1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26 * Copyright 2014 HybridCluster. All rights reserved.
27 * Copyright 2016 RackTop Systems.
28 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
29 * Copyright (c) 2019, Klara Inc.
30 * Copyright (c) 2019, Allan Jude
31 */
32
33#include <sys/dmu.h>
34#include <sys/dmu_impl.h>
35#include <sys/dmu_tx.h>
36#include <sys/dbuf.h>
37#include <sys/dnode.h>
38#include <sys/zfs_context.h>
39#include <sys/dmu_objset.h>
40#include <sys/dmu_traverse.h>
41#include <sys/dsl_dataset.h>
42#include <sys/dsl_dir.h>
43#include <sys/dsl_prop.h>
44#include <sys/dsl_pool.h>
45#include <sys/dsl_synctask.h>
46#include <sys/spa_impl.h>
47#include <sys/zfs_ioctl.h>
48#include <sys/zap.h>
49#include <sys/zio_checksum.h>
50#include <sys/zfs_znode.h>
51#include <zfs_fletcher.h>
52#include <sys/avl.h>
53#include <sys/ddt.h>
54#include <sys/zfs_onexit.h>
55#include <sys/dmu_send.h>
56#include <sys/dmu_recv.h>
57#include <sys/dsl_destroy.h>
58#include <sys/blkptr.h>
59#include <sys/dsl_bookmark.h>
60#include <sys/zfeature.h>
61#include <sys/bqueue.h>
62#include <sys/zvol.h>
63#include <sys/policy.h>
64#include <sys/objlist.h>
65#ifdef _KERNEL
66#include <sys/zfs_vfsops.h>
67#endif
68
69/* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */
70static int zfs_send_corrupt_data = B_FALSE;
71/*
72 * This tunable controls the amount of data (measured in bytes) that will be
73 * prefetched by zfs send.  If the main thread is blocking on reads that haven't
74 * completed, this variable might need to be increased.  If instead the main
75 * thread is issuing new reads because the prefetches have fallen out of the
76 * cache, this may need to be decreased.
77 */
78static uint_t zfs_send_queue_length = SPA_MAXBLOCKSIZE;
79/*
80 * This tunable controls the length of the queues that zfs send worker threads
81 * use to communicate.  If the send_main_thread is blocking on these queues,
82 * this variable may need to be increased.  If there is a significant slowdown
83 * at the start of a send as these threads consume all the available IO
84 * resources, this variable may need to be decreased.
85 */
86static uint_t zfs_send_no_prefetch_queue_length = 1024 * 1024;
87/*
88 * These tunables control the fill fraction of the queues by zfs send.  The fill
89 * fraction controls the frequency with which threads have to be cv_signaled.
90 * If a lot of cpu time is being spent on cv_signal, then these should be tuned
91 * down.  If the queues empty before the signalled thread can catch up, then
92 * these should be tuned up.
93 */
94static uint_t zfs_send_queue_ff = 20;
95static uint_t zfs_send_no_prefetch_queue_ff = 20;
96
97/*
98 * Use this to override the recordsize calculation for fast zfs send estimates.
99 */
100static uint_t zfs_override_estimate_recordsize = 0;
101
102/* Set this tunable to FALSE to disable setting of DRR_FLAG_FREERECORDS */
103static const boolean_t zfs_send_set_freerecords_bit = B_TRUE;
104
105/* Set this tunable to FALSE is disable sending unmodified spill blocks. */
106static int zfs_send_unmodified_spill_blocks = B_TRUE;
107
108static inline boolean_t
109overflow_multiply(uint64_t a, uint64_t b, uint64_t *c)
110{
111	uint64_t temp = a * b;
112	if (b != 0 && temp / b != a)
113		return (B_FALSE);
114	*c = temp;
115	return (B_TRUE);
116}
117
118struct send_thread_arg {
119	bqueue_t	q;
120	objset_t	*os;		/* Objset to traverse */
121	uint64_t	fromtxg;	/* Traverse from this txg */
122	int		flags;		/* flags to pass to traverse_dataset */
123	int		error_code;
124	boolean_t	cancel;
125	zbookmark_phys_t resume;
126	uint64_t	*num_blocks_visited;
127};
128
129struct redact_list_thread_arg {
130	boolean_t		cancel;
131	bqueue_t		q;
132	zbookmark_phys_t	resume;
133	redaction_list_t	*rl;
134	boolean_t		mark_redact;
135	int			error_code;
136	uint64_t		*num_blocks_visited;
137};
138
139struct send_merge_thread_arg {
140	bqueue_t			q;
141	objset_t			*os;
142	struct redact_list_thread_arg	*from_arg;
143	struct send_thread_arg		*to_arg;
144	struct redact_list_thread_arg	*redact_arg;
145	int				error;
146	boolean_t			cancel;
147};
148
149struct send_range {
150	boolean_t		eos_marker; /* Marks the end of the stream */
151	uint64_t		object;
152	uint64_t		start_blkid;
153	uint64_t		end_blkid;
154	bqueue_node_t		ln;
155	enum type {DATA, HOLE, OBJECT, OBJECT_RANGE, REDACT,
156	    PREVIOUSLY_REDACTED} type;
157	union {
158		struct srd {
159			dmu_object_type_t	obj_type;
160			uint32_t		datablksz; // logical size
161			uint32_t		datasz; // payload size
162			blkptr_t		bp;
163			arc_buf_t		*abuf;
164			abd_t			*abd;
165			kmutex_t		lock;
166			kcondvar_t		cv;
167			boolean_t		io_outstanding;
168			boolean_t		io_compressed;
169			int			io_err;
170		} data;
171		struct srh {
172			uint32_t		datablksz;
173		} hole;
174		struct sro {
175			/*
176			 * This is a pointer because embedding it in the
177			 * struct causes these structures to be massively larger
178			 * for all range types; this makes the code much less
179			 * memory efficient.
180			 */
181			dnode_phys_t		*dnp;
182			blkptr_t		bp;
183		} object;
184		struct srr {
185			uint32_t		datablksz;
186		} redact;
187		struct sror {
188			blkptr_t		bp;
189		} object_range;
190	} sru;
191};
192
193/*
194 * The list of data whose inclusion in a send stream can be pending from
195 * one call to backup_cb to another.  Multiple calls to dump_free(),
196 * dump_freeobjects(), and dump_redact() can be aggregated into a single
197 * DRR_FREE, DRR_FREEOBJECTS, or DRR_REDACT replay record.
198 */
199typedef enum {
200	PENDING_NONE,
201	PENDING_FREE,
202	PENDING_FREEOBJECTS,
203	PENDING_REDACT
204} dmu_pendop_t;
205
206typedef struct dmu_send_cookie {
207	dmu_replay_record_t *dsc_drr;
208	dmu_send_outparams_t *dsc_dso;
209	offset_t *dsc_off;
210	objset_t *dsc_os;
211	zio_cksum_t dsc_zc;
212	uint64_t dsc_toguid;
213	uint64_t dsc_fromtxg;
214	int dsc_err;
215	dmu_pendop_t dsc_pending_op;
216	uint64_t dsc_featureflags;
217	uint64_t dsc_last_data_object;
218	uint64_t dsc_last_data_offset;
219	uint64_t dsc_resume_object;
220	uint64_t dsc_resume_offset;
221	boolean_t dsc_sent_begin;
222	boolean_t dsc_sent_end;
223} dmu_send_cookie_t;
224
225static int do_dump(dmu_send_cookie_t *dscp, struct send_range *range);
226
227static void
228range_free(struct send_range *range)
229{
230	if (range->type == OBJECT) {
231		size_t size = sizeof (dnode_phys_t) *
232		    (range->sru.object.dnp->dn_extra_slots + 1);
233		kmem_free(range->sru.object.dnp, size);
234	} else if (range->type == DATA) {
235		mutex_enter(&range->sru.data.lock);
236		while (range->sru.data.io_outstanding)
237			cv_wait(&range->sru.data.cv, &range->sru.data.lock);
238		if (range->sru.data.abd != NULL)
239			abd_free(range->sru.data.abd);
240		if (range->sru.data.abuf != NULL) {
241			arc_buf_destroy(range->sru.data.abuf,
242			    &range->sru.data.abuf);
243		}
244		mutex_exit(&range->sru.data.lock);
245
246		cv_destroy(&range->sru.data.cv);
247		mutex_destroy(&range->sru.data.lock);
248	}
249	kmem_free(range, sizeof (*range));
250}
251
252/*
253 * For all record types except BEGIN, fill in the checksum (overlaid in
254 * drr_u.drr_checksum.drr_checksum).  The checksum verifies everything
255 * up to the start of the checksum itself.
256 */
257static int
258dump_record(dmu_send_cookie_t *dscp, void *payload, int payload_len)
259{
260	dmu_send_outparams_t *dso = dscp->dsc_dso;
261	ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
262	    ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
263	(void) fletcher_4_incremental_native(dscp->dsc_drr,
264	    offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
265	    &dscp->dsc_zc);
266	if (dscp->dsc_drr->drr_type == DRR_BEGIN) {
267		dscp->dsc_sent_begin = B_TRUE;
268	} else {
269		ASSERT(ZIO_CHECKSUM_IS_ZERO(&dscp->dsc_drr->drr_u.
270		    drr_checksum.drr_checksum));
271		dscp->dsc_drr->drr_u.drr_checksum.drr_checksum = dscp->dsc_zc;
272	}
273	if (dscp->dsc_drr->drr_type == DRR_END) {
274		dscp->dsc_sent_end = B_TRUE;
275	}
276	(void) fletcher_4_incremental_native(&dscp->dsc_drr->
277	    drr_u.drr_checksum.drr_checksum,
278	    sizeof (zio_cksum_t), &dscp->dsc_zc);
279	*dscp->dsc_off += sizeof (dmu_replay_record_t);
280	dscp->dsc_err = dso->dso_outfunc(dscp->dsc_os, dscp->dsc_drr,
281	    sizeof (dmu_replay_record_t), dso->dso_arg);
282	if (dscp->dsc_err != 0)
283		return (SET_ERROR(EINTR));
284	if (payload_len != 0) {
285		*dscp->dsc_off += payload_len;
286		/*
287		 * payload is null when dso_dryrun == B_TRUE (i.e. when we're
288		 * doing a send size calculation)
289		 */
290		if (payload != NULL) {
291			(void) fletcher_4_incremental_native(
292			    payload, payload_len, &dscp->dsc_zc);
293		}
294
295		/*
296		 * The code does not rely on this (len being a multiple of 8).
297		 * We keep this assertion because of the corresponding assertion
298		 * in receive_read().  Keeping this assertion ensures that we do
299		 * not inadvertently break backwards compatibility (causing the
300		 * assertion in receive_read() to trigger on old software).
301		 *
302		 * Raw sends cannot be received on old software, and so can
303		 * bypass this assertion.
304		 */
305
306		ASSERT((payload_len % 8 == 0) ||
307		    (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW));
308
309		dscp->dsc_err = dso->dso_outfunc(dscp->dsc_os, payload,
310		    payload_len, dso->dso_arg);
311		if (dscp->dsc_err != 0)
312			return (SET_ERROR(EINTR));
313	}
314	return (0);
315}
316
317/*
318 * Fill in the drr_free struct, or perform aggregation if the previous record is
319 * also a free record, and the two are adjacent.
320 *
321 * Note that we send free records even for a full send, because we want to be
322 * able to receive a full send as a clone, which requires a list of all the free
323 * and freeobject records that were generated on the source.
324 */
325static int
326dump_free(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset,
327    uint64_t length)
328{
329	struct drr_free *drrf = &(dscp->dsc_drr->drr_u.drr_free);
330
331	/*
332	 * When we receive a free record, dbuf_free_range() assumes
333	 * that the receiving system doesn't have any dbufs in the range
334	 * being freed.  This is always true because there is a one-record
335	 * constraint: we only send one WRITE record for any given
336	 * object,offset.  We know that the one-record constraint is
337	 * true because we always send data in increasing order by
338	 * object,offset.
339	 *
340	 * If the increasing-order constraint ever changes, we should find
341	 * another way to assert that the one-record constraint is still
342	 * satisfied.
343	 */
344	ASSERT(object > dscp->dsc_last_data_object ||
345	    (object == dscp->dsc_last_data_object &&
346	    offset > dscp->dsc_last_data_offset));
347
348	/*
349	 * If there is a pending op, but it's not PENDING_FREE, push it out,
350	 * since free block aggregation can only be done for blocks of the
351	 * same type (i.e., DRR_FREE records can only be aggregated with
352	 * other DRR_FREE records.  DRR_FREEOBJECTS records can only be
353	 * aggregated with other DRR_FREEOBJECTS records).
354	 */
355	if (dscp->dsc_pending_op != PENDING_NONE &&
356	    dscp->dsc_pending_op != PENDING_FREE) {
357		if (dump_record(dscp, NULL, 0) != 0)
358			return (SET_ERROR(EINTR));
359		dscp->dsc_pending_op = PENDING_NONE;
360	}
361
362	if (dscp->dsc_pending_op == PENDING_FREE) {
363		/*
364		 * Check to see whether this free block can be aggregated
365		 * with pending one.
366		 */
367		if (drrf->drr_object == object && drrf->drr_offset +
368		    drrf->drr_length == offset) {
369			if (offset + length < offset || length == UINT64_MAX)
370				drrf->drr_length = UINT64_MAX;
371			else
372				drrf->drr_length += length;
373			return (0);
374		} else {
375			/* not a continuation.  Push out pending record */
376			if (dump_record(dscp, NULL, 0) != 0)
377				return (SET_ERROR(EINTR));
378			dscp->dsc_pending_op = PENDING_NONE;
379		}
380	}
381	/* create a FREE record and make it pending */
382	memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
383	dscp->dsc_drr->drr_type = DRR_FREE;
384	drrf->drr_object = object;
385	drrf->drr_offset = offset;
386	if (offset + length < offset)
387		drrf->drr_length = DMU_OBJECT_END;
388	else
389		drrf->drr_length = length;
390	drrf->drr_toguid = dscp->dsc_toguid;
391	if (length == DMU_OBJECT_END) {
392		if (dump_record(dscp, NULL, 0) != 0)
393			return (SET_ERROR(EINTR));
394	} else {
395		dscp->dsc_pending_op = PENDING_FREE;
396	}
397
398	return (0);
399}
400
401/*
402 * Fill in the drr_redact struct, or perform aggregation if the previous record
403 * is also a redaction record, and the two are adjacent.
404 */
405static int
406dump_redact(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset,
407    uint64_t length)
408{
409	struct drr_redact *drrr = &dscp->dsc_drr->drr_u.drr_redact;
410
411	/*
412	 * If there is a pending op, but it's not PENDING_REDACT, push it out,
413	 * since free block aggregation can only be done for blocks of the
414	 * same type (i.e., DRR_REDACT records can only be aggregated with
415	 * other DRR_REDACT records).
416	 */
417	if (dscp->dsc_pending_op != PENDING_NONE &&
418	    dscp->dsc_pending_op != PENDING_REDACT) {
419		if (dump_record(dscp, NULL, 0) != 0)
420			return (SET_ERROR(EINTR));
421		dscp->dsc_pending_op = PENDING_NONE;
422	}
423
424	if (dscp->dsc_pending_op == PENDING_REDACT) {
425		/*
426		 * Check to see whether this redacted block can be aggregated
427		 * with pending one.
428		 */
429		if (drrr->drr_object == object && drrr->drr_offset +
430		    drrr->drr_length == offset) {
431			drrr->drr_length += length;
432			return (0);
433		} else {
434			/* not a continuation.  Push out pending record */
435			if (dump_record(dscp, NULL, 0) != 0)
436				return (SET_ERROR(EINTR));
437			dscp->dsc_pending_op = PENDING_NONE;
438		}
439	}
440	/* create a REDACT record and make it pending */
441	memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
442	dscp->dsc_drr->drr_type = DRR_REDACT;
443	drrr->drr_object = object;
444	drrr->drr_offset = offset;
445	drrr->drr_length = length;
446	drrr->drr_toguid = dscp->dsc_toguid;
447	dscp->dsc_pending_op = PENDING_REDACT;
448
449	return (0);
450}
451
452static int
453dmu_dump_write(dmu_send_cookie_t *dscp, dmu_object_type_t type, uint64_t object,
454    uint64_t offset, int lsize, int psize, const blkptr_t *bp,
455    boolean_t io_compressed, void *data)
456{
457	uint64_t payload_size;
458	boolean_t raw = (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW);
459	struct drr_write *drrw = &(dscp->dsc_drr->drr_u.drr_write);
460
461	/*
462	 * We send data in increasing object, offset order.
