1/*-
2 * SPDX-License-Identifier: ISC
3 *
4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5 * Copyright (c) 2002-2008 Atheros Communications, Inc.
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19#include "opt_ah.h"
20
21#include "ah.h"
22#include "ah_desc.h"
23#include "ah_internal.h"
24
25#include "ar5416/ar5416.h"
26#include "ar5416/ar5416reg.h"
27#include "ar5416/ar5416phy.h"
28#include "ar5416/ar5416desc.h"
29
30/*
31 * Stop transmit on the specified queue
32 */
33HAL_BOOL
34ar5416StopTxDma(struct ath_hal *ah, u_int q)
35{
36#define	STOP_DMA_TIMEOUT	4000	/* us */
37#define	STOP_DMA_ITER		100	/* us */
38	u_int i;
39
40	HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues);
41
42	HALASSERT(AH5212(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE);
43
44	OS_REG_WRITE(ah, AR_Q_TXD, 1 << q);
45	for (i = STOP_DMA_TIMEOUT/STOP_DMA_ITER; i != 0; i--) {
46		if (ar5212NumTxPending(ah, q) == 0)
47			break;
48		OS_DELAY(STOP_DMA_ITER);
49	}
50#ifdef AH_DEBUG
51	if (i == 0) {
52		HALDEBUG(ah, HAL_DEBUG_ANY,
53		    "%s: queue %u DMA did not stop in 400 msec\n", __func__, q);
54		HALDEBUG(ah, HAL_DEBUG_ANY,
55		    "%s: QSTS 0x%x Q_TXE 0x%x Q_TXD 0x%x Q_CBR 0x%x\n", __func__,
56		    OS_REG_READ(ah, AR_QSTS(q)), OS_REG_READ(ah, AR_Q_TXE),
57		    OS_REG_READ(ah, AR_Q_TXD), OS_REG_READ(ah, AR_QCBRCFG(q)));
58		HALDEBUG(ah, HAL_DEBUG_ANY,
59		    "%s: Q_MISC 0x%x Q_RDYTIMECFG 0x%x Q_RDYTIMESHDN 0x%x\n",
60		    __func__, OS_REG_READ(ah, AR_QMISC(q)),
61		    OS_REG_READ(ah, AR_QRDYTIMECFG(q)),
62		    OS_REG_READ(ah, AR_Q_RDYTIMESHDN));
63	}
64#endif /* AH_DEBUG */
65
66	/* ar5416 and up can kill packets at the PCU level */
67	if (ar5212NumTxPending(ah, q)) {
68		uint32_t j;
69
70		HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
71		    "%s: Num of pending TX Frames %d on Q %d\n",
72		    __func__, ar5212NumTxPending(ah, q), q);
73
74		/* Kill last PCU Tx Frame */
75		/* TODO - save off and restore current values of Q1/Q2? */
76		for (j = 0; j < 2; j++) {
77			uint32_t tsfLow = OS_REG_READ(ah, AR_TSF_L32);
78			OS_REG_WRITE(ah, AR_QUIET2,
79			    SM(10, AR_QUIET2_QUIET_DUR));
80			OS_REG_WRITE(ah, AR_QUIET_PERIOD, 100);
81			OS_REG_WRITE(ah, AR_NEXT_QUIET, tsfLow >> 10);
82			OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_TIMER_MODE_QUIET);
83
84			if ((OS_REG_READ(ah, AR_TSF_L32)>>10) == (tsfLow>>10))
85				break;
86
87			HALDEBUG(ah, HAL_DEBUG_ANY,
88			    "%s: TSF moved while trying to set quiet time "
89			    "TSF: 0x%08x\n", __func__, tsfLow);
90			HALASSERT(j < 1); /* TSF shouldn't count twice or reg access is taking forever */
91		}
92
93		OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_CHAN_IDLE);
94
95		/* Allow the quiet mechanism to do its work */
96		OS_DELAY(200);
97		OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_TIMER_MODE_QUIET);
98
99		/* Verify the transmit q is empty */
100		for (i = STOP_DMA_TIMEOUT/STOP_DMA_ITER; i != 0; i--) {
101			if (ar5212NumTxPending(ah, q) == 0)
102				break;
103			OS_DELAY(STOP_DMA_ITER);
104		}
105		if (i == 0) {
106			HALDEBUG(ah, HAL_DEBUG_ANY,
107			    "%s: Failed to stop Tx DMA in %d msec after killing"
108			    " last frame\n", __func__, STOP_DMA_TIMEOUT / 1000);
109		}
110		OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_CHAN_IDLE);
111	}
112
113	OS_REG_WRITE(ah, AR_Q_TXD, 0);
114	return (i != 0);
115#undef STOP_DMA_ITER
116#undef STOP_DMA_TIMEOUT
117}
118
119#define VALID_KEY_TYPES \
120        ((1 << HAL_KEY_TYPE_CLEAR) | (1 << HAL_KEY_TYPE_WEP)|\
121         (1 << HAL_KEY_TYPE_AES)   | (1 << HAL_KEY_TYPE_TKIP))
122#define isValidKeyType(_t)      ((1 << (_t)) & VALID_KEY_TYPES)
123
124#define set11nTries(_series, _index) \
125        (SM((_series)[_index].Tries, AR_XmitDataTries##_index))
126
127#define set11nRate(_series, _index) \
128        (SM((_series)[_index].Rate, AR_XmitRate##_index))
129
130#define set11nPktDurRTSCTS(_series, _index) \
131        (SM((_series)[_index].PktDuration, AR_PacketDur##_index) |\
132         ((_series)[_index].RateFlags & HAL_RATESERIES_RTS_CTS   ?\
133         AR_RTSCTSQual##_index : 0))
134
135#define set11nRateFlags(_series, _index) \
136        ((_series)[_index].RateFlags & HAL_RATESERIES_2040 ? AR_2040_##_index : 0) \
137        |((_series)[_index].RateFlags & HAL_RATESERIES_HALFGI ? AR_GI##_index : 0) \
138        |((_series)[_index].RateFlags & HAL_RATESERIES_STBC ? AR_STBC##_index : 0) \
139        |SM((_series)[_index].ChSel, AR_ChainSel##_index)
140
141/*
142 * Descriptor Access Functions
143 */
144
145#define VALID_PKT_TYPES \
146        ((1<<HAL_PKT_TYPE_NORMAL)|(1<<HAL_PKT_TYPE_ATIM)|\
147         (1<<HAL_PKT_TYPE_PSPOLL)|(1<<HAL_PKT_TYPE_PROBE_RESP)|\
148         (1<<HAL_PKT_TYPE_BEACON)|(1<<HAL_PKT_TYPE_AMPDU))
149#define isValidPktType(_t)      ((1<<(_t)) & VALID_PKT_TYPES)
150#define VALID_TX_RATES \
151        ((1<<0x0b)|(1<<0x0f)|(1<<0x0a)|(1<<0x0e)|(1<<0x09)|(1<<0x0d)|\
152         (1<<0x08)|(1<<0x0c)|(1<<0x1b)|(1<<0x1a)|(1<<0x1e)|(1<<0x19)|\
153	 (1<<0x1d)|(1<<0x18)|(1<<0x1c)|(1<<0x01)|(1<<0x02)|(1<<0x03)|\
154	 (1<<0x04)|(1<<0x05)|(1<<0x06)|(1<<0x07)|(1<<0x00))
155/* NB: accept HT rates */
156#define	isValidTxRate(_r)	((1<<((_r) & 0x7f)) & VALID_TX_RATES)
157
158static inline int
159ar5416RateToRateTable(struct ath_hal *ah, uint8_t rate, HAL_BOOL is_ht40)
160{
161
162	/*
163	 * Handle the non-MCS rates
164	 */
165	switch (rate) {
166	case /*   1 Mb */ 0x1b:
167	case /*   1 MbS*/ 0x1b | 0x4:
168		return (AH5416(ah)->ah_ratesArray[rate1l]);
169	case /*   2 Mb */ 0x1a:
170		return (AH5416(ah)->ah_ratesArray[rate2l]);
171	case /*   2 MbS*/ 0x1a | 0x4:
172		return (AH5416(ah)->ah_ratesArray[rate2s]);
173	case /* 5.5 Mb */ 0x19:
174		return (AH5416(ah)->ah_ratesArray[rate5_5l]);
175	case /* 5.5 MbS*/ 0x19 | 0x4:
176		return (AH5416(ah)->ah_ratesArray[rate5_5s]);
177	case /*  11 Mb */ 0x18:
178		return (AH5416(ah)->ah_ratesArray[rate11l]);
179	case /*  11 MbS*/ 0x18 | 0x4:
180		return (AH5416(ah)->ah_ratesArray[rate11s]);
181	}
182
183	/* OFDM rates */
184	switch (rate) {
185	case /*   6 Mb */ 0x0b:
186		return (AH5416(ah)->ah_ratesArray[rate6mb]);
187	case /*   9 Mb */ 0x0f:
188		return (AH5416(ah)->ah_ratesArray[rate9mb]);
189	case /*  12 Mb */ 0x0a:
190		return (AH5416(ah)->ah_ratesArray[rate12mb]);
191	case /*  18 Mb */ 0x0e:
192		return (AH5416(ah)->ah_ratesArray[rate18mb]);
193	case /*  24 Mb */ 0x09:
194		return (AH5416(ah)->ah_ratesArray[rate24mb]);
195	case /*  36 Mb */ 0x0d:
196		return (AH5416(ah)->ah_ratesArray[rate36mb]);
197	case /*  48 Mb */ 0x08:
198		return (AH5416(ah)->ah_ratesArray[rate48mb]);
199	case /*  54 Mb */ 0x0c:
200		return (AH5416(ah)->ah_ratesArray[rate54mb]);
201	}
202
203	/*
204	 * Handle HT20/HT40 - we only have to do MCS0-7;
205	 * there's no stream differences.
