1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2018, Joyent, Inc.
24 * Copyright (c) 2011, 2020, Delphix. All rights reserved.
25 * Copyright (c) 2014, Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2017, Nexenta Systems, Inc.  All rights reserved.
27 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
28 * Copyright (c) 2020, George Amanakis. All rights reserved.
29 * Copyright (c) 2019, Klara Inc.
30 * Copyright (c) 2019, Allan Jude
31 * Copyright (c) 2020, The FreeBSD Foundation [1]
32 *
33 * [1] Portions of this software were developed by Allan Jude
34 *     under sponsorship from the FreeBSD Foundation.
35 */
36
37/*
38 * DVA-based Adjustable Replacement Cache
39 *
40 * While much of the theory of operation used here is
41 * based on the self-tuning, low overhead replacement cache
42 * presented by Megiddo and Modha at FAST 2003, there are some
43 * significant differences:
44 *
45 * 1. The Megiddo and Modha model assumes any page is evictable.
46 * Pages in its cache cannot be "locked" into memory.  This makes
47 * the eviction algorithm simple: evict the last page in the list.
48 * This also make the performance characteristics easy to reason
49 * about.  Our cache is not so simple.  At any given moment, some
50 * subset of the blocks in the cache are un-evictable because we
51 * have handed out a reference to them.  Blocks are only evictable
52 * when there are no external references active.  This makes
53 * eviction far more problematic:  we choose to evict the evictable
54 * blocks that are the "lowest" in the list.
55 *
56 * There are times when it is not possible to evict the requested
57 * space.  In these circumstances we are unable to adjust the cache
58 * size.  To prevent the cache growing unbounded at these times we
59 * implement a "cache throttle" that slows the flow of new data
60 * into the cache until we can make space available.
61 *
62 * 2. The Megiddo and Modha model assumes a fixed cache size.
63 * Pages are evicted when the cache is full and there is a cache
64 * miss.  Our model has a variable sized cache.  It grows with
65 * high use, but also tries to react to memory pressure from the
66 * operating system: decreasing its size when system memory is
67 * tight.
68 *
69 * 3. The Megiddo and Modha model assumes a fixed page size. All
70 * elements of the cache are therefore exactly the same size.  So
71 * when adjusting the cache size following a cache miss, its simply
72 * a matter of choosing a single page to evict.  In our model, we
73 * have variable sized cache blocks (ranging from 512 bytes to
74 * 128K bytes).  We therefore choose a set of blocks to evict to make
75 * space for a cache miss that approximates as closely as possible
76 * the space used by the new block.
77 *
78 * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
79 * by N. Megiddo & D. Modha, FAST 2003
80 */
81
82/*
83 * The locking model:
84 *
85 * A new reference to a cache buffer can be obtained in two
86 * ways: 1) via a hash table lookup using the DVA as a key,
87 * or 2) via one of the ARC lists.  The arc_read() interface
88 * uses method 1, while the internal ARC algorithms for
89 * adjusting the cache use method 2.  We therefore provide two
90 * types of locks: 1) the hash table lock array, and 2) the
91 * ARC list locks.
92 *
93 * Buffers do not have their own mutexes, rather they rely on the
94 * hash table mutexes for the bulk of their protection (i.e. most
95 * fields in the arc_buf_hdr_t are protected by these mutexes).
96 *
97 * buf_hash_find() returns the appropriate mutex (held) when it
98 * locates the requested buffer in the hash table.  It returns
99 * NULL for the mutex if the buffer was not in the table.
100 *
101 * buf_hash_remove() expects the appropriate hash mutex to be
102 * already held before it is invoked.
103 *
104 * Each ARC state also has a mutex which is used to protect the
105 * buffer list associated with the state.  When attempting to
106 * obtain a hash table lock while holding an ARC list lock you
107 * must use: mutex_tryenter() to avoid deadlock.  Also note that
108 * the active state mutex must be held before the ghost state mutex.
109 *
110 * It as also possible to register a callback which is run when the
111 * metadata limit is reached and no buffers can be safely evicted.  In
112 * this case the arc user should drop a reference on some arc buffers so
113 * they can be reclaimed.  For example, when using the ZPL each dentry
114 * holds a references on a znode.  These dentries must be pruned before
115 * the arc buffer holding the znode can be safely evicted.
116 *
117 * Note that the majority of the performance stats are manipulated
118 * with atomic operations.
119 *
120 * The L2ARC uses the l2ad_mtx on each vdev for the following:
121 *
122 *	- L2ARC buflist creation
123 *	- L2ARC buflist eviction
124 *	- L2ARC write completion, which walks L2ARC buflists
125 *	- ARC header destruction, as it removes from L2ARC buflists
126 *	- ARC header release, as it removes from L2ARC buflists
127 */
128
129/*
130 * ARC operation:
131 *
132 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
133 * This structure can point either to a block that is still in the cache or to
134 * one that is only accessible in an L2 ARC device, or it can provide
135 * information about a block that was recently evicted. If a block is
136 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
137 * information to retrieve it from the L2ARC device. This information is
138 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
139 * that is in this state cannot access the data directly.
140 *
141 * Blocks that are actively being referenced or have not been evicted
142 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
143 * the arc_buf_hdr_t that will point to the data block in memory. A block can
144 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
145 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
146 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
147 *
148 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
149 * ability to store the physical data (b_pabd) associated with the DVA of the
150 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
151 * it will match its on-disk compression characteristics. This behavior can be
152 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
153 * compressed ARC functionality is disabled, the b_pabd will point to an
154 * uncompressed version of the on-disk data.
155 *
156 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
157 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
158 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
159 * consumer. The ARC will provide references to this data and will keep it
160 * cached until it is no longer in use. The ARC caches only the L1ARC's physical
161 * data block and will evict any arc_buf_t that is no longer referenced. The
162 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
163 * "overhead_size" kstat.
164 *
165 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
166 * compressed form. The typical case is that consumers will want uncompressed
167 * data, and when that happens a new data buffer is allocated where the data is
168 * decompressed for them to use. Currently the only consumer who wants
169 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
170 * exists on disk. When this happens, the arc_buf_t's data buffer is shared
171 * with the arc_buf_hdr_t.
172 *
173 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
174 * first one is owned by a compressed send consumer (and therefore references
175 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
176 * used by any other consumer (and has its own uncompressed copy of the data
177 * buffer).
178 *
179 *   arc_buf_hdr_t
180 *   +-----------+
181 *   | fields    |
182 *   | common to |
183 *   | L1- and   |
184 *   | L2ARC     |
185 *   +-----------+
186 *   | l2arc_buf_hdr_t
187 *   |           |
188 *   +-----------+
189 *   | l1arc_buf_hdr_t
190 *   |           |              arc_buf_t
191 *   | b_buf     +------------>+-----------+      arc_buf_t
192 *   | b_pabd    +-+           |b_next     +---->+-----------+
193 *   +-----------+ |           |-----------|     |b_next     +-->NULL
194 *                 |           |b_comp = T |     +-----------+
195 *                 |           |b_data     +-+   |b_comp = F |
196 *                 |           +-----------+ |   |b_data     +-+
197 *                 +->+------+               |   +-----------+ |
198 *        compressed  |      |               |                 |
199 *           data     |      |<--------------+                 | uncompressed
200 *                    +------+          compressed,            |     data
201 *                                        shared               +-->+------+
202 *                                         data                    |      |
203 *                                                                 |      |
204 *                                                                 +------+
205 *
206 * When a consumer reads a block, the ARC must first look to see if the
207 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
208 * arc_buf_t and either copies uncompressed data into a new data buffer from an
209 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
210 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
211 * hdr is compressed and the desired compression characteristics of the
212 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
213 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
214 * the last buffer in the hdr's b_buf list, however a shared compressed buf can
215 * be anywhere in the hdr's list.
216 *
217 * The diagram below shows an example of an uncompressed ARC hdr that is
218 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
219 * the last element in the buf list):
220 *
221 *                arc_buf_hdr_t
222 *                +-----------+
223 *                |           |
224 *                |           |
225 *                |           |
226 *                +-----------+
227 * l2arc_buf_hdr_t|           |
228 *                |           |
229 *                +-----------+
230 * l1arc_buf_hdr_t|           |
231 *                |           |                 arc_buf_t    (shared)
232 *                |    b_buf  +------------>+---------+      arc_buf_t
233 *                |           |             |b_next   +---->+---------+
234 *                |  b_pabd   +-+           |---------|     |b_next   +-->NULL
235 *                +-----------+ |           |         |     +---------+
236 *                              |           |b_data   +-+   |         |
237 *                              |           +---------+ |   |b_data   +-+
238 *                              +->+------+             |   +---------+ |
239 *                                 |      |             |               |
240 *                   uncompressed  |      |             |               |
241 *                        data     +------+             |               |
242 *                                    ^                 +->+------+     |
243 *                                    |       uncompressed |      |     |
244 *                                    |           data     |      |     |
245 *                                    |                    +------+     |
246 *                                    +---------------------------------+
247 *
248 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
249 * since the physical block is about to be rewritten. The new data contents
250 * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
251 * it may compress the data before writing it to disk. The ARC will be called
252 * with the transformed data and will memcpy the transformed on-disk block into
253 * a newly allocated b_pabd. Writes are always done into buffers which have
254 * either been loaned (and hence are new and don't have other readers) or
255 * buffers which have been released (and hence have their own hdr, if there
256 * were originally other readers of the buf's original hdr). This ensures that
257 * the ARC only needs to update a single buf and its hdr after a write occurs.
258 *
259 * When the L2ARC is in use, it will also take advantage of the b_pabd. The
260 * L2ARC will always write the contents of b_pabd to the L2ARC. This means
261 * that when compressed ARC is enabled that the L2ARC blocks are identical
262 * to the on-disk block in the main data pool. This provides a significant
263 * advantage since the ARC can leverage the bp's checksum when reading from the
264 * L2ARC to determine if the contents are valid. However, if the compressed
265 * ARC is disabled, then the L2ARC's block must be transformed to look
266 * like the physical block in the main data pool before comparing the
267 * checksum and determining its validity.
268 *
269 * The L1ARC has a slightly different system for storing encrypted data.
270 * Raw (encrypted + possibly compressed) data has a few subtle differences from
271 * data that is just compressed. The biggest difference is that it is not
272 * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded.
273 * The other difference is that encryption cannot be treated as a suggestion.
274 * If a caller would prefer compressed data, but they actually wind up with
275 * uncompressed data the worst thing that could happen is there might be a
276 * performance hit. If the caller requests encrypted data, however, we must be
277 * sure they actually get it or else secret information could be leaked. Raw
278 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore,
279 * may have both an encrypted version and a decrypted version of its data at
280 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is
281 * copied out of this header. To avoid complications with b_pabd, raw buffers
282 * cannot be shared.
283 */
284
285#include <sys/spa.h>
286#include <sys/zio.h>
287#include <sys/spa_impl.h>
288#include <sys/zio_compress.h>
289#include <sys/zio_checksum.h>
290#include <sys/zfs_context.h>
291#include <sys/arc.h>
292#include <sys/zfs_refcount.h>
293#include <sys/vdev.h>
294#include <sys/vdev_impl.h>
295#include <sys/dsl_pool.h>
296#include <sys/multilist.h>
297#include <sys/abd.h>
298#include <sys/zil.h>
299#include <sys/fm/fs/zfs.h>
300#include <sys/callb.h>
301#include <sys/kstat.h>
302#include <sys/zthr.h>
303#include <zfs_fletcher.h>
304#include <sys/arc_impl.h>
305#include <sys/trace_zfs.h>
306#include <sys/aggsum.h>
307#include <sys/wmsum.h>
308#include <cityhash.h>
309#include <sys/vdev_trim.h>
310#include <sys/zfs_racct.h>
311#include <sys/zstd/zstd.h>
312
313#ifndef _KERNEL
314/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
315boolean_t arc_watch = B_FALSE;
316#endif
317
318/*
319 * This thread's job is to keep enough free memory in the system, by
320 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves
321 * arc_available_memory().
322 */
323static zthr_t *arc_reap_zthr;
324
325/*
326 * This thread's job is to keep arc_size under arc_c, by calling
327 * arc_evict(), which improves arc_is_overflowing().
328 */
329static zthr_t *arc_evict_zthr;
330static arc_buf_hdr_t **arc_state_evict_markers;
331static int arc_state_evict_marker_count;
332
333static kmutex_t arc_evict_lock;
334static boolean_t arc_evict_needed = B_FALSE;
335static clock_t arc_last_uncached_flush;
336
337/*
338 * Count of bytes evicted since boot.
339 */
340static uint64_t arc_evict_count;
341
342/*
343 * List of arc_evict_waiter_t's, representing threads waiting for the
344 * arc_evict_count to reach specific values.
345 */
346static list_t arc_evict_waiters;
347
348/*
349 * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of
350 * the requested amount of data to be evicted.  For example, by default for
351 * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation.
352 * Since this is above 100%, it ensures that progress is made towards getting
353 * arc_size under arc_c.  Since this is finite, it ensures that allocations
354 * can still happen, even during the potentially long time that arc_size is
355 * more than arc_c.
356 */
357static uint_t zfs_arc_eviction_pct = 200;
358
359/*
360 * The number of headers to evict in arc_evict_state_impl() before
361 * dropping the sublist lock and evicting from another sublist. A lower
362 * value means we're more likely to evict the "correct" header (i.e. the
363 * oldest header in the arc state), but comes with higher overhead
364 * (i.e. more invocations of arc_evict_state_impl()).
365 */
366static uint_t zfs_arc_evict_batch_limit = 10;
367
368/* number of seconds before growing cache again */
369uint_t arc_grow_retry = 5;
370
371/*
372 * Minimum time between calls to arc_kmem_reap_soon().
373 */
374static const int arc_kmem_cache_reap_retry_ms = 1000;
375
376/* shift of arc_c for calculating overflow limit in arc_get_data_impl */
377static int zfs_arc_overflow_shift = 8;
378
379/* log2(fraction of arc to reclaim) */
380uint_t arc_shrink_shift = 7;
381
382/* percent of pagecache to reclaim arc to */
383#ifdef _KERNEL
384uint_t zfs_arc_pc_percent = 0;
385#endif
386
387/*
388 * log2(fraction of ARC which must be free to allow growing).
389 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
390 * when reading a new block into the ARC, we will evict an equal-sized block
391 * from the ARC.
392 *
393 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
394 * we will still not allow it to grow.
395 */
396uint_t		arc_no_grow_shift = 5;
397
398
399/*
400 * minimum lifespan of a prefetch block in clock ticks
401 * (initialized in arc_init())
402 */
403static uint_t		arc_min_prefetch_ms;
404static uint_t		arc_min_prescient_prefetch_ms;
405
406/*
407 * If this percent of memory is free, don't throttle.
408 */
409uint_t arc_lotsfree_percent = 10;
410
411/*
412 * The arc has filled available memory and has now warmed up.
413 */
414boolean_t arc_warm;
415
416/*
417 * These tunables are for performance analysis.
418 */
419uint64_t zfs_arc_max = 0;
420uint64_t zfs_arc_min = 0;
421static uint64_t zfs_arc_dnode_limit = 0;
422static uint_t zfs_arc_dnode_reduce_percent = 10;
423static uint_t zfs_arc_grow_retry = 0;
424static uint_t zfs_arc_shrink_shift = 0;
425uint_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
426
427/*
428 * ARC dirty data constraints for arc_tempreserve_space() throttle:
429 * * total dirty data limit
430 * * anon block dirty limit
431 * * each pool's anon allowance
432 */
433static const unsigned long zfs_arc_dirty_limit_percent = 50;
434static const unsigned long zfs_arc_anon_limit_percent = 25;
435static const unsigned long zfs_arc_pool_dirty_percent = 20;
436
437/*
438 * Enable or disable compressed arc buffers.
439 */
440int zfs_compressed_arc_enabled = B_TRUE;
441
442/*
443 * Balance between metadata and data on ghost hits.  Values above 100
444 * increase metadata caching by proportionally reducing effect of ghost
445 * data hits on target data/metadata rate.
446 */
447static uint_t zfs_arc_meta_balance = 500;
448
449/*
450 * Percentage that can be consumed by dnodes of ARC meta buffers.
451 */
452static uint_t zfs_arc_dnode_limit_percent = 10;
453
454/*
455 * These tunables are Linux-specific
456 */
457static uint64_t zfs_arc_sys_free = 0;
458static uint_t zfs_arc_min_prefetch_ms = 0;
459static uint_t zfs_arc_min_prescient_prefetch_ms = 0;
460static uint_t zfs_arc_lotsfree_percent = 10;
461
462/*
463 * Number of arc_prune threads
464 */
465static int zfs_arc_prune_task_threads = 1;
466
467/* The 7 states: */
468arc_state_t ARC_anon;
469arc_state_t ARC_mru;
470arc_state_t ARC_mru_ghost;
471arc_state_t ARC_mfu;
472arc_state_t ARC_mfu_ghost;
473arc_state_t ARC_l2c_only;
474arc_state_t ARC_uncached;
475
476arc_stats_t arc_stats = {
477	{ "hits",			KSTAT_DATA_UINT64 },
478	{ "iohits",			KSTAT_DATA_UINT64 },
479	{ "misses",			KSTAT_DATA_UINT64 },
480	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
481	{ "demand_data_iohits",		KSTAT_DATA_UINT64 },
482	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
483	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
484	{ "demand_metadata_iohits",	KSTAT_DATA_UINT64 },
485	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
486	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
487	{ "prefetch_data_iohits",	KSTAT_DATA_UINT64 },
488	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
489	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
490	{ "prefetch_metadata_iohits",	KSTAT_DATA_UINT64 },
491	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
492	{ "mru_hits",			KSTAT_DATA_UINT64 },
493	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
494	{ "mfu_hits",			KSTAT_DATA_UINT64 },
495	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
496	{ "uncached_hits",		KSTAT_DATA_UINT64 },
497	{ "deleted",			KSTAT_DATA_UINT64 },
498	{ "mutex_miss",			KSTAT_DATA_UINT64 },
499	{ "access_skip",		KSTAT_DATA_UINT64 },
500	{ "evict_skip",			KSTAT_DATA_UINT64 },
501	{ "evict_not_enough",		KSTAT_DATA_UINT64 },
502	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
503	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
504	{ "evict_l2_eligible_mfu",	KSTAT_DATA_UINT64 },
505	{ "evict_l2_eligible_mru",	KSTAT_DATA_UINT64 },
506	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
507	{ "evict_l2_skip",		KSTAT_DATA_UINT64 },
508	{ "hash_elements",		KSTAT_DATA_UINT64 },
509	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
510	{ "hash_collisions",		KSTAT_DATA_UINT64 },
511	{ "hash_chains",		KSTAT_DATA_UINT64 },
512	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
513	{ "meta",			KSTAT_DATA_UINT64 },
514	{ "pd",				KSTAT_DATA_UINT64 },
515	{ "pm",				KSTAT_DATA_UINT64 },
516	{ "c",				KSTAT_DATA_UINT64 },
517	{ "c_min",			KSTAT_DATA_UINT64 },
518	{ "c_max",			KSTAT_DATA_UINT64 },
519	{ "size",			KSTAT_DATA_UINT64 },
520	{ "compressed_size",		KSTAT_DATA_UINT64 },
521	{ "uncompressed_size",		KSTAT_DATA_UINT64 },
522	{ "overhead_size",		KSTAT_DATA_UINT64 },
523	{ "hdr_size",			KSTAT_DATA_UINT64 },
524	{ "data_size",			KSTAT_DATA_UINT64 },
525	{ "metadata_size",		KSTAT_DATA_UINT64 },
526	{ "dbuf_size",			KSTAT_DATA_UINT64 },
527	{ "dnode_size",			KSTAT_DATA_UINT64 },
528	{ "bonus_size",			KSTAT_DATA_UINT64 },
529#if defined(COMPAT_FREEBSD11)
530	{ "other_size",			KSTAT_DATA_UINT64 },
531#endif
532	{ "anon_size",			KSTAT_DATA_UINT64 },
533	{ "anon_data",			KSTAT_DATA_UINT64 },
534	{ "anon_metadata",		KSTAT_DATA_UINT64 },
535	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
536	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
537	{ "mru_size",			KSTAT_DATA_UINT64 },
538	{ "mru_data",			KSTAT_DATA_UINT64 },
539	{ "mru_metadata",		KSTAT_DATA_UINT64 },
540	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
541	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
542	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
543	{ "mru_ghost_data",		KSTAT_DATA_UINT64 },
544	{ "mru_ghost_metadata",		KSTAT_DATA_UINT64 },
545	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
546	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
547	{ "mfu_size",			KSTAT_DATA_UINT64 },
548	{ "mfu_data",			KSTAT_DATA_UINT64 },
549	{ "mfu_metadata",		KSTAT_DATA_UINT64 },
550	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
551	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
552	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
553	{ "mfu_ghost_data",		KSTAT_DATA_UINT64 },
554	{ "mfu_ghost_metadata",		KSTAT_DATA_UINT64 },
555	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
556	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
557	{ "uncached_size",		KSTAT_DATA_UINT64 },
558	{ "uncached_data",		KSTAT_DATA_UINT64 },
559	{ "uncached_metadata",		KSTAT_DATA_UINT64 },
560	{ "uncached_evictable_data",	KSTAT_DATA_UINT64 },
561	{ "uncached_evictable_metadata", KSTAT_DATA_UINT64 },
562	{ "l2_hits",			KSTAT_DATA_UINT64 },
563	{ "l2_misses",			KSTAT_DATA_UINT64 },
564	{ "l2_prefetch_asize",		KSTAT_DATA_UINT64 },
565	{ "l2_mru_asize",		KSTAT_DATA_UINT64 },
566	{ "l2_mfu_asize",		KSTAT_DATA_UINT64 },
567	{ "l2_bufc_data_asize",		KSTAT_DATA_UINT64 },
568	{ "l2_bufc_metadata_asize",	KSTAT_DATA_UINT64 },
569	{ "l2_feeds",			KSTAT_DATA_UINT64 },
570	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
571	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
572	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
573	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
574	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
575	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
576	{ "l2_writes_lock_retry",	KSTAT_DATA_UINT64 },
577	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
578	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
579	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
580	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
581	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
582	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
583	{ "l2_io_error",		KSTAT_DATA_UINT64 },
584	{ "l2_size",			KSTAT_DATA_UINT64 },
585	{ "l2_asize",			KSTAT_DATA_UINT64 },
586	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
587	{ "l2_log_blk_writes",		KSTAT_DATA_UINT64 },
588	{ "l2_log_blk_avg_asize",	KSTAT_DATA_UINT64 },
589	{ "l2_log_blk_asize",		KSTAT_DATA_UINT64 },
590	{ "l2_log_blk_count",		KSTAT_DATA_UINT64 },
591	{ "l2_data_to_meta_ratio",	KSTAT_DATA_UINT64 },
592	{ "l2_rebuild_success",		KSTAT_DATA_UINT64 },
593	{ "l2_rebuild_unsupported",	KSTAT_DATA_UINT64 },
594	{ "l2_rebuild_io_errors",	KSTAT_DATA_UINT64 },
595	{ "l2_rebuild_dh_errors",	KSTAT_DATA_UINT64 },
596	{ "l2_rebuild_cksum_lb_errors",	KSTAT_DATA_UINT64 },
597	{ "l2_rebuild_lowmem",		KSTAT_DATA_UINT64 },
598	{ "l2_rebuild_size",		KSTAT_DATA_UINT64 },
599	{ "l2_rebuild_asize",		KSTAT_DATA_UINT64 },
600	{ "l2_rebuild_bufs",		KSTAT_DATA_UINT64 },
601	{ "l2_rebuild_bufs_precached",	KSTAT_DATA_UINT64 },
602	{ "l2_rebuild_log_blks",	KSTAT_DATA_UINT64 },
603	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
604	{ "memory_direct_count",	KSTAT_DATA_UINT64 },
605	{ "memory_indirect_count",	KSTAT_DATA_UINT64 },
606	{ "memory_all_bytes",		KSTAT_DATA_UINT64 },
607	{ "memory_free_bytes",		KSTAT_DATA_UINT64 },
608	{ "memory_available_bytes",	KSTAT_DATA_INT64 },
609	{ "arc_no_grow",		KSTAT_DATA_UINT64 },
610	{ "arc_tempreserve",		KSTAT_DATA_UINT64 },
611	{ "arc_loaned_bytes",		KSTAT_DATA_UINT64 },
612	{ "arc_prune",			KSTAT_DATA_UINT64 },
613	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
614	{ "arc_dnode_limit",		KSTAT_DATA_UINT64 },
615	{ "async_upgrade_sync",		KSTAT_DATA_UINT64 },
616	{ "predictive_prefetch", KSTAT_DATA_UINT64 },
617	{ "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
618	{ "demand_iohit_predictive_prefetch", KSTAT_DATA_UINT64 },
619	{ "prescient_prefetch", KSTAT_DATA_UINT64 },
620	{ "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 },
621	{ "demand_iohit_prescient_prefetch", KSTAT_DATA_UINT64 },
622	{ "arc_need_free",		KSTAT_DATA_UINT64 },
623	{ "arc_sys_free",		KSTAT_DATA_UINT64 },
624	{ "arc_raw_size",		KSTAT_DATA_UINT64 },
625	{ "cached_only_in_progress",	KSTAT_DATA_UINT64 },
626	{ "abd_chunk_waste_size",	KSTAT_DATA_UINT64 },
627};
628
629arc_sums_t arc_sums;
630
631#define	ARCSTAT_MAX(stat, val) {					\
632	uint64_t m;							\
633	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
634	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
635		continue;						\
636}
637
638/*
639 * We define a macro to allow ARC hits/misses to be easily broken down by
640 * two separate conditions, giving a total of four different subtypes for
641 * each of hits and misses (so eight statistics total).
642 */
643#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
644	if (cond1) {							\
645		if (cond2) {						\
646			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
647		} else {						\
648			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
649		}							\
650	} else {							\
651		if (cond2) {						\
652			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
653		} else {						\
654			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
655		}							\
656	}
657
658/*
659 * This macro allows us to use kstats as floating averages. Each time we
660 * update this kstat, we first factor it and the update value by
661 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall
662 * average. This macro assumes that integer loads and stores are atomic, but
663 * is not safe for multiple writers updating the kstat in parallel (only the
664 * last writer's update will remain).
665 */
666#define	ARCSTAT_F_AVG_FACTOR	3
667#define	ARCSTAT_F_AVG(stat, value) \
668	do { \
669		uint64_t x = ARCSTAT(stat); \
670		x = x - x / ARCSTAT_F_AVG_FACTOR + \
671		    (value) / ARCSTAT_F_AVG_FACTOR; \
672		ARCSTAT(stat) = x; \
673	} while (0)
674
675static kstat_t			*arc_ksp;
676
677/*
678 * There are several ARC variables that are critical to export as kstats --
679 * but we don't want to have to grovel around in the kstat whenever we wish to
680 * manipulate them.  For these variables, we therefore define them to be in
681 * terms of the statistic variable.  This assures that we are not introducing
682 * the possibility of inconsistency by having shadow copies of the variables,
683 * while still allowing the code to be readable.
684 */
685#define	arc_tempreserve	ARCSTAT(arcstat_tempreserve)
686#define	arc_loaned_bytes	ARCSTAT(arcstat_loaned_bytes)
687#define	arc_dnode_limit	ARCSTAT(arcstat_dnode_limit) /* max size for dnodes */
688#define	arc_need_free	ARCSTAT(arcstat_need_free) /* waiting to be evicted */
689
690hrtime_t arc_growtime;
691list_t arc_prune_list;
692kmutex_t arc_prune_mtx;
693taskq_t *arc_prune_taskq;
694
695#define	GHOST_STATE(state)	\
696	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
697	(state) == arc_l2c_only)
698
699#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
700#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
701#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
702#define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
703#define	HDR_PRESCIENT_PREFETCH(hdr)	\
704	((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
705#define	HDR_COMPRESSION_ENABLED(hdr)	\
706	((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
707
708#define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
709#define	HDR_UNCACHED(hdr)	((hdr)->b_flags & ARC_FLAG_UNCACHED)
710#define	HDR_L2_READING(hdr)	\
711	(((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
712	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
713#define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
714#define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
715#define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
716#define	HDR_PROTECTED(hdr)	((hdr)->b_flags & ARC_FLAG_PROTECTED)
717#define	HDR_NOAUTH(hdr)		((hdr)->b_flags & ARC_FLAG_NOAUTH)
718#define	HDR_SHARED_DATA(hdr)	((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
719
720#define	HDR_ISTYPE_METADATA(hdr)	\
721	((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
722#define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
723
724#define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
725#define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
726#define	HDR_HAS_RABD(hdr)	\
727	(HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) &&	\
728	(hdr)->b_crypt_hdr.b_rabd != NULL)
729#define	HDR_ENCRYPTED(hdr)	\
730	(HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
731#define	HDR_AUTHENTICATED(hdr)	\
732	(HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
733
734/* For storing compression mode in b_flags */
735#define	HDR_COMPRESS_OFFSET	(highbit64(ARC_FLAG_COMPRESS_0) - 1)
736
737#define	HDR_GET_COMPRESS(hdr)	((enum zio_compress)BF32_GET((hdr)->b_flags, \
738	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
739#define	HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
740	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
741
742#define	ARC_BUF_LAST(buf)	((buf)->b_next == NULL)
743#define	ARC_BUF_SHARED(buf)	((buf)->b_flags & ARC_BUF_FLAG_SHARED)
744#define	ARC_BUF_COMPRESSED(buf)	((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
745#define	ARC_BUF_ENCRYPTED(buf)	((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED)
746
747/*
748 * Other sizes
749 */
750
751#define	HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
752#define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
753
754/*
755 * Hash table routines
756 */
757
758#define	BUF_LOCKS 2048
759typedef struct buf_hash_table {
760	uint64_t ht_mask;
761	arc_buf_hdr_t **ht_table;
762	kmutex_t ht_locks[BUF_LOCKS] ____cacheline_aligned;
763} buf_hash_table_t;
764
765static buf_hash_table_t buf_hash_table;
766
767#define	BUF_HASH_INDEX(spa, dva, birth) \
768	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
769#define	BUF_HASH_LOCK(idx)	(&buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
770#define	HDR_LOCK(hdr) \
771	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
772
773uint64_t zfs_crc64_table[256];
774
775/*
776 * Level 2 ARC
777 */
778
779#define	L2ARC_WRITE_SIZE	(32 * 1024 * 1024)	/* initial write max */
780#define	L2ARC_HEADROOM		8			/* num of writes */
781
782/*
783 * If we discover during ARC scan any buffers to be compressed, we boost
784 * our headroom for the next scanning cycle by this percentage multiple.
785 */
786#define	L2ARC_HEADROOM_BOOST	200
787#define	L2ARC_FEED_SECS		1		/* caching interval secs */
788#define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
789
790/*
791 * We can feed L2ARC from two states of ARC buffers, mru and mfu,
792 * and each of the state has two types: data and metadata.
793 */
794#define	L2ARC_FEED_TYPES	4
795
796/* L2ARC Performance Tunables */
797uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* def max write size */
798uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra warmup write */
799uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* # of dev writes */
800uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
801uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
802uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval msecs */
803int l2arc_noprefetch = B_TRUE;			/* don't cache prefetch bufs */
804int l2arc_feed_again = B_TRUE;			/* turbo warmup */
805int l2arc_norw = B_FALSE;			/* no reads during writes */
806static uint_t l2arc_meta_percent = 33;	/* limit on headers size */
807
808/*
809 * L2ARC Internals
810 */
811static list_t L2ARC_dev_list;			/* device list */
812static list_t *l2arc_dev_list;			/* device list pointer */
813static kmutex_t l2arc_dev_mtx;			/* device list mutex */
814static l2arc_dev_t *l2arc_dev_last;		/* last device used */
815static list_t L2ARC_free_on_write;		/* free after write buf list */
816static list_t *l2arc_free_on_write;		/* free after write list ptr */
817static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
818static uint64_t l2arc_ndev;			/* number of devices */
819
820typedef struct l2arc_read_callback {
821	arc_buf_hdr_t		*l2rcb_hdr;		/* read header */
822	blkptr_t		l2rcb_bp;		/* original blkptr */
823	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
824	int			l2rcb_flags;		/* original flags */
825	abd_t			*l2rcb_abd;		/* temporary buffer */
826} l2arc_read_callback_t;
827
828typedef struct l2arc_data_free {
829	/* protected by l2arc_free_on_write_mtx */
830	abd_t		*l2df_abd;
831	size_t		l2df_size;
832	arc_buf_contents_t l2df_type;
833	list_node_t	l2df_list_node;
834} l2arc_data_free_t;
835
836typedef enum arc_fill_flags {
837	ARC_FILL_LOCKED		= 1 << 0, /* hdr lock is held */
838	ARC_FILL_COMPRESSED	= 1 << 1, /* fill with compressed data */
839	ARC_FILL_ENCRYPTED	= 1 << 2, /* fill with encrypted data */
840	ARC_FILL_NOAUTH		= 1 << 3, /* don't attempt to authenticate */
841	ARC_FILL_IN_PLACE	= 1 << 4  /* fill in place (special case) */
842} arc_fill_flags_t;
843
844typedef enum arc_ovf_level {
845	ARC_OVF_NONE,			/* ARC within target size. */
846	ARC_OVF_SOME,			/* ARC is slightly overflowed. */
847	ARC_OVF_SEVERE			/* ARC is severely overflowed. */
848} arc_ovf_level_t;
849
850static kmutex_t l2arc_feed_thr_lock;
851static kcondvar_t l2arc_feed_thr_cv;
852static uint8_t l2arc_thread_exit;
853
854static kmutex_t l2arc_rebuild_thr_lock;
855static kcondvar_t l2arc_rebuild_thr_cv;
856
857enum arc_hdr_alloc_flags {
858	ARC_HDR_ALLOC_RDATA = 0x1,
859	ARC_HDR_USE_RESERVE = 0x4,
860	ARC_HDR_ALLOC_LINEAR = 0x8,
861};
862
863
864static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, const void *, int);
865static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, const void *);
866static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, const void *, int);
867static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, const void *);
868static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, const void *);
869static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size,
870    const void *tag);
871static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t);
872static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int);
873static void arc_hdr_destroy(arc_buf_hdr_t *);
874static void arc_access(arc_buf_hdr_t *, arc_flags_t, boolean_t);
875static void arc_buf_watch(arc_buf_t *);
876static void arc_change_state(arc_state_t *, arc_buf_hdr_t *);
877
878static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
879static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
880static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
881static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
882
883static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
884static void l2arc_read_done(zio_t *);
885static void l2arc_do_free_on_write(void);
886static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
887    boolean_t state_only);
888
889static void arc_prune_async(uint64_t adjust);
890
891#define	l2arc_hdr_arcstats_increment(hdr) \
892	l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE)
893#define	l2arc_hdr_arcstats_decrement(hdr) \
894	l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE)
895#define	l2arc_hdr_arcstats_increment_state(hdr) \
896	l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE)
897#define	l2arc_hdr_arcstats_decrement_state(hdr) \
898	l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE)
899
900/*
901 * l2arc_exclude_special : A zfs module parameter that controls whether buffers
902 * 		present on special vdevs are eligibile for caching in L2ARC. If
903 * 		set to 1, exclude dbufs on special vdevs from being cached to
904 * 		L2ARC.
905 */
906int l2arc_exclude_special = 0;
907
908/*
909 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU
910 * 		metadata and data are cached from ARC into L2ARC.
911 */
912static int l2arc_mfuonly = 0;
913
914/*
915 * L2ARC TRIM
916 * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of
917 * 		the current write size (l2arc_write_max) we should TRIM if we
918 * 		have filled the device. It is defined as a percentage of the
919 * 		write size. If set to 100 we trim twice the space required to
920 * 		accommodate upcoming writes. A minimum of 64MB will be trimmed.
921 * 		It also enables TRIM of the whole L2ARC device upon creation or
922 * 		addition to an existing pool or if the header of the device is
923 * 		invalid upon importing a pool or onlining a cache device. The
924 * 		default is 0, which disables TRIM on L2ARC altogether as it can
925 * 		put significant stress on the underlying storage devices. This
926 * 		will vary depending of how well the specific device handles
927 * 		these commands.
928 */
929static uint64_t l2arc_trim_ahead = 0;
930
931/*
932 * Performance tuning of L2ARC persistence:
933 *
934 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding
935 * 		an L2ARC device (either at pool import or later) will attempt
936 * 		to rebuild L2ARC buffer contents.
937 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls
938 * 		whether log blocks are written to the L2ARC device. If the L2ARC
939 * 		device is less than 1GB, the amount of data l2arc_evict()
940 * 		evicts is significant compared to the amount of restored L2ARC
941 * 		data. In this case do not write log blocks in L2ARC in order
942 * 		not to waste space.
943 */
944static int l2arc_rebuild_enabled = B_TRUE;
945static uint64_t l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024;
946
947/* L2ARC persistence rebuild control routines. */
948void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen);
949static __attribute__((noreturn)) void l2arc_dev_rebuild_thread(void *arg);
950static int l2arc_rebuild(l2arc_dev_t *dev);
951
952/* L2ARC persistence read I/O routines. */
953static int l2arc_dev_hdr_read(l2arc_dev_t *dev);
954static int l2arc_log_blk_read(l2arc_dev_t *dev,
955    const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp,
956    l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
957    zio_t *this_io, zio_t **next_io);
958static zio_t *l2arc_log_blk_fetch(vdev_t *vd,
959    const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb);
960static void l2arc_log_blk_fetch_abort(zio_t *zio);
961
962/* L2ARC persistence block restoration routines. */
963static void l2arc_log_blk_restore(l2arc_dev_t *dev,
964    const l2arc_log_blk_phys_t *lb, uint64_t lb_asize);
965static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le,
966    l2arc_dev_t *dev);
967
968/* L2ARC persistence write I/O routines. */
969static uint64_t l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio,
970    l2arc_write_callback_t *cb);
971
972/* L2ARC persistence auxiliary routines. */
973boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev,
974    const l2arc_log_blkptr_t *lbp);
975static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev,
976    const arc_buf_hdr_t *ab);
977boolean_t l2arc_range_check_overlap(uint64_t bottom,
978    uint64_t top, uint64_t check);
979static void l2arc_blk_fetch_done(zio_t *zio);
980static inline uint64_t
981    l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev);
982
983/*
984 * We use Cityhash for this. It's fast, and has good hash properties without
985 * requiring any large static buffers.
986 */
987static uint64_t
988buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
989{
990	return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth));
991}
992
993#define	HDR_EMPTY(hdr)						\
994	((hdr)->b_dva.dva_word[0] == 0 &&			\
995	(hdr)->b_dva.dva_word[1] == 0)
996
997#define	HDR_EMPTY_OR_LOCKED(hdr)				\
998	(HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr)))
999
1000#define	HDR_EQUAL(spa, dva, birth, hdr)				\
1001	((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
1002	((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
1003	((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1004
1005static void
1006buf_discard_identity(arc_buf_hdr_t *hdr)
1007{
1008	hdr->b_dva.dva_word[0] = 0;
1009	hdr->b_dva.dva_word[1] = 0;
1010	hdr->b_birth = 0;
1011}
1012
1013static arc_buf_hdr_t *
1014buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1015{
1016	const dva_t *dva = BP_IDENTITY(bp);
1017	uint64_t birth = BP_GET_BIRTH(bp);
1018	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1019	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1020	arc_buf_hdr_t *hdr;
1021
1022	mutex_enter(hash_lock);
1023	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1024	    hdr = hdr->b_hash_next) {
1025		if (HDR_EQUAL(spa, dva, birth, hdr)) {
1026			*lockp = hash_lock;
1027			return (hdr);
1028		}
1029	}
1030	mutex_exit(hash_lock);
1031	*lockp = NULL;
1032	return (NULL);
1033}
1034
1035/*
1036 * Insert an entry into the hash table.  If there is already an element
1037 * equal to elem in the hash table, then the already existing element
1038 * will be returned and the new element will not be inserted.
1039 * Otherwise returns NULL.