463	 * See comment in dump_free() for details.
464	 */
465	ASSERT(object > dscp->dsc_last_data_object ||
466	    (object == dscp->dsc_last_data_object &&
467	    offset > dscp->dsc_last_data_offset));
468	dscp->dsc_last_data_object = object;
469	dscp->dsc_last_data_offset = offset + lsize - 1;
470
471	/*
472	 * If there is any kind of pending aggregation (currently either
473	 * a grouping of free objects or free blocks), push it out to
474	 * the stream, since aggregation can't be done across operations
475	 * of different types.
476	 */
477	if (dscp->dsc_pending_op != PENDING_NONE) {
478		if (dump_record(dscp, NULL, 0) != 0)
479			return (SET_ERROR(EINTR));
480		dscp->dsc_pending_op = PENDING_NONE;
481	}
482	/* write a WRITE record */
483	memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
484	dscp->dsc_drr->drr_type = DRR_WRITE;
485	drrw->drr_object = object;
486	drrw->drr_type = type;
487	drrw->drr_offset = offset;
488	drrw->drr_toguid = dscp->dsc_toguid;
489	drrw->drr_logical_size = lsize;
490
491	/* only set the compression fields if the buf is compressed or raw */
492	boolean_t compressed =
493	    (bp != NULL ? BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
494	    io_compressed : lsize != psize);
495	if (raw || compressed) {
496		ASSERT(bp != NULL);
497		ASSERT(raw || dscp->dsc_featureflags &
498		    DMU_BACKUP_FEATURE_COMPRESSED);
499		ASSERT(!BP_IS_EMBEDDED(bp));
500		ASSERT3S(psize, >, 0);
501
502		if (raw) {
503			ASSERT(BP_IS_PROTECTED(bp));
504
505			/*
506			 * This is a raw protected block so we need to pass
507			 * along everything the receiving side will need to
508			 * interpret this block, including the byteswap, salt,
509			 * IV, and MAC.
510			 */
511			if (BP_SHOULD_BYTESWAP(bp))
512				drrw->drr_flags |= DRR_RAW_BYTESWAP;
513			zio_crypt_decode_params_bp(bp, drrw->drr_salt,
514			    drrw->drr_iv);
515			zio_crypt_decode_mac_bp(bp, drrw->drr_mac);
516		} else {
517			/* this is a compressed block */
518			ASSERT(dscp->dsc_featureflags &
519			    DMU_BACKUP_FEATURE_COMPRESSED);
520			ASSERT(!BP_SHOULD_BYTESWAP(bp));
521			ASSERT(!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)));
522			ASSERT3U(BP_GET_COMPRESS(bp), !=, ZIO_COMPRESS_OFF);
523			ASSERT3S(lsize, >=, psize);
524		}
525
526		/* set fields common to compressed and raw sends */
527		drrw->drr_compressiontype = BP_GET_COMPRESS(bp);
528		drrw->drr_compressed_size = psize;
529		payload_size = drrw->drr_compressed_size;
530	} else {
531		payload_size = drrw->drr_logical_size;
532	}
533
534	if (bp == NULL || BP_IS_EMBEDDED(bp) || (BP_IS_PROTECTED(bp) && !raw)) {
535		/*
536		 * There's no pre-computed checksum for partial-block writes,
537		 * embedded BP's, or encrypted BP's that are being sent as
538		 * plaintext, so (like fletcher4-checksummed blocks) userland
539		 * will have to compute a dedup-capable checksum itself.
540		 */
541		drrw->drr_checksumtype = ZIO_CHECKSUM_OFF;
542	} else {
543		drrw->drr_checksumtype = BP_GET_CHECKSUM(bp);
544		if (zio_checksum_table[drrw->drr_checksumtype].ci_flags &
545		    ZCHECKSUM_FLAG_DEDUP)
546			drrw->drr_flags |= DRR_CHECKSUM_DEDUP;
547		DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp));
548		DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp));
549		DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp));
550		DDK_SET_CRYPT(&drrw->drr_key, BP_IS_PROTECTED(bp));
551		drrw->drr_key.ddk_cksum = bp->blk_cksum;
552	}
553
554	if (dump_record(dscp, data, payload_size) != 0)
555		return (SET_ERROR(EINTR));
556	return (0);
557}
558
559static int
560dump_write_embedded(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset,
561    int blksz, const blkptr_t *bp)
562{
563	char buf[BPE_PAYLOAD_SIZE];
564	struct drr_write_embedded *drrw =
565	    &(dscp->dsc_drr->drr_u.drr_write_embedded);
566
567	if (dscp->dsc_pending_op != PENDING_NONE) {
568		if (dump_record(dscp, NULL, 0) != 0)
569			return (SET_ERROR(EINTR));
570		dscp->dsc_pending_op = PENDING_NONE;
571	}
572
573	ASSERT(BP_IS_EMBEDDED(bp));
574
575	memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
576	dscp->dsc_drr->drr_type = DRR_WRITE_EMBEDDED;
577	drrw->drr_object = object;
578	drrw->drr_offset = offset;
579	drrw->drr_length = blksz;
580	drrw->drr_toguid = dscp->dsc_toguid;
581	drrw->drr_compression = BP_GET_COMPRESS(bp);
582	drrw->drr_etype = BPE_GET_ETYPE(bp);
583	drrw->drr_lsize = BPE_GET_LSIZE(bp);
584	drrw->drr_psize = BPE_GET_PSIZE(bp);
585
586	decode_embedded_bp_compressed(bp, buf);
587
588	uint32_t psize = drrw->drr_psize;
589	uint32_t rsize = P2ROUNDUP(psize, 8);
590
591	if (psize != rsize)
592		memset(buf + psize, 0, rsize - psize);
593
594	if (dump_record(dscp, buf, rsize) != 0)
595		return (SET_ERROR(EINTR));
596	return (0);
597}
598
599static int
600dump_spill(dmu_send_cookie_t *dscp, const blkptr_t *bp, uint64_t object,
601    void *data)
602{
603	struct drr_spill *drrs = &(dscp->dsc_drr->drr_u.drr_spill);
604	uint64_t blksz = BP_GET_LSIZE(bp);
605	uint64_t payload_size = blksz;
606
607	if (dscp->dsc_pending_op != PENDING_NONE) {
608		if (dump_record(dscp, NULL, 0) != 0)
609			return (SET_ERROR(EINTR));
610		dscp->dsc_pending_op = PENDING_NONE;
611	}
612
613	/* write a SPILL record */
614	memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
615	dscp->dsc_drr->drr_type = DRR_SPILL;
616	drrs->drr_object = object;
617	drrs->drr_length = blksz;
618	drrs->drr_toguid = dscp->dsc_toguid;
619
620	/* See comment in dump_dnode() for full details */
621	if (zfs_send_unmodified_spill_blocks &&
622	    (BP_GET_LOGICAL_BIRTH(bp) <= dscp->dsc_fromtxg)) {
623		drrs->drr_flags |= DRR_SPILL_UNMODIFIED;
624	}
625
626	/* handle raw send fields */
627	if (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW) {
628		ASSERT(BP_IS_PROTECTED(bp));
629
630		if (BP_SHOULD_BYTESWAP(bp))
631			drrs->drr_flags |= DRR_RAW_BYTESWAP;
632		drrs->drr_compressiontype = BP_GET_COMPRESS(bp);
633		drrs->drr_compressed_size = BP_GET_PSIZE(bp);
634		zio_crypt_decode_params_bp(bp, drrs->drr_salt, drrs->drr_iv);
635		zio_crypt_decode_mac_bp(bp, drrs->drr_mac);
636		payload_size = drrs->drr_compressed_size;
637	}
638
639	if (dump_record(dscp, data, payload_size) != 0)
640		return (SET_ERROR(EINTR));
641	return (0);
642}
643
644static int
645dump_freeobjects(dmu_send_cookie_t *dscp, uint64_t firstobj, uint64_t numobjs)
646{
647	struct drr_freeobjects *drrfo = &(dscp->dsc_drr->drr_u.drr_freeobjects);
648	uint64_t maxobj = DNODES_PER_BLOCK *
649	    (DMU_META_DNODE(dscp->dsc_os)->dn_maxblkid + 1);
650
651	/*
652	 * ZoL < 0.7 does not handle large FREEOBJECTS records correctly,
653	 * leading to zfs recv never completing. to avoid this issue, don't
654	 * send FREEOBJECTS records for object IDs which cannot exist on the
655	 * receiving side.
656	 */
657	if (maxobj > 0) {
658		if (maxobj <= firstobj)
659			return (0);
660
661		if (maxobj < firstobj + numobjs)
662			numobjs = maxobj - firstobj;
663	}
664
665	/*
666	 * If there is a pending op, but it's not PENDING_FREEOBJECTS,
667	 * push it out, since free block aggregation can only be done for
668	 * blocks of the same type (i.e., DRR_FREE records can only be
669	 * aggregated with other DRR_FREE records.  DRR_FREEOBJECTS records
670	 * can only be aggregated with other DRR_FREEOBJECTS records).
671	 */
672	if (dscp->dsc_pending_op != PENDING_NONE &&
673	    dscp->dsc_pending_op != PENDING_FREEOBJECTS) {
674		if (dump_record(dscp, NULL, 0) != 0)
675			return (SET_ERROR(EINTR));
676		dscp->dsc_pending_op = PENDING_NONE;
677	}
678
679	if (dscp->dsc_pending_op == PENDING_FREEOBJECTS) {
680		/*
681		 * See whether this free object array can be aggregated
682		 * with pending one
683		 */
684		if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) {
685			drrfo->drr_numobjs += numobjs;
686			return (0);
687		} else {
688			/* can't be aggregated.  Push out pending record */
689			if (dump_record(dscp, NULL, 0) != 0)
690				return (SET_ERROR(EINTR));
691			dscp->dsc_pending_op = PENDING_NONE;
692		}
693	}
694
695	/* write a FREEOBJECTS record */
696	memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
697	dscp->dsc_drr->drr_type = DRR_FREEOBJECTS;
698	drrfo->drr_firstobj = firstobj;
699	drrfo->drr_numobjs = numobjs;
700	drrfo->drr_toguid = dscp->dsc_toguid;
701
702	dscp->dsc_pending_op = PENDING_FREEOBJECTS;
703
704	return (0);
705}
706
707static int
708dump_dnode(dmu_send_cookie_t *dscp, const blkptr_t *bp, uint64_t object,
709    dnode_phys_t *dnp)
710{
711	struct drr_object *drro = &(dscp->dsc_drr->drr_u.drr_object);
712	int bonuslen;
713
714	if (object < dscp->dsc_resume_object) {
715		/*
716		 * Note: when resuming, we will visit all the dnodes in
717		 * the block of dnodes that we are resuming from.  In
718		 * this case it's unnecessary to send the dnodes prior to
719		 * the one we are resuming from.  We should be at most one
720		 * block's worth of dnodes behind the resume point.
721		 */
722		ASSERT3U(dscp->dsc_resume_object - object, <,
723		    1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT));
724		return (0);
725	}
726
727	if (dnp == NULL || dnp->dn_type == DMU_OT_NONE)
728		return (dump_freeobjects(dscp, object, 1));
729
730	if (dscp->dsc_pending_op != PENDING_NONE) {
731		if (dump_record(dscp, NULL, 0) != 0)
732			return (SET_ERROR(EINTR));
733		dscp->dsc_pending_op = PENDING_NONE;
734	}
735
736	/* write an OBJECT record */
737	memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
738	dscp->dsc_drr->drr_type = DRR_OBJECT;
739	drro->drr_object = object;
740	drro->drr_type = dnp->dn_type;
741	drro->drr_bonustype = dnp->dn_bonustype;
742	drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
743	drro->drr_bonuslen = dnp->dn_bonuslen;
744	drro->drr_dn_slots = dnp->dn_extra_slots + 1;
745	drro->drr_checksumtype = dnp->dn_checksum;
746	drro->drr_compress = dnp->dn_compress;
747	drro->drr_toguid = dscp->dsc_toguid;
748
749	if (!(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
750	    drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE)
751		drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE;
752
753	bonuslen = P2ROUNDUP(dnp->dn_bonuslen, 8);
754
755	if ((dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW)) {
756		ASSERT(BP_IS_ENCRYPTED(bp));
757
758		if (BP_SHOULD_BYTESWAP(bp))
759			drro->drr_flags |= DRR_RAW_BYTESWAP;
760
761		/* needed for reconstructing dnp on recv side */
762		drro->drr_maxblkid = dnp->dn_maxblkid;
763		drro->drr_indblkshift = dnp->dn_indblkshift;
764		drro->drr_nlevels = dnp->dn_nlevels;
765		drro->drr_nblkptr = dnp->dn_nblkptr;
766
767		/*
768		 * Since we encrypt the entire bonus area, the (raw) part
769		 * beyond the bonuslen is actually nonzero, so we need
770		 * to send it.
771		 */
772		if (bonuslen != 0) {
773			if (drro->drr_bonuslen > DN_MAX_BONUS_LEN(dnp))
774				return (SET_ERROR(EINVAL));
775			drro->drr_raw_bonuslen = DN_MAX_BONUS_LEN(dnp);
776			bonuslen = drro->drr_raw_bonuslen;
777		}
778	}
779
780	/*
781	 * DRR_OBJECT_SPILL is set for every dnode which references a
782	 * spill block.	 This allows the receiving pool to definitively
783	 * determine when a spill block should be kept or freed.
784	 */
785	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
786		drro->drr_flags |= DRR_OBJECT_SPILL;
787
788	if (dump_record(dscp, DN_BONUS(dnp), bonuslen) != 0)
789		return (SET_ERROR(EINTR));
790
791	/* Free anything past the end of the file. */
792	if (dump_free(dscp, object, (dnp->dn_maxblkid + 1) *
793	    (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), DMU_OBJECT_END) != 0)
794		return (SET_ERROR(EINTR));
795
796	/*
797	 * Send DRR_SPILL records for unmodified spill blocks.	This is useful
798	 * because changing certain attributes of the object (e.g. blocksize)
799	 * can cause old versions of ZFS to incorrectly remove a spill block.
800	 * Including these records in the stream forces an up to date version
801	 * to always be written ensuring they're never lost.  Current versions
802	 * of the code which understand the DRR_FLAG_SPILL_BLOCK feature can
803	 * ignore these unmodified spill blocks.
804	 */
805	if (zfs_send_unmodified_spill_blocks &&
806	    (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) &&
807	    (BP_GET_LOGICAL_BIRTH(DN_SPILL_BLKPTR(dnp)) <= dscp->dsc_fromtxg)) {
808		struct send_range record;
809		blkptr_t *bp = DN_SPILL_BLKPTR(dnp);
810
811		memset(&record, 0, sizeof (struct send_range));
812		record.type = DATA;
813		record.object = object;
814		record.eos_marker = B_FALSE;
815		record.start_blkid = DMU_SPILL_BLKID;
816		record.end_blkid = record.start_blkid + 1;
817		record.sru.data.bp = *bp;
818		record.sru.data.obj_type = dnp->dn_type;
819		record.sru.data.datablksz = BP_GET_LSIZE(bp);
820
821		if (do_dump(dscp, &record) != 0)
822			return (SET_ERROR(EINTR));
823	}
824
825	if (dscp->dsc_err != 0)
826		return (SET_ERROR(EINTR));
827
828	return (0);
829}
830
831static int
832dump_object_range(dmu_send_cookie_t *dscp, const blkptr_t *bp,
833    uint64_t firstobj, uint64_t numslots)
834{
835	struct drr_object_range *drror =
836	    &(dscp->dsc_drr->drr_u.drr_object_range);
837
838	/* we only use this record type for raw sends */
839	ASSERT(BP_IS_PROTECTED(bp));
840	ASSERT(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW);
841	ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
842	ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_DNODE);
843	ASSERT0(BP_GET_LEVEL(bp));
844
845	if (dscp->dsc_pending_op != PENDING_NONE) {
846		if (dump_record(dscp, NULL, 0) != 0)
847			return (SET_ERROR(EINTR));
848		dscp->dsc_pending_op = PENDING_NONE;
849	}
850
851	memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
852	dscp->dsc_drr->drr_type = DRR_OBJECT_RANGE;
853	drror->drr_firstobj = firstobj;
854	drror->drr_numslots = numslots;
855	drror->drr_toguid = dscp->dsc_toguid;
856	if (BP_SHOULD_BYTESWAP(bp))
857		drror->drr_flags |= DRR_RAW_BYTESWAP;
858	zio_crypt_decode_params_bp(bp, drror->drr_salt, drror->drr_iv);
859	zio_crypt_decode_mac_bp(bp, drror->drr_mac);
860
861	if (dump_record(dscp, NULL, 0) != 0)
862		return (SET_ERROR(EINTR));
863	return (0);
864}
865
866static boolean_t
867send_do_embed(const blkptr_t *bp, uint64_t featureflags)
868{
869	if (!BP_IS_EMBEDDED(bp))
870		return (B_FALSE);
871
872	/*
873	 * Compression function must be legacy, or explicitly enabled.