206	 */
207	if ((rate & 0x80) && is_ht40) {
208		return (AH5416(ah)->ah_ratesArray[rateHt40_0 + (rate & 0x7)]);
209	} else if (rate & 0x80) {
210		return (AH5416(ah)->ah_ratesArray[rateHt20_0 + (rate & 0x7)]);
211	}
212
213	/* XXX default (eg XR, bad bad person!) */
214	return (AH5416(ah)->ah_ratesArray[rate6mb]);
215}
216
217/*
218 * Return the TX power to be used for the given rate/chains/TX power.
219 *
220 * There are a bunch of tweaks to make to a given TX power based on
221 * the current configuration, so...
222 */
223static uint16_t
224ar5416GetTxRatePower(struct ath_hal *ah, uint8_t rate, uint8_t tx_chainmask,
225    uint16_t txPower, HAL_BOOL is_ht40)
226{
227	int n_txpower, max_txpower;
228	const int cck_ofdm_delta = 2;
229#define	EEP_MINOR(_ah) \
230	(AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
231#define	IS_EEP_MINOR_V2(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
232
233	/* Take a copy ; we may underflow and thus need to clamp things */
234	n_txpower = txPower;
235
236	/* HT40? Need to adjust the TX power by this */
237	if (is_ht40)
238		n_txpower += AH5416(ah)->ah_ht40PowerIncForPdadc;
239
240	/*
241	 * Merlin? Offset the target TX power offset - it defaults to
242	 * starting at -5.0dBm, but that can change!
243	 *
244	 * Kiwi/Kite? Always -5.0dBm offset.
245	 */
246	if (AR_SREV_KIWI_10_OR_LATER(ah)) {
247		n_txpower -= (AR5416_PWR_TABLE_OFFSET_DB * 2);
248	} else if (AR_SREV_MERLIN_20_OR_LATER(ah)) {
249		int8_t pwr_table_offset = 0;
250		/* This is in dBm, convert to 1/2 dBm */
251		(void) ath_hal_eepromGet(ah, AR_EEP_PWR_TABLE_OFFSET,
252		    &pwr_table_offset);
253		n_txpower -= (pwr_table_offset * 2);
254	}
255
256	/*
257	 * If Open-loop TX power control is used, the CCK rates need
258	 * to be offset by that.
259	 *
260	 * Rates: 2S, 2L, 1S, 1L, 5.5S, 5.5L
261	 *
262	 * XXX Odd, we don't have a PHY table entry for long preamble
263	 * 1mbit CCK?
264	 */
265	if (AR_SREV_MERLIN_20_OR_LATER(ah) &&
266	    ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
267		if (rate == 0x19 || rate == 0x1a || rate == 0x1b ||
268		    rate == (0x19 | 0x04) || rate == (0x1a | 0x04) ||
269		    rate == (0x1b | 0x04)) {
270			n_txpower -= cck_ofdm_delta;
271		}
272	}
273
274	/*
275	 * We're now offset by the same amount that the static maximum
276	 * PHY power tables are.  So, clamp the value based on that rate.
277	 */
278	max_txpower = ar5416RateToRateTable(ah, rate, is_ht40);
279#if 0
280	ath_hal_printf(ah, "%s: n_txpower = %d, max_txpower = %d, "
281	    "rate = 0x%x , is_ht40 = %d\n",
282	    __func__,
283	    n_txpower,
284	    max_txpower,
285	    rate,
286	    is_ht40);
287#endif
288	n_txpower = MIN(max_txpower, n_txpower);
289
290	/*
291	 * We don't have to offset the TX power for two or three
292	 * chain operation here - it's done by the AR_PHY_POWER_TX_SUB
293	 * register setting via the EEPROM.
294	 *
295	 * So for vendors that programmed the maximum target power assuming
296	 * that 2/3 chains are always on, things will just plain work.
297	 * (They won't reach that target power if only one chain is on, but
298	 * that's a different problem.)
299	 */
300
301	/* Over/underflow? Adjust */
302	if (n_txpower < 0)
303		n_txpower = 0;
304	else if (n_txpower > 63)
305		n_txpower = 63;
306
307	/*
308	 * For some odd reason the AR9160 with txpower=0 results in a
309	 * much higher (max?) TX power.  So, if it's a chipset before
310	 * AR9220/AR9280, just clamp the minimum value at 1.
311	 */
312	if ((! AR_SREV_MERLIN_10_OR_LATER(ah)) && (n_txpower == 0))
313		n_txpower = 1;
314
315	return (n_txpower);
316#undef	EEP_MINOR
317#undef	IS_EEP_MINOR_V2
318}
319
320HAL_BOOL
321ar5416SetupTxDesc(struct ath_hal *ah, struct ath_desc *ds,
322	u_int pktLen,
323	u_int hdrLen,
324	HAL_PKT_TYPE type,
325	u_int txPower,
326	u_int txRate0, u_int txTries0,
327	u_int keyIx,
328	u_int antMode,
329	u_int flags,
330	u_int rtsctsRate,
331	u_int rtsctsDuration,
332	u_int compicvLen,
333	u_int compivLen,
334	u_int comp)
335{
336#define	RTSCTS	(HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)
337	struct ar5416_desc *ads = AR5416DESC(ds);
338	struct ath_hal_5416 *ahp = AH5416(ah);
339
340	(void) hdrLen;
341
342	HALASSERT(txTries0 != 0);
343	HALASSERT(isValidPktType(type));
344	HALASSERT(isValidTxRate(txRate0));
345	HALASSERT((flags & RTSCTS) != RTSCTS);
346	/* XXX validate antMode */
347
348        txPower = (txPower + AH5212(ah)->ah_txPowerIndexOffset);
349        if (txPower > 63)
350		txPower = 63;
351
352	/*
353	 * XXX For now, just assume that this isn't a HT40 frame.
354	 * It'll get over-ridden by the multi-rate TX power setup.