1040 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1041 */
1042static arc_buf_hdr_t *
1043buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1044{
1045	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1046	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1047	arc_buf_hdr_t *fhdr;
1048	uint32_t i;
1049
1050	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1051	ASSERT(hdr->b_birth != 0);
1052	ASSERT(!HDR_IN_HASH_TABLE(hdr));
1053
1054	if (lockp != NULL) {
1055		*lockp = hash_lock;
1056		mutex_enter(hash_lock);
1057	} else {
1058		ASSERT(MUTEX_HELD(hash_lock));
1059	}
1060
1061	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1062	    fhdr = fhdr->b_hash_next, i++) {
1063		if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1064			return (fhdr);
1065	}
1066
1067	hdr->b_hash_next = buf_hash_table.ht_table[idx];
1068	buf_hash_table.ht_table[idx] = hdr;
1069	arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1070
1071	/* collect some hash table performance data */
1072	if (i > 0) {
1073		ARCSTAT_BUMP(arcstat_hash_collisions);
1074		if (i == 1)
1075			ARCSTAT_BUMP(arcstat_hash_chains);
1076
1077		ARCSTAT_MAX(arcstat_hash_chain_max, i);
1078	}
1079	uint64_t he = atomic_inc_64_nv(
1080	    &arc_stats.arcstat_hash_elements.value.ui64);
1081	ARCSTAT_MAX(arcstat_hash_elements_max, he);
1082
1083	return (NULL);
1084}
1085
1086static void
1087buf_hash_remove(arc_buf_hdr_t *hdr)
1088{
1089	arc_buf_hdr_t *fhdr, **hdrp;
1090	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1091
1092	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1093	ASSERT(HDR_IN_HASH_TABLE(hdr));
1094
1095	hdrp = &buf_hash_table.ht_table[idx];
1096	while ((fhdr = *hdrp) != hdr) {
1097		ASSERT3P(fhdr, !=, NULL);
1098		hdrp = &fhdr->b_hash_next;
1099	}
1100	*hdrp = hdr->b_hash_next;
1101	hdr->b_hash_next = NULL;
1102	arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1103
1104	/* collect some hash table performance data */
1105	atomic_dec_64(&arc_stats.arcstat_hash_elements.value.ui64);
1106
1107	if (buf_hash_table.ht_table[idx] &&
1108	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1109		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1110}
1111
1112/*
1113 * Global data structures and functions for the buf kmem cache.
1114 */
1115
1116static kmem_cache_t *hdr_full_cache;
1117static kmem_cache_t *hdr_l2only_cache;
1118static kmem_cache_t *buf_cache;
1119
1120static void
1121buf_fini(void)
1122{
1123#if defined(_KERNEL)
1124	/*
1125	 * Large allocations which do not require contiguous pages
1126	 * should be using vmem_free() in the linux kernel\
1127	 */
1128	vmem_free(buf_hash_table.ht_table,
1129	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1130#else
1131	kmem_free(buf_hash_table.ht_table,
1132	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1133#endif
1134	for (int i = 0; i < BUF_LOCKS; i++)
1135		mutex_destroy(BUF_HASH_LOCK(i));
1136	kmem_cache_destroy(hdr_full_cache);
1137	kmem_cache_destroy(hdr_l2only_cache);
1138	kmem_cache_destroy(buf_cache);
1139}
1140
1141/*
1142 * Constructor callback - called when the cache is empty
1143 * and a new buf is requested.
1144 */
1145static int
1146hdr_full_cons(void *vbuf, void *unused, int kmflag)
1147{
1148	(void) unused, (void) kmflag;
1149	arc_buf_hdr_t *hdr = vbuf;
1150
1151	memset(hdr, 0, HDR_FULL_SIZE);
1152	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
1153	zfs_refcount_create(&hdr->b_l1hdr.b_refcnt);
1154#ifdef ZFS_DEBUG
1155	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1156#endif
1157	multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1158	list_link_init(&hdr->b_l2hdr.b_l2node);
1159	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1160
1161	return (0);
1162}
1163
1164static int
1165hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1166{
1167	(void) unused, (void) kmflag;
1168	arc_buf_hdr_t *hdr = vbuf;
1169
1170	memset(hdr, 0, HDR_L2ONLY_SIZE);
1171	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1172
1173	return (0);
1174}
1175
1176static int
1177buf_cons(void *vbuf, void *unused, int kmflag)
1178{
1179	(void) unused, (void) kmflag;
1180	arc_buf_t *buf = vbuf;
1181
1182	memset(buf, 0, sizeof (arc_buf_t));
1183	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1184
1185	return (0);
1186}
1187
1188/*
1189 * Destructor callback - called when a cached buf is
1190 * no longer required.
1191 */
1192static void
1193hdr_full_dest(void *vbuf, void *unused)
1194{
1195	(void) unused;
1196	arc_buf_hdr_t *hdr = vbuf;
1197
1198	ASSERT(HDR_EMPTY(hdr));
1199	zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1200#ifdef ZFS_DEBUG
1201	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1202#endif
1203	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1204	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1205}
1206
1207static void
1208hdr_l2only_dest(void *vbuf, void *unused)
1209{
1210	(void) unused;
1211	arc_buf_hdr_t *hdr = vbuf;
1212
1213	ASSERT(HDR_EMPTY(hdr));
1214	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1215}
1216
1217static void
1218buf_dest(void *vbuf, void *unused)
1219{
1220	(void) unused;
1221	(void) vbuf;
1222
1223	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1224}
1225
1226static void
1227buf_init(void)
1228{
1229	uint64_t *ct = NULL;
1230	uint64_t hsize = 1ULL << 12;
1231	int i, j;
1232
1233	/*
1234	 * The hash table is big enough to fill all of physical memory
1235	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1236	 * By default, the table will take up
1237	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1238	 */
1239	while (hsize * zfs_arc_average_blocksize < arc_all_memory())
1240		hsize <<= 1;
1241retry:
1242	buf_hash_table.ht_mask = hsize - 1;
1243#if defined(_KERNEL)
1244	/*
1245	 * Large allocations which do not require contiguous pages
1246	 * should be using vmem_alloc() in the linux kernel
1247	 */
1248	buf_hash_table.ht_table =
1249	    vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
1250#else
1251	buf_hash_table.ht_table =
1252	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1253#endif
1254	if (buf_hash_table.ht_table == NULL) {
1255		ASSERT(hsize > (1ULL << 8));
1256		hsize >>= 1;
1257		goto retry;
1258	}
1259
1260	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1261	    0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, 0);
1262	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1263	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL,
1264	    NULL, NULL, 0);
1265	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1266	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1267
1268	for (i = 0; i < 256; i++)
1269		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1270			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1271
1272	for (i = 0; i < BUF_LOCKS; i++)
1273		mutex_init(BUF_HASH_LOCK(i), NULL, MUTEX_DEFAULT, NULL);
1274}
1275
1276#define	ARC_MINTIME	(hz>>4) /* 62 ms */
1277
1278/*
1279 * This is the size that the buf occupies in memory. If the buf is compressed,
1280 * it will correspond to the compressed size. You should use this method of
1281 * getting the buf size unless you explicitly need the logical size.
1282 */
1283uint64_t
1284arc_buf_size(arc_buf_t *buf)
1285{
1286	return (ARC_BUF_COMPRESSED(buf) ?
1287	    HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1288}
1289
1290uint64_t
1291arc_buf_lsize(arc_buf_t *buf)
1292{
1293	return (HDR_GET_LSIZE(buf->b_hdr));
1294}
1295
1296/*
1297 * This function will return B_TRUE if the buffer is encrypted in memory.
1298 * This buffer can be decrypted by calling arc_untransform().
1299 */
1300boolean_t
1301arc_is_encrypted(arc_buf_t *buf)
1302{
1303	return (ARC_BUF_ENCRYPTED(buf) != 0);
1304}
1305
1306/*
1307 * Returns B_TRUE if the buffer represents data that has not had its MAC
1308 * verified yet.
1309 */
1310boolean_t
1311arc_is_unauthenticated(arc_buf_t *buf)
1312{
1313	return (HDR_NOAUTH(buf->b_hdr) != 0);
1314}
1315
1316void
1317arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt,
1318    uint8_t *iv, uint8_t *mac)
1319{
1320	arc_buf_hdr_t *hdr = buf->b_hdr;
1321
1322	ASSERT(HDR_PROTECTED(hdr));
1323
1324	memcpy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
1325	memcpy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
1326	memcpy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
1327	*byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
1328	    ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
1329}
1330
1331/*
1332 * Indicates how this buffer is compressed in memory. If it is not compressed
1333 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with
1334 * arc_untransform() as long as it is also unencrypted.
1335 */
1336enum zio_compress
1337arc_get_compression(arc_buf_t *buf)
1338{
1339	return (ARC_BUF_COMPRESSED(buf) ?
1340	    HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1341}
1342
1343/*
1344 * Return the compression algorithm used to store this data in the ARC. If ARC
1345 * compression is enabled or this is an encrypted block, this will be the same
1346 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF.
1347 */
1348static inline enum zio_compress
1349arc_hdr_get_compress(arc_buf_hdr_t *hdr)
1350{
1351	return (HDR_COMPRESSION_ENABLED(hdr) ?
1352	    HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF);
1353}
1354
1355uint8_t
1356arc_get_complevel(arc_buf_t *buf)
1357{
1358	return (buf->b_hdr->b_complevel);
1359}
1360
1361static inline boolean_t
1362arc_buf_is_shared(arc_buf_t *buf)
1363{
1364	boolean_t shared = (buf->b_data != NULL &&
1365	    buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1366	    abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1367	    buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1368	IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1369	EQUIV(shared, ARC_BUF_SHARED(buf));
1370	IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1371
1372	/*
1373	 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1374	 * already being shared" requirement prevents us from doing that.
1375	 */
1376
1377	return (shared);
1378}
1379
1380/*
1381 * Free the checksum associated with this header. If there is no checksum, this
1382 * is a no-op.
1383 */
1384static inline void
1385arc_cksum_free(arc_buf_hdr_t *hdr)
1386{
1387#ifdef ZFS_DEBUG
1388	ASSERT(HDR_HAS_L1HDR(hdr));
1389
1390	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1391	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1392		kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1393		hdr->b_l1hdr.b_freeze_cksum = NULL;
1394	}
1395	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1396#endif
1397}
1398
1399/*
1400 * Return true iff at least one of the bufs on hdr is not compressed.
1401 * Encrypted buffers count as compressed.
1402 */
1403static boolean_t
1404arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1405{
1406	ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr));
1407
1408	for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1409		if (!ARC_BUF_COMPRESSED(b)) {
1410			return (B_TRUE);
1411		}
1412	}
1413	return (B_FALSE);
1414}
1415
1416
1417/*
1418 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1419 * matches the checksum that is stored in the hdr. If there is no checksum,
1420 * or if the buf is compressed, this is a no-op.
1421 */
1422static void
1423arc_cksum_verify(arc_buf_t *buf)
1424{
1425#ifdef ZFS_DEBUG
1426	arc_buf_hdr_t *hdr = buf->b_hdr;
1427	zio_cksum_t zc;
1428
1429	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1430		return;
1431
1432	if (ARC_BUF_COMPRESSED(buf))
1433		return;
1434
1435	ASSERT(HDR_HAS_L1HDR(hdr));
1436
1437	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1438
1439	if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1440		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1441		return;
1442	}
1443
1444	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1445	if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1446		panic("buffer modified while frozen!");
1447	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1448#endif
1449}
1450
1451/*
1452 * This function makes the assumption that data stored in the L2ARC
1453 * will be transformed exactly as it is in the main pool. Because of
1454 * this we can verify the checksum against the reading process's bp.
1455 */
1456static boolean_t
1457arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1458{
1459	ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1460	VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1461
1462	/*
1463	 * Block pointers always store the checksum for the logical data.
1464	 * If the block pointer has the gang bit set, then the checksum
1465	 * it represents is for the reconstituted data and not for an
1466	 * individual gang member. The zio pipeline, however, must be able to
1467	 * determine the checksum of each of the gang constituents so it
1468	 * treats the checksum comparison differently than what we need
1469	 * for l2arc blocks. This prevents us from using the
1470	 * zio_checksum_error() interface directly. Instead we must call the
1471	 * zio_checksum_error_impl() so that we can ensure the checksum is
1472	 * generated using the correct checksum algorithm and accounts for the
1473	 * logical I/O size and not just a gang fragment.
1474	 */
1475	return (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1476	    BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1477	    zio->io_offset, NULL) == 0);
1478}
1479
1480/*
1481 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1482 * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1483 * isn't modified later on. If buf is compressed or there is already a checksum
1484 * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1485 */
1486static void
1487arc_cksum_compute(arc_buf_t *buf)
1488{
1489	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1490		return;
1491
1492#ifdef ZFS_DEBUG
1493	arc_buf_hdr_t *hdr = buf->b_hdr;
1494	ASSERT(HDR_HAS_L1HDR(hdr));
1495	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1496	if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) {
1497		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1498		return;
1499	}
1500
1501	ASSERT(!ARC_BUF_ENCRYPTED(buf));
1502	ASSERT(!ARC_BUF_COMPRESSED(buf));
1503	hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1504	    KM_SLEEP);
1505	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1506	    hdr->b_l1hdr.b_freeze_cksum);
1507	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1508#endif
1509	arc_buf_watch(buf);
1510}
1511
1512#ifndef _KERNEL
1513void
1514arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1515{
1516	(void) sig, (void) unused;
1517	panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr);
1518}
1519#endif
1520
1521static void
1522arc_buf_unwatch(arc_buf_t *buf)
1523{
1524#ifndef _KERNEL
1525	if (arc_watch) {
1526		ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1527		    PROT_READ | PROT_WRITE));
1528	}
1529#else
1530	(void) buf;
1531#endif
1532}
1533
1534static void
1535arc_buf_watch(arc_buf_t *buf)
1536{
1537#ifndef _KERNEL
1538	if (arc_watch)
1539		ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1540		    PROT_READ));
1541#else
1542	(void) buf;
1543#endif
1544}
1545
1546static arc_buf_contents_t
1547arc_buf_type(arc_buf_hdr_t *hdr)
1548{
1549	arc_buf_contents_t type;
1550	if (HDR_ISTYPE_METADATA(hdr)) {
1551		type = ARC_BUFC_METADATA;
1552	} else {
1553		type = ARC_BUFC_DATA;
1554	}
1555	VERIFY3U(hdr->b_type, ==, type);
1556	return (type);
1557}
1558
1559boolean_t
1560arc_is_metadata(arc_buf_t *buf)
1561{
1562	return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1563}
1564
1565static uint32_t
1566arc_bufc_to_flags(arc_buf_contents_t type)
1567{
1568	switch (type) {
1569	case ARC_BUFC_DATA:
1570		/* metadata field is 0 if buffer contains normal data */
1571		return (0);
1572	case ARC_BUFC_METADATA:
1573		return (ARC_FLAG_BUFC_METADATA);
1574	default:
1575		break;
1576	}
1577	panic("undefined ARC buffer type!");
1578	return ((uint32_t)-1);
1579}
1580
1581void
1582arc_buf_thaw(arc_buf_t *buf)
1583{
1584	arc_buf_hdr_t *hdr = buf->b_hdr;
1585
1586	ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1587	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1588
1589	arc_cksum_verify(buf);
1590
1591	/*
1592	 * Compressed buffers do not manipulate the b_freeze_cksum.
1593	 */
1594	if (ARC_BUF_COMPRESSED(buf))
1595		return;
1596
1597	ASSERT(HDR_HAS_L1HDR(hdr));
1598	arc_cksum_free(hdr);
1599	arc_buf_unwatch(buf);
1600}
1601
1602void
1603arc_buf_freeze(arc_buf_t *buf)
1604{
1605	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1606		return;
1607
1608	if (ARC_BUF_COMPRESSED(buf))
1609		return;
1610
1611	ASSERT(HDR_HAS_L1HDR(buf->b_hdr));
1612	arc_cksum_compute(buf);
1613}
1614
1615/*
1616 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1617 * the following functions should be used to ensure that the flags are
1618 * updated in a thread-safe way. When manipulating the flags either
1619 * the hash_lock must be held or the hdr must be undiscoverable. This
1620 * ensures that we're not racing with any other threads when updating
1621 * the flags.
1622 */
1623static inline void
1624arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1625{
1626	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1627	hdr->b_flags |= flags;
1628}
1629
1630static inline void
1631arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1632{
1633	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1634	hdr->b_flags &= ~flags;
1635}
1636
1637/*
1638 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1639 * done in a special way since we have to clear and set bits
1640 * at the same time. Consumers that wish to set the compression bits
1641 * must use this function to ensure that the flags are updated in
1642 * thread-safe manner.
1643 */
1644static void
1645arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1646{
1647	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1648
1649	/*
1650	 * Holes and embedded blocks will always have a psize = 0 so
1651	 * we ignore the compression of the blkptr and set the
1652	 * want to uncompress them. Mark them as uncompressed.
1653	 */
1654	if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1655		arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1656		ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1657	} else {
1658		arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1659		ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1660	}
1661
1662	HDR_SET_COMPRESS(hdr, cmp);
1663	ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1664}
1665
1666/*
1667 * Looks for another buf on the same hdr which has the data decompressed, copies
1668 * from it, and returns true. If no such buf exists, returns false.
1669 */
1670static boolean_t
1671arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1672{
1673	arc_buf_hdr_t *hdr = buf->b_hdr;
1674	boolean_t copied = B_FALSE;
1675
1676	ASSERT(HDR_HAS_L1HDR(hdr));
1677	ASSERT3P(buf->b_data, !=, NULL);
1678	ASSERT(!ARC_BUF_COMPRESSED(buf));
1679
1680	for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
1681	    from = from->b_next) {
1682		/* can't use our own data buffer */
1683		if (from == buf) {
1684			continue;
1685		}
1686
1687		if (!ARC_BUF_COMPRESSED(from)) {
1688			memcpy(buf->b_data, from->b_data, arc_buf_size(buf));
1689			copied = B_TRUE;
1690			break;
1691		}
1692	}
1693
1694#ifdef ZFS_DEBUG
1695	/*
1696	 * There were no decompressed bufs, so there should not be a
1697	 * checksum on the hdr either.
1698	 */
1699	if (zfs_flags & ZFS_DEBUG_MODIFY)
1700		EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1701#endif
1702
1703	return (copied);
1704}
1705
1706/*
1707 * Allocates an ARC buf header that's in an evicted & L2-cached state.
1708 * This is used during l2arc reconstruction to make empty ARC buffers
1709 * which circumvent the regular disk->arc->l2arc path and instead come
1710 * into being in the reverse order, i.e. l2arc->arc.
1711 */
1712static arc_buf_hdr_t *
1713arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev,
1714    dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth,
1715    enum zio_compress compress, uint8_t complevel, boolean_t protected,
1716    boolean_t prefetch, arc_state_type_t arcs_state)
1717{
1718	arc_buf_hdr_t	*hdr;
1719
1720	ASSERT(size != 0);
1721	hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP);
1722	hdr->b_birth = birth;
1723	hdr->b_type = type;
1724	hdr->b_flags = 0;
1725	arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR);
1726	HDR_SET_LSIZE(hdr, size);
1727	HDR_SET_PSIZE(hdr, psize);
1728	arc_hdr_set_compress(hdr, compress);
1729	hdr->b_complevel = complevel;
1730	if (protected)
1731		arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
1732	if (prefetch)
1733		arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
1734	hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa);
1735
1736	hdr->b_dva = dva;
1737
1738	hdr->b_l2hdr.b_dev = dev;
1739	hdr->b_l2hdr.b_daddr = daddr;
1740	hdr->b_l2hdr.b_arcs_state = arcs_state;
1741
1742	return (hdr);
1743}
1744
1745/*
1746 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1747 */
1748static uint64_t
1749arc_hdr_size(arc_buf_hdr_t *hdr)
1750{
1751	uint64_t size;
1752
1753	if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
1754	    HDR_GET_PSIZE(hdr) > 0) {
1755		size = HDR_GET_PSIZE(hdr);
1756	} else {
1757		ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1758		size = HDR_GET_LSIZE(hdr);
1759	}
1760	return (size);
1761}
1762
1763static int
1764arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj)
1765{
1766	int ret;
1767	uint64_t csize;
1768	uint64_t lsize = HDR_GET_LSIZE(hdr);
1769	uint64_t psize = HDR_GET_PSIZE(hdr);
1770	void *tmpbuf = NULL;
1771	abd_t *abd = hdr->b_l1hdr.b_pabd;
1772
1773	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1774	ASSERT(HDR_AUTHENTICATED(hdr));
1775	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1776
1777	/*
1778	 * The MAC is calculated on the compressed data that is stored on disk.
1779	 * However, if compressed arc is disabled we will only have the
1780	 * decompressed data available to us now. Compress it into a temporary
1781	 * abd so we can verify the MAC. The performance overhead of this will
1782	 * be relatively low, since most objects in an encrypted objset will
1783	 * be encrypted (instead of authenticated) anyway.
1784	 */
1785	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1786	    !HDR_COMPRESSION_ENABLED(hdr)) {
1787
1788		csize = zio_compress_data(HDR_GET_COMPRESS(hdr),
1789		    hdr->b_l1hdr.b_pabd, &tmpbuf, lsize, hdr->b_complevel);
1790		ASSERT3P(tmpbuf, !=, NULL);
1791		ASSERT3U(csize, <=, psize);
1792		abd = abd_get_from_buf(tmpbuf, lsize);
1793		abd_take_ownership_of_buf(abd, B_TRUE);
1794		abd_zero_off(abd, csize, psize - csize);
1795	}
1796
1797	/*
1798	 * Authentication is best effort. We authenticate whenever the key is
1799	 * available. If we succeed we clear ARC_FLAG_NOAUTH.
1800	 */
1801	if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) {
1802		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1803		ASSERT3U(lsize, ==, psize);
1804		ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd,
1805		    psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1806	} else {
1807		ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize,
1808		    hdr->b_crypt_hdr.b_mac);
1809	}
1810
1811	if (ret == 0)
1812		arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH);
1813	else if (ret != ENOENT)
1814		goto error;
1815
1816	if (tmpbuf != NULL)
1817		abd_free(abd);
1818
1819	return (0);
1820
1821error:
1822	if (tmpbuf != NULL)
1823		abd_free(abd);
1824
1825	return (ret);
1826}
1827
1828/*
1829 * This function will take a header that only has raw encrypted data in
1830 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in
1831 * b_l1hdr.b_pabd. If designated in the header flags, this function will
1832 * also decompress the data.
1833 */
1834static int
1835arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb)
1836{
1837	int ret;
1838	abd_t *cabd = NULL;
1839	void *tmp = NULL;
1840	boolean_t no_crypt = B_FALSE;
1841	boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1842
1843	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1844	ASSERT(HDR_ENCRYPTED(hdr));
1845
1846	arc_hdr_alloc_abd(hdr, 0);
1847
1848	ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot,
1849	    B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv,
1850	    hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd,
1851	    hdr->b_crypt_hdr.b_rabd, &no_crypt);
1852	if (ret != 0)
1853		goto error;
1854
1855	if (no_crypt) {
1856		abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd,
1857		    HDR_GET_PSIZE(hdr));
1858	}
1859
1860	/*
1861	 * If this header has disabled arc compression but the b_pabd is
1862	 * compressed after decrypting it, we need to decompress the newly
1863	 * decrypted data.
1864	 */
1865	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1866	    !HDR_COMPRESSION_ENABLED(hdr)) {
1867		/*
1868		 * We want to make sure that we are correctly honoring the
1869		 * zfs_abd_scatter_enabled setting, so we allocate an abd here
1870		 * and then loan a buffer from it, rather than allocating a
1871		 * linear buffer and wrapping it in an abd later.
1872		 */
1873		cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 0);
1874		tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
1875
1876		ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1877		    hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
1878		    HDR_GET_LSIZE(hdr), &hdr->b_complevel);
1879		if (ret != 0) {
1880			abd_return_buf(cabd, tmp, arc_hdr_size(hdr));
1881			goto error;
1882		}
1883
1884		abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
1885		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
1886		    arc_hdr_size(hdr), hdr);
1887		hdr->b_l1hdr.b_pabd = cabd;
1888	}
1889
1890	return (0);
1891
1892error:
1893	arc_hdr_free_abd(hdr, B_FALSE);
1894	if (cabd != NULL)
1895		arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr);
1896
1897	return (ret);
1898}
1899
1900/*
1901 * This function is called during arc_buf_fill() to prepare the header's
1902 * abd plaintext pointer for use. This involves authenticated protected
1903 * data and decrypting encrypted data into the plaintext abd.
1904 */
1905static int
1906arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa,
1907    const zbookmark_phys_t *zb, boolean_t noauth)
1908{
1909	int ret;
1910
1911	ASSERT(HDR_PROTECTED(hdr));
1912
1913	if (hash_lock != NULL)
1914		mutex_enter(hash_lock);
1915
1916	if (HDR_NOAUTH(hdr) && !noauth) {
1917		/*
1918		 * The caller requested authenticated data but our data has
1919		 * not been authenticated yet. Verify the MAC now if we can.
1920		 */
1921		ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset);
1922		if (ret != 0)
1923			goto error;
1924	} else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) {
1925		/*
1926		 * If we only have the encrypted version of the data, but the
1927		 * unencrypted version was requested we take this opportunity
1928		 * to store the decrypted version in the header for future use.
1929		 */
1930		ret = arc_hdr_decrypt(hdr, spa, zb);
1931		if (ret != 0)
1932			goto error;
1933	}
1934
1935	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1936
1937	if (hash_lock != NULL)
1938		mutex_exit(hash_lock);
1939
1940	return (0);
1941
1942error:
1943	if (hash_lock != NULL)
1944		mutex_exit(hash_lock);
1945
1946	return (ret);
1947}
1948
1949/*
1950 * This function is used by the dbuf code to decrypt bonus buffers in place.
1951 * The dbuf code itself doesn't have any locking for decrypting a shared dnode
1952 * block, so we use the hash lock here to protect against concurrent calls to
1953 * arc_buf_fill().
1954 */
1955static void
1956arc_buf_untransform_in_place(arc_buf_t *buf)
1957{
1958	arc_buf_hdr_t *hdr = buf->b_hdr;
1959
1960	ASSERT(HDR_ENCRYPTED(hdr));
1961	ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
1962	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1963	ASSERT3PF(hdr->b_l1hdr.b_pabd, !=, NULL, "hdr %px buf %px", hdr, buf);
1964
1965	zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data,
1966	    arc_buf_size(buf));
1967	buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
1968	buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
1969}
1970
1971/*
1972 * Given a buf that has a data buffer attached to it, this function will
1973 * efficiently fill the buf with data of the specified compression setting from
1974 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
1975 * are already sharing a data buf, no copy is performed.
1976 *
1977 * If the buf is marked as compressed but uncompressed data was requested, this
1978 * will allocate a new data buffer for the buf, remove that flag, and fill the
1979 * buf with uncompressed data. You can't request a compressed buf on a hdr with
1980 * uncompressed data, and (since we haven't added support for it yet) if you
1981 * want compressed data your buf must already be marked as compressed and have
1982 * the correct-sized data buffer.
1983 */
1984static int
1985arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
1986    arc_fill_flags_t flags)
1987{
1988	int error = 0;
1989	arc_buf_hdr_t *hdr = buf->b_hdr;
1990	boolean_t hdr_compressed =
1991	    (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
1992	boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0;
1993	boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0;
1994	dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
1995	kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr);
1996
1997	ASSERT3P(buf->b_data, !=, NULL);
1998	IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf));
1999	IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
2000	IMPLY(encrypted, HDR_ENCRYPTED(hdr));
2001	IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf));
2002	IMPLY(encrypted, ARC_BUF_COMPRESSED(buf));
2003	IMPLY(encrypted, !arc_buf_is_shared(buf));
2004
2005	/*
2006	 * If the caller wanted encrypted data we just need to copy it from
2007	 * b_rabd and potentially byteswap it. We won't be able to do any
2008	 * further transforms on it.
2009	 */
2010	if (encrypted) {
2011		ASSERT(HDR_HAS_RABD(hdr));
2012		abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd,
2013		    HDR_GET_PSIZE(hdr));
2014		goto byteswap;
2015	}
2016
2017	/*
2018	 * Adjust encrypted and authenticated headers to accommodate
2019	 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are
2020	 * allowed to fail decryption due to keys not being loaded
2021	 * without being marked as an IO error.
2022	 */
2023	if (HDR_PROTECTED(hdr)) {
2024		error = arc_fill_hdr_crypt(hdr, hash_lock, spa,
2025		    zb, !!(flags & ARC_FILL_NOAUTH));
2026		if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) {
2027			return (error);
2028		} else if (error != 0) {
2029			if (hash_lock != NULL)
2030				mutex_enter(hash_lock);
2031			arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2032			if (hash_lock != NULL)
2033				mutex_exit(hash_lock);
2034			return (error);
2035		}
2036	}
2037
2038	/*
2039	 * There is a special case here for dnode blocks which are
2040	 * decrypting their bonus buffers. These blocks may request to
2041	 * be decrypted in-place. This is necessary because there may
2042	 * be many dnodes pointing into this buffer and there is
2043	 * currently no method to synchronize replacing the backing
2044	 * b_data buffer and updating all of the pointers. Here we use
2045	 * the hash lock to ensure there are no races. If the need
2046	 * arises for other types to be decrypted in-place, they must
2047	 * add handling here as well.
2048	 */
2049	if ((flags & ARC_FILL_IN_PLACE) != 0) {
2050		ASSERT(!hdr_compressed);
2051		ASSERT(!compressed);
2052		ASSERT(!encrypted);
2053
2054		if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) {
2055			ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
2056
2057			if (hash_lock != NULL)
2058				mutex_enter(hash_lock);
2059			arc_buf_untransform_in_place(buf);
2060			if (hash_lock != NULL)
2061				mutex_exit(hash_lock);
2062
2063			/* Compute the hdr's checksum if necessary */
2064			arc_cksum_compute(buf);
2065		}
2066
2067		return (0);
2068	}
2069
2070	if (hdr_compressed == compressed) {
2071		if (ARC_BUF_SHARED(buf)) {
2072			ASSERT(arc_buf_is_shared(buf));
2073		} else {
2074			abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
2075			    arc_buf_size(buf));
2076		}
2077	} else {
2078		ASSERT(hdr_compressed);
2079		ASSERT(!compressed);
2080
2081		/*
2082		 * If the buf is sharing its data with the hdr, unlink it and
2083		 * allocate a new data buffer for the buf.
2084		 */
2085		if (ARC_BUF_SHARED(buf)) {
2086			ASSERTF(ARC_BUF_COMPRESSED(buf),
2087			"buf %p was uncompressed", buf);
2088
2089			/* We need to give the buf its own b_data */
2090			buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2091			buf->b_data =
2092			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2093			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2094
2095			/* Previously overhead was 0; just add new overhead */
2096			ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2097		} else if (ARC_BUF_COMPRESSED(buf)) {
2098			ASSERT(!arc_buf_is_shared(buf));
2099
2100			/* We need to reallocate the buf's b_data */
2101			arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
2102			    buf);
2103			buf->b_data =
2104			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2105
2106			/* We increased the size of b_data; update overhead */
2107			ARCSTAT_INCR(arcstat_overhead_size,
2108			    HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
2109		}
2110
2111		/*
2112		 * Regardless of the buf's previous compression settings, it
2113		 * should not be compressed at the end of this function.
2114		 */
2115		buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2116
2117		/*
2118		 * Try copying the data from another buf which already has a
2119		 * decompressed version. If that's not possible, it's time to
2120		 * bite the bullet and decompress the data from the hdr.
2121		 */
2122		if (arc_buf_try_copy_decompressed_data(buf)) {
2123			/* Skip byteswapping and checksumming (already done) */
2124			return (0);
2125		} else {
2126			error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
2127			    hdr->b_l1hdr.b_pabd, buf->b_data,
2128			    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr),
2129			    &hdr->b_complevel);
2130
2131			/*
2132			 * Absent hardware errors or software bugs, this should
2133			 * be impossible, but log it anyway so we can debug it.
2134			 */
2135			if (error != 0) {
2136				zfs_dbgmsg(
2137				    "hdr %px, compress %d, psize %d, lsize %d",
2138				    hdr, arc_hdr_get_compress(hdr),
2139				    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2140				if (hash_lock != NULL)
2141					mutex_enter(hash_lock);
2142				arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2143				if (hash_lock != NULL)
2144					mutex_exit(hash_lock);
2145				return (SET_ERROR(EIO));
2146			}
2147		}
2148	}
2149
2150byteswap:
2151	/* Byteswap the buf's data if necessary */
2152	if (bswap != DMU_BSWAP_NUMFUNCS) {
2153		ASSERT(!HDR_SHARED_DATA(hdr));
2154		ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2155		dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2156	}
2157
2158	/* Compute the hdr's checksum if necessary */
2159	arc_cksum_compute(buf);
2160
2161	return (0);
2162}
2163
2164/*
2165 * If this function is being called to decrypt an encrypted buffer or verify an
2166 * authenticated one, the key must be loaded and a mapping must be made
2167 * available in the keystore via spa_keystore_create_mapping() or one of its
2168 * callers.
2169 */
2170int
2171arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2172    boolean_t in_place)
2173{
2174	int ret;
2175	arc_fill_flags_t flags = 0;
2176
2177	if (in_place)
2178		flags |= ARC_FILL_IN_PLACE;
2179
2180	ret = arc_buf_fill(buf, spa, zb, flags);
2181	if (ret == ECKSUM) {
2182		/*
2183		 * Convert authentication and decryption errors to EIO
2184		 * (and generate an ereport) before leaving the ARC.
2185		 */
2186		ret = SET_ERROR(EIO);
2187		spa_log_error(spa, zb, buf->b_hdr->b_birth);
2188		(void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
2189		    spa, NULL, zb, NULL, 0);
2190	}
2191
2192	return (ret);
2193}
2194
2195/*
2196 * Increment the amount of evictable space in the arc_state_t's refcount.
2197 * We account for the space used by the hdr and the arc buf individually
2198 * so that we can add and remove them from the refcount individually.
2199 */
2200static void
2201arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2202{
2203	arc_buf_contents_t type = arc_buf_type(hdr);
2204
2205	ASSERT(HDR_HAS_L1HDR(hdr));
2206
2207	if (GHOST_STATE(state)) {
2208		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2209		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2210		ASSERT(!HDR_HAS_RABD(hdr));
2211		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2212		    HDR_GET_LSIZE(hdr), hdr);
2213		return;
2214	}
2215
2216	if (hdr->b_l1hdr.b_pabd != NULL) {
2217		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2218		    arc_hdr_size(hdr), hdr);
2219	}
2220	if (HDR_HAS_RABD(hdr)) {
2221		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2222		    HDR_GET_PSIZE(hdr), hdr);
2223	}
2224
2225	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2226	    buf = buf->b_next) {
2227		if (ARC_BUF_SHARED(buf))
2228			continue;
2229		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2230		    arc_buf_size(buf), buf);
2231	}
2232}
2233
2234/*
2235 * Decrement the amount of evictable space in the arc_state_t's refcount.
2236 * We account for the space used by the hdr and the arc buf individually
2237 * so that we can add and remove them from the refcount individually.
2238 */
2239static void
2240arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2241{
2242	arc_buf_contents_t type = arc_buf_type(hdr);
2243
2244	ASSERT(HDR_HAS_L1HDR(hdr));
2245
2246	if (GHOST_STATE(state)) {
2247		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2248		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2249		ASSERT(!HDR_HAS_RABD(hdr));
2250		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2251		    HDR_GET_LSIZE(hdr), hdr);
2252		return;
2253	}
2254
2255	if (hdr->b_l1hdr.b_pabd != NULL) {
2256		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2257		    arc_hdr_size(hdr), hdr);
2258	}
2259	if (HDR_HAS_RABD(hdr)) {
2260		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2261		    HDR_GET_PSIZE(hdr), hdr);
2262	}
2263
2264	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2265	    buf = buf->b_next) {
2266		if (ARC_BUF_SHARED(buf))
2267			continue;
2268		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2269		    arc_buf_size(buf), buf);
2270	}
2271}
2272
2273/*
2274 * Add a reference to this hdr indicating that someone is actively
2275 * referencing that memory. When the refcount transitions from 0 to 1,
2276 * we remove it from the respective arc_state_t list to indicate that
2277 * it is not evictable.
2278 */
2279static void
2280add_reference(arc_buf_hdr_t *hdr, const void *tag)
2281{
2282	arc_state_t *state = hdr->b_l1hdr.b_state;
2283
2284	ASSERT(HDR_HAS_L1HDR(hdr));
2285	if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) {
2286		ASSERT(state == arc_anon);
2287		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2288		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2289	}
2290
2291	if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2292	    state != arc_anon && state != arc_l2c_only) {
2293		/* We don't use the L2-only state list. */
2294		multilist_remove(&state->arcs_list[arc_buf_type(hdr)], hdr);
2295		arc_evictable_space_decrement(hdr, state);
2296	}
2297}
2298
2299/*
2300 * Remove a reference from this hdr. When the reference transitions from
2301 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2302 * list making it eligible for eviction.
2303 */
2304static int
2305remove_reference(arc_buf_hdr_t *hdr, const void *tag)
2306{
2307	int cnt;
2308	arc_state_t *state = hdr->b_l1hdr.b_state;
2309
2310	ASSERT(HDR_HAS_L1HDR(hdr));
2311	ASSERT(state == arc_anon || MUTEX_HELD(HDR_LOCK(hdr)));
2312	ASSERT(!GHOST_STATE(state));	/* arc_l2c_only counts as a ghost. */
2313
2314	if ((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) != 0)
2315		return (cnt);
2316
2317	if (state == arc_anon) {
2318		arc_hdr_destroy(hdr);
2319		return (0);
2320	}
2321	if (state == arc_uncached && !HDR_PREFETCH(hdr)) {
2322		arc_change_state(arc_anon, hdr);
2323		arc_hdr_destroy(hdr);
2324		return (0);
2325	}
2326	multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr);
2327	arc_evictable_space_increment(hdr, state);
2328	return (0);
2329}
2330
2331/*
2332 * Returns detailed information about a specific arc buffer.  When the
2333 * state_index argument is set the function will calculate the arc header
2334 * list position for its arc state.  Since this requires a linear traversal
2335 * callers are strongly encourage not to do this.  However, it can be helpful
2336 * for targeted analysis so the functionality is provided.
2337 */
2338void
2339arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
2340{
2341	(void) state_index;
2342	arc_buf_hdr_t *hdr = ab->b_hdr;
2343	l1arc_buf_hdr_t *l1hdr = NULL;
2344	l2arc_buf_hdr_t *l2hdr = NULL;
2345	arc_state_t *state = NULL;
2346
2347	memset(abi, 0, sizeof (arc_buf_info_t));
2348
2349	if (hdr == NULL)
2350		return;
2351
2352	abi->abi_flags = hdr->b_flags;
2353
2354	if (HDR_HAS_L1HDR(hdr)) {
2355		l1hdr = &hdr->b_l1hdr;
2356		state = l1hdr->b_state;
2357	}
2358	if (HDR_HAS_L2HDR(hdr))
2359		l2hdr = &hdr->b_l2hdr;
2360
2361	if (l1hdr) {
2362		abi->abi_bufcnt = 0;
2363		for (arc_buf_t *buf = l1hdr->b_buf; buf; buf = buf->b_next)
2364			abi->abi_bufcnt++;
2365		abi->abi_access = l1hdr->b_arc_access;
2366		abi->abi_mru_hits = l1hdr->b_mru_hits;
2367		abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
2368		abi->abi_mfu_hits = l1hdr->b_mfu_hits;
2369		abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
2370		abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt);
2371	}
2372
2373	if (l2hdr) {
2374		abi->abi_l2arc_dattr = l2hdr->b_daddr;
2375		abi->abi_l2arc_hits = l2hdr->b_hits;
2376	}
2377
2378	abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
2379	abi->abi_state_contents = arc_buf_type(hdr);
2380	abi->abi_size = arc_hdr_size(hdr);
2381}
2382
2383/*
2384 * Move the supplied buffer to the indicated state. The hash lock
2385 * for the buffer must be held by the caller.
2386 */
2387static void
2388arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr)
2389{
2390	arc_state_t *old_state;
2391	int64_t refcnt;
2392	boolean_t update_old, update_new;
2393	arc_buf_contents_t type = arc_buf_type(hdr);
2394
2395	/*
2396	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2397	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
2398	 * L1 hdr doesn't always exist when we change state to arc_anon before
2399	 * destroying a header, in which case reallocating to add the L1 hdr is
2400	 * pointless.
2401	 */
2402	if (HDR_HAS_L1HDR(hdr)) {
2403		old_state = hdr->b_l1hdr.b_state;
2404		refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt);
2405		update_old = (hdr->b_l1hdr.b_buf != NULL ||
2406		    hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
2407
2408		IMPLY(GHOST_STATE(old_state), hdr->b_l1hdr.b_buf == NULL);
2409		IMPLY(GHOST_STATE(new_state), hdr->b_l1hdr.b_buf == NULL);
2410		IMPLY(old_state == arc_anon, hdr->b_l1hdr.b_buf == NULL ||
2411		    ARC_BUF_LAST(hdr->b_l1hdr.b_buf));
2412	} else {
2413		old_state = arc_l2c_only;
2414		refcnt = 0;
2415		update_old = B_FALSE;
2416	}
2417	update_new = update_old;
2418	if (GHOST_STATE(old_state))
2419		update_old = B_TRUE;
2420	if (GHOST_STATE(new_state))
2421		update_new = B_TRUE;
2422
2423	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
2424	ASSERT3P(new_state, !=, old_state);
2425
2426	/*
2427	 * If this buffer is evictable, transfer it from the
2428	 * old state list to the new state list.
