1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26 * Copyright 2014 HybridCluster. All rights reserved.
27 * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
28 * Copyright (c) 2019, Klara Inc.
29 * Copyright (c) 2019, Allan Jude
30 * Copyright (c) 2019 Datto Inc.
31 * Copyright (c) 2022 Axcient.
32 */
33
34#include <sys/arc.h>
35#include <sys/spa_impl.h>
36#include <sys/dmu.h>
37#include <sys/dmu_impl.h>
38#include <sys/dmu_send.h>
39#include <sys/dmu_recv.h>
40#include <sys/dmu_tx.h>
41#include <sys/dbuf.h>
42#include <sys/dnode.h>
43#include <sys/zfs_context.h>
44#include <sys/dmu_objset.h>
45#include <sys/dmu_traverse.h>
46#include <sys/dsl_dataset.h>
47#include <sys/dsl_dir.h>
48#include <sys/dsl_prop.h>
49#include <sys/dsl_pool.h>
50#include <sys/dsl_synctask.h>
51#include <sys/zfs_ioctl.h>
52#include <sys/zap.h>
53#include <sys/zvol.h>
54#include <sys/zio_checksum.h>
55#include <sys/zfs_znode.h>
56#include <zfs_fletcher.h>
57#include <sys/avl.h>
58#include <sys/ddt.h>
59#include <sys/zfs_onexit.h>
60#include <sys/dsl_destroy.h>
61#include <sys/blkptr.h>
62#include <sys/dsl_bookmark.h>
63#include <sys/zfeature.h>
64#include <sys/bqueue.h>
65#include <sys/objlist.h>
66#ifdef _KERNEL
67#include <sys/zfs_vfsops.h>
68#endif
69#include <sys/zfs_file.h>
70
71static uint_t zfs_recv_queue_length = SPA_MAXBLOCKSIZE;
72static uint_t zfs_recv_queue_ff = 20;
73static uint_t zfs_recv_write_batch_size = 1024 * 1024;
74static int zfs_recv_best_effort_corrective = 0;
75
76static const void *const dmu_recv_tag = "dmu_recv_tag";
77const char *const recv_clone_name = "%recv";
78
79typedef enum {
80	ORNS_NO,
81	ORNS_YES,
82	ORNS_MAYBE
83} or_need_sync_t;
84
85static int receive_read_payload_and_next_header(dmu_recv_cookie_t *ra, int len,
86    void *buf);
87
88struct receive_record_arg {
89	dmu_replay_record_t header;
90	void *payload; /* Pointer to a buffer containing the payload */
91	/*
92	 * If the record is a WRITE or SPILL, pointer to the abd containing the
93	 * payload.
94	 */
95	abd_t *abd;
96	int payload_size;
97	uint64_t bytes_read; /* bytes read from stream when record created */
98	boolean_t eos_marker; /* Marks the end of the stream */
99	bqueue_node_t node;
100};
101
102struct receive_writer_arg {
103	objset_t *os;
104	boolean_t byteswap;
105	bqueue_t q;
106
107	/*
108	 * These three members are used to signal to the main thread when
109	 * we're done.
110	 */
111	kmutex_t mutex;
112	kcondvar_t cv;
113	boolean_t done;
114
115	int err;
116	const char *tofs;
117	boolean_t heal;
118	boolean_t resumable;
119	boolean_t raw;   /* DMU_BACKUP_FEATURE_RAW set */
120	boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */
121	boolean_t full;  /* this is a full send stream */
122	uint64_t last_object;
123	uint64_t last_offset;
124	uint64_t max_object; /* highest object ID referenced in stream */
125	uint64_t bytes_read; /* bytes read when current record created */
126
127	list_t write_batch;
128
129	/* Encryption parameters for the last received DRR_OBJECT_RANGE */
130	boolean_t or_crypt_params_present;
131	uint64_t or_firstobj;
132	uint64_t or_numslots;
133	uint8_t or_salt[ZIO_DATA_SALT_LEN];
134	uint8_t or_iv[ZIO_DATA_IV_LEN];
135	uint8_t or_mac[ZIO_DATA_MAC_LEN];
136	boolean_t or_byteorder;
137	zio_t *heal_pio;
138
139	/* Keep track of DRR_FREEOBJECTS right after DRR_OBJECT_RANGE */
140	or_need_sync_t or_need_sync;
141};
142
143typedef struct dmu_recv_begin_arg {
144	const char *drba_origin;
145	dmu_recv_cookie_t *drba_cookie;
146	cred_t *drba_cred;
147	proc_t *drba_proc;
148	dsl_crypto_params_t *drba_dcp;
149} dmu_recv_begin_arg_t;
150
151static void
152byteswap_record(dmu_replay_record_t *drr)
153{
154#define	DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
155#define	DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
156	drr->drr_type = BSWAP_32(drr->drr_type);
157	drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
158
159	switch (drr->drr_type) {
160	case DRR_BEGIN:
161		DO64(drr_begin.drr_magic);
162		DO64(drr_begin.drr_versioninfo);
163		DO64(drr_begin.drr_creation_time);
164		DO32(drr_begin.drr_type);
165		DO32(drr_begin.drr_flags);
166		DO64(drr_begin.drr_toguid);
167		DO64(drr_begin.drr_fromguid);
168		break;
169	case DRR_OBJECT:
170		DO64(drr_object.drr_object);
171		DO32(drr_object.drr_type);
172		DO32(drr_object.drr_bonustype);
173		DO32(drr_object.drr_blksz);
174		DO32(drr_object.drr_bonuslen);
175		DO32(drr_object.drr_raw_bonuslen);
176		DO64(drr_object.drr_toguid);
177		DO64(drr_object.drr_maxblkid);
178		break;
179	case DRR_FREEOBJECTS:
180		DO64(drr_freeobjects.drr_firstobj);
181		DO64(drr_freeobjects.drr_numobjs);
182		DO64(drr_freeobjects.drr_toguid);
183		break;
184	case DRR_WRITE:
185		DO64(drr_write.drr_object);
186		DO32(drr_write.drr_type);
187		DO64(drr_write.drr_offset);
188		DO64(drr_write.drr_logical_size);
189		DO64(drr_write.drr_toguid);
190		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
191		DO64(drr_write.drr_key.ddk_prop);
192		DO64(drr_write.drr_compressed_size);
193		break;
194	case DRR_WRITE_EMBEDDED:
195		DO64(drr_write_embedded.drr_object);
196		DO64(drr_write_embedded.drr_offset);
197		DO64(drr_write_embedded.drr_length);
198		DO64(drr_write_embedded.drr_toguid);
199		DO32(drr_write_embedded.drr_lsize);
200		DO32(drr_write_embedded.drr_psize);
201		break;
202	case DRR_FREE:
203		DO64(drr_free.drr_object);
204		DO64(drr_free.drr_offset);
205		DO64(drr_free.drr_length);
206		DO64(drr_free.drr_toguid);
207		break;
208	case DRR_SPILL:
209		DO64(drr_spill.drr_object);
210		DO64(drr_spill.drr_length);
211		DO64(drr_spill.drr_toguid);
212		DO64(drr_spill.drr_compressed_size);
213		DO32(drr_spill.drr_type);
214		break;
215	case DRR_OBJECT_RANGE:
216		DO64(drr_object_range.drr_firstobj);
217		DO64(drr_object_range.drr_numslots);
218		DO64(drr_object_range.drr_toguid);
219		break;
220	case DRR_REDACT:
221		DO64(drr_redact.drr_object);
222		DO64(drr_redact.drr_offset);
223		DO64(drr_redact.drr_length);
224		DO64(drr_redact.drr_toguid);
225		break;
226	case DRR_END:
227		DO64(drr_end.drr_toguid);
228		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
229		break;
230	default:
231		break;
232	}
233
234	if (drr->drr_type != DRR_BEGIN) {
235		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
236	}
237
238#undef DO64
239#undef DO32
240}
241
242static boolean_t
243redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid)
244{
245	for (int i = 0; i < num_snaps; i++) {
246		if (snaps[i] == guid)
247			return (B_TRUE);
248	}
249	return (B_FALSE);
250}
251
252/*
253 * Check that the new stream we're trying to receive is redacted with respect to
254 * a subset of the snapshots that the origin was redacted with respect to.  For
255 * the reasons behind this, see the man page on redacted zfs sends and receives.
256 */
257static boolean_t
258compatible_redact_snaps(uint64_t *origin_snaps, uint64_t origin_num_snaps,
259    uint64_t *redact_snaps, uint64_t num_redact_snaps)
260{
261	/*
262	 * Short circuit the comparison; if we are redacted with respect to
263	 * more snapshots than the origin, we can't be redacted with respect
264	 * to a subset.
265	 */
266	if (num_redact_snaps > origin_num_snaps) {
267		return (B_FALSE);
268	}
269
270	for (int i = 0; i < num_redact_snaps; i++) {
271		if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
272		    redact_snaps[i])) {
273			return (B_FALSE);
274		}
275	}
276	return (B_TRUE);
277}
278
279static boolean_t
280redact_check(dmu_recv_begin_arg_t *drba, dsl_dataset_t *origin)
281{
282	uint64_t *origin_snaps;
283	uint64_t origin_num_snaps;
284	dmu_recv_cookie_t *drc = drba->drba_cookie;
285	struct drr_begin *drrb = drc->drc_drrb;
286	int featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
287	int err = 0;
288	boolean_t ret = B_TRUE;
289	uint64_t *redact_snaps;
290	uint_t numredactsnaps;
291
292	/*
293	 * If this is a full send stream, we're safe no matter what.
294	 */
295	if (drrb->drr_fromguid == 0)
296		return (ret);
297
298	VERIFY(dsl_dataset_get_uint64_array_feature(origin,
299	    SPA_FEATURE_REDACTED_DATASETS, &origin_num_snaps, &origin_snaps));
300
301	if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
302	    BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, &numredactsnaps) ==
303	    0) {
304		/*
305		 * If the send stream was sent from the redaction bookmark or
306		 * the redacted version of the dataset, then we're safe.  Verify
307		 * that this is from the a compatible redaction bookmark or
308		 * redacted dataset.
309		 */
310		if (!compatible_redact_snaps(origin_snaps, origin_num_snaps,
311		    redact_snaps, numredactsnaps)) {
312			err = EINVAL;
313		}
314	} else if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
315		/*
316		 * If the stream is redacted, it must be redacted with respect
317		 * to a subset of what the origin is redacted with respect to.
318		 * See case number 2 in the zfs man page section on redacted zfs
319		 * send.
320		 */
321		err = nvlist_lookup_uint64_array(drc->drc_begin_nvl,
322		    BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps);
323
324		if (err != 0 || !compatible_redact_snaps(origin_snaps,
325		    origin_num_snaps, redact_snaps, numredactsnaps)) {
326			err = EINVAL;
327		}
328	} else if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
329	    drrb->drr_toguid)) {
330		/*
331		 * If the stream isn't redacted but the origin is, this must be
332		 * one of the snapshots the origin is redacted with respect to.
333		 * See case number 1 in the zfs man page section on redacted zfs
334		 * send.
335		 */
336		err = EINVAL;
337	}
338
339	if (err != 0)
340		ret = B_FALSE;
341	return (ret);
342}
343
344/*
345 * If we previously received a stream with --large-block, we don't support
346 * receiving an incremental on top of it without --large-block.  This avoids
347 * forcing a read-modify-write or trying to re-aggregate a string of WRITE
348 * records.
349 */
350static int
351recv_check_large_blocks(dsl_dataset_t *ds, uint64_t featureflags)
352{
353	if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_LARGE_BLOCKS) &&
354	    !(featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS))
355		return (SET_ERROR(ZFS_ERR_STREAM_LARGE_BLOCK_MISMATCH));
356	return (0);
357}
358
359static int
360recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
361    uint64_t fromguid, uint64_t featureflags)
362{
363	uint64_t obj;
364	uint64_t children;
365	int error;
366	dsl_dataset_t *snap;
367	dsl_pool_t *dp = ds->ds_dir->dd_pool;
368	boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0;
369	boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0;
370	boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0;
371
372	/* Temporary clone name must not exist. */
373	error = zap_lookup(dp->dp_meta_objset,
374	    dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
375	    8, 1, &obj);
376	if (error != ENOENT)
377		return (error == 0 ? SET_ERROR(EBUSY) : error);
378
379	/* Resume state must not be set. */
380	if (dsl_dataset_has_resume_receive_state(ds))
381		return (SET_ERROR(EBUSY));
382
383	/* New snapshot name must not exist if we're not healing it. */
384	error = zap_lookup(dp->dp_meta_objset,
385	    dsl_dataset_phys(ds)->ds_snapnames_zapobj,
386	    drba->drba_cookie->drc_tosnap, 8, 1, &obj);
387	if (drba->drba_cookie->drc_heal) {
388		if (error != 0)
389			return (error);
390	} else if (error != ENOENT) {
391		return (error == 0 ? SET_ERROR(EEXIST) : error);
392	}
393
394	/* Must not have children if receiving a ZVOL. */
395	error = zap_count(dp->dp_meta_objset,
396	    dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, &children);
397	if (error != 0)
398		return (error);
399	if (drba->drba_cookie->drc_drrb->drr_type != DMU_OST_ZFS &&
400	    children > 0)
401		return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
402
403	/*
404	 * Check snapshot limit before receiving. We'll recheck again at the
405	 * end, but might as well abort before receiving if we're already over
406	 * the limit.
407	 *
408	 * Note that we do not check the file system limit with
409	 * dsl_dir_fscount_check because the temporary %clones don't count
410	 * against that limit.
411	 */
412	error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
413	    NULL, drba->drba_cred, drba->drba_proc);
414	if (error != 0)
415		return (error);
416
417	if (drba->drba_cookie->drc_heal) {
418		/* Encryption is incompatible with embedded data. */
419		if (encrypted && embed)
420			return (SET_ERROR(EINVAL));
421
422		/* Healing is not supported when in 'force' mode. */
423		if (drba->drba_cookie->drc_force)
424			return (SET_ERROR(EINVAL));
425
426		/* Must have keys loaded if doing encrypted non-raw recv. */
427		if (encrypted && !raw) {
428			if (spa_keystore_lookup_key(dp->dp_spa, ds->ds_object,
429			    NULL, NULL) != 0)
430				return (SET_ERROR(EACCES));
431		}
432
433		error = dsl_dataset_hold_obj(dp, obj, FTAG, &snap);
434		if (error != 0)
435			return (error);
436
437		/*
438		 * When not doing best effort corrective recv healing can only
439		 * be done if the send stream is for the same snapshot as the
440		 * one we are trying to heal.
441		 */
442		if (zfs_recv_best_effort_corrective == 0 &&
443		    drba->drba_cookie->drc_drrb->drr_toguid !=
444		    dsl_dataset_phys(snap)->ds_guid) {
445			dsl_dataset_rele(snap, FTAG);
446			return (SET_ERROR(ENOTSUP));
447		}
448		dsl_dataset_rele(snap, FTAG);
449	} else if (fromguid != 0) {
450		/* Sanity check the incremental recv */
451		uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
452
453		/* Can't perform a raw receive on top of a non-raw receive */
454		if (!encrypted && raw)
455			return (SET_ERROR(EINVAL));
456
457		/* Encryption is incompatible with embedded data */
458		if (encrypted && embed)
459			return (SET_ERROR(EINVAL));
460
461		/* Find snapshot in this dir that matches fromguid. */
462		while (obj != 0) {
463			error = dsl_dataset_hold_obj(dp, obj, FTAG,
464			    &snap);
465			if (error != 0)
466				return (SET_ERROR(ENODEV));
467			if (snap->ds_dir != ds->ds_dir) {
468				dsl_dataset_rele(snap, FTAG);
469				return (SET_ERROR(ENODEV));
470			}
471			if (dsl_dataset_phys(snap)->ds_guid == fromguid)
472				break;
473			obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
474			dsl_dataset_rele(snap, FTAG);
475		}
476		if (obj == 0)
477			return (SET_ERROR(ENODEV));
478
479		if (drba->drba_cookie->drc_force) {
480			drba->drba_cookie->drc_fromsnapobj = obj;
481		} else {
482			/*
483			 * If we are not forcing, there must be no
484			 * changes since fromsnap. Raw sends have an
485			 * additional constraint that requires that
486			 * no "noop" snapshots exist between fromsnap
487			 * and tosnap for the IVset checking code to
488			 * work properly.
489			 */
490			if (dsl_dataset_modified_since_snap(ds, snap) ||
491			    (raw &&
492			    dsl_dataset_phys(ds)->ds_prev_snap_obj !=
493			    snap->ds_object)) {
494				dsl_dataset_rele(snap, FTAG);
495				return (SET_ERROR(ETXTBSY));
496			}
497			drba->drba_cookie->drc_fromsnapobj =
498			    ds->ds_prev->ds_object;
499		}
500
501		if (dsl_dataset_feature_is_active(snap,
502		    SPA_FEATURE_REDACTED_DATASETS) && !redact_check(drba,
503		    snap)) {
504			dsl_dataset_rele(snap, FTAG);
505			return (SET_ERROR(EINVAL));
506		}
507
508		error = recv_check_large_blocks(snap, featureflags);
509		if (error != 0) {
510			dsl_dataset_rele(snap, FTAG);
511			return (error);
512		}
513
514		dsl_dataset_rele(snap, FTAG);
515	} else {
516		/* If full and not healing then must be forced. */
517		if (!drba->drba_cookie->drc_force)
518			return (SET_ERROR(EEXIST));
519
520		/*
521		 * We don't support using zfs recv -F to blow away
522		 * encrypted filesystems. This would require the
523		 * dsl dir to point to the old encryption key and
524		 * the new one at the same time during the receive.