355	 */
356	if (AH5212(ah)->ah_tpcEnabled) {
357		txPower = ar5416GetTxRatePower(ah, txRate0,
358		    ahp->ah_tx_chainmask,
359		    txPower,
360		    AH_FALSE);
361	}
362
363	ads->ds_ctl0 = (pktLen & AR_FrameLen)
364		     | (txPower << AR_XmitPower_S)
365		     | (flags & HAL_TXDESC_VEOL ? AR_VEOL : 0)
366		     | (flags & HAL_TXDESC_CLRDMASK ? AR_ClrDestMask : 0)
367		     | (flags & HAL_TXDESC_INTREQ ? AR_TxIntrReq : 0)
368		     ;
369	ads->ds_ctl1 = (type << AR_FrameType_S)
370		     | (flags & HAL_TXDESC_NOACK ? AR_NoAck : 0)
371		     | (flags & HAL_TXDESC_HWTS ? AR_InsertTS : 0)
372                     ;
373	ads->ds_ctl2 = SM(txTries0, AR_XmitDataTries0)
374		     | (flags & HAL_TXDESC_DURENA ? AR_DurUpdateEn : 0)
375		     ;
376	ads->ds_ctl3 = (txRate0 << AR_XmitRate0_S)
377		     ;
378	ads->ds_ctl4 = 0;
379	ads->ds_ctl5 = 0;
380	ads->ds_ctl6 = 0;
381	ads->ds_ctl7 = SM(ahp->ah_tx_chainmask, AR_ChainSel0)
382		     | SM(ahp->ah_tx_chainmask, AR_ChainSel1)
383		     | SM(ahp->ah_tx_chainmask, AR_ChainSel2)
384		     | SM(ahp->ah_tx_chainmask, AR_ChainSel3)
385		     ;
386	ads->ds_ctl8 = SM(0, AR_AntCtl0);
387	ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(txPower, AR_XmitPower1);
388	ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(txPower, AR_XmitPower2);
389	ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(txPower, AR_XmitPower3);
390
391	if (keyIx != HAL_TXKEYIX_INVALID) {
392		/* XXX validate key index */
393		ads->ds_ctl1 |= SM(keyIx, AR_DestIdx);
394		ads->ds_ctl0 |= AR_DestIdxValid;
395		ads->ds_ctl6 |= SM(ahp->ah_keytype[keyIx], AR_EncrType);
396	}
397	if (flags & RTSCTS) {
398		if (!isValidTxRate(rtsctsRate)) {
399			HALDEBUG(ah, HAL_DEBUG_ANY,
400			    "%s: invalid rts/cts rate 0x%x\n",
401			    __func__, rtsctsRate);
402			return AH_FALSE;
403		}
404		/* XXX validate rtsctsDuration */
405		ads->ds_ctl0 |= (flags & HAL_TXDESC_CTSENA ? AR_CTSEnable : 0)
406			     | (flags & HAL_TXDESC_RTSENA ? AR_RTSEnable : 0)
407			     ;
408		ads->ds_ctl7 |= (rtsctsRate << AR_RTSCTSRate_S);
409	}
410
411	/*
412	 * Set the TX antenna to 0 for Kite
413	 * To preserve existing behaviour, also set the TPC bits to 0;
414	 * when TPC is enabled these should be filled in appropriately.
415	 *
416	 * XXX TODO: when doing TPC, set the TX power up appropriately?
417	 */
418	if (AR_SREV_KITE(ah)) {
419		ads->ds_ctl8 = SM(0, AR_AntCtl0);
420		ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(0, AR_XmitPower1);
421		ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(0, AR_XmitPower2);
422		ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(0, AR_XmitPower3);
423	}
424	return AH_TRUE;
425#undef RTSCTS
426}
427
428HAL_BOOL
429ar5416SetupXTxDesc(struct ath_hal *ah, struct ath_desc *ds,
430	u_int txRate1, u_int txTries1,
431	u_int txRate2, u_int txTries2,
432	u_int txRate3, u_int txTries3)
433{
434	struct ar5416_desc *ads = AR5416DESC(ds);
435
436	if (txTries1) {
437		HALASSERT(isValidTxRate(txRate1));
438		ads->ds_ctl2 |= SM(txTries1, AR_XmitDataTries1);
439		ads->ds_ctl3 |= (txRate1 << AR_XmitRate1_S);
440	}
441	if (txTries2) {
442		HALASSERT(isValidTxRate(txRate2));
443		ads->ds_ctl2 |= SM(txTries2, AR_XmitDataTries2);
444		ads->ds_ctl3 |= (txRate2 << AR_XmitRate2_S);
445	}
446	if (txTries3) {
447		HALASSERT(isValidTxRate(txRate3));
448		ads->ds_ctl2 |= SM(txTries3, AR_XmitDataTries3);
449		ads->ds_ctl3 |= (txRate3 << AR_XmitRate3_S);
450	}
451	return AH_TRUE;
452}
453
454/*
455 * XXX TODO: Figure out if AR_InsertTS is required on all sub-frames
456 * of a TX descriptor.
457 */
458HAL_BOOL
459ar5416FillTxDesc(struct ath_hal *ah, struct ath_desc *ds,
460	HAL_DMA_ADDR *bufAddrList, uint32_t *segLenList, u_int descId,
461	u_int qcuId, HAL_BOOL firstSeg, HAL_BOOL lastSeg,
462	const struct ath_desc *ds0)
463{
464	struct ar5416_desc *ads = AR5416DESC(ds);
465	uint32_t segLen = segLenList[0];
466
467	HALASSERT((segLen &~ AR_BufLen) == 0);
468
469	ds->ds_data = bufAddrList[0];
470
471	if (firstSeg) {
472		/*
473		 * First descriptor, don't clobber xmit control data
474		 * setup by ar5212SetupTxDesc.
475		 */
476		ads->ds_ctl1 |= segLen | (lastSeg ? 0 : AR_TxMore);
477	} else if (lastSeg) {		/* !firstSeg && lastSeg */
478		/*
479		 * Last descriptor in a multi-descriptor frame,
480		 * copy the multi-rate transmit parameters from
481		 * the first frame for processing on completion.
482		 */
483		ads->ds_ctl1 = segLen;
484#ifdef AH_NEED_DESC_SWAP
485		ads->ds_ctl0 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl0)
486		    & AR_TxIntrReq;
487		ads->ds_ctl2 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl2);
488		ads->ds_ctl3 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl3);
489		/* ctl6 - we only need encrtype; the rest are blank */
490		ads->ds_ctl6 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl6 & AR_EncrType);
491#else
492		ads->ds_ctl0 = AR5416DESC_CONST(ds0)->ds_ctl0 & AR_TxIntrReq;
493		ads->ds_ctl2 = AR5416DESC_CONST(ds0)->ds_ctl2;
494		ads->ds_ctl3 = AR5416DESC_CONST(ds0)->ds_ctl3;
495		/* ctl6 - we only need encrtype; the rest are blank */
496		ads->ds_ctl6 = AR5416DESC_CONST(ds0)->ds_ctl6 & AR_EncrType;
497#endif
498	} else {			/* !firstSeg && !lastSeg */
499		/*
500		 * Intermediate descriptor in a multi-descriptor frame.
501		 */
502#ifdef AH_NEED_DESC_SWAP
503		ads->ds_ctl0 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl0)
504		    & AR_TxIntrReq;
505		ads->ds_ctl6 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl6 & AR_EncrType);
506#else
507		ads->ds_ctl0 = AR5416DESC_CONST(ds0)->ds_ctl0 & AR_TxIntrReq;
508		ads->ds_ctl6 = AR5416DESC_CONST(ds0)->ds_ctl6 & AR_EncrType;
509#endif
510		ads->ds_ctl1 = segLen | AR_TxMore;
511		ads->ds_ctl2 = 0;
512		ads->ds_ctl3 = 0;
513	}
514	/* XXX only on last descriptor? */
515	OS_MEMZERO(ads->u.tx.status, sizeof(ads->u.tx.status));
516	return AH_TRUE;
517}
518
519/*
520 * NB: cipher is no longer used, it's calculated.
521 */
522HAL_BOOL
523ar5416ChainTxDesc(struct ath_hal *ah, struct ath_desc *ds,
524	HAL_DMA_ADDR *bufAddrList,
525	uint32_t *segLenList,
526	u_int pktLen,
527	u_int hdrLen,
528	HAL_PKT_TYPE type,
529	u_int keyIx,
530	HAL_CIPHER cipher,
531	uint8_t delims,
532	HAL_BOOL firstSeg,
533	HAL_BOOL lastSeg,
534	HAL_BOOL lastAggr)
535{
536	struct ar5416_desc *ads = AR5416DESC(ds);
537	uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads);
538	struct ath_hal_5416 *ahp = AH5416(ah);
539	u_int segLen = segLenList[0];
540
541	int isaggr = 0;
542	uint32_t last_aggr = 0;
543
544	(void) hdrLen;
545	(void) ah;
546
547	HALASSERT((segLen &~ AR_BufLen) == 0);
548	ds->ds_data = bufAddrList[0];
549
550	HALASSERT(isValidPktType(type));
551	if (type == HAL_PKT_TYPE_AMPDU) {
552		type = HAL_PKT_TYPE_NORMAL;
553		isaggr = 1;
554		if (lastAggr == AH_FALSE)
555			last_aggr = AR_MoreAggr;
556	}
557
558	/*
559	 * Since this function is called before any of the other
560	 * descriptor setup functions (at least in this particular
561	 * 802.11n aggregation implementation), always bzero() the
562	 * descriptor. Previously this would be done for all but
563	 * the first segment.
564	 * XXX TODO: figure out why; perhaps I'm using this slightly
565	 * XXX incorrectly.
566	 */
567	OS_MEMZERO(ds->ds_hw, AR5416_DESC_TX_CTL_SZ);
568
569	/*
570	 * Note: VEOL should only be for the last descriptor in the chain.