2429	 */
2430	if (refcnt == 0) {
2431		if (old_state != arc_anon && old_state != arc_l2c_only) {
2432			ASSERT(HDR_HAS_L1HDR(hdr));
2433			/* remove_reference() saves on insert. */
2434			if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2435				multilist_remove(&old_state->arcs_list[type],
2436				    hdr);
2437				arc_evictable_space_decrement(hdr, old_state);
2438			}
2439		}
2440		if (new_state != arc_anon && new_state != arc_l2c_only) {
2441			/*
2442			 * An L1 header always exists here, since if we're
2443			 * moving to some L1-cached state (i.e. not l2c_only or
2444			 * anonymous), we realloc the header to add an L1hdr
2445			 * beforehand.
2446			 */
2447			ASSERT(HDR_HAS_L1HDR(hdr));
2448			multilist_insert(&new_state->arcs_list[type], hdr);
2449			arc_evictable_space_increment(hdr, new_state);
2450		}
2451	}
2452
2453	ASSERT(!HDR_EMPTY(hdr));
2454	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2455		buf_hash_remove(hdr);
2456
2457	/* adjust state sizes (ignore arc_l2c_only) */
2458
2459	if (update_new && new_state != arc_l2c_only) {
2460		ASSERT(HDR_HAS_L1HDR(hdr));
2461		if (GHOST_STATE(new_state)) {
2462
2463			/*
2464			 * When moving a header to a ghost state, we first
2465			 * remove all arc buffers. Thus, we'll have no arc
2466			 * buffer to use for the reference. As a result, we
2467			 * use the arc header pointer for the reference.
2468			 */
2469			(void) zfs_refcount_add_many(
2470			    &new_state->arcs_size[type],
2471			    HDR_GET_LSIZE(hdr), hdr);
2472			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2473			ASSERT(!HDR_HAS_RABD(hdr));
2474		} else {
2475
2476			/*
2477			 * Each individual buffer holds a unique reference,
2478			 * thus we must remove each of these references one
2479			 * at a time.
2480			 */
2481			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2482			    buf = buf->b_next) {
2483
2484				/*
2485				 * When the arc_buf_t is sharing the data
2486				 * block with the hdr, the owner of the
2487				 * reference belongs to the hdr. Only
2488				 * add to the refcount if the arc_buf_t is
2489				 * not shared.
2490				 */
2491				if (ARC_BUF_SHARED(buf))
2492					continue;
2493
2494				(void) zfs_refcount_add_many(
2495				    &new_state->arcs_size[type],
2496				    arc_buf_size(buf), buf);
2497			}
2498
2499			if (hdr->b_l1hdr.b_pabd != NULL) {
2500				(void) zfs_refcount_add_many(
2501				    &new_state->arcs_size[type],
2502				    arc_hdr_size(hdr), hdr);
2503			}
2504
2505			if (HDR_HAS_RABD(hdr)) {
2506				(void) zfs_refcount_add_many(
2507				    &new_state->arcs_size[type],
2508				    HDR_GET_PSIZE(hdr), hdr);
2509			}
2510		}
2511	}
2512
2513	if (update_old && old_state != arc_l2c_only) {
2514		ASSERT(HDR_HAS_L1HDR(hdr));
2515		if (GHOST_STATE(old_state)) {
2516			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2517			ASSERT(!HDR_HAS_RABD(hdr));
2518
2519			/*
2520			 * When moving a header off of a ghost state,
2521			 * the header will not contain any arc buffers.
2522			 * We use the arc header pointer for the reference
2523			 * which is exactly what we did when we put the
2524			 * header on the ghost state.
2525			 */
2526
2527			(void) zfs_refcount_remove_many(
2528			    &old_state->arcs_size[type],
2529			    HDR_GET_LSIZE(hdr), hdr);
2530		} else {
2531
2532			/*
2533			 * Each individual buffer holds a unique reference,
2534			 * thus we must remove each of these references one
2535			 * at a time.
2536			 */
2537			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2538			    buf = buf->b_next) {
2539
2540				/*
2541				 * When the arc_buf_t is sharing the data
2542				 * block with the hdr, the owner of the
2543				 * reference belongs to the hdr. Only
2544				 * add to the refcount if the arc_buf_t is
2545				 * not shared.
2546				 */
2547				if (ARC_BUF_SHARED(buf))
2548					continue;
2549
2550				(void) zfs_refcount_remove_many(
2551				    &old_state->arcs_size[type],
2552				    arc_buf_size(buf), buf);
2553			}
2554			ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
2555			    HDR_HAS_RABD(hdr));
2556
2557			if (hdr->b_l1hdr.b_pabd != NULL) {
2558				(void) zfs_refcount_remove_many(
2559				    &old_state->arcs_size[type],
2560				    arc_hdr_size(hdr), hdr);
2561			}
2562
2563			if (HDR_HAS_RABD(hdr)) {
2564				(void) zfs_refcount_remove_many(
2565				    &old_state->arcs_size[type],
2566				    HDR_GET_PSIZE(hdr), hdr);
2567			}
2568		}
2569	}
2570
2571	if (HDR_HAS_L1HDR(hdr)) {
2572		hdr->b_l1hdr.b_state = new_state;
2573
2574		if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) {
2575			l2arc_hdr_arcstats_decrement_state(hdr);
2576			hdr->b_l2hdr.b_arcs_state = new_state->arcs_state;
2577			l2arc_hdr_arcstats_increment_state(hdr);
2578		}
2579	}
2580}
2581
2582void
2583arc_space_consume(uint64_t space, arc_space_type_t type)
2584{
2585	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2586
2587	switch (type) {
2588	default:
2589		break;
2590	case ARC_SPACE_DATA:
2591		ARCSTAT_INCR(arcstat_data_size, space);
2592		break;
2593	case ARC_SPACE_META:
2594		ARCSTAT_INCR(arcstat_metadata_size, space);
2595		break;
2596	case ARC_SPACE_BONUS:
2597		ARCSTAT_INCR(arcstat_bonus_size, space);
2598		break;
2599	case ARC_SPACE_DNODE:
2600		ARCSTAT_INCR(arcstat_dnode_size, space);
2601		break;
2602	case ARC_SPACE_DBUF:
2603		ARCSTAT_INCR(arcstat_dbuf_size, space);
2604		break;
2605	case ARC_SPACE_HDRS:
2606		ARCSTAT_INCR(arcstat_hdr_size, space);
2607		break;
2608	case ARC_SPACE_L2HDRS:
2609		aggsum_add(&arc_sums.arcstat_l2_hdr_size, space);
2610		break;
2611	case ARC_SPACE_ABD_CHUNK_WASTE:
2612		/*
2613		 * Note: this includes space wasted by all scatter ABD's, not
2614		 * just those allocated by the ARC.  But the vast majority of
2615		 * scatter ABD's come from the ARC, because other users are
2616		 * very short-lived.
2617		 */
2618		ARCSTAT_INCR(arcstat_abd_chunk_waste_size, space);
2619		break;
2620	}
2621
2622	if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE)
2623		ARCSTAT_INCR(arcstat_meta_used, space);
2624
2625	aggsum_add(&arc_sums.arcstat_size, space);
2626}
2627
2628void
2629arc_space_return(uint64_t space, arc_space_type_t type)
2630{
2631	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2632
2633	switch (type) {
2634	default:
2635		break;
2636	case ARC_SPACE_DATA:
2637		ARCSTAT_INCR(arcstat_data_size, -space);
2638		break;
2639	case ARC_SPACE_META:
2640		ARCSTAT_INCR(arcstat_metadata_size, -space);
2641		break;
2642	case ARC_SPACE_BONUS:
2643		ARCSTAT_INCR(arcstat_bonus_size, -space);
2644		break;
2645	case ARC_SPACE_DNODE:
2646		ARCSTAT_INCR(arcstat_dnode_size, -space);
2647		break;
2648	case ARC_SPACE_DBUF:
2649		ARCSTAT_INCR(arcstat_dbuf_size, -space);
2650		break;
2651	case ARC_SPACE_HDRS:
2652		ARCSTAT_INCR(arcstat_hdr_size, -space);
2653		break;
2654	case ARC_SPACE_L2HDRS:
2655		aggsum_add(&arc_sums.arcstat_l2_hdr_size, -space);
2656		break;
2657	case ARC_SPACE_ABD_CHUNK_WASTE:
2658		ARCSTAT_INCR(arcstat_abd_chunk_waste_size, -space);
2659		break;
2660	}
2661
2662	if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE)
2663		ARCSTAT_INCR(arcstat_meta_used, -space);
2664
2665	ASSERT(aggsum_compare(&arc_sums.arcstat_size, space) >= 0);
2666	aggsum_add(&arc_sums.arcstat_size, -space);
2667}
2668
2669/*
2670 * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2671 * with the hdr's b_pabd.
2672 */
2673static boolean_t
2674arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2675{
2676	/*
2677	 * The criteria for sharing a hdr's data are:
2678	 * 1. the buffer is not encrypted
2679	 * 2. the hdr's compression matches the buf's compression
2680	 * 3. the hdr doesn't need to be byteswapped
2681	 * 4. the hdr isn't already being shared
2682	 * 5. the buf is either compressed or it is the last buf in the hdr list
2683	 *
2684	 * Criterion #5 maintains the invariant that shared uncompressed
2685	 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2686	 * might ask, "if a compressed buf is allocated first, won't that be the
2687	 * last thing in the list?", but in that case it's impossible to create
2688	 * a shared uncompressed buf anyway (because the hdr must be compressed
2689	 * to have the compressed buf). You might also think that #3 is
2690	 * sufficient to make this guarantee, however it's possible
2691	 * (specifically in the rare L2ARC write race mentioned in
2692	 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2693	 * is shareable, but wasn't at the time of its allocation. Rather than
2694	 * allow a new shared uncompressed buf to be created and then shuffle
2695	 * the list around to make it the last element, this simply disallows
2696	 * sharing if the new buf isn't the first to be added.
2697	 */
2698	ASSERT3P(buf->b_hdr, ==, hdr);
2699	boolean_t hdr_compressed =
2700	    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF;
2701	boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2702	return (!ARC_BUF_ENCRYPTED(buf) &&
2703	    buf_compressed == hdr_compressed &&
2704	    hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2705	    !HDR_SHARED_DATA(hdr) &&
2706	    (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2707}
2708
2709/*
2710 * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2711 * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2712 * copy was made successfully, or an error code otherwise.
2713 */
2714static int
2715arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb,
2716    const void *tag, boolean_t encrypted, boolean_t compressed,
2717    boolean_t noauth, boolean_t fill, arc_buf_t **ret)
2718{
2719	arc_buf_t *buf;
2720	arc_fill_flags_t flags = ARC_FILL_LOCKED;
2721
2722	ASSERT(HDR_HAS_L1HDR(hdr));
2723	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2724	VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2725	    hdr->b_type == ARC_BUFC_METADATA);
2726	ASSERT3P(ret, !=, NULL);
2727	ASSERT3P(*ret, ==, NULL);
2728	IMPLY(encrypted, compressed);
2729
2730	buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2731	buf->b_hdr = hdr;
2732	buf->b_data = NULL;
2733	buf->b_next = hdr->b_l1hdr.b_buf;
2734	buf->b_flags = 0;
2735
2736	add_reference(hdr, tag);
2737
2738	/*
2739	 * We're about to change the hdr's b_flags. We must either
2740	 * hold the hash_lock or be undiscoverable.
2741	 */
2742	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2743
2744	/*
2745	 * Only honor requests for compressed bufs if the hdr is actually
2746	 * compressed. This must be overridden if the buffer is encrypted since
2747	 * encrypted buffers cannot be decompressed.
2748	 */
2749	if (encrypted) {
2750		buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2751		buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED;
2752		flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED;
2753	} else if (compressed &&
2754	    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
2755		buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2756		flags |= ARC_FILL_COMPRESSED;
2757	}
2758
2759	if (noauth) {
2760		ASSERT0(encrypted);
2761		flags |= ARC_FILL_NOAUTH;
2762	}
2763
2764	/*
2765	 * If the hdr's data can be shared then we share the data buffer and
2766	 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2767	 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
2768	 * buffer to store the buf's data.
2769	 *
2770	 * There are two additional restrictions here because we're sharing
2771	 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2772	 * actively involved in an L2ARC write, because if this buf is used by
2773	 * an arc_write() then the hdr's data buffer will be released when the
2774	 * write completes, even though the L2ARC write might still be using it.
2775	 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2776	 * need to be ABD-aware.  It must be allocated via
2777	 * zio_[data_]buf_alloc(), not as a page, because we need to be able
2778	 * to abd_release_ownership_of_buf(), which isn't allowed on "linear
2779	 * page" buffers because the ABD code needs to handle freeing them
2780	 * specially.
2781	 */
2782	boolean_t can_share = arc_can_share(hdr, buf) &&
2783	    !HDR_L2_WRITING(hdr) &&
2784	    hdr->b_l1hdr.b_pabd != NULL &&
2785	    abd_is_linear(hdr->b_l1hdr.b_pabd) &&
2786	    !abd_is_linear_page(hdr->b_l1hdr.b_pabd);
2787
2788	/* Set up b_data and sharing */
2789	if (can_share) {
2790		buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2791		buf->b_flags |= ARC_BUF_FLAG_SHARED;
2792		arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2793	} else {
2794		buf->b_data =
2795		    arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2796		ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2797	}
2798	VERIFY3P(buf->b_data, !=, NULL);
2799
2800	hdr->b_l1hdr.b_buf = buf;
2801
2802	/*
2803	 * If the user wants the data from the hdr, we need to either copy or
2804	 * decompress the data.
2805	 */
2806	if (fill) {
2807		ASSERT3P(zb, !=, NULL);
2808		return (arc_buf_fill(buf, spa, zb, flags));
2809	}
2810
2811	return (0);
2812}
2813
2814static const char *arc_onloan_tag = "onloan";
2815
2816static inline void
2817arc_loaned_bytes_update(int64_t delta)
2818{
2819	atomic_add_64(&arc_loaned_bytes, delta);
2820
2821	/* assert that it did not wrap around */
2822	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2823}
2824
2825/*
2826 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2827 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2828 * buffers must be returned to the arc before they can be used by the DMU or
2829 * freed.
2830 */
2831arc_buf_t *
2832arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2833{
2834	arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2835	    is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2836
2837	arc_loaned_bytes_update(arc_buf_size(buf));
2838
2839	return (buf);
2840}
2841
2842arc_buf_t *
2843arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2844    enum zio_compress compression_type, uint8_t complevel)
2845{
2846	arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2847	    psize, lsize, compression_type, complevel);
2848
2849	arc_loaned_bytes_update(arc_buf_size(buf));
2850
2851	return (buf);
2852}
2853
2854arc_buf_t *
2855arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder,
2856    const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
2857    dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
2858    enum zio_compress compression_type, uint8_t complevel)
2859{
2860	arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj,
2861	    byteorder, salt, iv, mac, ot, psize, lsize, compression_type,
2862	    complevel);
2863
2864	atomic_add_64(&arc_loaned_bytes, psize);
2865	return (buf);
2866}
2867
2868
2869/*
2870 * Return a loaned arc buffer to the arc.
2871 */
2872void
2873arc_return_buf(arc_buf_t *buf, const void *tag)
2874{
2875	arc_buf_hdr_t *hdr = buf->b_hdr;
2876
2877	ASSERT3P(buf->b_data, !=, NULL);
2878	ASSERT(HDR_HAS_L1HDR(hdr));
2879	(void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2880	(void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2881
2882	arc_loaned_bytes_update(-arc_buf_size(buf));
2883}
2884
2885/* Detach an arc_buf from a dbuf (tag) */
2886void
2887arc_loan_inuse_buf(arc_buf_t *buf, const void *tag)
2888{
2889	arc_buf_hdr_t *hdr = buf->b_hdr;
2890
2891	ASSERT3P(buf->b_data, !=, NULL);
2892	ASSERT(HDR_HAS_L1HDR(hdr));
2893	(void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2894	(void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2895
2896	arc_loaned_bytes_update(arc_buf_size(buf));
2897}
2898
2899static void
2900l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2901{
2902	l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2903
2904	df->l2df_abd = abd;
2905	df->l2df_size = size;
2906	df->l2df_type = type;
2907	mutex_enter(&l2arc_free_on_write_mtx);
2908	list_insert_head(l2arc_free_on_write, df);
2909	mutex_exit(&l2arc_free_on_write_mtx);
2910}
2911
2912static void
2913arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata)
2914{
2915	arc_state_t *state = hdr->b_l1hdr.b_state;
2916	arc_buf_contents_t type = arc_buf_type(hdr);
2917	uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
2918
2919	/* protected by hash lock, if in the hash table */
2920	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2921		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2922		ASSERT(state != arc_anon && state != arc_l2c_only);
2923
2924		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2925		    size, hdr);
2926	}
2927	(void) zfs_refcount_remove_many(&state->arcs_size[type], size, hdr);
2928	if (type == ARC_BUFC_METADATA) {
2929		arc_space_return(size, ARC_SPACE_META);
2930	} else {
2931		ASSERT(type == ARC_BUFC_DATA);
2932		arc_space_return(size, ARC_SPACE_DATA);
2933	}
2934
2935	if (free_rdata) {
2936		l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type);
2937	} else {
2938		l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2939	}
2940}
2941
2942/*
2943 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2944 * data buffer, we transfer the refcount ownership to the hdr and update
2945 * the appropriate kstats.
2946 */
2947static void
2948arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2949{
2950	ASSERT(arc_can_share(hdr, buf));
2951	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2952	ASSERT(!ARC_BUF_ENCRYPTED(buf));
2953	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2954
2955	/*
2956	 * Start sharing the data buffer. We transfer the
2957	 * refcount ownership to the hdr since it always owns
2958	 * the refcount whenever an arc_buf_t is shared.
2959	 */
2960	zfs_refcount_transfer_ownership_many(
2961	    &hdr->b_l1hdr.b_state->arcs_size[arc_buf_type(hdr)],
2962	    arc_hdr_size(hdr), buf, hdr);
2963	hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
2964	abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
2965	    HDR_ISTYPE_METADATA(hdr));
2966	arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2967	buf->b_flags |= ARC_BUF_FLAG_SHARED;
2968
2969	/*
2970	 * Since we've transferred ownership to the hdr we need
2971	 * to increment its compressed and uncompressed kstats and
2972	 * decrement the overhead size.
2973	 */
2974	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2975	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2976	ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
2977}
2978
2979static void
2980arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2981{
2982	ASSERT(arc_buf_is_shared(buf));
2983	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2984	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2985
2986	/*
2987	 * We are no longer sharing this buffer so we need
2988	 * to transfer its ownership to the rightful owner.
2989	 */
2990	zfs_refcount_transfer_ownership_many(
2991	    &hdr->b_l1hdr.b_state->arcs_size[arc_buf_type(hdr)],
2992	    arc_hdr_size(hdr), hdr, buf);
2993	arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2994	abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
2995	abd_free(hdr->b_l1hdr.b_pabd);
2996	hdr->b_l1hdr.b_pabd = NULL;
2997	buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2998
2999	/*
3000	 * Since the buffer is no longer shared between
3001	 * the arc buf and the hdr, count it as overhead.
3002	 */
3003	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
3004	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3005	ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
3006}
3007
3008/*
3009 * Remove an arc_buf_t from the hdr's buf list and return the last
3010 * arc_buf_t on the list. If no buffers remain on the list then return
3011 * NULL.
3012 */
3013static arc_buf_t *
3014arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3015{
3016	ASSERT(HDR_HAS_L1HDR(hdr));
3017	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3018
3019	arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
3020	arc_buf_t *lastbuf = NULL;
3021
3022	/*
3023	 * Remove the buf from the hdr list and locate the last
3024	 * remaining buffer on the list.
3025	 */
3026	while (*bufp != NULL) {
3027		if (*bufp == buf)
3028			*bufp = buf->b_next;
3029
3030		/*
3031		 * If we've removed a buffer in the middle of
3032		 * the list then update the lastbuf and update
3033		 * bufp.
3034		 */
3035		if (*bufp != NULL) {
3036			lastbuf = *bufp;
3037			bufp = &(*bufp)->b_next;
3038		}
3039	}
3040	buf->b_next = NULL;
3041	ASSERT3P(lastbuf, !=, buf);
3042	IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
3043
3044	return (lastbuf);
3045}
3046
3047/*
3048 * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's
3049 * list and free it.
3050 */
3051static void
3052arc_buf_destroy_impl(arc_buf_t *buf)
3053{
3054	arc_buf_hdr_t *hdr = buf->b_hdr;
3055
3056	/*
3057	 * Free up the data associated with the buf but only if we're not
3058	 * sharing this with the hdr. If we are sharing it with the hdr, the
3059	 * hdr is responsible for doing the free.
3060	 */
3061	if (buf->b_data != NULL) {
3062		/*
3063		 * We're about to change the hdr's b_flags. We must either
3064		 * hold the hash_lock or be undiscoverable.
3065		 */
3066		ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3067
3068		arc_cksum_verify(buf);
3069		arc_buf_unwatch(buf);
3070
3071		if (ARC_BUF_SHARED(buf)) {
3072			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3073		} else {
3074			ASSERT(!arc_buf_is_shared(buf));
3075			uint64_t size = arc_buf_size(buf);
3076			arc_free_data_buf(hdr, buf->b_data, size, buf);
3077			ARCSTAT_INCR(arcstat_overhead_size, -size);
3078		}
3079		buf->b_data = NULL;
3080
3081		/*
3082		 * If we have no more encrypted buffers and we've already
3083		 * gotten a copy of the decrypted data we can free b_rabd
3084		 * to save some space.
3085		 */
3086		if (ARC_BUF_ENCRYPTED(buf) && HDR_HAS_RABD(hdr) &&
3087		    hdr->b_l1hdr.b_pabd != NULL && !HDR_IO_IN_PROGRESS(hdr)) {
3088			arc_buf_t *b;
3089			for (b = hdr->b_l1hdr.b_buf; b; b = b->b_next) {
3090				if (b != buf && ARC_BUF_ENCRYPTED(b))
3091					break;
3092			}
3093			if (b == NULL)
3094				arc_hdr_free_abd(hdr, B_TRUE);
3095		}
3096	}
3097
3098	arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
3099
3100	if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
3101		/*
3102		 * If the current arc_buf_t is sharing its data buffer with the
3103		 * hdr, then reassign the hdr's b_pabd to share it with the new
3104		 * buffer at the end of the list. The shared buffer is always
3105		 * the last one on the hdr's buffer list.
3106		 *
3107		 * There is an equivalent case for compressed bufs, but since
3108		 * they aren't guaranteed to be the last buf in the list and
3109		 * that is an exceedingly rare case, we just allow that space be
3110		 * wasted temporarily. We must also be careful not to share
3111		 * encrypted buffers, since they cannot be shared.
3112		 */
3113		if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) {
3114			/* Only one buf can be shared at once */
3115			ASSERT(!arc_buf_is_shared(lastbuf));
3116			/* hdr is uncompressed so can't have compressed buf */
3117			ASSERT(!ARC_BUF_COMPRESSED(lastbuf));
3118
3119			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3120			arc_hdr_free_abd(hdr, B_FALSE);
3121
3122			/*
3123			 * We must setup a new shared block between the
3124			 * last buffer and the hdr. The data would have
3125			 * been allocated by the arc buf so we need to transfer
3126			 * ownership to the hdr since it's now being shared.
3127			 */
3128			arc_share_buf(hdr, lastbuf);
3129		}
3130	} else if (HDR_SHARED_DATA(hdr)) {
3131		/*
3132		 * Uncompressed shared buffers are always at the end
3133		 * of the list. Compressed buffers don't have the
3134		 * same requirements. This makes it hard to
3135		 * simply assert that the lastbuf is shared so
3136		 * we rely on the hdr's compression flags to determine
3137		 * if we have a compressed, shared buffer.
3138		 */
3139		ASSERT3P(lastbuf, !=, NULL);
3140		ASSERT(arc_buf_is_shared(lastbuf) ||
3141		    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
3142	}
3143
3144	/*
3145	 * Free the checksum if we're removing the last uncompressed buf from
3146	 * this hdr.
3147	 */
3148	if (!arc_hdr_has_uncompressed_buf(hdr)) {
3149		arc_cksum_free(hdr);
3150	}
3151
3152	/* clean up the buf */
3153	buf->b_hdr = NULL;
3154	kmem_cache_free(buf_cache, buf);
3155}
3156
3157static void
3158arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags)
3159{
3160	uint64_t size;
3161	boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0);
3162
3163	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
3164	ASSERT(HDR_HAS_L1HDR(hdr));
3165	ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata);
3166	IMPLY(alloc_rdata, HDR_PROTECTED(hdr));
3167
3168	if (alloc_rdata) {
3169		size = HDR_GET_PSIZE(hdr);
3170		ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL);
3171		hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr,
3172		    alloc_flags);
3173		ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL);
3174		ARCSTAT_INCR(arcstat_raw_size, size);
3175	} else {
3176		size = arc_hdr_size(hdr);
3177		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3178		hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr,
3179		    alloc_flags);
3180		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3181	}
3182
3183	ARCSTAT_INCR(arcstat_compressed_size, size);
3184	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3185}
3186
3187static void
3188arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata)
3189{
3190	uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
3191
3192	ASSERT(HDR_HAS_L1HDR(hdr));
3193	ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
3194	IMPLY(free_rdata, HDR_HAS_RABD(hdr));
3195
3196	/*
3197	 * If the hdr is currently being written to the l2arc then
3198	 * we defer freeing the data by adding it to the l2arc_free_on_write
3199	 * list. The l2arc will free the data once it's finished
3200	 * writing it to the l2arc device.
3201	 */
3202	if (HDR_L2_WRITING(hdr)) {
3203		arc_hdr_free_on_write(hdr, free_rdata);
3204		ARCSTAT_BUMP(arcstat_l2_free_on_write);
3205	} else if (free_rdata) {
3206		arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr);
3207	} else {
3208		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr);
3209	}
3210
3211	if (free_rdata) {
3212		hdr->b_crypt_hdr.b_rabd = NULL;
3213		ARCSTAT_INCR(arcstat_raw_size, -size);
3214	} else {
3215		hdr->b_l1hdr.b_pabd = NULL;
3216	}
3217
3218	if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr))
3219		hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3220
3221	ARCSTAT_INCR(arcstat_compressed_size, -size);
3222	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3223}
3224
3225/*
3226 * Allocate empty anonymous ARC header.  The header will get its identity
3227 * assigned and buffers attached later as part of read or write operations.
3228 *
3229 * In case of read arc_read() assigns header its identify (b_dva + b_birth),
3230 * inserts it into ARC hash to become globally visible and allocates physical
3231 * (b_pabd) or raw (b_rabd) ABD buffer to read into from disk.  On disk read
3232 * completion arc_read_done() allocates ARC buffer(s) as needed, potentially
3233 * sharing one of them with the physical ABD buffer.
3234 *
3235 * In case of write arc_alloc_buf() allocates ARC buffer to be filled with
3236 * data.  Then after compression and/or encryption arc_write_ready() allocates
3237 * and fills (or potentially shares) physical (b_pabd) or raw (b_rabd) ABD
3238 * buffer.  On disk write completion arc_write_done() assigns the header its
3239 * new identity (b_dva + b_birth) and inserts into ARC hash.
3240 *
3241 * In case of partial overwrite the old data is read first as described. Then
3242 * arc_release() either allocates new anonymous ARC header and moves the ARC
3243 * buffer to it, or reuses the old ARC header by discarding its identity and
3244 * removing it from ARC hash.  After buffer modification normal write process
3245 * follows as described.
3246 */
3247static arc_buf_hdr_t *
3248arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
3249    boolean_t protected, enum zio_compress compression_type, uint8_t complevel,
3250    arc_buf_contents_t type)
3251{
3252	arc_buf_hdr_t *hdr;
3253
3254	VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
3255	hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
3256
3257	ASSERT(HDR_EMPTY(hdr));
3258#ifdef ZFS_DEBUG
3259	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3260#endif
3261	HDR_SET_PSIZE(hdr, psize);
3262	HDR_SET_LSIZE(hdr, lsize);
3263	hdr->b_spa = spa;
3264	hdr->b_type = type;
3265	hdr->b_flags = 0;
3266	arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
3267	arc_hdr_set_compress(hdr, compression_type);
3268	hdr->b_complevel = complevel;
3269	if (protected)
3270		arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3271
3272	hdr->b_l1hdr.b_state = arc_anon;
3273	hdr->b_l1hdr.b_arc_access = 0;
3274	hdr->b_l1hdr.b_mru_hits = 0;
3275	hdr->b_l1hdr.b_mru_ghost_hits = 0;
3276	hdr->b_l1hdr.b_mfu_hits = 0;
3277	hdr->b_l1hdr.b_mfu_ghost_hits = 0;
3278	hdr->b_l1hdr.b_buf = NULL;
3279
3280	ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3281
3282	return (hdr);
3283}
3284
3285/*
3286 * Transition between the two allocation states for the arc_buf_hdr struct.
3287 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3288 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3289 * version is used when a cache buffer is only in the L2ARC in order to reduce
3290 * memory usage.
3291 */
3292static arc_buf_hdr_t *
3293arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
3294{
3295	ASSERT(HDR_HAS_L2HDR(hdr));
3296
3297	arc_buf_hdr_t *nhdr;
3298	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3299
3300	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
3301	    (old == hdr_l2only_cache && new == hdr_full_cache));
3302
3303	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
3304
3305	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3306	buf_hash_remove(hdr);
3307
3308	memcpy(nhdr, hdr, HDR_L2ONLY_SIZE);
3309
3310	if (new == hdr_full_cache) {
3311		arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3312		/*
3313		 * arc_access and arc_change_state need to be aware that a
3314		 * header has just come out of L2ARC, so we set its state to
3315		 * l2c_only even though it's about to change.
3316		 */
3317		nhdr->b_l1hdr.b_state = arc_l2c_only;
3318
3319		/* Verify previous threads set to NULL before freeing */
3320		ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
3321		ASSERT(!HDR_HAS_RABD(hdr));
3322	} else {
3323		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3324#ifdef ZFS_DEBUG
3325		ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3326#endif
3327
3328		/*
3329		 * If we've reached here, We must have been called from
3330		 * arc_evict_hdr(), as such we should have already been
3331		 * removed from any ghost list we were previously on
3332		 * (which protects us from racing with arc_evict_state),
3333		 * thus no locking is needed during this check.
3334		 */
3335		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3336
3337		/*
3338		 * A buffer must not be moved into the arc_l2c_only
3339		 * state if it's not finished being written out to the
3340		 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3341		 * might try to be accessed, even though it was removed.
3342		 */
3343		VERIFY(!HDR_L2_WRITING(hdr));
3344		VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3345		ASSERT(!HDR_HAS_RABD(hdr));
3346
3347		arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3348	}
3349	/*
3350	 * The header has been reallocated so we need to re-insert it into any
3351	 * lists it was on.
3352	 */
3353	(void) buf_hash_insert(nhdr, NULL);
3354
3355	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
3356
3357	mutex_enter(&dev->l2ad_mtx);
3358
3359	/*
3360	 * We must place the realloc'ed header back into the list at
3361	 * the same spot. Otherwise, if it's placed earlier in the list,
3362	 * l2arc_write_buffers() could find it during the function's
3363	 * write phase, and try to write it out to the l2arc.
3364	 */
3365	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3366	list_remove(&dev->l2ad_buflist, hdr);
3367
3368	mutex_exit(&dev->l2ad_mtx);
3369
3370	/*
3371	 * Since we're using the pointer address as the tag when
3372	 * incrementing and decrementing the l2ad_alloc refcount, we
3373	 * must remove the old pointer (that we're about to destroy) and
3374	 * add the new pointer to the refcount. Otherwise we'd remove
3375	 * the wrong pointer address when calling arc_hdr_destroy() later.
3376	 */
3377
3378	(void) zfs_refcount_remove_many(&dev->l2ad_alloc,
3379	    arc_hdr_size(hdr), hdr);
3380	(void) zfs_refcount_add_many(&dev->l2ad_alloc,
3381	    arc_hdr_size(nhdr), nhdr);
3382
3383	buf_discard_identity(hdr);
3384	kmem_cache_free(old, hdr);
3385
3386	return (nhdr);
3387}
3388
3389/*
3390 * This function is used by the send / receive code to convert a newly
3391 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It
3392 * is also used to allow the root objset block to be updated without altering
3393 * its embedded MACs. Both block types will always be uncompressed so we do not
3394 * have to worry about compression type or psize.
3395 */
3396void
3397arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder,
3398    dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv,
3399    const uint8_t *mac)
3400{
3401	arc_buf_hdr_t *hdr = buf->b_hdr;
3402
3403	ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET);
3404	ASSERT(HDR_HAS_L1HDR(hdr));
3405	ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3406
3407	buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED);
3408	arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3409	hdr->b_crypt_hdr.b_dsobj = dsobj;
3410	hdr->b_crypt_hdr.b_ot = ot;
3411	hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3412	    DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3413	if (!arc_hdr_has_uncompressed_buf(hdr))
3414		arc_cksum_free(hdr);
3415
3416	if (salt != NULL)
3417		memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
3418	if (iv != NULL)
3419		memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
3420	if (mac != NULL)
3421		memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
3422}
3423
3424/*
3425 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3426 * The buf is returned thawed since we expect the consumer to modify it.
3427 */
3428arc_buf_t *
3429arc_alloc_buf(spa_t *spa, const void *tag, arc_buf_contents_t type,
3430    int32_t size)
3431{
3432	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3433	    B_FALSE, ZIO_COMPRESS_OFF, 0, type);
3434
3435	arc_buf_t *buf = NULL;
3436	VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE,
3437	    B_FALSE, B_FALSE, &buf));
3438	arc_buf_thaw(buf);
3439
3440	return (buf);
3441}
3442
3443/*
3444 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3445 * for bufs containing metadata.
3446 */
3447arc_buf_t *
3448arc_alloc_compressed_buf(spa_t *spa, const void *tag, uint64_t psize,
3449    uint64_t lsize, enum zio_compress compression_type, uint8_t complevel)
3450{
3451	ASSERT3U(lsize, >, 0);
3452	ASSERT3U(lsize, >=, psize);
3453	ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF);
3454	ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3455
3456	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3457	    B_FALSE, compression_type, complevel, ARC_BUFC_DATA);
3458
3459	arc_buf_t *buf = NULL;
3460	VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE,
3461	    B_TRUE, B_FALSE, B_FALSE, &buf));
3462	arc_buf_thaw(buf);
3463
3464	/*
3465	 * To ensure that the hdr has the correct data in it if we call
3466	 * arc_untransform() on this buf before it's been written to disk,
3467	 * it's easiest if we just set up sharing between the buf and the hdr.
3468	 */
3469	arc_share_buf(hdr, buf);
3470
3471	return (buf);
3472}
3473
3474arc_buf_t *
3475arc_alloc_raw_buf(spa_t *spa, const void *tag, uint64_t dsobj,
3476    boolean_t byteorder, const uint8_t *salt, const uint8_t *iv,
3477    const uint8_t *mac, dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
3478    enum zio_compress compression_type, uint8_t complevel)
3479{
3480	arc_buf_hdr_t *hdr;
3481	arc_buf_t *buf;
3482	arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ?
3483	    ARC_BUFC_METADATA : ARC_BUFC_DATA;
3484
3485	ASSERT3U(lsize, >, 0);
3486	ASSERT3U(lsize, >=, psize);
3487	ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF);
3488	ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3489
3490	hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE,
3491	    compression_type, complevel, type);
3492
3493	hdr->b_crypt_hdr.b_dsobj = dsobj;
3494	hdr->b_crypt_hdr.b_ot = ot;
3495	hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3496	    DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3497	memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
3498	memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
3499	memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
3500
3501	/*
3502	 * This buffer will be considered encrypted even if the ot is not an
3503	 * encrypted type. It will become authenticated instead in
3504	 * arc_write_ready().
3505	 */
3506	buf = NULL;
3507	VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE,
3508	    B_FALSE, B_FALSE, &buf));
3509	arc_buf_thaw(buf);
3510
3511	return (buf);
3512}
3513
3514static void
3515l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
3516    boolean_t state_only)
3517{
3518	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3519	l2arc_dev_t *dev = l2hdr->b_dev;
3520	uint64_t lsize = HDR_GET_LSIZE(hdr);
3521	uint64_t psize = HDR_GET_PSIZE(hdr);
3522	uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
3523	arc_buf_contents_t type = hdr->b_type;
3524	int64_t lsize_s;
3525	int64_t psize_s;
3526	int64_t asize_s;
3527
3528	if (incr) {
3529		lsize_s = lsize;
3530		psize_s = psize;
3531		asize_s = asize;
3532	} else {
3533		lsize_s = -lsize;
3534		psize_s = -psize;
3535		asize_s = -asize;
3536	}
3537
3538	/* If the buffer is a prefetch, count it as such. */
3539	if (HDR_PREFETCH(hdr)) {
3540		ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s);
3541	} else {
3542		/*
3543		 * We use the value stored in the L2 header upon initial
3544		 * caching in L2ARC. This value will be updated in case
3545		 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC
3546		 * metadata (log entry) cannot currently be updated. Having
3547		 * the ARC state in the L2 header solves the problem of a
3548		 * possibly absent L1 header (apparent in buffers restored
3549		 * from persistent L2ARC).
3550		 */
3551		switch (hdr->b_l2hdr.b_arcs_state) {
3552			case ARC_STATE_MRU_GHOST:
3553			case ARC_STATE_MRU:
3554				ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s);
3555				break;
3556			case ARC_STATE_MFU_GHOST:
3557			case ARC_STATE_MFU:
3558				ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s);
3559				break;
3560			default:
3561				break;
3562		}
3563	}
3564
3565	if (state_only)
3566		return;
3567
3568	ARCSTAT_INCR(arcstat_l2_psize, psize_s);
3569	ARCSTAT_INCR(arcstat_l2_lsize, lsize_s);
3570
3571	switch (type) {
3572		case ARC_BUFC_DATA:
3573			ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s);
3574			break;
3575		case ARC_BUFC_METADATA:
3576			ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s);
3577			break;
3578		default:
3579			break;
3580	}
3581}
3582
3583
3584static void
3585arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3586{
3587	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3588	l2arc_dev_t *dev = l2hdr->b_dev;
3589	uint64_t psize = HDR_GET_PSIZE(hdr);
3590	uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
3591
3592	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3593	ASSERT(HDR_HAS_L2HDR(hdr));
3594
3595	list_remove(&dev->l2ad_buflist, hdr);
3596
3597	l2arc_hdr_arcstats_decrement(hdr);
3598	vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
3599
3600	(void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr),
3601	    hdr);
3602	arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3603}
3604
3605static void
3606arc_hdr_destroy(arc_buf_hdr_t *hdr)
3607{
3608	if (HDR_HAS_L1HDR(hdr)) {
3609		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3610		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3611	}
3612	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3613	ASSERT(!HDR_IN_HASH_TABLE(hdr));
3614
3615	if (HDR_HAS_L2HDR(hdr)) {
3616		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3617		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3618
3619		if (!buflist_held)
3620			mutex_enter(&dev->l2ad_mtx);
3621
3622		/*
3623		 * Even though we checked this conditional above, we
3624		 * need to check this again now that we have the
3625		 * l2ad_mtx. This is because we could be racing with
3626		 * another thread calling l2arc_evict() which might have
3627		 * destroyed this header's L2 portion as we were waiting
3628		 * to acquire the l2ad_mtx. If that happens, we don't
3629		 * want to re-destroy the header's L2 portion.
3630		 */
3631		if (HDR_HAS_L2HDR(hdr)) {
3632
3633			if (!HDR_EMPTY(hdr))
3634				buf_discard_identity(hdr);
3635
3636			arc_hdr_l2hdr_destroy(hdr);
3637		}
3638
3639		if (!buflist_held)
3640			mutex_exit(&dev->l2ad_mtx);
3641	}
3642
3643	/*
3644	 * The header's identify can only be safely discarded once it is no
3645	 * longer discoverable.  This requires removing it from the hash table
3646	 * and the l2arc header list.  After this point the hash lock can not
3647	 * be used to protect the header.