525		 */
526		if ((!encrypted && raw) || encrypted)
527			return (SET_ERROR(EINVAL));
528
529		/*
530		 * Perform the same encryption checks we would if
531		 * we were creating a new dataset from scratch.
532		 */
533		if (!raw) {
534			boolean_t will_encrypt;
535
536			error = dmu_objset_create_crypt_check(
537			    ds->ds_dir->dd_parent, drba->drba_dcp,
538			    &will_encrypt);
539			if (error != 0)
540				return (error);
541
542			if (will_encrypt && embed)
543				return (SET_ERROR(EINVAL));
544		}
545	}
546
547	return (0);
548}
549
550/*
551 * Check that any feature flags used in the data stream we're receiving are
552 * supported by the pool we are receiving into.
553 *
554 * Note that some of the features we explicitly check here have additional
555 * (implicit) features they depend on, but those dependencies are enforced
556 * through the zfeature_register() calls declaring the features that we
557 * explicitly check.
558 */
559static int
560recv_begin_check_feature_flags_impl(uint64_t featureflags, spa_t *spa)
561{
562	/*
563	 * Check if there are any unsupported feature flags.
564	 */
565	if (!DMU_STREAM_SUPPORTED(featureflags)) {
566		return (SET_ERROR(ZFS_ERR_UNKNOWN_SEND_STREAM_FEATURE));
567	}
568
569	/* Verify pool version supports SA if SA_SPILL feature set */
570	if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
571	    spa_version(spa) < SPA_VERSION_SA)
572		return (SET_ERROR(ENOTSUP));
573
574	/*
575	 * LZ4 compressed, ZSTD compressed, embedded, mooched, large blocks,
576	 * and large_dnodes in the stream can only be used if those pool
577	 * features are enabled because we don't attempt to decompress /
578	 * un-embed / un-mooch / split up the blocks / dnodes during the
579	 * receive process.
580	 */
581	if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
582	    !spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS))
583		return (SET_ERROR(ENOTSUP));
584	if ((featureflags & DMU_BACKUP_FEATURE_ZSTD) &&
585	    !spa_feature_is_enabled(spa, SPA_FEATURE_ZSTD_COMPRESS))
586		return (SET_ERROR(ENOTSUP));
587	if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
588	    !spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA))
589		return (SET_ERROR(ENOTSUP));
590	if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
591	    !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
592		return (SET_ERROR(ENOTSUP));
593	if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
594	    !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
595		return (SET_ERROR(ENOTSUP));
596
597	/*
598	 * Receiving redacted streams requires that redacted datasets are
599	 * enabled.
600	 */
601	if ((featureflags & DMU_BACKUP_FEATURE_REDACTED) &&
602	    !spa_feature_is_enabled(spa, SPA_FEATURE_REDACTED_DATASETS))
603		return (SET_ERROR(ENOTSUP));
604
605	return (0);
606}
607
608static int
609dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
610{
611	dmu_recv_begin_arg_t *drba = arg;
612	dsl_pool_t *dp = dmu_tx_pool(tx);
613	struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
614	uint64_t fromguid = drrb->drr_fromguid;
615	int flags = drrb->drr_flags;
616	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
617	int error;
618	uint64_t featureflags = drba->drba_cookie->drc_featureflags;
619	dsl_dataset_t *ds;
620	const char *tofs = drba->drba_cookie->drc_tofs;
621
622	/* already checked */
623	ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
624	ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
625
626	if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
627	    DMU_COMPOUNDSTREAM ||
628	    drrb->drr_type >= DMU_OST_NUMTYPES ||
629	    ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
630		return (SET_ERROR(EINVAL));
631
632	error = recv_begin_check_feature_flags_impl(featureflags, dp->dp_spa);
633	if (error != 0)
634		return (error);
635
636	/* Resumable receives require extensible datasets */
637	if (drba->drba_cookie->drc_resumable &&
638	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
639		return (SET_ERROR(ENOTSUP));
640
641	if (featureflags & DMU_BACKUP_FEATURE_RAW) {
642		/* raw receives require the encryption feature */
643		if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION))
644			return (SET_ERROR(ENOTSUP));
645
646		/* embedded data is incompatible with encryption and raw recv */
647		if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
648			return (SET_ERROR(EINVAL));
649
650		/* raw receives require spill block allocation flag */
651		if (!(flags & DRR_FLAG_SPILL_BLOCK))
652			return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
653	} else {
654		/*
655		 * We support unencrypted datasets below encrypted ones now,
656		 * so add the DS_HOLD_FLAG_DECRYPT flag only if we are dealing
657		 * with a dataset we may encrypt.
658		 */
659		if (drba->drba_dcp == NULL ||
660		    drba->drba_dcp->cp_crypt != ZIO_CRYPT_OFF) {
661			dsflags |= DS_HOLD_FLAG_DECRYPT;
662		}
663	}
664
665	error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
666	if (error == 0) {
667		/* target fs already exists; recv into temp clone */
668
669		/* Can't recv a clone into an existing fs */
670		if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
671			dsl_dataset_rele_flags(ds, dsflags, FTAG);
672			return (SET_ERROR(EINVAL));
673		}
674
675		error = recv_begin_check_existing_impl(drba, ds, fromguid,
676		    featureflags);
677		dsl_dataset_rele_flags(ds, dsflags, FTAG);
678	} else if (error == ENOENT) {
679		/* target fs does not exist; must be a full backup or clone */
680		char buf[ZFS_MAX_DATASET_NAME_LEN];
681		objset_t *os;
682
683		/* healing recv must be done "into" an existing snapshot */
684		if (drba->drba_cookie->drc_heal == B_TRUE)
685			return (SET_ERROR(ENOTSUP));
686
687		/*
688		 * If it's a non-clone incremental, we are missing the
689		 * target fs, so fail the recv.
690		 */
691		if (fromguid != 0 && !((flags & DRR_FLAG_CLONE) ||
692		    drba->drba_origin))
693			return (SET_ERROR(ENOENT));
694
695		/*
696		 * If we're receiving a full send as a clone, and it doesn't
697		 * contain all the necessary free records and freeobject
698		 * records, reject it.
699		 */
700		if (fromguid == 0 && drba->drba_origin != NULL &&
701		    !(flags & DRR_FLAG_FREERECORDS))
702			return (SET_ERROR(EINVAL));
703
704		/* Open the parent of tofs */
705		ASSERT3U(strlen(tofs), <, sizeof (buf));
706		(void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
707		error = dsl_dataset_hold(dp, buf, FTAG, &ds);
708		if (error != 0)
709			return (error);
710
711		if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
712		    drba->drba_origin == NULL) {
713			boolean_t will_encrypt;
714
715			/*
716			 * Check that we aren't breaking any encryption rules
717			 * and that we have all the parameters we need to
718			 * create an encrypted dataset if necessary. If we are
719			 * making an encrypted dataset the stream can't have
720			 * embedded data.
721			 */
722			error = dmu_objset_create_crypt_check(ds->ds_dir,
723			    drba->drba_dcp, &will_encrypt);
724			if (error != 0) {
725				dsl_dataset_rele(ds, FTAG);
726				return (error);
727			}
728
729			if (will_encrypt &&
730			    (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
731				dsl_dataset_rele(ds, FTAG);
732				return (SET_ERROR(EINVAL));
733			}
734		}
735
736		/*
737		 * Check filesystem and snapshot limits before receiving. We'll
738		 * recheck snapshot limits again at the end (we create the
739		 * filesystems and increment those counts during begin_sync).
740		 */
741		error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
742		    ZFS_PROP_FILESYSTEM_LIMIT, NULL,
743		    drba->drba_cred, drba->drba_proc);
744		if (error != 0) {
745			dsl_dataset_rele(ds, FTAG);
746			return (error);
747		}
748
749		error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
750		    ZFS_PROP_SNAPSHOT_LIMIT, NULL,
751		    drba->drba_cred, drba->drba_proc);
752		if (error != 0) {
753			dsl_dataset_rele(ds, FTAG);
754			return (error);
755		}
756
757		/* can't recv below anything but filesystems (eg. no ZVOLs) */
758		error = dmu_objset_from_ds(ds, &os);
759		if (error != 0) {
760			dsl_dataset_rele(ds, FTAG);
761			return (error);
762		}
763		if (dmu_objset_type(os) != DMU_OST_ZFS) {
764			dsl_dataset_rele(ds, FTAG);
765			return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
766		}
767
768		if (drba->drba_origin != NULL) {
769			dsl_dataset_t *origin;
770			error = dsl_dataset_hold_flags(dp, drba->drba_origin,
771			    dsflags, FTAG, &origin);
772			if (error != 0) {
773				dsl_dataset_rele(ds, FTAG);
774				return (error);
775			}
776			if (!origin->ds_is_snapshot) {
777				dsl_dataset_rele_flags(origin, dsflags, FTAG);
778				dsl_dataset_rele(ds, FTAG);
779				return (SET_ERROR(EINVAL));
780			}
781			if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
782			    fromguid != 0) {
783				dsl_dataset_rele_flags(origin, dsflags, FTAG);
784				dsl_dataset_rele(ds, FTAG);
785				return (SET_ERROR(ENODEV));
786			}
787
788			if (origin->ds_dir->dd_crypto_obj != 0 &&
789			    (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
790				dsl_dataset_rele_flags(origin, dsflags, FTAG);
791				dsl_dataset_rele(ds, FTAG);
792				return (SET_ERROR(EINVAL));
793			}
794
795			/*
796			 * If the origin is redacted we need to verify that this
797			 * send stream can safely be received on top of the
798			 * origin.
799			 */
800			if (dsl_dataset_feature_is_active(origin,
801			    SPA_FEATURE_REDACTED_DATASETS)) {
802				if (!redact_check(drba, origin)) {
803					dsl_dataset_rele_flags(origin, dsflags,
804					    FTAG);
805					dsl_dataset_rele_flags(ds, dsflags,
806					    FTAG);
807					return (SET_ERROR(EINVAL));
808				}
809			}
810
811			error = recv_check_large_blocks(ds, featureflags);
812			if (error != 0) {
813				dsl_dataset_rele_flags(origin, dsflags, FTAG);
814				dsl_dataset_rele_flags(ds, dsflags, FTAG);
815				return (error);
816			}
817
818			dsl_dataset_rele_flags(origin, dsflags, FTAG);
819		}
820
821		dsl_dataset_rele(ds, FTAG);
822		error = 0;
823	}
824	return (error);
825}
826
827static void
828dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
829{
830	dmu_recv_begin_arg_t *drba = arg;
831	dsl_pool_t *dp = dmu_tx_pool(tx);
832	objset_t *mos = dp->dp_meta_objset;
833	dmu_recv_cookie_t *drc = drba->drba_cookie;
834	struct drr_begin *drrb = drc->drc_drrb;
835	const char *tofs = drc->drc_tofs;
836	uint64_t featureflags = drc->drc_featureflags;
837	dsl_dataset_t *ds, *newds;
838	objset_t *os;
839	uint64_t dsobj;
840	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
841	int error;
842	uint64_t crflags = 0;
843	dsl_crypto_params_t dummy_dcp = { 0 };
844	dsl_crypto_params_t *dcp = drba->drba_dcp;
845
846	if (drrb->drr_flags & DRR_FLAG_CI_DATA)
847		crflags |= DS_FLAG_CI_DATASET;
848
849	if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0)
850		dsflags |= DS_HOLD_FLAG_DECRYPT;
851
852	/*
853	 * Raw, non-incremental recvs always use a dummy dcp with
854	 * the raw cmd set. Raw incremental recvs do not use a dcp
855	 * since the encryption parameters are already set in stone.
856	 */
857	if (dcp == NULL && drrb->drr_fromguid == 0 &&
858	    drba->drba_origin == NULL) {
859		ASSERT3P(dcp, ==, NULL);
860		dcp = &dummy_dcp;
861
862		if (featureflags & DMU_BACKUP_FEATURE_RAW)
863			dcp->cp_cmd = DCP_CMD_RAW_RECV;
864	}
865
866	error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
867	if (error == 0) {
868		/* Create temporary clone unless we're doing corrective recv */
869		dsl_dataset_t *snap = NULL;
870
871		if (drba->drba_cookie->drc_fromsnapobj != 0) {
872			VERIFY0(dsl_dataset_hold_obj(dp,
873			    drba->drba_cookie->drc_fromsnapobj, FTAG, &snap));
874			ASSERT3P(dcp, ==, NULL);
875		}
876		if (drc->drc_heal) {
877			/* When healing we want to use the provided snapshot */
878			VERIFY0(dsl_dataset_snap_lookup(ds, drc->drc_tosnap,
879			    &dsobj));
880		} else {
881			dsobj = dsl_dataset_create_sync(ds->ds_dir,
882			    recv_clone_name, snap, crflags, drba->drba_cred,
883			    dcp, tx);
884		}
885		if (drba->drba_cookie->drc_fromsnapobj != 0)
886			dsl_dataset_rele(snap, FTAG);
887		dsl_dataset_rele_flags(ds, dsflags, FTAG);
888	} else {
889		dsl_dir_t *dd;
890		const char *tail;
891		dsl_dataset_t *origin = NULL;
892
893		VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
894
895		if (drba->drba_origin != NULL) {
896			VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
897			    FTAG, &origin));
898			ASSERT3P(dcp, ==, NULL);
899		}
900
901		/* Create new dataset. */
902		dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1,
903		    origin, crflags, drba->drba_cred, dcp, tx);
904		if (origin != NULL)
905			dsl_dataset_rele(origin, FTAG);
906		dsl_dir_rele(dd, FTAG);
907		drc->drc_newfs = B_TRUE;
908	}
909	VERIFY0(dsl_dataset_own_obj_force(dp, dsobj, dsflags, dmu_recv_tag,
910	    &newds));
911	if (dsl_dataset_feature_is_active(newds,
912	    SPA_FEATURE_REDACTED_DATASETS)) {
913		/*
914		 * If the origin dataset is redacted, the child will be redacted
915		 * when we create it.  We clear the new dataset's
916		 * redaction info; if it should be redacted, we'll fill
917		 * in its information later.
918		 */
919		dsl_dataset_deactivate_feature(newds,
920		    SPA_FEATURE_REDACTED_DATASETS, tx);
921	}
922	VERIFY0(dmu_objset_from_ds(newds, &os));
923
924	if (drc->drc_resumable) {
925		dsl_dataset_zapify(newds, tx);
926		if (drrb->drr_fromguid != 0) {
927			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
928			    8, 1, &drrb->drr_fromguid, tx));
929		}
930		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
931		    8, 1, &drrb->drr_toguid, tx));
932		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
933		    1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
934		uint64_t one = 1;
935		uint64_t zero = 0;
936		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
937		    8, 1, &one, tx));
938		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
939		    8, 1, &zero, tx));
940		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
941		    8, 1, &zero, tx));
942		if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) {
943			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK,
944			    8, 1, &one, tx));
945		}
946		if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) {
947			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
948			    8, 1, &one, tx));
949		}
950		if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) {
951			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK,
952			    8, 1, &one, tx));
953		}
954		if (featureflags & DMU_BACKUP_FEATURE_RAW) {
955			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK,
956			    8, 1, &one, tx));
957		}
958
959		uint64_t *redact_snaps;
960		uint_t numredactsnaps;
961		if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
962		    BEGINNV_REDACT_FROM_SNAPS, &redact_snaps,
963		    &numredactsnaps) == 0) {
964			VERIFY0(zap_add(mos, dsobj,
965			    DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS,
966			    sizeof (*redact_snaps), numredactsnaps,
967			    redact_snaps, tx));
968		}
969	}
970
971	/*
972	 * Usually the os->os_encrypted value is tied to the presence of a
973	 * DSL Crypto Key object in the dd. However, that will not be received
974	 * until dmu_recv_stream(), so we set the value manually for now.
975	 */
976	if (featureflags & DMU_BACKUP_FEATURE_RAW) {
977		os->os_encrypted = B_TRUE;
978		drba->drba_cookie->drc_raw = B_TRUE;
979	}
980
981	if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
982		uint64_t *redact_snaps;
983		uint_t numredactsnaps;
984		VERIFY0(nvlist_lookup_uint64_array(drc->drc_begin_nvl,
985		    BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps));
986		dsl_dataset_activate_redaction(newds, redact_snaps,
987		    numredactsnaps, tx);
988	}
989
990	dmu_buf_will_dirty(newds->ds_dbuf, tx);
991	dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
992
993	/*
994	 * If we actually created a non-clone, we need to create the objset
995	 * in our new dataset. If this is a raw send we postpone this until
996	 * dmu_recv_stream() so that we can allocate the metadnode with the
997	 * properties from the DRR_BEGIN payload.