571	 */
572	ads->ds_ctl0 = (pktLen & AR_FrameLen);
573
574	/*
575	 * For aggregates:
576	 * + IsAggr must be set for all descriptors of all subframes of
577	 *   the aggregate
578	 * + MoreAggr must be set for all descriptors of all subframes
579	 *   of the aggregate EXCEPT the last subframe;
580	 * + MoreAggr must be _CLEAR_ for all descrpitors of the last
581	 *   subframe of the aggregate.
582	 */
583	ads->ds_ctl1 = (type << AR_FrameType_S)
584			| (isaggr ? (AR_IsAggr | last_aggr) : 0);
585
586	ads->ds_ctl2 = 0;
587	ads->ds_ctl3 = 0;
588	if (keyIx != HAL_TXKEYIX_INVALID) {
589		/* XXX validate key index */
590		ads->ds_ctl1 |= SM(keyIx, AR_DestIdx);
591		ads->ds_ctl0 |= AR_DestIdxValid;
592	}
593
594	ads->ds_ctl6 |= SM(ahp->ah_keytype[keyIx], AR_EncrType);
595	if (isaggr) {
596		ads->ds_ctl6 |= SM(delims, AR_PadDelim);
597	}
598
599	if (firstSeg) {
600		ads->ds_ctl1 |= segLen | (lastSeg ? 0 : AR_TxMore);
601	} else if (lastSeg) {           /* !firstSeg && lastSeg */
602		ads->ds_ctl0 = 0;
603		ads->ds_ctl1 |= segLen;
604	} else {                        /* !firstSeg && !lastSeg */
605		/*
606		 * Intermediate descriptor in a multi-descriptor frame.
607		 */
608		ads->ds_ctl0 = 0;
609		ads->ds_ctl1 |= segLen | AR_TxMore;
610	}
611	ds_txstatus[0] = ds_txstatus[1] = 0;
612	ds_txstatus[9] &= ~AR_TxDone;
613
614	return AH_TRUE;
615}
616
617HAL_BOOL
618ar5416SetupFirstTxDesc(struct ath_hal *ah, struct ath_desc *ds,
619	u_int aggrLen, u_int flags, u_int txPower,
620	u_int txRate0, u_int txTries0, u_int antMode,
621	u_int rtsctsRate, u_int rtsctsDuration)
622{
623#define RTSCTS  (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)
624	struct ar5416_desc *ads = AR5416DESC(ds);
625	struct ath_hal_5212 *ahp = AH5212(ah);
626
627	HALASSERT(txTries0 != 0);
628	HALASSERT(isValidTxRate(txRate0));
629	HALASSERT((flags & RTSCTS) != RTSCTS);
630	/* XXX validate antMode */
631
632	txPower = (txPower + ahp->ah_txPowerIndexOffset );
633	if(txPower > 63)  txPower=63;
634
635	ads->ds_ctl0 |= (txPower << AR_XmitPower_S)
636		| (flags & HAL_TXDESC_VEOL ? AR_VEOL : 0)
637		| (flags & HAL_TXDESC_CLRDMASK ? AR_ClrDestMask : 0)
638		| (flags & HAL_TXDESC_INTREQ ? AR_TxIntrReq : 0);
639	ads->ds_ctl1 |= (flags & HAL_TXDESC_NOACK ? AR_NoAck : 0);
640	ads->ds_ctl2 |= SM(txTries0, AR_XmitDataTries0);
641	ads->ds_ctl3 |= (txRate0 << AR_XmitRate0_S);
642	ads->ds_ctl7 = SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel0)
643		| SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel1)
644		| SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel2)
645		| SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel3);
646
647	/* NB: no V1 WAR */
648	ads->ds_ctl8 = SM(0, AR_AntCtl0);
649	ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(txPower, AR_XmitPower1);
650	ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(txPower, AR_XmitPower2);
651	ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(txPower, AR_XmitPower3);
652
653	ads->ds_ctl6 &= ~(0xffff);
654	ads->ds_ctl6 |= SM(aggrLen, AR_AggrLen);
655
656	if (flags & RTSCTS) {
657		/* XXX validate rtsctsDuration */
658		ads->ds_ctl0 |= (flags & HAL_TXDESC_CTSENA ? AR_CTSEnable : 0)
659			| (flags & HAL_TXDESC_RTSENA ? AR_RTSEnable : 0);
660	}
661
662	/*
663	 * Set the TX antenna to 0 for Kite
664	 * To preserve existing behaviour, also set the TPC bits to 0;
665	 * when TPC is enabled these should be filled in appropriately.
666	 */
667	if (AR_SREV_KITE(ah)) {
668		ads->ds_ctl8 = SM(0, AR_AntCtl0);
669		ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(0, AR_XmitPower1);
670		ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(0, AR_XmitPower2);
671		ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(0, AR_XmitPower3);
672	}
673
674	return AH_TRUE;
675#undef RTSCTS
676}
677
678HAL_BOOL
679ar5416SetupLastTxDesc(struct ath_hal *ah, struct ath_desc *ds,
680		const struct ath_desc *ds0)
681{
682	struct ar5416_desc *ads = AR5416DESC(ds);
683
684	ads->ds_ctl1 &= ~AR_MoreAggr;
685	ads->ds_ctl6 &= ~AR_PadDelim;
686
687	/* hack to copy rate info to last desc for later processing */
688#ifdef AH_NEED_DESC_SWAP
689	ads->ds_ctl2 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl2);
690	ads->ds_ctl3 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl3);
691#else
692	ads->ds_ctl2 = AR5416DESC_CONST(ds0)->ds_ctl2;
693	ads->ds_ctl3 = AR5416DESC_CONST(ds0)->ds_ctl3;
694#endif
695	return AH_TRUE;
696}
697
698#ifdef AH_NEED_DESC_SWAP
699/* Swap transmit descriptor */
700static __inline void
701ar5416SwapTxDesc(struct ath_desc *ds)
702{
703	ds->ds_data = __bswap32(ds->ds_data);
704	ds->ds_ctl0 = __bswap32(ds->ds_ctl0);
705	ds->ds_ctl1 = __bswap32(ds->ds_ctl1);
706	ds->ds_hw[0] = __bswap32(ds->ds_hw[0]);
707	ds->ds_hw[1] = __bswap32(ds->ds_hw[1]);
708	ds->ds_hw[2] = __bswap32(ds->ds_hw[2]);
709	ds->ds_hw[3] = __bswap32(ds->ds_hw[3]);
710}
711#endif
712
713/*
714 * Processing of HW TX descriptor.
715 */
716HAL_STATUS
717ar5416ProcTxDesc(struct ath_hal *ah,
718	struct ath_desc *ds, struct ath_tx_status *ts)
719{
720	struct ar5416_desc *ads = AR5416DESC(ds);
721	uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads);
722
723#ifdef AH_NEED_DESC_SWAP
724	if ((ds_txstatus[9] & __bswap32(AR_TxDone)) == 0)
725		return HAL_EINPROGRESS;
726	ar5416SwapTxDesc(ds);
727#else
728	if ((ds_txstatus[9] & AR_TxDone) == 0)
729		return HAL_EINPROGRESS;
730#endif
731
732	/* Update software copies of the HW status */
733	ts->ts_seqnum = MS(ds_txstatus[9], AR_SeqNum);
734	ts->ts_tstamp = AR_SendTimestamp(ds_txstatus);
735	ts->ts_tid = MS(ds_txstatus[9], AR_TxTid);
736
737	ts->ts_status = 0;
738	if (ds_txstatus[1] & AR_ExcessiveRetries)
739		ts->ts_status |= HAL_TXERR_XRETRY;
740	if (ds_txstatus[1] & AR_Filtered)
741		ts->ts_status |= HAL_TXERR_FILT;
742	if (ds_txstatus[1] & AR_FIFOUnderrun)
743		ts->ts_status |= HAL_TXERR_FIFO;
744	if (ds_txstatus[9] & AR_TxOpExceeded)
745		ts->ts_status |= HAL_TXERR_XTXOP;
746	if (ds_txstatus[1] & AR_TxTimerExpired)
747		ts->ts_status |= HAL_TXERR_TIMER_EXPIRED;
748
749	ts->ts_flags  = 0;
750	if (ds_txstatus[0] & AR_TxBaStatus) {
751		ts->ts_flags |= HAL_TX_BA;
752		ts->ts_ba_low = AR_BaBitmapLow(ds_txstatus);
753		ts->ts_ba_high = AR_BaBitmapHigh(ds_txstatus);
754	}
755	if (ds->ds_ctl1 & AR_IsAggr)
756		ts->ts_flags |= HAL_TX_AGGR;
757	if (ds_txstatus[1] & AR_DescCfgErr)
758		ts->ts_flags |= HAL_TX_DESC_CFG_ERR;
759	if (ds_txstatus[1] & AR_TxDataUnderrun)
760		ts->ts_flags |= HAL_TX_DATA_UNDERRUN;
761	if (ds_txstatus[1] & AR_TxDelimUnderrun)
762		ts->ts_flags |= HAL_TX_DELIM_UNDERRUN;
763
764	/*
765	 * Extract the transmit rate used and mark the rate as
766	 * ``alternate'' if it wasn't the series 0 rate.