3648	 */
3649	if (!HDR_EMPTY(hdr))
3650		buf_discard_identity(hdr);
3651
3652	if (HDR_HAS_L1HDR(hdr)) {
3653		arc_cksum_free(hdr);
3654
3655		while (hdr->b_l1hdr.b_buf != NULL)
3656			arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3657
3658		if (hdr->b_l1hdr.b_pabd != NULL)
3659			arc_hdr_free_abd(hdr, B_FALSE);
3660
3661		if (HDR_HAS_RABD(hdr))
3662			arc_hdr_free_abd(hdr, B_TRUE);
3663	}
3664
3665	ASSERT3P(hdr->b_hash_next, ==, NULL);
3666	if (HDR_HAS_L1HDR(hdr)) {
3667		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3668		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3669#ifdef ZFS_DEBUG
3670		ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3671#endif
3672		kmem_cache_free(hdr_full_cache, hdr);
3673	} else {
3674		kmem_cache_free(hdr_l2only_cache, hdr);
3675	}
3676}
3677
3678void
3679arc_buf_destroy(arc_buf_t *buf, const void *tag)
3680{
3681	arc_buf_hdr_t *hdr = buf->b_hdr;
3682
3683	if (hdr->b_l1hdr.b_state == arc_anon) {
3684		ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
3685		ASSERT(ARC_BUF_LAST(buf));
3686		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3687		VERIFY0(remove_reference(hdr, tag));
3688		return;
3689	}
3690
3691	kmutex_t *hash_lock = HDR_LOCK(hdr);
3692	mutex_enter(hash_lock);
3693
3694	ASSERT3P(hdr, ==, buf->b_hdr);
3695	ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
3696	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3697	ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3698	ASSERT3P(buf->b_data, !=, NULL);
3699
3700	arc_buf_destroy_impl(buf);
3701	(void) remove_reference(hdr, tag);
3702	mutex_exit(hash_lock);
3703}
3704
3705/*
3706 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3707 * state of the header is dependent on its state prior to entering this
3708 * function. The following transitions are possible:
3709 *
3710 *    - arc_mru -> arc_mru_ghost
3711 *    - arc_mfu -> arc_mfu_ghost
3712 *    - arc_mru_ghost -> arc_l2c_only
3713 *    - arc_mru_ghost -> deleted
3714 *    - arc_mfu_ghost -> arc_l2c_only
3715 *    - arc_mfu_ghost -> deleted
3716 *    - arc_uncached -> deleted
3717 *
3718 * Return total size of evicted data buffers for eviction progress tracking.
3719 * When evicting from ghost states return logical buffer size to make eviction
3720 * progress at the same (or at least comparable) rate as from non-ghost states.
3721 *
3722 * Return *real_evicted for actual ARC size reduction to wake up threads
3723 * waiting for it.  For non-ghost states it includes size of evicted data
3724 * buffers (the headers are not freed there).  For ghost states it includes
3725 * only the evicted headers size.
3726 */
3727static int64_t
3728arc_evict_hdr(arc_buf_hdr_t *hdr, uint64_t *real_evicted)
3729{
3730	arc_state_t *evicted_state, *state;
3731	int64_t bytes_evicted = 0;
3732	uint_t min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ?
3733	    arc_min_prescient_prefetch_ms : arc_min_prefetch_ms;
3734
3735	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3736	ASSERT(HDR_HAS_L1HDR(hdr));
3737	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3738	ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3739	ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
3740
3741	*real_evicted = 0;
3742	state = hdr->b_l1hdr.b_state;
3743	if (GHOST_STATE(state)) {
3744
3745		/*
3746		 * l2arc_write_buffers() relies on a header's L1 portion
3747		 * (i.e. its b_pabd field) during it's write phase.
3748		 * Thus, we cannot push a header onto the arc_l2c_only
3749		 * state (removing its L1 piece) until the header is
3750		 * done being written to the l2arc.
3751		 */
3752		if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3753			ARCSTAT_BUMP(arcstat_evict_l2_skip);
3754			return (bytes_evicted);
3755		}
3756
3757		ARCSTAT_BUMP(arcstat_deleted);
3758		bytes_evicted += HDR_GET_LSIZE(hdr);
3759
3760		DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3761
3762		if (HDR_HAS_L2HDR(hdr)) {
3763			ASSERT(hdr->b_l1hdr.b_pabd == NULL);
3764			ASSERT(!HDR_HAS_RABD(hdr));
3765			/*
3766			 * This buffer is cached on the 2nd Level ARC;
3767			 * don't destroy the header.
3768			 */
3769			arc_change_state(arc_l2c_only, hdr);
3770			/*
3771			 * dropping from L1+L2 cached to L2-only,
3772			 * realloc to remove the L1 header.
3773			 */
3774			(void) arc_hdr_realloc(hdr, hdr_full_cache,
3775			    hdr_l2only_cache);
3776			*real_evicted += HDR_FULL_SIZE - HDR_L2ONLY_SIZE;
3777		} else {
3778			arc_change_state(arc_anon, hdr);
3779			arc_hdr_destroy(hdr);
3780			*real_evicted += HDR_FULL_SIZE;
3781		}
3782		return (bytes_evicted);
3783	}
3784
3785	ASSERT(state == arc_mru || state == arc_mfu || state == arc_uncached);
3786	evicted_state = (state == arc_uncached) ? arc_anon :
3787	    ((state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost);
3788
3789	/* prefetch buffers have a minimum lifespan */
3790	if ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3791	    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3792	    MSEC_TO_TICK(min_lifetime)) {
3793		ARCSTAT_BUMP(arcstat_evict_skip);
3794		return (bytes_evicted);
3795	}
3796
3797	if (HDR_HAS_L2HDR(hdr)) {
3798		ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3799	} else {
3800		if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3801			ARCSTAT_INCR(arcstat_evict_l2_eligible,
3802			    HDR_GET_LSIZE(hdr));
3803
3804			switch (state->arcs_state) {
3805				case ARC_STATE_MRU:
3806					ARCSTAT_INCR(
3807					    arcstat_evict_l2_eligible_mru,
3808					    HDR_GET_LSIZE(hdr));
3809					break;
3810				case ARC_STATE_MFU:
3811					ARCSTAT_INCR(
3812					    arcstat_evict_l2_eligible_mfu,
3813					    HDR_GET_LSIZE(hdr));
3814					break;
3815				default:
3816					break;
3817			}
3818		} else {
3819			ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3820			    HDR_GET_LSIZE(hdr));
3821		}
3822	}
3823
3824	bytes_evicted += arc_hdr_size(hdr);
3825	*real_evicted += arc_hdr_size(hdr);
3826
3827	/*
3828	 * If this hdr is being evicted and has a compressed buffer then we
3829	 * discard it here before we change states.  This ensures that the
3830	 * accounting is updated correctly in arc_free_data_impl().
3831	 */
3832	if (hdr->b_l1hdr.b_pabd != NULL)
3833		arc_hdr_free_abd(hdr, B_FALSE);
3834
3835	if (HDR_HAS_RABD(hdr))
3836		arc_hdr_free_abd(hdr, B_TRUE);
3837
3838	arc_change_state(evicted_state, hdr);
3839	DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3840	if (evicted_state == arc_anon) {
3841		arc_hdr_destroy(hdr);
3842		*real_evicted += HDR_FULL_SIZE;
3843	} else {
3844		ASSERT(HDR_IN_HASH_TABLE(hdr));
3845	}
3846
3847	return (bytes_evicted);
3848}
3849
3850static void
3851arc_set_need_free(void)
3852{
3853	ASSERT(MUTEX_HELD(&arc_evict_lock));
3854	int64_t remaining = arc_free_memory() - arc_sys_free / 2;
3855	arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters);
3856	if (aw == NULL) {
3857		arc_need_free = MAX(-remaining, 0);
3858	} else {
3859		arc_need_free =
3860		    MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count));
3861	}
3862}
3863
3864static uint64_t
3865arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3866    uint64_t spa, uint64_t bytes)
3867{
3868	multilist_sublist_t *mls;
3869	uint64_t bytes_evicted = 0, real_evicted = 0;
3870	arc_buf_hdr_t *hdr;
3871	kmutex_t *hash_lock;
3872	uint_t evict_count = zfs_arc_evict_batch_limit;
3873
3874	ASSERT3P(marker, !=, NULL);
3875
3876	mls = multilist_sublist_lock_idx(ml, idx);
3877
3878	for (hdr = multilist_sublist_prev(mls, marker); likely(hdr != NULL);
3879	    hdr = multilist_sublist_prev(mls, marker)) {
3880		if ((evict_count == 0) || (bytes_evicted >= bytes))
3881			break;
3882
3883		/*
3884		 * To keep our iteration location, move the marker
3885		 * forward. Since we're not holding hdr's hash lock, we
3886		 * must be very careful and not remove 'hdr' from the
3887		 * sublist. Otherwise, other consumers might mistake the
3888		 * 'hdr' as not being on a sublist when they call the
3889		 * multilist_link_active() function (they all rely on
3890		 * the hash lock protecting concurrent insertions and
3891		 * removals). multilist_sublist_move_forward() was
3892		 * specifically implemented to ensure this is the case
3893		 * (only 'marker' will be removed and re-inserted).
3894		 */
3895		multilist_sublist_move_forward(mls, marker);
3896
3897		/*
3898		 * The only case where the b_spa field should ever be
3899		 * zero, is the marker headers inserted by
3900		 * arc_evict_state(). It's possible for multiple threads
3901		 * to be calling arc_evict_state() concurrently (e.g.
3902		 * dsl_pool_close() and zio_inject_fault()), so we must
3903		 * skip any markers we see from these other threads.
3904		 */
3905		if (hdr->b_spa == 0)
3906			continue;
3907
3908		/* we're only interested in evicting buffers of a certain spa */
3909		if (spa != 0 && hdr->b_spa != spa) {
3910			ARCSTAT_BUMP(arcstat_evict_skip);
3911			continue;
3912		}
3913
3914		hash_lock = HDR_LOCK(hdr);
3915
3916		/*
3917		 * We aren't calling this function from any code path
3918		 * that would already be holding a hash lock, so we're
3919		 * asserting on this assumption to be defensive in case
3920		 * this ever changes. Without this check, it would be
3921		 * possible to incorrectly increment arcstat_mutex_miss
3922		 * below (e.g. if the code changed such that we called
3923		 * this function with a hash lock held).
3924		 */
3925		ASSERT(!MUTEX_HELD(hash_lock));
3926
3927		if (mutex_tryenter(hash_lock)) {
3928			uint64_t revicted;
3929			uint64_t evicted = arc_evict_hdr(hdr, &revicted);
3930			mutex_exit(hash_lock);
3931
3932			bytes_evicted += evicted;
3933			real_evicted += revicted;
3934
3935			/*
3936			 * If evicted is zero, arc_evict_hdr() must have
3937			 * decided to skip this header, don't increment
3938			 * evict_count in this case.
3939			 */
3940			if (evicted != 0)
3941				evict_count--;
3942
3943		} else {
3944			ARCSTAT_BUMP(arcstat_mutex_miss);
3945		}
3946	}
3947
3948	multilist_sublist_unlock(mls);
3949
3950	/*
3951	 * Increment the count of evicted bytes, and wake up any threads that
3952	 * are waiting for the count to reach this value.  Since the list is
3953	 * ordered by ascending aew_count, we pop off the beginning of the
3954	 * list until we reach the end, or a waiter that's past the current
3955	 * "count".  Doing this outside the loop reduces the number of times
3956	 * we need to acquire the global arc_evict_lock.
3957	 *
3958	 * Only wake when there's sufficient free memory in the system
3959	 * (specifically, arc_sys_free/2, which by default is a bit more than
3960	 * 1/64th of RAM).  See the comments in arc_wait_for_eviction().
3961	 */
3962	mutex_enter(&arc_evict_lock);
3963	arc_evict_count += real_evicted;
3964
3965	if (arc_free_memory() > arc_sys_free / 2) {
3966		arc_evict_waiter_t *aw;
3967		while ((aw = list_head(&arc_evict_waiters)) != NULL &&
3968		    aw->aew_count <= arc_evict_count) {
3969			list_remove(&arc_evict_waiters, aw);
3970			cv_broadcast(&aw->aew_cv);
3971		}
3972	}
3973	arc_set_need_free();
3974	mutex_exit(&arc_evict_lock);
3975
3976	/*
3977	 * If the ARC size is reduced from arc_c_max to arc_c_min (especially
3978	 * if the average cached block is small), eviction can be on-CPU for
3979	 * many seconds.  To ensure that other threads that may be bound to
3980	 * this CPU are able to make progress, make a voluntary preemption
3981	 * call here.
3982	 */
3983	kpreempt(KPREEMPT_SYNC);
3984
3985	return (bytes_evicted);
3986}
3987
3988static arc_buf_hdr_t *
3989arc_state_alloc_marker(void)
3990{
3991	arc_buf_hdr_t *marker = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
3992
3993	/*
3994	 * A b_spa of 0 is used to indicate that this header is
3995	 * a marker. This fact is used in arc_evict_state_impl().
3996	 */
3997	marker->b_spa = 0;
3998
3999	return (marker);
4000}
4001
4002static void
4003arc_state_free_marker(arc_buf_hdr_t *marker)
4004{
4005	kmem_cache_free(hdr_full_cache, marker);
4006}
4007
4008/*
4009 * Allocate an array of buffer headers used as placeholders during arc state
4010 * eviction.
4011 */
4012static arc_buf_hdr_t **
4013arc_state_alloc_markers(int count)
4014{
4015	arc_buf_hdr_t **markers;
4016
4017	markers = kmem_zalloc(sizeof (*markers) * count, KM_SLEEP);
4018	for (int i = 0; i < count; i++)
4019		markers[i] = arc_state_alloc_marker();
4020	return (markers);
4021}
4022
4023static void
4024arc_state_free_markers(arc_buf_hdr_t **markers, int count)
4025{
4026	for (int i = 0; i < count; i++)
4027		arc_state_free_marker(markers[i]);
4028	kmem_free(markers, sizeof (*markers) * count);
4029}
4030
4031/*
4032 * Evict buffers from the given arc state, until we've removed the
4033 * specified number of bytes. Move the removed buffers to the
4034 * appropriate evict state.
4035 *
4036 * This function makes a "best effort". It skips over any buffers
4037 * it can't get a hash_lock on, and so, may not catch all candidates.
4038 * It may also return without evicting as much space as requested.
4039 *
4040 * If bytes is specified using the special value ARC_EVICT_ALL, this
4041 * will evict all available (i.e. unlocked and evictable) buffers from
4042 * the given arc state; which is used by arc_flush().
4043 */
4044static uint64_t
4045arc_evict_state(arc_state_t *state, arc_buf_contents_t type, uint64_t spa,
4046    uint64_t bytes)
4047{
4048	uint64_t total_evicted = 0;
4049	multilist_t *ml = &state->arcs_list[type];
4050	int num_sublists;
4051	arc_buf_hdr_t **markers;
4052
4053	num_sublists = multilist_get_num_sublists(ml);
4054
4055	/*
4056	 * If we've tried to evict from each sublist, made some
4057	 * progress, but still have not hit the target number of bytes
4058	 * to evict, we want to keep trying. The markers allow us to
4059	 * pick up where we left off for each individual sublist, rather
4060	 * than starting from the tail each time.
4061	 */
4062	if (zthr_iscurthread(arc_evict_zthr)) {
4063		markers = arc_state_evict_markers;
4064		ASSERT3S(num_sublists, <=, arc_state_evict_marker_count);
4065	} else {
4066		markers = arc_state_alloc_markers(num_sublists);
4067	}
4068	for (int i = 0; i < num_sublists; i++) {
4069		multilist_sublist_t *mls;
4070
4071		mls = multilist_sublist_lock_idx(ml, i);
4072		multilist_sublist_insert_tail(mls, markers[i]);
4073		multilist_sublist_unlock(mls);
4074	}
4075
4076	/*
4077	 * While we haven't hit our target number of bytes to evict, or
4078	 * we're evicting all available buffers.
4079	 */
4080	while (total_evicted < bytes) {
4081		int sublist_idx = multilist_get_random_index(ml);
4082		uint64_t scan_evicted = 0;
4083
4084		/*
4085		 * Start eviction using a randomly selected sublist,
4086		 * this is to try and evenly balance eviction across all
4087		 * sublists. Always starting at the same sublist
4088		 * (e.g. index 0) would cause evictions to favor certain
4089		 * sublists over others.
4090		 */
4091		for (int i = 0; i < num_sublists; i++) {
4092			uint64_t bytes_remaining;
4093			uint64_t bytes_evicted;
4094
4095			if (total_evicted < bytes)
4096				bytes_remaining = bytes - total_evicted;
4097			else
4098				break;
4099
4100			bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
4101			    markers[sublist_idx], spa, bytes_remaining);
4102
4103			scan_evicted += bytes_evicted;
4104			total_evicted += bytes_evicted;
4105
4106			/* we've reached the end, wrap to the beginning */
4107			if (++sublist_idx >= num_sublists)
4108				sublist_idx = 0;
4109		}
4110
4111		/*
4112		 * If we didn't evict anything during this scan, we have
4113		 * no reason to believe we'll evict more during another
4114		 * scan, so break the loop.
4115		 */
4116		if (scan_evicted == 0) {
4117			/* This isn't possible, let's make that obvious */
4118			ASSERT3S(bytes, !=, 0);
4119
4120			/*
4121			 * When bytes is ARC_EVICT_ALL, the only way to
4122			 * break the loop is when scan_evicted is zero.
4123			 * In that case, we actually have evicted enough,
4124			 * so we don't want to increment the kstat.
4125			 */
4126			if (bytes != ARC_EVICT_ALL) {
4127				ASSERT3S(total_evicted, <, bytes);
4128				ARCSTAT_BUMP(arcstat_evict_not_enough);
4129			}
4130
4131			break;
4132		}
4133	}
4134
4135	for (int i = 0; i < num_sublists; i++) {
4136		multilist_sublist_t *mls = multilist_sublist_lock_idx(ml, i);
4137		multilist_sublist_remove(mls, markers[i]);
4138		multilist_sublist_unlock(mls);
4139	}
4140	if (markers != arc_state_evict_markers)
4141		arc_state_free_markers(markers, num_sublists);
4142
4143	return (total_evicted);
4144}
4145
4146/*
4147 * Flush all "evictable" data of the given type from the arc state
4148 * specified. This will not evict any "active" buffers (i.e. referenced).
4149 *
4150 * When 'retry' is set to B_FALSE, the function will make a single pass
4151 * over the state and evict any buffers that it can. Since it doesn't
4152 * continually retry the eviction, it might end up leaving some buffers
4153 * in the ARC due to lock misses.
4154 *
4155 * When 'retry' is set to B_TRUE, the function will continually retry the
4156 * eviction until *all* evictable buffers have been removed from the
4157 * state. As a result, if concurrent insertions into the state are
4158 * allowed (e.g. if the ARC isn't shutting down), this function might
4159 * wind up in an infinite loop, continually trying to evict buffers.
4160 */
4161static uint64_t
4162arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
4163    boolean_t retry)
4164{
4165	uint64_t evicted = 0;
4166
4167	while (zfs_refcount_count(&state->arcs_esize[type]) != 0) {
4168		evicted += arc_evict_state(state, type, spa, ARC_EVICT_ALL);
4169
4170		if (!retry)
4171			break;
4172	}
4173
4174	return (evicted);
4175}
4176
4177/*
4178 * Evict the specified number of bytes from the state specified. This
4179 * function prevents us from trying to evict more from a state's list
4180 * than is "evictable", and to skip evicting altogether when passed a
4181 * negative value for "bytes". In contrast, arc_evict_state() will
4182 * evict everything it can, when passed a negative value for "bytes".
4183 */
4184static uint64_t
4185arc_evict_impl(arc_state_t *state, arc_buf_contents_t type, int64_t bytes)
4186{
4187	uint64_t delta;
4188
4189	if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) {
4190		delta = MIN(zfs_refcount_count(&state->arcs_esize[type]),
4191		    bytes);
4192		return (arc_evict_state(state, type, 0, delta));
4193	}
4194
4195	return (0);
4196}
4197
4198/*
4199 * Adjust specified fraction, taking into account initial ghost state(s) size,
4200 * ghost hit bytes towards increasing the fraction, ghost hit bytes towards
4201 * decreasing it, plus a balance factor, controlling the decrease rate, used
4202 * to balance metadata vs data.
4203 */
4204static uint64_t
4205arc_evict_adj(uint64_t frac, uint64_t total, uint64_t up, uint64_t down,
4206    uint_t balance)
4207{
4208	if (total < 8 || up + down == 0)
4209		return (frac);
4210
4211	/*
4212	 * We should not have more ghost hits than ghost size, but they
4213	 * may get close.  Restrict maximum adjustment in that case.
4214	 */
4215	if (up + down >= total / 4) {
4216		uint64_t scale = (up + down) / (total / 8);
4217		up /= scale;
4218		down /= scale;
4219	}
4220
4221	/* Get maximal dynamic range by choosing optimal shifts. */
4222	int s = highbit64(total);
4223	s = MIN(64 - s, 32);
4224
4225	uint64_t ofrac = (1ULL << 32) - frac;
4226
4227	if (frac >= 4 * ofrac)
4228		up /= frac / (2 * ofrac + 1);
4229	up = (up << s) / (total >> (32 - s));
4230	if (ofrac >= 4 * frac)
4231		down /= ofrac / (2 * frac + 1);
4232	down = (down << s) / (total >> (32 - s));
4233	down = down * 100 / balance;
4234
4235	return (frac + up - down);
4236}
4237
4238/*
4239 * Evict buffers from the cache, such that arcstat_size is capped by arc_c.
4240 */
4241static uint64_t
4242arc_evict(void)
4243{
4244	uint64_t asize, bytes, total_evicted = 0;
4245	int64_t e, mrud, mrum, mfud, mfum, w;
4246	static uint64_t ogrd, ogrm, ogfd, ogfm;
4247	static uint64_t gsrd, gsrm, gsfd, gsfm;
4248	uint64_t ngrd, ngrm, ngfd, ngfm;
4249
4250	/* Get current size of ARC states we can evict from. */
4251	mrud = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_DATA]) +
4252	    zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_DATA]);
4253	mrum = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_METADATA]) +
4254	    zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
4255	mfud = zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
4256	mfum = zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
4257	uint64_t d = mrud + mfud;
4258	uint64_t m = mrum + mfum;
4259	uint64_t t = d + m;
4260
4261	/* Get ARC ghost hits since last eviction. */
4262	ngrd = wmsum_value(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA]);
4263	uint64_t grd = ngrd - ogrd;
4264	ogrd = ngrd;
4265	ngrm = wmsum_value(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA]);
4266	uint64_t grm = ngrm - ogrm;
4267	ogrm = ngrm;
4268	ngfd = wmsum_value(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA]);
4269	uint64_t gfd = ngfd - ogfd;
4270	ogfd = ngfd;
4271	ngfm = wmsum_value(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA]);
4272	uint64_t gfm = ngfm - ogfm;
4273	ogfm = ngfm;
4274
4275	/* Adjust ARC states balance based on ghost hits. */
4276	arc_meta = arc_evict_adj(arc_meta, gsrd + gsrm + gsfd + gsfm,
4277	    grm + gfm, grd + gfd, zfs_arc_meta_balance);
4278	arc_pd = arc_evict_adj(arc_pd, gsrd + gsfd, grd, gfd, 100);
4279	arc_pm = arc_evict_adj(arc_pm, gsrm + gsfm, grm, gfm, 100);
4280
4281	asize = aggsum_value(&arc_sums.arcstat_size);
4282	int64_t wt = t - (asize - arc_c);
4283
4284	/*
4285	 * Try to reduce pinned dnodes if more than 3/4 of wanted metadata
4286	 * target is not evictable or if they go over arc_dnode_limit.
4287	 */
4288	int64_t prune = 0;
4289	int64_t dn = wmsum_value(&arc_sums.arcstat_dnode_size);
4290	w = wt * (int64_t)(arc_meta >> 16) >> 16;
4291	if (zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_METADATA]) +
4292	    zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_METADATA]) -
4293	    zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA]) -
4294	    zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]) >
4295	    w * 3 / 4) {
4296		prune = dn / sizeof (dnode_t) *
4297		    zfs_arc_dnode_reduce_percent / 100;
4298	} else if (dn > arc_dnode_limit) {
4299		prune = (dn - arc_dnode_limit) / sizeof (dnode_t) *
4300		    zfs_arc_dnode_reduce_percent / 100;
4301	}
4302	if (prune > 0)
4303		arc_prune_async(prune);
4304
4305	/* Evict MRU metadata. */
4306	w = wt * (int64_t)(arc_meta * arc_pm >> 48) >> 16;
4307	e = MIN((int64_t)(asize - arc_c), (int64_t)(mrum - w));
4308	bytes = arc_evict_impl(arc_mru, ARC_BUFC_METADATA, e);
4309	total_evicted += bytes;
4310	mrum -= bytes;
4311	asize -= bytes;
4312
4313	/* Evict MFU metadata. */
4314	w = wt * (int64_t)(arc_meta >> 16) >> 16;
4315	e = MIN((int64_t)(asize - arc_c), (int64_t)(m - w));
4316	bytes = arc_evict_impl(arc_mfu, ARC_BUFC_METADATA, e);
4317	total_evicted += bytes;
4318	mfum -= bytes;
4319	asize -= bytes;
4320
4321	/* Evict MRU data. */
4322	wt -= m - total_evicted;
4323	w = wt * (int64_t)(arc_pd >> 16) >> 16;
4324	e = MIN((int64_t)(asize - arc_c), (int64_t)(mrud - w));
4325	bytes = arc_evict_impl(arc_mru, ARC_BUFC_DATA, e);
4326	total_evicted += bytes;
4327	mrud -= bytes;
4328	asize -= bytes;
4329
4330	/* Evict MFU data. */
4331	e = asize - arc_c;
4332	bytes = arc_evict_impl(arc_mfu, ARC_BUFC_DATA, e);
4333	mfud -= bytes;
4334	total_evicted += bytes;
4335
4336	/*
4337	 * Evict ghost lists
4338	 *
4339	 * Size of each state's ghost list represents how much that state
4340	 * may grow by shrinking the other states.  Would it need to shrink
4341	 * other states to zero (that is unlikely), its ghost size would be
4342	 * equal to sum of other three state sizes.  But excessive ghost
4343	 * size may result in false ghost hits (too far back), that may
4344	 * never result in real cache hits if several states are competing.
4345	 * So choose some arbitraty point of 1/2 of other state sizes.
4346	 */
4347	gsrd = (mrum + mfud + mfum) / 2;
4348	e = zfs_refcount_count(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]) -
4349	    gsrd;
4350	(void) arc_evict_impl(arc_mru_ghost, ARC_BUFC_DATA, e);
4351
4352	gsrm = (mrud + mfud + mfum) / 2;
4353	e = zfs_refcount_count(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]) -
4354	    gsrm;
4355	(void) arc_evict_impl(arc_mru_ghost, ARC_BUFC_METADATA, e);
4356
4357	gsfd = (mrud + mrum + mfum) / 2;
4358	e = zfs_refcount_count(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]) -
4359	    gsfd;
4360	(void) arc_evict_impl(arc_mfu_ghost, ARC_BUFC_DATA, e);
4361
4362	gsfm = (mrud + mrum + mfud) / 2;
4363	e = zfs_refcount_count(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]) -
4364	    gsfm;
4365	(void) arc_evict_impl(arc_mfu_ghost, ARC_BUFC_METADATA, e);
4366
4367	return (total_evicted);
4368}
4369
4370void
4371arc_flush(spa_t *spa, boolean_t retry)
4372{
4373	uint64_t guid = 0;
4374
4375	/*
4376	 * If retry is B_TRUE, a spa must not be specified since we have
4377	 * no good way to determine if all of a spa's buffers have been
4378	 * evicted from an arc state.
4379	 */
4380	ASSERT(!retry || spa == NULL);
4381
4382	if (spa != NULL)
4383		guid = spa_load_guid(spa);
4384
4385	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
4386	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
4387
4388	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
4389	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
4390
4391	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
4392	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
4393
4394	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
4395	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
4396
4397	(void) arc_flush_state(arc_uncached, guid, ARC_BUFC_DATA, retry);
4398	(void) arc_flush_state(arc_uncached, guid, ARC_BUFC_METADATA, retry);
4399}
4400
4401void
4402arc_reduce_target_size(int64_t to_free)
4403{
4404	uint64_t c = arc_c;
4405
4406	if (c <= arc_c_min)
4407		return;
4408
4409	/*
4410	 * All callers want the ARC to actually evict (at least) this much
4411	 * memory.  Therefore we reduce from the lower of the current size and
4412	 * the target size.  This way, even if arc_c is much higher than
4413	 * arc_size (as can be the case after many calls to arc_freed(), we will
4414	 * immediately have arc_c < arc_size and therefore the arc_evict_zthr
4415	 * will evict.
4416	 */
4417	uint64_t asize = aggsum_value(&arc_sums.arcstat_size);
4418	if (asize < c)
4419		to_free += c - asize;
4420	arc_c = MAX((int64_t)c - to_free, (int64_t)arc_c_min);
4421
4422	/* See comment in arc_evict_cb_check() on why lock+flag */
4423	mutex_enter(&arc_evict_lock);
4424	arc_evict_needed = B_TRUE;
4425	mutex_exit(&arc_evict_lock);
4426	zthr_wakeup(arc_evict_zthr);
4427}
4428
4429/*
4430 * Determine if the system is under memory pressure and is asking
4431 * to reclaim memory. A return value of B_TRUE indicates that the system
4432 * is under memory pressure and that the arc should adjust accordingly.
4433 */
4434boolean_t
4435arc_reclaim_needed(void)
4436{
4437	return (arc_available_memory() < 0);
4438}
4439
4440void
4441arc_kmem_reap_soon(void)
4442{
4443	size_t			i;
4444	kmem_cache_t		*prev_cache = NULL;
4445	kmem_cache_t		*prev_data_cache = NULL;
4446
4447#ifdef _KERNEL
4448#if defined(_ILP32)
4449	/*
4450	 * Reclaim unused memory from all kmem caches.
4451	 */
4452	kmem_reap();
4453#endif
4454#endif
4455
4456	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4457#if defined(_ILP32)
4458		/* reach upper limit of cache size on 32-bit */
4459		if (zio_buf_cache[i] == NULL)
4460			break;
4461#endif
4462		if (zio_buf_cache[i] != prev_cache) {
4463			prev_cache = zio_buf_cache[i];
4464			kmem_cache_reap_now(zio_buf_cache[i]);
4465		}
4466		if (zio_data_buf_cache[i] != prev_data_cache) {
4467			prev_data_cache = zio_data_buf_cache[i];
4468			kmem_cache_reap_now(zio_data_buf_cache[i]);
4469		}
4470	}
4471	kmem_cache_reap_now(buf_cache);
4472	kmem_cache_reap_now(hdr_full_cache);
4473	kmem_cache_reap_now(hdr_l2only_cache);
4474	kmem_cache_reap_now(zfs_btree_leaf_cache);
4475	abd_cache_reap_now();
4476}
4477
4478static boolean_t
4479arc_evict_cb_check(void *arg, zthr_t *zthr)
4480{
4481	(void) arg, (void) zthr;
4482
4483#ifdef ZFS_DEBUG
4484	/*
4485	 * This is necessary in order to keep the kstat information
4486	 * up to date for tools that display kstat data such as the
4487	 * mdb ::arc dcmd and the Linux crash utility.  These tools
4488	 * typically do not call kstat's update function, but simply
4489	 * dump out stats from the most recent update.  Without
4490	 * this call, these commands may show stale stats for the
4491	 * anon, mru, mru_ghost, mfu, and mfu_ghost lists.  Even
4492	 * with this call, the data might be out of date if the
4493	 * evict thread hasn't been woken recently; but that should
4494	 * suffice.  The arc_state_t structures can be queried
4495	 * directly if more accurate information is needed.
4496	 */
4497	if (arc_ksp != NULL)
4498		arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4499#endif
4500
4501	/*
4502	 * We have to rely on arc_wait_for_eviction() to tell us when to
4503	 * evict, rather than checking if we are overflowing here, so that we
4504	 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv.
4505	 * If we have become "not overflowing" since arc_wait_for_eviction()
4506	 * checked, we need to wake it up.  We could broadcast the CV here,
4507	 * but arc_wait_for_eviction() may have not yet gone to sleep.  We
4508	 * would need to use a mutex to ensure that this function doesn't
4509	 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g.
4510	 * the arc_evict_lock).  However, the lock ordering of such a lock
4511	 * would necessarily be incorrect with respect to the zthr_lock,
4512	 * which is held before this function is called, and is held by
4513	 * arc_wait_for_eviction() when it calls zthr_wakeup().
4514	 */
4515	if (arc_evict_needed)
4516		return (B_TRUE);
4517
4518	/*
4519	 * If we have buffers in uncached state, evict them periodically.
4520	 */
4521	return ((zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_DATA]) +
4522	    zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]) &&
4523	    ddi_get_lbolt() - arc_last_uncached_flush >
4524	    MSEC_TO_TICK(arc_min_prefetch_ms / 2)));
4525}
4526
4527/*
4528 * Keep arc_size under arc_c by running arc_evict which evicts data
4529 * from the ARC.
4530 */
4531static void
4532arc_evict_cb(void *arg, zthr_t *zthr)
4533{
4534	(void) arg;
4535
4536	uint64_t evicted = 0;
4537	fstrans_cookie_t cookie = spl_fstrans_mark();
4538
4539	/* Always try to evict from uncached state. */
4540	arc_last_uncached_flush = ddi_get_lbolt();
4541	evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_DATA, B_FALSE);
4542	evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_METADATA, B_FALSE);
4543
4544	/* Evict from other states only if told to. */
4545	if (arc_evict_needed)
4546		evicted += arc_evict();
4547
4548	/*
4549	 * If evicted is zero, we couldn't evict anything
4550	 * via arc_evict(). This could be due to hash lock
4551	 * collisions, but more likely due to the majority of
4552	 * arc buffers being unevictable. Therefore, even if
4553	 * arc_size is above arc_c, another pass is unlikely to
4554	 * be helpful and could potentially cause us to enter an
4555	 * infinite loop.  Additionally, zthr_iscancelled() is
4556	 * checked here so that if the arc is shutting down, the
4557	 * broadcast will wake any remaining arc evict waiters.
4558	 *
4559	 * Note we cancel using zthr instead of arc_evict_zthr
4560	 * because the latter may not yet be initializd when the
4561	 * callback is first invoked.
4562	 */
4563	mutex_enter(&arc_evict_lock);
4564	arc_evict_needed = !zthr_iscancelled(zthr) &&
4565	    evicted > 0 && aggsum_compare(&arc_sums.arcstat_size, arc_c) > 0;
4566	if (!arc_evict_needed) {
4567		/*
4568		 * We're either no longer overflowing, or we
4569		 * can't evict anything more, so we should wake
4570		 * arc_get_data_impl() sooner.
4571		 */
4572		arc_evict_waiter_t *aw;
4573		while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) {
4574			cv_broadcast(&aw->aew_cv);
4575		}
4576		arc_set_need_free();
4577	}
4578	mutex_exit(&arc_evict_lock);
4579	spl_fstrans_unmark(cookie);
4580}
4581
4582static boolean_t
4583arc_reap_cb_check(void *arg, zthr_t *zthr)
4584{
4585	(void) arg, (void) zthr;
4586
4587	int64_t free_memory = arc_available_memory();
4588	static int reap_cb_check_counter = 0;
4589
4590	/*
4591	 * If a kmem reap is already active, don't schedule more.  We must
4592	 * check for this because kmem_cache_reap_soon() won't actually
4593	 * block on the cache being reaped (this is to prevent callers from
4594	 * becoming implicitly blocked by a system-wide kmem reap -- which,
4595	 * on a system with many, many full magazines, can take minutes).
4596	 */
4597	if (!kmem_cache_reap_active() && free_memory < 0) {
4598
4599		arc_no_grow = B_TRUE;
4600		arc_warm = B_TRUE;
4601		/*
4602		 * Wait at least zfs_grow_retry (default 5) seconds
4603		 * before considering growing.
4604		 */
4605		arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4606		return (B_TRUE);
4607	} else if (free_memory < arc_c >> arc_no_grow_shift) {
4608		arc_no_grow = B_TRUE;
4609	} else if (gethrtime() >= arc_growtime) {
4610		arc_no_grow = B_FALSE;
4611	}
4612
4613	/*
4614	 * Called unconditionally every 60 seconds to reclaim unused
4615	 * zstd compression and decompression context. This is done
4616	 * here to avoid the need for an independent thread.
4617	 */
4618	if (!((reap_cb_check_counter++) % 60))
4619		zfs_zstd_cache_reap_now();
4620
4621	return (B_FALSE);
4622}
4623
4624/*
4625 * Keep enough free memory in the system by reaping the ARC's kmem
4626 * caches.  To cause more slabs to be reapable, we may reduce the
4627 * target size of the cache (arc_c), causing the arc_evict_cb()
4628 * to free more buffers.
4629 */
4630static void
4631arc_reap_cb(void *arg, zthr_t *zthr)
4632{
4633	(void) arg, (void) zthr;
4634
4635	int64_t free_memory;
4636	fstrans_cookie_t cookie = spl_fstrans_mark();
4637
4638	/*
4639	 * Kick off asynchronous kmem_reap()'s of all our caches.
4640	 */
4641	arc_kmem_reap_soon();
4642
4643	/*
4644	 * Wait at least arc_kmem_cache_reap_retry_ms between
4645	 * arc_kmem_reap_soon() calls. Without this check it is possible to
4646	 * end up in a situation where we spend lots of time reaping
4647	 * caches, while we're near arc_c_min.  Waiting here also gives the
4648	 * subsequent free memory check a chance of finding that the
4649	 * asynchronous reap has already freed enough memory, and we don't
4650	 * need to call arc_reduce_target_size().
4651	 */
4652	delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000);
4653
4654	/*
4655	 * Reduce the target size as needed to maintain the amount of free
4656	 * memory in the system at a fraction of the arc_size (1/128th by
4657	 * default).  If oversubscribed (free_memory < 0) then reduce the
4658	 * target arc_size by the deficit amount plus the fractional
4659	 * amount.  If free memory is positive but less than the fractional
4660	 * amount, reduce by what is needed to hit the fractional amount.
4661	 */
4662	free_memory = arc_available_memory();
4663
4664	int64_t can_free = arc_c - arc_c_min;
4665	if (can_free > 0) {
4666		int64_t to_free = (can_free >> arc_shrink_shift) - free_memory;
4667		if (to_free > 0)
4668			arc_reduce_target_size(to_free);
4669	}
4670	spl_fstrans_unmark(cookie);
4671}
4672
4673#ifdef _KERNEL
4674/*
4675 * Determine the amount of memory eligible for eviction contained in the
4676 * ARC. All clean data reported by the ghost lists can always be safely
4677 * evicted. Due to arc_c_min, the same does not hold for all clean data
4678 * contained by the regular mru and mfu lists.
4679 *
4680 * In the case of the regular mru and mfu lists, we need to report as
4681 * much clean data as possible, such that evicting that same reported
4682 * data will not bring arc_size below arc_c_min. Thus, in certain
4683 * circumstances, the total amount of clean data in the mru and mfu
4684 * lists might not actually be evictable.
4685 *
4686 * The following two distinct cases are accounted for:
4687 *
4688 * 1. The sum of the amount of dirty data contained by both the mru and
4689 *    mfu lists, plus the ARC's other accounting (e.g. the anon list),
4690 *    is greater than or equal to arc_c_min.
4691 *    (i.e. amount of dirty data >= arc_c_min)
4692 *
4693 *    This is the easy case; all clean data contained by the mru and mfu
4694 *    lists is evictable. Evicting all clean data can only drop arc_size
4695 *    to the amount of dirty data, which is greater than arc_c_min.
4696 *
4697 * 2. The sum of the amount of dirty data contained by both the mru and
4698 *    mfu lists, plus the ARC's other accounting (e.g. the anon list),
4699 *    is less than arc_c_min.
4700 *    (i.e. arc_c_min > amount of dirty data)
4701 *
4702 *    2.1. arc_size is greater than or equal arc_c_min.
4703 *         (i.e. arc_size >= arc_c_min > amount of dirty data)
4704 *
4705 *         In this case, not all clean data from the regular mru and mfu
4706 *         lists is actually evictable; we must leave enough clean data
4707 *         to keep arc_size above arc_c_min. Thus, the maximum amount of
4708 *         evictable data from the two lists combined, is exactly the
4709 *         difference between arc_size and arc_c_min.
4710 *
4711 *    2.2. arc_size is less than arc_c_min
4712 *         (i.e. arc_c_min > arc_size > amount of dirty data)
4713 *
4714 *         In this case, none of the data contained in the mru and mfu
4715 *         lists is evictable, even if it's clean. Since arc_size is
4716 *         already below arc_c_min, evicting any more would only
4717 *         increase this negative difference.
4718 */
4719
4720#endif /* _KERNEL */
4721
4722/*
4723 * Adapt arc info given the number of bytes we are trying to add and
4724 * the state that we are coming from.  This function is only called
4725 * when we are adding new content to the cache.