874	 */
875	if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS &&
876	    !(featureflags & DMU_BACKUP_FEATURE_LZ4)))
877		return (B_FALSE);
878
879	/*
880	 * If we have not set the ZSTD feature flag, we can't send ZSTD
881	 * compressed embedded blocks, as the receiver may not support them.
882	 */
883	if ((BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD &&
884	    !(featureflags & DMU_BACKUP_FEATURE_ZSTD)))
885		return (B_FALSE);
886
887	/*
888	 * Embed type must be explicitly enabled.
889	 */
890	switch (BPE_GET_ETYPE(bp)) {
891	case BP_EMBEDDED_TYPE_DATA:
892		if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
893			return (B_TRUE);
894		break;
895	default:
896		return (B_FALSE);
897	}
898	return (B_FALSE);
899}
900
901/*
902 * This function actually handles figuring out what kind of record needs to be
903 * dumped, and calling the appropriate helper function.  In most cases,
904 * the data has already been read by send_reader_thread().
905 */
906static int
907do_dump(dmu_send_cookie_t *dscp, struct send_range *range)
908{
909	int err = 0;
910	switch (range->type) {
911	case OBJECT:
912		err = dump_dnode(dscp, &range->sru.object.bp, range->object,
913		    range->sru.object.dnp);
914		return (err);
915	case OBJECT_RANGE: {
916		ASSERT3U(range->start_blkid + 1, ==, range->end_blkid);
917		if (!(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW)) {
918			return (0);
919		}
920		uint64_t epb = BP_GET_LSIZE(&range->sru.object_range.bp) >>
921		    DNODE_SHIFT;
922		uint64_t firstobj = range->start_blkid * epb;
923		err = dump_object_range(dscp, &range->sru.object_range.bp,
924		    firstobj, epb);
925		break;
926	}
927	case REDACT: {
928		struct srr *srrp = &range->sru.redact;
929		err = dump_redact(dscp, range->object, range->start_blkid *
930		    srrp->datablksz, (range->end_blkid - range->start_blkid) *
931		    srrp->datablksz);
932		return (err);
933	}
934	case DATA: {
935		struct srd *srdp = &range->sru.data;
936		blkptr_t *bp = &srdp->bp;
937		spa_t *spa =
938		    dmu_objset_spa(dscp->dsc_os);
939
940		ASSERT3U(srdp->datablksz, ==, BP_GET_LSIZE(bp));
941		ASSERT3U(range->start_blkid + 1, ==, range->end_blkid);
942		if (BP_GET_TYPE(bp) == DMU_OT_SA) {
943			arc_flags_t aflags = ARC_FLAG_WAIT;
944			zio_flag_t zioflags = ZIO_FLAG_CANFAIL;
945
946			if (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW) {
947				ASSERT(BP_IS_PROTECTED(bp));
948				zioflags |= ZIO_FLAG_RAW;
949			}
950
951			zbookmark_phys_t zb;
952			ASSERT3U(range->start_blkid, ==, DMU_SPILL_BLKID);
953			zb.zb_objset = dmu_objset_id(dscp->dsc_os);
954			zb.zb_object = range->object;
955			zb.zb_level = 0;
956			zb.zb_blkid = range->start_blkid;
957
958			arc_buf_t *abuf = NULL;
959			if (!dscp->dsc_dso->dso_dryrun && arc_read(NULL, spa,
960			    bp, arc_getbuf_func, &abuf, ZIO_PRIORITY_ASYNC_READ,
961			    zioflags, &aflags, &zb) != 0)
962				return (SET_ERROR(EIO));
963
964			err = dump_spill(dscp, bp, zb.zb_object,
965			    (abuf == NULL ? NULL : abuf->b_data));
966			if (abuf != NULL)
967				arc_buf_destroy(abuf, &abuf);
968			return (err);
969		}
970		if (send_do_embed(bp, dscp->dsc_featureflags)) {
971			err = dump_write_embedded(dscp, range->object,
972			    range->start_blkid * srdp->datablksz,
973			    srdp->datablksz, bp);
974			return (err);
975		}
976		ASSERT(range->object > dscp->dsc_resume_object ||
977		    (range->object == dscp->dsc_resume_object &&
978		    range->start_blkid * srdp->datablksz >=
979		    dscp->dsc_resume_offset));
980		/* it's a level-0 block of a regular object */
981
982		mutex_enter(&srdp->lock);
983		while (srdp->io_outstanding)
984			cv_wait(&srdp->cv, &srdp->lock);
985		err = srdp->io_err;
986		mutex_exit(&srdp->lock);
987
988		if (err != 0) {
989			if (zfs_send_corrupt_data &&
990			    !dscp->dsc_dso->dso_dryrun) {
991				/*
992				 * Send a block filled with 0x"zfs badd bloc"
993				 */
994				srdp->abuf = arc_alloc_buf(spa, &srdp->abuf,
995				    ARC_BUFC_DATA, srdp->datablksz);
996				uint64_t *ptr;
997				for (ptr = srdp->abuf->b_data;
998				    (char *)ptr < (char *)srdp->abuf->b_data +
999				    srdp->datablksz; ptr++)
1000					*ptr = 0x2f5baddb10cULL;
1001			} else {
1002				return (SET_ERROR(EIO));
1003			}
1004		}
1005
1006		ASSERT(dscp->dsc_dso->dso_dryrun ||
1007		    srdp->abuf != NULL || srdp->abd != NULL);
1008
1009		uint64_t offset = range->start_blkid * srdp->datablksz;
1010
1011		char *data = NULL;
1012		if (srdp->abd != NULL) {
1013			data = abd_to_buf(srdp->abd);
1014			ASSERT3P(srdp->abuf, ==, NULL);
1015		} else if (srdp->abuf != NULL) {
1016			data = srdp->abuf->b_data;
1017		}
1018
1019		/*
1020		 * If we have large blocks stored on disk but the send flags
1021		 * don't allow us to send large blocks, we split the data from
1022		 * the arc buf into chunks.
1023		 */
1024		if (srdp->datablksz > SPA_OLD_MAXBLOCKSIZE &&
1025		    !(dscp->dsc_featureflags &
1026		    DMU_BACKUP_FEATURE_LARGE_BLOCKS)) {
1027			while (srdp->datablksz > 0 && err == 0) {
1028				int n = MIN(srdp->datablksz,
1029				    SPA_OLD_MAXBLOCKSIZE);
1030				err = dmu_dump_write(dscp, srdp->obj_type,
1031				    range->object, offset, n, n, NULL, B_FALSE,
1032				    data);
1033				offset += n;
1034				/*
1035				 * When doing dry run, data==NULL is used as a
1036				 * sentinel value by
1037				 * dmu_dump_write()->dump_record().
1038				 */
1039				if (data != NULL)
1040					data += n;
1041				srdp->datablksz -= n;
1042			}
1043		} else {
1044			err = dmu_dump_write(dscp, srdp->obj_type,
1045			    range->object, offset,
1046			    srdp->datablksz, srdp->datasz, bp,
1047			    srdp->io_compressed, data);
1048		}
1049		return (err);
1050	}
1051	case HOLE: {
1052		struct srh *srhp = &range->sru.hole;
1053		if (range->object == DMU_META_DNODE_OBJECT) {
1054			uint32_t span = srhp->datablksz >> DNODE_SHIFT;
1055			uint64_t first_obj = range->start_blkid * span;
1056			uint64_t numobj = range->end_blkid * span - first_obj;
1057			return (dump_freeobjects(dscp, first_obj, numobj));
1058		}
1059		uint64_t offset = 0;
1060
1061		/*
1062		 * If this multiply overflows, we don't need to send this block.
1063		 * Even if it has a birth time, it can never not be a hole, so
1064		 * we don't need to send records for it.
1065		 */
1066		if (!overflow_multiply(range->start_blkid, srhp->datablksz,
1067		    &offset)) {
1068			return (0);
1069		}
1070		uint64_t len = 0;
1071
1072		if (!overflow_multiply(range->end_blkid, srhp->datablksz, &len))
1073			len = UINT64_MAX;
1074		len = len - offset;
1075		return (dump_free(dscp, range->object, offset, len));
1076	}
1077	default:
1078		panic("Invalid range type in do_dump: %d", range->type);
1079	}
1080	return (err);
1081}
1082
1083static struct send_range *
1084range_alloc(enum type type, uint64_t object, uint64_t start_blkid,
1085    uint64_t end_blkid, boolean_t eos)
1086{
1087	struct send_range *range = kmem_alloc(sizeof (*range), KM_SLEEP);
1088	range->type = type;
1089	range->object = object;
1090	range->start_blkid = start_blkid;
1091	range->end_blkid = end_blkid;
1092	range->eos_marker = eos;
1093	if (type == DATA) {
1094		range->sru.data.abd = NULL;
1095		range->sru.data.abuf = NULL;
1096		mutex_init(&range->sru.data.lock, NULL, MUTEX_DEFAULT, NULL);
1097		cv_init(&range->sru.data.cv, NULL, CV_DEFAULT, NULL);
1098		range->sru.data.io_outstanding = 0;
1099		range->sru.data.io_err = 0;
1100		range->sru.data.io_compressed = B_FALSE;
1101	}
1102	return (range);
1103}
1104
1105/*
1106 * This is the callback function to traverse_dataset that acts as a worker
1107 * thread for dmu_send_impl.
1108 */
1109static int
1110send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1111    const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg)
1112{
1113	(void) zilog;
1114	struct send_thread_arg *sta = arg;
1115	struct send_range *record;
1116
1117	ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
1118	    zb->zb_object >= sta->resume.zb_object);
1119
1120	/*
1121	 * All bps of an encrypted os should have the encryption bit set.
1122	 * If this is not true it indicates tampering and we report an error.
1123	 */
1124	if (sta->os->os_encrypted &&
1125	    !BP_IS_HOLE(bp) && !BP_USES_CRYPT(bp)) {
1126		spa_log_error(spa, zb, BP_GET_LOGICAL_BIRTH(bp));
1127		return (SET_ERROR(EIO));
1128	}
1129
1130	if (sta->cancel)
1131		return (SET_ERROR(EINTR));
1132	if (zb->zb_object != DMU_META_DNODE_OBJECT &&
1133	    DMU_OBJECT_IS_SPECIAL(zb->zb_object))
1134		return (0);
1135	atomic_inc_64(sta->num_blocks_visited);
1136
1137	if (zb->zb_level == ZB_DNODE_LEVEL) {
1138		if (zb->zb_object == DMU_META_DNODE_OBJECT)
1139			return (0);
1140		record = range_alloc(OBJECT, zb->zb_object, 0, 0, B_FALSE);
1141		record->sru.object.bp = *bp;
1142		size_t size  = sizeof (*dnp) * (dnp->dn_extra_slots + 1);
1143		record->sru.object.dnp = kmem_alloc(size, KM_SLEEP);
1144		memcpy(record->sru.object.dnp, dnp, size);
1145		bqueue_enqueue(&sta->q, record, sizeof (*record));
1146		return (0);
1147	}
1148	if (zb->zb_level == 0 && zb->zb_object == DMU_META_DNODE_OBJECT &&
1149	    !BP_IS_HOLE(bp)) {
1150		record = range_alloc(OBJECT_RANGE, 0, zb->zb_blkid,
1151		    zb->zb_blkid + 1, B_FALSE);
1152		record->sru.object_range.bp = *bp;
1153		bqueue_enqueue(&sta->q, record, sizeof (*record));
1154		return (0);
1155	}
1156	if (zb->zb_level < 0 || (zb->zb_level > 0 && !BP_IS_HOLE(bp)))
1157		return (0);
1158	if (zb->zb_object == DMU_META_DNODE_OBJECT && !BP_IS_HOLE(bp))
1159		return (0);
1160
1161	uint64_t span = bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level);
1162	uint64_t start;
1163
1164	/*
1165	 * If this multiply overflows, we don't need to send this block.
1166	 * Even if it has a birth time, it can never not be a hole, so
1167	 * we don't need to send records for it.
1168	 */
1169	if (!overflow_multiply(span, zb->zb_blkid, &start) || (!(zb->zb_blkid ==
1170	    DMU_SPILL_BLKID || DMU_OT_IS_METADATA(dnp->dn_type)) &&
1171	    span * zb->zb_blkid > dnp->dn_maxblkid)) {
1172		ASSERT(BP_IS_HOLE(bp));
1173		return (0);
1174	}
1175
1176	if (zb->zb_blkid == DMU_SPILL_BLKID)
1177		ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_SA);
1178
1179	enum type record_type = DATA;
1180	if (BP_IS_HOLE(bp))
1181		record_type = HOLE;
1182	else if (BP_IS_REDACTED(bp))
1183		record_type = REDACT;
1184	else
1185		record_type = DATA;
1186
1187	record = range_alloc(record_type, zb->zb_object, start,
1188	    (start + span < start ? 0 : start + span), B_FALSE);
1189
1190	uint64_t datablksz = (zb->zb_blkid == DMU_SPILL_BLKID ?
1191	    BP_GET_LSIZE(bp) : dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
1192
1193	if (BP_IS_HOLE(bp)) {
1194		record->sru.hole.datablksz = datablksz;
1195	} else if (BP_IS_REDACTED(bp)) {
1196		record->sru.redact.datablksz = datablksz;
1197	} else {
1198		record->sru.data.datablksz = datablksz;
1199		record->sru.data.obj_type = dnp->dn_type;
1200		record->sru.data.bp = *bp;
1201	}
1202
1203	bqueue_enqueue(&sta->q, record, sizeof (*record));
1204	return (0);
1205}
1206
1207struct redact_list_cb_arg {
1208	uint64_t *num_blocks_visited;
1209	bqueue_t *q;
1210	boolean_t *cancel;
1211	boolean_t mark_redact;
1212};
1213
1214static int
1215redact_list_cb(redact_block_phys_t *rb, void *arg)
1216{
1217	struct redact_list_cb_arg *rlcap = arg;
1218
1219	atomic_inc_64(rlcap->num_blocks_visited);
1220	if (*rlcap->cancel)
1221		return (-1);
1222
1223	struct send_range *data = range_alloc(REDACT, rb->rbp_object,
1224	    rb->rbp_blkid, rb->rbp_blkid + redact_block_get_count(rb), B_FALSE);
1225	ASSERT3U(data->end_blkid, >, rb->rbp_blkid);
1226	if (rlcap->mark_redact) {
1227		data->type = REDACT;
1228		data->sru.redact.datablksz = redact_block_get_size(rb);
1229	} else {
1230		data->type = PREVIOUSLY_REDACTED;
1231	}
1232	bqueue_enqueue(rlcap->q, data, sizeof (*data));
1233
1234	return (0);
1235}
1236
1237/*
1238 * This function kicks off the traverse_dataset.  It also handles setting the
1239 * error code of the thread in case something goes wrong, and pushes the End of
1240 * Stream record when the traverse_dataset call has finished.