998	 */
999	rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG);
1000	if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) &&
1001	    (featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
1002	    !drc->drc_heal) {
1003		(void) dmu_objset_create_impl(dp->dp_spa,
1004		    newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
1005	}
1006	rrw_exit(&newds->ds_bp_rwlock, FTAG);
1007
1008	drba->drba_cookie->drc_ds = newds;
1009	drba->drba_cookie->drc_os = os;
1010
1011	spa_history_log_internal_ds(newds, "receive", tx, " ");
1012}
1013
1014static int
1015dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
1016{
1017	dmu_recv_begin_arg_t *drba = arg;
1018	dmu_recv_cookie_t *drc = drba->drba_cookie;
1019	dsl_pool_t *dp = dmu_tx_pool(tx);
1020	struct drr_begin *drrb = drc->drc_drrb;
1021	int error;
1022	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
1023	dsl_dataset_t *ds;
1024	const char *tofs = drc->drc_tofs;
1025
1026	/* already checked */
1027	ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1028	ASSERT(drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING);
1029
1030	if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1031	    DMU_COMPOUNDSTREAM ||
1032	    drrb->drr_type >= DMU_OST_NUMTYPES)
1033		return (SET_ERROR(EINVAL));
1034
1035	/*
1036	 * This is mostly a sanity check since we should have already done these
1037	 * checks during a previous attempt to receive the data.
1038	 */
1039	error = recv_begin_check_feature_flags_impl(drc->drc_featureflags,
1040	    dp->dp_spa);
1041	if (error != 0)
1042		return (error);
1043
1044	/* 6 extra bytes for /%recv */
1045	char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1046
1047	(void) snprintf(recvname, sizeof (recvname), "%s/%s",
1048	    tofs, recv_clone_name);
1049
1050	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
1051		/* raw receives require spill block allocation flag */
1052		if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK))
1053			return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
1054	} else {
1055		dsflags |= DS_HOLD_FLAG_DECRYPT;
1056	}
1057
1058	boolean_t recvexist = B_TRUE;
1059	if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
1060		/* %recv does not exist; continue in tofs */
1061		recvexist = B_FALSE;
1062		error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
1063		if (error != 0)
1064			return (error);
1065	}
1066
1067	/*
1068	 * Resume of full/newfs recv on existing dataset should be done with
1069	 * force flag
1070	 */
1071	if (recvexist && drrb->drr_fromguid == 0 && !drc->drc_force) {
1072		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1073		return (SET_ERROR(ZFS_ERR_RESUME_EXISTS));
1074	}
1075
1076	/* check that ds is marked inconsistent */
1077	if (!DS_IS_INCONSISTENT(ds)) {
1078		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1079		return (SET_ERROR(EINVAL));
1080	}
1081
1082	/* check that there is resuming data, and that the toguid matches */
1083	if (!dsl_dataset_is_zapified(ds)) {
1084		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1085		return (SET_ERROR(EINVAL));
1086	}
1087	uint64_t val;
1088	error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
1089	    DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
1090	if (error != 0 || drrb->drr_toguid != val) {
1091		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1092		return (SET_ERROR(EINVAL));
1093	}
1094
1095	/*
1096	 * Check if the receive is still running.  If so, it will be owned.
1097	 * Note that nothing else can own the dataset (e.g. after the receive
1098	 * fails) because it will be marked inconsistent.
1099	 */
1100	if (dsl_dataset_has_owner(ds)) {
1101		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1102		return (SET_ERROR(EBUSY));
1103	}
1104
1105	/* There should not be any snapshots of this fs yet. */
1106	if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
1107		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1108		return (SET_ERROR(EINVAL));
1109	}
1110
1111	/*
1112	 * Note: resume point will be checked when we process the first WRITE
1113	 * record.
1114	 */
1115
1116	/* check that the origin matches */
1117	val = 0;
1118	(void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
1119	    DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
1120	if (drrb->drr_fromguid != val) {
1121		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1122		return (SET_ERROR(EINVAL));
1123	}
1124
1125	if (ds->ds_prev != NULL && drrb->drr_fromguid != 0)
1126		drc->drc_fromsnapobj = ds->ds_prev->ds_object;
1127
1128	/*
1129	 * If we're resuming, and the send is redacted, then the original send
1130	 * must have been redacted, and must have been redacted with respect to
1131	 * the same snapshots.
1132	 */
1133	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_REDACTED) {
1134		uint64_t num_ds_redact_snaps;
1135		uint64_t *ds_redact_snaps;
1136
1137		uint_t num_stream_redact_snaps;
1138		uint64_t *stream_redact_snaps;
1139
1140		if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
1141		    BEGINNV_REDACT_SNAPS, &stream_redact_snaps,
1142		    &num_stream_redact_snaps) != 0) {
1143			dsl_dataset_rele_flags(ds, dsflags, FTAG);
1144			return (SET_ERROR(EINVAL));
1145		}
1146
1147		if (!dsl_dataset_get_uint64_array_feature(ds,
1148		    SPA_FEATURE_REDACTED_DATASETS, &num_ds_redact_snaps,
1149		    &ds_redact_snaps)) {
1150			dsl_dataset_rele_flags(ds, dsflags, FTAG);
1151			return (SET_ERROR(EINVAL));
1152		}
1153
1154		for (int i = 0; i < num_ds_redact_snaps; i++) {
1155			if (!redact_snaps_contains(ds_redact_snaps,
1156			    num_ds_redact_snaps, stream_redact_snaps[i])) {
1157				dsl_dataset_rele_flags(ds, dsflags, FTAG);
1158				return (SET_ERROR(EINVAL));
1159			}
1160		}
1161	}
1162
1163	error = recv_check_large_blocks(ds, drc->drc_featureflags);
1164	if (error != 0) {
1165		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1166		return (error);
1167	}
1168
1169	dsl_dataset_rele_flags(ds, dsflags, FTAG);
1170	return (0);
1171}
1172
1173static void
1174dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
1175{
1176	dmu_recv_begin_arg_t *drba = arg;
1177	dsl_pool_t *dp = dmu_tx_pool(tx);
1178	const char *tofs = drba->drba_cookie->drc_tofs;
1179	uint64_t featureflags = drba->drba_cookie->drc_featureflags;
1180	dsl_dataset_t *ds;
1181	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
1182	/* 6 extra bytes for /%recv */
1183	char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1184
1185	(void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs,
1186	    recv_clone_name);
1187
1188	if (featureflags & DMU_BACKUP_FEATURE_RAW) {
1189		drba->drba_cookie->drc_raw = B_TRUE;
1190	} else {
1191		dsflags |= DS_HOLD_FLAG_DECRYPT;
1192	}
1193
1194	if (dsl_dataset_own_force(dp, recvname, dsflags, dmu_recv_tag, &ds)
1195	    != 0) {
1196		/* %recv does not exist; continue in tofs */
1197		VERIFY0(dsl_dataset_own_force(dp, tofs, dsflags, dmu_recv_tag,
1198		    &ds));
1199		drba->drba_cookie->drc_newfs = B_TRUE;
1200	}
1201
1202	ASSERT(DS_IS_INCONSISTENT(ds));
1203	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
1204	ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) ||
1205	    drba->drba_cookie->drc_raw);
1206	rrw_exit(&ds->ds_bp_rwlock, FTAG);
1207
1208	drba->drba_cookie->drc_ds = ds;
1209	VERIFY0(dmu_objset_from_ds(ds, &drba->drba_cookie->drc_os));
1210	drba->drba_cookie->drc_should_save = B_TRUE;
1211
1212	spa_history_log_internal_ds(ds, "resume receive", tx, " ");
1213}
1214
1215/*
1216 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
1217 * succeeds; otherwise we will leak the holds on the datasets.
1218 */
1219int
1220dmu_recv_begin(const char *tofs, const char *tosnap,
1221    dmu_replay_record_t *drr_begin, boolean_t force, boolean_t heal,
1222    boolean_t resumable, nvlist_t *localprops, nvlist_t *hidden_args,
1223    const char *origin, dmu_recv_cookie_t *drc, zfs_file_t *fp,
1224    offset_t *voffp)
1225{
1226	dmu_recv_begin_arg_t drba = { 0 };
1227	int err = 0;
1228
1229	memset(drc, 0, sizeof (dmu_recv_cookie_t));
1230	drc->drc_drr_begin = drr_begin;
1231	drc->drc_drrb = &drr_begin->drr_u.drr_begin;
1232	drc->drc_tosnap = tosnap;
1233	drc->drc_tofs = tofs;
1234	drc->drc_force = force;
1235	drc->drc_heal = heal;
1236	drc->drc_resumable = resumable;
1237	drc->drc_cred = CRED();
1238	drc->drc_proc = curproc;
1239	drc->drc_clone = (origin != NULL);
1240
1241	if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
1242		drc->drc_byteswap = B_TRUE;
1243		(void) fletcher_4_incremental_byteswap(drr_begin,
1244		    sizeof (dmu_replay_record_t), &drc->drc_cksum);
1245		byteswap_record(drr_begin);
1246	} else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
1247		(void) fletcher_4_incremental_native(drr_begin,
1248		    sizeof (dmu_replay_record_t), &drc->drc_cksum);
1249	} else {
1250		return (SET_ERROR(EINVAL));
1251	}
1252
1253	drc->drc_fp = fp;
1254	drc->drc_voff = *voffp;
1255	drc->drc_featureflags =
1256	    DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
1257
1258	uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
1259
1260	/*
1261	 * Since OpenZFS 2.0.0, we have enforced a 64MB limit in userspace
1262	 * configurable via ZFS_SENDRECV_MAX_NVLIST. We enforce 256MB as a hard
1263	 * upper limit. Systems with less than 1GB of RAM will see a lower
1264	 * limit from `arc_all_memory() / 4`.
1265	 */
1266	if (payloadlen > (MIN((1U << 28), arc_all_memory() / 4)))
1267		return (E2BIG);
1268
1269
1270	if (payloadlen != 0) {
1271		void *payload = vmem_alloc(payloadlen, KM_SLEEP);
1272		/*
1273		 * For compatibility with recursive send streams, we don't do
1274		 * this here if the stream could be part of a package. Instead,
1275		 * we'll do it in dmu_recv_stream. If we pull the next header
1276		 * too early, and it's the END record, we break the `recv_skip`
1277		 * logic.
1278		 */
1279
1280		err = receive_read_payload_and_next_header(drc, payloadlen,
1281		    payload);
1282		if (err != 0) {
1283			vmem_free(payload, payloadlen);
1284			return (err);
1285		}
1286		err = nvlist_unpack(payload, payloadlen, &drc->drc_begin_nvl,
1287		    KM_SLEEP);
1288		vmem_free(payload, payloadlen);
1289		if (err != 0) {
1290			kmem_free(drc->drc_next_rrd,
1291			    sizeof (*drc->drc_next_rrd));
1292			return (err);
1293		}
1294	}
1295
1296	if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)
1297		drc->drc_spill = B_TRUE;
1298
1299	drba.drba_origin = origin;
1300	drba.drba_cookie = drc;
1301	drba.drba_cred = CRED();
1302	drba.drba_proc = curproc;
1303
1304	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
1305		err = dsl_sync_task(tofs,
1306		    dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
1307		    &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1308	} else {
1309		/*
1310		 * For non-raw, non-incremental, non-resuming receives the
1311		 * user can specify encryption parameters on the command line
1312		 * with "zfs recv -o". For these receives we create a dcp and
1313		 * pass it to the sync task. Creating the dcp will implicitly
1314		 * remove the encryption params from the localprops nvlist,
1315		 * which avoids errors when trying to set these normally
1316		 * read-only properties. Any other kind of receive that
1317		 * attempts to set these properties will fail as a result.
1318		 */
1319		if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
1320		    DMU_BACKUP_FEATURE_RAW) == 0 &&
1321		    origin == NULL && drc->drc_drrb->drr_fromguid == 0) {
1322			err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
1323			    localprops, hidden_args, &drba.drba_dcp);
1324		}
1325
1326		if (err == 0) {
1327			err = dsl_sync_task(tofs,
1328			    dmu_recv_begin_check, dmu_recv_begin_sync,
1329			    &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1330			dsl_crypto_params_free(drba.drba_dcp, !!err);
1331		}
1332	}
1333
1334	if (err != 0) {
1335		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
1336		nvlist_free(drc->drc_begin_nvl);
1337	}
1338	return (err);
1339}
1340
1341/*
1342 * Holds data need for corrective recv callback
1343 */
1344typedef struct cr_cb_data {
1345	uint64_t size;
1346	zbookmark_phys_t zb;
1347	spa_t *spa;
1348} cr_cb_data_t;
1349
1350static void
1351corrective_read_done(zio_t *zio)
1352{
1353	cr_cb_data_t *data = zio->io_private;
1354	/* Corruption corrected; update error log if needed */
1355	if (zio->io_error == 0) {
1356		spa_remove_error(data->spa, &data->zb,
1357		    BP_GET_LOGICAL_BIRTH(zio->io_bp));
1358	}
1359	kmem_free(data, sizeof (cr_cb_data_t));
1360	abd_free(zio->io_abd);
1361}
1362
1363/*
1364 * zio_rewrite the data pointed to by bp with the data from the rrd's abd.
1365 */
1366static int
1367do_corrective_recv(struct receive_writer_arg *rwa, struct drr_write *drrw,
1368    struct receive_record_arg *rrd, blkptr_t *bp)
1369{
1370	int err;
1371	zio_t *io;
1372	zbookmark_phys_t zb;
1373	dnode_t *dn;
1374	abd_t *abd = rrd->abd;
1375	zio_cksum_t bp_cksum = bp->blk_cksum;
1376	zio_flag_t flags = ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_RETRY |
1377	    ZIO_FLAG_CANFAIL;
1378
1379	if (rwa->raw)
1380		flags |= ZIO_FLAG_RAW;
1381
1382	err = dnode_hold(rwa->os, drrw->drr_object, FTAG, &dn);
1383	if (err != 0)
1384		return (err);
1385	SET_BOOKMARK(&zb, dmu_objset_id(rwa->os), drrw->drr_object, 0,
1386	    dbuf_whichblock(dn, 0, drrw->drr_offset));
1387	dnode_rele(dn, FTAG);
1388
1389	if (!rwa->raw && DRR_WRITE_COMPRESSED(drrw)) {
1390		/* Decompress the stream data */
1391		abd_t *dabd = abd_alloc_linear(
1392		    drrw->drr_logical_size, B_FALSE);
1393		err = zio_decompress_data(drrw->drr_compressiontype,
1394		    abd, abd_to_buf(dabd), abd_get_size(abd),
1395		    abd_get_size(dabd), NULL);
1396
1397		if (err != 0) {
1398			abd_free(dabd);
1399			return (err);
1400		}
1401		/* Swap in the newly decompressed data into the abd */
1402		abd_free(abd);
1403		abd = dabd;
1404	}
1405
1406	if (!rwa->raw && BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
1407		/* Recompress the data */
1408		abd_t *cabd = abd_alloc_linear(BP_GET_PSIZE(bp),
1409		    B_FALSE);
1410		void *buf = abd_to_buf(cabd);
1411		uint64_t csize = zio_compress_data(BP_GET_COMPRESS(bp),
1412		    abd, &buf, abd_get_size(abd),
1413		    rwa->os->os_complevel);
1414		abd_zero_off(cabd, csize, BP_GET_PSIZE(bp) - csize);
1415		/* Swap in newly compressed data into the abd */
1416		abd_free(abd);
1417		abd = cabd;
1418		flags |= ZIO_FLAG_RAW_COMPRESS;
1419	}
1420
1421	/*
1422	 * The stream is not encrypted but the data on-disk is.
1423	 * We need to re-encrypt the buf using the same
1424	 * encryption type, salt, iv, and mac that was used to encrypt
1425	 * the block previosly.