767	 */
768	ts->ts_finaltsi =  MS(ds_txstatus[9], AR_FinalTxIdx);
769	switch (ts->ts_finaltsi) {
770	case 0:
771		ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate0);
772		break;
773	case 1:
774		ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate1);
775		break;
776	case 2:
777		ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate2);
778		break;
779	case 3:
780		ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate3);
781		break;
782	}
783
784	ts->ts_rssi = MS(ds_txstatus[5], AR_TxRSSICombined);
785	ts->ts_rssi_ctl[0] = MS(ds_txstatus[0], AR_TxRSSIAnt00);
786	ts->ts_rssi_ctl[1] = MS(ds_txstatus[0], AR_TxRSSIAnt01);
787	ts->ts_rssi_ctl[2] = MS(ds_txstatus[0], AR_TxRSSIAnt02);
788	ts->ts_rssi_ext[0] = MS(ds_txstatus[5], AR_TxRSSIAnt10);
789	ts->ts_rssi_ext[1] = MS(ds_txstatus[5], AR_TxRSSIAnt11);
790	ts->ts_rssi_ext[2] = MS(ds_txstatus[5], AR_TxRSSIAnt12);
791	ts->ts_evm0 = AR_TxEVM0(ds_txstatus);
792	ts->ts_evm1 = AR_TxEVM1(ds_txstatus);
793	ts->ts_evm2 = AR_TxEVM2(ds_txstatus);
794
795	ts->ts_shortretry = MS(ds_txstatus[1], AR_RTSFailCnt);
796	ts->ts_longretry = MS(ds_txstatus[1], AR_DataFailCnt);
797	/*
798	 * The retry count has the number of un-acked tries for the
799	 * final series used.  When doing multi-rate retry we must
800	 * fixup the retry count by adding in the try counts for
801	 * each series that was fully-processed.  Beware that this
802	 * takes values from the try counts in the final descriptor.
803	 * These are not required by the hardware.  We assume they
804	 * are placed there by the driver as otherwise we have no
805	 * access and the driver can't do the calculation because it
806	 * doesn't know the descriptor format.
807	 */
808	switch (ts->ts_finaltsi) {
809	case 3: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries2);
810	case 2: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries1);
811	case 1: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries0);
812	}
813
814	/*
815	 * These fields are not used. Zero these to preserve compatibility
816	 * with existing drivers.
817	 */
818	ts->ts_virtcol = MS(ads->ds_ctl1, AR_VirtRetryCnt);
819	ts->ts_antenna = 0; /* We don't switch antennas on Owl*/
820
821	/* handle tx trigger level changes internally */
822	if ((ts->ts_status & HAL_TXERR_FIFO) ||
823	    (ts->ts_flags & (HAL_TX_DATA_UNDERRUN | HAL_TX_DELIM_UNDERRUN)))
824		ar5212UpdateTxTrigLevel(ah, AH_TRUE);
825
826	return HAL_OK;
827}
828
829HAL_BOOL
830ar5416SetGlobalTxTimeout(struct ath_hal *ah, u_int tu)
831{
832	struct ath_hal_5416 *ahp = AH5416(ah);
833
834	if (tu > 0xFFFF) {
835		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad global tx timeout %u\n",
836		    __func__, tu);
837		/* restore default handling */
838		ahp->ah_globaltxtimeout = (u_int) -1;
839		return AH_FALSE;
840	}
841	OS_REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
842	ahp->ah_globaltxtimeout = tu;
843	return AH_TRUE;
844}
845
846u_int
847ar5416GetGlobalTxTimeout(struct ath_hal *ah)
848{
849	return MS(OS_REG_READ(ah, AR_GTXTO), AR_GTXTO_TIMEOUT_LIMIT);
850}
851
852#define	HT_RC_2_MCS(_rc)	((_rc) & 0x0f)
853static const u_int8_t baDurationDelta[] = {
854	24,	//  0: BPSK
855	12,	//  1: QPSK 1/2
856	12,	//  2: QPSK 3/4
857	4,	//  3: 16-QAM 1/2
858	4,	//  4: 16-QAM 3/4
859	4,	//  5: 64-QAM 2/3
860	4,	//  6: 64-QAM 3/4
861	4,	//  7: 64-QAM 5/6
862	24,	//  8: BPSK
863	12,	//  9: QPSK 1/2
864	12,	// 10: QPSK 3/4
865	4,	// 11: 16-QAM 1/2
866	4,	// 12: 16-QAM 3/4
867	4,	// 13: 64-QAM 2/3
868	4,	// 14: 64-QAM 3/4
869	4,	// 15: 64-QAM 5/6
870};
871
872void
873ar5416Set11nRateScenario(struct ath_hal *ah, struct ath_desc *ds,
874        u_int durUpdateEn, u_int rtsctsRate,
875	HAL_11N_RATE_SERIES series[], u_int nseries, u_int flags)
876{
877	struct ar5416_desc *ads = AR5416DESC(ds);
878	uint32_t ds_ctl0;
879
880	HALASSERT(nseries == 4);
881	(void)nseries;
882
883	/*
884	 * Only one of RTS and CTS enable must be set.
885	 * If a frame has both set, just do RTS protection -
886	 * that's enough to satisfy legacy protection.
887	 */
888	if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) {
889		ds_ctl0 = ads->ds_ctl0;
890
891		if (flags & HAL_TXDESC_RTSENA) {
892			ds_ctl0 &= ~AR_CTSEnable;
893			ds_ctl0 |= AR_RTSEnable;
894		} else {
895			ds_ctl0 &= ~AR_RTSEnable;
896			ds_ctl0 |= AR_CTSEnable;
897		}
898
899		ads->ds_ctl0 = ds_ctl0;
900	} else {
901		ads->ds_ctl0 =
902		    (ads->ds_ctl0 & ~(AR_RTSEnable | AR_CTSEnable));
903	}
904
905	ads->ds_ctl2 = set11nTries(series, 0)
906		     | set11nTries(series, 1)
907		     | set11nTries(series, 2)
908		     | set11nTries(series, 3)
909		     | (durUpdateEn ? AR_DurUpdateEn : 0);
910
911	ads->ds_ctl3 = set11nRate(series, 0)
912		     | set11nRate(series, 1)
913		     | set11nRate(series, 2)
914		     | set11nRate(series, 3);
915
916	ads->ds_ctl4 = set11nPktDurRTSCTS(series, 0)
917		     | set11nPktDurRTSCTS(series, 1);
918
919	ads->ds_ctl5 = set11nPktDurRTSCTS(series, 2)
920		     | set11nPktDurRTSCTS(series, 3);
921
922	ads->ds_ctl7 = set11nRateFlags(series, 0)
923		     | set11nRateFlags(series, 1)
924		     | set11nRateFlags(series, 2)
925		     | set11nRateFlags(series, 3)
926		     | SM(rtsctsRate, AR_RTSCTSRate);
927
928	/*
929	 * Doing per-packet TPC - update the TX power for the first
930	 * field; program in the other series.
931	 */
932	if (AH5212(ah)->ah_tpcEnabled) {
933		uint32_t ds_ctl0;
934		uint16_t txPower;
935
936		/* Modify the tx power field for rate 0 */
937		txPower = ar5416GetTxRatePower(ah, series[0].Rate,
938		    series[0].ChSel,
939		    series[0].tx_power_cap,
940		    !! (series[0].RateFlags & HAL_RATESERIES_2040));
941		ds_ctl0 = ads->ds_ctl0 & ~AR_XmitPower;
942		ds_ctl0 |= (txPower << AR_XmitPower_S);
943		ads->ds_ctl0 = ds_ctl0;
944
945		/*
946		 * Override the whole descriptor field for each TX power.
947		 *
948		 * This will need changing if we ever support antenna control
949		 * programming.