1241 */
1242static __attribute__((noreturn)) void
1243send_traverse_thread(void *arg)
1244{
1245	struct send_thread_arg *st_arg = arg;
1246	int err = 0;
1247	struct send_range *data;
1248	fstrans_cookie_t cookie = spl_fstrans_mark();
1249
1250	err = traverse_dataset_resume(st_arg->os->os_dsl_dataset,
1251	    st_arg->fromtxg, &st_arg->resume,
1252	    st_arg->flags, send_cb, st_arg);
1253
1254	if (err != EINTR)
1255		st_arg->error_code = err;
1256	data = range_alloc(DATA, 0, 0, 0, B_TRUE);
1257	bqueue_enqueue_flush(&st_arg->q, data, sizeof (*data));
1258	spl_fstrans_unmark(cookie);
1259	thread_exit();
1260}
1261
1262/*
1263 * Utility function that causes End of Stream records to compare after of all
1264 * others, so that other threads' comparison logic can stay simple.
1265 */
1266static int __attribute__((unused))
1267send_range_after(const struct send_range *from, const struct send_range *to)
1268{
1269	if (from->eos_marker == B_TRUE)
1270		return (1);
1271	if (to->eos_marker == B_TRUE)
1272		return (-1);
1273
1274	uint64_t from_obj = from->object;
1275	uint64_t from_end_obj = from->object + 1;
1276	uint64_t to_obj = to->object;
1277	uint64_t to_end_obj = to->object + 1;
1278	if (from_obj == 0) {
1279		ASSERT(from->type == HOLE || from->type == OBJECT_RANGE);
1280		from_obj = from->start_blkid << DNODES_PER_BLOCK_SHIFT;
1281		from_end_obj = from->end_blkid << DNODES_PER_BLOCK_SHIFT;
1282	}
1283	if (to_obj == 0) {
1284		ASSERT(to->type == HOLE || to->type == OBJECT_RANGE);
1285		to_obj = to->start_blkid << DNODES_PER_BLOCK_SHIFT;
1286		to_end_obj = to->end_blkid << DNODES_PER_BLOCK_SHIFT;
1287	}
1288
1289	if (from_end_obj <= to_obj)
1290		return (-1);
1291	if (from_obj >= to_end_obj)
1292		return (1);
1293	int64_t cmp = TREE_CMP(to->type == OBJECT_RANGE, from->type ==
1294	    OBJECT_RANGE);
1295	if (unlikely(cmp))
1296		return (cmp);
1297	cmp = TREE_CMP(to->type == OBJECT, from->type == OBJECT);
1298	if (unlikely(cmp))
1299		return (cmp);
1300	if (from->end_blkid <= to->start_blkid)
1301		return (-1);
1302	if (from->start_blkid >= to->end_blkid)
1303		return (1);
1304	return (0);
1305}
1306
1307/*
1308 * Pop the new data off the queue, check that the records we receive are in
1309 * the right order, but do not free the old data.  This is used so that the
1310 * records can be sent on to the main thread without copying the data.
1311 */
1312static struct send_range *
1313get_next_range_nofree(bqueue_t *bq, struct send_range *prev)
1314{
1315	struct send_range *next = bqueue_dequeue(bq);
1316	ASSERT3S(send_range_after(prev, next), ==, -1);
1317	return (next);
1318}
1319
1320/*
1321 * Pop the new data off the queue, check that the records we receive are in
1322 * the right order, and free the old data.
1323 */
1324static struct send_range *
1325get_next_range(bqueue_t *bq, struct send_range *prev)
1326{
1327	struct send_range *next = get_next_range_nofree(bq, prev);
1328	range_free(prev);
1329	return (next);
1330}
1331
1332static __attribute__((noreturn)) void
1333redact_list_thread(void *arg)
1334{
1335	struct redact_list_thread_arg *rlt_arg = arg;
1336	struct send_range *record;
1337	fstrans_cookie_t cookie = spl_fstrans_mark();
1338	if (rlt_arg->rl != NULL) {
1339		struct redact_list_cb_arg rlcba = {0};
1340		rlcba.cancel = &rlt_arg->cancel;
1341		rlcba.q = &rlt_arg->q;
1342		rlcba.num_blocks_visited = rlt_arg->num_blocks_visited;
1343		rlcba.mark_redact = rlt_arg->mark_redact;
1344		int err = dsl_redaction_list_traverse(rlt_arg->rl,
1345		    &rlt_arg->resume, redact_list_cb, &rlcba);
1346		if (err != EINTR)
1347			rlt_arg->error_code = err;
1348	}
1349	record = range_alloc(DATA, 0, 0, 0, B_TRUE);
1350	bqueue_enqueue_flush(&rlt_arg->q, record, sizeof (*record));
1351	spl_fstrans_unmark(cookie);
1352
1353	thread_exit();
1354}
1355
1356/*
1357 * Compare the start point of the two provided ranges. End of stream ranges
1358 * compare last, objects compare before any data or hole inside that object and
1359 * multi-object holes that start at the same object.
1360 */
1361static int
1362send_range_start_compare(struct send_range *r1, struct send_range *r2)
1363{
1364	uint64_t r1_objequiv = r1->object;
1365	uint64_t r1_l0equiv = r1->start_blkid;
1366	uint64_t r2_objequiv = r2->object;
1367	uint64_t r2_l0equiv = r2->start_blkid;
1368	int64_t cmp = TREE_CMP(r1->eos_marker, r2->eos_marker);
1369	if (unlikely(cmp))
1370		return (cmp);
1371	if (r1->object == 0) {
1372		r1_objequiv = r1->start_blkid * DNODES_PER_BLOCK;
1373		r1_l0equiv = 0;
1374	}
1375	if (r2->object == 0) {
1376		r2_objequiv = r2->start_blkid * DNODES_PER_BLOCK;
1377		r2_l0equiv = 0;
1378	}
1379
1380	cmp = TREE_CMP(r1_objequiv, r2_objequiv);
1381	if (likely(cmp))
1382		return (cmp);
1383	cmp = TREE_CMP(r2->type == OBJECT_RANGE, r1->type == OBJECT_RANGE);
1384	if (unlikely(cmp))
1385		return (cmp);
1386	cmp = TREE_CMP(r2->type == OBJECT, r1->type == OBJECT);
1387	if (unlikely(cmp))
1388		return (cmp);
1389
1390	return (TREE_CMP(r1_l0equiv, r2_l0equiv));
1391}
1392
1393enum q_idx {
1394	REDACT_IDX = 0,
1395	TO_IDX,
1396	FROM_IDX,
1397	NUM_THREADS
1398};
1399
1400/*
1401 * This function returns the next range the send_merge_thread should operate on.
1402 * The inputs are two arrays; the first one stores the range at the front of the
1403 * queues stored in the second one.  The ranges are sorted in descending
1404 * priority order; the metadata from earlier ranges overrules metadata from
1405 * later ranges.  out_mask is used to return which threads the ranges came from;
1406 * bit i is set if ranges[i] started at the same place as the returned range.
1407 *
1408 * This code is not hardcoded to compare a specific number of threads; it could
1409 * be used with any number, just by changing the q_idx enum.
1410 *
1411 * The "next range" is the one with the earliest start; if two starts are equal,
1412 * the highest-priority range is the next to operate on.  If a higher-priority
1413 * range starts in the middle of the first range, then the first range will be
1414 * truncated to end where the higher-priority range starts, and we will operate
1415 * on that one next time.   In this way, we make sure that each block covered by
1416 * some range gets covered by a returned range, and each block covered is
1417 * returned using the metadata of the highest-priority range it appears in.
1418 *
1419 * For example, if the three ranges at the front of the queues were [2,4),
1420 * [3,5), and [1,3), then the ranges returned would be [1,2) with the metadata
1421 * from the third range, [2,4) with the metadata from the first range, and then
1422 * [4,5) with the metadata from the second.
1423 */
1424static struct send_range *
1425find_next_range(struct send_range **ranges, bqueue_t **qs, uint64_t *out_mask)
1426{
1427	int idx = 0; // index of the range with the earliest start
1428	int i;
1429	uint64_t bmask = 0;
1430	for (i = 1; i < NUM_THREADS; i++) {
1431		if (send_range_start_compare(ranges[i], ranges[idx]) < 0)
1432			idx = i;
1433	}
1434	if (ranges[idx]->eos_marker) {
1435		struct send_range *ret = range_alloc(DATA, 0, 0, 0, B_TRUE);
1436		*out_mask = 0;
1437		return (ret);
1438	}
1439	/*
1440	 * Find all the ranges that start at that same point.
1441	 */
1442	for (i = 0; i < NUM_THREADS; i++) {
1443		if (send_range_start_compare(ranges[i], ranges[idx]) == 0)
1444			bmask |= 1 << i;
1445	}
1446	*out_mask = bmask;
1447	/*
1448	 * OBJECT_RANGE records only come from the TO thread, and should always
1449	 * be treated as overlapping with nothing and sent on immediately.  They
1450	 * are only used in raw sends, and are never redacted.
1451	 */
1452	if (ranges[idx]->type == OBJECT_RANGE) {
1453		ASSERT3U(idx, ==, TO_IDX);
1454		ASSERT3U(*out_mask, ==, 1 << TO_IDX);
1455		struct send_range *ret = ranges[idx];
1456		ranges[idx] = get_next_range_nofree(qs[idx], ranges[idx]);
1457		return (ret);
1458	}
1459	/*
1460	 * Find the first start or end point after the start of the first range.
1461	 */
1462	uint64_t first_change = ranges[idx]->end_blkid;
1463	for (i = 0; i < NUM_THREADS; i++) {
1464		if (i == idx || ranges[i]->eos_marker ||
1465		    ranges[i]->object > ranges[idx]->object ||
1466		    ranges[i]->object == DMU_META_DNODE_OBJECT)
1467			continue;
1468		ASSERT3U(ranges[i]->object, ==, ranges[idx]->object);
1469		if (first_change > ranges[i]->start_blkid &&
1470		    (bmask & (1 << i)) == 0)
1471			first_change = ranges[i]->start_blkid;
1472		else if (first_change > ranges[i]->end_blkid)
1473			first_change = ranges[i]->end_blkid;
1474	}
1475	/*
1476	 * Update all ranges to no longer overlap with the range we're
1477	 * returning. All such ranges must start at the same place as the range
1478	 * being returned, and end at or after first_change. Thus we update
1479	 * their start to first_change. If that makes them size 0, then free
1480	 * them and pull a new range from that thread.
1481	 */
1482	for (i = 0; i < NUM_THREADS; i++) {
1483		if (i == idx || (bmask & (1 << i)) == 0)
1484			continue;
1485		ASSERT3U(first_change, >, ranges[i]->start_blkid);
1486		ranges[i]->start_blkid = first_change;
1487		ASSERT3U(ranges[i]->start_blkid, <=, ranges[i]->end_blkid);
1488		if (ranges[i]->start_blkid == ranges[i]->end_blkid)
1489			ranges[i] = get_next_range(qs[i], ranges[i]);
1490	}
1491	/*
1492	 * Short-circuit the simple case; if the range doesn't overlap with
1493	 * anything else, or it only overlaps with things that start at the same
1494	 * place and are longer, send it on.
1495	 */
1496	if (first_change == ranges[idx]->end_blkid) {
1497		struct send_range *ret = ranges[idx];
1498		ranges[idx] = get_next_range_nofree(qs[idx], ranges[idx]);
1499		return (ret);
1500	}
1501
1502	/*
1503	 * Otherwise, return a truncated copy of ranges[idx] and move the start
1504	 * of ranges[idx] back to first_change.
1505	 */
1506	struct send_range *ret = kmem_alloc(sizeof (*ret), KM_SLEEP);
1507	*ret = *ranges[idx];
1508	ret->end_blkid = first_change;
1509	ranges[idx]->start_blkid = first_change;
1510	return (ret);
1511}
1512
1513#define	FROM_AND_REDACT_BITS ((1 << REDACT_IDX) | (1 << FROM_IDX))
1514
1515/*
1516 * Merge the results from the from thread and the to thread, and then hand the
1517 * records off to send_prefetch_thread to prefetch them.  If this is not a
1518 * send from a redaction bookmark, the from thread will push an end of stream
1519 * record and stop, and we'll just send everything that was changed in the
1520 * to_ds since the ancestor's creation txg. If it is, then since
1521 * traverse_dataset has a canonical order, we can compare each change as
1522 * they're pulled off the queues.  That will give us a stream that is
1523 * appropriately sorted, and covers all records.  In addition, we pull the
1524 * data from the redact_list_thread and use that to determine which blocks
1525 * should be redacted.
1526 */
1527static __attribute__((noreturn)) void
1528send_merge_thread(void *arg)
1529{
1530	struct send_merge_thread_arg *smt_arg = arg;
1531	struct send_range *front_ranges[NUM_THREADS];
1532	bqueue_t *queues[NUM_THREADS];
1533	int err = 0;
1534	fstrans_cookie_t cookie = spl_fstrans_mark();
1535
1536	if (smt_arg->redact_arg == NULL) {
1537		front_ranges[REDACT_IDX] =
1538		    kmem_zalloc(sizeof (struct send_range), KM_SLEEP);
1539		front_ranges[REDACT_IDX]->eos_marker = B_TRUE;
1540		front_ranges[REDACT_IDX]->type = REDACT;
1541		queues[REDACT_IDX] = NULL;
1542	} else {
1543		front_ranges[REDACT_IDX] =
1544		    bqueue_dequeue(&smt_arg->redact_arg->q);
1545		queues[REDACT_IDX] = &smt_arg->redact_arg->q;
1546	}
1547	front_ranges[TO_IDX] = bqueue_dequeue(&smt_arg->to_arg->q);
1548	queues[TO_IDX] = &smt_arg->to_arg->q;
1549	front_ranges[FROM_IDX] = bqueue_dequeue(&smt_arg->from_arg->q);
1550	queues[FROM_IDX] = &smt_arg->from_arg->q;
1551	uint64_t mask = 0;
1552	struct send_range *range;
1553	for (range = find_next_range(front_ranges, queues, &mask);
1554	    !range->eos_marker && err == 0 && !smt_arg->cancel;
1555	    range = find_next_range(front_ranges, queues, &mask)) {
1556		/*
1557		 * If the range in question was in both the from redact bookmark
1558		 * and the bookmark we're using to redact, then don't send it.
1559		 * It's already redacted on the receiving system, so a redaction
1560		 * record would be redundant.
1561		 */
1562		if ((mask & FROM_AND_REDACT_BITS) == FROM_AND_REDACT_BITS) {
1563			ASSERT3U(range->type, ==, REDACT);
1564			range_free(range);
1565			continue;
1566		}
1567		bqueue_enqueue(&smt_arg->q, range, sizeof (*range));
1568
1569		if (smt_arg->to_arg->error_code != 0) {
1570			err = smt_arg->to_arg->error_code;
1571		} else if (smt_arg->from_arg->error_code != 0) {
1572			err = smt_arg->from_arg->error_code;
1573		} else if (smt_arg->redact_arg != NULL &&
1574		    smt_arg->redact_arg->error_code != 0) {
1575			err = smt_arg->redact_arg->error_code;
1576		}
1577	}
1578	if (smt_arg->cancel && err == 0)
1579		err = SET_ERROR(EINTR);
1580	smt_arg->error = err;
1581	if (smt_arg->error != 0) {
1582		smt_arg->to_arg->cancel = B_TRUE;
1583		smt_arg->from_arg->cancel = B_TRUE;
1584		if (smt_arg->redact_arg != NULL)
1585			smt_arg->redact_arg->cancel = B_TRUE;
1586	}
1587	for (int i = 0; i < NUM_THREADS; i++) {
1588		while (!front_ranges[i]->eos_marker) {
1589			front_ranges[i] = get_next_range(queues[i],
1590			    front_ranges[i]);
1591		}
1592		range_free(front_ranges[i]);
1593	}
1594	range->eos_marker = B_TRUE;
1595	bqueue_enqueue_flush(&smt_arg->q, range, 1);
1596	spl_fstrans_unmark(cookie);
1597	thread_exit();
1598}
1599
1600struct send_reader_thread_arg {
1601	struct send_merge_thread_arg *smta;
1602	bqueue_t q;
1603	boolean_t cancel;
1604	boolean_t issue_reads;
1605	uint64_t featureflags;
1606	int error;
1607};
1608
1609static void
1610dmu_send_read_done(zio_t *zio)
1611{
1612	struct send_range *range = zio->io_private;
1613
1614	mutex_enter(&range->sru.data.lock);
1615	if (zio->io_error != 0) {
1616		abd_free(range->sru.data.abd);
1617		range->sru.data.abd = NULL;
1618		range->sru.data.io_err = zio->io_error;
1619	}
1620
1621	ASSERT(range->sru.data.io_outstanding);
1622	range->sru.data.io_outstanding = B_FALSE;
1623	cv_broadcast(&range->sru.data.cv);
1624	mutex_exit(&range->sru.data.lock);
1625}
1626
1627static void
1628issue_data_read(struct send_reader_thread_arg *srta, struct send_range *range)
1629{
1630	struct srd *srdp = &range->sru.data;
1631	blkptr_t *bp = &srdp->bp;
1632	objset_t *os = srta->smta->os;
1633
1634	ASSERT3U(range->type, ==, DATA);
1635	ASSERT3U(range->start_blkid + 1, ==, range->end_blkid);
1636	/*
1637	 * If we have large blocks stored on disk but
1638	 * the send flags don't allow us to send large
1639	 * blocks, we split the data from the arc buf
1640	 * into chunks.