1426	 */
1427	if (!rwa->raw && BP_USES_CRYPT(bp)) {
1428		dsl_dataset_t *ds;
1429		dsl_crypto_key_t *dck = NULL;
1430		uint8_t salt[ZIO_DATA_SALT_LEN];
1431		uint8_t iv[ZIO_DATA_IV_LEN];
1432		uint8_t mac[ZIO_DATA_MAC_LEN];
1433		boolean_t no_crypt = B_FALSE;
1434		dsl_pool_t *dp = dmu_objset_pool(rwa->os);
1435		abd_t *eabd = abd_alloc_linear(BP_GET_PSIZE(bp), B_FALSE);
1436
1437		zio_crypt_decode_params_bp(bp, salt, iv);
1438		zio_crypt_decode_mac_bp(bp, mac);
1439
1440		dsl_pool_config_enter(dp, FTAG);
1441		err = dsl_dataset_hold_flags(dp, rwa->tofs,
1442		    DS_HOLD_FLAG_DECRYPT, FTAG, &ds);
1443		if (err != 0) {
1444			dsl_pool_config_exit(dp, FTAG);
1445			abd_free(eabd);
1446			return (SET_ERROR(EACCES));
1447		}
1448
1449		/* Look up the key from the spa's keystore */
1450		err = spa_keystore_lookup_key(rwa->os->os_spa,
1451		    zb.zb_objset, FTAG, &dck);
1452		if (err != 0) {
1453			dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT,
1454			    FTAG);
1455			dsl_pool_config_exit(dp, FTAG);
1456			abd_free(eabd);
1457			return (SET_ERROR(EACCES));
1458		}
1459
1460		err = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
1461		    BP_GET_TYPE(bp), BP_SHOULD_BYTESWAP(bp), salt, iv,
1462		    mac, abd_get_size(abd), abd, eabd, &no_crypt);
1463
1464		spa_keystore_dsl_key_rele(rwa->os->os_spa, dck, FTAG);
1465		dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
1466		dsl_pool_config_exit(dp, FTAG);
1467
1468		ASSERT0(no_crypt);
1469		if (err != 0) {
1470			abd_free(eabd);
1471			return (err);
1472		}
1473		/* Swap in the newly encrypted data into the abd */
1474		abd_free(abd);
1475		abd = eabd;
1476
1477		/*
1478		 * We want to prevent zio_rewrite() from trying to
1479		 * encrypt the data again
1480		 */
1481		flags |= ZIO_FLAG_RAW_ENCRYPT;
1482	}
1483	rrd->abd = abd;
1484
1485	io = zio_rewrite(NULL, rwa->os->os_spa, BP_GET_LOGICAL_BIRTH(bp), bp,
1486	    abd, BP_GET_PSIZE(bp), NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, flags,
1487	    &zb);
1488
1489	ASSERT(abd_get_size(abd) == BP_GET_LSIZE(bp) ||
1490	    abd_get_size(abd) == BP_GET_PSIZE(bp));
1491
1492	/* compute new bp checksum value and make sure it matches the old one */
1493	zio_checksum_compute(io, BP_GET_CHECKSUM(bp), abd, abd_get_size(abd));
1494	if (!ZIO_CHECKSUM_EQUAL(bp_cksum, io->io_bp->blk_cksum)) {
1495		zio_destroy(io);
1496		if (zfs_recv_best_effort_corrective != 0)
1497			return (0);
1498		return (SET_ERROR(ECKSUM));
1499	}
1500
1501	/* Correct the corruption in place */
1502	err = zio_wait(io);
1503	if (err == 0) {
1504		cr_cb_data_t *cb_data =
1505		    kmem_alloc(sizeof (cr_cb_data_t), KM_SLEEP);
1506		cb_data->spa = rwa->os->os_spa;
1507		cb_data->size = drrw->drr_logical_size;
1508		cb_data->zb = zb;
1509		/* Test if healing worked by re-reading the bp */
1510		err = zio_wait(zio_read(rwa->heal_pio, rwa->os->os_spa, bp,
1511		    abd_alloc_for_io(drrw->drr_logical_size, B_FALSE),
1512		    drrw->drr_logical_size, corrective_read_done,
1513		    cb_data, ZIO_PRIORITY_ASYNC_READ, flags, NULL));
1514	}
1515	if (err != 0 && zfs_recv_best_effort_corrective != 0)
1516		err = 0;
1517
1518	return (err);
1519}
1520
1521static int
1522receive_read(dmu_recv_cookie_t *drc, int len, void *buf)
1523{
1524	int done = 0;
1525
1526	/*
1527	 * The code doesn't rely on this (lengths being multiples of 8).  See
1528	 * comment in dump_bytes.
1529	 */
1530	ASSERT(len % 8 == 0 ||
1531	    (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) != 0);
1532
1533	while (done < len) {
1534		ssize_t resid = len - done;
1535		zfs_file_t *fp = drc->drc_fp;
1536		int err = zfs_file_read(fp, (char *)buf + done,
1537		    len - done, &resid);
1538		if (err == 0 && resid == len - done) {
1539			/*
1540			 * Note: ECKSUM or ZFS_ERR_STREAM_TRUNCATED indicates
1541			 * that the receive was interrupted and can
1542			 * potentially be resumed.
1543			 */
1544			err = SET_ERROR(ZFS_ERR_STREAM_TRUNCATED);
1545		}
1546		drc->drc_voff += len - done - resid;
1547		done = len - resid;
1548		if (err != 0)
1549			return (err);
1550	}
1551
1552	drc->drc_bytes_read += len;
1553
1554	ASSERT3U(done, ==, len);
1555	return (0);
1556}
1557
1558static inline uint8_t
1559deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
1560{
1561	if (bonus_type == DMU_OT_SA) {
1562		return (1);
1563	} else {
1564		return (1 +
1565		    ((DN_OLD_MAX_BONUSLEN -
1566		    MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT));
1567	}
1568}
1569
1570static void
1571save_resume_state(struct receive_writer_arg *rwa,
1572    uint64_t object, uint64_t offset, dmu_tx_t *tx)
1573{
1574	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1575
1576	if (!rwa->resumable)
1577		return;
1578
1579	/*
1580	 * We use ds_resume_bytes[] != 0 to indicate that we need to
1581	 * update this on disk, so it must not be 0.
1582	 */
1583	ASSERT(rwa->bytes_read != 0);
1584
1585	/*
1586	 * We only resume from write records, which have a valid
1587	 * (non-meta-dnode) object number.
1588	 */
1589	ASSERT(object != 0);
1590
1591	/*
1592	 * For resuming to work correctly, we must receive records in order,
1593	 * sorted by object,offset.  This is checked by the callers, but
1594	 * assert it here for good measure.
1595	 */
1596	ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
1597	ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
1598	    offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
1599	ASSERT3U(rwa->bytes_read, >=,
1600	    rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
1601
1602	rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
1603	rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
1604	rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
1605}
1606
1607static int
1608receive_object_is_same_generation(objset_t *os, uint64_t object,
1609    dmu_object_type_t old_bonus_type, dmu_object_type_t new_bonus_type,
1610    const void *new_bonus, boolean_t *samegenp)
1611{
1612	zfs_file_info_t zoi;
1613	int err;
1614
1615	dmu_buf_t *old_bonus_dbuf;
1616	err = dmu_bonus_hold(os, object, FTAG, &old_bonus_dbuf);
1617	if (err != 0)
1618		return (err);
1619	err = dmu_get_file_info(os, old_bonus_type, old_bonus_dbuf->db_data,
1620	    &zoi);
1621	dmu_buf_rele(old_bonus_dbuf, FTAG);
1622	if (err != 0)
1623		return (err);
1624	uint64_t old_gen = zoi.zfi_generation;
1625
1626	err = dmu_get_file_info(os, new_bonus_type, new_bonus, &zoi);
1627	if (err != 0)
1628		return (err);
1629	uint64_t new_gen = zoi.zfi_generation;
1630
1631	*samegenp = (old_gen == new_gen);
1632	return (0);
1633}
1634
1635static int
1636receive_handle_existing_object(const struct receive_writer_arg *rwa,
1637    const struct drr_object *drro, const dmu_object_info_t *doi,
1638    const void *bonus_data,
1639    uint64_t *object_to_hold, uint32_t *new_blksz)
1640{
1641	uint32_t indblksz = drro->drr_indblkshift ?
1642	    1ULL << drro->drr_indblkshift : 0;
1643	int nblkptr = deduce_nblkptr(drro->drr_bonustype,
1644	    drro->drr_bonuslen);
1645	uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1646	    drro->drr_dn_slots : DNODE_MIN_SLOTS;
1647	boolean_t do_free_range = B_FALSE;
1648	int err;
1649
1650	*object_to_hold = drro->drr_object;
1651
1652	/* nblkptr should be bounded by the bonus size and type */
1653	if (rwa->raw && nblkptr != drro->drr_nblkptr)
1654		return (SET_ERROR(EINVAL));
1655
1656	/*
1657	 * After the previous send stream, the sending system may
1658	 * have freed this object, and then happened to re-allocate
1659	 * this object number in a later txg. In this case, we are
1660	 * receiving a different logical file, and the block size may
1661	 * appear to be different.  i.e. we may have a different
1662	 * block size for this object than what the send stream says.
1663	 * In this case we need to remove the object's contents,
1664	 * so that its structure can be changed and then its contents
1665	 * entirely replaced by subsequent WRITE records.
1666	 *
1667	 * If this is a -L (--large-block) incremental stream, and
1668	 * the previous stream was not -L, the block size may appear
1669	 * to increase.  i.e. we may have a smaller block size for
1670	 * this object than what the send stream says.  In this case
1671	 * we need to keep the object's contents and block size
1672	 * intact, so that we don't lose parts of the object's
1673	 * contents that are not changed by this incremental send
1674	 * stream.
1675	 *
1676	 * We can distinguish between the two above cases by using
1677	 * the ZPL's generation number (see
1678	 * receive_object_is_same_generation()).  However, we only
1679	 * want to rely on the generation number when absolutely
1680	 * necessary, because with raw receives, the generation is
1681	 * encrypted.  We also want to minimize dependence on the
1682	 * ZPL, so that other types of datasets can also be received
1683	 * (e.g. ZVOLs, although note that ZVOLS currently do not
1684	 * reallocate their objects or change their structure).
1685	 * Therefore, we check a number of different cases where we
1686	 * know it is safe to discard the object's contents, before
1687	 * using the ZPL's generation number to make the above
1688	 * distinction.
1689	 */
1690	if (drro->drr_blksz != doi->doi_data_block_size) {
1691		if (rwa->raw) {
1692			/*
1693			 * RAW streams always have large blocks, so
1694			 * we are sure that the data is not needed
1695			 * due to changing --large-block to be on.
1696			 * Which is fortunate since the bonus buffer
1697			 * (which contains the ZPL generation) is
1698			 * encrypted, and the key might not be
1699			 * loaded.
1700			 */
1701			do_free_range = B_TRUE;
1702		} else if (rwa->full) {
1703			/*
1704			 * This is a full send stream, so it always
1705			 * replaces what we have.  Even if the
1706			 * generation numbers happen to match, this
1707			 * can not actually be the same logical file.
1708			 * This is relevant when receiving a full
1709			 * send as a clone.
1710			 */
1711			do_free_range = B_TRUE;
1712		} else if (drro->drr_type !=
1713		    DMU_OT_PLAIN_FILE_CONTENTS ||
1714		    doi->doi_type != DMU_OT_PLAIN_FILE_CONTENTS) {
1715			/*
1716			 * PLAIN_FILE_CONTENTS are the only type of
1717			 * objects that have ever been stored with
1718			 * large blocks, so we don't need the special
1719			 * logic below.  ZAP blocks can shrink (when
1720			 * there's only one block), so we don't want
1721			 * to hit the error below about block size
1722			 * only increasing.
1723			 */
1724			do_free_range = B_TRUE;
1725		} else if (doi->doi_max_offset <=
1726		    doi->doi_data_block_size) {
1727			/*
1728			 * There is only one block.  We can free it,
1729			 * because its contents will be replaced by a
1730			 * WRITE record.  This can not be the no-L ->
1731			 * -L case, because the no-L case would have
1732			 * resulted in multiple blocks.  If we
1733			 * supported -L -> no-L, it would not be safe
1734			 * to free the file's contents.  Fortunately,
1735			 * that is not allowed (see
1736			 * recv_check_large_blocks()).
1737			 */
1738			do_free_range = B_TRUE;
1739		} else {
1740			boolean_t is_same_gen;
1741			err = receive_object_is_same_generation(rwa->os,
1742			    drro->drr_object, doi->doi_bonus_type,
1743			    drro->drr_bonustype, bonus_data, &is_same_gen);
1744			if (err != 0)
1745				return (SET_ERROR(EINVAL));
1746
1747			if (is_same_gen) {
1748				/*
1749				 * This is the same logical file, and
1750				 * the block size must be increasing.
1751				 * It could only decrease if
1752				 * --large-block was changed to be
1753				 * off, which is checked in
1754				 * recv_check_large_blocks().
1755				 */
1756				if (drro->drr_blksz <=
1757				    doi->doi_data_block_size)
1758					return (SET_ERROR(EINVAL));
1759				/*
1760				 * We keep the existing blocksize and
1761				 * contents.
1762				 */
1763				*new_blksz =
1764				    doi->doi_data_block_size;
1765			} else {
1766				do_free_range = B_TRUE;
1767			}
1768		}
1769	}
1770
1771	/* nblkptr can only decrease if the object was reallocated */
1772	if (nblkptr < doi->doi_nblkptr)
1773		do_free_range = B_TRUE;
1774
1775	/* number of slots can only change on reallocation */
1776	if (dn_slots != doi->doi_dnodesize >> DNODE_SHIFT)
1777		do_free_range = B_TRUE;
1778
1779	/*
1780	 * For raw sends we also check a few other fields to
1781	 * ensure we are preserving the objset structure exactly
1782	 * as it was on the receive side:
1783	 *     - A changed indirect block size
1784	 *     - A smaller nlevels
1785	 */
1786	if (rwa->raw) {
1787		if (indblksz != doi->doi_metadata_block_size)
1788			do_free_range = B_TRUE;
1789		if (drro->drr_nlevels < doi->doi_indirection)
1790			do_free_range = B_TRUE;
1791	}
1792
1793	if (do_free_range) {
1794		err = dmu_free_long_range(rwa->os, drro->drr_object,
1795		    0, DMU_OBJECT_END);
1796		if (err != 0)
1797			return (SET_ERROR(EINVAL));
1798	}
1799
1800	/*
1801	 * The dmu does not currently support decreasing nlevels or changing
1802	 * indirect block size if there is already one, same as changing the
1803	 * number of of dnode slots on an object.  For non-raw sends this
1804	 * does not matter and the new object can just use the previous one's
1805	 * parameters.  For raw sends, however, the structure of the received
1806	 * dnode (including indirects and dnode slots) must match that of the
1807	 * send side.  Therefore, instead of using dmu_object_reclaim(), we
1808	 * must free the object completely and call dmu_object_claim_dnsize()
1809	 * instead.
1810	 */
1811	if ((rwa->raw && ((doi->doi_indirection > 1 &&
1812	    indblksz != doi->doi_metadata_block_size) ||
1813	    drro->drr_nlevels < doi->doi_indirection)) ||
1814	    dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) {
1815		err = dmu_free_long_object(rwa->os, drro->drr_object);
1816		if (err != 0)
1817			return (SET_ERROR(EINVAL));
1818
1819		txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1820		*object_to_hold = DMU_NEW_OBJECT;
1821	}
1822
1823	/*
1824	 * For raw receives, free everything beyond the new incoming
1825	 * maxblkid. Normally this would be done with a DRR_FREE
1826	 * record that would come after this DRR_OBJECT record is
1827	 * processed. However, for raw receives we manually set the
1828	 * maxblkid from the drr_maxblkid and so we must first free
1829	 * everything above that blkid to ensure the DMU is always
1830	 * consistent with itself. We will never free the first block
1831	 * of the object here because a maxblkid of 0 could indicate
1832	 * an object with a single block or one with no blocks. This
1833	 * free may be skipped when dmu_free_long_range() was called
1834	 * above since it covers the entire object's contents.
1835	 */
1836	if (rwa->raw && *object_to_hold != DMU_NEW_OBJECT && !do_free_range) {
1837		err = dmu_free_long_range(rwa->os, drro->drr_object,
1838		    (drro->drr_maxblkid + 1) * doi->doi_data_block_size,
1839		    DMU_OBJECT_END);
1840		if (err != 0)
1841			return (SET_ERROR(EINVAL));
1842	}
1843	return (0);
1844}
1845
1846noinline static int
1847receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
1848    void *data)
1849{
1850	dmu_object_info_t doi;
1851	dmu_tx_t *tx;
1852	int err;
1853	uint32_t new_blksz = drro->drr_blksz;
1854	uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1855	    drro->drr_dn_slots : DNODE_MIN_SLOTS;
1856
1857	if (drro->drr_type == DMU_OT_NONE ||
1858	    !DMU_OT_IS_VALID(drro->drr_type) ||
1859	    !DMU_OT_IS_VALID(drro->drr_bonustype) ||
1860	    drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
1861	    drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
1862	    P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
1863	    drro->drr_blksz < SPA_MINBLOCKSIZE ||
1864	    drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
1865	    drro->drr_bonuslen >
1866	    DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) ||
1867	    dn_slots >
1868	    (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) {
1869		return (SET_ERROR(EINVAL));
1870	}
1871
1872	if (rwa->raw) {
1873		/*
1874		 * We should have received a DRR_OBJECT_RANGE record
1875		 * containing this block and stored it in rwa.
1876		 */
1877		if (drro->drr_object < rwa->or_firstobj ||
1878		    drro->drr_object >= rwa->or_firstobj + rwa->or_numslots ||
1879		    drro->drr_raw_bonuslen < drro->drr_bonuslen ||
1880		    drro->drr_indblkshift > SPA_MAXBLOCKSHIFT ||
1881		    drro->drr_nlevels > DN_MAX_LEVELS ||
1882		    drro->drr_nblkptr > DN_MAX_NBLKPTR ||
1883		    DN_SLOTS_TO_BONUSLEN(dn_slots) <
1884		    drro->drr_raw_bonuslen)
1885			return (SET_ERROR(EINVAL));
1886	} else {
1887		/*
1888		 * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN
1889		 * record indicates this by setting DRR_FLAG_SPILL_BLOCK.
1890		 */
1891		if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) ||
1892		    (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) {
1893			return (SET_ERROR(EINVAL));
1894		}
1895
1896		if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 ||
1897		    drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) {
1898			return (SET_ERROR(EINVAL));
1899		}
1900	}
1901
1902	err = dmu_object_info(rwa->os, drro->drr_object, &doi);
1903
1904	if (err != 0 && err != ENOENT && err != EEXIST)
1905		return (SET_ERROR(EINVAL));
1906
1907	if (drro->drr_object > rwa->max_object)
1908		rwa->max_object = drro->drr_object;
1909
1910	/*
1911	 * If we are losing blkptrs or changing the block size this must
1912	 * be a new file instance.  We must clear out the previous file
1913	 * contents before we can change this type of metadata in the dnode.
1914	 * Raw receives will also check that the indirect structure of the
1915	 * dnode hasn't changed.
1916	 */
1917	uint64_t object_to_hold;
1918	if (err == 0) {
1919		err = receive_handle_existing_object(rwa, drro, &doi, data,
1920		    &object_to_hold, &new_blksz);
1921		if (err != 0)
1922			return (err);
1923	} else if (err == EEXIST) {
1924		/*
1925		 * The object requested is currently an interior slot of a
1926		 * multi-slot dnode. This will be resolved when the next txg
1927		 * is synced out, since the send stream will have told us
1928		 * to free this slot when we freed the associated dnode
1929		 * earlier in the stream.