950		 */
951		txPower = ar5416GetTxRatePower(ah, series[1].Rate,
952		    series[1].ChSel,
953		    series[1].tx_power_cap,
954		    !! (series[1].RateFlags & HAL_RATESERIES_2040));
955		ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(txPower, AR_XmitPower1);
956
957		txPower = ar5416GetTxRatePower(ah, series[2].Rate,
958		    series[2].ChSel,
959		    series[2].tx_power_cap,
960		    !! (series[2].RateFlags & HAL_RATESERIES_2040));
961		ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(txPower, AR_XmitPower2);
962
963		txPower = ar5416GetTxRatePower(ah, series[3].Rate,
964		    series[3].ChSel,
965		    series[3].tx_power_cap,
966		    !! (series[3].RateFlags & HAL_RATESERIES_2040));
967		ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(txPower, AR_XmitPower3);
968	}
969}
970
971/*
972 * Note: this should be called before calling ar5416SetBurstDuration()
973 * (if it is indeed called) in order to ensure that the burst duration
974 * is correctly updated with the BA delta workaround.
975 */
976void
977ar5416Set11nAggrFirst(struct ath_hal *ah, struct ath_desc *ds, u_int aggrLen,
978    u_int numDelims)
979{
980	struct ar5416_desc *ads = AR5416DESC(ds);
981	uint32_t flags;
982	uint32_t burstDur;
983	uint8_t rate;
984
985	ads->ds_ctl1 |= (AR_IsAggr | AR_MoreAggr);
986
987	ads->ds_ctl6 &= ~(AR_AggrLen | AR_PadDelim);
988	ads->ds_ctl6 |= SM(aggrLen, AR_AggrLen);
989	ads->ds_ctl6 |= SM(numDelims, AR_PadDelim);
990
991	if (! AR_SREV_MERLIN_10_OR_LATER(ah)) {
992		/*
993		 * XXX It'd be nice if I were passed in the rate scenario
994		 * at this point..
995		 */
996		rate = MS(ads->ds_ctl3, AR_XmitRate0);
997		flags = ads->ds_ctl0 & (AR_CTSEnable | AR_RTSEnable);
998		/*
999		 * WAR - MAC assumes normal ACK time instead of
1000		 * block ACK while computing packet duration.
1001		 * Add this delta to the burst duration in the descriptor.
1002		 */
1003		if (flags && (ads->ds_ctl1 & AR_IsAggr)) {
1004			burstDur = baDurationDelta[HT_RC_2_MCS(rate)];
1005			ads->ds_ctl2 &= ~(AR_BurstDur);
1006			ads->ds_ctl2 |= SM(burstDur, AR_BurstDur);
1007		}
1008	}
1009}
1010
1011void
1012ar5416Set11nAggrMiddle(struct ath_hal *ah, struct ath_desc *ds, u_int numDelims)
1013{
1014	struct ar5416_desc *ads = AR5416DESC(ds);
1015	uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads);
1016
1017	ads->ds_ctl1 |= (AR_IsAggr | AR_MoreAggr);
1018
1019	ads->ds_ctl6 &= ~AR_PadDelim;
1020	ads->ds_ctl6 |= SM(numDelims, AR_PadDelim);
1021	ads->ds_ctl6 &= ~AR_AggrLen;
1022
1023	/*
1024	 * Clear the TxDone status here, may need to change
1025	 * func name to reflect this
1026	 */
1027	ds_txstatus[9] &= ~AR_TxDone;
1028}
1029
1030void
1031ar5416Set11nAggrLast(struct ath_hal *ah, struct ath_desc *ds)
1032{
1033	struct ar5416_desc *ads = AR5416DESC(ds);
1034
1035	ads->ds_ctl1 |= AR_IsAggr;
1036	ads->ds_ctl1 &= ~AR_MoreAggr;
1037	ads->ds_ctl6 &= ~AR_PadDelim;
1038}
1039
1040void
1041ar5416Clr11nAggr(struct ath_hal *ah, struct ath_desc *ds)
1042{
1043	struct ar5416_desc *ads = AR5416DESC(ds);
1044
1045	ads->ds_ctl1 &= (~AR_IsAggr & ~AR_MoreAggr);
1046	ads->ds_ctl6 &= ~AR_PadDelim;
1047	ads->ds_ctl6 &= ~AR_AggrLen;
1048}
1049
1050void
1051ar5416Set11nVirtualMoreFrag(struct ath_hal *ah, struct ath_desc *ds,
1052    u_int vmf)
1053{
1054	struct ar5416_desc *ads = AR5416DESC(ds);
1055	if (vmf)
1056		ads->ds_ctl0 |= AR_VirtMoreFrag;
1057	else
1058		ads->ds_ctl0 &= ~AR_VirtMoreFrag;
1059}
1060
1061/*
1062 * Program the burst duration, with the included BA delta if it's
1063 * applicable.
1064 */
1065void
1066ar5416Set11nBurstDuration(struct ath_hal *ah, struct ath_desc *ds,
1067                                                  u_int burstDuration)
1068{
1069	struct ar5416_desc *ads = AR5416DESC(ds);
1070	uint32_t burstDur = 0;
1071	uint8_t rate;
1072
1073	if (! AR_SREV_MERLIN_10_OR_LATER(ah)) {
1074		/*
1075		 * XXX It'd be nice if I were passed in the rate scenario
1076		 * at this point..
1077		 */
1078		rate = MS(ads->ds_ctl3, AR_XmitDataTries0);
1079		/*
1080		 * WAR - MAC assumes normal ACK time instead of
1081		 * block ACK while computing packet duration.
1082		 * Add this delta to the burst duration in the descriptor.
1083		 */
1084		if (ads->ds_ctl1 & AR_IsAggr) {
1085			burstDur = baDurationDelta[HT_RC_2_MCS(rate)];
1086		}
1087	}
1088
1089	ads->ds_ctl2 &= ~AR_BurstDur;
1090	ads->ds_ctl2 |= SM(burstDur + burstDuration, AR_BurstDur);
1091}
1092
1093/*
1094 * Retrieve the rate table from the given TX completion descriptor
1095 */
1096HAL_BOOL
1097ar5416GetTxCompletionRates(struct ath_hal *ah, const struct ath_desc *ds0, int *rates, int *tries)
1098{
1099	const struct ar5416_desc *ads = AR5416DESC_CONST(ds0);
1100
1101	rates[0] = MS(ads->ds_ctl3, AR_XmitRate0);
1102	rates[1] = MS(ads->ds_ctl3, AR_XmitRate1);
1103	rates[2] = MS(ads->ds_ctl3, AR_XmitRate2);
1104	rates[3] = MS(ads->ds_ctl3, AR_XmitRate3);
1105
1106	tries[0] = MS(ads->ds_ctl2, AR_XmitDataTries0);
1107	tries[1] = MS(ads->ds_ctl2, AR_XmitDataTries1);
1108	tries[2] = MS(ads->ds_ctl2, AR_XmitDataTries2);
1109	tries[3] = MS(ads->ds_ctl2, AR_XmitDataTries3);
1110
1111	return AH_TRUE;
1112}
1113
1114/*
1115 * TX queue management routines - AR5416 and later chipsets
1116 */
1117
1118/*
1119 * Allocate and initialize a tx DCU/QCU combination.