4726 */
4727static void
4728arc_adapt(uint64_t bytes)
4729{
4730	/*
4731	 * Wake reap thread if we do not have any available memory
4732	 */
4733	if (arc_reclaim_needed()) {
4734		zthr_wakeup(arc_reap_zthr);
4735		return;
4736	}
4737
4738	if (arc_no_grow)
4739		return;
4740
4741	if (arc_c >= arc_c_max)
4742		return;
4743
4744	/*
4745	 * If we're within (2 * maxblocksize) bytes of the target
4746	 * cache size, increment the target cache size
4747	 */
4748	if (aggsum_upper_bound(&arc_sums.arcstat_size) +
4749	    2 * SPA_MAXBLOCKSIZE >= arc_c) {
4750		uint64_t dc = MAX(bytes, SPA_OLD_MAXBLOCKSIZE);
4751		if (atomic_add_64_nv(&arc_c, dc) > arc_c_max)
4752			arc_c = arc_c_max;
4753	}
4754}
4755
4756/*
4757 * Check if arc_size has grown past our upper threshold, determined by
4758 * zfs_arc_overflow_shift.
4759 */
4760static arc_ovf_level_t
4761arc_is_overflowing(boolean_t use_reserve)
4762{
4763	/* Always allow at least one block of overflow */
4764	int64_t overflow = MAX(SPA_MAXBLOCKSIZE,
4765	    arc_c >> zfs_arc_overflow_shift);
4766
4767	/*
4768	 * We just compare the lower bound here for performance reasons. Our
4769	 * primary goals are to make sure that the arc never grows without
4770	 * bound, and that it can reach its maximum size. This check
4771	 * accomplishes both goals. The maximum amount we could run over by is
4772	 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
4773	 * in the ARC. In practice, that's in the tens of MB, which is low
4774	 * enough to be safe.
4775	 */
4776	int64_t over = aggsum_lower_bound(&arc_sums.arcstat_size) -
4777	    arc_c - overflow / 2;
4778	if (!use_reserve)
4779		overflow /= 2;
4780	return (over < 0 ? ARC_OVF_NONE :
4781	    over < overflow ? ARC_OVF_SOME : ARC_OVF_SEVERE);
4782}
4783
4784static abd_t *
4785arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, const void *tag,
4786    int alloc_flags)
4787{
4788	arc_buf_contents_t type = arc_buf_type(hdr);
4789
4790	arc_get_data_impl(hdr, size, tag, alloc_flags);
4791	if (alloc_flags & ARC_HDR_ALLOC_LINEAR)
4792		return (abd_alloc_linear(size, type == ARC_BUFC_METADATA));
4793	else
4794		return (abd_alloc(size, type == ARC_BUFC_METADATA));
4795}
4796
4797static void *
4798arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, const void *tag)
4799{
4800	arc_buf_contents_t type = arc_buf_type(hdr);
4801
4802	arc_get_data_impl(hdr, size, tag, 0);
4803	if (type == ARC_BUFC_METADATA) {
4804		return (zio_buf_alloc(size));
4805	} else {
4806		ASSERT(type == ARC_BUFC_DATA);
4807		return (zio_data_buf_alloc(size));
4808	}
4809}
4810
4811/*
4812 * Wait for the specified amount of data (in bytes) to be evicted from the
4813 * ARC, and for there to be sufficient free memory in the system.  Waiting for
4814 * eviction ensures that the memory used by the ARC decreases.  Waiting for
4815 * free memory ensures that the system won't run out of free pages, regardless
4816 * of ARC behavior and settings.  See arc_lowmem_init().
4817 */
4818void
4819arc_wait_for_eviction(uint64_t amount, boolean_t use_reserve)
4820{
4821	switch (arc_is_overflowing(use_reserve)) {
4822	case ARC_OVF_NONE:
4823		return;
4824	case ARC_OVF_SOME:
4825		/*
4826		 * This is a bit racy without taking arc_evict_lock, but the
4827		 * worst that can happen is we either call zthr_wakeup() extra
4828		 * time due to race with other thread here, or the set flag
4829		 * get cleared by arc_evict_cb(), which is unlikely due to
4830		 * big hysteresis, but also not important since at this level
4831		 * of overflow the eviction is purely advisory.  Same time
4832		 * taking the global lock here every time without waiting for
4833		 * the actual eviction creates a significant lock contention.
4834		 */
4835		if (!arc_evict_needed) {
4836			arc_evict_needed = B_TRUE;
4837			zthr_wakeup(arc_evict_zthr);
4838		}
4839		return;
4840	case ARC_OVF_SEVERE:
4841	default:
4842	{
4843		arc_evict_waiter_t aw;
4844		list_link_init(&aw.aew_node);
4845		cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL);
4846
4847		uint64_t last_count = 0;
4848		mutex_enter(&arc_evict_lock);
4849		if (!list_is_empty(&arc_evict_waiters)) {
4850			arc_evict_waiter_t *last =
4851			    list_tail(&arc_evict_waiters);
4852			last_count = last->aew_count;
4853		} else if (!arc_evict_needed) {
4854			arc_evict_needed = B_TRUE;
4855			zthr_wakeup(arc_evict_zthr);
4856		}
4857		/*
4858		 * Note, the last waiter's count may be less than
4859		 * arc_evict_count if we are low on memory in which
4860		 * case arc_evict_state_impl() may have deferred
4861		 * wakeups (but still incremented arc_evict_count).
4862		 */
4863		aw.aew_count = MAX(last_count, arc_evict_count) + amount;
4864
4865		list_insert_tail(&arc_evict_waiters, &aw);
4866
4867		arc_set_need_free();
4868
4869		DTRACE_PROBE3(arc__wait__for__eviction,
4870		    uint64_t, amount,
4871		    uint64_t, arc_evict_count,
4872		    uint64_t, aw.aew_count);
4873
4874		/*
4875		 * We will be woken up either when arc_evict_count reaches
4876		 * aew_count, or when the ARC is no longer overflowing and
4877		 * eviction completes.
4878		 * In case of "false" wakeup, we will still be on the list.
4879		 */
4880		do {
4881			cv_wait(&aw.aew_cv, &arc_evict_lock);
4882		} while (list_link_active(&aw.aew_node));
4883		mutex_exit(&arc_evict_lock);
4884
4885		cv_destroy(&aw.aew_cv);
4886	}
4887	}
4888}
4889
4890/*
4891 * Allocate a block and return it to the caller. If we are hitting the
4892 * hard limit for the cache size, we must sleep, waiting for the eviction
4893 * thread to catch up. If we're past the target size but below the hard
4894 * limit, we'll only signal the reclaim thread and continue on.
4895 */
4896static void
4897arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag,
4898    int alloc_flags)
4899{
4900	arc_adapt(size);
4901
4902	/*
4903	 * If arc_size is currently overflowing, we must be adding data
4904	 * faster than we are evicting.  To ensure we don't compound the
4905	 * problem by adding more data and forcing arc_size to grow even
4906	 * further past it's target size, we wait for the eviction thread to
4907	 * make some progress.  We also wait for there to be sufficient free
4908	 * memory in the system, as measured by arc_free_memory().
4909	 *
4910	 * Specifically, we wait for zfs_arc_eviction_pct percent of the
4911	 * requested size to be evicted.  This should be more than 100%, to
4912	 * ensure that that progress is also made towards getting arc_size
4913	 * under arc_c.  See the comment above zfs_arc_eviction_pct.
4914	 */
4915	arc_wait_for_eviction(size * zfs_arc_eviction_pct / 100,
4916	    alloc_flags & ARC_HDR_USE_RESERVE);
4917
4918	arc_buf_contents_t type = arc_buf_type(hdr);
4919	if (type == ARC_BUFC_METADATA) {
4920		arc_space_consume(size, ARC_SPACE_META);
4921	} else {
4922		arc_space_consume(size, ARC_SPACE_DATA);
4923	}
4924
4925	/*
4926	 * Update the state size.  Note that ghost states have a
4927	 * "ghost size" and so don't need to be updated.
4928	 */
4929	arc_state_t *state = hdr->b_l1hdr.b_state;
4930	if (!GHOST_STATE(state)) {
4931
4932		(void) zfs_refcount_add_many(&state->arcs_size[type], size,
4933		    tag);
4934
4935		/*
4936		 * If this is reached via arc_read, the link is
4937		 * protected by the hash lock. If reached via
4938		 * arc_buf_alloc, the header should not be accessed by
4939		 * any other thread. And, if reached via arc_read_done,
4940		 * the hash lock will protect it if it's found in the
4941		 * hash table; otherwise no other thread should be
4942		 * trying to [add|remove]_reference it.
4943		 */
4944		if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4945			ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4946			(void) zfs_refcount_add_many(&state->arcs_esize[type],
4947			    size, tag);
4948		}
4949	}
4950}
4951
4952static void
4953arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size,
4954    const void *tag)
4955{
4956	arc_free_data_impl(hdr, size, tag);
4957	abd_free(abd);
4958}
4959
4960static void
4961arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, const void *tag)
4962{
4963	arc_buf_contents_t type = arc_buf_type(hdr);
4964
4965	arc_free_data_impl(hdr, size, tag);
4966	if (type == ARC_BUFC_METADATA) {
4967		zio_buf_free(buf, size);
4968	} else {
4969		ASSERT(type == ARC_BUFC_DATA);
4970		zio_data_buf_free(buf, size);
4971	}
4972}
4973
4974/*
4975 * Free the arc data buffer.
4976 */
4977static void
4978arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag)
4979{
4980	arc_state_t *state = hdr->b_l1hdr.b_state;
4981	arc_buf_contents_t type = arc_buf_type(hdr);
4982
4983	/* protected by hash lock, if in the hash table */
4984	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4985		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4986		ASSERT(state != arc_anon && state != arc_l2c_only);
4987
4988		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
4989		    size, tag);
4990	}
4991	(void) zfs_refcount_remove_many(&state->arcs_size[type], size, tag);
4992
4993	VERIFY3U(hdr->b_type, ==, type);
4994	if (type == ARC_BUFC_METADATA) {
4995		arc_space_return(size, ARC_SPACE_META);
4996	} else {
4997		ASSERT(type == ARC_BUFC_DATA);
4998		arc_space_return(size, ARC_SPACE_DATA);
4999	}
5000}
5001
5002/*
5003 * This routine is called whenever a buffer is accessed.
5004 */
5005static void
5006arc_access(arc_buf_hdr_t *hdr, arc_flags_t arc_flags, boolean_t hit)
5007{
5008	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
5009	ASSERT(HDR_HAS_L1HDR(hdr));
5010
5011	/*
5012	 * Update buffer prefetch status.
5013	 */
5014	boolean_t was_prefetch = HDR_PREFETCH(hdr);
5015	boolean_t now_prefetch = arc_flags & ARC_FLAG_PREFETCH;
5016	if (was_prefetch != now_prefetch) {
5017		if (was_prefetch) {
5018			ARCSTAT_CONDSTAT(hit, demand_hit, demand_iohit,
5019			    HDR_PRESCIENT_PREFETCH(hdr), prescient, predictive,
5020			    prefetch);
5021		}
5022		if (HDR_HAS_L2HDR(hdr))
5023			l2arc_hdr_arcstats_decrement_state(hdr);
5024		if (was_prefetch) {
5025			arc_hdr_clear_flags(hdr,
5026			    ARC_FLAG_PREFETCH | ARC_FLAG_PRESCIENT_PREFETCH);
5027		} else {
5028			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5029		}
5030		if (HDR_HAS_L2HDR(hdr))
5031			l2arc_hdr_arcstats_increment_state(hdr);
5032	}
5033	if (now_prefetch) {
5034		if (arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) {
5035			arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
5036			ARCSTAT_BUMP(arcstat_prescient_prefetch);
5037		} else {
5038			ARCSTAT_BUMP(arcstat_predictive_prefetch);
5039		}
5040	}
5041	if (arc_flags & ARC_FLAG_L2CACHE)
5042		arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5043
5044	clock_t now = ddi_get_lbolt();
5045	if (hdr->b_l1hdr.b_state == arc_anon) {
5046		arc_state_t	*new_state;
5047		/*
5048		 * This buffer is not in the cache, and does not appear in
5049		 * our "ghost" lists.  Add it to the MRU or uncached state.
5050		 */
5051		ASSERT0(hdr->b_l1hdr.b_arc_access);
5052		hdr->b_l1hdr.b_arc_access = now;
5053		if (HDR_UNCACHED(hdr)) {
5054			new_state = arc_uncached;
5055			DTRACE_PROBE1(new_state__uncached, arc_buf_hdr_t *,
5056			    hdr);
5057		} else {
5058			new_state = arc_mru;
5059			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5060		}
5061		arc_change_state(new_state, hdr);
5062	} else if (hdr->b_l1hdr.b_state == arc_mru) {
5063		/*
5064		 * This buffer has been accessed once recently and either
5065		 * its read is still in progress or it is in the cache.
5066		 */
5067		if (HDR_IO_IN_PROGRESS(hdr)) {
5068			hdr->b_l1hdr.b_arc_access = now;
5069			return;
5070		}
5071		hdr->b_l1hdr.b_mru_hits++;
5072		ARCSTAT_BUMP(arcstat_mru_hits);
5073
5074		/*
5075		 * If the previous access was a prefetch, then it already
5076		 * handled possible promotion, so nothing more to do for now.
5077		 */
5078		if (was_prefetch) {
5079			hdr->b_l1hdr.b_arc_access = now;
5080			return;
5081		}
5082
5083		/*
5084		 * If more than ARC_MINTIME have passed from the previous
5085		 * hit, promote the buffer to the MFU state.
5086		 */
5087		if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
5088		    ARC_MINTIME)) {
5089			hdr->b_l1hdr.b_arc_access = now;
5090			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5091			arc_change_state(arc_mfu, hdr);
5092		}
5093	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
5094		arc_state_t	*new_state;
5095		/*
5096		 * This buffer has been accessed once recently, but was
5097		 * evicted from the cache.  Would we have bigger MRU, it
5098		 * would be an MRU hit, so handle it the same way, except
5099		 * we don't need to check the previous access time.
5100		 */
5101		hdr->b_l1hdr.b_mru_ghost_hits++;
5102		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
5103		hdr->b_l1hdr.b_arc_access = now;
5104		wmsum_add(&arc_mru_ghost->arcs_hits[arc_buf_type(hdr)],
5105		    arc_hdr_size(hdr));
5106		if (was_prefetch) {
5107			new_state = arc_mru;
5108			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5109		} else {
5110			new_state = arc_mfu;
5111			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5112		}
5113		arc_change_state(new_state, hdr);
5114	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
5115		/*
5116		 * This buffer has been accessed more than once and either
5117		 * still in the cache or being restored from one of ghosts.
5118		 */
5119		if (!HDR_IO_IN_PROGRESS(hdr)) {
5120			hdr->b_l1hdr.b_mfu_hits++;
5121			ARCSTAT_BUMP(arcstat_mfu_hits);
5122		}
5123		hdr->b_l1hdr.b_arc_access = now;
5124	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
5125		/*
5126		 * This buffer has been accessed more than once recently, but
5127		 * has been evicted from the cache.  Would we have bigger MFU
5128		 * it would stay in cache, so move it back to MFU state.
5129		 */
5130		hdr->b_l1hdr.b_mfu_ghost_hits++;
5131		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
5132		hdr->b_l1hdr.b_arc_access = now;
5133		wmsum_add(&arc_mfu_ghost->arcs_hits[arc_buf_type(hdr)],
5134		    arc_hdr_size(hdr));
5135		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5136		arc_change_state(arc_mfu, hdr);
5137	} else if (hdr->b_l1hdr.b_state == arc_uncached) {
5138		/*
5139		 * This buffer is uncacheable, but we got a hit.  Probably
5140		 * a demand read after prefetch.  Nothing more to do here.
5141		 */
5142		if (!HDR_IO_IN_PROGRESS(hdr))
5143			ARCSTAT_BUMP(arcstat_uncached_hits);
5144		hdr->b_l1hdr.b_arc_access = now;
5145	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
5146		/*
5147		 * This buffer is on the 2nd Level ARC and was not accessed
5148		 * for a long time, so treat it as new and put into MRU.
5149		 */
5150		hdr->b_l1hdr.b_arc_access = now;
5151		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5152		arc_change_state(arc_mru, hdr);
5153	} else {
5154		cmn_err(CE_PANIC, "invalid arc state 0x%p",
5155		    hdr->b_l1hdr.b_state);
5156	}
5157}
5158
5159/*
5160 * This routine is called by dbuf_hold() to update the arc_access() state
5161 * which otherwise would be skipped for entries in the dbuf cache.
5162 */
5163void
5164arc_buf_access(arc_buf_t *buf)
5165{
5166	arc_buf_hdr_t *hdr = buf->b_hdr;
5167
5168	/*
5169	 * Avoid taking the hash_lock when possible as an optimization.
5170	 * The header must be checked again under the hash_lock in order
5171	 * to handle the case where it is concurrently being released.
5172	 */
5173	if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr))
5174		return;
5175
5176	kmutex_t *hash_lock = HDR_LOCK(hdr);
5177	mutex_enter(hash_lock);
5178
5179	if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5180		mutex_exit(hash_lock);
5181		ARCSTAT_BUMP(arcstat_access_skip);
5182		return;
5183	}
5184
5185	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5186	    hdr->b_l1hdr.b_state == arc_mfu ||
5187	    hdr->b_l1hdr.b_state == arc_uncached);
5188
5189	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5190	arc_access(hdr, 0, B_TRUE);
5191	mutex_exit(hash_lock);
5192
5193	ARCSTAT_BUMP(arcstat_hits);
5194	ARCSTAT_CONDSTAT(B_TRUE /* demand */, demand, prefetch,
5195	    !HDR_ISTYPE_METADATA(hdr), data, metadata, hits);
5196}
5197
5198/* a generic arc_read_done_func_t which you can use */
5199void
5200arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5201    arc_buf_t *buf, void *arg)
5202{
5203	(void) zio, (void) zb, (void) bp;
5204
5205	if (buf == NULL)
5206		return;
5207
5208	memcpy(arg, buf->b_data, arc_buf_size(buf));
5209	arc_buf_destroy(buf, arg);
5210}
5211
5212/* a generic arc_read_done_func_t */
5213void
5214arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5215    arc_buf_t *buf, void *arg)
5216{
5217	(void) zb, (void) bp;
5218	arc_buf_t **bufp = arg;
5219
5220	if (buf == NULL) {
5221		ASSERT(zio == NULL || zio->io_error != 0);
5222		*bufp = NULL;
5223	} else {
5224		ASSERT(zio == NULL || zio->io_error == 0);
5225		*bufp = buf;
5226		ASSERT(buf->b_data != NULL);
5227	}
5228}
5229
5230static void
5231arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
5232{
5233	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
5234		ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
5235		ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF);
5236	} else {
5237		if (HDR_COMPRESSION_ENABLED(hdr)) {
5238			ASSERT3U(arc_hdr_get_compress(hdr), ==,
5239			    BP_GET_COMPRESS(bp));
5240		}
5241		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
5242		ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
5243		ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp));
5244	}
5245}
5246
5247static void
5248arc_read_done(zio_t *zio)
5249{
5250	blkptr_t 	*bp = zio->io_bp;
5251	arc_buf_hdr_t	*hdr = zio->io_private;
5252	kmutex_t	*hash_lock = NULL;
5253	arc_callback_t	*callback_list;
5254	arc_callback_t	*acb;
5255
5256	/*
5257	 * The hdr was inserted into hash-table and removed from lists
5258	 * prior to starting I/O.  We should find this header, since
5259	 * it's in the hash table, and it should be legit since it's
5260	 * not possible to evict it during the I/O.  The only possible
5261	 * reason for it not to be found is if we were freed during the
5262	 * read.
5263	 */
5264	if (HDR_IN_HASH_TABLE(hdr)) {
5265		arc_buf_hdr_t *found;
5266
5267		ASSERT3U(hdr->b_birth, ==, BP_GET_BIRTH(zio->io_bp));
5268		ASSERT3U(hdr->b_dva.dva_word[0], ==,
5269		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
5270		ASSERT3U(hdr->b_dva.dva_word[1], ==,
5271		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
5272
5273		found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock);
5274
5275		ASSERT((found == hdr &&
5276		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
5277		    (found == hdr && HDR_L2_READING(hdr)));
5278		ASSERT3P(hash_lock, !=, NULL);
5279	}
5280
5281	if (BP_IS_PROTECTED(bp)) {
5282		hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
5283		hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
5284		zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
5285		    hdr->b_crypt_hdr.b_iv);
5286
5287		if (zio->io_error == 0) {
5288			if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) {
5289				void *tmpbuf;
5290
5291				tmpbuf = abd_borrow_buf_copy(zio->io_abd,
5292				    sizeof (zil_chain_t));
5293				zio_crypt_decode_mac_zil(tmpbuf,
5294				    hdr->b_crypt_hdr.b_mac);
5295				abd_return_buf(zio->io_abd, tmpbuf,
5296				    sizeof (zil_chain_t));
5297			} else {
5298				zio_crypt_decode_mac_bp(bp,
5299				    hdr->b_crypt_hdr.b_mac);
5300			}
5301		}
5302	}
5303
5304	if (zio->io_error == 0) {
5305		/* byteswap if necessary */
5306		if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
5307			if (BP_GET_LEVEL(zio->io_bp) > 0) {
5308				hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
5309			} else {
5310				hdr->b_l1hdr.b_byteswap =
5311				    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
5312			}
5313		} else {
5314			hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
5315		}
5316		if (!HDR_L2_READING(hdr)) {
5317			hdr->b_complevel = zio->io_prop.zp_complevel;
5318		}
5319	}
5320
5321	arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
5322	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
5323		arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
5324
5325	callback_list = hdr->b_l1hdr.b_acb;
5326	ASSERT3P(callback_list, !=, NULL);
5327	hdr->b_l1hdr.b_acb = NULL;
5328
5329	/*
5330	 * If a read request has a callback (i.e. acb_done is not NULL), then we
5331	 * make a buf containing the data according to the parameters which were
5332	 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5333	 * aren't needlessly decompressing the data multiple times.
5334	 */
5335	int callback_cnt = 0;
5336	for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
5337
5338		/* We need the last one to call below in original order. */
5339		callback_list = acb;
5340
5341		if (!acb->acb_done || acb->acb_nobuf)
5342			continue;
5343
5344		callback_cnt++;
5345
5346		if (zio->io_error != 0)
5347			continue;
5348
5349		int error = arc_buf_alloc_impl(hdr, zio->io_spa,
5350		    &acb->acb_zb, acb->acb_private, acb->acb_encrypted,
5351		    acb->acb_compressed, acb->acb_noauth, B_TRUE,
5352		    &acb->acb_buf);
5353
5354		/*
5355		 * Assert non-speculative zios didn't fail because an
5356		 * encryption key wasn't loaded
5357		 */
5358		ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) ||
5359		    error != EACCES);
5360
5361		/*
5362		 * If we failed to decrypt, report an error now (as the zio
5363		 * layer would have done if it had done the transforms).
5364		 */
5365		if (error == ECKSUM) {
5366			ASSERT(BP_IS_PROTECTED(bp));
5367			error = SET_ERROR(EIO);
5368			if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5369				spa_log_error(zio->io_spa, &acb->acb_zb,
5370				    BP_GET_LOGICAL_BIRTH(zio->io_bp));
5371				(void) zfs_ereport_post(
5372				    FM_EREPORT_ZFS_AUTHENTICATION,
5373				    zio->io_spa, NULL, &acb->acb_zb, zio, 0);
5374			}
5375		}
5376
5377		if (error != 0) {
5378			/*
5379			 * Decompression or decryption failed.  Set
5380			 * io_error so that when we call acb_done
5381			 * (below), we will indicate that the read
5382			 * failed. Note that in the unusual case
5383			 * where one callback is compressed and another
5384			 * uncompressed, we will mark all of them
5385			 * as failed, even though the uncompressed
5386			 * one can't actually fail.  In this case,
5387			 * the hdr will not be anonymous, because
5388			 * if there are multiple callbacks, it's
5389			 * because multiple threads found the same
5390			 * arc buf in the hash table.
5391			 */
5392			zio->io_error = error;
5393		}
5394	}
5395
5396	/*
5397	 * If there are multiple callbacks, we must have the hash lock,
5398	 * because the only way for multiple threads to find this hdr is
5399	 * in the hash table.  This ensures that if there are multiple
5400	 * callbacks, the hdr is not anonymous.  If it were anonymous,
5401	 * we couldn't use arc_buf_destroy() in the error case below.
5402	 */
5403	ASSERT(callback_cnt < 2 || hash_lock != NULL);
5404
5405	if (zio->io_error == 0) {
5406		arc_hdr_verify(hdr, zio->io_bp);
5407	} else {
5408		arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
5409		if (hdr->b_l1hdr.b_state != arc_anon)
5410			arc_change_state(arc_anon, hdr);
5411		if (HDR_IN_HASH_TABLE(hdr))
5412			buf_hash_remove(hdr);
5413	}
5414
5415	arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5416	(void) remove_reference(hdr, hdr);
5417
5418	if (hash_lock != NULL)
5419		mutex_exit(hash_lock);
5420
5421	/* execute each callback and free its structure */
5422	while ((acb = callback_list) != NULL) {
5423		if (acb->acb_done != NULL) {
5424			if (zio->io_error != 0 && acb->acb_buf != NULL) {
5425				/*
5426				 * If arc_buf_alloc_impl() fails during
5427				 * decompression, the buf will still be
5428				 * allocated, and needs to be freed here.
5429				 */
5430				arc_buf_destroy(acb->acb_buf,
5431				    acb->acb_private);
5432				acb->acb_buf = NULL;
5433			}
5434			acb->acb_done(zio, &zio->io_bookmark, zio->io_bp,
5435			    acb->acb_buf, acb->acb_private);
5436		}
5437
5438		if (acb->acb_zio_dummy != NULL) {
5439			acb->acb_zio_dummy->io_error = zio->io_error;
5440			zio_nowait(acb->acb_zio_dummy);
5441		}
5442
5443		callback_list = acb->acb_prev;
5444		if (acb->acb_wait) {
5445			mutex_enter(&acb->acb_wait_lock);
5446			acb->acb_wait_error = zio->io_error;
5447			acb->acb_wait = B_FALSE;
5448			cv_signal(&acb->acb_wait_cv);
5449			mutex_exit(&acb->acb_wait_lock);
5450			/* acb will be freed by the waiting thread. */
5451		} else {
5452			kmem_free(acb, sizeof (arc_callback_t));
5453		}
5454	}
5455}
5456
5457/*
5458 * "Read" the block at the specified DVA (in bp) via the
5459 * cache.  If the block is found in the cache, invoke the provided
5460 * callback immediately and return.  Note that the `zio' parameter
5461 * in the callback will be NULL in this case, since no IO was
5462 * required.  If the block is not in the cache pass the read request
5463 * on to the spa with a substitute callback function, so that the
5464 * requested block will be added to the cache.
5465 *
5466 * If a read request arrives for a block that has a read in-progress,
5467 * either wait for the in-progress read to complete (and return the
5468 * results); or, if this is a read with a "done" func, add a record
5469 * to the read to invoke the "done" func when the read completes,
5470 * and return; or just return.
5471 *
5472 * arc_read_done() will invoke all the requested "done" functions
5473 * for readers of this block.
5474 */
5475int
5476arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
5477    arc_read_done_func_t *done, void *private, zio_priority_t priority,
5478    int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
5479{
5480	arc_buf_hdr_t *hdr = NULL;
5481	kmutex_t *hash_lock = NULL;
5482	zio_t *rzio;
5483	uint64_t guid = spa_load_guid(spa);
5484	boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0;
5485	boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) &&
5486	    (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5487	boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) &&
5488	    (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5489	boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp);
5490	boolean_t no_buf = *arc_flags & ARC_FLAG_NO_BUF;
5491	arc_buf_t *buf = NULL;
5492	int rc = 0;
5493
5494	ASSERT(!embedded_bp ||
5495	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5496	ASSERT(!BP_IS_HOLE(bp));
5497	ASSERT(!BP_IS_REDACTED(bp));
5498
5499	/*
5500	 * Normally SPL_FSTRANS will already be set since kernel threads which
5501	 * expect to call the DMU interfaces will set it when created.  System
5502	 * calls are similarly handled by setting/cleaning the bit in the
5503	 * registered callback (module/os/.../zfs/zpl_*).
5504	 *
5505	 * External consumers such as Lustre which call the exported DMU
5506	 * interfaces may not have set SPL_FSTRANS.  To avoid a deadlock
5507	 * on the hash_lock always set and clear the bit.
5508	 */
5509	fstrans_cookie_t cookie = spl_fstrans_mark();
5510top:
5511	/*
5512	 * Verify the block pointer contents are reasonable.  This should
5513	 * always be the case since the blkptr is protected by a checksum.
5514	 * However, if there is damage it's desirable to detect this early
5515	 * and treat it as a checksum error.  This allows an alternate blkptr
5516	 * to be tried when one is available (e.g. ditto blocks).
5517	 */
5518	if (!zfs_blkptr_verify(spa, bp, (zio_flags & ZIO_FLAG_CONFIG_WRITER) ?
5519	    BLK_CONFIG_HELD : BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
5520		rc = SET_ERROR(ECKSUM);
5521		goto done;
5522	}
5523
5524	if (!embedded_bp) {
5525		/*
5526		 * Embedded BP's have no DVA and require no I/O to "read".
5527		 * Create an anonymous arc buf to back it.
5528		 */
5529		hdr = buf_hash_find(guid, bp, &hash_lock);
5530	}
5531
5532	/*
5533	 * Determine if we have an L1 cache hit or a cache miss. For simplicity
5534	 * we maintain encrypted data separately from compressed / uncompressed
5535	 * data. If the user is requesting raw encrypted data and we don't have
5536	 * that in the header we will read from disk to guarantee that we can
5537	 * get it even if the encryption keys aren't loaded.
5538	 */
5539	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) ||
5540	    (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) {
5541		boolean_t is_data = !HDR_ISTYPE_METADATA(hdr);
5542
5543		if (HDR_IO_IN_PROGRESS(hdr)) {
5544			if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
5545				mutex_exit(hash_lock);
5546				ARCSTAT_BUMP(arcstat_cached_only_in_progress);
5547				rc = SET_ERROR(ENOENT);
5548				goto done;
5549			}
5550
5551			zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head;
5552			ASSERT3P(head_zio, !=, NULL);
5553			if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
5554			    priority == ZIO_PRIORITY_SYNC_READ) {
5555				/*
5556				 * This is a sync read that needs to wait for
5557				 * an in-flight async read. Request that the
5558				 * zio have its priority upgraded.
5559				 */
5560				zio_change_priority(head_zio, priority);
5561				DTRACE_PROBE1(arc__async__upgrade__sync,
5562				    arc_buf_hdr_t *, hdr);
5563				ARCSTAT_BUMP(arcstat_async_upgrade_sync);
5564			}
5565
5566			DTRACE_PROBE1(arc__iohit, arc_buf_hdr_t *, hdr);
5567			arc_access(hdr, *arc_flags, B_FALSE);
5568
5569			/*
5570			 * If there are multiple threads reading the same block
5571			 * and that block is not yet in the ARC, then only one
5572			 * thread will do the physical I/O and all other
5573			 * threads will wait until that I/O completes.
5574			 * Synchronous reads use the acb_wait_cv whereas nowait
5575			 * reads register a callback. Both are signalled/called
5576			 * in arc_read_done.
5577			 *
5578			 * Errors of the physical I/O may need to be propagated.
5579			 * Synchronous read errors are returned here from
5580			 * arc_read_done via acb_wait_error.  Nowait reads
5581			 * attach the acb_zio_dummy zio to pio and
5582			 * arc_read_done propagates the physical I/O's io_error
5583			 * to acb_zio_dummy, and thereby to pio.
5584			 */
5585			arc_callback_t *acb = NULL;
5586			if (done || pio || *arc_flags & ARC_FLAG_WAIT) {
5587				acb = kmem_zalloc(sizeof (arc_callback_t),
5588				    KM_SLEEP);
5589				acb->acb_done = done;
5590				acb->acb_private = private;
5591				acb->acb_compressed = compressed_read;
5592				acb->acb_encrypted = encrypted_read;
5593				acb->acb_noauth = noauth_read;
5594				acb->acb_nobuf = no_buf;
5595				if (*arc_flags & ARC_FLAG_WAIT) {
5596					acb->acb_wait = B_TRUE;
5597					mutex_init(&acb->acb_wait_lock, NULL,
5598					    MUTEX_DEFAULT, NULL);
5599					cv_init(&acb->acb_wait_cv, NULL,
5600					    CV_DEFAULT, NULL);
5601				}
5602				acb->acb_zb = *zb;
5603				if (pio != NULL) {
5604					acb->acb_zio_dummy = zio_null(pio,
5605					    spa, NULL, NULL, NULL, zio_flags);
5606				}
5607				acb->acb_zio_head = head_zio;
5608				acb->acb_next = hdr->b_l1hdr.b_acb;
5609				hdr->b_l1hdr.b_acb->acb_prev = acb;
5610				hdr->b_l1hdr.b_acb = acb;
5611			}
5612			mutex_exit(hash_lock);
5613
5614			ARCSTAT_BUMP(arcstat_iohits);
5615			ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
5616			    demand, prefetch, is_data, data, metadata, iohits);
5617
5618			if (*arc_flags & ARC_FLAG_WAIT) {
5619				mutex_enter(&acb->acb_wait_lock);
5620				while (acb->acb_wait) {
5621					cv_wait(&acb->acb_wait_cv,
5622					    &acb->acb_wait_lock);
5623				}
5624				rc = acb->acb_wait_error;
5625				mutex_exit(&acb->acb_wait_lock);
5626				mutex_destroy(&acb->acb_wait_lock);
5627				cv_destroy(&acb->acb_wait_cv);
5628				kmem_free(acb, sizeof (arc_callback_t));
5629			}
5630			goto out;
5631		}
5632
5633		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5634		    hdr->b_l1hdr.b_state == arc_mfu ||
5635		    hdr->b_l1hdr.b_state == arc_uncached);
5636
5637		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5638		arc_access(hdr, *arc_flags, B_TRUE);
5639
5640		if (done && !no_buf) {
5641			ASSERT(!embedded_bp || !BP_IS_HOLE(bp));
5642
5643			/* Get a buf with the desired data in it. */
5644			rc = arc_buf_alloc_impl(hdr, spa, zb, private,
5645			    encrypted_read, compressed_read, noauth_read,
5646			    B_TRUE, &buf);
5647			if (rc == ECKSUM) {
5648				/*
5649				 * Convert authentication and decryption errors
5650				 * to EIO (and generate an ereport if needed)
5651				 * before leaving the ARC.
5652				 */
5653				rc = SET_ERROR(EIO);
5654				if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5655					spa_log_error(spa, zb, hdr->b_birth);
5656					(void) zfs_ereport_post(
5657					    FM_EREPORT_ZFS_AUTHENTICATION,
5658					    spa, NULL, zb, NULL, 0);
5659				}
5660			}
5661			if (rc != 0) {
5662				arc_buf_destroy_impl(buf);
5663				buf = NULL;
5664				(void) remove_reference(hdr, private);
5665			}
5666
5667			/* assert any errors weren't due to unloaded keys */
5668			ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) ||
5669			    rc != EACCES);
5670		}
5671		mutex_exit(hash_lock);
5672		ARCSTAT_BUMP(arcstat_hits);
5673		ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
5674		    demand, prefetch, is_data, data, metadata, hits);
5675		*arc_flags |= ARC_FLAG_CACHED;
5676		goto done;
5677	} else {
5678		uint64_t lsize = BP_GET_LSIZE(bp);
5679		uint64_t psize = BP_GET_PSIZE(bp);
5680		arc_callback_t *acb;
5681		vdev_t *vd = NULL;
5682		uint64_t addr = 0;
5683		boolean_t devw = B_FALSE;
5684		uint64_t size;
5685		abd_t *hdr_abd;
5686		int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0;
5687		arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
5688
5689		if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
5690			if (hash_lock != NULL)
5691				mutex_exit(hash_lock);
5692			rc = SET_ERROR(ENOENT);
5693			goto done;
5694		}
5695
5696		if (hdr == NULL) {
5697			/*
5698			 * This block is not in the cache or it has
5699			 * embedded data.
5700			 */
5701			arc_buf_hdr_t *exists = NULL;
5702			hdr = arc_hdr_alloc(guid, psize, lsize,
5703			    BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type);
5704
5705			if (!embedded_bp) {
5706				hdr->b_dva = *BP_IDENTITY(bp);
5707				hdr->b_birth = BP_GET_BIRTH(bp);
5708				exists = buf_hash_insert(hdr, &hash_lock);
5709			}
5710			if (exists != NULL) {
5711				/* somebody beat us to the hash insert */
5712				mutex_exit(hash_lock);
5713				buf_discard_identity(hdr);
5714				arc_hdr_destroy(hdr);
5715				goto top; /* restart the IO request */
5716			}
5717		} else {
5718			/*
5719			 * This block is in the ghost cache or encrypted data
5720			 * was requested and we didn't have it. If it was
5721			 * L2-only (and thus didn't have an L1 hdr),
5722			 * we realloc the header to add an L1 hdr.
5723			 */
5724			if (!HDR_HAS_L1HDR(hdr)) {
5725				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
5726				    hdr_full_cache);
5727			}
5728
5729			if (GHOST_STATE(hdr->b_l1hdr.b_state)) {
5730				ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5731				ASSERT(!HDR_HAS_RABD(hdr));
5732				ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5733				ASSERT0(zfs_refcount_count(
5734				    &hdr->b_l1hdr.b_refcnt));
5735				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
5736#ifdef ZFS_DEBUG
5737				ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
5738#endif
5739			} else if (HDR_IO_IN_PROGRESS(hdr)) {
5740				/*
5741				 * If this header already had an IO in progress
5742				 * and we are performing another IO to fetch
5743				 * encrypted data we must wait until the first
5744				 * IO completes so as not to confuse
5745				 * arc_read_done(). This should be very rare
5746				 * and so the performance impact shouldn't
5747				 * matter.
5748				 */
5749				arc_callback_t *acb = kmem_zalloc(
5750				    sizeof (arc_callback_t), KM_SLEEP);
5751				acb->acb_wait = B_TRUE;
5752				mutex_init(&acb->acb_wait_lock, NULL,
5753				    MUTEX_DEFAULT, NULL);
5754				cv_init(&acb->acb_wait_cv, NULL, CV_DEFAULT,
5755				    NULL);
5756				acb->acb_zio_head =
5757				    hdr->b_l1hdr.b_acb->acb_zio_head;
5758				acb->acb_next = hdr->b_l1hdr.b_acb;
5759				hdr->b_l1hdr.b_acb->acb_prev = acb;
5760				hdr->b_l1hdr.b_acb = acb;
5761				mutex_exit(hash_lock);
5762				mutex_enter(&acb->acb_wait_lock);
5763				while (acb->acb_wait) {
5764					cv_wait(&acb->acb_wait_cv,
5765					    &acb->acb_wait_lock);
5766				}
5767				mutex_exit(&acb->acb_wait_lock);
5768				mutex_destroy(&acb->acb_wait_lock);
5769				cv_destroy(&acb->acb_wait_cv);
5770				kmem_free(acb, sizeof (arc_callback_t));
5771				goto top;
5772			}
5773		}
5774		if (*arc_flags & ARC_FLAG_UNCACHED) {
5775			arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED);
5776			if (!encrypted_read)
5777				alloc_flags |= ARC_HDR_ALLOC_LINEAR;
5778		}
5779
5780		/*
5781		 * Take additional reference for IO_IN_PROGRESS.  It stops
5782		 * arc_access() from putting this header without any buffers
5783		 * and so other references but obviously nonevictable onto
5784		 * the evictable list of MRU or MFU state.
5785		 */
5786		add_reference(hdr, hdr);
5787		if (!embedded_bp)
5788			arc_access(hdr, *arc_flags, B_FALSE);
5789		arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5790		arc_hdr_alloc_abd(hdr, alloc_flags);
5791		if (encrypted_read) {
5792			ASSERT(HDR_HAS_RABD(hdr));
5793			size = HDR_GET_PSIZE(hdr);
5794			hdr_abd = hdr->b_crypt_hdr.b_rabd;
5795			zio_flags |= ZIO_FLAG_RAW;
5796		} else {
5797			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5798			size = arc_hdr_size(hdr);
5799			hdr_abd = hdr->b_l1hdr.b_pabd;
5800
5801			if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
5802				zio_flags |= ZIO_FLAG_RAW_COMPRESS;
5803			}
5804
5805			/*
5806			 * For authenticated bp's, we do not ask the ZIO layer
5807			 * to authenticate them since this will cause the entire
5808			 * IO to fail if the key isn't loaded. Instead, we
5809			 * defer authentication until arc_buf_fill(), which will
5810			 * verify the data when the key is available.