1930		 */
1931		txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1932
1933		if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT)
1934			return (SET_ERROR(EINVAL));
1935
1936		/* object was freed and we are about to allocate a new one */
1937		object_to_hold = DMU_NEW_OBJECT;
1938	} else {
1939		/*
1940		 * If the only record in this range so far was DRR_FREEOBJECTS
1941		 * with at least one actually freed object, it's possible that
1942		 * the block will now be converted to a hole. We need to wait
1943		 * for the txg to sync to prevent races.
1944		 */
1945		if (rwa->or_need_sync == ORNS_YES)
1946			txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1947
1948		/* object is free and we are about to allocate a new one */
1949		object_to_hold = DMU_NEW_OBJECT;
1950	}
1951
1952	/* Only relevant for the first object in the range */
1953	rwa->or_need_sync = ORNS_NO;
1954
1955	/*
1956	 * If this is a multi-slot dnode there is a chance that this
1957	 * object will expand into a slot that is already used by
1958	 * another object from the previous snapshot. We must free
1959	 * these objects before we attempt to allocate the new dnode.
1960	 */
1961	if (dn_slots > 1) {
1962		boolean_t need_sync = B_FALSE;
1963
1964		for (uint64_t slot = drro->drr_object + 1;
1965		    slot < drro->drr_object + dn_slots;
1966		    slot++) {
1967			dmu_object_info_t slot_doi;
1968
1969			err = dmu_object_info(rwa->os, slot, &slot_doi);
1970			if (err == ENOENT || err == EEXIST)
1971				continue;
1972			else if (err != 0)
1973				return (err);
1974
1975			err = dmu_free_long_object(rwa->os, slot);
1976			if (err != 0)
1977				return (err);
1978
1979			need_sync = B_TRUE;
1980		}
1981
1982		if (need_sync)
1983			txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1984	}
1985
1986	tx = dmu_tx_create(rwa->os);
1987	dmu_tx_hold_bonus(tx, object_to_hold);
1988	dmu_tx_hold_write(tx, object_to_hold, 0, 0);
1989	err = dmu_tx_assign(tx, TXG_WAIT);
1990	if (err != 0) {
1991		dmu_tx_abort(tx);
1992		return (err);
1993	}
1994
1995	if (object_to_hold == DMU_NEW_OBJECT) {
1996		/* Currently free, wants to be allocated */
1997		err = dmu_object_claim_dnsize(rwa->os, drro->drr_object,
1998		    drro->drr_type, new_blksz,
1999		    drro->drr_bonustype, drro->drr_bonuslen,
2000		    dn_slots << DNODE_SHIFT, tx);
2001	} else if (drro->drr_type != doi.doi_type ||
2002	    new_blksz != doi.doi_data_block_size ||
2003	    drro->drr_bonustype != doi.doi_bonus_type ||
2004	    drro->drr_bonuslen != doi.doi_bonus_size) {
2005		/* Currently allocated, but with different properties */
2006		err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object,
2007		    drro->drr_type, new_blksz,
2008		    drro->drr_bonustype, drro->drr_bonuslen,
2009		    dn_slots << DNODE_SHIFT, rwa->spill ?
2010		    DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx);
2011	} else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) {
2012		/*
2013		 * Currently allocated, the existing version of this object
2014		 * may reference a spill block that is no longer allocated
2015		 * at the source and needs to be freed.
2016		 */
2017		err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx);
2018	}
2019
2020	if (err != 0) {
2021		dmu_tx_commit(tx);
2022		return (SET_ERROR(EINVAL));
2023	}
2024
2025	if (rwa->or_crypt_params_present) {
2026		/*
2027		 * Set the crypt params for the buffer associated with this
2028		 * range of dnodes.  This causes the blkptr_t to have the
2029		 * same crypt params (byteorder, salt, iv, mac) as on the
2030		 * sending side.
2031		 *
2032		 * Since we are committing this tx now, it is possible for
2033		 * the dnode block to end up on-disk with the incorrect MAC,
2034		 * if subsequent objects in this block are received in a
2035		 * different txg.  However, since the dataset is marked as
2036		 * inconsistent, no code paths will do a non-raw read (or
2037		 * decrypt the block / verify the MAC). The receive code and
2038		 * scrub code can safely do raw reads and verify the
2039		 * checksum.  They don't need to verify the MAC.
2040		 */
2041		dmu_buf_t *db = NULL;
2042		uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE;
2043
2044		err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os),
2045		    offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT);
2046		if (err != 0) {
2047			dmu_tx_commit(tx);
2048			return (SET_ERROR(EINVAL));
2049		}
2050
2051		dmu_buf_set_crypt_params(db, rwa->or_byteorder,
2052		    rwa->or_salt, rwa->or_iv, rwa->or_mac, tx);
2053
2054		dmu_buf_rele(db, FTAG);
2055
2056		rwa->or_crypt_params_present = B_FALSE;
2057	}
2058
2059	dmu_object_set_checksum(rwa->os, drro->drr_object,
2060	    drro->drr_checksumtype, tx);
2061	dmu_object_set_compress(rwa->os, drro->drr_object,
2062	    drro->drr_compress, tx);
2063
2064	/* handle more restrictive dnode structuring for raw recvs */
2065	if (rwa->raw) {
2066		/*
2067		 * Set the indirect block size, block shift, nlevels.
2068		 * This will not fail because we ensured all of the
2069		 * blocks were freed earlier if this is a new object.
2070		 * For non-new objects block size and indirect block
2071		 * shift cannot change and nlevels can only increase.
2072		 */
2073		ASSERT3U(new_blksz, ==, drro->drr_blksz);
2074		VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object,
2075		    drro->drr_blksz, drro->drr_indblkshift, tx));
2076		VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object,
2077		    drro->drr_nlevels, tx));
2078
2079		/*
2080		 * Set the maxblkid. This will always succeed because
2081		 * we freed all blocks beyond the new maxblkid above.
2082		 */
2083		VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object,
2084		    drro->drr_maxblkid, tx));
2085	}
2086
2087	if (data != NULL) {
2088		dmu_buf_t *db;
2089		dnode_t *dn;
2090		uint32_t flags = DMU_READ_NO_PREFETCH;
2091
2092		if (rwa->raw)
2093			flags |= DMU_READ_NO_DECRYPT;
2094
2095		VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn));
2096		VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags));
2097
2098		dmu_buf_will_dirty(db, tx);
2099
2100		ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
2101		memcpy(db->db_data, data, DRR_OBJECT_PAYLOAD_SIZE(drro));
2102
2103		/*
2104		 * Raw bonus buffers have their byteorder determined by the
2105		 * DRR_OBJECT_RANGE record.
2106		 */
2107		if (rwa->byteswap && !rwa->raw) {
2108			dmu_object_byteswap_t byteswap =
2109			    DMU_OT_BYTESWAP(drro->drr_bonustype);
2110			dmu_ot_byteswap[byteswap].ob_func(db->db_data,
2111			    DRR_OBJECT_PAYLOAD_SIZE(drro));
2112		}
2113		dmu_buf_rele(db, FTAG);
2114		dnode_rele(dn, FTAG);
2115	}
2116
2117	/*
2118	 * If the receive fails, we want the resume stream to start with the
2119	 * same record that we last successfully received. There is no way to
2120	 * request resume from the object record, but we can benefit from the
2121	 * fact that sender always sends object record before anything else,
2122	 * after which it will "resend" data at offset 0 and resume normally.
2123	 */
2124	save_resume_state(rwa, drro->drr_object, 0, tx);
2125
2126	dmu_tx_commit(tx);
2127
2128	return (0);
2129}
2130
2131noinline static int
2132receive_freeobjects(struct receive_writer_arg *rwa,
2133    struct drr_freeobjects *drrfo)
2134{
2135	uint64_t obj;
2136	int next_err = 0;
2137
2138	if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
2139		return (SET_ERROR(EINVAL));
2140
2141	for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj;
2142	    obj < drrfo->drr_firstobj + drrfo->drr_numobjs &&
2143	    obj < DN_MAX_OBJECT && next_err == 0;
2144	    next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
2145		dmu_object_info_t doi;
2146		int err;
2147
2148		err = dmu_object_info(rwa->os, obj, &doi);
2149		if (err == ENOENT)
2150			continue;
2151		else if (err != 0)
2152			return (err);
2153
2154		err = dmu_free_long_object(rwa->os, obj);
2155
2156		if (err != 0)
2157			return (err);
2158
2159		if (rwa->or_need_sync == ORNS_MAYBE)
2160			rwa->or_need_sync = ORNS_YES;
2161	}
2162	if (next_err != ESRCH)
2163		return (next_err);
2164	return (0);
2165}
2166
2167/*
2168 * Note: if this fails, the caller will clean up any records left on the
2169 * rwa->write_batch list.
2170 */
2171static int
2172flush_write_batch_impl(struct receive_writer_arg *rwa)
2173{
2174	dnode_t *dn;
2175	int err;
2176
2177	if (dnode_hold(rwa->os, rwa->last_object, FTAG, &dn) != 0)
2178		return (SET_ERROR(EINVAL));
2179
2180	struct receive_record_arg *last_rrd = list_tail(&rwa->write_batch);
2181	struct drr_write *last_drrw = &last_rrd->header.drr_u.drr_write;
2182
2183	struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
2184	struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
2185
2186	ASSERT3U(rwa->last_object, ==, last_drrw->drr_object);
2187	ASSERT3U(rwa->last_offset, ==, last_drrw->drr_offset);
2188
2189	dmu_tx_t *tx = dmu_tx_create(rwa->os);
2190	dmu_tx_hold_write_by_dnode(tx, dn, first_drrw->drr_offset,
2191	    last_drrw->drr_offset - first_drrw->drr_offset +
2192	    last_drrw->drr_logical_size);
2193	err = dmu_tx_assign(tx, TXG_WAIT);
2194	if (err != 0) {
2195		dmu_tx_abort(tx);
2196		dnode_rele(dn, FTAG);
2197		return (err);
2198	}
2199
2200	struct receive_record_arg *rrd;
2201	while ((rrd = list_head(&rwa->write_batch)) != NULL) {
2202		struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2203		abd_t *abd = rrd->abd;
2204
2205		ASSERT3U(drrw->drr_object, ==, rwa->last_object);
2206
2207		if (drrw->drr_logical_size != dn->dn_datablksz) {
2208			/*
2209			 * The WRITE record is larger than the object's block
2210			 * size.  We must be receiving an incremental
2211			 * large-block stream into a dataset that previously did
2212			 * a non-large-block receive.  Lightweight writes must
2213			 * be exactly one block, so we need to decompress the
2214			 * data (if compressed) and do a normal dmu_write().
2215			 */
2216			ASSERT3U(drrw->drr_logical_size, >, dn->dn_datablksz);
2217			if (DRR_WRITE_COMPRESSED(drrw)) {
2218				abd_t *decomp_abd =
2219				    abd_alloc_linear(drrw->drr_logical_size,
2220				    B_FALSE);
2221
2222				err = zio_decompress_data(
2223				    drrw->drr_compressiontype,
2224				    abd, abd_to_buf(decomp_abd),
2225				    abd_get_size(abd),
2226				    abd_get_size(decomp_abd), NULL);
2227
2228				if (err == 0) {
2229					dmu_write_by_dnode(dn,
2230					    drrw->drr_offset,
2231					    drrw->drr_logical_size,
2232					    abd_to_buf(decomp_abd), tx);
2233				}
2234				abd_free(decomp_abd);
2235			} else {
2236				dmu_write_by_dnode(dn,
2237				    drrw->drr_offset,
2238				    drrw->drr_logical_size,
2239				    abd_to_buf(abd), tx);
2240			}
2241			if (err == 0)
2242				abd_free(abd);
2243		} else {
2244			zio_prop_t zp = {0};
2245			dmu_write_policy(rwa->os, dn, 0, 0, &zp);
2246
2247			zio_flag_t zio_flags = 0;
2248
2249			if (rwa->raw) {
2250				zp.zp_encrypt = B_TRUE;
2251				zp.zp_compress = drrw->drr_compressiontype;
2252				zp.zp_byteorder = ZFS_HOST_BYTEORDER ^
2253				    !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^
2254				    rwa->byteswap;
2255				memcpy(zp.zp_salt, drrw->drr_salt,
2256				    ZIO_DATA_SALT_LEN);
2257				memcpy(zp.zp_iv, drrw->drr_iv,
2258				    ZIO_DATA_IV_LEN);
2259				memcpy(zp.zp_mac, drrw->drr_mac,
2260				    ZIO_DATA_MAC_LEN);
2261				if (DMU_OT_IS_ENCRYPTED(zp.zp_type)) {
2262					zp.zp_nopwrite = B_FALSE;
2263					zp.zp_copies = MIN(zp.zp_copies,
2264					    SPA_DVAS_PER_BP - 1);
2265				}
2266				zio_flags |= ZIO_FLAG_RAW;
2267			} else if (DRR_WRITE_COMPRESSED(drrw)) {
2268				ASSERT3U(drrw->drr_compressed_size, >, 0);
2269				ASSERT3U(drrw->drr_logical_size, >=,
2270				    drrw->drr_compressed_size);
2271				zp.zp_compress = drrw->drr_compressiontype;
2272				zio_flags |= ZIO_FLAG_RAW_COMPRESS;
2273			} else if (rwa->byteswap) {
2274				/*
2275				 * Note: compressed blocks never need to be
2276				 * byteswapped, because WRITE records for
2277				 * metadata blocks are never compressed. The
2278				 * exception is raw streams, which are written
2279				 * in the original byteorder, and the byteorder
2280				 * bit is preserved in the BP by setting
2281				 * zp_byteorder above.
2282				 */
2283				dmu_object_byteswap_t byteswap =
2284				    DMU_OT_BYTESWAP(drrw->drr_type);
2285				dmu_ot_byteswap[byteswap].ob_func(
2286				    abd_to_buf(abd),
2287				    DRR_WRITE_PAYLOAD_SIZE(drrw));
2288			}
2289
2290			/*
2291			 * Since this data can't be read until the receive
2292			 * completes, we can do a "lightweight" write for
2293			 * improved performance.
2294			 */
2295			err = dmu_lightweight_write_by_dnode(dn,
2296			    drrw->drr_offset, abd, &zp, zio_flags, tx);
2297		}
2298
2299		if (err != 0) {
2300			/*
2301			 * This rrd is left on the list, so the caller will
2302			 * free it (and the abd).
2303			 */
2304			break;
2305		}
2306
2307		/*
2308		 * Note: If the receive fails, we want the resume stream to
2309		 * start with the same record that we last successfully
2310		 * received (as opposed to the next record), so that we can
2311		 * verify that we are resuming from the correct location.
2312		 */
2313		save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
2314
2315		list_remove(&rwa->write_batch, rrd);
2316		kmem_free(rrd, sizeof (*rrd));
2317	}
2318
2319	dmu_tx_commit(tx);
2320	dnode_rele(dn, FTAG);
2321	return (err);
2322}
2323
2324noinline static int
2325flush_write_batch(struct receive_writer_arg *rwa)
2326{
2327	if (list_is_empty(&rwa->write_batch))
2328		return (0);
2329	int err = rwa->err;
2330	if (err == 0)
2331		err = flush_write_batch_impl(rwa);
2332	if (err != 0) {
2333		struct receive_record_arg *rrd;
2334		while ((rrd = list_remove_head(&rwa->write_batch)) != NULL) {
2335			abd_free(rrd->abd);
2336			kmem_free(rrd, sizeof (*rrd));
2337		}
2338	}
2339	ASSERT(list_is_empty(&rwa->write_batch));
2340	return (err);
2341}
2342
2343noinline static int
2344receive_process_write_record(struct receive_writer_arg *rwa,
2345    struct receive_record_arg *rrd)
2346{
2347	int err = 0;
2348
2349	ASSERT3U(rrd->header.drr_type, ==, DRR_WRITE);
2350	struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2351
2352	if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset ||
2353	    !DMU_OT_IS_VALID(drrw->drr_type))
2354		return (SET_ERROR(EINVAL));
2355
2356	if (rwa->heal) {
2357		blkptr_t *bp;
2358		dmu_buf_t *dbp;
2359		int flags = DB_RF_CANFAIL;
2360
2361		if (rwa->raw)
2362			flags |= DB_RF_NO_DECRYPT;
2363
2364		if (rwa->byteswap) {
2365			dmu_object_byteswap_t byteswap =
2366			    DMU_OT_BYTESWAP(drrw->drr_type);
2367			dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(rrd->abd),
2368			    DRR_WRITE_PAYLOAD_SIZE(drrw));
2369		}
2370
2371		err = dmu_buf_hold_noread(rwa->os, drrw->drr_object,
2372		    drrw->drr_offset, FTAG, &dbp);
2373		if (err != 0)
2374			return (err);
2375
2376		/* Try to read the object to see if it needs healing */
2377		err = dbuf_read((dmu_buf_impl_t *)dbp, NULL, flags);
2378		/*
2379		 * We only try to heal when dbuf_read() returns a ECKSUMs.
2380		 * Other errors (even EIO) get returned to caller.
2381		 * EIO indicates that the device is not present/accessible,
2382		 * so writing to it will likely fail.
2383		 * If the block is healthy, we don't want to overwrite it
2384		 * unnecessarily.