1120 */
1121int
1122ar5416SetupTxQueue(struct ath_hal *ah, HAL_TX_QUEUE type,
1123	const HAL_TXQ_INFO *qInfo)
1124{
1125	struct ath_hal_5212 *ahp = AH5212(ah);
1126	HAL_TX_QUEUE_INFO *qi;
1127	HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
1128	int q, defqflags;
1129
1130	/* by default enable OK+ERR+DESC+URN interrupts */
1131	defqflags = HAL_TXQ_TXOKINT_ENABLE
1132		  | HAL_TXQ_TXERRINT_ENABLE
1133		  | HAL_TXQ_TXDESCINT_ENABLE
1134		  | HAL_TXQ_TXURNINT_ENABLE;
1135	/* XXX move queue assignment to driver */
1136	switch (type) {
1137	case HAL_TX_QUEUE_BEACON:
1138		q = pCap->halTotalQueues-1;	/* highest priority */
1139		defqflags |= HAL_TXQ_DBA_GATED
1140		       | HAL_TXQ_CBR_DIS_QEMPTY
1141		       | HAL_TXQ_ARB_LOCKOUT_GLOBAL
1142		       | HAL_TXQ_BACKOFF_DISABLE;
1143		break;
1144	case HAL_TX_QUEUE_CAB:
1145		q = pCap->halTotalQueues-2;	/* next highest priority */
1146		defqflags |= HAL_TXQ_DBA_GATED
1147		       | HAL_TXQ_CBR_DIS_QEMPTY
1148		       | HAL_TXQ_CBR_DIS_BEMPTY
1149		       | HAL_TXQ_ARB_LOCKOUT_GLOBAL
1150		       | HAL_TXQ_BACKOFF_DISABLE;
1151		break;
1152	case HAL_TX_QUEUE_PSPOLL:
1153		q = 1;				/* lowest priority */
1154		defqflags |= HAL_TXQ_DBA_GATED
1155		       | HAL_TXQ_CBR_DIS_QEMPTY
1156		       | HAL_TXQ_CBR_DIS_BEMPTY
1157		       | HAL_TXQ_ARB_LOCKOUT_GLOBAL
1158		       | HAL_TXQ_BACKOFF_DISABLE;
1159		break;
1160	case HAL_TX_QUEUE_UAPSD:
1161		q = pCap->halTotalQueues-3;	/* nextest highest priority */
1162		if (ahp->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE) {
1163			HALDEBUG(ah, HAL_DEBUG_ANY,
1164			    "%s: no available UAPSD tx queue\n", __func__);
1165			return -1;
1166		}
1167		break;
1168	case HAL_TX_QUEUE_DATA:
1169		for (q = 0; q < pCap->halTotalQueues; q++)
1170			if (ahp->ah_txq[q].tqi_type == HAL_TX_QUEUE_INACTIVE)
1171				break;
1172		if (q == pCap->halTotalQueues) {
1173			HALDEBUG(ah, HAL_DEBUG_ANY,
1174			    "%s: no available tx queue\n", __func__);
1175			return -1;
1176		}
1177		break;
1178	default:
1179		HALDEBUG(ah, HAL_DEBUG_ANY,
1180		    "%s: bad tx queue type %u\n", __func__, type);
1181		return -1;
1182	}
1183
1184	HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: queue %u\n", __func__, q);
1185
1186	qi = &ahp->ah_txq[q];
1187	if (qi->tqi_type != HAL_TX_QUEUE_INACTIVE) {
1188		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: tx queue %u already active\n",
1189		    __func__, q);
1190		return -1;
1191	}
1192	OS_MEMZERO(qi, sizeof(HAL_TX_QUEUE_INFO));
1193	qi->tqi_type = type;
1194	if (qInfo == AH_NULL) {
1195		qi->tqi_qflags = defqflags;
1196		qi->tqi_aifs = INIT_AIFS;
1197		qi->tqi_cwmin = HAL_TXQ_USEDEFAULT;	/* NB: do at reset */
1198		qi->tqi_cwmax = INIT_CWMAX;
1199		qi->tqi_shretry = INIT_SH_RETRY;
1200		qi->tqi_lgretry = INIT_LG_RETRY;
1201		qi->tqi_physCompBuf = 0;
1202	} else {
1203		qi->tqi_physCompBuf = qInfo->tqi_compBuf;
1204		(void) ar5212SetTxQueueProps(ah, q, qInfo);
1205	}
1206	/* NB: must be followed by ar5212ResetTxQueue */
1207	return q;
1208}
1209
1210/*
1211 * Update the h/w interrupt registers to reflect a tx q's configuration.
1212 */
1213static void
1214setTxQInterrupts(struct ath_hal *ah, HAL_TX_QUEUE_INFO *qi)
1215{
1216	struct ath_hal_5212 *ahp = AH5212(ah);
1217
1218	HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
1219	    "%s: tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n", __func__,
1220	    ahp->ah_txOkInterruptMask, ahp->ah_txErrInterruptMask,
1221	    ahp->ah_txDescInterruptMask, ahp->ah_txEolInterruptMask,
1222	    ahp->ah_txUrnInterruptMask);
1223
1224	OS_REG_WRITE(ah, AR_IMR_S0,
1225		  SM(ahp->ah_txOkInterruptMask, AR_IMR_S0_QCU_TXOK)
1226		| SM(ahp->ah_txDescInterruptMask, AR_IMR_S0_QCU_TXDESC)
1227	);
1228	OS_REG_WRITE(ah, AR_IMR_S1,
1229		  SM(ahp->ah_txErrInterruptMask, AR_IMR_S1_QCU_TXERR)
1230		| SM(ahp->ah_txEolInterruptMask, AR_IMR_S1_QCU_TXEOL)
1231	);
1232	OS_REG_RMW_FIELD(ah, AR_IMR_S2,
1233		AR_IMR_S2_QCU_TXURN, ahp->ah_txUrnInterruptMask);
1234}
1235
1236/*
1237 * Set the retry, aifs, cwmin/max, readyTime regs for specified queue
1238 * Assumes:
1239 *  phwChannel has been set to point to the current channel
1240 */
1241#define	TU_TO_USEC(_tu)		((_tu) << 10)
1242HAL_BOOL
1243ar5416ResetTxQueue(struct ath_hal *ah, u_int q)
1244{
1245	struct ath_hal_5212 *ahp = AH5212(ah);
1246	HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
1247	const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
1248	HAL_TX_QUEUE_INFO *qi;
1249	uint32_t cwMin, chanCwMin, qmisc, dmisc;
1250
1251	if (q >= pCap->halTotalQueues) {
1252		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid queue num %u\n",
1253		    __func__, q);
1254		return AH_FALSE;
1255	}
1256	qi = &ahp->ah_txq[q];
1257	if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
1258		HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: inactive queue %u\n",
1259		    __func__, q);
1260		return AH_TRUE;		/* XXX??? */
1261	}
1262
1263	HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: reset queue %u\n", __func__, q);
1264
1265	if (qi->tqi_cwmin == HAL_TXQ_USEDEFAULT) {
1266		/*
1267		 * Select cwmin according to channel type.
1268		 * NB: chan can be NULL during attach
1269		 */
1270		if (chan && IEEE80211_IS_CHAN_B(chan))
1271			chanCwMin = INIT_CWMIN_11B;
1272		else
1273			chanCwMin = INIT_CWMIN;
1274		/* make sure that the CWmin is of the form (2^n - 1) */
1275		for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1)
1276			;
1277	} else
1278		cwMin = qi->tqi_cwmin;
1279
1280	/* set cwMin/Max and AIFS values */
1281	OS_REG_WRITE(ah, AR_DLCL_IFS(q),
1282		  SM(cwMin, AR_D_LCL_IFS_CWMIN)
1283		| SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX)
1284		| SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
1285
1286	/* Set retry limit values */
1287	OS_REG_WRITE(ah, AR_DRETRY_LIMIT(q),
1288		   SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH)
1289		 | SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG)
1290		 | SM(qi->tqi_lgretry, AR_D_RETRY_LIMIT_FR_LG)
1291		 | SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH)
1292	);
1293
1294	/* NB: always enable early termination on the QCU */
1295	qmisc = AR_Q_MISC_DCU_EARLY_TERM_REQ
1296	      | SM(AR_Q_MISC_FSP_ASAP, AR_Q_MISC_FSP);
1297
1298	/* NB: always enable DCU to wait for next fragment from QCU */
1299	dmisc = AR_D_MISC_FRAG_WAIT_EN;
1300
1301	/* Enable exponential backoff window */
1302	dmisc |= AR_D_MISC_BKOFF_PERSISTENCE;
1303
1304	/*
1305	 * The chip reset default is to use a DCU backoff threshold of 0x2.
1306	 * Restore this when programming the DCU MISC register.
1307	 */
1308	dmisc |= 0x2;
1309
1310	/* multiqueue support */
1311	if (qi->tqi_cbrPeriod) {
1312		OS_REG_WRITE(ah, AR_QCBRCFG(q),
1313			  SM(qi->tqi_cbrPeriod,AR_Q_CBRCFG_CBR_INTERVAL)
1314			| SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_CBR_OVF_THRESH));
1315		qmisc = (qmisc &~ AR_Q_MISC_FSP) | AR_Q_MISC_FSP_CBR;
1316		if (qi->tqi_cbrOverflowLimit)
1317			qmisc |= AR_Q_MISC_CBR_EXP_CNTR_LIMIT;
1318	}
1319
1320	if (qi->tqi_readyTime && (qi->tqi_type != HAL_TX_QUEUE_CAB)) {
1321		OS_REG_WRITE(ah, AR_QRDYTIMECFG(q),
1322			  SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_INT)
1323			| AR_Q_RDYTIMECFG_ENA);
1324	}
1325
1326	OS_REG_WRITE(ah, AR_DCHNTIME(q),
1327		  SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR)
1328		| (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0));
1329
1330	if (qi->tqi_readyTime &&
1331	    (qi->tqi_qflags & HAL_TXQ_RDYTIME_EXP_POLICY_ENABLE))
1332		qmisc |= AR_Q_MISC_RDYTIME_EXP_POLICY;
1333	if (qi->tqi_qflags & HAL_TXQ_DBA_GATED)
1334		qmisc = (qmisc &~ AR_Q_MISC_FSP) | AR_Q_MISC_FSP_DBA_GATED;
1335	if (MS(qmisc, AR_Q_MISC_FSP) != AR_Q_MISC_FSP_ASAP) {
1336		/*
1337		 * These are meangingful only when not scheduled asap.