5811			 */
5812			if (BP_IS_AUTHENTICATED(bp))
5813				zio_flags |= ZIO_FLAG_RAW_ENCRYPT;
5814		}
5815
5816		if (BP_IS_AUTHENTICATED(bp))
5817			arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
5818		if (BP_GET_LEVEL(bp) > 0)
5819			arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
5820		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
5821
5822		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
5823		acb->acb_done = done;
5824		acb->acb_private = private;
5825		acb->acb_compressed = compressed_read;
5826		acb->acb_encrypted = encrypted_read;
5827		acb->acb_noauth = noauth_read;
5828		acb->acb_zb = *zb;
5829
5830		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5831		hdr->b_l1hdr.b_acb = acb;
5832
5833		if (HDR_HAS_L2HDR(hdr) &&
5834		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
5835			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
5836			addr = hdr->b_l2hdr.b_daddr;
5837			/*
5838			 * Lock out L2ARC device removal.
5839			 */
5840			if (vdev_is_dead(vd) ||
5841			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
5842				vd = NULL;
5843		}
5844
5845		/*
5846		 * We count both async reads and scrub IOs as asynchronous so
5847		 * that both can be upgraded in the event of a cache hit while
5848		 * the read IO is still in-flight.
5849		 */
5850		if (priority == ZIO_PRIORITY_ASYNC_READ ||
5851		    priority == ZIO_PRIORITY_SCRUB)
5852			arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5853		else
5854			arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5855
5856		/*
5857		 * At this point, we have a level 1 cache miss or a blkptr
5858		 * with embedded data.  Try again in L2ARC if possible.
5859		 */
5860		ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
5861
5862		/*
5863		 * Skip ARC stat bump for block pointers with embedded
5864		 * data. The data are read from the blkptr itself via
5865		 * decode_embedded_bp_compressed().
5866		 */
5867		if (!embedded_bp) {
5868			DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr,
5869			    blkptr_t *, bp, uint64_t, lsize,
5870			    zbookmark_phys_t *, zb);
5871			ARCSTAT_BUMP(arcstat_misses);
5872			ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
5873			    demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data,
5874			    metadata, misses);
5875			zfs_racct_read(size, 1);
5876		}
5877
5878		/* Check if the spa even has l2 configured */
5879		const boolean_t spa_has_l2 = l2arc_ndev != 0 &&
5880		    spa->spa_l2cache.sav_count > 0;
5881
5882		if (vd != NULL && spa_has_l2 && !(l2arc_norw && devw)) {
5883			/*
5884			 * Read from the L2ARC if the following are true:
5885			 * 1. The L2ARC vdev was previously cached.
5886			 * 2. This buffer still has L2ARC metadata.
5887			 * 3. This buffer isn't currently writing to the L2ARC.
5888			 * 4. The L2ARC entry wasn't evicted, which may
5889			 *    also have invalidated the vdev.
5890			 */
5891			if (HDR_HAS_L2HDR(hdr) &&
5892			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr)) {
5893				l2arc_read_callback_t *cb;
5894				abd_t *abd;
5895				uint64_t asize;
5896
5897				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
5898				ARCSTAT_BUMP(arcstat_l2_hits);
5899				hdr->b_l2hdr.b_hits++;
5900
5901				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
5902				    KM_SLEEP);
5903				cb->l2rcb_hdr = hdr;
5904				cb->l2rcb_bp = *bp;
5905				cb->l2rcb_zb = *zb;
5906				cb->l2rcb_flags = zio_flags;
5907
5908				/*
5909				 * When Compressed ARC is disabled, but the
5910				 * L2ARC block is compressed, arc_hdr_size()
5911				 * will have returned LSIZE rather than PSIZE.
5912				 */
5913				if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
5914				    !HDR_COMPRESSION_ENABLED(hdr) &&
5915				    HDR_GET_PSIZE(hdr) != 0) {
5916					size = HDR_GET_PSIZE(hdr);
5917				}
5918
5919				asize = vdev_psize_to_asize(vd, size);
5920				if (asize != size) {
5921					abd = abd_alloc_for_io(asize,
5922					    HDR_ISTYPE_METADATA(hdr));
5923					cb->l2rcb_abd = abd;
5924				} else {
5925					abd = hdr_abd;
5926				}
5927
5928				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
5929				    addr + asize <= vd->vdev_psize -
5930				    VDEV_LABEL_END_SIZE);
5931
5932				/*
5933				 * l2arc read.  The SCL_L2ARC lock will be
5934				 * released by l2arc_read_done().
5935				 * Issue a null zio if the underlying buffer
5936				 * was squashed to zero size by compression.
5937				 */
5938				ASSERT3U(arc_hdr_get_compress(hdr), !=,
5939				    ZIO_COMPRESS_EMPTY);
5940				rzio = zio_read_phys(pio, vd, addr,
5941				    asize, abd,
5942				    ZIO_CHECKSUM_OFF,
5943				    l2arc_read_done, cb, priority,
5944				    zio_flags | ZIO_FLAG_CANFAIL |
5945				    ZIO_FLAG_DONT_PROPAGATE |
5946				    ZIO_FLAG_DONT_RETRY, B_FALSE);
5947				acb->acb_zio_head = rzio;
5948
5949				if (hash_lock != NULL)
5950					mutex_exit(hash_lock);
5951
5952				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
5953				    zio_t *, rzio);
5954				ARCSTAT_INCR(arcstat_l2_read_bytes,
5955				    HDR_GET_PSIZE(hdr));
5956
5957				if (*arc_flags & ARC_FLAG_NOWAIT) {
5958					zio_nowait(rzio);
5959					goto out;
5960				}
5961
5962				ASSERT(*arc_flags & ARC_FLAG_WAIT);
5963				if (zio_wait(rzio) == 0)
5964					goto out;
5965
5966				/* l2arc read error; goto zio_read() */
5967				if (hash_lock != NULL)
5968					mutex_enter(hash_lock);
5969			} else {
5970				DTRACE_PROBE1(l2arc__miss,
5971				    arc_buf_hdr_t *, hdr);
5972				ARCSTAT_BUMP(arcstat_l2_misses);
5973				if (HDR_L2_WRITING(hdr))
5974					ARCSTAT_BUMP(arcstat_l2_rw_clash);
5975				spa_config_exit(spa, SCL_L2ARC, vd);
5976			}
5977		} else {
5978			if (vd != NULL)
5979				spa_config_exit(spa, SCL_L2ARC, vd);
5980
5981			/*
5982			 * Only a spa with l2 should contribute to l2
5983			 * miss stats.  (Including the case of having a
5984			 * faulted cache device - that's also a miss.)
5985			 */
5986			if (spa_has_l2) {
5987				/*
5988				 * Skip ARC stat bump for block pointers with
5989				 * embedded data. The data are read from the
5990				 * blkptr itself via
5991				 * decode_embedded_bp_compressed().
5992				 */
5993				if (!embedded_bp) {
5994					DTRACE_PROBE1(l2arc__miss,
5995					    arc_buf_hdr_t *, hdr);
5996					ARCSTAT_BUMP(arcstat_l2_misses);
5997				}
5998			}
5999		}
6000
6001		rzio = zio_read(pio, spa, bp, hdr_abd, size,
6002		    arc_read_done, hdr, priority, zio_flags, zb);
6003		acb->acb_zio_head = rzio;
6004
6005		if (hash_lock != NULL)
6006			mutex_exit(hash_lock);
6007
6008		if (*arc_flags & ARC_FLAG_WAIT) {
6009			rc = zio_wait(rzio);
6010			goto out;
6011		}
6012
6013		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
6014		zio_nowait(rzio);
6015	}
6016
6017out:
6018	/* embedded bps don't actually go to disk */
6019	if (!embedded_bp)
6020		spa_read_history_add(spa, zb, *arc_flags);
6021	spl_fstrans_unmark(cookie);
6022	return (rc);
6023
6024done:
6025	if (done)
6026		done(NULL, zb, bp, buf, private);
6027	if (pio && rc != 0) {
6028		zio_t *zio = zio_null(pio, spa, NULL, NULL, NULL, zio_flags);
6029		zio->io_error = rc;
6030		zio_nowait(zio);
6031	}
6032	goto out;
6033}
6034
6035arc_prune_t *
6036arc_add_prune_callback(arc_prune_func_t *func, void *private)
6037{
6038	arc_prune_t *p;
6039
6040	p = kmem_alloc(sizeof (*p), KM_SLEEP);
6041	p->p_pfunc = func;
6042	p->p_private = private;
6043	list_link_init(&p->p_node);
6044	zfs_refcount_create(&p->p_refcnt);
6045
6046	mutex_enter(&arc_prune_mtx);
6047	zfs_refcount_add(&p->p_refcnt, &arc_prune_list);
6048	list_insert_head(&arc_prune_list, p);
6049	mutex_exit(&arc_prune_mtx);
6050
6051	return (p);
6052}
6053
6054void
6055arc_remove_prune_callback(arc_prune_t *p)
6056{
6057	boolean_t wait = B_FALSE;
6058	mutex_enter(&arc_prune_mtx);
6059	list_remove(&arc_prune_list, p);
6060	if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0)
6061		wait = B_TRUE;
6062	mutex_exit(&arc_prune_mtx);
6063
6064	/* wait for arc_prune_task to finish */
6065	if (wait)
6066		taskq_wait_outstanding(arc_prune_taskq, 0);
6067	ASSERT0(zfs_refcount_count(&p->p_refcnt));
6068	zfs_refcount_destroy(&p->p_refcnt);
6069	kmem_free(p, sizeof (*p));
6070}
6071
6072/*
6073 * Helper function for arc_prune_async() it is responsible for safely
6074 * handling the execution of a registered arc_prune_func_t.
6075 */
6076static void
6077arc_prune_task(void *ptr)
6078{
6079	arc_prune_t *ap = (arc_prune_t *)ptr;
6080	arc_prune_func_t *func = ap->p_pfunc;
6081
6082	if (func != NULL)
6083		func(ap->p_adjust, ap->p_private);
6084
6085	(void) zfs_refcount_remove(&ap->p_refcnt, func);
6086}
6087
6088/*
6089 * Notify registered consumers they must drop holds on a portion of the ARC
6090 * buffers they reference.  This provides a mechanism to ensure the ARC can
6091 * honor the metadata limit and reclaim otherwise pinned ARC buffers.
6092 *
6093 * This operation is performed asynchronously so it may be safely called
6094 * in the context of the arc_reclaim_thread().  A reference is taken here
6095 * for each registered arc_prune_t and the arc_prune_task() is responsible
6096 * for releasing it once the registered arc_prune_func_t has completed.
6097 */
6098static void
6099arc_prune_async(uint64_t adjust)
6100{
6101	arc_prune_t *ap;
6102
6103	mutex_enter(&arc_prune_mtx);
6104	for (ap = list_head(&arc_prune_list); ap != NULL;
6105	    ap = list_next(&arc_prune_list, ap)) {
6106
6107		if (zfs_refcount_count(&ap->p_refcnt) >= 2)
6108			continue;
6109
6110		zfs_refcount_add(&ap->p_refcnt, ap->p_pfunc);
6111		ap->p_adjust = adjust;
6112		if (taskq_dispatch(arc_prune_taskq, arc_prune_task,
6113		    ap, TQ_SLEEP) == TASKQID_INVALID) {
6114			(void) zfs_refcount_remove(&ap->p_refcnt, ap->p_pfunc);
6115			continue;
6116		}
6117		ARCSTAT_BUMP(arcstat_prune);
6118	}
6119	mutex_exit(&arc_prune_mtx);
6120}
6121
6122/*
6123 * Notify the arc that a block was freed, and thus will never be used again.
6124 */
6125void
6126arc_freed(spa_t *spa, const blkptr_t *bp)
6127{
6128	arc_buf_hdr_t *hdr;
6129	kmutex_t *hash_lock;
6130	uint64_t guid = spa_load_guid(spa);
6131
6132	ASSERT(!BP_IS_EMBEDDED(bp));
6133
6134	hdr = buf_hash_find(guid, bp, &hash_lock);
6135	if (hdr == NULL)
6136		return;
6137
6138	/*
6139	 * We might be trying to free a block that is still doing I/O
6140	 * (i.e. prefetch) or has some other reference (i.e. a dedup-ed,
6141	 * dmu_sync-ed block). A block may also have a reference if it is
6142	 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6143	 * have written the new block to its final resting place on disk but
6144	 * without the dedup flag set. This would have left the hdr in the MRU
6145	 * state and discoverable. When the txg finally syncs it detects that
6146	 * the block was overridden in open context and issues an override I/O.
6147	 * Since this is a dedup block, the override I/O will determine if the
6148	 * block is already in the DDT. If so, then it will replace the io_bp
6149	 * with the bp from the DDT and allow the I/O to finish. When the I/O
6150	 * reaches the done callback, dbuf_write_override_done, it will
6151	 * check to see if the io_bp and io_bp_override are identical.
6152	 * If they are not, then it indicates that the bp was replaced with
6153	 * the bp in the DDT and the override bp is freed. This allows
6154	 * us to arrive here with a reference on a block that is being
6155	 * freed. So if we have an I/O in progress, or a reference to
6156	 * this hdr, then we don't destroy the hdr.
6157	 */
6158	if (!HDR_HAS_L1HDR(hdr) ||
6159	    zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6160		arc_change_state(arc_anon, hdr);
6161		arc_hdr_destroy(hdr);
6162		mutex_exit(hash_lock);
6163	} else {
6164		mutex_exit(hash_lock);
6165	}
6166
6167}
6168
6169/*
6170 * Release this buffer from the cache, making it an anonymous buffer.  This
6171 * must be done after a read and prior to modifying the buffer contents.
6172 * If the buffer has more than one reference, we must make
6173 * a new hdr for the buffer.
6174 */
6175void
6176arc_release(arc_buf_t *buf, const void *tag)
6177{
6178	arc_buf_hdr_t *hdr = buf->b_hdr;
6179
6180	/*
6181	 * It would be nice to assert that if its DMU metadata (level >
6182	 * 0 || it's the dnode file), then it must be syncing context.
6183	 * But we don't know that information at this level.
6184	 */
6185
6186	ASSERT(HDR_HAS_L1HDR(hdr));
6187
6188	/*
6189	 * We don't grab the hash lock prior to this check, because if
6190	 * the buffer's header is in the arc_anon state, it won't be
6191	 * linked into the hash table.
6192	 */
6193	if (hdr->b_l1hdr.b_state == arc_anon) {
6194		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6195		ASSERT(!HDR_IN_HASH_TABLE(hdr));
6196		ASSERT(!HDR_HAS_L2HDR(hdr));
6197
6198		ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
6199		ASSERT(ARC_BUF_LAST(buf));
6200		ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
6201		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6202
6203		hdr->b_l1hdr.b_arc_access = 0;
6204
6205		/*
6206		 * If the buf is being overridden then it may already
6207		 * have a hdr that is not empty.
6208		 */
6209		buf_discard_identity(hdr);
6210		arc_buf_thaw(buf);
6211
6212		return;
6213	}
6214
6215	kmutex_t *hash_lock = HDR_LOCK(hdr);
6216	mutex_enter(hash_lock);
6217
6218	/*
6219	 * This assignment is only valid as long as the hash_lock is
6220	 * held, we must be careful not to reference state or the
6221	 * b_state field after dropping the lock.
6222	 */
6223	arc_state_t *state = hdr->b_l1hdr.b_state;
6224	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6225	ASSERT3P(state, !=, arc_anon);
6226
6227	/* this buffer is not on any list */
6228	ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
6229
6230	if (HDR_HAS_L2HDR(hdr)) {
6231		mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6232
6233		/*
6234		 * We have to recheck this conditional again now that
6235		 * we're holding the l2ad_mtx to prevent a race with
6236		 * another thread which might be concurrently calling
6237		 * l2arc_evict(). In that case, l2arc_evict() might have
6238		 * destroyed the header's L2 portion as we were waiting
6239		 * to acquire the l2ad_mtx.
6240		 */
6241		if (HDR_HAS_L2HDR(hdr))
6242			arc_hdr_l2hdr_destroy(hdr);
6243
6244		mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6245	}
6246
6247	/*
6248	 * Do we have more than one buf?
6249	 */
6250	if (hdr->b_l1hdr.b_buf != buf || !ARC_BUF_LAST(buf)) {
6251		arc_buf_hdr_t *nhdr;
6252		uint64_t spa = hdr->b_spa;
6253		uint64_t psize = HDR_GET_PSIZE(hdr);
6254		uint64_t lsize = HDR_GET_LSIZE(hdr);
6255		boolean_t protected = HDR_PROTECTED(hdr);
6256		enum zio_compress compress = arc_hdr_get_compress(hdr);
6257		arc_buf_contents_t type = arc_buf_type(hdr);
6258		VERIFY3U(hdr->b_type, ==, type);
6259
6260		ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
6261		VERIFY3S(remove_reference(hdr, tag), >, 0);
6262
6263		if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
6264			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6265			ASSERT(ARC_BUF_LAST(buf));
6266		}
6267
6268		/*
6269		 * Pull the data off of this hdr and attach it to
6270		 * a new anonymous hdr. Also find the last buffer
6271		 * in the hdr's buffer list.
6272		 */
6273		arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
6274		ASSERT3P(lastbuf, !=, NULL);
6275
6276		/*
6277		 * If the current arc_buf_t and the hdr are sharing their data
6278		 * buffer, then we must stop sharing that block.
6279		 */
6280		if (ARC_BUF_SHARED(buf)) {
6281			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6282			ASSERT(!arc_buf_is_shared(lastbuf));
6283
6284			/*
6285			 * First, sever the block sharing relationship between
6286			 * buf and the arc_buf_hdr_t.
6287			 */
6288			arc_unshare_buf(hdr, buf);
6289
6290			/*
6291			 * Now we need to recreate the hdr's b_pabd. Since we
6292			 * have lastbuf handy, we try to share with it, but if
6293			 * we can't then we allocate a new b_pabd and copy the
6294			 * data from buf into it.
6295			 */
6296			if (arc_can_share(hdr, lastbuf)) {
6297				arc_share_buf(hdr, lastbuf);
6298			} else {
6299				arc_hdr_alloc_abd(hdr, 0);
6300				abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
6301				    buf->b_data, psize);
6302			}
6303			VERIFY3P(lastbuf->b_data, !=, NULL);
6304		} else if (HDR_SHARED_DATA(hdr)) {
6305			/*
6306			 * Uncompressed shared buffers are always at the end
6307			 * of the list. Compressed buffers don't have the
6308			 * same requirements. This makes it hard to
6309			 * simply assert that the lastbuf is shared so
6310			 * we rely on the hdr's compression flags to determine
6311			 * if we have a compressed, shared buffer.
6312			 */
6313			ASSERT(arc_buf_is_shared(lastbuf) ||
6314			    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
6315			ASSERT(!arc_buf_is_shared(buf));
6316		}
6317
6318		ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
6319		ASSERT3P(state, !=, arc_l2c_only);
6320
6321		(void) zfs_refcount_remove_many(&state->arcs_size[type],
6322		    arc_buf_size(buf), buf);
6323
6324		if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6325			ASSERT3P(state, !=, arc_l2c_only);
6326			(void) zfs_refcount_remove_many(
6327			    &state->arcs_esize[type],
6328			    arc_buf_size(buf), buf);
6329		}
6330
6331		arc_cksum_verify(buf);
6332		arc_buf_unwatch(buf);
6333
6334		/* if this is the last uncompressed buf free the checksum */
6335		if (!arc_hdr_has_uncompressed_buf(hdr))
6336			arc_cksum_free(hdr);
6337
6338		mutex_exit(hash_lock);
6339
6340		nhdr = arc_hdr_alloc(spa, psize, lsize, protected,
6341		    compress, hdr->b_complevel, type);
6342		ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
6343		ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt));
6344		VERIFY3U(nhdr->b_type, ==, type);
6345		ASSERT(!HDR_SHARED_DATA(nhdr));
6346
6347		nhdr->b_l1hdr.b_buf = buf;
6348		(void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
6349		buf->b_hdr = nhdr;
6350
6351		(void) zfs_refcount_add_many(&arc_anon->arcs_size[type],
6352		    arc_buf_size(buf), buf);
6353	} else {
6354		ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
6355		/* protected by hash lock, or hdr is on arc_anon */
6356		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6357		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6358		hdr->b_l1hdr.b_mru_hits = 0;
6359		hdr->b_l1hdr.b_mru_ghost_hits = 0;
6360		hdr->b_l1hdr.b_mfu_hits = 0;
6361		hdr->b_l1hdr.b_mfu_ghost_hits = 0;
6362		arc_change_state(arc_anon, hdr);
6363		hdr->b_l1hdr.b_arc_access = 0;
6364
6365		mutex_exit(hash_lock);
6366		buf_discard_identity(hdr);
6367		arc_buf_thaw(buf);
6368	}
6369}
6370
6371int
6372arc_released(arc_buf_t *buf)
6373{
6374	return (buf->b_data != NULL &&
6375	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
6376}
6377
6378#ifdef ZFS_DEBUG
6379int
6380arc_referenced(arc_buf_t *buf)
6381{
6382	return (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
6383}
6384#endif
6385
6386static void
6387arc_write_ready(zio_t *zio)
6388{
6389	arc_write_callback_t *callback = zio->io_private;
6390	arc_buf_t *buf = callback->awcb_buf;
6391	arc_buf_hdr_t *hdr = buf->b_hdr;
6392	blkptr_t *bp = zio->io_bp;
6393	uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp);
6394	fstrans_cookie_t cookie = spl_fstrans_mark();
6395
6396	ASSERT(HDR_HAS_L1HDR(hdr));
6397	ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
6398	ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
6399
6400	/*
6401	 * If we're reexecuting this zio because the pool suspended, then
6402	 * cleanup any state that was previously set the first time the
6403	 * callback was invoked.
6404	 */
6405	if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
6406		arc_cksum_free(hdr);
6407		arc_buf_unwatch(buf);
6408		if (hdr->b_l1hdr.b_pabd != NULL) {
6409			if (ARC_BUF_SHARED(buf)) {
6410				arc_unshare_buf(hdr, buf);
6411			} else {
6412				ASSERT(!arc_buf_is_shared(buf));
6413				arc_hdr_free_abd(hdr, B_FALSE);
6414			}
6415		}
6416
6417		if (HDR_HAS_RABD(hdr))
6418			arc_hdr_free_abd(hdr, B_TRUE);
6419	}
6420	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6421	ASSERT(!HDR_HAS_RABD(hdr));
6422	ASSERT(!HDR_SHARED_DATA(hdr));
6423	ASSERT(!arc_buf_is_shared(buf));
6424
6425	callback->awcb_ready(zio, buf, callback->awcb_private);
6426
6427	if (HDR_IO_IN_PROGRESS(hdr)) {
6428		ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
6429	} else {
6430		arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6431		add_reference(hdr, hdr); /* For IO_IN_PROGRESS. */
6432	}
6433
6434	if (BP_IS_PROTECTED(bp)) {
6435		/* ZIL blocks are written through zio_rewrite */
6436		ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
6437
6438		if (BP_SHOULD_BYTESWAP(bp)) {
6439			if (BP_GET_LEVEL(bp) > 0) {
6440				hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
6441			} else {
6442				hdr->b_l1hdr.b_byteswap =
6443				    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
6444			}
6445		} else {
6446			hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
6447		}
6448
6449		arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
6450		hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
6451		hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
6452		zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
6453		    hdr->b_crypt_hdr.b_iv);
6454		zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
6455	} else {
6456		arc_hdr_clear_flags(hdr, ARC_FLAG_PROTECTED);
6457	}
6458
6459	/*
6460	 * If this block was written for raw encryption but the zio layer
6461	 * ended up only authenticating it, adjust the buffer flags now.
6462	 */
6463	if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) {
6464		arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6465		buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6466		if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF)
6467			buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6468	} else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) {
6469		buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6470		buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6471	}
6472
6473	/* this must be done after the buffer flags are adjusted */
6474	arc_cksum_compute(buf);
6475
6476	enum zio_compress compress;
6477	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
6478		compress = ZIO_COMPRESS_OFF;
6479	} else {
6480		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
6481		compress = BP_GET_COMPRESS(bp);
6482	}
6483	HDR_SET_PSIZE(hdr, psize);
6484	arc_hdr_set_compress(hdr, compress);
6485	hdr->b_complevel = zio->io_prop.zp_complevel;
6486
6487	if (zio->io_error != 0 || psize == 0)
6488		goto out;
6489
6490	/*
6491	 * Fill the hdr with data. If the buffer is encrypted we have no choice
6492	 * but to copy the data into b_radb. If the hdr is compressed, the data
6493	 * we want is available from the zio, otherwise we can take it from
6494	 * the buf.
6495	 *
6496	 * We might be able to share the buf's data with the hdr here. However,
6497	 * doing so would cause the ARC to be full of linear ABDs if we write a
6498	 * lot of shareable data. As a compromise, we check whether scattered
6499	 * ABDs are allowed, and assume that if they are then the user wants
6500	 * the ARC to be primarily filled with them regardless of the data being
6501	 * written. Therefore, if they're allowed then we allocate one and copy
6502	 * the data into it; otherwise, we share the data directly if we can.
6503	 */
6504	if (ARC_BUF_ENCRYPTED(buf)) {
6505		ASSERT3U(psize, >, 0);
6506		ASSERT(ARC_BUF_COMPRESSED(buf));
6507		arc_hdr_alloc_abd(hdr, ARC_HDR_ALLOC_RDATA |
6508		    ARC_HDR_USE_RESERVE);
6509		abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6510	} else if (!(HDR_UNCACHED(hdr) ||
6511	    abd_size_alloc_linear(arc_buf_size(buf))) ||
6512	    !arc_can_share(hdr, buf)) {
6513		/*
6514		 * Ideally, we would always copy the io_abd into b_pabd, but the
6515		 * user may have disabled compressed ARC, thus we must check the
6516		 * hdr's compression setting rather than the io_bp's.
6517		 */
6518		if (BP_IS_ENCRYPTED(bp)) {
6519			ASSERT3U(psize, >, 0);
6520			arc_hdr_alloc_abd(hdr, ARC_HDR_ALLOC_RDATA |
6521			    ARC_HDR_USE_RESERVE);
6522			abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6523		} else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
6524		    !ARC_BUF_COMPRESSED(buf)) {
6525			ASSERT3U(psize, >, 0);
6526			arc_hdr_alloc_abd(hdr, ARC_HDR_USE_RESERVE);
6527			abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
6528		} else {
6529			ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
6530			arc_hdr_alloc_abd(hdr, ARC_HDR_USE_RESERVE);
6531			abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
6532			    arc_buf_size(buf));
6533		}
6534	} else {
6535		ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
6536		ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
6537		ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
6538		ASSERT(ARC_BUF_LAST(buf));
6539
6540		arc_share_buf(hdr, buf);
6541	}
6542
6543out:
6544	arc_hdr_verify(hdr, bp);
6545	spl_fstrans_unmark(cookie);
6546}
6547
6548static void
6549arc_write_children_ready(zio_t *zio)
6550{
6551	arc_write_callback_t *callback = zio->io_private;
6552	arc_buf_t *buf = callback->awcb_buf;
6553
6554	callback->awcb_children_ready(zio, buf, callback->awcb_private);
6555}
6556
6557static void
6558arc_write_done(zio_t *zio)
6559{
6560	arc_write_callback_t *callback = zio->io_private;
6561	arc_buf_t *buf = callback->awcb_buf;
6562	arc_buf_hdr_t *hdr = buf->b_hdr;
6563
6564	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6565
6566	if (zio->io_error == 0) {
6567		arc_hdr_verify(hdr, zio->io_bp);
6568
6569		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
6570			buf_discard_identity(hdr);
6571		} else {
6572			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
6573			hdr->b_birth = BP_GET_BIRTH(zio->io_bp);
6574		}
6575	} else {
6576		ASSERT(HDR_EMPTY(hdr));
6577	}
6578
6579	/*
6580	 * If the block to be written was all-zero or compressed enough to be
6581	 * embedded in the BP, no write was performed so there will be no
6582	 * dva/birth/checksum.  The buffer must therefore remain anonymous
6583	 * (and uncached).
6584	 */
6585	if (!HDR_EMPTY(hdr)) {
6586		arc_buf_hdr_t *exists;
6587		kmutex_t *hash_lock;
6588
6589		ASSERT3U(zio->io_error, ==, 0);
6590
6591		arc_cksum_verify(buf);
6592
6593		exists = buf_hash_insert(hdr, &hash_lock);
6594		if (exists != NULL) {
6595			/*
6596			 * This can only happen if we overwrite for
6597			 * sync-to-convergence, because we remove
6598			 * buffers from the hash table when we arc_free().
6599			 */
6600			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
6601				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6602					panic("bad overwrite, hdr=%p exists=%p",
6603					    (void *)hdr, (void *)exists);
6604				ASSERT(zfs_refcount_is_zero(
6605				    &exists->b_l1hdr.b_refcnt));
6606				arc_change_state(arc_anon, exists);
6607				arc_hdr_destroy(exists);
6608				mutex_exit(hash_lock);
6609				exists = buf_hash_insert(hdr, &hash_lock);
6610				ASSERT3P(exists, ==, NULL);
6611			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
6612				/* nopwrite */
6613				ASSERT(zio->io_prop.zp_nopwrite);
6614				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6615					panic("bad nopwrite, hdr=%p exists=%p",
6616					    (void *)hdr, (void *)exists);
6617			} else {
6618				/* Dedup */
6619				ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
6620				ASSERT(ARC_BUF_LAST(hdr->b_l1hdr.b_buf));
6621				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
6622				ASSERT(BP_GET_DEDUP(zio->io_bp));
6623				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
6624			}
6625		}
6626		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6627		VERIFY3S(remove_reference(hdr, hdr), >, 0);
6628		/* if it's not anon, we are doing a scrub */
6629		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
6630			arc_access(hdr, 0, B_FALSE);
6631		mutex_exit(hash_lock);
6632	} else {
6633		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6634		VERIFY3S(remove_reference(hdr, hdr), >, 0);
6635	}
6636
6637	callback->awcb_done(zio, buf, callback->awcb_private);
6638
6639	abd_free(zio->io_abd);
6640	kmem_free(callback, sizeof (arc_write_callback_t));
6641}
6642
6643zio_t *
6644arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
6645    blkptr_t *bp, arc_buf_t *buf, boolean_t uncached, boolean_t l2arc,
6646    const zio_prop_t *zp, arc_write_done_func_t *ready,
6647    arc_write_done_func_t *children_ready, arc_write_done_func_t *done,
6648    void *private, zio_priority_t priority, int zio_flags,
6649    const zbookmark_phys_t *zb)
6650{
6651	arc_buf_hdr_t *hdr = buf->b_hdr;
6652	arc_write_callback_t *callback;
6653	zio_t *zio;
6654	zio_prop_t localprop = *zp;
6655
6656	ASSERT3P(ready, !=, NULL);
6657	ASSERT3P(done, !=, NULL);
6658	ASSERT(!HDR_IO_ERROR(hdr));
6659	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6660	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6661	ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
6662	if (uncached)
6663		arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED);
6664	else if (l2arc)
6665		arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6666
6667	if (ARC_BUF_ENCRYPTED(buf)) {
6668		ASSERT(ARC_BUF_COMPRESSED(buf));
6669		localprop.zp_encrypt = B_TRUE;
6670		localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6671		localprop.zp_complevel = hdr->b_complevel;
6672		localprop.zp_byteorder =
6673		    (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
6674		    ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
6675		memcpy(localprop.zp_salt, hdr->b_crypt_hdr.b_salt,
6676		    ZIO_DATA_SALT_LEN);
6677		memcpy(localprop.zp_iv, hdr->b_crypt_hdr.b_iv,
6678		    ZIO_DATA_IV_LEN);
6679		memcpy(localprop.zp_mac, hdr->b_crypt_hdr.b_mac,
6680		    ZIO_DATA_MAC_LEN);
6681		if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) {
6682			localprop.zp_nopwrite = B_FALSE;
6683			localprop.zp_copies =
6684			    MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1);
6685		}
6686		zio_flags |= ZIO_FLAG_RAW;
6687	} else if (ARC_BUF_COMPRESSED(buf)) {
6688		ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
6689		localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6690		localprop.zp_complevel = hdr->b_complevel;
6691		zio_flags |= ZIO_FLAG_RAW_COMPRESS;
6692	}
6693	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
6694	callback->awcb_ready = ready;
6695	callback->awcb_children_ready = children_ready;
6696	callback->awcb_done = done;
6697	callback->awcb_private = private;
6698	callback->awcb_buf = buf;
6699
6700	/*
6701	 * The hdr's b_pabd is now stale, free it now. A new data block
6702	 * will be allocated when the zio pipeline calls arc_write_ready().
6703	 */
6704	if (hdr->b_l1hdr.b_pabd != NULL) {
6705		/*
6706		 * If the buf is currently sharing the data block with
6707		 * the hdr then we need to break that relationship here.
6708		 * The hdr will remain with a NULL data pointer and the
6709		 * buf will take sole ownership of the block.
6710		 */
6711		if (ARC_BUF_SHARED(buf)) {
6712			arc_unshare_buf(hdr, buf);
6713		} else {
6714			ASSERT(!arc_buf_is_shared(buf));
6715			arc_hdr_free_abd(hdr, B_FALSE);
6716		}
6717		VERIFY3P(buf->b_data, !=, NULL);
6718	}
6719
6720	if (HDR_HAS_RABD(hdr))
6721		arc_hdr_free_abd(hdr, B_TRUE);
6722
6723	if (!(zio_flags & ZIO_FLAG_RAW))
6724		arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
6725
6726	ASSERT(!arc_buf_is_shared(buf));
6727	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6728
6729	zio = zio_write(pio, spa, txg, bp,
6730	    abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
6731	    HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
6732	    (children_ready != NULL) ? arc_write_children_ready : NULL,
6733	    arc_write_done, callback, priority, zio_flags, zb);
6734
6735	return (zio);
6736}
6737
6738void
6739arc_tempreserve_clear(uint64_t reserve)
6740{
6741	atomic_add_64(&arc_tempreserve, -reserve);
6742	ASSERT((int64_t)arc_tempreserve >= 0);
6743}
6744
6745int
6746arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg)
6747{
6748	int error;
6749	uint64_t anon_size;
6750
6751	if (!arc_no_grow &&
6752	    reserve > arc_c/4 &&
6753	    reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT))
6754		arc_c = MIN(arc_c_max, reserve * 4);
6755
6756	/*
6757	 * Throttle when the calculated memory footprint for the TXG
6758	 * exceeds the target ARC size.
6759	 */
6760	if (reserve > arc_c) {
6761		DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
6762		return (SET_ERROR(ERESTART));
6763	}
6764
6765	/*
6766	 * Don't count loaned bufs as in flight dirty data to prevent long
6767	 * network delays from blocking transactions that are ready to be
6768	 * assigned to a txg.
6769	 */
6770
6771	/* assert that it has not wrapped around */
6772	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
6773
6774	anon_size = MAX((int64_t)
6775	    (zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_DATA]) +
6776	    zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_METADATA]) -
6777	    arc_loaned_bytes), 0);
6778
6779	/*
6780	 * Writes will, almost always, require additional memory allocations
6781	 * in order to compress/encrypt/etc the data.  We therefore need to
6782	 * make sure that there is sufficient available memory for this.
6783	 */
6784	error = arc_memory_throttle(spa, reserve, txg);
6785	if (error != 0)
6786		return (error);
6787
6788	/*
6789	 * Throttle writes when the amount of dirty data in the cache
6790	 * gets too large.  We try to keep the cache less than half full
6791	 * of dirty blocks so that our sync times don't grow too large.
6792	 *
6793	 * In the case of one pool being built on another pool, we want
6794	 * to make sure we don't end up throttling the lower (backing)
6795	 * pool when the upper pool is the majority contributor to dirty
6796	 * data. To insure we make forward progress during throttling, we
6797	 * also check the current pool's net dirty data and only throttle
6798	 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
6799	 * data in the cache.
6800	 *
6801	 * Note: if two requests come in concurrently, we might let them
6802	 * both succeed, when one of them should fail.  Not a huge deal.