2385		 */
2386		if (err != ECKSUM) {
2387			dmu_buf_rele(dbp, FTAG);
2388			return (err);
2389		}
2390		/* Make sure the on-disk block and recv record sizes match */
2391		if (drrw->drr_logical_size != dbp->db_size) {
2392			err = ENOTSUP;
2393			dmu_buf_rele(dbp, FTAG);
2394			return (err);
2395		}
2396		/* Get the block pointer for the corrupted block */
2397		bp = dmu_buf_get_blkptr(dbp);
2398		err = do_corrective_recv(rwa, drrw, rrd, bp);
2399		dmu_buf_rele(dbp, FTAG);
2400		return (err);
2401	}
2402
2403	/*
2404	 * For resuming to work, records must be in increasing order
2405	 * by (object, offset).
2406	 */
2407	if (drrw->drr_object < rwa->last_object ||
2408	    (drrw->drr_object == rwa->last_object &&
2409	    drrw->drr_offset < rwa->last_offset)) {
2410		return (SET_ERROR(EINVAL));
2411	}
2412
2413	struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
2414	struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
2415	uint64_t batch_size =
2416	    MIN(zfs_recv_write_batch_size, DMU_MAX_ACCESS / 2);
2417	if (first_rrd != NULL &&
2418	    (drrw->drr_object != first_drrw->drr_object ||
2419	    drrw->drr_offset >= first_drrw->drr_offset + batch_size)) {
2420		err = flush_write_batch(rwa);
2421		if (err != 0)
2422			return (err);
2423	}
2424
2425	rwa->last_object = drrw->drr_object;
2426	rwa->last_offset = drrw->drr_offset;
2427
2428	if (rwa->last_object > rwa->max_object)
2429		rwa->max_object = rwa->last_object;
2430
2431	list_insert_tail(&rwa->write_batch, rrd);
2432	/*
2433	 * Return EAGAIN to indicate that we will use this rrd again,
2434	 * so the caller should not free it
2435	 */
2436	return (EAGAIN);
2437}
2438
2439static int
2440receive_write_embedded(struct receive_writer_arg *rwa,
2441    struct drr_write_embedded *drrwe, void *data)
2442{
2443	dmu_tx_t *tx;
2444	int err;
2445
2446	if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
2447		return (SET_ERROR(EINVAL));
2448
2449	if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
2450		return (SET_ERROR(EINVAL));
2451
2452	if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
2453		return (SET_ERROR(EINVAL));
2454	if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
2455		return (SET_ERROR(EINVAL));
2456	if (rwa->raw)
2457		return (SET_ERROR(EINVAL));
2458
2459	if (drrwe->drr_object > rwa->max_object)
2460		rwa->max_object = drrwe->drr_object;
2461
2462	tx = dmu_tx_create(rwa->os);
2463
2464	dmu_tx_hold_write(tx, drrwe->drr_object,
2465	    drrwe->drr_offset, drrwe->drr_length);
2466	err = dmu_tx_assign(tx, TXG_WAIT);
2467	if (err != 0) {
2468		dmu_tx_abort(tx);
2469		return (err);
2470	}
2471
2472	dmu_write_embedded(rwa->os, drrwe->drr_object,
2473	    drrwe->drr_offset, data, drrwe->drr_etype,
2474	    drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
2475	    rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
2476
2477	/* See comment in restore_write. */
2478	save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
2479	dmu_tx_commit(tx);
2480	return (0);
2481}
2482
2483static int
2484receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
2485    abd_t *abd)
2486{
2487	dmu_buf_t *db, *db_spill;
2488	int err;
2489
2490	if (drrs->drr_length < SPA_MINBLOCKSIZE ||
2491	    drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
2492		return (SET_ERROR(EINVAL));
2493
2494	/*
2495	 * This is an unmodified spill block which was added to the stream
2496	 * to resolve an issue with incorrectly removing spill blocks.  It
2497	 * should be ignored by current versions of the code which support
2498	 * the DRR_FLAG_SPILL_BLOCK flag.
2499	 */
2500	if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) {
2501		abd_free(abd);
2502		return (0);
2503	}
2504
2505	if (rwa->raw) {
2506		if (!DMU_OT_IS_VALID(drrs->drr_type) ||
2507		    drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS ||
2508		    drrs->drr_compressed_size == 0)
2509			return (SET_ERROR(EINVAL));
2510	}
2511
2512	if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
2513		return (SET_ERROR(EINVAL));
2514
2515	if (drrs->drr_object > rwa->max_object)
2516		rwa->max_object = drrs->drr_object;
2517
2518	VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
2519	if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG,
2520	    &db_spill)) != 0) {
2521		dmu_buf_rele(db, FTAG);
2522		return (err);
2523	}
2524
2525	dmu_tx_t *tx = dmu_tx_create(rwa->os);
2526
2527	dmu_tx_hold_spill(tx, db->db_object);
2528
2529	err = dmu_tx_assign(tx, TXG_WAIT);
2530	if (err != 0) {
2531		dmu_buf_rele(db, FTAG);
2532		dmu_buf_rele(db_spill, FTAG);
2533		dmu_tx_abort(tx);
2534		return (err);
2535	}
2536
2537	/*
2538	 * Spill blocks may both grow and shrink.  When a change in size
2539	 * occurs any existing dbuf must be updated to match the logical
2540	 * size of the provided arc_buf_t.
2541	 */
2542	if (db_spill->db_size != drrs->drr_length) {
2543		dmu_buf_will_fill(db_spill, tx, B_FALSE);
2544		VERIFY0(dbuf_spill_set_blksz(db_spill,
2545		    drrs->drr_length, tx));
2546	}
2547
2548	arc_buf_t *abuf;
2549	if (rwa->raw) {
2550		boolean_t byteorder = ZFS_HOST_BYTEORDER ^
2551		    !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^
2552		    rwa->byteswap;
2553
2554		abuf = arc_loan_raw_buf(dmu_objset_spa(rwa->os),
2555		    drrs->drr_object, byteorder, drrs->drr_salt,
2556		    drrs->drr_iv, drrs->drr_mac, drrs->drr_type,
2557		    drrs->drr_compressed_size, drrs->drr_length,
2558		    drrs->drr_compressiontype, 0);
2559	} else {
2560		abuf = arc_loan_buf(dmu_objset_spa(rwa->os),
2561		    DMU_OT_IS_METADATA(drrs->drr_type),
2562		    drrs->drr_length);
2563		if (rwa->byteswap) {
2564			dmu_object_byteswap_t byteswap =
2565			    DMU_OT_BYTESWAP(drrs->drr_type);
2566			dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(abd),
2567			    DRR_SPILL_PAYLOAD_SIZE(drrs));
2568		}
2569	}
2570
2571	memcpy(abuf->b_data, abd_to_buf(abd), DRR_SPILL_PAYLOAD_SIZE(drrs));
2572	abd_free(abd);
2573	dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx);
2574
2575	dmu_buf_rele(db, FTAG);
2576	dmu_buf_rele(db_spill, FTAG);
2577
2578	dmu_tx_commit(tx);
2579	return (0);
2580}
2581
2582noinline static int
2583receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
2584{
2585	int err;
2586
2587	if (drrf->drr_length != -1ULL &&
2588	    drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
2589		return (SET_ERROR(EINVAL));
2590
2591	if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
2592		return (SET_ERROR(EINVAL));
2593
2594	if (drrf->drr_object > rwa->max_object)
2595		rwa->max_object = drrf->drr_object;
2596
2597	err = dmu_free_long_range(rwa->os, drrf->drr_object,
2598	    drrf->drr_offset, drrf->drr_length);
2599
2600	return (err);
2601}
2602
2603static int
2604receive_object_range(struct receive_writer_arg *rwa,
2605    struct drr_object_range *drror)
2606{
2607	/*
2608	 * By default, we assume this block is in our native format
2609	 * (ZFS_HOST_BYTEORDER). We then take into account whether
2610	 * the send stream is byteswapped (rwa->byteswap). Finally,
2611	 * we need to byteswap again if this particular block was
2612	 * in non-native format on the send side.
2613	 */
2614	boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^
2615	    !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags);
2616
2617	/*
2618	 * Since dnode block sizes are constant, we should not need to worry
2619	 * about making sure that the dnode block size is the same on the
2620	 * sending and receiving sides for the time being. For non-raw sends,
2621	 * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE
2622	 * record at all). Raw sends require this record type because the
2623	 * encryption parameters are used to protect an entire block of bonus
2624	 * buffers. If the size of dnode blocks ever becomes variable,
2625	 * handling will need to be added to ensure that dnode block sizes
2626	 * match on the sending and receiving side.
2627	 */
2628	if (drror->drr_numslots != DNODES_PER_BLOCK ||
2629	    P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 ||
2630	    !rwa->raw)
2631		return (SET_ERROR(EINVAL));
2632
2633	if (drror->drr_firstobj > rwa->max_object)
2634		rwa->max_object = drror->drr_firstobj;
2635
2636	/*
2637	 * The DRR_OBJECT_RANGE handling must be deferred to receive_object()
2638	 * so that the block of dnodes is not written out when it's empty,
2639	 * and converted to a HOLE BP.
2640	 */
2641	rwa->or_crypt_params_present = B_TRUE;
2642	rwa->or_firstobj = drror->drr_firstobj;
2643	rwa->or_numslots = drror->drr_numslots;
2644	memcpy(rwa->or_salt, drror->drr_salt, ZIO_DATA_SALT_LEN);
2645	memcpy(rwa->or_iv, drror->drr_iv, ZIO_DATA_IV_LEN);
2646	memcpy(rwa->or_mac, drror->drr_mac, ZIO_DATA_MAC_LEN);
2647	rwa->or_byteorder = byteorder;
2648
2649	rwa->or_need_sync = ORNS_MAYBE;
2650
2651	return (0);
2652}
2653
2654/*
2655 * Until we have the ability to redact large ranges of data efficiently, we
2656 * process these records as frees.
2657 */
2658noinline static int
2659receive_redact(struct receive_writer_arg *rwa, struct drr_redact *drrr)
2660{
2661	struct drr_free drrf = {0};
2662	drrf.drr_length = drrr->drr_length;
2663	drrf.drr_object = drrr->drr_object;
2664	drrf.drr_offset = drrr->drr_offset;
2665	drrf.drr_toguid = drrr->drr_toguid;
2666	return (receive_free(rwa, &drrf));
2667}
2668
2669/* used to destroy the drc_ds on error */
2670static void
2671dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
2672{
2673	dsl_dataset_t *ds = drc->drc_ds;
2674	ds_hold_flags_t dsflags;
2675
2676	dsflags = (drc->drc_raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2677	/*
2678	 * Wait for the txg sync before cleaning up the receive. For
2679	 * resumable receives, this ensures that our resume state has
2680	 * been written out to disk. For raw receives, this ensures
2681	 * that the user accounting code will not attempt to do anything
2682	 * after we stopped receiving the dataset.
2683	 */
2684	txg_wait_synced(ds->ds_dir->dd_pool, 0);
2685	ds->ds_objset->os_raw_receive = B_FALSE;
2686
2687	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2688	if (drc->drc_resumable && drc->drc_should_save &&
2689	    !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) {
2690		rrw_exit(&ds->ds_bp_rwlock, FTAG);
2691		dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2692	} else {
2693		char name[ZFS_MAX_DATASET_NAME_LEN];
2694		rrw_exit(&ds->ds_bp_rwlock, FTAG);
2695		dsl_dataset_name(ds, name);
2696		dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2697		if (!drc->drc_heal)
2698			(void) dsl_destroy_head(name);
2699	}
2700}
2701
2702static void
2703receive_cksum(dmu_recv_cookie_t *drc, int len, void *buf)
2704{
2705	if (drc->drc_byteswap) {
2706		(void) fletcher_4_incremental_byteswap(buf, len,
2707		    &drc->drc_cksum);
2708	} else {
2709		(void) fletcher_4_incremental_native(buf, len, &drc->drc_cksum);
2710	}
2711}
2712
2713/*
2714 * Read the payload into a buffer of size len, and update the current record's
2715 * payload field.
2716 * Allocate drc->drc_next_rrd and read the next record's header into
2717 * drc->drc_next_rrd->header.
2718 * Verify checksum of payload and next record.
2719 */
2720static int
2721receive_read_payload_and_next_header(dmu_recv_cookie_t *drc, int len, void *buf)
2722{
2723	int err;
2724
2725	if (len != 0) {
2726		ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
2727		err = receive_read(drc, len, buf);
2728		if (err != 0)
2729			return (err);
2730		receive_cksum(drc, len, buf);
2731
2732		/* note: rrd is NULL when reading the begin record's payload */
2733		if (drc->drc_rrd != NULL) {
2734			drc->drc_rrd->payload = buf;
2735			drc->drc_rrd->payload_size = len;
2736			drc->drc_rrd->bytes_read = drc->drc_bytes_read;
2737		}
2738	} else {
2739		ASSERT3P(buf, ==, NULL);
2740	}
2741
2742	drc->drc_prev_cksum = drc->drc_cksum;
2743
2744	drc->drc_next_rrd = kmem_zalloc(sizeof (*drc->drc_next_rrd), KM_SLEEP);
2745	err = receive_read(drc, sizeof (drc->drc_next_rrd->header),
2746	    &drc->drc_next_rrd->header);
2747	drc->drc_next_rrd->bytes_read = drc->drc_bytes_read;
2748
2749	if (err != 0) {
2750		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2751		drc->drc_next_rrd = NULL;
2752		return (err);
2753	}
2754	if (drc->drc_next_rrd->header.drr_type == DRR_BEGIN) {
2755		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2756		drc->drc_next_rrd = NULL;
2757		return (SET_ERROR(EINVAL));
2758	}
2759
2760	/*
2761	 * Note: checksum is of everything up to but not including the
2762	 * checksum itself.
2763	 */
2764	ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2765	    ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
2766	receive_cksum(drc,
2767	    offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2768	    &drc->drc_next_rrd->header);
2769
2770	zio_cksum_t cksum_orig =
2771	    drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2772	zio_cksum_t *cksump =
2773	    &drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2774
2775	if (drc->drc_byteswap)
2776		byteswap_record(&drc->drc_next_rrd->header);
2777
2778	if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
2779	    !ZIO_CHECKSUM_EQUAL(drc->drc_cksum, *cksump)) {
2780		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2781		drc->drc_next_rrd = NULL;
2782		return (SET_ERROR(ECKSUM));
2783	}
2784
2785	receive_cksum(drc, sizeof (cksum_orig), &cksum_orig);
2786
2787	return (0);
2788}
2789
2790/*
2791 * Issue the prefetch reads for any necessary indirect blocks.
2792 *
2793 * We use the object ignore list to tell us whether or not to issue prefetches
2794 * for a given object.  We do this for both correctness (in case the blocksize
2795 * of an object has changed) and performance (if the object doesn't exist, don't
2796 * needlessly try to issue prefetches).  We also trim the list as we go through
2797 * the stream to prevent it from growing to an unbounded size.
2798 *
2799 * The object numbers within will always be in sorted order, and any write
2800 * records we see will also be in sorted order, but they're not sorted with
2801 * respect to each other (i.e. we can get several object records before
2802 * receiving each object's write records).  As a result, once we've reached a
2803 * given object number, we can safely remove any reference to lower object
2804 * numbers in the ignore list. In practice, we receive up to 32 object records
2805 * before receiving write records, so the list can have up to 32 nodes in it.
2806 */
2807static void
2808receive_read_prefetch(dmu_recv_cookie_t *drc, uint64_t object, uint64_t offset,
2809    uint64_t length)
2810{
2811	if (!objlist_exists(drc->drc_ignore_objlist, object)) {
2812		dmu_prefetch(drc->drc_os, object, 1, offset, length,
2813		    ZIO_PRIORITY_SYNC_READ);
2814	}
2815}
2816
2817/*
2818 * Read records off the stream, issuing any necessary prefetches.
2819 */
2820static int
2821receive_read_record(dmu_recv_cookie_t *drc)
2822{
2823	int err;
2824
2825	switch (drc->drc_rrd->header.drr_type) {
2826	case DRR_OBJECT:
2827	{
2828		struct drr_object *drro =
2829		    &drc->drc_rrd->header.drr_u.drr_object;
2830		uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro);
2831		void *buf = NULL;
2832		dmu_object_info_t doi;
2833
2834		if (size != 0)
2835			buf = kmem_zalloc(size, KM_SLEEP);
2836
2837		err = receive_read_payload_and_next_header(drc, size, buf);
2838		if (err != 0) {
2839			kmem_free(buf, size);
2840			return (err);
2841		}
2842		err = dmu_object_info(drc->drc_os, drro->drr_object, &doi);
2843		/*
2844		 * See receive_read_prefetch for an explanation why we're
2845		 * storing this object in the ignore_obj_list.