1641	 */
1642	boolean_t split_large_blocks =
1643	    srdp->datablksz > SPA_OLD_MAXBLOCKSIZE &&
1644	    !(srta->featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS);
1645	/*
1646	 * We should only request compressed data from the ARC if all
1647	 * the following are true:
1648	 *  - stream compression was requested
1649	 *  - we aren't splitting large blocks into smaller chunks
1650	 *  - the data won't need to be byteswapped before sending
1651	 *  - this isn't an embedded block
1652	 *  - this isn't metadata (if receiving on a different endian
1653	 *    system it can be byteswapped more easily)
1654	 */
1655	boolean_t request_compressed =
1656	    (srta->featureflags & DMU_BACKUP_FEATURE_COMPRESSED) &&
1657	    !split_large_blocks && !BP_SHOULD_BYTESWAP(bp) &&
1658	    !BP_IS_EMBEDDED(bp) && !DMU_OT_IS_METADATA(BP_GET_TYPE(bp));
1659
1660	zio_flag_t zioflags = ZIO_FLAG_CANFAIL;
1661
1662	if (srta->featureflags & DMU_BACKUP_FEATURE_RAW) {
1663		zioflags |= ZIO_FLAG_RAW;
1664		srdp->io_compressed = B_TRUE;
1665	} else if (request_compressed) {
1666		zioflags |= ZIO_FLAG_RAW_COMPRESS;
1667		srdp->io_compressed = B_TRUE;
1668	}
1669
1670	srdp->datasz = (zioflags & ZIO_FLAG_RAW_COMPRESS) ?
1671	    BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp);
1672
1673	if (!srta->issue_reads)
1674		return;
1675	if (BP_IS_REDACTED(bp))
1676		return;
1677	if (send_do_embed(bp, srta->featureflags))
1678		return;
1679
1680	zbookmark_phys_t zb = {
1681	    .zb_objset = dmu_objset_id(os),
1682	    .zb_object = range->object,
1683	    .zb_level = 0,
1684	    .zb_blkid = range->start_blkid,
1685	};
1686
1687	arc_flags_t aflags = ARC_FLAG_CACHED_ONLY;
1688
1689	int arc_err = arc_read(NULL, os->os_spa, bp,
1690	    arc_getbuf_func, &srdp->abuf, ZIO_PRIORITY_ASYNC_READ,
1691	    zioflags, &aflags, &zb);
1692	/*
1693	 * If the data is not already cached in the ARC, we read directly
1694	 * from zio.  This avoids the performance overhead of adding a new
1695	 * entry to the ARC, and we also avoid polluting the ARC cache with
1696	 * data that is not likely to be used in the future.
1697	 */
1698	if (arc_err != 0) {
1699		srdp->abd = abd_alloc_linear(srdp->datasz, B_FALSE);
1700		srdp->io_outstanding = B_TRUE;
1701		zio_nowait(zio_read(NULL, os->os_spa, bp, srdp->abd,
1702		    srdp->datasz, dmu_send_read_done, range,
1703		    ZIO_PRIORITY_ASYNC_READ, zioflags, &zb));
1704	}
1705}
1706
1707/*
1708 * Create a new record with the given values.
1709 */
1710static void
1711enqueue_range(struct send_reader_thread_arg *srta, bqueue_t *q, dnode_t *dn,
1712    uint64_t blkid, uint64_t count, const blkptr_t *bp, uint32_t datablksz)
1713{
1714	enum type range_type = (bp == NULL || BP_IS_HOLE(bp) ? HOLE :
1715	    (BP_IS_REDACTED(bp) ? REDACT : DATA));
1716
1717	struct send_range *range = range_alloc(range_type, dn->dn_object,
1718	    blkid, blkid + count, B_FALSE);
1719
1720	if (blkid == DMU_SPILL_BLKID) {
1721		ASSERT3P(bp, !=, NULL);
1722		ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_SA);
1723	}
1724
1725	switch (range_type) {
1726	case HOLE:
1727		range->sru.hole.datablksz = datablksz;
1728		break;
1729	case DATA:
1730		ASSERT3U(count, ==, 1);
1731		range->sru.data.datablksz = datablksz;
1732		range->sru.data.obj_type = dn->dn_type;
1733		range->sru.data.bp = *bp;
1734		issue_data_read(srta, range);
1735		break;
1736	case REDACT:
1737		range->sru.redact.datablksz = datablksz;
1738		break;
1739	default:
1740		break;
1741	}
1742	bqueue_enqueue(q, range, datablksz);
1743}
1744
1745/*
1746 * This thread is responsible for two things: First, it retrieves the correct
1747 * blkptr in the to ds if we need to send the data because of something from
1748 * the from thread.  As a result of this, we're the first ones to discover that
1749 * some indirect blocks can be discarded because they're not holes. Second,
1750 * it issues prefetches for the data we need to send.
1751 */
1752static __attribute__((noreturn)) void
1753send_reader_thread(void *arg)
1754{
1755	struct send_reader_thread_arg *srta = arg;
1756	struct send_merge_thread_arg *smta = srta->smta;
1757	bqueue_t *inq = &smta->q;
1758	bqueue_t *outq = &srta->q;
1759	objset_t *os = smta->os;
1760	fstrans_cookie_t cookie = spl_fstrans_mark();
1761	struct send_range *range = bqueue_dequeue(inq);
1762	int err = 0;
1763
1764	/*
1765	 * If the record we're analyzing is from a redaction bookmark from the
1766	 * fromds, then we need to know whether or not it exists in the tods so
1767	 * we know whether to create records for it or not. If it does, we need
1768	 * the datablksz so we can generate an appropriate record for it.
1769	 * Finally, if it isn't redacted, we need the blkptr so that we can send
1770	 * a WRITE record containing the actual data.
1771	 */
1772	uint64_t last_obj = UINT64_MAX;
1773	uint64_t last_obj_exists = B_TRUE;
1774	while (!range->eos_marker && !srta->cancel && smta->error == 0 &&
1775	    err == 0) {
1776		switch (range->type) {
1777		case DATA:
1778			issue_data_read(srta, range);
1779			bqueue_enqueue(outq, range, range->sru.data.datablksz);
1780			range = get_next_range_nofree(inq, range);
1781			break;
1782		case HOLE:
1783		case OBJECT:
1784		case OBJECT_RANGE:
1785		case REDACT: // Redacted blocks must exist
1786			bqueue_enqueue(outq, range, sizeof (*range));
1787			range = get_next_range_nofree(inq, range);
1788			break;
1789		case PREVIOUSLY_REDACTED: {
1790			/*
1791			 * This entry came from the "from bookmark" when
1792			 * sending from a bookmark that has a redaction
1793			 * list.  We need to check if this object/blkid
1794			 * exists in the target ("to") dataset, and if
1795			 * not then we drop this entry.  We also need
1796			 * to fill in the block pointer so that we know
1797			 * what to prefetch.
1798			 *
1799			 * To accomplish the above, we first cache whether or
1800			 * not the last object we examined exists.  If it
1801			 * doesn't, we can drop this record. If it does, we hold
1802			 * the dnode and use it to call dbuf_dnode_findbp. We do
1803			 * this instead of dbuf_bookmark_findbp because we will
1804			 * often operate on large ranges, and holding the dnode
1805			 * once is more efficient.
1806			 */
1807			boolean_t object_exists = B_TRUE;
1808			/*
1809			 * If the data is redacted, we only care if it exists,
1810			 * so that we don't send records for objects that have
1811			 * been deleted.
1812			 */
1813			dnode_t *dn;
1814			if (range->object == last_obj && !last_obj_exists) {
1815				/*
1816				 * If we're still examining the same object as
1817				 * previously, and it doesn't exist, we don't
1818				 * need to call dbuf_bookmark_findbp.
1819				 */
1820				object_exists = B_FALSE;
1821			} else {
1822				err = dnode_hold(os, range->object, FTAG, &dn);
1823				if (err == ENOENT) {
1824					object_exists = B_FALSE;
1825					err = 0;
1826				}
1827				last_obj = range->object;
1828				last_obj_exists = object_exists;
1829			}
1830
1831			if (err != 0) {
1832				break;
1833			} else if (!object_exists) {
1834				/*
1835				 * The block was modified, but doesn't
1836				 * exist in the to dataset; if it was
1837				 * deleted in the to dataset, then we'll
1838				 * visit the hole bp for it at some point.
1839				 */
1840				range = get_next_range(inq, range);
1841				continue;
1842			}
1843			uint64_t file_max =
1844			    MIN(dn->dn_maxblkid, range->end_blkid);
1845			/*
1846			 * The object exists, so we need to try to find the
1847			 * blkptr for each block in the range we're processing.
1848			 */
1849			rw_enter(&dn->dn_struct_rwlock, RW_READER);
1850			for (uint64_t blkid = range->start_blkid;
1851			    blkid < file_max; blkid++) {
1852				blkptr_t bp;
1853				uint32_t datablksz =
1854				    dn->dn_phys->dn_datablkszsec <<
1855				    SPA_MINBLOCKSHIFT;
1856				uint64_t offset = blkid * datablksz;
1857				/*
1858				 * This call finds the next non-hole block in
1859				 * the object. This is to prevent a
1860				 * performance problem where we're unredacting
1861				 * a large hole. Using dnode_next_offset to
1862				 * skip over the large hole avoids iterating
1863				 * over every block in it.
1864				 */
1865				err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK,
1866				    &offset, 1, 1, 0);
1867				if (err == ESRCH) {
1868					offset = UINT64_MAX;
1869					err = 0;
1870				} else if (err != 0) {
1871					break;
1872				}
1873				if (offset != blkid * datablksz) {
1874					/*
1875					 * if there is a hole from here
1876					 * (blkid) to offset
1877					 */
1878					offset = MIN(offset, file_max *
1879					    datablksz);
1880					uint64_t nblks = (offset / datablksz) -
1881					    blkid;
1882					enqueue_range(srta, outq, dn, blkid,
1883					    nblks, NULL, datablksz);
1884					blkid += nblks;
1885				}
1886				if (blkid >= file_max)
1887					break;
1888				err = dbuf_dnode_findbp(dn, 0, blkid, &bp,
1889				    NULL, NULL);
1890				if (err != 0)
1891					break;
1892				ASSERT(!BP_IS_HOLE(&bp));
1893				enqueue_range(srta, outq, dn, blkid, 1, &bp,
1894				    datablksz);
1895			}
1896			rw_exit(&dn->dn_struct_rwlock);
1897			dnode_rele(dn, FTAG);
1898			range = get_next_range(inq, range);
1899		}
1900		}
1901	}
1902	if (srta->cancel || err != 0) {
1903		smta->cancel = B_TRUE;
1904		srta->error = err;
1905	} else if (smta->error != 0) {
1906		srta->error = smta->error;
1907	}
1908	while (!range->eos_marker)
1909		range = get_next_range(inq, range);
1910
1911	bqueue_enqueue_flush(outq, range, 1);
1912	spl_fstrans_unmark(cookie);
1913	thread_exit();
1914}
1915
1916#define	NUM_SNAPS_NOT_REDACTED UINT64_MAX
1917
1918struct dmu_send_params {
1919	/* Pool args */
1920	const void *tag; // Tag dp was held with, will be used to release dp.