6803	 */
6804	uint64_t total_dirty = reserve + arc_tempreserve + anon_size;
6805	uint64_t spa_dirty_anon = spa_dirty_data(spa);
6806	uint64_t rarc_c = arc_warm ? arc_c : arc_c_max;
6807	if (total_dirty > rarc_c * zfs_arc_dirty_limit_percent / 100 &&
6808	    anon_size > rarc_c * zfs_arc_anon_limit_percent / 100 &&
6809	    spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) {
6810#ifdef ZFS_DEBUG
6811		uint64_t meta_esize = zfs_refcount_count(
6812		    &arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6813		uint64_t data_esize =
6814		    zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6815		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
6816		    "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n",
6817		    (u_longlong_t)arc_tempreserve >> 10,
6818		    (u_longlong_t)meta_esize >> 10,
6819		    (u_longlong_t)data_esize >> 10,
6820		    (u_longlong_t)reserve >> 10,
6821		    (u_longlong_t)rarc_c >> 10);
6822#endif
6823		DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
6824		return (SET_ERROR(ERESTART));
6825	}
6826	atomic_add_64(&arc_tempreserve, reserve);
6827	return (0);
6828}
6829
6830static void
6831arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
6832    kstat_named_t *data, kstat_named_t *metadata,
6833    kstat_named_t *evict_data, kstat_named_t *evict_metadata)
6834{
6835	data->value.ui64 =
6836	    zfs_refcount_count(&state->arcs_size[ARC_BUFC_DATA]);
6837	metadata->value.ui64 =
6838	    zfs_refcount_count(&state->arcs_size[ARC_BUFC_METADATA]);
6839	size->value.ui64 = data->value.ui64 + metadata->value.ui64;
6840	evict_data->value.ui64 =
6841	    zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
6842	evict_metadata->value.ui64 =
6843	    zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
6844}
6845
6846static int
6847arc_kstat_update(kstat_t *ksp, int rw)
6848{
6849	arc_stats_t *as = ksp->ks_data;
6850
6851	if (rw == KSTAT_WRITE)
6852		return (SET_ERROR(EACCES));
6853
6854	as->arcstat_hits.value.ui64 =
6855	    wmsum_value(&arc_sums.arcstat_hits);
6856	as->arcstat_iohits.value.ui64 =
6857	    wmsum_value(&arc_sums.arcstat_iohits);
6858	as->arcstat_misses.value.ui64 =
6859	    wmsum_value(&arc_sums.arcstat_misses);
6860	as->arcstat_demand_data_hits.value.ui64 =
6861	    wmsum_value(&arc_sums.arcstat_demand_data_hits);
6862	as->arcstat_demand_data_iohits.value.ui64 =
6863	    wmsum_value(&arc_sums.arcstat_demand_data_iohits);
6864	as->arcstat_demand_data_misses.value.ui64 =
6865	    wmsum_value(&arc_sums.arcstat_demand_data_misses);
6866	as->arcstat_demand_metadata_hits.value.ui64 =
6867	    wmsum_value(&arc_sums.arcstat_demand_metadata_hits);
6868	as->arcstat_demand_metadata_iohits.value.ui64 =
6869	    wmsum_value(&arc_sums.arcstat_demand_metadata_iohits);
6870	as->arcstat_demand_metadata_misses.value.ui64 =
6871	    wmsum_value(&arc_sums.arcstat_demand_metadata_misses);
6872	as->arcstat_prefetch_data_hits.value.ui64 =
6873	    wmsum_value(&arc_sums.arcstat_prefetch_data_hits);
6874	as->arcstat_prefetch_data_iohits.value.ui64 =
6875	    wmsum_value(&arc_sums.arcstat_prefetch_data_iohits);
6876	as->arcstat_prefetch_data_misses.value.ui64 =
6877	    wmsum_value(&arc_sums.arcstat_prefetch_data_misses);
6878	as->arcstat_prefetch_metadata_hits.value.ui64 =
6879	    wmsum_value(&arc_sums.arcstat_prefetch_metadata_hits);
6880	as->arcstat_prefetch_metadata_iohits.value.ui64 =
6881	    wmsum_value(&arc_sums.arcstat_prefetch_metadata_iohits);
6882	as->arcstat_prefetch_metadata_misses.value.ui64 =
6883	    wmsum_value(&arc_sums.arcstat_prefetch_metadata_misses);
6884	as->arcstat_mru_hits.value.ui64 =
6885	    wmsum_value(&arc_sums.arcstat_mru_hits);
6886	as->arcstat_mru_ghost_hits.value.ui64 =
6887	    wmsum_value(&arc_sums.arcstat_mru_ghost_hits);
6888	as->arcstat_mfu_hits.value.ui64 =
6889	    wmsum_value(&arc_sums.arcstat_mfu_hits);
6890	as->arcstat_mfu_ghost_hits.value.ui64 =
6891	    wmsum_value(&arc_sums.arcstat_mfu_ghost_hits);
6892	as->arcstat_uncached_hits.value.ui64 =
6893	    wmsum_value(&arc_sums.arcstat_uncached_hits);
6894	as->arcstat_deleted.value.ui64 =
6895	    wmsum_value(&arc_sums.arcstat_deleted);
6896	as->arcstat_mutex_miss.value.ui64 =
6897	    wmsum_value(&arc_sums.arcstat_mutex_miss);
6898	as->arcstat_access_skip.value.ui64 =
6899	    wmsum_value(&arc_sums.arcstat_access_skip);
6900	as->arcstat_evict_skip.value.ui64 =
6901	    wmsum_value(&arc_sums.arcstat_evict_skip);
6902	as->arcstat_evict_not_enough.value.ui64 =
6903	    wmsum_value(&arc_sums.arcstat_evict_not_enough);
6904	as->arcstat_evict_l2_cached.value.ui64 =
6905	    wmsum_value(&arc_sums.arcstat_evict_l2_cached);
6906	as->arcstat_evict_l2_eligible.value.ui64 =
6907	    wmsum_value(&arc_sums.arcstat_evict_l2_eligible);
6908	as->arcstat_evict_l2_eligible_mfu.value.ui64 =
6909	    wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mfu);
6910	as->arcstat_evict_l2_eligible_mru.value.ui64 =
6911	    wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mru);
6912	as->arcstat_evict_l2_ineligible.value.ui64 =
6913	    wmsum_value(&arc_sums.arcstat_evict_l2_ineligible);
6914	as->arcstat_evict_l2_skip.value.ui64 =
6915	    wmsum_value(&arc_sums.arcstat_evict_l2_skip);
6916	as->arcstat_hash_collisions.value.ui64 =
6917	    wmsum_value(&arc_sums.arcstat_hash_collisions);
6918	as->arcstat_hash_chains.value.ui64 =
6919	    wmsum_value(&arc_sums.arcstat_hash_chains);
6920	as->arcstat_size.value.ui64 =
6921	    aggsum_value(&arc_sums.arcstat_size);
6922	as->arcstat_compressed_size.value.ui64 =
6923	    wmsum_value(&arc_sums.arcstat_compressed_size);
6924	as->arcstat_uncompressed_size.value.ui64 =
6925	    wmsum_value(&arc_sums.arcstat_uncompressed_size);
6926	as->arcstat_overhead_size.value.ui64 =
6927	    wmsum_value(&arc_sums.arcstat_overhead_size);
6928	as->arcstat_hdr_size.value.ui64 =
6929	    wmsum_value(&arc_sums.arcstat_hdr_size);
6930	as->arcstat_data_size.value.ui64 =
6931	    wmsum_value(&arc_sums.arcstat_data_size);
6932	as->arcstat_metadata_size.value.ui64 =
6933	    wmsum_value(&arc_sums.arcstat_metadata_size);
6934	as->arcstat_dbuf_size.value.ui64 =
6935	    wmsum_value(&arc_sums.arcstat_dbuf_size);
6936#if defined(COMPAT_FREEBSD11)
6937	as->arcstat_other_size.value.ui64 =
6938	    wmsum_value(&arc_sums.arcstat_bonus_size) +
6939	    wmsum_value(&arc_sums.arcstat_dnode_size) +
6940	    wmsum_value(&arc_sums.arcstat_dbuf_size);
6941#endif
6942
6943	arc_kstat_update_state(arc_anon,
6944	    &as->arcstat_anon_size,
6945	    &as->arcstat_anon_data,
6946	    &as->arcstat_anon_metadata,
6947	    &as->arcstat_anon_evictable_data,
6948	    &as->arcstat_anon_evictable_metadata);
6949	arc_kstat_update_state(arc_mru,
6950	    &as->arcstat_mru_size,
6951	    &as->arcstat_mru_data,
6952	    &as->arcstat_mru_metadata,
6953	    &as->arcstat_mru_evictable_data,
6954	    &as->arcstat_mru_evictable_metadata);
6955	arc_kstat_update_state(arc_mru_ghost,
6956	    &as->arcstat_mru_ghost_size,
6957	    &as->arcstat_mru_ghost_data,
6958	    &as->arcstat_mru_ghost_metadata,
6959	    &as->arcstat_mru_ghost_evictable_data,
6960	    &as->arcstat_mru_ghost_evictable_metadata);
6961	arc_kstat_update_state(arc_mfu,
6962	    &as->arcstat_mfu_size,
6963	    &as->arcstat_mfu_data,
6964	    &as->arcstat_mfu_metadata,
6965	    &as->arcstat_mfu_evictable_data,
6966	    &as->arcstat_mfu_evictable_metadata);
6967	arc_kstat_update_state(arc_mfu_ghost,
6968	    &as->arcstat_mfu_ghost_size,
6969	    &as->arcstat_mfu_ghost_data,
6970	    &as->arcstat_mfu_ghost_metadata,
6971	    &as->arcstat_mfu_ghost_evictable_data,
6972	    &as->arcstat_mfu_ghost_evictable_metadata);
6973	arc_kstat_update_state(arc_uncached,
6974	    &as->arcstat_uncached_size,
6975	    &as->arcstat_uncached_data,
6976	    &as->arcstat_uncached_metadata,
6977	    &as->arcstat_uncached_evictable_data,
6978	    &as->arcstat_uncached_evictable_metadata);
6979
6980	as->arcstat_dnode_size.value.ui64 =
6981	    wmsum_value(&arc_sums.arcstat_dnode_size);
6982	as->arcstat_bonus_size.value.ui64 =
6983	    wmsum_value(&arc_sums.arcstat_bonus_size);
6984	as->arcstat_l2_hits.value.ui64 =
6985	    wmsum_value(&arc_sums.arcstat_l2_hits);
6986	as->arcstat_l2_misses.value.ui64 =
6987	    wmsum_value(&arc_sums.arcstat_l2_misses);
6988	as->arcstat_l2_prefetch_asize.value.ui64 =
6989	    wmsum_value(&arc_sums.arcstat_l2_prefetch_asize);
6990	as->arcstat_l2_mru_asize.value.ui64 =
6991	    wmsum_value(&arc_sums.arcstat_l2_mru_asize);
6992	as->arcstat_l2_mfu_asize.value.ui64 =
6993	    wmsum_value(&arc_sums.arcstat_l2_mfu_asize);
6994	as->arcstat_l2_bufc_data_asize.value.ui64 =
6995	    wmsum_value(&arc_sums.arcstat_l2_bufc_data_asize);
6996	as->arcstat_l2_bufc_metadata_asize.value.ui64 =
6997	    wmsum_value(&arc_sums.arcstat_l2_bufc_metadata_asize);
6998	as->arcstat_l2_feeds.value.ui64 =
6999	    wmsum_value(&arc_sums.arcstat_l2_feeds);
7000	as->arcstat_l2_rw_clash.value.ui64 =
7001	    wmsum_value(&arc_sums.arcstat_l2_rw_clash);
7002	as->arcstat_l2_read_bytes.value.ui64 =
7003	    wmsum_value(&arc_sums.arcstat_l2_read_bytes);
7004	as->arcstat_l2_write_bytes.value.ui64 =
7005	    wmsum_value(&arc_sums.arcstat_l2_write_bytes);
7006	as->arcstat_l2_writes_sent.value.ui64 =
7007	    wmsum_value(&arc_sums.arcstat_l2_writes_sent);
7008	as->arcstat_l2_writes_done.value.ui64 =
7009	    wmsum_value(&arc_sums.arcstat_l2_writes_done);
7010	as->arcstat_l2_writes_error.value.ui64 =
7011	    wmsum_value(&arc_sums.arcstat_l2_writes_error);
7012	as->arcstat_l2_writes_lock_retry.value.ui64 =
7013	    wmsum_value(&arc_sums.arcstat_l2_writes_lock_retry);
7014	as->arcstat_l2_evict_lock_retry.value.ui64 =
7015	    wmsum_value(&arc_sums.arcstat_l2_evict_lock_retry);
7016	as->arcstat_l2_evict_reading.value.ui64 =
7017	    wmsum_value(&arc_sums.arcstat_l2_evict_reading);
7018	as->arcstat_l2_evict_l1cached.value.ui64 =
7019	    wmsum_value(&arc_sums.arcstat_l2_evict_l1cached);
7020	as->arcstat_l2_free_on_write.value.ui64 =
7021	    wmsum_value(&arc_sums.arcstat_l2_free_on_write);
7022	as->arcstat_l2_abort_lowmem.value.ui64 =
7023	    wmsum_value(&arc_sums.arcstat_l2_abort_lowmem);
7024	as->arcstat_l2_cksum_bad.value.ui64 =
7025	    wmsum_value(&arc_sums.arcstat_l2_cksum_bad);
7026	as->arcstat_l2_io_error.value.ui64 =
7027	    wmsum_value(&arc_sums.arcstat_l2_io_error);
7028	as->arcstat_l2_lsize.value.ui64 =
7029	    wmsum_value(&arc_sums.arcstat_l2_lsize);
7030	as->arcstat_l2_psize.value.ui64 =
7031	    wmsum_value(&arc_sums.arcstat_l2_psize);
7032	as->arcstat_l2_hdr_size.value.ui64 =
7033	    aggsum_value(&arc_sums.arcstat_l2_hdr_size);
7034	as->arcstat_l2_log_blk_writes.value.ui64 =
7035	    wmsum_value(&arc_sums.arcstat_l2_log_blk_writes);
7036	as->arcstat_l2_log_blk_asize.value.ui64 =
7037	    wmsum_value(&arc_sums.arcstat_l2_log_blk_asize);
7038	as->arcstat_l2_log_blk_count.value.ui64 =
7039	    wmsum_value(&arc_sums.arcstat_l2_log_blk_count);
7040	as->arcstat_l2_rebuild_success.value.ui64 =
7041	    wmsum_value(&arc_sums.arcstat_l2_rebuild_success);
7042	as->arcstat_l2_rebuild_abort_unsupported.value.ui64 =
7043	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_unsupported);
7044	as->arcstat_l2_rebuild_abort_io_errors.value.ui64 =
7045	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_io_errors);
7046	as->arcstat_l2_rebuild_abort_dh_errors.value.ui64 =
7047	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_dh_errors);
7048	as->arcstat_l2_rebuild_abort_cksum_lb_errors.value.ui64 =
7049	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors);
7050	as->arcstat_l2_rebuild_abort_lowmem.value.ui64 =
7051	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_lowmem);
7052	as->arcstat_l2_rebuild_size.value.ui64 =
7053	    wmsum_value(&arc_sums.arcstat_l2_rebuild_size);
7054	as->arcstat_l2_rebuild_asize.value.ui64 =
7055	    wmsum_value(&arc_sums.arcstat_l2_rebuild_asize);
7056	as->arcstat_l2_rebuild_bufs.value.ui64 =
7057	    wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs);
7058	as->arcstat_l2_rebuild_bufs_precached.value.ui64 =
7059	    wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs_precached);
7060	as->arcstat_l2_rebuild_log_blks.value.ui64 =
7061	    wmsum_value(&arc_sums.arcstat_l2_rebuild_log_blks);
7062	as->arcstat_memory_throttle_count.value.ui64 =
7063	    wmsum_value(&arc_sums.arcstat_memory_throttle_count);
7064	as->arcstat_memory_direct_count.value.ui64 =
7065	    wmsum_value(&arc_sums.arcstat_memory_direct_count);
7066	as->arcstat_memory_indirect_count.value.ui64 =
7067	    wmsum_value(&arc_sums.arcstat_memory_indirect_count);
7068
7069	as->arcstat_memory_all_bytes.value.ui64 =
7070	    arc_all_memory();
7071	as->arcstat_memory_free_bytes.value.ui64 =
7072	    arc_free_memory();
7073	as->arcstat_memory_available_bytes.value.i64 =
7074	    arc_available_memory();
7075
7076	as->arcstat_prune.value.ui64 =
7077	    wmsum_value(&arc_sums.arcstat_prune);
7078	as->arcstat_meta_used.value.ui64 =
7079	    wmsum_value(&arc_sums.arcstat_meta_used);
7080	as->arcstat_async_upgrade_sync.value.ui64 =
7081	    wmsum_value(&arc_sums.arcstat_async_upgrade_sync);
7082	as->arcstat_predictive_prefetch.value.ui64 =
7083	    wmsum_value(&arc_sums.arcstat_predictive_prefetch);
7084	as->arcstat_demand_hit_predictive_prefetch.value.ui64 =
7085	    wmsum_value(&arc_sums.arcstat_demand_hit_predictive_prefetch);
7086	as->arcstat_demand_iohit_predictive_prefetch.value.ui64 =
7087	    wmsum_value(&arc_sums.arcstat_demand_iohit_predictive_prefetch);
7088	as->arcstat_prescient_prefetch.value.ui64 =
7089	    wmsum_value(&arc_sums.arcstat_prescient_prefetch);
7090	as->arcstat_demand_hit_prescient_prefetch.value.ui64 =
7091	    wmsum_value(&arc_sums.arcstat_demand_hit_prescient_prefetch);
7092	as->arcstat_demand_iohit_prescient_prefetch.value.ui64 =
7093	    wmsum_value(&arc_sums.arcstat_demand_iohit_prescient_prefetch);
7094	as->arcstat_raw_size.value.ui64 =
7095	    wmsum_value(&arc_sums.arcstat_raw_size);
7096	as->arcstat_cached_only_in_progress.value.ui64 =
7097	    wmsum_value(&arc_sums.arcstat_cached_only_in_progress);
7098	as->arcstat_abd_chunk_waste_size.value.ui64 =
7099	    wmsum_value(&arc_sums.arcstat_abd_chunk_waste_size);
7100
7101	return (0);
7102}
7103
7104/*
7105 * This function *must* return indices evenly distributed between all
7106 * sublists of the multilist. This is needed due to how the ARC eviction
7107 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
7108 * distributed between all sublists and uses this assumption when
7109 * deciding which sublist to evict from and how much to evict from it.
7110 */
7111static unsigned int
7112arc_state_multilist_index_func(multilist_t *ml, void *obj)
7113{
7114	arc_buf_hdr_t *hdr = obj;
7115
7116	/*
7117	 * We rely on b_dva to generate evenly distributed index
7118	 * numbers using buf_hash below. So, as an added precaution,
7119	 * let's make sure we never add empty buffers to the arc lists.
7120	 */
7121	ASSERT(!HDR_EMPTY(hdr));
7122
7123	/*
7124	 * The assumption here, is the hash value for a given
7125	 * arc_buf_hdr_t will remain constant throughout its lifetime
7126	 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
7127	 * Thus, we don't need to store the header's sublist index
7128	 * on insertion, as this index can be recalculated on removal.
7129	 *
7130	 * Also, the low order bits of the hash value are thought to be
7131	 * distributed evenly. Otherwise, in the case that the multilist
7132	 * has a power of two number of sublists, each sublists' usage
7133	 * would not be evenly distributed. In this context full 64bit
7134	 * division would be a waste of time, so limit it to 32 bits.
7135	 */
7136	return ((unsigned int)buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
7137	    multilist_get_num_sublists(ml));
7138}
7139
7140static unsigned int
7141arc_state_l2c_multilist_index_func(multilist_t *ml, void *obj)
7142{
7143	panic("Header %p insert into arc_l2c_only %p", obj, ml);
7144}
7145
7146#define	WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do {	\
7147	if ((do_warn) && (tuning) && ((tuning) != (value))) {	\
7148		cmn_err(CE_WARN,				\
7149		    "ignoring tunable %s (using %llu instead)",	\
7150		    (#tuning), (u_longlong_t)(value));	\
7151	}							\
7152} while (0)
7153
7154/*
7155 * Called during module initialization and periodically thereafter to
7156 * apply reasonable changes to the exposed performance tunings.  Can also be
7157 * called explicitly by param_set_arc_*() functions when ARC tunables are
7158 * updated manually.  Non-zero zfs_* values which differ from the currently set
7159 * values will be applied.
7160 */
7161void
7162arc_tuning_update(boolean_t verbose)
7163{
7164	uint64_t allmem = arc_all_memory();
7165
7166	/* Valid range: 32M - <arc_c_max> */
7167	if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
7168	    (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
7169	    (zfs_arc_min <= arc_c_max)) {
7170		arc_c_min = zfs_arc_min;
7171		arc_c = MAX(arc_c, arc_c_min);
7172	}
7173	WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose);
7174
7175	/* Valid range: 64M - <all physical memory> */
7176	if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
7177	    (zfs_arc_max >= MIN_ARC_MAX) && (zfs_arc_max < allmem) &&
7178	    (zfs_arc_max > arc_c_min)) {
7179		arc_c_max = zfs_arc_max;
7180		arc_c = MIN(arc_c, arc_c_max);
7181		if (arc_dnode_limit > arc_c_max)
7182			arc_dnode_limit = arc_c_max;
7183	}
7184	WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose);
7185
7186	/* Valid range: 0 - <all physical memory> */
7187	arc_dnode_limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit :
7188	    MIN(zfs_arc_dnode_limit_percent, 100) * arc_c_max / 100;
7189	WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_limit, verbose);
7190
7191	/* Valid range: 1 - N */
7192	if (zfs_arc_grow_retry)
7193		arc_grow_retry = zfs_arc_grow_retry;
7194
7195	/* Valid range: 1 - N */
7196	if (zfs_arc_shrink_shift) {
7197		arc_shrink_shift = zfs_arc_shrink_shift;
7198		arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
7199	}
7200
7201	/* Valid range: 1 - N ms */
7202	if (zfs_arc_min_prefetch_ms)
7203		arc_min_prefetch_ms = zfs_arc_min_prefetch_ms;
7204
7205	/* Valid range: 1 - N ms */
7206	if (zfs_arc_min_prescient_prefetch_ms) {
7207		arc_min_prescient_prefetch_ms =
7208		    zfs_arc_min_prescient_prefetch_ms;
7209	}
7210
7211	/* Valid range: 0 - 100 */
7212	if (zfs_arc_lotsfree_percent <= 100)
7213		arc_lotsfree_percent = zfs_arc_lotsfree_percent;
7214	WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent,
7215	    verbose);
7216
7217	/* Valid range: 0 - <all physical memory> */
7218	if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free))
7219		arc_sys_free = MIN(zfs_arc_sys_free, allmem);
7220	WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose);
7221}
7222
7223static void
7224arc_state_multilist_init(multilist_t *ml,
7225    multilist_sublist_index_func_t *index_func, int *maxcountp)
7226{
7227	multilist_create(ml, sizeof (arc_buf_hdr_t),
7228	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), index_func);
7229	*maxcountp = MAX(*maxcountp, multilist_get_num_sublists(ml));
7230}
7231
7232static void
7233arc_state_init(void)
7234{
7235	int num_sublists = 0;
7236
7237	arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_METADATA],
7238	    arc_state_multilist_index_func, &num_sublists);
7239	arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_DATA],
7240	    arc_state_multilist_index_func, &num_sublists);
7241	arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
7242	    arc_state_multilist_index_func, &num_sublists);
7243	arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
7244	    arc_state_multilist_index_func, &num_sublists);
7245	arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
7246	    arc_state_multilist_index_func, &num_sublists);
7247	arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_DATA],
7248	    arc_state_multilist_index_func, &num_sublists);
7249	arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
7250	    arc_state_multilist_index_func, &num_sublists);
7251	arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
7252	    arc_state_multilist_index_func, &num_sublists);
7253	arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_METADATA],
7254	    arc_state_multilist_index_func, &num_sublists);
7255	arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_DATA],
7256	    arc_state_multilist_index_func, &num_sublists);
7257
7258	/*
7259	 * L2 headers should never be on the L2 state list since they don't
7260	 * have L1 headers allocated.  Special index function asserts that.
7261	 */
7262	arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
7263	    arc_state_l2c_multilist_index_func, &num_sublists);
7264	arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
7265	    arc_state_l2c_multilist_index_func, &num_sublists);
7266
7267	/*
7268	 * Keep track of the number of markers needed to reclaim buffers from
7269	 * any ARC state.  The markers will be pre-allocated so as to minimize
7270	 * the number of memory allocations performed by the eviction thread.
7271	 */
7272	arc_state_evict_marker_count = num_sublists;
7273
7274	zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7275	zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7276	zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7277	zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7278	zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7279	zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7280	zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7281	zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7282	zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7283	zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7284	zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7285	zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7286	zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]);
7287	zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_DATA]);
7288
7289	zfs_refcount_create(&arc_anon->arcs_size[ARC_BUFC_DATA]);
7290	zfs_refcount_create(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
7291	zfs_refcount_create(&arc_mru->arcs_size[ARC_BUFC_DATA]);
7292	zfs_refcount_create(&arc_mru->arcs_size[ARC_BUFC_METADATA]);
7293	zfs_refcount_create(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]);
7294	zfs_refcount_create(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]);
7295	zfs_refcount_create(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
7296	zfs_refcount_create(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
7297	zfs_refcount_create(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]);
7298	zfs_refcount_create(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]);
7299	zfs_refcount_create(&arc_l2c_only->arcs_size[ARC_BUFC_DATA]);
7300	zfs_refcount_create(&arc_l2c_only->arcs_size[ARC_BUFC_METADATA]);
7301	zfs_refcount_create(&arc_uncached->arcs_size[ARC_BUFC_DATA]);
7302	zfs_refcount_create(&arc_uncached->arcs_size[ARC_BUFC_METADATA]);
7303
7304	wmsum_init(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA], 0);
7305	wmsum_init(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA], 0);
7306	wmsum_init(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA], 0);
7307	wmsum_init(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA], 0);
7308
7309	wmsum_init(&arc_sums.arcstat_hits, 0);
7310	wmsum_init(&arc_sums.arcstat_iohits, 0);
7311	wmsum_init(&arc_sums.arcstat_misses, 0);
7312	wmsum_init(&arc_sums.arcstat_demand_data_hits, 0);
7313	wmsum_init(&arc_sums.arcstat_demand_data_iohits, 0);
7314	wmsum_init(&arc_sums.arcstat_demand_data_misses, 0);
7315	wmsum_init(&arc_sums.arcstat_demand_metadata_hits, 0);
7316	wmsum_init(&arc_sums.arcstat_demand_metadata_iohits, 0);
7317	wmsum_init(&arc_sums.arcstat_demand_metadata_misses, 0);
7318	wmsum_init(&arc_sums.arcstat_prefetch_data_hits, 0);
7319	wmsum_init(&arc_sums.arcstat_prefetch_data_iohits, 0);
7320	wmsum_init(&arc_sums.arcstat_prefetch_data_misses, 0);
7321	wmsum_init(&arc_sums.arcstat_prefetch_metadata_hits, 0);
7322	wmsum_init(&arc_sums.arcstat_prefetch_metadata_iohits, 0);
7323	wmsum_init(&arc_sums.arcstat_prefetch_metadata_misses, 0);
7324	wmsum_init(&arc_sums.arcstat_mru_hits, 0);
7325	wmsum_init(&arc_sums.arcstat_mru_ghost_hits, 0);
7326	wmsum_init(&arc_sums.arcstat_mfu_hits, 0);
7327	wmsum_init(&arc_sums.arcstat_mfu_ghost_hits, 0);
7328	wmsum_init(&arc_sums.arcstat_uncached_hits, 0);
7329	wmsum_init(&arc_sums.arcstat_deleted, 0);
7330	wmsum_init(&arc_sums.arcstat_mutex_miss, 0);
7331	wmsum_init(&arc_sums.arcstat_access_skip, 0);
7332	wmsum_init(&arc_sums.arcstat_evict_skip, 0);
7333	wmsum_init(&arc_sums.arcstat_evict_not_enough, 0);
7334	wmsum_init(&arc_sums.arcstat_evict_l2_cached, 0);
7335	wmsum_init(&arc_sums.arcstat_evict_l2_eligible, 0);
7336	wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mfu, 0);
7337	wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mru, 0);
7338	wmsum_init(&arc_sums.arcstat_evict_l2_ineligible, 0);
7339	wmsum_init(&arc_sums.arcstat_evict_l2_skip, 0);
7340	wmsum_init(&arc_sums.arcstat_hash_collisions, 0);
7341	wmsum_init(&arc_sums.arcstat_hash_chains, 0);
7342	aggsum_init(&arc_sums.arcstat_size, 0);
7343	wmsum_init(&arc_sums.arcstat_compressed_size, 0);
7344	wmsum_init(&arc_sums.arcstat_uncompressed_size, 0);
7345	wmsum_init(&arc_sums.arcstat_overhead_size, 0);
7346	wmsum_init(&arc_sums.arcstat_hdr_size, 0);
7347	wmsum_init(&arc_sums.arcstat_data_size, 0);
7348	wmsum_init(&arc_sums.arcstat_metadata_size, 0);
7349	wmsum_init(&arc_sums.arcstat_dbuf_size, 0);
7350	wmsum_init(&arc_sums.arcstat_dnode_size, 0);
7351	wmsum_init(&arc_sums.arcstat_bonus_size, 0);
7352	wmsum_init(&arc_sums.arcstat_l2_hits, 0);
7353	wmsum_init(&arc_sums.arcstat_l2_misses, 0);
7354	wmsum_init(&arc_sums.arcstat_l2_prefetch_asize, 0);
7355	wmsum_init(&arc_sums.arcstat_l2_mru_asize, 0);
7356	wmsum_init(&arc_sums.arcstat_l2_mfu_asize, 0);
7357	wmsum_init(&arc_sums.arcstat_l2_bufc_data_asize, 0);
7358	wmsum_init(&arc_sums.arcstat_l2_bufc_metadata_asize, 0);
7359	wmsum_init(&arc_sums.arcstat_l2_feeds, 0);
7360	wmsum_init(&arc_sums.arcstat_l2_rw_clash, 0);
7361	wmsum_init(&arc_sums.arcstat_l2_read_bytes, 0);
7362	wmsum_init(&arc_sums.arcstat_l2_write_bytes, 0);
7363	wmsum_init(&arc_sums.arcstat_l2_writes_sent, 0);
7364	wmsum_init(&arc_sums.arcstat_l2_writes_done, 0);
7365	wmsum_init(&arc_sums.arcstat_l2_writes_error, 0);
7366	wmsum_init(&arc_sums.arcstat_l2_writes_lock_retry, 0);
7367	wmsum_init(&arc_sums.arcstat_l2_evict_lock_retry, 0);
7368	wmsum_init(&arc_sums.arcstat_l2_evict_reading, 0);
7369	wmsum_init(&arc_sums.arcstat_l2_evict_l1cached, 0);
7370	wmsum_init(&arc_sums.arcstat_l2_free_on_write, 0);
7371	wmsum_init(&arc_sums.arcstat_l2_abort_lowmem, 0);
7372	wmsum_init(&arc_sums.arcstat_l2_cksum_bad, 0);
7373	wmsum_init(&arc_sums.arcstat_l2_io_error, 0);
7374	wmsum_init(&arc_sums.arcstat_l2_lsize, 0);
7375	wmsum_init(&arc_sums.arcstat_l2_psize, 0);
7376	aggsum_init(&arc_sums.arcstat_l2_hdr_size, 0);
7377	wmsum_init(&arc_sums.arcstat_l2_log_blk_writes, 0);
7378	wmsum_init(&arc_sums.arcstat_l2_log_blk_asize, 0);
7379	wmsum_init(&arc_sums.arcstat_l2_log_blk_count, 0);
7380	wmsum_init(&arc_sums.arcstat_l2_rebuild_success, 0);
7381	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_unsupported, 0);
7382	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_io_errors, 0);
7383	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_dh_errors, 0);
7384	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors, 0);
7385	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_lowmem, 0);
7386	wmsum_init(&arc_sums.arcstat_l2_rebuild_size, 0);
7387	wmsum_init(&arc_sums.arcstat_l2_rebuild_asize, 0);
7388	wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs, 0);
7389	wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs_precached, 0);
7390	wmsum_init(&arc_sums.arcstat_l2_rebuild_log_blks, 0);
7391	wmsum_init(&arc_sums.arcstat_memory_throttle_count, 0);
7392	wmsum_init(&arc_sums.arcstat_memory_direct_count, 0);
7393	wmsum_init(&arc_sums.arcstat_memory_indirect_count, 0);
7394	wmsum_init(&arc_sums.arcstat_prune, 0);
7395	wmsum_init(&arc_sums.arcstat_meta_used, 0);
7396	wmsum_init(&arc_sums.arcstat_async_upgrade_sync, 0);
7397	wmsum_init(&arc_sums.arcstat_predictive_prefetch, 0);
7398	wmsum_init(&arc_sums.arcstat_demand_hit_predictive_prefetch, 0);
7399	wmsum_init(&arc_sums.arcstat_demand_iohit_predictive_prefetch, 0);
7400	wmsum_init(&arc_sums.arcstat_prescient_prefetch, 0);
7401	wmsum_init(&arc_sums.arcstat_demand_hit_prescient_prefetch, 0);
7402	wmsum_init(&arc_sums.arcstat_demand_iohit_prescient_prefetch, 0);
7403	wmsum_init(&arc_sums.arcstat_raw_size, 0);
7404	wmsum_init(&arc_sums.arcstat_cached_only_in_progress, 0);
7405	wmsum_init(&arc_sums.arcstat_abd_chunk_waste_size, 0);
7406
7407	arc_anon->arcs_state = ARC_STATE_ANON;
7408	arc_mru->arcs_state = ARC_STATE_MRU;
7409	arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
7410	arc_mfu->arcs_state = ARC_STATE_MFU;
7411	arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
7412	arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
7413	arc_uncached->arcs_state = ARC_STATE_UNCACHED;
7414}
7415
7416static void
7417arc_state_fini(void)
7418{
7419	zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7420	zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7421	zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7422	zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7423	zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7424	zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7425	zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7426	zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7427	zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7428	zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7429	zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7430	zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7431	zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]);
7432	zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_DATA]);
7433
7434	zfs_refcount_destroy(&arc_anon->arcs_size[ARC_BUFC_DATA]);
7435	zfs_refcount_destroy(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
7436	zfs_refcount_destroy(&arc_mru->arcs_size[ARC_BUFC_DATA]);
7437	zfs_refcount_destroy(&arc_mru->arcs_size[ARC_BUFC_METADATA]);
7438	zfs_refcount_destroy(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]);
7439	zfs_refcount_destroy(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]);
7440	zfs_refcount_destroy(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
7441	zfs_refcount_destroy(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
7442	zfs_refcount_destroy(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]);
7443	zfs_refcount_destroy(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]);
7444	zfs_refcount_destroy(&arc_l2c_only->arcs_size[ARC_BUFC_DATA]);
7445	zfs_refcount_destroy(&arc_l2c_only->arcs_size[ARC_BUFC_METADATA]);
7446	zfs_refcount_destroy(&arc_uncached->arcs_size[ARC_BUFC_DATA]);
7447	zfs_refcount_destroy(&arc_uncached->arcs_size[ARC_BUFC_METADATA]);
7448
7449	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
7450	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
7451	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
7452	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
7453	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
7454	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
7455	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
7456	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
7457	multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
7458	multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
7459	multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_METADATA]);
7460	multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_DATA]);
7461
7462	wmsum_fini(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA]);
7463	wmsum_fini(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA]);
7464	wmsum_fini(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA]);
7465	wmsum_fini(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA]);
7466
7467	wmsum_fini(&arc_sums.arcstat_hits);
7468	wmsum_fini(&arc_sums.arcstat_iohits);
7469	wmsum_fini(&arc_sums.arcstat_misses);
7470	wmsum_fini(&arc_sums.arcstat_demand_data_hits);
7471	wmsum_fini(&arc_sums.arcstat_demand_data_iohits);
7472	wmsum_fini(&arc_sums.arcstat_demand_data_misses);
7473	wmsum_fini(&arc_sums.arcstat_demand_metadata_hits);
7474	wmsum_fini(&arc_sums.arcstat_demand_metadata_iohits);
7475	wmsum_fini(&arc_sums.arcstat_demand_metadata_misses);
7476	wmsum_fini(&arc_sums.arcstat_prefetch_data_hits);
7477	wmsum_fini(&arc_sums.arcstat_prefetch_data_iohits);
7478	wmsum_fini(&arc_sums.arcstat_prefetch_data_misses);
7479	wmsum_fini(&arc_sums.arcstat_prefetch_metadata_hits);
7480	wmsum_fini(&arc_sums.arcstat_prefetch_metadata_iohits);
7481	wmsum_fini(&arc_sums.arcstat_prefetch_metadata_misses);
7482	wmsum_fini(&arc_sums.arcstat_mru_hits);
7483	wmsum_fini(&arc_sums.arcstat_mru_ghost_hits);
7484	wmsum_fini(&arc_sums.arcstat_mfu_hits);
7485	wmsum_fini(&arc_sums.arcstat_mfu_ghost_hits);
7486	wmsum_fini(&arc_sums.arcstat_uncached_hits);
7487	wmsum_fini(&arc_sums.arcstat_deleted);
7488	wmsum_fini(&arc_sums.arcstat_mutex_miss);
7489	wmsum_fini(&arc_sums.arcstat_access_skip);
7490	wmsum_fini(&arc_sums.arcstat_evict_skip);
7491	wmsum_fini(&arc_sums.arcstat_evict_not_enough);
7492	wmsum_fini(&arc_sums.arcstat_evict_l2_cached);
7493	wmsum_fini(&arc_sums.arcstat_evict_l2_eligible);
7494	wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mfu);
7495	wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mru);
7496	wmsum_fini(&arc_sums.arcstat_evict_l2_ineligible);
7497	wmsum_fini(&arc_sums.arcstat_evict_l2_skip);
7498	wmsum_fini(&arc_sums.arcstat_hash_collisions);
7499	wmsum_fini(&arc_sums.arcstat_hash_chains);
7500	aggsum_fini(&arc_sums.arcstat_size);
7501	wmsum_fini(&arc_sums.arcstat_compressed_size);
7502	wmsum_fini(&arc_sums.arcstat_uncompressed_size);
7503	wmsum_fini(&arc_sums.arcstat_overhead_size);
7504	wmsum_fini(&arc_sums.arcstat_hdr_size);
7505	wmsum_fini(&arc_sums.arcstat_data_size);
7506	wmsum_fini(&arc_sums.arcstat_metadata_size);
7507	wmsum_fini(&arc_sums.arcstat_dbuf_size);
7508	wmsum_fini(&arc_sums.arcstat_dnode_size);
7509	wmsum_fini(&arc_sums.arcstat_bonus_size);
7510	wmsum_fini(&arc_sums.arcstat_l2_hits);
7511	wmsum_fini(&arc_sums.arcstat_l2_misses);
7512	wmsum_fini(&arc_sums.arcstat_l2_prefetch_asize);
7513	wmsum_fini(&arc_sums.arcstat_l2_mru_asize);
7514	wmsum_fini(&arc_sums.arcstat_l2_mfu_asize);
7515	wmsum_fini(&arc_sums.arcstat_l2_bufc_data_asize);
7516	wmsum_fini(&arc_sums.arcstat_l2_bufc_metadata_asize);
7517	wmsum_fini(&arc_sums.arcstat_l2_feeds);
7518	wmsum_fini(&arc_sums.arcstat_l2_rw_clash);
7519	wmsum_fini(&arc_sums.arcstat_l2_read_bytes);
7520	wmsum_fini(&arc_sums.arcstat_l2_write_bytes);
7521	wmsum_fini(&arc_sums.arcstat_l2_writes_sent);
7522	wmsum_fini(&arc_sums.arcstat_l2_writes_done);
7523	wmsum_fini(&arc_sums.arcstat_l2_writes_error);
7524	wmsum_fini(&arc_sums.arcstat_l2_writes_lock_retry);
7525	wmsum_fini(&arc_sums.arcstat_l2_evict_lock_retry);
7526	wmsum_fini(&arc_sums.arcstat_l2_evict_reading);
7527	wmsum_fini(&arc_sums.arcstat_l2_evict_l1cached);
7528	wmsum_fini(&arc_sums.arcstat_l2_free_on_write);
7529	wmsum_fini(&arc_sums.arcstat_l2_abort_lowmem);
7530	wmsum_fini(&arc_sums.arcstat_l2_cksum_bad);
7531	wmsum_fini(&arc_sums.arcstat_l2_io_error);
7532	wmsum_fini(&arc_sums.arcstat_l2_lsize);
7533	wmsum_fini(&arc_sums.arcstat_l2_psize);
7534	aggsum_fini(&arc_sums.arcstat_l2_hdr_size);
7535	wmsum_fini(&arc_sums.arcstat_l2_log_blk_writes);
7536	wmsum_fini(&arc_sums.arcstat_l2_log_blk_asize);
7537	wmsum_fini(&arc_sums.arcstat_l2_log_blk_count);
7538	wmsum_fini(&arc_sums.arcstat_l2_rebuild_success);
7539	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_unsupported);
7540	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_io_errors);
7541	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_dh_errors);
7542	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors);
7543	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_lowmem);
7544	wmsum_fini(&arc_sums.arcstat_l2_rebuild_size);
7545	wmsum_fini(&arc_sums.arcstat_l2_rebuild_asize);
7546	wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs);
7547	wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs_precached);
7548	wmsum_fini(&arc_sums.arcstat_l2_rebuild_log_blks);
7549	wmsum_fini(&arc_sums.arcstat_memory_throttle_count);
7550	wmsum_fini(&arc_sums.arcstat_memory_direct_count);
7551	wmsum_fini(&arc_sums.arcstat_memory_indirect_count);
7552	wmsum_fini(&arc_sums.arcstat_prune);
7553	wmsum_fini(&arc_sums.arcstat_meta_used);
7554	wmsum_fini(&arc_sums.arcstat_async_upgrade_sync);
7555	wmsum_fini(&arc_sums.arcstat_predictive_prefetch);
7556	wmsum_fini(&arc_sums.arcstat_demand_hit_predictive_prefetch);
7557	wmsum_fini(&arc_sums.arcstat_demand_iohit_predictive_prefetch);
7558	wmsum_fini(&arc_sums.arcstat_prescient_prefetch);
7559	wmsum_fini(&arc_sums.arcstat_demand_hit_prescient_prefetch);
7560	wmsum_fini(&arc_sums.arcstat_demand_iohit_prescient_prefetch);
7561	wmsum_fini(&arc_sums.arcstat_raw_size);
7562	wmsum_fini(&arc_sums.arcstat_cached_only_in_progress);
7563	wmsum_fini(&arc_sums.arcstat_abd_chunk_waste_size);
7564}
7565
7566uint64_t
7567arc_target_bytes(void)
7568{
7569	return (arc_c);
7570}
7571
7572void
7573arc_set_limits(uint64_t allmem)
7574{
7575	/* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */
7576	arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT);
7577
7578	/* How to set default max varies by platform. */
7579	arc_c_max = arc_default_max(arc_c_min, allmem);
7580}
7581void
7582arc_init(void)
7583{
7584	uint64_t percent, allmem = arc_all_memory();
7585	mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL);
7586	list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t),
7587	    offsetof(arc_evict_waiter_t, aew_node));
7588
7589	arc_min_prefetch_ms = 1000;
7590	arc_min_prescient_prefetch_ms = 6000;
7591
7592#if defined(_KERNEL)
7593	arc_lowmem_init();
7594#endif
7595
7596	arc_set_limits(allmem);
7597
7598#ifdef _KERNEL
7599	/*
7600	 * If zfs_arc_max is non-zero at init, meaning it was set in the kernel
7601	 * environment before the module was loaded, don't block setting the
7602	 * maximum because it is less than arc_c_min, instead, reset arc_c_min
7603	 * to a lower value.
7604	 * zfs_arc_min will be handled by arc_tuning_update().
7605	 */
7606	if (zfs_arc_max != 0 && zfs_arc_max >= MIN_ARC_MAX &&
7607	    zfs_arc_max < allmem) {
7608		arc_c_max = zfs_arc_max;
7609		if (arc_c_min >= arc_c_max) {
7610			arc_c_min = MAX(zfs_arc_max / 2,
7611			    2ULL << SPA_MAXBLOCKSHIFT);
7612		}
7613	}
7614#else
7615	/*
7616	 * In userland, there's only the memory pressure that we artificially
7617	 * create (see arc_available_memory()).  Don't let arc_c get too
7618	 * small, because it can cause transactions to be larger than
7619	 * arc_c, causing arc_tempreserve_space() to fail.
7620	 */
7621	arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT);
7622#endif
7623
7624	arc_c = arc_c_min;
7625	/*
7626	 * 32-bit fixed point fractions of metadata from total ARC size,
7627	 * MRU data from all data and MRU metadata from all metadata.
