offset, data);
1046
1047	return E1000_SUCCESS;
1048}
1049
1050/**
1051 *  e1000_write_phy_reg - Writes PHY register
1052 *  @hw: pointer to the HW structure
1053 *  @offset: the register to write
1054 *  @data: the value to write.
1055 *
1056 *  Writes the PHY register at offset with the value in data.
1057 *  This is a function pointer entry point called by drivers.
1058 **/
1059s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
1060{
1061	if (hw->phy.ops.write_reg)
1062		return hw->phy.ops.write_reg(hw, offset, data);
1063
1064	return E1000_SUCCESS;
1065}
1066
1067/**
1068 *  e1000_release_phy - Generic release PHY
1069 *  @hw: pointer to the HW structure
1070 *
1071 *  Return if silicon family does not require a semaphore when accessing the
1072 *  PHY.
1073 **/
1074void e1000_release_phy(struct e1000_hw *hw)
1075{
1076	if (hw->phy.ops.release)
1077		hw->phy.ops.release(hw);
1078}
1079
1080/**
1081 *  e1000_acquire_phy - Generic acquire PHY
1082 *  @hw: pointer to the HW structure
1083 *
1084 *  Return success if silicon family does not require a semaphore when
1085 *  accessing the PHY.
1086 **/
1087s32 e1000_acquire_phy(struct e1000_hw *hw)
1088{
1089	if (hw->phy.ops.acquire)
1090		return hw->phy.ops.acquire(hw);
1091
1092	return E1000_SUCCESS;
1093}
1094
1095/**
1096 *  e1000_cfg_on_link_up - Configure PHY upon link up
1097 *  @hw: pointer to the HW structure
1098 **/
1099s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1100{
1101	if (hw->phy.ops.cfg_on_link_up)
1102		return hw->phy.ops.cfg_on_link_up(hw);
1103
1104	return E1000_SUCCESS;
1105}
1106
1107/**
1108 *  e1000_read_kmrn_reg - Reads register using Kumeran interface
1109 *  @hw: pointer to the HW structure
1110 *  @offset: the register to read
1111 *  @data: the location to store the 16-bit value read.
1112 *
1113 *  Reads a register out of the Kumeran interface. Currently no func pointer
1114 *  exists and all implementations are handled in the generic version of
1115 *  this function.
1116 **/
1117s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1118{
1119	return e1000_read_kmrn_reg_generic(hw, offset, data);
1120}
1121
1122/**
1123 *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1124 *  @hw: pointer to the HW structure
1125 *  @offset: the register to write
1126 *  @data: the value to write.
1127 *
1128 *  Writes a register to the Kumeran interface. Currently no func pointer
1129 *  exists and all implementations are handled in the generic version of
1130 *  this function.
1131 **/
1132s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1133{
1134	return e1000_write_kmrn_reg_generic(hw, offset, data);
1135}
1136
1137/**
1138 *  e1000_get_cable_length - Retrieves cable length estimation
1139 *  @hw: pointer to the HW structure
1140 *
1141 *  This function estimates the cable length and stores them in
1142 *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1143 *  entry point called by drivers.
1144 **/
1145s32 e1000_get_cable_length(struct e1000_hw *hw)
1146{
1147	if (hw->phy.ops.get_cable_length)
1148		return hw->phy.ops.get_cable_length(hw);
1149
1150	return E1000_SUCCESS;
1151}
1152
1153/**
1154 *  e1000_get_phy_info - Retrieves PHY information from registers
1155 *  @hw: pointer to the HW structure
1156 *
1157 *  This function gets some information from various PHY registers and
1158 *  populates hw->phy values with it. This is a function pointer entry
1159 *  point called by drivers.
1160 **/
1161s32 e1000_get_phy_info(struct e1000_hw *hw)
1162{
1163	if (hw->phy.ops.get_info)
1164		return hw->phy.ops.get_info(hw);
1165
1166	return E1000_SUCCESS;
1167}
1168
1169/**
1170 *  e1000_phy_hw_reset - Hard PHY reset
1171 *  @hw: pointer to the HW structure
1172 *
1173 *  Performs a hard PHY reset. This is a function pointer entry point called
1174 *  by drivers.