1338		 */
1339		if (qi->tqi_qflags & HAL_TXQ_CBR_DIS_BEMPTY)
1340			qmisc |= AR_Q_MISC_CBR_INCR_DIS0;
1341		else
1342			qmisc &= ~AR_Q_MISC_CBR_INCR_DIS0;
1343		if (qi->tqi_qflags & HAL_TXQ_CBR_DIS_QEMPTY)
1344			qmisc |= AR_Q_MISC_CBR_INCR_DIS1;
1345		else
1346			qmisc &= ~AR_Q_MISC_CBR_INCR_DIS1;
1347	}
1348
1349	if (qi->tqi_qflags & HAL_TXQ_BACKOFF_DISABLE)
1350		dmisc |= AR_D_MISC_POST_FR_BKOFF_DIS;
1351	if (qi->tqi_qflags & HAL_TXQ_FRAG_BURST_BACKOFF_ENABLE)
1352		dmisc |= AR_D_MISC_FRAG_BKOFF_EN;
1353	if (qi->tqi_qflags & HAL_TXQ_ARB_LOCKOUT_GLOBAL)
1354		dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
1355			    AR_D_MISC_ARB_LOCKOUT_CNTRL);
1356	else if (qi->tqi_qflags & HAL_TXQ_ARB_LOCKOUT_INTRA)
1357		dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_INTRA_FR,
1358			    AR_D_MISC_ARB_LOCKOUT_CNTRL);
1359	if (qi->tqi_qflags & HAL_TXQ_IGNORE_VIRTCOL)
1360		dmisc |= SM(AR_D_MISC_VIR_COL_HANDLING_IGNORE,
1361			    AR_D_MISC_VIR_COL_HANDLING);
1362	if (qi->tqi_qflags & HAL_TXQ_SEQNUM_INC_DIS)
1363		dmisc |= AR_D_MISC_SEQ_NUM_INCR_DIS;
1364
1365	/*
1366	 * Fillin type-dependent bits.  Most of this can be
1367	 * removed by specifying the queue parameters in the
1368	 * driver; it's here for backwards compatibility.
1369	 */
1370	switch (qi->tqi_type) {
1371	case HAL_TX_QUEUE_BEACON:		/* beacon frames */
1372		qmisc |= AR_Q_MISC_FSP_DBA_GATED
1373		      |  AR_Q_MISC_BEACON_USE
1374		      |  AR_Q_MISC_CBR_INCR_DIS1;
1375
1376		dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
1377			    AR_D_MISC_ARB_LOCKOUT_CNTRL)
1378		      |  AR_D_MISC_BEACON_USE
1379		      |  AR_D_MISC_POST_FR_BKOFF_DIS;
1380		break;
1381	case HAL_TX_QUEUE_CAB:			/* CAB  frames */
1382		/*
1383		 * No longer Enable AR_Q_MISC_RDYTIME_EXP_POLICY,
1384		 * There is an issue with the CAB Queue
1385		 * not properly refreshing the Tx descriptor if
1386		 * the TXE clear setting is used.
1387		 */
1388		qmisc |= AR_Q_MISC_FSP_DBA_GATED
1389		      |  AR_Q_MISC_CBR_INCR_DIS1
1390		      |  AR_Q_MISC_CBR_INCR_DIS0;
1391		HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: CAB: tqi_readyTime = %d\n",
1392		    __func__, qi->tqi_readyTime);
1393		if (qi->tqi_readyTime) {
1394			HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
1395			    "%s: using tqi_readyTime\n", __func__);
1396			OS_REG_WRITE(ah, AR_QRDYTIMECFG(q),
1397			    SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_INT) |
1398			    AR_Q_RDYTIMECFG_ENA);
1399		} else {
1400			int value;
1401			/*
1402			 * NB: don't set default ready time if driver
1403			 * has explicitly specified something.  This is
1404			 * here solely for backwards compatibility.
1405			 */
1406			/*
1407			 * XXX for now, hard-code a CAB interval of 70%
1408			 * XXX of the total beacon interval.
1409			 *
1410			 * XXX This keeps Merlin and later based MACs
1411			 * XXX quite a bit happier (stops stuck beacons,
1412			 * XXX which I gather is because of such a long
1413			 * XXX cabq time.)
1414			 */
1415			value = (ahp->ah_beaconInterval * 50 / 100)
1416				- ah->ah_config.ah_additional_swba_backoff
1417				- ah->ah_config.ah_sw_beacon_response_time
1418				+ ah->ah_config.ah_dma_beacon_response_time;
1419			/*
1420			 * XXX Ensure it isn't too low - nothing lower
1421			 * XXX than 10 TU
1422			 */
1423			if (value < 10)
1424				value = 10;
1425			HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
1426			    "%s: defaulting to rdytime = %d uS\n",
1427			    __func__, value);
1428			OS_REG_WRITE(ah, AR_QRDYTIMECFG(q),
1429			    SM(TU_TO_USEC(value), AR_Q_RDYTIMECFG_INT) |
1430			    AR_Q_RDYTIMECFG_ENA);
1431		}
1432		dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
1433			    AR_D_MISC_ARB_LOCKOUT_CNTRL);
1434		break;
1435	case HAL_TX_QUEUE_PSPOLL:
1436		qmisc |= AR_Q_MISC_CBR_INCR_DIS1;
1437		break;
1438	case HAL_TX_QUEUE_UAPSD:
1439		dmisc |= AR_D_MISC_POST_FR_BKOFF_DIS;
1440		break;
1441	default:			/* NB: silence compiler */
1442		break;
1443	}
1444
1445	OS_REG_WRITE(ah, AR_QMISC(q), qmisc);
1446	OS_REG_WRITE(ah, AR_DMISC(q), dmisc);
1447
1448	/* Setup compression scratchpad buffer */
1449	/*
1450	 * XXX: calling this asynchronously to queue operation can
1451	 *      cause unexpected behavior!!!
1452	 */
1453	if (qi->tqi_physCompBuf) {
1454		HALASSERT(qi->tqi_type == HAL_TX_QUEUE_DATA ||
1455			  qi->tqi_type == HAL_TX_QUEUE_UAPSD);
1456		OS_REG_WRITE(ah, AR_Q_CBBS, (80 + 2*q));
1457		OS_REG_WRITE(ah, AR_Q_CBBA, qi->tqi_physCompBuf);
1458		OS_REG_WRITE(ah, AR_Q_CBC,  HAL_COMP_BUF_MAX_SIZE/1024);
1459		OS_REG_WRITE(ah, AR_Q0_MISC + 4*q,
1460			     OS_REG_READ(ah, AR_Q0_MISC + 4*q)
1461			     | AR_Q_MISC_QCU_COMP_EN);
1462	}
1463
1464	/*
1465	 * Always update the secondary interrupt mask registers - this
1466	 * could be a new queue getting enabled in a running system or
1467	 * hw getting re-initialized during a reset!
1468	 *
1469	 * Since we don't differentiate between tx interrupts corresponding
1470	 * to individual queues - secondary tx mask regs are always unmasked;
1471	 * tx interrupts are enabled/disabled for all queues collectively
1472	 * using the primary mask reg
1473	 */
1474	if (qi->tqi_qflags & HAL_TXQ_TXOKINT_ENABLE)
1475		ahp->ah_txOkInterruptMask |= 1 << q;
1476	else
1477		ahp->ah_txOkInterruptMask &= ~(1 << q);
1478	if (qi->tqi_qflags & HAL_TXQ_TXERRINT_ENABLE)
1479		ahp->ah_txErrInterruptMask |= 1 << q;
1480	else
1481		ahp->ah_txErrInterruptMask &= ~(1 << q);
1482	if (qi->tqi_qflags & HAL_TXQ_TXDESCINT_ENABLE)
1483		ahp->ah_txDescInterruptMask |= 1 << q;
1484	else
1485		ahp->ah_txDescInterruptMask &= ~(1 << q);
1486	if (qi->tqi_qflags & HAL_TXQ_TXEOLINT_ENABLE)
1487		ahp->ah_txEolInterruptMask |= 1 << q;
1488	else
1489		ahp->ah_txEolInterruptMask &= ~(1 << q);
1490	if (qi->tqi_qflags & HAL_TXQ_TXURNINT_ENABLE)
1491		ahp->ah_txUrnInterruptMask |= 1 << q;
1492	else
1493		ahp->ah_txUrnInterruptMask &= ~(1 << q);
1494	setTxQInterrupts(ah, qi);
1495
1496	return AH_TRUE;
1497}
1498#undef	TU_TO_USEC
1499