1921	dsl_pool_t *dp;
1922	/* To snapshot args */
1923	const char *tosnap;
1924	dsl_dataset_t *to_ds;
1925	/* From snapshot args */
1926	zfs_bookmark_phys_t ancestor_zb;
1927	uint64_t *fromredactsnaps;
1928	/* NUM_SNAPS_NOT_REDACTED if not sending from redaction bookmark */
1929	uint64_t numfromredactsnaps;
1930	/* Stream params */
1931	boolean_t is_clone;
1932	boolean_t embedok;
1933	boolean_t large_block_ok;
1934	boolean_t compressok;
1935	boolean_t rawok;
1936	boolean_t savedok;
1937	uint64_t resumeobj;
1938	uint64_t resumeoff;
1939	uint64_t saved_guid;
1940	zfs_bookmark_phys_t *redactbook;
1941	/* Stream output params */
1942	dmu_send_outparams_t *dso;
1943
1944	/* Stream progress params */
1945	offset_t *off;
1946	int outfd;
1947	char saved_toname[MAXNAMELEN];
1948};
1949
1950static int
1951setup_featureflags(struct dmu_send_params *dspp, objset_t *os,
1952    uint64_t *featureflags)
1953{
1954	dsl_dataset_t *to_ds = dspp->to_ds;
1955	dsl_pool_t *dp = dspp->dp;
1956
1957	if (dmu_objset_type(os) == DMU_OST_ZFS) {
1958		uint64_t version;
1959		if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0)
1960			return (SET_ERROR(EINVAL));
1961
1962		if (version >= ZPL_VERSION_SA)
1963			*featureflags |= DMU_BACKUP_FEATURE_SA_SPILL;
1964	}
1965
1966	/* raw sends imply large_block_ok */
1967	if ((dspp->rawok || dspp->large_block_ok) &&
1968	    dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_LARGE_BLOCKS)) {
1969		*featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS;
1970	}
1971
1972	/* encrypted datasets will not have embedded blocks */
1973	if ((dspp->embedok || dspp->rawok) && !os->os_encrypted &&
1974	    spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) {
1975		*featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA;
1976	}
1977
1978	/* raw send implies compressok */
1979	if (dspp->compressok || dspp->rawok)
1980		*featureflags |= DMU_BACKUP_FEATURE_COMPRESSED;
1981
1982	if (dspp->rawok && os->os_encrypted)
1983		*featureflags |= DMU_BACKUP_FEATURE_RAW;
1984
1985	if ((*featureflags &
1986	    (DMU_BACKUP_FEATURE_EMBED_DATA | DMU_BACKUP_FEATURE_COMPRESSED |
1987	    DMU_BACKUP_FEATURE_RAW)) != 0 &&
1988	    spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) {
1989		*featureflags |= DMU_BACKUP_FEATURE_LZ4;
1990	}
1991
1992	/*
1993	 * We specifically do not include DMU_BACKUP_FEATURE_EMBED_DATA here to
1994	 * allow sending ZSTD compressed datasets to a receiver that does not
1995	 * support ZSTD
1996	 */
1997	if ((*featureflags &
1998	    (DMU_BACKUP_FEATURE_COMPRESSED | DMU_BACKUP_FEATURE_RAW)) != 0 &&
1999	    dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_ZSTD_COMPRESS)) {
2000		*featureflags |= DMU_BACKUP_FEATURE_ZSTD;
2001	}
2002
2003	if (dspp->resumeobj != 0 || dspp->resumeoff != 0) {
2004		*featureflags |= DMU_BACKUP_FEATURE_RESUMING;
2005	}
2006
2007	if (dspp->redactbook != NULL) {
2008		*featureflags |= DMU_BACKUP_FEATURE_REDACTED;
2009	}
2010
2011	if (dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_LARGE_DNODE)) {
2012		*featureflags |= DMU_BACKUP_FEATURE_LARGE_DNODE;
2013	}
2014	return (0);
2015}
2016
2017static dmu_replay_record_t *
2018create_begin_record(struct dmu_send_params *dspp, objset_t *os,
2019    uint64_t featureflags)
2020{
2021	dmu_replay_record_t *drr = kmem_zalloc(sizeof (dmu_replay_record_t),
2022	    KM_SLEEP);
2023	drr->drr_type = DRR_BEGIN;
2024
2025	struct drr_begin *drrb = &drr->drr_u.drr_begin;
2026	dsl_dataset_t *to_ds = dspp->to_ds;
2027
2028	drrb->drr_magic = DMU_BACKUP_MAGIC;
2029	drrb->drr_creation_time = dsl_dataset_phys(to_ds)->ds_creation_time;
2030	drrb->drr_type = dmu_objset_type(os);
2031	drrb->drr_toguid = dsl_dataset_phys(to_ds)->ds_guid;
2032	drrb->drr_fromguid = dspp->ancestor_zb.zbm_guid;
2033
2034	DMU_SET_STREAM_HDRTYPE(drrb->drr_versioninfo, DMU_SUBSTREAM);
2035	DMU_SET_FEATUREFLAGS(drrb->drr_versioninfo, featureflags);
2036
2037	if (dspp->is_clone)
2038		drrb->drr_flags |= DRR_FLAG_CLONE;
2039	if (dsl_dataset_phys(dspp->to_ds)->ds_flags & DS_FLAG_CI_DATASET)
2040		drrb->drr_flags |= DRR_FLAG_CI_DATA;
2041	if (zfs_send_set_freerecords_bit)
2042		drrb->drr_flags |= DRR_FLAG_FREERECORDS;
2043	drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_SPILL_BLOCK;
2044
2045	if (dspp->savedok) {
2046		drrb->drr_toguid = dspp->saved_guid;
2047		strlcpy(drrb->drr_toname, dspp->saved_toname,
2048		    sizeof (drrb->drr_toname));
2049	} else {
2050		dsl_dataset_name(to_ds, drrb->drr_toname);
2051		if (!to_ds->ds_is_snapshot) {
2052			(void) strlcat(drrb->drr_toname, "@--head--",
2053			    sizeof (drrb->drr_toname));
2054		}
2055	}
2056	return (drr);
2057}
2058
2059static void
2060setup_to_thread(struct send_thread_arg *to_arg, objset_t *to_os,
2061    dmu_sendstatus_t *dssp, uint64_t fromtxg, boolean_t rawok)
2062{
2063	VERIFY0(bqueue_init(&to_arg->q, zfs_send_no_prefetch_queue_ff,
2064	    MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2065	    offsetof(struct send_range, ln)));
2066	to_arg->error_code = 0;
2067	to_arg->cancel = B_FALSE;
2068	to_arg->os = to_os;
2069	to_arg->fromtxg = fromtxg;
2070	to_arg->flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA;
2071	if (rawok)
2072		to_arg->flags |= TRAVERSE_NO_DECRYPT;
2073	if (zfs_send_corrupt_data)
2074		to_arg->flags |= TRAVERSE_HARD;
2075	to_arg->num_blocks_visited = &dssp->dss_blocks;
2076	(void) thread_create(NULL, 0, send_traverse_thread, to_arg, 0,
2077	    curproc, TS_RUN, minclsyspri);
2078}
2079
2080static void
2081setup_from_thread(struct redact_list_thread_arg *from_arg,
2082    redaction_list_t *from_rl, dmu_sendstatus_t *dssp)
2083{
2084	VERIFY0(bqueue_init(&from_arg->q, zfs_send_no_prefetch_queue_ff,
2085	    MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2086	    offsetof(struct send_range, ln)));
2087	from_arg->error_code = 0;
2088	from_arg->cancel = B_FALSE;
2089	from_arg->rl = from_rl;
2090	from_arg->mark_redact = B_FALSE;
2091	from_arg->num_blocks_visited = &dssp->dss_blocks;
2092	/*
2093	 * If from_ds is null, send_traverse_thread just returns success and
2094	 * enqueues an eos marker.
2095	 */
2096	(void) thread_create(NULL, 0, redact_list_thread, from_arg, 0,
2097	    curproc, TS_RUN, minclsyspri);
2098}
2099
2100static void
2101setup_redact_list_thread(struct redact_list_thread_arg *rlt_arg,
2102    struct dmu_send_params *dspp, redaction_list_t *rl, dmu_sendstatus_t *dssp)
2103{
2104	if (dspp->redactbook == NULL)
2105		return;
2106
2107	rlt_arg->cancel = B_FALSE;
2108	VERIFY0(bqueue_init(&rlt_arg->q, zfs_send_no_prefetch_queue_ff,
2109	    MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2110	    offsetof(struct send_range, ln)));
2111	rlt_arg->error_code = 0;
2112	rlt_arg->mark_redact = B_TRUE;
2113	rlt_arg->rl = rl;
2114	rlt_arg->num_blocks_visited = &dssp->dss_blocks;
2115
2116	(void) thread_create(NULL, 0, redact_list_thread, rlt_arg, 0,
2117	    curproc, TS_RUN, minclsyspri);
2118}
2119
2120static void
2121setup_merge_thread(struct send_merge_thread_arg *smt_arg,
2122    struct dmu_send_params *dspp, struct redact_list_thread_arg *from_arg,
2123    struct send_thread_arg *to_arg, struct redact_list_thread_arg *rlt_arg,
2124    objset_t *os)
2125{
2126	VERIFY0(bqueue_init(&smt_arg->q, zfs_send_no_prefetch_queue_ff,
2127	    MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2128	    offsetof(struct send_range, ln)));
2129	smt_arg->cancel = B_FALSE;
2130	smt_arg->error = 0;
2131	smt_arg->from_arg = from_arg;
2132	smt_arg->to_arg = to_arg;
2133	if (dspp->redactbook != NULL)
2134		smt_arg->redact_arg = rlt_arg;
2135
2136	smt_arg->os = os;
2137	(void) thread_create(NULL, 0, send_merge_thread, smt_arg, 0, curproc,
2138	    TS_RUN, minclsyspri);
2139}
2140
2141static void
2142setup_reader_thread(struct send_reader_thread_arg *srt_arg,
2143    struct dmu_send_params *dspp, struct send_merge_thread_arg *smt_arg,
2144    uint64_t featureflags)
2145{
2146	VERIFY0(bqueue_init(&srt_arg->q, zfs_send_queue_ff,
2147	    MAX(zfs_send_queue_length, 2 * zfs_max_recordsize),
2148	    offsetof(struct send_range, ln)));
2149	srt_arg->smta = smt_arg;
2150	srt_arg->issue_reads = !dspp->dso->dso_dryrun;
2151	srt_arg->featureflags = featureflags;
2152	(void) thread_create(NULL, 0, send_reader_thread, srt_arg, 0,
2153	    curproc, TS_RUN, minclsyspri);
2154}
2155
2156static int
2157setup_resume_points(struct dmu_send_params *dspp,
2158    struct send_thread_arg *to_arg, struct redact_list_thread_arg *from_arg,
2159    struct redact_list_thread_arg *rlt_arg,
2160    struct send_merge_thread_arg *smt_arg, boolean_t resuming, objset_t *os,
2161    redaction_list_t *redact_rl, nvlist_t *nvl)
2162{
2163	(void) smt_arg;
2164	dsl_dataset_t *to_ds = dspp->to_ds;
2165	int err = 0;
2166
2167	uint64_t obj = 0;
2168	uint64_t blkid = 0;
2169	if (resuming) {
2170		obj = dspp->resumeobj;
2171		dmu_object_info_t to_doi;
2172		err = dmu_object_info(os, obj, &to_doi);
2173		if (err != 0)
2174			return (err);
2175
2176		blkid = dspp->resumeoff / to_doi.doi_data_block_size;
2177	}
2178	/*
2179	 * If we're resuming a redacted send, we can skip to the appropriate
2180	 * point in the redaction bookmark by binary searching through it.
2181	 */
2182	if (redact_rl != NULL) {
2183		SET_BOOKMARK(&rlt_arg->resume, to_ds->ds_object, obj, 0, blkid);
2184	}
2185
2186	SET_BOOKMARK(&to_arg->resume, to_ds->ds_object, obj, 0, blkid);
2187	if (nvlist_exists(nvl, BEGINNV_REDACT_FROM_SNAPS)) {
2188		uint64_t objset = dspp->ancestor_zb.zbm_redaction_obj;
2189		/*
2190		 * Note: If the resume point is in an object whose
2191		 * blocksize is different in the from vs to snapshots,
2192		 * we will have divided by the "wrong" blocksize.
2193		 * However, in this case fromsnap's send_cb() will
2194		 * detect that the blocksize has changed and therefore
2195		 * ignore this object.
2196		 *
2197		 * If we're resuming a send from a redaction bookmark,
2198		 * we still cannot accidentally suggest blocks behind
2199		 * the to_ds.  In addition, we know that any blocks in
2200		 * the object in the to_ds will have to be sent, since
2201		 * the size changed.  Therefore, we can't cause any harm
2202		 * this way either.
2203		 */
2204		SET_BOOKMARK(&from_arg->resume, objset, obj, 0, blkid);
2205	}
2206	if (resuming) {
2207		fnvlist_add_uint64(nvl, BEGINNV_RESUME_OBJECT, dspp->resumeobj);
2208		fnvlist_add_uint64(nvl, BEGINNV_RESUME_OFFSET, dspp->resumeoff);
2209	}
2210	return (0);
2211}
2212
2213static dmu_sendstatus_t *
2214setup_send_progress(struct dmu_send_params *dspp)
2215{
2216	dmu_sendstatus_t *dssp = kmem_zalloc(sizeof (*dssp), KM_SLEEP);
2217	dssp->dss_outfd = dspp->outfd;
2218	dssp->dss_off = dspp->off;
2219	dssp->dss_proc = curproc;
2220	mutex_enter(&dspp->to_ds->ds_sendstream_lock);
2221	list_insert_head(&dspp->to_ds->ds_sendstreams, dssp);
2222	mutex_exit(&dspp->to_ds->ds_sendstream_lock);
2223	return (dssp);
2224}
2225
2226/*
2227 * Actually do the bulk of the work in a zfs send.
2228 *
2229 * The idea is that we want to do a send from ancestor_zb to to_ds.  We also
2230 * want to not send any data that has been modified by all the datasets in
2231 * redactsnaparr, and store the list of blocks that are redacted in this way in
2232 * a bookmark named redactbook, created on the to_ds.  We do this by creating
2233 * several worker threads, whose function is described below.
2234 *
2235 * There are three cases.
2236 * The first case is a redacted zfs send.  In this case there are 5 threads.
2237 * The first thread is the to_ds traversal thread: it calls dataset_traverse on
2238 * the to_ds and finds all the blocks that have changed since ancestor_zb (if
2239 * it's a full send, that's all blocks in the dataset).  It then sends those
2240 * blocks on to the send merge thread. The redact list thread takes the data
2241 * from the redaction bookmark and sends those blocks on to the send merge
2242 * thread.  The send merge thread takes the data from the to_ds traversal
2243 * thread, and combines it with the redaction records from the redact list
2244 * thread.  If a block appears in both the to_ds's data and the redaction data,
2245 * the send merge thread will mark it as redacted and send it on to the prefetch
2246 * thread.  Otherwise, the send merge thread will send the block on to the
2247 * prefetch thread unchanged. The prefetch thread will issue prefetch reads for
2248 * any data that isn't redacted, and then send the data on to the main thread.
2249 * The main thread behaves the same as in a normal send case, issuing demand
2250 * reads for data blocks and sending out records over the network
2251 *
2252 * The graphic below diagrams the flow of data in the case of a redacted zfs
2253 * send.  Each box represents a thread, and each line represents the flow of
2254 * data.
2255 *
2256 *             Records from the |
2257 *           redaction bookmark |
2258 * +--------------------+       |  +---------------------------+
2259 * |                    |       v  | Send Merge Thread         |
2260 * | Redact List Thread +----------> Apply redaction marks to  |
2261 * |                    |          | records as specified by   |
2262 * +--------------------+          | redaction ranges          |
2263 *                                 +----^---------------+------+
2264 *                                      |               | Merged data
2265 *                                      |               |
2266 *                                      |  +------------v--------+
2267 *                                      |  | Prefetch Thread     |
2268 * +--------------------+               |  | Issues prefetch     |
2269 * | to_ds Traversal    |               |  | reads of data blocks|
2270 * | Thread (finds      +---------------+  +------------+--------+
2271 * | candidate blocks)  |  Blocks modified              | Prefetched data
2272 * +--------------------+  by to_ds since               |
2273 *                         ancestor_zb     +------------v----+
2274 *                                         | Main Thread     |  File Descriptor
2275 *                                         | Sends data over +->(to zfs receive)
2276 *                                         | wire            |
2277 *                                         +-----------------+
2278 *
2279 * The second case is an incremental send from a redaction bookmark.  The to_ds
2280 * traversal thread and the main thread behave the same as in the redacted
2281 * send case.  The new thread is the from bookmark traversal thread.  It
2282 * iterates over the redaction list in the redaction bookmark, and enqueues
2283 * records for each block that was redacted in the original send.  The send
2284 * merge thread now has to merge the data from the two threads.  For details
2285 * about that process, see the header comment of send_merge_thread().  Any data
2286 * it decides to send on will be prefetched by the prefetch thread.  Note that
2287 * you can perform a redacted send from a redaction bookmark; in that case,
2288 * the data flow behaves very similarly to the flow in the redacted send case,
2289 * except with the addition of the bookmark traversal thread iterating over the
2290 * redaction bookmark.  The send_merge_thread also has to take on the
2291 * responsibility of merging the redact list thread's records, the bookmark
2292 * traversal thread's records, and the to_ds records.
2293 *
2294 * +---------------------+
2295 * |                     |
2296 * | Redact List Thread  +--------------+
2297 * |                     |              |
2298 * +---------------------+              |
2299 *        Blocks in redaction list      | Ranges modified by every secure snap
2300 *        of from bookmark              | (or EOS if not readcted)
2301 *                                      |
2302 * +---------------------+   |     +----v----------------------+
2303 * | bookmark Traversal  |   v     | Send Merge Thread         |
2304 * | Thread (finds       +---------> Merges bookmark, rlt, and |
2305 * | candidate blocks)   |         | to_ds send records        |
2306 * +---------------------+         +----^---------------+------+
2307 *                                      |               | Merged data
2308 *                                      |  +------------v--------+
2309 *                                      |  | Prefetch Thread     |
2310 * +--------------------+               |  | Issues prefetch     |
2311 * | to_ds Traversal    |               |  | reads of data blocks|
2312 * | Thread (finds      +---------------+  +------------+--------+
2313 * | candidate blocks)  |  Blocks modified              | Prefetched data
2314 * +--------------------+  by to_ds since  +------------v----+
2315 *                         ancestor_zb     | Main Thread     |  File Descriptor
2316 *                                         | Sends data over +->(to zfs receive)
2317 *                                         | wire            |
2318 *                                         +-----------------+
2319 *
2320 * The final case is a simple zfs full or incremental send.  The to_ds traversal
2321 * thread behaves the same as always. The redact list thread is never started.
2322 * The send merge thread takes all the blocks that the to_ds traversal thread
2323 * sends it, prefetches the data, and sends the blocks on to the main thread.
2324 * The main thread sends the data over the wire.
2325 *
2326 * To keep performance acceptable, we want to prefetch the data in the worker
2327 * threads.  While the to_ds thread could simply use the TRAVERSE_PREFETCH
2328 * feature built into traverse_dataset, the combining and deletion of records
2329 * due to redaction and sends from redaction bookmarks mean that we could
2330 * issue many unnecessary prefetches.  As a result, we only prefetch data
2331 * after we've determined that the record is not going to be redacted.  To
2332 * prevent the prefetching from getting too far ahead of the main thread, the
2333 * blocking queues that are used for communication are capped not by the
2334 * number of entries in the queue, but by the sum of the size of the
2335 * prefetches associated with them.  The limit on the amount of data that the
2336 * thread can prefetch beyond what the main thread has reached is controlled
2337 * by the global variable zfs_send_queue_length.  In addition, to prevent poor
2338 * performance in the beginning of a send, we also limit the distance ahead
2339 * that the traversal threads can be.  That distance is controlled by the
2340 * zfs_send_no_prefetch_queue_length tunable.