1175 **/
1176s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1177{
1178	if (hw->phy.ops.reset)
1179		return hw->phy.ops.reset(hw);
1180
1181	return E1000_SUCCESS;
1182}
1183
1184/**
1185 *  e1000_phy_commit - Soft PHY reset
1186 *  @hw: pointer to the HW structure
1187 *
1188 *  Performs a soft PHY reset on those that apply. This is a function pointer
1189 *  entry point called by drivers.
1190 **/
1191s32 e1000_phy_commit(struct e1000_hw *hw)
1192{
1193	if (hw->phy.ops.commit)
1194		return hw->phy.ops.commit(hw);
1195
1196	return E1000_SUCCESS;
1197}
1198
1199/**
1200 *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1201 *  @hw: pointer to the HW structure
1202 *  @active: boolean used to enable/disable lplu
1203 *
1204 *  Success returns 0, Failure returns 1
1205 *
1206 *  The low power link up (lplu) state is set to the power management level D0
1207 *  and SmartSpeed is disabled when active is true, else clear lplu for D0
1208 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1209 *  is used during Dx states where the power conservation is most important.
1210 *  During driver activity, SmartSpeed should be enabled so performance is
1211 *  maintained.  This is a function pointer entry point called by drivers.
1212 **/
1213s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1214{
1215	if (hw->phy.ops.set_d0_lplu_state)
1216		return hw->phy.ops.set_d0_lplu_state(hw, active);
1217
1218	return E1000_SUCCESS;
1219}
1220
1221/**
1222 *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1223 *  @hw: pointer to the HW structure
1224 *  @active: boolean used to enable/disable lplu
1225 *
1226 *  Success returns 0, Failure returns 1
1227 *
1228 *  The low power link up (lplu) state is set to the power management level D3
1229 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1230 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1231 *  is used during Dx states where the power conservation is most important.
1232 *  During driver activity, SmartSpeed should be enabled so performance is
1233 *  maintained.  This is a function pointer entry point called by drivers.
1234 **/
1235s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1236{
1237	if (hw->phy.ops.set_d3_lplu_state)
1238		return hw->phy.ops.set_d3_lplu_state(hw, active);
1239
1240	return E1000_SUCCESS;
1241}
1242
1243/**
1244 *  e1000_read_mac_addr - Reads MAC address
1245 *  @hw: pointer to the HW structure
1246 *
1247 *  Reads the MAC address out of the adapter and stores it in the HW structure.
1248 *  Currently no func pointer exists and all implementations are handled in the
1249 *  generic version of this function.
1250 **/
1251s32 e1000_read_mac_addr(struct e1000_hw *hw)
1252{
1253	if (hw->mac.ops.read_mac_addr)
1254		return hw->mac.ops.read_mac_addr(hw);
1255
1256	return e1000_read_mac_addr_generic(hw);
1257}
1258
1259/**
1260 *  e1000_read_pba_string - Read device part number string
1261 *  @hw: pointer to the HW structure
1262 *  @pba_num: pointer to device part number
1263 *  @pba_num_size: size of part number buffer
1264 *
1265 *  Reads the product board assembly (PBA) number from the EEPROM and stores
1266 *  the value in pba_num.
1267 *  Currently no func pointer exists and all implementations are handled in the
1268 *  generic version of this function.
1269 **/
1270s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1271{
1272	return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1273}
1274
1275/**
1276 *  e1000_read_pba_length - Read device part number string length
1277 *  @hw: pointer to the HW structure
1278 *  @pba_num_size: size of part number buffer
1279 *
1280 *  Reads the product board assembly (PBA) number length from the EEPROM and
1281 *  stores the value in pba_num.
1282 *  Currently no func pointer exists and all implementations are handled in the
1283 *  generic version of this function.
1284 **/
1285s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1286{
1287	return e1000_read_pba_length_generic(hw, pba_num_size);
1288}
1289
1290/**
1291 *  e1000_read_pba_num - Read device part number
1292 *  @hw: pointer to the HW structure
1293 *  @pba_num: pointer to device part number
1294 *
1295 *  Reads the product board assembly (PBA) number from the EEPROM and stores
1296 *  the value in pba_num.
1297 *  Currently no func pointer exists and all implementations are handled in the
1298 *  generic version of this function.
1299 **/
1300s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
1301{
1302	return e1000_read_pba_num_generic(hw, pba_num);
1303}
1304
1305/**
1306 *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1307 *  @hw: pointer to the HW structure
1308 *
1309 *  Validates the NVM checksum is correct. This is a function pointer entry
1310 *  point called by drivers.