2846		 */
2847		if (err == ENOENT || err == EEXIST ||
2848		    (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
2849			objlist_insert(drc->drc_ignore_objlist,
2850			    drro->drr_object);
2851			err = 0;
2852		}
2853		return (err);
2854	}
2855	case DRR_FREEOBJECTS:
2856	{
2857		err = receive_read_payload_and_next_header(drc, 0, NULL);
2858		return (err);
2859	}
2860	case DRR_WRITE:
2861	{
2862		struct drr_write *drrw = &drc->drc_rrd->header.drr_u.drr_write;
2863		int size = DRR_WRITE_PAYLOAD_SIZE(drrw);
2864		abd_t *abd = abd_alloc_linear(size, B_FALSE);
2865		err = receive_read_payload_and_next_header(drc, size,
2866		    abd_to_buf(abd));
2867		if (err != 0) {
2868			abd_free(abd);
2869			return (err);
2870		}
2871		drc->drc_rrd->abd = abd;
2872		receive_read_prefetch(drc, drrw->drr_object, drrw->drr_offset,
2873		    drrw->drr_logical_size);
2874		return (err);
2875	}
2876	case DRR_WRITE_EMBEDDED:
2877	{
2878		struct drr_write_embedded *drrwe =
2879		    &drc->drc_rrd->header.drr_u.drr_write_embedded;
2880		uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2881		void *buf = kmem_zalloc(size, KM_SLEEP);
2882
2883		err = receive_read_payload_and_next_header(drc, size, buf);
2884		if (err != 0) {
2885			kmem_free(buf, size);
2886			return (err);
2887		}
2888
2889		receive_read_prefetch(drc, drrwe->drr_object, drrwe->drr_offset,
2890		    drrwe->drr_length);
2891		return (err);
2892	}
2893	case DRR_FREE:
2894	case DRR_REDACT:
2895	{
2896		/*
2897		 * It might be beneficial to prefetch indirect blocks here, but
2898		 * we don't really have the data to decide for sure.
2899		 */
2900		err = receive_read_payload_and_next_header(drc, 0, NULL);
2901		return (err);
2902	}
2903	case DRR_END:
2904	{
2905		struct drr_end *drre = &drc->drc_rrd->header.drr_u.drr_end;
2906		if (!ZIO_CHECKSUM_EQUAL(drc->drc_prev_cksum,
2907		    drre->drr_checksum))
2908			return (SET_ERROR(ECKSUM));
2909		return (0);
2910	}
2911	case DRR_SPILL:
2912	{
2913		struct drr_spill *drrs = &drc->drc_rrd->header.drr_u.drr_spill;
2914		int size = DRR_SPILL_PAYLOAD_SIZE(drrs);
2915		abd_t *abd = abd_alloc_linear(size, B_FALSE);
2916		err = receive_read_payload_and_next_header(drc, size,
2917		    abd_to_buf(abd));
2918		if (err != 0)
2919			abd_free(abd);
2920		else
2921			drc->drc_rrd->abd = abd;
2922		return (err);
2923	}
2924	case DRR_OBJECT_RANGE:
2925	{
2926		err = receive_read_payload_and_next_header(drc, 0, NULL);
2927		return (err);
2928
2929	}
2930	default:
2931		return (SET_ERROR(EINVAL));
2932	}
2933}
2934
2935
2936
2937static void
2938dprintf_drr(struct receive_record_arg *rrd, int err)
2939{
2940#ifdef ZFS_DEBUG
2941	switch (rrd->header.drr_type) {
2942	case DRR_OBJECT:
2943	{
2944		struct drr_object *drro = &rrd->header.drr_u.drr_object;
2945		dprintf("drr_type = OBJECT obj = %llu type = %u "
2946		    "bonustype = %u blksz = %u bonuslen = %u cksumtype = %u "
2947		    "compress = %u dn_slots = %u err = %d\n",
2948		    (u_longlong_t)drro->drr_object, drro->drr_type,
2949		    drro->drr_bonustype, drro->drr_blksz, drro->drr_bonuslen,
2950		    drro->drr_checksumtype, drro->drr_compress,
2951		    drro->drr_dn_slots, err);
2952		break;
2953	}
2954	case DRR_FREEOBJECTS:
2955	{
2956		struct drr_freeobjects *drrfo =
2957		    &rrd->header.drr_u.drr_freeobjects;
2958		dprintf("drr_type = FREEOBJECTS firstobj = %llu "
2959		    "numobjs = %llu err = %d\n",
2960		    (u_longlong_t)drrfo->drr_firstobj,
2961		    (u_longlong_t)drrfo->drr_numobjs, err);
2962		break;
2963	}
2964	case DRR_WRITE:
2965	{
2966		struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2967		dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu "
2968		    "lsize = %llu cksumtype = %u flags = %u "
2969		    "compress = %u psize = %llu err = %d\n",
2970		    (u_longlong_t)drrw->drr_object, drrw->drr_type,
2971		    (u_longlong_t)drrw->drr_offset,
2972		    (u_longlong_t)drrw->drr_logical_size,
2973		    drrw->drr_checksumtype, drrw->drr_flags,
2974		    drrw->drr_compressiontype,
2975		    (u_longlong_t)drrw->drr_compressed_size, err);
2976		break;
2977	}
2978	case DRR_WRITE_BYREF:
2979	{
2980		struct drr_write_byref *drrwbr =
2981		    &rrd->header.drr_u.drr_write_byref;
2982		dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu "
2983		    "length = %llu toguid = %llx refguid = %llx "
2984		    "refobject = %llu refoffset = %llu cksumtype = %u "
2985		    "flags = %u err = %d\n",
2986		    (u_longlong_t)drrwbr->drr_object,
2987		    (u_longlong_t)drrwbr->drr_offset,
2988		    (u_longlong_t)drrwbr->drr_length,
2989		    (u_longlong_t)drrwbr->drr_toguid,
2990		    (u_longlong_t)drrwbr->drr_refguid,
2991		    (u_longlong_t)drrwbr->drr_refobject,
2992		    (u_longlong_t)drrwbr->drr_refoffset,
2993		    drrwbr->drr_checksumtype, drrwbr->drr_flags, err);
2994		break;
2995	}
2996	case DRR_WRITE_EMBEDDED:
2997	{
2998		struct drr_write_embedded *drrwe =
2999		    &rrd->header.drr_u.drr_write_embedded;
3000		dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu "
3001		    "length = %llu compress = %u etype = %u lsize = %u "
3002		    "psize = %u err = %d\n",
3003		    (u_longlong_t)drrwe->drr_object,
3004		    (u_longlong_t)drrwe->drr_offset,
3005		    (u_longlong_t)drrwe->drr_length,
3006		    drrwe->drr_compression, drrwe->drr_etype,
3007		    drrwe->drr_lsize, drrwe->drr_psize, err);
3008		break;
3009	}
3010	case DRR_FREE:
3011	{
3012		struct drr_free *drrf = &rrd->header.drr_u.drr_free;
3013		dprintf("drr_type = FREE obj = %llu offset = %llu "
3014		    "length = %lld err = %d\n",
3015		    (u_longlong_t)drrf->drr_object,
3016		    (u_longlong_t)drrf->drr_offset,
3017		    (longlong_t)drrf->drr_length,
3018		    err);
3019		break;
3020	}
3021	case DRR_SPILL:
3022	{
3023		struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
3024		dprintf("drr_type = SPILL obj = %llu length = %llu "
3025		    "err = %d\n", (u_longlong_t)drrs->drr_object,
3026		    (u_longlong_t)drrs->drr_length, err);
3027		break;
3028	}
3029	case DRR_OBJECT_RANGE:
3030	{
3031		struct drr_object_range *drror =
3032		    &rrd->header.drr_u.drr_object_range;
3033		dprintf("drr_type = OBJECT_RANGE firstobj = %llu "
3034		    "numslots = %llu flags = %u err = %d\n",
3035		    (u_longlong_t)drror->drr_firstobj,
3036		    (u_longlong_t)drror->drr_numslots,
3037		    drror->drr_flags, err);
3038		break;
3039	}
3040	default:
3041		return;
3042	}
3043#endif
3044}
3045
3046/*
3047 * Commit the records to the pool.
3048 */
3049static int
3050receive_process_record(struct receive_writer_arg *rwa,
3051    struct receive_record_arg *rrd)
3052{
3053	int err;
3054
3055	/* Processing in order, therefore bytes_read should be increasing. */
3056	ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
3057	rwa->bytes_read = rrd->bytes_read;
3058
3059	/* We can only heal write records; other ones get ignored */
3060	if (rwa->heal && rrd->header.drr_type != DRR_WRITE) {
3061		if (rrd->abd != NULL) {
3062			abd_free(rrd->abd);
3063			rrd->abd = NULL;
3064		} else if (rrd->payload != NULL) {
3065			kmem_free(rrd->payload, rrd->payload_size);
3066			rrd->payload = NULL;
3067		}
3068		return (0);
3069	}
3070
3071	if (!rwa->heal && rrd->header.drr_type != DRR_WRITE) {
3072		err = flush_write_batch(rwa);
3073		if (err != 0) {
3074			if (rrd->abd != NULL) {
3075				abd_free(rrd->abd);
3076				rrd->abd = NULL;
3077				rrd->payload = NULL;
3078			} else if (rrd->payload != NULL) {
3079				kmem_free(rrd->payload, rrd->payload_size);
3080				rrd->payload = NULL;
3081			}
3082
3083			return (err);
3084		}
3085	}
3086
3087	switch (rrd->header.drr_type) {
3088	case DRR_OBJECT:
3089	{
3090		struct drr_object *drro = &rrd->header.drr_u.drr_object;
3091		err = receive_object(rwa, drro, rrd->payload);
3092		kmem_free(rrd->payload, rrd->payload_size);
3093		rrd->payload = NULL;
3094		break;
3095	}
3096	case DRR_FREEOBJECTS:
3097	{
3098		struct drr_freeobjects *drrfo =
3099		    &rrd->header.drr_u.drr_freeobjects;
3100		err = receive_freeobjects(rwa, drrfo);
3101		break;
3102	}
3103	case DRR_WRITE:
3104	{
3105		err = receive_process_write_record(rwa, rrd);
3106		if (rwa->heal) {
3107			/*
3108			 * If healing - always free the abd after processing
3109			 */
3110			abd_free(rrd->abd);
3111			rrd->abd = NULL;
3112		} else if (err != EAGAIN) {
3113			/*
3114			 * On success, a non-healing
3115			 * receive_process_write_record() returns
3116			 * EAGAIN to indicate that we do not want to free
3117			 * the rrd or arc_buf.
3118			 */
3119			ASSERT(err != 0);
3120			abd_free(rrd->abd);
3121			rrd->abd = NULL;
3122		}
3123		break;
3124	}
3125	case DRR_WRITE_EMBEDDED:
3126	{
3127		struct drr_write_embedded *drrwe =
3128		    &rrd->header.drr_u.drr_write_embedded;
3129		err = receive_write_embedded(rwa, drrwe, rrd->payload);
3130		kmem_free(rrd->payload, rrd->payload_size);
3131		rrd->payload = NULL;
3132		break;
3133	}
3134	case DRR_FREE:
3135	{
3136		struct drr_free *drrf = &rrd->header.drr_u.drr_free;
3137		err = receive_free(rwa, drrf);
3138		break;
3139	}
3140	case DRR_SPILL:
3141	{
3142		struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
3143		err = receive_spill(rwa, drrs, rrd->abd);
3144		if (err != 0)
3145			abd_free(rrd->abd);
3146		rrd->abd = NULL;
3147		rrd->payload = NULL;
3148		break;
3149	}
3150	case DRR_OBJECT_RANGE:
3151	{
3152		struct drr_object_range *drror =
3153		    &rrd->header.drr_u.drr_object_range;
3154		err = receive_object_range(rwa, drror);
3155		break;
3156	}
3157	case DRR_REDACT:
3158	{
3159		struct drr_redact *drrr = &rrd->header.drr_u.drr_redact;
3160		err = receive_redact(rwa, drrr);
3161		break;
3162	}
3163	default:
3164		err = (SET_ERROR(EINVAL));
3165	}
3166
3167	if (err != 0)
3168		dprintf_drr(rrd, err);
3169
3170	return (err);
3171}
3172
3173/*
3174 * dmu_recv_stream's worker thread; pull records off the queue, and then call
3175 * receive_process_record  When we're done, signal the main thread and exit.
3176 */
3177static __attribute__((noreturn)) void
3178receive_writer_thread(void *arg)
3179{
3180	struct receive_writer_arg *rwa = arg;
3181	struct receive_record_arg *rrd;
3182	fstrans_cookie_t cookie = spl_fstrans_mark();
3183
3184	for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
3185	    rrd = bqueue_dequeue(&rwa->q)) {
3186		/*
3187		 * If there's an error, the main thread will stop putting things
3188		 * on the queue, but we need to clear everything in it before we
3189		 * can exit.
3190		 */
3191		int err = 0;
3192		if (rwa->err == 0) {
3193			err = receive_process_record(rwa, rrd);
3194		} else if (rrd->abd != NULL) {
3195			abd_free(rrd->abd);
3196			rrd->abd = NULL;
3197			rrd->payload = NULL;
3198		} else if (rrd->payload != NULL) {
3199			kmem_free(rrd->payload, rrd->payload_size);
3200			rrd->payload = NULL;
3201		}
3202		/*
3203		 * EAGAIN indicates that this record has been saved (on
3204		 * raw->write_batch), and will be used again, so we don't
3205		 * free it.
3206		 * When healing data we always need to free the record.
3207		 */
3208		if (err != EAGAIN || rwa->heal) {
3209			if (rwa->err == 0)
3210				rwa->err = err;
3211			kmem_free(rrd, sizeof (*rrd));
3212		}
3213	}
3214	kmem_free(rrd, sizeof (*rrd));
3215
3216	if (rwa->heal) {
3217		zio_wait(rwa->heal_pio);
3218	} else {
3219		int err = flush_write_batch(rwa);
3220		if (rwa->err == 0)
3221			rwa->err = err;
3222	}
3223	mutex_enter(&rwa->mutex);
3224	rwa->done = B_TRUE;
3225	cv_signal(&rwa->cv);
3226	mutex_exit(&rwa->mutex);
3227	spl_fstrans_unmark(cookie);
3228	thread_exit();
3229}
3230
3231static int
3232resume_check(dmu_recv_cookie_t *drc, nvlist_t *begin_nvl)
3233{
3234	uint64_t val;
3235	objset_t *mos = dmu_objset_pool(drc->drc_os)->dp_meta_objset;
3236	uint64_t dsobj = dmu_objset_id(drc->drc_os);
3237	uint64_t resume_obj, resume_off;
3238
3239	if (nvlist_lookup_uint64(begin_nvl,
3240	    "resume_object", &resume_obj) != 0 ||
3241	    nvlist_lookup_uint64(begin_nvl,
3242	    "resume_offset", &resume_off) != 0) {
3243		return (SET_ERROR(EINVAL));
3244	}
3245	VERIFY0(zap_lookup(mos, dsobj,
3246	    DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
3247	if (resume_obj != val)
3248		return (SET_ERROR(EINVAL));
3249	VERIFY0(zap_lookup(mos, dsobj,
3250	    DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
3251	if (resume_off != val)
3252		return (SET_ERROR(EINVAL));
3253
3254	return (0);
3255}
3256
3257/*
3258 * Read in the stream's records, one by one, and apply them to the pool.  There
3259 * are two threads involved; the thread that calls this function will spin up a
3260 * worker thread, read the records off the stream one by one, and issue
3261 * prefetches for any necessary indirect blocks.  It will then push the records
3262 * onto an internal blocking queue.  The worker thread will pull the records off
3263 * the queue, and actually write the data into the DMU.  This way, the worker
3264 * thread doesn't have to wait for reads to complete, since everything it needs
3265 * (the indirect blocks) will be prefetched.
3266 *
3267 * NB: callers *must* call dmu_recv_end() if this succeeds.
3268 */
3269int
3270dmu_recv_stream(dmu_recv_cookie_t *drc, offset_t *voffp)
3271{
3272	int err = 0;
3273	struct receive_writer_arg *rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP);
3274
3275	if (dsl_dataset_has_resume_receive_state(drc->drc_ds)) {
3276		uint64_t bytes = 0;
3277		(void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
3278		    drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
3279		    sizeof (bytes), 1, &bytes);
3280		drc->drc_bytes_read += bytes;
3281	}
3282
3283	drc->drc_ignore_objlist = objlist_create();
3284
3285	/* these were verified in dmu_recv_begin */
3286	ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
3287	    DMU_SUBSTREAM);
3288	ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
3289
3290	ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
3291	ASSERT0(drc->drc_os->os_encrypted &&
3292	    (drc->drc_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA));
3293
3294	/* handle DSL encryption key payload */
3295	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
3296		nvlist_t *keynvl = NULL;
3297
3298		ASSERT(drc->drc_os->os_encrypted);
3299		ASSERT(drc->drc_raw);
3300
3301		err = nvlist_lookup_nvlist(drc->drc_begin_nvl, "crypt_keydata",
3302		    &keynvl);
3303		if (err != 0)
3304			goto out;
3305
3306		if (!drc->drc_heal) {
3307			/*
3308			 * If this is a new dataset we set the key immediately.
3309			 * Otherwise we don't want to change the key until we
3310			 * are sure the rest of the receive succeeded so we
3311			 * stash the keynvl away until then.
3312			 */
3313			err = dsl_crypto_recv_raw(spa_name(drc->drc_os->os_spa),
3314			    drc->drc_ds->ds_object, drc->drc_fromsnapobj,
3315			    drc->drc_drrb->drr_type, keynvl, drc->drc_newfs);
3316			if (err != 0)
3317				goto out;
3318		}
3319
3320		/* see comment in dmu_recv_end_sync() */
3321		drc->drc_ivset_guid = 0;
3322		(void) nvlist_lookup_uint64(keynvl, "to_ivset_guid",
3323		    &drc->drc_ivset_guid);
3324
3325		if (!drc->drc_newfs)
3326			drc->drc_keynvl = fnvlist_dup(keynvl);
3327	}
3328
3329	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
3330		err = resume_check(drc, drc->drc_begin_nvl);
3331		if (err != 0)
3332			goto out;
3333	}
3334
3335	/*
3336	 * For compatibility with recursive send streams, we do this here,
3337	 * rather than in dmu_recv_begin. If we pull the next header too
3338	 * early, and it's the END record, we break the `recv_skip` logic.