2341 *
2342 * Note: Releases dp using the specified tag.
2343 */
2344static int
2345dmu_send_impl(struct dmu_send_params *dspp)
2346{
2347	objset_t *os;
2348	dmu_replay_record_t *drr;
2349	dmu_sendstatus_t *dssp;
2350	dmu_send_cookie_t dsc = {0};
2351	int err;
2352	uint64_t fromtxg = dspp->ancestor_zb.zbm_creation_txg;
2353	uint64_t featureflags = 0;
2354	struct redact_list_thread_arg *from_arg;
2355	struct send_thread_arg *to_arg;
2356	struct redact_list_thread_arg *rlt_arg;
2357	struct send_merge_thread_arg *smt_arg;
2358	struct send_reader_thread_arg *srt_arg;
2359	struct send_range *range;
2360	redaction_list_t *from_rl = NULL;
2361	redaction_list_t *redact_rl = NULL;
2362	boolean_t resuming = (dspp->resumeobj != 0 || dspp->resumeoff != 0);
2363	boolean_t book_resuming = resuming;
2364
2365	dsl_dataset_t *to_ds = dspp->to_ds;
2366	zfs_bookmark_phys_t *ancestor_zb = &dspp->ancestor_zb;
2367	dsl_pool_t *dp = dspp->dp;
2368	const void *tag = dspp->tag;
2369
2370	err = dmu_objset_from_ds(to_ds, &os);
2371	if (err != 0) {
2372		dsl_pool_rele(dp, tag);
2373		return (err);
2374	}
2375
2376	/*
2377	 * If this is a non-raw send of an encrypted ds, we can ensure that
2378	 * the objset_phys_t is authenticated. This is safe because this is
2379	 * either a snapshot or we have owned the dataset, ensuring that
2380	 * it can't be modified.
2381	 */
2382	if (!dspp->rawok && os->os_encrypted &&
2383	    arc_is_unauthenticated(os->os_phys_buf)) {
2384		zbookmark_phys_t zb;
2385
2386		SET_BOOKMARK(&zb, to_ds->ds_object, ZB_ROOT_OBJECT,
2387		    ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
2388		err = arc_untransform(os->os_phys_buf, os->os_spa,
2389		    &zb, B_FALSE);
2390		if (err != 0) {
2391			dsl_pool_rele(dp, tag);
2392			return (err);
2393		}
2394
2395		ASSERT0(arc_is_unauthenticated(os->os_phys_buf));
2396	}
2397
2398	if ((err = setup_featureflags(dspp, os, &featureflags)) != 0) {
2399		dsl_pool_rele(dp, tag);
2400		return (err);
2401	}
2402
2403	/*
2404	 * If we're doing a redacted send, hold the bookmark's redaction list.
2405	 */
2406	if (dspp->redactbook != NULL) {
2407		err = dsl_redaction_list_hold_obj(dp,
2408		    dspp->redactbook->zbm_redaction_obj, FTAG,
2409		    &redact_rl);
2410		if (err != 0) {
2411			dsl_pool_rele(dp, tag);
2412			return (SET_ERROR(EINVAL));
2413		}
2414		dsl_redaction_list_long_hold(dp, redact_rl, FTAG);
2415	}
2416
2417	/*
2418	 * If we're sending from a redaction bookmark, hold the redaction list
2419	 * so that we can consider sending the redacted blocks.
2420	 */
2421	if (ancestor_zb->zbm_redaction_obj != 0) {
2422		err = dsl_redaction_list_hold_obj(dp,
2423		    ancestor_zb->zbm_redaction_obj, FTAG, &from_rl);
2424		if (err != 0) {
2425			if (redact_rl != NULL) {
2426				dsl_redaction_list_long_rele(redact_rl, FTAG);
2427				dsl_redaction_list_rele(redact_rl, FTAG);
2428			}
2429			dsl_pool_rele(dp, tag);
2430			return (SET_ERROR(EINVAL));
2431		}
2432		dsl_redaction_list_long_hold(dp, from_rl, FTAG);
2433	}
2434
2435	dsl_dataset_long_hold(to_ds, FTAG);
2436
2437	from_arg = kmem_zalloc(sizeof (*from_arg), KM_SLEEP);
2438	to_arg = kmem_zalloc(sizeof (*to_arg), KM_SLEEP);
2439	rlt_arg = kmem_zalloc(sizeof (*rlt_arg), KM_SLEEP);
2440	smt_arg = kmem_zalloc(sizeof (*smt_arg), KM_SLEEP);
2441	srt_arg = kmem_zalloc(sizeof (*srt_arg), KM_SLEEP);
2442
2443	drr = create_begin_record(dspp, os, featureflags);
2444	dssp = setup_send_progress(dspp);
2445
2446	dsc.dsc_drr = drr;
2447	dsc.dsc_dso = dspp->dso;
2448	dsc.dsc_os = os;
2449	dsc.dsc_off = dspp->off;
2450	dsc.dsc_toguid = dsl_dataset_phys(to_ds)->ds_guid;
2451	dsc.dsc_fromtxg = fromtxg;
2452	dsc.dsc_pending_op = PENDING_NONE;
2453	dsc.dsc_featureflags = featureflags;
2454	dsc.dsc_resume_object = dspp->resumeobj;
2455	dsc.dsc_resume_offset = dspp->resumeoff;
2456
2457	dsl_pool_rele(dp, tag);
2458
2459	void *payload = NULL;
2460	size_t payload_len = 0;
2461	nvlist_t *nvl = fnvlist_alloc();
2462
2463	/*
2464	 * If we're doing a redacted send, we include the snapshots we're
2465	 * redacted with respect to so that the target system knows what send
2466	 * streams can be correctly received on top of this dataset. If we're
2467	 * instead sending a redacted dataset, we include the snapshots that the
2468	 * dataset was created with respect to.
2469	 */
2470	if (dspp->redactbook != NULL) {
2471		fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_SNAPS,
2472		    redact_rl->rl_phys->rlp_snaps,
2473		    redact_rl->rl_phys->rlp_num_snaps);
2474	} else if (dsl_dataset_feature_is_active(to_ds,
2475	    SPA_FEATURE_REDACTED_DATASETS)) {
2476		uint64_t *tods_guids;
2477		uint64_t length;
2478		VERIFY(dsl_dataset_get_uint64_array_feature(to_ds,
2479		    SPA_FEATURE_REDACTED_DATASETS, &length, &tods_guids));
2480		fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_SNAPS, tods_guids,
2481		    length);
2482	}
2483
2484	/*
2485	 * If we're sending from a redaction bookmark, then we should retrieve
2486	 * the guids of that bookmark so we can send them over the wire.
2487	 */
2488	if (from_rl != NULL) {
2489		fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_FROM_SNAPS,
2490		    from_rl->rl_phys->rlp_snaps,
2491		    from_rl->rl_phys->rlp_num_snaps);
2492	}
2493
2494	/*
2495	 * If the snapshot we're sending from is redacted, include the redaction
2496	 * list in the stream.
2497	 */
2498	if (dspp->numfromredactsnaps != NUM_SNAPS_NOT_REDACTED) {
2499		ASSERT3P(from_rl, ==, NULL);
2500		fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_FROM_SNAPS,
2501		    dspp->fromredactsnaps, (uint_t)dspp->numfromredactsnaps);
2502		if (dspp->numfromredactsnaps > 0) {
2503			kmem_free(dspp->fromredactsnaps,
2504			    dspp->numfromredactsnaps * sizeof (uint64_t));
2505			dspp->fromredactsnaps = NULL;
2506		}
2507	}
2508
2509	if (resuming || book_resuming) {
2510		err = setup_resume_points(dspp, to_arg, from_arg,
2511		    rlt_arg, smt_arg, resuming, os, redact_rl, nvl);
2512		if (err != 0)
2513			goto out;
2514	}
2515
2516	if (featureflags & DMU_BACKUP_FEATURE_RAW) {
2517		uint64_t ivset_guid = ancestor_zb->zbm_ivset_guid;
2518		nvlist_t *keynvl = NULL;
2519		ASSERT(os->os_encrypted);
2520
2521		err = dsl_crypto_populate_key_nvlist(os, ivset_guid,
2522		    &keynvl);
2523		if (err != 0) {
2524			fnvlist_free(nvl);
2525			goto out;
2526		}
2527
2528		fnvlist_add_nvlist(nvl, "crypt_keydata", keynvl);
2529		fnvlist_free(keynvl);
2530	}
2531
2532	if (!nvlist_empty(nvl)) {
2533		payload = fnvlist_pack(nvl, &payload_len);
2534		drr->drr_payloadlen = payload_len;
2535	}
2536
2537	fnvlist_free(nvl);
2538	err = dump_record(&dsc, payload, payload_len);
2539	fnvlist_pack_free(payload, payload_len);
2540	if (err != 0) {
2541		err = dsc.dsc_err;
2542		goto out;
2543	}
2544
2545	setup_to_thread(to_arg, os, dssp, fromtxg, dspp->rawok);
2546	setup_from_thread(from_arg, from_rl, dssp);
2547	setup_redact_list_thread(rlt_arg, dspp, redact_rl, dssp);
2548	setup_merge_thread(smt_arg, dspp, from_arg, to_arg, rlt_arg, os);
2549	setup_reader_thread(srt_arg, dspp, smt_arg, featureflags);
2550
2551	range = bqueue_dequeue(&srt_arg->q);
2552	while (err == 0 && !range->eos_marker) {
2553		err = do_dump(&dsc, range);
2554		range = get_next_range(&srt_arg->q, range);
2555		if (issig(JUSTLOOKING) && issig(FORREAL))
2556			err = SET_ERROR(EINTR);
2557	}
2558
2559	/*
2560	 * If we hit an error or are interrupted, cancel our worker threads and
2561	 * clear the queue of any pending records.  The threads will pass the
2562	 * cancel up the tree of worker threads, and each one will clean up any
2563	 * pending records before exiting.
2564	 */
2565	if (err != 0) {
2566		srt_arg->cancel = B_TRUE;
2567		while (!range->eos_marker) {
2568			range = get_next_range(&srt_arg->q, range);
2569		}
2570	}
2571	range_free(range);
2572
2573	bqueue_destroy(&srt_arg->q);
2574	bqueue_destroy(&smt_arg->q);
2575	if (dspp->redactbook != NULL)
2576		bqueue_destroy(&rlt_arg->q);
2577	bqueue_destroy(&to_arg->q);
2578	bqueue_destroy(&from_arg->q);
2579
2580	if (err == 0 && srt_arg->error != 0)
2581		err = srt_arg->error;
2582
2583	if (err != 0)
2584		goto out;
2585
2586	if (dsc.dsc_pending_op != PENDING_NONE)
2587		if (dump_record(&dsc, NULL, 0) != 0)
2588			err = SET_ERROR(EINTR);
2589
2590	if (err != 0) {
2591		if (err == EINTR && dsc.dsc_err != 0)
2592			err = dsc.dsc_err;
2593		goto out;
2594	}
2595
2596	/*
2597	 * Send the DRR_END record if this is not a saved stream.
2598	 * Otherwise, the omitted DRR_END record will signal to
2599	 * the receive side that the stream is incomplete.
2600	 */
2601	if (!dspp->savedok) {
2602		memset(drr, 0, sizeof (dmu_replay_record_t));
2603		drr->drr_type = DRR_END;
2604		drr->drr_u.drr_end.drr_checksum = dsc.dsc_zc;
2605		drr->drr_u.drr_end.drr_toguid = dsc.dsc_toguid;
2606
2607		if (dump_record(&dsc, NULL, 0) != 0)
2608			err = dsc.dsc_err;
2609	}
2610out:
2611	mutex_enter(&to_ds->ds_sendstream_lock);
2612	list_remove(&to_ds->ds_sendstreams, dssp);
2613	mutex_exit(&to_ds->ds_sendstream_lock);
2614
2615	VERIFY(err != 0 || (dsc.dsc_sent_begin &&
2616	    (dsc.dsc_sent_end || dspp->savedok)));
2617
2618	kmem_free(drr, sizeof (dmu_replay_record_t));
2619	kmem_free(dssp, sizeof (dmu_sendstatus_t));
2620	kmem_free(from_arg, sizeof (*from_arg));
2621	kmem_free(to_arg, sizeof (*to_arg));
2622	kmem_free(rlt_arg, sizeof (*rlt_arg));
2623	kmem_free(smt_arg, sizeof (*smt_arg));
2624	kmem_free(srt_arg, sizeof (*srt_arg));
2625
2626	dsl_dataset_long_rele(to_ds, FTAG);
2627	if (from_rl != NULL) {
2628		dsl_redaction_list_long_rele(from_rl, FTAG);
2629		dsl_redaction_list_rele(from_rl, FTAG);
2630	}
2631	if (redact_rl != NULL) {
2632		dsl_redaction_list_long_rele(redact_rl, FTAG);
2633		dsl_redaction_list_rele(redact_rl, FTAG);
2634	}
2635
2636	return (err);
2637}
2638
2639int
2640dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap,
2641    boolean_t embedok, boolean_t large_block_ok, boolean_t compressok,
2642    boolean_t rawok, boolean_t savedok, int outfd, offset_t *off,
2643    dmu_send_outparams_t *dsop)
2644{
2645	int err;
2646	dsl_dataset_t *fromds;
2647	ds_hold_flags_t dsflags;
2648	struct dmu_send_params dspp = {0};
2649	dspp.embedok = embedok;
2650	dspp.large_block_ok = large_block_ok;
2651	dspp.compressok = compressok;
2652	dspp.outfd = outfd;
2653	dspp.off = off;
2654	dspp.dso = dsop;
2655	dspp.tag = FTAG;
2656	dspp.rawok = rawok;
2657	dspp.savedok = savedok;
2658
2659	dsflags = (rawok) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2660	err = dsl_pool_hold(pool, FTAG, &dspp.dp);
2661	if (err != 0)
2662		return (err);
2663
2664	err = dsl_dataset_hold_obj_flags(dspp.dp, tosnap, dsflags, FTAG,
2665	    &dspp.to_ds);
2666	if (err != 0) {
2667		dsl_pool_rele(dspp.dp, FTAG);
2668		return (err);
2669	}
2670
2671	if (fromsnap != 0) {
2672		err = dsl_dataset_hold_obj_flags(dspp.dp, fromsnap, dsflags,
2673		    FTAG, &fromds);
2674		if (err != 0) {
2675			dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG);
2676			dsl_pool_rele(dspp.dp, FTAG);
2677			return (err);
2678		}
2679		dspp.ancestor_zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
2680		dspp.ancestor_zb.zbm_creation_txg =
2681		    dsl_dataset_phys(fromds)->ds_creation_txg;
2682		dspp.ancestor_zb.zbm_creation_time =
2683		    dsl_dataset_phys(fromds)->ds_creation_time;
2684
2685		if (dsl_dataset_is_zapified(fromds)) {
2686			(void) zap_lookup(dspp.dp->dp_meta_objset,
2687			    fromds->ds_object, DS_FIELD_IVSET_GUID, 8, 1,
2688			    &dspp.ancestor_zb.zbm_ivset_guid);
2689		}
2690
2691		/* See dmu_send for the reasons behind this. */
2692		uint64_t *fromredact;
2693
2694		if (!dsl_dataset_get_uint64_array_feature(fromds,
2695		    SPA_FEATURE_REDACTED_DATASETS,
2696		    &dspp.numfromredactsnaps,
2697		    &fromredact)) {
2698			dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2699		} else if (dspp.numfromredactsnaps > 0) {
2700			uint64_t size = dspp.numfromredactsnaps *
2701			    sizeof (uint64_t);
2702			dspp.fromredactsnaps = kmem_zalloc(size, KM_SLEEP);
2703			memcpy(dspp.fromredactsnaps, fromredact, size);
2704		}
2705
2706		boolean_t is_before =
2707		    dsl_dataset_is_before(dspp.to_ds, fromds, 0);
2708		dspp.is_clone = (dspp.to_ds->ds_dir !=
2709		    fromds->ds_dir);
2710		dsl_dataset_rele(fromds, FTAG);
2711		if (!is_before) {
2712			dsl_pool_rele(dspp.dp, FTAG);
2713			err = SET_ERROR(EXDEV);
2714		} else {
2715			err = dmu_send_impl(&dspp);
2716		}
2717	} else {
2718		dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2719		err = dmu_send_impl(&dspp);
2720	}
2721	if (dspp.fromredactsnaps)
2722		kmem_free(dspp.fromredactsnaps,
2723		    dspp.numfromredactsnaps * sizeof (uint64_t));
2724
2725	dsl_dataset_rele(dspp.to_ds, FTAG);
2726	return (err);
2727}
2728
2729int
2730dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok,
2731    boolean_t large_block_ok, boolean_t compressok, boolean_t rawok,
2732    boolean_t savedok, uint64_t resumeobj, uint64_t resumeoff,
2733    const char *redactbook, int outfd, offset_t *off,
2734    dmu_send_outparams_t *dsop)
2735{
2736	int err = 0;
2737	ds_hold_flags_t dsflags;
2738	boolean_t owned = B_FALSE;
2739	dsl_dataset_t *fromds = NULL;
2740	zfs_bookmark_phys_t book = {0};
2741	struct dmu_send_params dspp = {0};
2742
2743	dsflags = (rawok) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2744	dspp.tosnap = tosnap;
2745	dspp.embedok = embedok;
2746	dspp.large_block_ok = large_block_ok;
2747	dspp.compressok = compressok;
2748	dspp.outfd = outfd;
2749	dspp.off = off;
2750	dspp.dso = dsop;
2751	dspp.tag = FTAG;
2752	dspp.resumeobj = resumeobj;
2753	dspp.resumeoff = resumeoff;
2754	dspp.rawok = rawok;
2755	dspp.savedok = savedok;
2756
2757	if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL)
2758		return (SET_ERROR(EINVAL));
2759
2760	err = dsl_pool_hold(tosnap, FTAG, &dspp.dp);
2761	if (err != 0)
2762		return (err);
2763
2764	if (strchr(tosnap, '@') == NULL && spa_writeable(dspp.dp->dp_spa)) {
2765		/*
2766		 * We are sending a filesystem or volume.  Ensure
2767		 * that it doesn't change by owning the dataset.