1311 **/
1312s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1313{
1314	if (hw->nvm.ops.validate)
1315		return hw->nvm.ops.validate(hw);
1316
1317	return -E1000_ERR_CONFIG;
1318}
1319
1320/**
1321 *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1322 *  @hw: pointer to the HW structure
1323 *
1324 *  Updates the NVM checksum. Currently no func pointer exists and all
1325 *  implementations are handled in the generic version of this function.
1326 **/
1327s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1328{
1329	if (hw->nvm.ops.update)
1330		return hw->nvm.ops.update(hw);
1331
1332	return -E1000_ERR_CONFIG;
1333}
1334
1335/**
1336 *  e1000_reload_nvm - Reloads EEPROM
1337 *  @hw: pointer to the HW structure
1338 *
1339 *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1340 *  extended control register.
1341 **/
1342void e1000_reload_nvm(struct e1000_hw *hw)
1343{
1344	if (hw->nvm.ops.reload)
1345		hw->nvm.ops.reload(hw);
1346}
1347
1348/**
1349 *  e1000_read_nvm - Reads NVM (EEPROM)
1350 *  @hw: pointer to the HW structure
1351 *  @offset: the word offset to read
1352 *  @words: number of 16-bit words to read
1353 *  @data: pointer to the properly sized buffer for the data.
1354 *
1355 *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1356 *  pointer entry point called by drivers.
1357 **/
1358s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1359{
1360	if (hw->nvm.ops.read)
1361		return hw->nvm.ops.read(hw, offset, words, data);
1362
1363	return -E1000_ERR_CONFIG;
1364}
1365
1366/**
1367 *  e1000_write_nvm - Writes to NVM (EEPROM)
1368 *  @hw: pointer to the HW structure
1369 *  @offset: the word offset to read
1370 *  @words: number of 16-bit words to write
1371 *  @data: pointer to the properly sized buffer for the data.
1372 *
1373 *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1374 *  pointer entry point called by drivers.
1375 **/
1376s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1377{
1378	if (hw->nvm.ops.write)
1379		return hw->nvm.ops.write(hw, offset, words, data);
1380
1381	return E1000_SUCCESS;
1382}
1383
1384/**
1385 *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1386 *  @hw: pointer to the HW structure
1387 *  @reg: 32bit register offset
1388 *  @offset: the register to write
1389 *  @data: the value to write.
1390 *
1391 *  Writes the PHY register at offset with the value in data.
1392 *  This is a function pointer entry point called by drivers.
1393 **/
1394s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1395			      u8 data)
1396{
1397	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1398}
1399
1400/**
1401 * e1000_power_up_phy - Restores link in case of PHY power down
1402 * @hw: pointer to the HW structure
1403 *
1404 * The phy may be powered down to save power, to turn off link when the
1405 * driver is unloaded, or wake on lan is not enabled (among others).
1406 **/
1407void e1000_power_up_phy(struct e1000_hw *hw)
1408{
1409	if (hw->phy.ops.power_up)
1410		hw->phy.ops.power_up(hw);
1411
1412	e1000_setup_link(hw);
1413}
1414
1415/**
1416 * e1000_power_down_phy - Power down PHY
1417 * @hw: pointer to the HW structure
1418 *
1419 * The phy may be powered down to save power, to turn off link when the
1420 * driver is unloaded, or wake on lan is not enabled (among others).
1421 **/
1422void e1000_power_down_phy(struct e1000_hw *hw)
1423{
1424	if (hw->phy.ops.power_down)
1425		hw->phy.ops.power_down(hw);
1426}
1427
1428/**
1429 *  e1000_power_up_fiber_serdes_link - Power up serdes link
1430 *  @hw: pointer to the HW structure
1431 *
1432 *  Power on the optics and PCS.
1433 **/
1434void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1435{
1436	if (hw->mac.ops.power_up_serdes)
1437		hw->mac.ops.power_up_serdes(hw);
1438}
1439
1440/**
1441 *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1442 *  @hw: pointer to the HW structure
1443 *
1444 *  Shutdown the optics and PCS on driver unload.
1445 **/
1446void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1447{
1448	if (hw->mac.ops.shutdown_serdes)
1449		hw->mac.ops.shutdown_serdes(hw);
1450}
1451
1452