3339	 */
3340	if (drc->drc_drr_begin->drr_payloadlen == 0) {
3341		err = receive_read_payload_and_next_header(drc, 0, NULL);
3342		if (err != 0)
3343			goto out;
3344	}
3345
3346	/*
3347	 * If we failed before this point we will clean up any new resume
3348	 * state that was created. Now that we've gotten past the initial
3349	 * checks we are ok to retain that resume state.
3350	 */
3351	drc->drc_should_save = B_TRUE;
3352
3353	(void) bqueue_init(&rwa->q, zfs_recv_queue_ff,
3354	    MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize),
3355	    offsetof(struct receive_record_arg, node));
3356	cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL);
3357	mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL);
3358	rwa->os = drc->drc_os;
3359	rwa->byteswap = drc->drc_byteswap;
3360	rwa->heal = drc->drc_heal;
3361	rwa->tofs = drc->drc_tofs;
3362	rwa->resumable = drc->drc_resumable;
3363	rwa->raw = drc->drc_raw;
3364	rwa->spill = drc->drc_spill;
3365	rwa->full = (drc->drc_drr_begin->drr_u.drr_begin.drr_fromguid == 0);
3366	rwa->os->os_raw_receive = drc->drc_raw;
3367	if (drc->drc_heal) {
3368		rwa->heal_pio = zio_root(drc->drc_os->os_spa, NULL, NULL,
3369		    ZIO_FLAG_GODFATHER);
3370	}
3371	list_create(&rwa->write_batch, sizeof (struct receive_record_arg),
3372	    offsetof(struct receive_record_arg, node.bqn_node));
3373
3374	(void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc,
3375	    TS_RUN, minclsyspri);
3376	/*
3377	 * We're reading rwa->err without locks, which is safe since we are the
3378	 * only reader, and the worker thread is the only writer.  It's ok if we
3379	 * miss a write for an iteration or two of the loop, since the writer
3380	 * thread will keep freeing records we send it until we send it an eos
3381	 * marker.
3382	 *
3383	 * We can leave this loop in 3 ways:  First, if rwa->err is
3384	 * non-zero.  In that case, the writer thread will free the rrd we just
3385	 * pushed.  Second, if  we're interrupted; in that case, either it's the
3386	 * first loop and drc->drc_rrd was never allocated, or it's later, and
3387	 * drc->drc_rrd has been handed off to the writer thread who will free
3388	 * it.  Finally, if receive_read_record fails or we're at the end of the
3389	 * stream, then we free drc->drc_rrd and exit.
3390	 */
3391	while (rwa->err == 0) {
3392		if (issig(JUSTLOOKING) && issig(FORREAL)) {
3393			err = SET_ERROR(EINTR);
3394			break;
3395		}
3396
3397		ASSERT3P(drc->drc_rrd, ==, NULL);
3398		drc->drc_rrd = drc->drc_next_rrd;
3399		drc->drc_next_rrd = NULL;
3400		/* Allocates and loads header into drc->drc_next_rrd */
3401		err = receive_read_record(drc);
3402
3403		if (drc->drc_rrd->header.drr_type == DRR_END || err != 0) {
3404			kmem_free(drc->drc_rrd, sizeof (*drc->drc_rrd));
3405			drc->drc_rrd = NULL;
3406			break;
3407		}
3408
3409		bqueue_enqueue(&rwa->q, drc->drc_rrd,
3410		    sizeof (struct receive_record_arg) +
3411		    drc->drc_rrd->payload_size);
3412		drc->drc_rrd = NULL;
3413	}
3414
3415	ASSERT3P(drc->drc_rrd, ==, NULL);
3416	drc->drc_rrd = kmem_zalloc(sizeof (*drc->drc_rrd), KM_SLEEP);
3417	drc->drc_rrd->eos_marker = B_TRUE;
3418	bqueue_enqueue_flush(&rwa->q, drc->drc_rrd, 1);
3419
3420	mutex_enter(&rwa->mutex);
3421	while (!rwa->done) {
3422		/*
3423		 * We need to use cv_wait_sig() so that any process that may
3424		 * be sleeping here can still fork.
3425		 */
3426		(void) cv_wait_sig(&rwa->cv, &rwa->mutex);
3427	}
3428	mutex_exit(&rwa->mutex);
3429
3430	/*
3431	 * If we are receiving a full stream as a clone, all object IDs which
3432	 * are greater than the maximum ID referenced in the stream are
3433	 * by definition unused and must be freed.
3434	 */
3435	if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) {
3436		uint64_t obj = rwa->max_object + 1;
3437		int free_err = 0;
3438		int next_err = 0;
3439
3440		while (next_err == 0) {
3441			free_err = dmu_free_long_object(rwa->os, obj);
3442			if (free_err != 0 && free_err != ENOENT)
3443				break;
3444
3445			next_err = dmu_object_next(rwa->os, &obj, FALSE, 0);
3446		}
3447
3448		if (err == 0) {
3449			if (free_err != 0 && free_err != ENOENT)
3450				err = free_err;
3451			else if (next_err != ESRCH)
3452				err = next_err;
3453		}
3454	}
3455
3456	cv_destroy(&rwa->cv);
3457	mutex_destroy(&rwa->mutex);
3458	bqueue_destroy(&rwa->q);
3459	list_destroy(&rwa->write_batch);
3460	if (err == 0)
3461		err = rwa->err;
3462
3463out:
3464	/*
3465	 * If we hit an error before we started the receive_writer_thread
3466	 * we need to clean up the next_rrd we create by processing the
3467	 * DRR_BEGIN record.
3468	 */
3469	if (drc->drc_next_rrd != NULL)
3470		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
3471
3472	/*
3473	 * The objset will be invalidated by dmu_recv_end() when we do
3474	 * dsl_dataset_clone_swap_sync_impl().
3475	 */
3476	drc->drc_os = NULL;
3477
3478	kmem_free(rwa, sizeof (*rwa));
3479	nvlist_free(drc->drc_begin_nvl);
3480
3481	if (err != 0) {
3482		/*
3483		 * Clean up references. If receive is not resumable,
3484		 * destroy what we created, so we don't leave it in
3485		 * the inconsistent state.
3486		 */
3487		dmu_recv_cleanup_ds(drc);
3488		nvlist_free(drc->drc_keynvl);
3489	}
3490
3491	objlist_destroy(drc->drc_ignore_objlist);
3492	drc->drc_ignore_objlist = NULL;
3493	*voffp = drc->drc_voff;
3494	return (err);
3495}
3496
3497static int
3498dmu_recv_end_check(void *arg, dmu_tx_t *tx)
3499{
3500	dmu_recv_cookie_t *drc = arg;
3501	dsl_pool_t *dp = dmu_tx_pool(tx);
3502	int error;
3503
3504	ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
3505
3506	if (drc->drc_heal) {
3507		error = 0;
3508	} else if (!drc->drc_newfs) {
3509		dsl_dataset_t *origin_head;
3510
3511		error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
3512		if (error != 0)
3513			return (error);
3514		if (drc->drc_force) {
3515			/*
3516			 * We will destroy any snapshots in tofs (i.e. before
3517			 * origin_head) that are after the origin (which is
3518			 * the snap before drc_ds, because drc_ds can not
3519			 * have any snaps of its own).
3520			 */
3521			uint64_t obj;
3522
3523			obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3524			while (obj !=
3525			    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3526				dsl_dataset_t *snap;
3527				error = dsl_dataset_hold_obj(dp, obj, FTAG,
3528				    &snap);
3529				if (error != 0)
3530					break;
3531				if (snap->ds_dir != origin_head->ds_dir)
3532					error = SET_ERROR(EINVAL);
3533				if (error == 0)  {
3534					error = dsl_destroy_snapshot_check_impl(
3535					    snap, B_FALSE);
3536				}
3537				obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3538				dsl_dataset_rele(snap, FTAG);
3539				if (error != 0)
3540					break;
3541			}
3542			if (error != 0) {
3543				dsl_dataset_rele(origin_head, FTAG);
3544				return (error);
3545			}
3546		}
3547		if (drc->drc_keynvl != NULL) {
3548			error = dsl_crypto_recv_raw_key_check(drc->drc_ds,
3549			    drc->drc_keynvl, tx);
3550			if (error != 0) {
3551				dsl_dataset_rele(origin_head, FTAG);
3552				return (error);
3553			}
3554		}
3555
3556		error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
3557		    origin_head, drc->drc_force, drc->drc_owner, tx);
3558		if (error != 0) {
3559			dsl_dataset_rele(origin_head, FTAG);
3560			return (error);
3561		}
3562		error = dsl_dataset_snapshot_check_impl(origin_head,
3563		    drc->drc_tosnap, tx, B_TRUE, 1,
3564		    drc->drc_cred, drc->drc_proc);
3565		dsl_dataset_rele(origin_head, FTAG);
3566		if (error != 0)
3567			return (error);
3568
3569		error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
3570	} else {
3571		error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
3572		    drc->drc_tosnap, tx, B_TRUE, 1,
3573		    drc->drc_cred, drc->drc_proc);
3574	}
3575	return (error);
3576}
3577
3578static void
3579dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
3580{
3581	dmu_recv_cookie_t *drc = arg;
3582	dsl_pool_t *dp = dmu_tx_pool(tx);
3583	boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0;
3584	uint64_t newsnapobj = 0;
3585
3586	spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
3587	    tx, "snap=%s", drc->drc_tosnap);
3588	drc->drc_ds->ds_objset->os_raw_receive = B_FALSE;
3589
3590	if (drc->drc_heal) {
3591		if (drc->drc_keynvl != NULL) {
3592			nvlist_free(drc->drc_keynvl);
3593			drc->drc_keynvl = NULL;
3594		}
3595	} else if (!drc->drc_newfs) {
3596		dsl_dataset_t *origin_head;
3597
3598		VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
3599		    &origin_head));
3600
3601		if (drc->drc_force) {
3602			/*
3603			 * Destroy any snapshots of drc_tofs (origin_head)
3604			 * after the origin (the snap before drc_ds).
3605			 */
3606			uint64_t obj;
3607
3608			obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3609			while (obj !=
3610			    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3611				dsl_dataset_t *snap;
3612				VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
3613				    &snap));
3614				ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
3615				obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3616				dsl_destroy_snapshot_sync_impl(snap,
3617				    B_FALSE, tx);
3618				dsl_dataset_rele(snap, FTAG);
3619			}
3620		}
3621		if (drc->drc_keynvl != NULL) {
3622			dsl_crypto_recv_raw_key_sync(drc->drc_ds,
3623			    drc->drc_keynvl, tx);
3624			nvlist_free(drc->drc_keynvl);
3625			drc->drc_keynvl = NULL;
3626		}
3627
3628		VERIFY3P(drc->drc_ds->ds_prev, ==,
3629		    origin_head->ds_prev);
3630
3631		dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
3632		    origin_head, tx);
3633		/*
3634		 * The objset was evicted by dsl_dataset_clone_swap_sync_impl,
3635		 * so drc_os is no longer valid.
3636		 */
3637		drc->drc_os = NULL;
3638
3639		dsl_dataset_snapshot_sync_impl(origin_head,
3640		    drc->drc_tosnap, tx);
3641
3642		/* set snapshot's creation time and guid */
3643		dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
3644		dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
3645		    drc->drc_drrb->drr_creation_time;
3646		dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
3647		    drc->drc_drrb->drr_toguid;
3648		dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
3649		    ~DS_FLAG_INCONSISTENT;
3650
3651		dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
3652		dsl_dataset_phys(origin_head)->ds_flags &=
3653		    ~DS_FLAG_INCONSISTENT;
3654
3655		newsnapobj =
3656		    dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3657
3658		dsl_dataset_rele(origin_head, FTAG);
3659		dsl_destroy_head_sync_impl(drc->drc_ds, tx);
3660
3661		if (drc->drc_owner != NULL)
3662			VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
3663	} else {
3664		dsl_dataset_t *ds = drc->drc_ds;
3665
3666		dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
3667
3668		/* set snapshot's creation time and guid */
3669		dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
3670		dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
3671		    drc->drc_drrb->drr_creation_time;
3672		dsl_dataset_phys(ds->ds_prev)->ds_guid =
3673		    drc->drc_drrb->drr_toguid;
3674		dsl_dataset_phys(ds->ds_prev)->ds_flags &=
3675		    ~DS_FLAG_INCONSISTENT;
3676
3677		dmu_buf_will_dirty(ds->ds_dbuf, tx);
3678		dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
3679		if (dsl_dataset_has_resume_receive_state(ds)) {
3680			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3681			    DS_FIELD_RESUME_FROMGUID, tx);
3682			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3683			    DS_FIELD_RESUME_OBJECT, tx);
3684			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3685			    DS_FIELD_RESUME_OFFSET, tx);
3686			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3687			    DS_FIELD_RESUME_BYTES, tx);
3688			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3689			    DS_FIELD_RESUME_TOGUID, tx);
3690			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3691			    DS_FIELD_RESUME_TONAME, tx);
3692			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3693			    DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, tx);
3694		}
3695		newsnapobj =
3696		    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
3697	}
3698
3699	/*
3700	 * If this is a raw receive, the crypt_keydata nvlist will include
3701	 * a to_ivset_guid for us to set on the new snapshot. This value
3702	 * will override the value generated by the snapshot code. However,
3703	 * this value may not be present, because older implementations of
3704	 * the raw send code did not include this value, and we are still
3705	 * allowed to receive them if the zfs_disable_ivset_guid_check
3706	 * tunable is set, in which case we will leave the newly-generated
3707	 * value.
3708	 */
3709	if (!drc->drc_heal && drc->drc_raw && drc->drc_ivset_guid != 0) {
3710		dmu_object_zapify(dp->dp_meta_objset, newsnapobj,
3711		    DMU_OT_DSL_DATASET, tx);
3712		VERIFY0(zap_update(dp->dp_meta_objset, newsnapobj,
3713		    DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1,
3714		    &drc->drc_ivset_guid, tx));
3715	}
3716
3717	/*
3718	 * Release the hold from dmu_recv_begin.  This must be done before
3719	 * we return to open context, so that when we free the dataset's dnode
3720	 * we can evict its bonus buffer. Since the dataset may be destroyed
3721	 * at this point (and therefore won't have a valid pointer to the spa)
3722	 * we release the key mapping manually here while we do have a valid
3723	 * pointer, if it exists.
3724	 */
3725	if (!drc->drc_raw && encrypted) {
3726		(void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa,
3727		    drc->drc_ds->ds_object, drc->drc_ds);
3728	}
3729	dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag);
3730	drc->drc_ds = NULL;
3731}
3732
3733static int dmu_recv_end_modified_blocks = 3;
3734
3735static int
3736dmu_recv_existing_end(dmu_recv_cookie_t *drc)
3737{
3738#ifdef _KERNEL
3739	/*
3740	 * We will be destroying the ds; make sure its origin is unmounted if
3741	 * necessary.
3742	 */
3743	char name[ZFS_MAX_DATASET_NAME_LEN];
3744	dsl_dataset_name(drc->drc_ds, name);
3745	zfs_destroy_unmount_origin(name);
3746#endif
3747
3748	return (dsl_sync_task(drc->drc_tofs,
3749	    dmu_recv_end_check, dmu_recv_end_sync, drc,
3750	    dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3751}
3752
3753static int
3754dmu_recv_new_end(dmu_recv_cookie_t *drc)
3755{
3756	return (dsl_sync_task(drc->drc_tofs,
3757	    dmu_recv_end_check, dmu_recv_end_sync, drc,
3758	    dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3759}
3760
3761int
3762dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
3763{
3764	int error;
3765
3766	drc->drc_owner = owner;
3767
3768	if (drc->drc_newfs)
3769		error = dmu_recv_new_end(drc);
3770	else
3771		error = dmu_recv_existing_end(drc);
3772
3773	if (error != 0) {
3774		dmu_recv_cleanup_ds(drc);
3775		nvlist_free(drc->drc_keynvl);
3776	} else if (!drc->drc_heal) {
3777		if (drc->drc_newfs) {
3778			zvol_create_minor(drc->drc_tofs);
3779		}
3780		char *snapname = kmem_asprintf("%s@%s",
3781		    drc->drc_tofs, drc->drc_tosnap);
3782		zvol_create_minor(snapname);
3783		kmem_strfree(snapname);
3784	}
3785	return (error);
3786}
3787
3788/*
3789 * Return TRUE if this objset is currently being received into.
3790 */
3791boolean_t
3792dmu_objset_is_receiving(objset_t *os)
3793{
3794	return (os->os_dsl_dataset != NULL &&
3795	    os->os_dsl_dataset->ds_owner == dmu_recv_tag);
3796}
3797
3798ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_length, UINT, ZMOD_RW,
3799	"Maximum receive queue length");
3800
3801ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_ff, UINT, ZMOD_RW,
3802	"Receive queue fill fraction");
3803
3804ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, write_batch_size, UINT, ZMOD_RW,
3805	"Maximum amount of writes to batch into one transaction");
3806
3807ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, best_effort_corrective, INT, ZMOD_RW,
3808	"Ignore errors during corrective receive");
3809/* END CSTYLED */
3810