2768		 */
2769
2770		if (savedok) {
2771			/*
2772			 * We are looking for the dataset that represents the
2773			 * partially received send stream. If this stream was
2774			 * received as a new snapshot of an existing dataset,
2775			 * this will be saved in a hidden clone named
2776			 * "<pool>/<dataset>/%recv". Otherwise, the stream
2777			 * will be saved in the live dataset itself. In
2778			 * either case we need to use dsl_dataset_own_force()
2779			 * because the stream is marked as inconsistent,
2780			 * which would normally make it unavailable to be
2781			 * owned.
2782			 */
2783			char *name = kmem_asprintf("%s/%s", tosnap,
2784			    recv_clone_name);
2785			err = dsl_dataset_own_force(dspp.dp, name, dsflags,
2786			    FTAG, &dspp.to_ds);
2787			if (err == ENOENT) {
2788				err = dsl_dataset_own_force(dspp.dp, tosnap,
2789				    dsflags, FTAG, &dspp.to_ds);
2790			}
2791
2792			if (err == 0) {
2793				owned = B_TRUE;
2794				err = zap_lookup(dspp.dp->dp_meta_objset,
2795				    dspp.to_ds->ds_object,
2796				    DS_FIELD_RESUME_TOGUID, 8, 1,
2797				    &dspp.saved_guid);
2798			}
2799
2800			if (err == 0) {
2801				err = zap_lookup(dspp.dp->dp_meta_objset,
2802				    dspp.to_ds->ds_object,
2803				    DS_FIELD_RESUME_TONAME, 1,
2804				    sizeof (dspp.saved_toname),
2805				    dspp.saved_toname);
2806			}
2807			/* Only disown if there was an error in the lookups */
2808			if (owned && (err != 0))
2809				dsl_dataset_disown(dspp.to_ds, dsflags, FTAG);
2810
2811			kmem_strfree(name);
2812		} else {
2813			err = dsl_dataset_own(dspp.dp, tosnap, dsflags,
2814			    FTAG, &dspp.to_ds);
2815			if (err == 0)
2816				owned = B_TRUE;
2817		}
2818	} else {
2819		err = dsl_dataset_hold_flags(dspp.dp, tosnap, dsflags, FTAG,
2820		    &dspp.to_ds);
2821	}
2822
2823	if (err != 0) {
2824		/* Note: dsl dataset is not owned at this point */
2825		dsl_pool_rele(dspp.dp, FTAG);
2826		return (err);
2827	}
2828
2829	if (redactbook != NULL) {
2830		char path[ZFS_MAX_DATASET_NAME_LEN];
2831		(void) strlcpy(path, tosnap, sizeof (path));
2832		char *at = strchr(path, '@');
2833		if (at == NULL) {
2834			err = EINVAL;
2835		} else {
2836			(void) snprintf(at, sizeof (path) - (at - path), "#%s",
2837			    redactbook);
2838			err = dsl_bookmark_lookup(dspp.dp, path,
2839			    NULL, &book);
2840			dspp.redactbook = &book;
2841		}
2842	}
2843
2844	if (err != 0) {
2845		dsl_pool_rele(dspp.dp, FTAG);
2846		if (owned)
2847			dsl_dataset_disown(dspp.to_ds, dsflags, FTAG);
2848		else
2849			dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG);
2850		return (err);
2851	}
2852
2853	if (fromsnap != NULL) {
2854		zfs_bookmark_phys_t *zb = &dspp.ancestor_zb;
2855		int fsnamelen;
2856		if (strpbrk(tosnap, "@#") != NULL)
2857			fsnamelen = strpbrk(tosnap, "@#") - tosnap;
2858		else
2859			fsnamelen = strlen(tosnap);
2860
2861		/*
2862		 * If the fromsnap is in a different filesystem, then
2863		 * mark the send stream as a clone.
2864		 */
2865		if (strncmp(tosnap, fromsnap, fsnamelen) != 0 ||
2866		    (fromsnap[fsnamelen] != '@' &&
2867		    fromsnap[fsnamelen] != '#')) {
2868			dspp.is_clone = B_TRUE;
2869		}
2870
2871		if (strchr(fromsnap, '@') != NULL) {
2872			err = dsl_dataset_hold(dspp.dp, fromsnap, FTAG,
2873			    &fromds);
2874
2875			if (err != 0) {
2876				ASSERT3P(fromds, ==, NULL);
2877			} else {
2878				/*
2879				 * We need to make a deep copy of the redact
2880				 * snapshots of the from snapshot, because the
2881				 * array will be freed when we evict from_ds.
2882				 */
2883				uint64_t *fromredact;
2884				if (!dsl_dataset_get_uint64_array_feature(
2885				    fromds, SPA_FEATURE_REDACTED_DATASETS,
2886				    &dspp.numfromredactsnaps,
2887				    &fromredact)) {
2888					dspp.numfromredactsnaps =
2889					    NUM_SNAPS_NOT_REDACTED;
2890				} else if (dspp.numfromredactsnaps > 0) {
2891					uint64_t size =
2892					    dspp.numfromredactsnaps *
2893					    sizeof (uint64_t);
2894					dspp.fromredactsnaps = kmem_zalloc(size,
2895					    KM_SLEEP);
2896					memcpy(dspp.fromredactsnaps, fromredact,
2897					    size);
2898				}
2899				if (!dsl_dataset_is_before(dspp.to_ds, fromds,
2900				    0)) {
2901					err = SET_ERROR(EXDEV);
2902				} else {
2903					zb->zbm_creation_txg =
2904					    dsl_dataset_phys(fromds)->
2905					    ds_creation_txg;
2906					zb->zbm_creation_time =
2907					    dsl_dataset_phys(fromds)->
2908					    ds_creation_time;
2909					zb->zbm_guid =
2910					    dsl_dataset_phys(fromds)->ds_guid;
2911					zb->zbm_redaction_obj = 0;
2912
2913					if (dsl_dataset_is_zapified(fromds)) {
2914						(void) zap_lookup(
2915						    dspp.dp->dp_meta_objset,
2916						    fromds->ds_object,
2917						    DS_FIELD_IVSET_GUID, 8, 1,
2918						    &zb->zbm_ivset_guid);
2919					}
2920				}
2921				dsl_dataset_rele(fromds, FTAG);
2922			}
2923		} else {
2924			dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2925			err = dsl_bookmark_lookup(dspp.dp, fromsnap, dspp.to_ds,
2926			    zb);
2927			if (err == EXDEV && zb->zbm_redaction_obj != 0 &&
2928			    zb->zbm_guid ==
2929			    dsl_dataset_phys(dspp.to_ds)->ds_guid)
2930				err = 0;
2931		}
2932
2933		if (err == 0) {
2934			/* dmu_send_impl will call dsl_pool_rele for us. */
2935			err = dmu_send_impl(&dspp);
2936		} else {
2937			if (dspp.fromredactsnaps)
2938				kmem_free(dspp.fromredactsnaps,
2939				    dspp.numfromredactsnaps *
2940				    sizeof (uint64_t));
2941			dsl_pool_rele(dspp.dp, FTAG);
2942		}
2943	} else {
2944		dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2945		err = dmu_send_impl(&dspp);
2946	}
2947	if (owned)
2948		dsl_dataset_disown(dspp.to_ds, dsflags, FTAG);
2949	else
2950		dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG);
2951	return (err);
2952}
2953
2954static int
2955dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t uncompressed,
2956    uint64_t compressed, boolean_t stream_compressed, uint64_t *sizep)
2957{
2958	int err = 0;
2959	uint64_t size;
2960	/*
2961	 * Assume that space (both on-disk and in-stream) is dominated by
2962	 * data.  We will adjust for indirect blocks and the copies property,
2963	 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records).
2964	 */
2965
2966	uint64_t recordsize;
2967	uint64_t record_count;
2968	objset_t *os;
2969	VERIFY0(dmu_objset_from_ds(ds, &os));
2970
2971	/* Assume all (uncompressed) blocks are recordsize. */
2972	if (zfs_override_estimate_recordsize != 0) {
2973		recordsize = zfs_override_estimate_recordsize;
2974	} else if (os->os_phys->os_type == DMU_OST_ZVOL) {
2975		err = dsl_prop_get_int_ds(ds,
2976		    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &recordsize);
2977	} else {
2978		err = dsl_prop_get_int_ds(ds,
2979		    zfs_prop_to_name(ZFS_PROP_RECORDSIZE), &recordsize);
2980	}
2981	if (err != 0)
2982		return (err);
2983	record_count = uncompressed / recordsize;
2984
2985	/*
2986	 * If we're estimating a send size for a compressed stream, use the
2987	 * compressed data size to estimate the stream size. Otherwise, use the
2988	 * uncompressed data size.
2989	 */
2990	size = stream_compressed ? compressed : uncompressed;
2991
2992	/*
2993	 * Subtract out approximate space used by indirect blocks.
2994	 * Assume most space is used by data blocks (non-indirect, non-dnode).
2995	 * Assume no ditto blocks or internal fragmentation.
2996	 *
2997	 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per
2998	 * block.
2999	 */
3000	size -= record_count * sizeof (blkptr_t);
3001
3002	/* Add in the space for the record associated with each block. */
3003	size += record_count * sizeof (dmu_replay_record_t);
3004
3005	*sizep = size;
3006
3007	return (0);
3008}
3009
3010int
3011dmu_send_estimate_fast(dsl_dataset_t *origds, dsl_dataset_t *fromds,
3012    zfs_bookmark_phys_t *frombook, boolean_t stream_compressed,
3013    boolean_t saved, uint64_t *sizep)
3014{
3015	int err;
3016	dsl_dataset_t *ds = origds;
3017	uint64_t uncomp, comp;
3018
3019	ASSERT(dsl_pool_config_held(origds->ds_dir->dd_pool));
3020	ASSERT(fromds == NULL || frombook == NULL);
3021
3022	/*
3023	 * If this is a saved send we may actually be sending
3024	 * from the %recv clone used for resuming.
3025	 */
3026	if (saved) {
3027		objset_t *mos = origds->ds_dir->dd_pool->dp_meta_objset;
3028		uint64_t guid;
3029		char dsname[ZFS_MAX_DATASET_NAME_LEN + 6];
3030
3031		dsl_dataset_name(origds, dsname);
3032		(void) strcat(dsname, "/");
3033		(void) strlcat(dsname, recv_clone_name, sizeof (dsname));
3034
3035		err = dsl_dataset_hold(origds->ds_dir->dd_pool,
3036		    dsname, FTAG, &ds);
3037		if (err != ENOENT && err != 0) {
3038			return (err);
3039		} else if (err == ENOENT) {
3040			ds = origds;
3041		}
3042
3043		/* check that this dataset has partially received data */
3044		err = zap_lookup(mos, ds->ds_object,
3045		    DS_FIELD_RESUME_TOGUID, 8, 1, &guid);
3046		if (err != 0) {
3047			err = SET_ERROR(err == ENOENT ? EINVAL : err);
3048			goto out;
3049		}
3050
3051		err = zap_lookup(mos, ds->ds_object,
3052		    DS_FIELD_RESUME_TONAME, 1, sizeof (dsname), dsname);
3053		if (err != 0) {
3054			err = SET_ERROR(err == ENOENT ? EINVAL : err);
3055			goto out;
3056		}
3057	}
3058
3059	/* tosnap must be a snapshot or the target of a saved send */
3060	if (!ds->ds_is_snapshot && ds == origds)
3061		return (SET_ERROR(EINVAL));
3062
3063	if (fromds != NULL) {
3064		uint64_t used;
3065		if (!fromds->ds_is_snapshot) {
3066			err = SET_ERROR(EINVAL);
3067			goto out;
3068		}
3069
3070		if (!dsl_dataset_is_before(ds, fromds, 0)) {
3071			err = SET_ERROR(EXDEV);
3072			goto out;
3073		}
3074
3075		err = dsl_dataset_space_written(fromds, ds, &used, &comp,
3076		    &uncomp);
3077		if (err != 0)
3078			goto out;
3079	} else if (frombook != NULL) {
3080		uint64_t used;
3081		err = dsl_dataset_space_written_bookmark(frombook, ds, &used,
3082		    &comp, &uncomp);
3083		if (err != 0)
3084			goto out;
3085	} else {
3086		uncomp = dsl_dataset_phys(ds)->ds_uncompressed_bytes;
3087		comp = dsl_dataset_phys(ds)->ds_compressed_bytes;
3088	}
3089
3090	err = dmu_adjust_send_estimate_for_indirects(ds, uncomp, comp,
3091	    stream_compressed, sizep);
3092	/*
3093	 * Add the size of the BEGIN and END records to the estimate.
3094	 */
3095	*sizep += 2 * sizeof (dmu_replay_record_t);
3096
3097out:
3098	if (ds != origds)
3099		dsl_dataset_rele(ds, FTAG);
3100	return (err);
3101}
3102
3103ZFS_MODULE_PARAM(zfs_send, zfs_send_, corrupt_data, INT, ZMOD_RW,
3104	"Allow sending corrupt data");
3105
3106ZFS_MODULE_PARAM(zfs_send, zfs_send_, queue_length, UINT, ZMOD_RW,
3107	"Maximum send queue length");
3108
3109ZFS_MODULE_PARAM(zfs_send, zfs_send_, unmodified_spill_blocks, INT, ZMOD_RW,
3110	"Send unmodified spill blocks");
3111
3112ZFS_MODULE_PARAM(zfs_send, zfs_send_, no_prefetch_queue_length, UINT, ZMOD_RW,
3113	"Maximum send queue length for non-prefetch queues");
3114
3115ZFS_MODULE_PARAM(zfs_send, zfs_send_, queue_ff, UINT, ZMOD_RW,
3116	"Send queue fill fraction");
3117
3118ZFS_MODULE_PARAM(zfs_send, zfs_send_, no_prefetch_queue_ff, UINT, ZMOD_RW,
3119	"Send queue fill fraction for non-prefetch queues");
3120
3121ZFS_MODULE_PARAM(zfs_send, zfs_, override_estimate_recordsize, UINT, ZMOD_RW,
3122	"Override block size estimate with fixed size");
3123