7628	 */
7629	arc_meta = (1ULL << 32) / 4;	/* Metadata is 25% of arc_c. */
7630	arc_pd = (1ULL << 32) / 2;	/* Data MRU is 50% of data. */
7631	arc_pm = (1ULL << 32) / 2;	/* Metadata MRU is 50% of metadata. */
7632
7633	percent = MIN(zfs_arc_dnode_limit_percent, 100);
7634	arc_dnode_limit = arc_c_max * percent / 100;
7635
7636	/* Apply user specified tunings */
7637	arc_tuning_update(B_TRUE);
7638
7639	/* if kmem_flags are set, lets try to use less memory */
7640	if (kmem_debugging())
7641		arc_c = arc_c / 2;
7642	if (arc_c < arc_c_min)
7643		arc_c = arc_c_min;
7644
7645	arc_register_hotplug();
7646
7647	arc_state_init();
7648
7649	buf_init();
7650
7651	list_create(&arc_prune_list, sizeof (arc_prune_t),
7652	    offsetof(arc_prune_t, p_node));
7653	mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
7654
7655	arc_prune_taskq = taskq_create("arc_prune", zfs_arc_prune_task_threads,
7656	    defclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
7657
7658	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
7659	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
7660
7661	if (arc_ksp != NULL) {
7662		arc_ksp->ks_data = &arc_stats;
7663		arc_ksp->ks_update = arc_kstat_update;
7664		kstat_install(arc_ksp);
7665	}
7666
7667	arc_state_evict_markers =
7668	    arc_state_alloc_markers(arc_state_evict_marker_count);
7669	arc_evict_zthr = zthr_create_timer("arc_evict",
7670	    arc_evict_cb_check, arc_evict_cb, NULL, SEC2NSEC(1), defclsyspri);
7671	arc_reap_zthr = zthr_create_timer("arc_reap",
7672	    arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1), minclsyspri);
7673
7674	arc_warm = B_FALSE;
7675
7676	/*
7677	 * Calculate maximum amount of dirty data per pool.
7678	 *
7679	 * If it has been set by a module parameter, take that.
7680	 * Otherwise, use a percentage of physical memory defined by
7681	 * zfs_dirty_data_max_percent (default 10%) with a cap at
7682	 * zfs_dirty_data_max_max (default 4G or 25% of physical memory).
7683	 */
7684#ifdef __LP64__
7685	if (zfs_dirty_data_max_max == 0)
7686		zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024,
7687		    allmem * zfs_dirty_data_max_max_percent / 100);
7688#else
7689	if (zfs_dirty_data_max_max == 0)
7690		zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024,
7691		    allmem * zfs_dirty_data_max_max_percent / 100);
7692#endif
7693
7694	if (zfs_dirty_data_max == 0) {
7695		zfs_dirty_data_max = allmem *
7696		    zfs_dirty_data_max_percent / 100;
7697		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
7698		    zfs_dirty_data_max_max);
7699	}
7700
7701	if (zfs_wrlog_data_max == 0) {
7702
7703		/*
7704		 * dp_wrlog_total is reduced for each txg at the end of
7705		 * spa_sync(). However, dp_dirty_total is reduced every time
7706		 * a block is written out. Thus under normal operation,
7707		 * dp_wrlog_total could grow 2 times as big as
7708		 * zfs_dirty_data_max.
7709		 */
7710		zfs_wrlog_data_max = zfs_dirty_data_max * 2;
7711	}
7712}
7713
7714void
7715arc_fini(void)
7716{
7717	arc_prune_t *p;
7718
7719#ifdef _KERNEL
7720	arc_lowmem_fini();
7721#endif /* _KERNEL */
7722
7723	/* Use B_TRUE to ensure *all* buffers are evicted */
7724	arc_flush(NULL, B_TRUE);
7725
7726	if (arc_ksp != NULL) {
7727		kstat_delete(arc_ksp);
7728		arc_ksp = NULL;
7729	}
7730
7731	taskq_wait(arc_prune_taskq);
7732	taskq_destroy(arc_prune_taskq);
7733
7734	mutex_enter(&arc_prune_mtx);
7735	while ((p = list_remove_head(&arc_prune_list)) != NULL) {
7736		(void) zfs_refcount_remove(&p->p_refcnt, &arc_prune_list);
7737		zfs_refcount_destroy(&p->p_refcnt);
7738		kmem_free(p, sizeof (*p));
7739	}
7740	mutex_exit(&arc_prune_mtx);
7741
7742	list_destroy(&arc_prune_list);
7743	mutex_destroy(&arc_prune_mtx);
7744
7745	(void) zthr_cancel(arc_evict_zthr);
7746	(void) zthr_cancel(arc_reap_zthr);
7747	arc_state_free_markers(arc_state_evict_markers,
7748	    arc_state_evict_marker_count);
7749
7750	mutex_destroy(&arc_evict_lock);
7751	list_destroy(&arc_evict_waiters);
7752
7753	/*
7754	 * Free any buffers that were tagged for destruction.  This needs
7755	 * to occur before arc_state_fini() runs and destroys the aggsum
7756	 * values which are updated when freeing scatter ABDs.
7757	 */
7758	l2arc_do_free_on_write();
7759
7760	/*
7761	 * buf_fini() must proceed arc_state_fini() because buf_fin() may
7762	 * trigger the release of kmem magazines, which can callback to
7763	 * arc_space_return() which accesses aggsums freed in act_state_fini().
7764	 */
7765	buf_fini();
7766	arc_state_fini();
7767
7768	arc_unregister_hotplug();
7769
7770	/*
7771	 * We destroy the zthrs after all the ARC state has been
7772	 * torn down to avoid the case of them receiving any
7773	 * wakeup() signals after they are destroyed.
7774	 */
7775	zthr_destroy(arc_evict_zthr);
7776	zthr_destroy(arc_reap_zthr);
7777
7778	ASSERT0(arc_loaned_bytes);
7779}
7780
7781/*
7782 * Level 2 ARC
7783 *
7784 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
7785 * It uses dedicated storage devices to hold cached data, which are populated
7786 * using large infrequent writes.  The main role of this cache is to boost
7787 * the performance of random read workloads.  The intended L2ARC devices
7788 * include short-stroked disks, solid state disks, and other media with
7789 * substantially faster read latency than disk.
7790 *
7791 *                 +-----------------------+
7792 *                 |         ARC           |
7793 *                 +-----------------------+
7794 *                    |         ^     ^
7795 *                    |         |     |
7796 *      l2arc_feed_thread()    arc_read()
7797 *                    |         |     |
7798 *                    |  l2arc read   |
7799 *                    V         |     |
7800 *               +---------------+    |
7801 *               |     L2ARC     |    |
7802 *               +---------------+    |
7803 *                   |    ^           |
7804 *          l2arc_write() |           |
7805 *                   |    |           |
7806 *                   V    |           |
7807 *                 +-------+      +-------+
7808 *                 | vdev  |      | vdev  |
7809 *                 | cache |      | cache |
7810 *                 +-------+      +-------+
7811 *                 +=========+     .-----.
7812 *                 :  L2ARC  :    |-_____-|
7813 *                 : devices :    | Disks |
7814 *                 +=========+    `-_____-'
7815 *
7816 * Read requests are satisfied from the following sources, in order:
7817 *
7818 *	1) ARC
7819 *	2) vdev cache of L2ARC devices
7820 *	3) L2ARC devices
7821 *	4) vdev cache of disks
7822 *	5) disks
7823 *
7824 * Some L2ARC device types exhibit extremely slow write performance.
7825 * To accommodate for this there are some significant differences between
7826 * the L2ARC and traditional cache design:
7827 *
7828 * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
7829 * the ARC behave as usual, freeing buffers and placing headers on ghost
7830 * lists.  The ARC does not send buffers to the L2ARC during eviction as
7831 * this would add inflated write latencies for all ARC memory pressure.
7832 *
7833 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
7834 * It does this by periodically scanning buffers from the eviction-end of
7835 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
7836 * not already there. It scans until a headroom of buffers is satisfied,
7837 * which itself is a buffer for ARC eviction. If a compressible buffer is
7838 * found during scanning and selected for writing to an L2ARC device, we
7839 * temporarily boost scanning headroom during the next scan cycle to make
7840 * sure we adapt to compression effects (which might significantly reduce
7841 * the data volume we write to L2ARC). The thread that does this is
7842 * l2arc_feed_thread(), illustrated below; example sizes are included to
7843 * provide a better sense of ratio than this diagram:
7844 *
7845 *	       head -->                        tail
7846 *	        +---------------------+----------+
7847 *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
7848 *	        +---------------------+----------+   |   o L2ARC eligible
7849 *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
7850 *	        +---------------------+----------+   |
7851 *	             15.9 Gbytes      ^ 32 Mbytes    |
7852 *	                           headroom          |
7853 *	                                      l2arc_feed_thread()
7854 *	                                             |
7855 *	                 l2arc write hand <--[oooo]--'
7856 *	                         |           8 Mbyte
7857 *	                         |          write max
7858 *	                         V
7859 *		  +==============================+
7860 *	L2ARC dev |####|#|###|###|    |####| ... |
7861 *	          +==============================+
7862 *	                     32 Gbytes
7863 *
7864 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
7865 * evicted, then the L2ARC has cached a buffer much sooner than it probably
7866 * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
7867 * safe to say that this is an uncommon case, since buffers at the end of
7868 * the ARC lists have moved there due to inactivity.
7869 *
7870 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
7871 * then the L2ARC simply misses copying some buffers.  This serves as a
7872 * pressure valve to prevent heavy read workloads from both stalling the ARC
7873 * with waits and clogging the L2ARC with writes.  This also helps prevent
7874 * the potential for the L2ARC to churn if it attempts to cache content too
7875 * quickly, such as during backups of the entire pool.
7876 *
7877 * 5. After system boot and before the ARC has filled main memory, there are
7878 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
7879 * lists can remain mostly static.  Instead of searching from tail of these
7880 * lists as pictured, the l2arc_feed_thread() will search from the list heads
7881 * for eligible buffers, greatly increasing its chance of finding them.
7882 *
7883 * The L2ARC device write speed is also boosted during this time so that
7884 * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
7885 * there are no L2ARC reads, and no fear of degrading read performance
7886 * through increased writes.
7887 *
7888 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
7889 * the vdev queue can aggregate them into larger and fewer writes.  Each
7890 * device is written to in a rotor fashion, sweeping writes through
7891 * available space then repeating.
7892 *
7893 * 7. The L2ARC does not store dirty content.  It never needs to flush
7894 * write buffers back to disk based storage.
7895 *
7896 * 8. If an ARC buffer is written (and dirtied) which also exists in the
7897 * L2ARC, the now stale L2ARC buffer is immediately dropped.
7898 *
7899 * The performance of the L2ARC can be tweaked by a number of tunables, which
7900 * may be necessary for different workloads:
7901 *
7902 *	l2arc_write_max		max write bytes per interval
7903 *	l2arc_write_boost	extra write bytes during device warmup
7904 *	l2arc_noprefetch	skip caching prefetched buffers
7905 *	l2arc_headroom		number of max device writes to precache
7906 *	l2arc_headroom_boost	when we find compressed buffers during ARC
7907 *				scanning, we multiply headroom by this
7908 *				percentage factor for the next scan cycle,
7909 *				since more compressed buffers are likely to
7910 *				be present
7911 *	l2arc_feed_secs		seconds between L2ARC writing
7912 *
7913 * Tunables may be removed or added as future performance improvements are
7914 * integrated, and also may become zpool properties.
7915 *
7916 * There are three key functions that control how the L2ARC warms up:
7917 *
7918 *	l2arc_write_eligible()	check if a buffer is eligible to cache
7919 *	l2arc_write_size()	calculate how much to write
7920 *	l2arc_write_interval()	calculate sleep delay between writes
7921 *
7922 * These three functions determine what to write, how much, and how quickly
7923 * to send writes.
7924 *
7925 * L2ARC persistence:
7926 *
7927 * When writing buffers to L2ARC, we periodically add some metadata to
7928 * make sure we can pick them up after reboot, thus dramatically reducing
7929 * the impact that any downtime has on the performance of storage systems
7930 * with large caches.
7931 *
7932 * The implementation works fairly simply by integrating the following two
7933 * modifications:
7934 *
7935 * *) When writing to the L2ARC, we occasionally write a "l2arc log block",
7936 *    which is an additional piece of metadata which describes what's been
7937 *    written. This allows us to rebuild the arc_buf_hdr_t structures of the
7938 *    main ARC buffers. There are 2 linked-lists of log blocks headed by
7939 *    dh_start_lbps[2]. We alternate which chain we append to, so they are
7940 *    time-wise and offset-wise interleaved, but that is an optimization rather
7941 *    than for correctness. The log block also includes a pointer to the
7942 *    previous block in its chain.
7943 *
7944 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device
7945 *    for our header bookkeeping purposes. This contains a device header,
7946 *    which contains our top-level reference structures. We update it each
7947 *    time we write a new log block, so that we're able to locate it in the
7948 *    L2ARC device. If this write results in an inconsistent device header
7949 *    (e.g. due to power failure), we detect this by verifying the header's
7950 *    checksum and simply fail to reconstruct the L2ARC after reboot.
7951 *
7952 * Implementation diagram:
7953 *
7954 * +=== L2ARC device (not to scale) ======================================+
7955 * |       ___two newest log block pointers__.__________                  |
7956 * |      /                                   \dh_start_lbps[1]           |
7957 * |	 /				       \         \dh_start_lbps[0]|
7958 * |.___/__.                                    V         V               |
7959 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---|
7960 * ||   hdr|      ^         /^       /^        /         /                |
7961 * |+------+  ...--\-------/  \-----/--\------/         /                 |
7962 * |                \--------------/    \--------------/                  |
7963 * +======================================================================+
7964 *
7965 * As can be seen on the diagram, rather than using a simple linked list,
7966 * we use a pair of linked lists with alternating elements. This is a
7967 * performance enhancement due to the fact that we only find out the
7968 * address of the next log block access once the current block has been
7969 * completely read in. Obviously, this hurts performance, because we'd be
7970 * keeping the device's I/O queue at only a 1 operation deep, thus
7971 * incurring a large amount of I/O round-trip latency. Having two lists
7972 * allows us to fetch two log blocks ahead of where we are currently
7973 * rebuilding L2ARC buffers.
7974 *
7975 * On-device data structures:
7976 *
7977 * L2ARC device header:	l2arc_dev_hdr_phys_t
7978 * L2ARC log block:	l2arc_log_blk_phys_t
7979 *
7980 * L2ARC reconstruction:
7981 *
7982 * When writing data, we simply write in the standard rotary fashion,
7983 * evicting buffers as we go and simply writing new data over them (writing
7984 * a new log block every now and then). This obviously means that once we
7985 * loop around the end of the device, we will start cutting into an already
7986 * committed log block (and its referenced data buffers), like so:
7987 *
7988 *    current write head__       __old tail
7989 *                        \     /
7990 *                        V    V
7991 * <--|bufs |lb |bufs |lb |    |bufs |lb |bufs |lb |-->
7992 *                         ^    ^^^^^^^^^___________________________________
7993 *                         |                                                \
7994 *                   <<nextwrite>> may overwrite this blk and/or its bufs --'
7995 *
7996 * When importing the pool, we detect this situation and use it to stop
7997 * our scanning process (see l2arc_rebuild).
7998 *
7999 * There is one significant caveat to consider when rebuilding ARC contents
8000 * from an L2ARC device: what about invalidated buffers? Given the above
8001 * construction, we cannot update blocks which we've already written to amend
8002 * them to remove buffers which were invalidated. Thus, during reconstruction,
8003 * we might be populating the cache with buffers for data that's not on the
8004 * main pool anymore, or may have been overwritten!
8005 *
8006 * As it turns out, this isn't a problem. Every arc_read request includes
8007 * both the DVA and, crucially, the birth TXG of the BP the caller is
8008 * looking for. So even if the cache were populated by completely rotten
8009 * blocks for data that had been long deleted and/or overwritten, we'll
8010 * never actually return bad data from the cache, since the DVA with the
8011 * birth TXG uniquely identify a block in space and time - once created,
8012 * a block is immutable on disk. The worst thing we have done is wasted
8013 * some time and memory at l2arc rebuild to reconstruct outdated ARC
8014 * entries that will get dropped from the l2arc as it is being updated
8015 * with new blocks.
8016 *
8017 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write
8018 * hand are not restored. This is done by saving the offset (in bytes)
8019 * l2arc_evict() has evicted to in the L2ARC device header and taking it
8020 * into account when restoring buffers.
8021 */
8022
8023static boolean_t
8024l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
8025{
8026	/*
8027	 * A buffer is *not* eligible for the L2ARC if it:
8028	 * 1. belongs to a different spa.
8029	 * 2. is already cached on the L2ARC.
8030	 * 3. has an I/O in progress (it may be an incomplete read).
8031	 * 4. is flagged not eligible (zfs property).
8032	 */
8033	if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
8034	    HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
8035		return (B_FALSE);
8036
8037	return (B_TRUE);
8038}
8039
8040static uint64_t
8041l2arc_write_size(l2arc_dev_t *dev)
8042{
8043	uint64_t size;
8044
8045	/*
8046	 * Make sure our globals have meaningful values in case the user
8047	 * altered them.
8048	 */
8049	size = l2arc_write_max;
8050	if (size == 0) {
8051		cmn_err(CE_NOTE, "l2arc_write_max must be greater than zero, "
8052		    "resetting it to the default (%d)", L2ARC_WRITE_SIZE);
8053		size = l2arc_write_max = L2ARC_WRITE_SIZE;
8054	}
8055
8056	if (arc_warm == B_FALSE)
8057		size += l2arc_write_boost;
8058
8059	/* We need to add in the worst case scenario of log block overhead. */
8060	size += l2arc_log_blk_overhead(size, dev);
8061	if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0) {
8062		/*
8063		 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100)
8064		 * times the writesize, whichever is greater.
8065		 */
8066		size += MAX(64 * 1024 * 1024,
8067		    (size * l2arc_trim_ahead) / 100);
8068	}
8069
8070	/*
8071	 * Make sure the write size does not exceed the size of the cache
8072	 * device. This is important in l2arc_evict(), otherwise infinite
8073	 * iteration can occur.
8074	 */
8075	size = MIN(size, (dev->l2ad_end - dev->l2ad_start) / 4);
8076
8077	size = P2ROUNDUP(size, 1ULL << dev->l2ad_vdev->vdev_ashift);
8078
8079	return (size);
8080
8081}
8082
8083static clock_t
8084l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
8085{
8086	clock_t interval, next, now;
8087
8088	/*
8089	 * If the ARC lists are busy, increase our write rate; if the
8090	 * lists are stale, idle back.  This is achieved by checking
8091	 * how much we previously wrote - if it was more than half of
8092	 * what we wanted, schedule the next write much sooner.
8093	 */
8094	if (l2arc_feed_again && wrote > (wanted / 2))
8095		interval = (hz * l2arc_feed_min_ms) / 1000;
8096	else
8097		interval = hz * l2arc_feed_secs;
8098
8099	now = ddi_get_lbolt();
8100	next = MAX(now, MIN(now + interval, began + interval));
8101
8102	return (next);
8103}
8104
8105/*
8106 * Cycle through L2ARC devices.  This is how L2ARC load balances.
8107 * If a device is returned, this also returns holding the spa config lock.
8108 */
8109static l2arc_dev_t *
8110l2arc_dev_get_next(void)
8111{
8112	l2arc_dev_t *first, *next = NULL;
8113
8114	/*
8115	 * Lock out the removal of spas (spa_namespace_lock), then removal
8116	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
8117	 * both locks will be dropped and a spa config lock held instead.
8118	 */
8119	mutex_enter(&spa_namespace_lock);
8120	mutex_enter(&l2arc_dev_mtx);
8121
8122	/* if there are no vdevs, there is nothing to do */
8123	if (l2arc_ndev == 0)
8124		goto out;
8125
8126	first = NULL;
8127	next = l2arc_dev_last;
8128	do {
8129		/* loop around the list looking for a non-faulted vdev */
8130		if (next == NULL) {
8131			next = list_head(l2arc_dev_list);
8132		} else {
8133			next = list_next(l2arc_dev_list, next);
8134			if (next == NULL)
8135				next = list_head(l2arc_dev_list);
8136		}
8137
8138		/* if we have come back to the start, bail out */
8139		if (first == NULL)
8140			first = next;
8141		else if (next == first)
8142			break;
8143
8144		ASSERT3P(next, !=, NULL);
8145	} while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild ||
8146	    next->l2ad_trim_all);
8147
8148	/* if we were unable to find any usable vdevs, return NULL */
8149	if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild ||
8150	    next->l2ad_trim_all)
8151		next = NULL;
8152
8153	l2arc_dev_last = next;
8154
8155out:
8156	mutex_exit(&l2arc_dev_mtx);
8157
8158	/*
8159	 * Grab the config lock to prevent the 'next' device from being
8160	 * removed while we are writing to it.
8161	 */
8162	if (next != NULL)
8163		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
8164	mutex_exit(&spa_namespace_lock);
8165
8166	return (next);
8167}
8168
8169/*
8170 * Free buffers that were tagged for destruction.
8171 */
8172static void
8173l2arc_do_free_on_write(void)
8174{
8175	l2arc_data_free_t *df;
8176
8177	mutex_enter(&l2arc_free_on_write_mtx);
8178	while ((df = list_remove_head(l2arc_free_on_write)) != NULL) {
8179		ASSERT3P(df->l2df_abd, !=, NULL);
8180		abd_free(df->l2df_abd);
8181		kmem_free(df, sizeof (l2arc_data_free_t));
8182	}
8183	mutex_exit(&l2arc_free_on_write_mtx);
8184}
8185
8186/*
8187 * A write to a cache device has completed.  Update all headers to allow
8188 * reads from these buffers to begin.
8189 */
8190static void
8191l2arc_write_done(zio_t *zio)
8192{
8193	l2arc_write_callback_t	*cb;
8194	l2arc_lb_abd_buf_t	*abd_buf;
8195	l2arc_lb_ptr_buf_t	*lb_ptr_buf;
8196	l2arc_dev_t		*dev;
8197	l2arc_dev_hdr_phys_t	*l2dhdr;
8198	list_t			*buflist;
8199	arc_buf_hdr_t		*head, *hdr, *hdr_prev;
8200	kmutex_t		*hash_lock;
8201	int64_t			bytes_dropped = 0;
8202
8203	cb = zio->io_private;
8204	ASSERT3P(cb, !=, NULL);
8205	dev = cb->l2wcb_dev;
8206	l2dhdr = dev->l2ad_dev_hdr;
8207	ASSERT3P(dev, !=, NULL);
8208	head = cb->l2wcb_head;
8209	ASSERT3P(head, !=, NULL);
8210	buflist = &dev->l2ad_buflist;
8211	ASSERT3P(buflist, !=, NULL);
8212	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
8213	    l2arc_write_callback_t *, cb);
8214
8215	/*
8216	 * All writes completed, or an error was hit.
8217	 */
8218top:
8219	mutex_enter(&dev->l2ad_mtx);
8220	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
8221		hdr_prev = list_prev(buflist, hdr);
8222
8223		hash_lock = HDR_LOCK(hdr);
8224
8225		/*
8226		 * We cannot use mutex_enter or else we can deadlock
8227		 * with l2arc_write_buffers (due to swapping the order
8228		 * the hash lock and l2ad_mtx are taken).
8229		 */
8230		if (!mutex_tryenter(hash_lock)) {
8231			/*
8232			 * Missed the hash lock. We must retry so we
8233			 * don't leave the ARC_FLAG_L2_WRITING bit set.
8234			 */
8235			ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
8236
8237			/*
8238			 * We don't want to rescan the headers we've
8239			 * already marked as having been written out, so
8240			 * we reinsert the head node so we can pick up
8241			 * where we left off.
8242			 */
8243			list_remove(buflist, head);
8244			list_insert_after(buflist, hdr, head);
8245
8246			mutex_exit(&dev->l2ad_mtx);
8247
8248			/*
8249			 * We wait for the hash lock to become available
8250			 * to try and prevent busy waiting, and increase
8251			 * the chance we'll be able to acquire the lock
8252			 * the next time around.
8253			 */
8254			mutex_enter(hash_lock);
8255			mutex_exit(hash_lock);
8256			goto top;
8257		}
8258
8259		/*
8260		 * We could not have been moved into the arc_l2c_only
8261		 * state while in-flight due to our ARC_FLAG_L2_WRITING
8262		 * bit being set. Let's just ensure that's being enforced.
8263		 */
8264		ASSERT(HDR_HAS_L1HDR(hdr));
8265
8266		/*
8267		 * Skipped - drop L2ARC entry and mark the header as no
8268		 * longer L2 eligibile.
8269		 */
8270		if (zio->io_error != 0) {
8271			/*
8272			 * Error - drop L2ARC entry.
8273			 */
8274			list_remove(buflist, hdr);
8275			arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
8276
8277			uint64_t psize = HDR_GET_PSIZE(hdr);
8278			l2arc_hdr_arcstats_decrement(hdr);
8279
8280			bytes_dropped +=
8281			    vdev_psize_to_asize(dev->l2ad_vdev, psize);
8282			(void) zfs_refcount_remove_many(&dev->l2ad_alloc,
8283			    arc_hdr_size(hdr), hdr);
8284		}
8285
8286		/*
8287		 * Allow ARC to begin reads and ghost list evictions to
8288		 * this L2ARC entry.
8289		 */
8290		arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
8291
8292		mutex_exit(hash_lock);
8293	}
8294
8295	/*
8296	 * Free the allocated abd buffers for writing the log blocks.
8297	 * If the zio failed reclaim the allocated space and remove the
8298	 * pointers to these log blocks from the log block pointer list
8299	 * of the L2ARC device.
8300	 */
8301	while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) {
8302		abd_free(abd_buf->abd);
8303		zio_buf_free(abd_buf, sizeof (*abd_buf));
8304		if (zio->io_error != 0) {
8305			lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list);
8306			/*
8307			 * L2BLK_GET_PSIZE returns aligned size for log
8308			 * blocks.
8309			 */
8310			uint64_t asize =
8311			    L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop);
8312			bytes_dropped += asize;
8313			ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
8314			ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
8315			zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
8316			    lb_ptr_buf);
8317			(void) zfs_refcount_remove(&dev->l2ad_lb_count,
8318			    lb_ptr_buf);
8319			kmem_free(lb_ptr_buf->lb_ptr,
8320			    sizeof (l2arc_log_blkptr_t));
8321			kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
8322		}
8323	}
8324	list_destroy(&cb->l2wcb_abd_list);
8325
8326	if (zio->io_error != 0) {
8327		ARCSTAT_BUMP(arcstat_l2_writes_error);
8328
8329		/*
8330		 * Restore the lbps array in the header to its previous state.
8331		 * If the list of log block pointers is empty, zero out the
8332		 * log block pointers in the device header.
8333		 */
8334		lb_ptr_buf = list_head(&dev->l2ad_lbptr_list);
8335		for (int i = 0; i < 2; i++) {
8336			if (lb_ptr_buf == NULL) {
8337				/*
8338				 * If the list is empty zero out the device
8339				 * header. Otherwise zero out the second log
8340				 * block pointer in the header.
8341				 */
8342				if (i == 0) {
8343					memset(l2dhdr, 0,
8344					    dev->l2ad_dev_hdr_asize);
8345				} else {
8346					memset(&l2dhdr->dh_start_lbps[i], 0,
8347					    sizeof (l2arc_log_blkptr_t));
8348				}
8349				break;
8350			}
8351			memcpy(&l2dhdr->dh_start_lbps[i], lb_ptr_buf->lb_ptr,
8352			    sizeof (l2arc_log_blkptr_t));
8353			lb_ptr_buf = list_next(&dev->l2ad_lbptr_list,
8354			    lb_ptr_buf);
8355		}
8356	}
8357
8358	ARCSTAT_BUMP(arcstat_l2_writes_done);
8359	list_remove(buflist, head);
8360	ASSERT(!HDR_HAS_L1HDR(head));
8361	kmem_cache_free(hdr_l2only_cache, head);
8362	mutex_exit(&dev->l2ad_mtx);
8363
8364	ASSERT(dev->l2ad_vdev != NULL);
8365	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
8366
8367	l2arc_do_free_on_write();
8368
8369	kmem_free(cb, sizeof (l2arc_write_callback_t));
8370}
8371
8372static int
8373l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb)
8374{
8375	int ret;
8376	spa_t *spa = zio->io_spa;
8377	arc_buf_hdr_t *hdr = cb->l2rcb_hdr;
8378	blkptr_t *bp = zio->io_bp;
8379	uint8_t salt[ZIO_DATA_SALT_LEN];
8380	uint8_t iv[ZIO_DATA_IV_LEN];
8381	uint8_t mac[ZIO_DATA_MAC_LEN];
8382	boolean_t no_crypt = B_FALSE;
8383
8384	/*
8385	 * ZIL data is never be written to the L2ARC, so we don't need
8386	 * special handling for its unique MAC storage.
8387	 */
8388	ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
8389	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
8390	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8391
8392	/*
8393	 * If the data was encrypted, decrypt it now. Note that
8394	 * we must check the bp here and not the hdr, since the
8395	 * hdr does not have its encryption parameters updated
8396	 * until arc_read_done().
8397	 */
8398	if (BP_IS_ENCRYPTED(bp)) {
8399		abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
8400		    ARC_HDR_USE_RESERVE);
8401
8402		zio_crypt_decode_params_bp(bp, salt, iv);
8403		zio_crypt_decode_mac_bp(bp, mac);
8404
8405		ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb,
8406		    BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
8407		    salt, iv, mac, HDR_GET_PSIZE(hdr), eabd,
8408		    hdr->b_l1hdr.b_pabd, &no_crypt);
8409		if (ret != 0) {
8410			arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8411			goto error;
8412		}
8413
8414		/*
8415		 * If we actually performed decryption, replace b_pabd
8416		 * with the decrypted data. Otherwise we can just throw
8417		 * our decryption buffer away.
8418		 */
8419		if (!no_crypt) {
8420			arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8421			    arc_hdr_size(hdr), hdr);
8422			hdr->b_l1hdr.b_pabd = eabd;
8423			zio->io_abd = eabd;
8424		} else {
8425			arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8426		}
8427	}
8428
8429	/*
8430	 * If the L2ARC block was compressed, but ARC compression
8431	 * is disabled we decompress the data into a new buffer and
8432	 * replace the existing data.
8433	 */
8434	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8435	    !HDR_COMPRESSION_ENABLED(hdr)) {
8436		abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
8437		    ARC_HDR_USE_RESERVE);
8438		void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
8439
8440		ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
8441		    hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
8442		    HDR_GET_LSIZE(hdr), &hdr->b_complevel);
8443		if (ret != 0) {
8444			abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8445			arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr);
8446			goto error;
8447		}
8448
8449		abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8450		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8451		    arc_hdr_size(hdr), hdr);
8452		hdr->b_l1hdr.b_pabd = cabd;
8453		zio->io_abd = cabd;
8454		zio->io_size = HDR_GET_LSIZE(hdr);
8455	}
8456
8457	return (0);
8458
8459error:
8460	return (ret);
8461}
8462
8463
8464/*
8465 * A read to a cache device completed.  Validate buffer contents before
8466 * handing over to the regular ARC routines.
8467 */
8468static void
8469l2arc_read_done(zio_t *zio)
8470{
8471	int tfm_error = 0;
8472	l2arc_read_callback_t *cb = zio->io_private;
8473	arc_buf_hdr_t *hdr;
8474	kmutex_t *hash_lock;
8475	boolean_t valid_cksum;
8476	boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) &&
8477	    (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT));
8478
8479	ASSERT3P(zio->io_vd, !=, NULL);
8480	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
8481
8482	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
8483
8484	ASSERT3P(cb, !=, NULL);
8485	hdr = cb->l2rcb_hdr;
8486	ASSERT3P(hdr, !=, NULL);
8487
8488	hash_lock = HDR_LOCK(hdr);
8489	mutex_enter(hash_lock);
8490	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
8491
8492	/*
8493	 * If the data was read into a temporary buffer,
8494	 * move it and free the buffer.
8495	 */
8496	if (cb->l2rcb_abd != NULL) {
8497		ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
8498		if (zio->io_error == 0) {
8499			if (using_rdata) {
8500				abd_copy(hdr->b_crypt_hdr.b_rabd,
8501				    cb->l2rcb_abd, arc_hdr_size(hdr));
8502			} else {
8503				abd_copy(hdr->b_l1hdr.b_pabd,
8504				    cb->l2rcb_abd, arc_hdr_size(hdr));
8505			}
8506		}
8507
8508		/*
8509		 * The following must be done regardless of whether
8510		 * there was an error:
8511		 * - free the temporary buffer
8512		 * - point zio to the real ARC buffer
8513		 * - set zio size accordingly
8514		 * These are required because zio is either re-used for
8515		 * an I/O of the block in the case of the error
8516		 * or the zio is passed to arc_read_done() and it
8517		 * needs real data.
8518		 */
8519		abd_free(cb->l2rcb_abd);
8520		zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
8521
8522		if (using_rdata) {
8523			ASSERT(HDR_HAS_RABD(hdr));
8524			zio->io_abd = zio->io_orig_abd =
8525			    hdr->b_crypt_hdr.b_rabd;
8526		} else {
8527			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8528			zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
8529		}
8530	}
8531
8532	ASSERT3P(zio->io_abd, !=, NULL);
8533
8534	/*
8535	 * Check this survived the L2ARC journey.
8536	 */
8537	ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd ||
8538	    (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd));
8539	zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
8540	zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
8541	zio->io_prop.zp_complevel = hdr->b_complevel;
8542
8543	valid_cksum = arc_cksum_is_equal(hdr, zio);
8544
8545	/*
8546	 * b_rabd will always match the data as it exists on disk if it is
8547	 * being used. Therefore if we are reading into b_rabd we do not
8548	 * attempt to untransform the data.
8549	 */
8550	if (valid_cksum && !using_rdata)
8551		tfm_error = l2arc_untransform(zio, cb);
8552
8553	if (valid_cksum && tfm_error == 0 && zio->io_error == 0 &&
8554	    !HDR_L2_EVICTED(hdr)) {
8555		mutex_exit(hash_lock);
8556		zio->io_private = hdr;
8557		arc_read_done(zio);
8558	} else {
8559		/*
8560		 * Buffer didn't survive caching.  Increment stats and
8561		 * reissue to the original storage device.
8562		 */
8563		if (zio->io_error != 0) {
8564			ARCSTAT_BUMP(arcstat_l2_io_error);
8565		} else {
8566			zio->io_error = SET_ERROR(EIO);
8567		}
8568		if (!valid_cksum || tfm_error != 0)
8569			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
8570
8571		/*
8572		 * If there's no waiter, issue an async i/o to the primary
8573		 * storage now.  If there *is* a waiter, the caller must
8574		 * issue the i/o in a context where it's OK to block.
8575		 */
8576		if (zio->io_waiter == NULL) {
8577			zio_t *pio = zio_unique_parent(zio);
8578			void *abd = (using_rdata) ?
8579			    hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd;
8580
8581			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
8582
8583			zio = zio_read(pio, zio->io_spa, zio->io_bp,
8584			    abd, zio->io_size, arc_read_done,
8585			    hdr, zio->io_priority, cb->l2rcb_flags,
8586			    &cb->l2rcb_zb);
8587
8588			/*
8589			 * Original ZIO will be freed, so we need to update
8590			 * ARC header with the new ZIO pointer to be used
8591			 * by zio_change_priority() in arc_read().
8592			 */
8593			for (struct arc_callback *acb = hdr->b_l1hdr.b_acb;
8594			    acb != NULL; acb = acb->acb_next)
8595				acb->acb_zio_head = zio;
8596
8597			mutex_exit(hash_lock);
8598			zio_nowait(zio);
8599		} else {
8600			mutex_exit(hash_lock);
8601		}
8602	}
8603
8604	kmem_free(cb, sizeof (l2arc_read_callback_t));
8605}
8606
8607/*
8608 * This is the list priority from which the L2ARC will search for pages to
8609 * cache.  This is used within loops (0..3) to cycle through lists in the
8610 * desired order.  This order can have a significant effect on cache
8611 * performance.
8612 *
8613 * Currently the metadata lists are hit first, MFU then MRU, followed by
8614 * the data lists.  This function returns a locked list, and also returns
8615 * the lock pointer.
8616 */
8617static multilist_sublist_t *
8618l2arc_sublist_lock(int list_num)
8619{
8620	multilist_t *ml = NULL;
8621	unsigned int idx;
8622
8623	ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES);
8624
8625	switch (list_num) {
8626	case 0:
8627		ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
8628		break;
8629	case 1:
8630		ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
8631		break;
8632	case 2:
8633		ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
8634		break;
8635	case 3:
8636		ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
8637		break;
8638	default:
8639		return (NULL);
8640	}
8641
8642	/*
8643	 * Return a randomly-selected sublist. This is acceptable
8644	 * because the caller feeds only a little bit of data for each
8645	 * call (8MB). Subsequent calls will result in different
8646	 * sublists being selected.
8647	 */
8648	idx = multilist_get_random_index(ml);
8649	return (multilist_sublist_lock_idx(ml, idx));
8650}
8651
8652/*
8653 * Calculates the maximum overhead of L2ARC metadata log blocks for a given
8654 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this
8655 * overhead in processing to make sure there is enough headroom available
8656 * when writing buffers.
8657 */
8658static inline uint64_t
8659l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev)
8660{
8661	if (dev->l2ad_log_entries == 0) {
8662		return (0);
8663	} else {
8664		uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT;
8665
8666		uint64_t log_blocks = (log_entries +
8667		    dev->l2ad_log_entries - 1) /
8668		    dev->l2ad_log_entries;
8669
8670		return (vdev_psize_to_asize(dev->l2ad_vdev,
8671		    sizeof (l2arc_log_blk_phys_t)) * log_blocks);
8672	}
8673}
8674
8675/*
8676 * Evict buffers from the device write hand to the distance specified in
8677 * bytes. This distance may span populated buffers, it may span nothing.
8678 * This is clearing a region on the L2ARC device ready for writing.
8679 * If the 'all' boolean is set, every buffer is evicted.
8680 */
8681static void
8682l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
8683{
8684	list_t *buflist;
8685	arc_buf_hdr_t *hdr, *hdr_prev;
8686	kmutex_t *hash_lock;
8687	uint64_t taddr;
8688	l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev;
8689	vdev_t *vd = dev->l2ad_vdev;
8690	boolean_t rerun;
8691
8692	buflist = &dev->l2ad_buflist;
8693
8694top:
8695	rerun = B_FALSE;
8696	if (dev->l2ad_hand + distance > dev->l2ad_end) {
8697		/*
8698		 * When there is no space to accommodate upcoming writes,
8699		 * evict to the end. Then bump the write and evict hands
8700		 * to the start and iterate. This iteration does not
8701		 * happen indefinitely as we make sure in
8702		 * l2arc_write_size() that when the write hand is reset,
8703		 * the write size does not exceed the end of the device.
8704		 */
8705		rerun = B_TRUE;
8706		taddr = dev->l2ad_end;
8707	} else {
8708		taddr = dev->l2ad_hand + distance;
8709	}
8710	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
8711	    uint64_t, taddr, boolean_t, all);
8712
8713	if (!all) {
8714		/*
8715		 * This check has to be placed after deciding whether to
8716		 * iterate (rerun).
8717		 */
8718		if (dev->l2ad_first) {
8719			/*
8720			 * This is the first sweep through the device. There is
8721			 * nothing to evict. We have already trimmmed the
8722			 * whole device.
8723			 */
8724			goto out;
8725		} else {
8726			/*
8727			 * Trim the space to be evicted.
8728			 */
8729			if (vd->vdev_has_trim && dev->l2ad_evict < taddr &&
8730			    l2arc_trim_ahead > 0) {
8731				/*
8732				 * We have to drop the spa_config lock because
8733				 * vdev_trim_range() will acquire it.
8734				 * l2ad_evict already accounts for the label
8735				 * size. To prevent vdev_trim_ranges() from
8736				 * adding it again, we subtract it from
8737				 * l2ad_evict.
8738				 */
8739				spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev);
8740				vdev_trim_simple(vd,
8741				    dev->l2ad_evict - VDEV_LABEL_START_SIZE,
8742				    taddr - dev->l2ad_evict);
8743				spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev,
8744				    RW_READER);
8745			}
8746
8747			/*
8748			 * When rebuilding L2ARC we retrieve the evict hand
8749			 * from the header of the device. Of note, l2arc_evict()
8750			 * does not actually delete buffers from the cache
8751			 * device, but trimming may do so depending on the
8752			 * hardware implementation. Thus keeping track of the
8753			 * evict hand is useful.
8754			 */
8755			dev->l2ad_evict = MAX(dev->l2ad_evict, taddr);
8756		}
8757	}
8758
8759retry:
8760	mutex_enter(&dev->l2ad_mtx);
8761	/*
8762	 * We have to account for evicted log blocks. Run vdev_space_update()
8763	 * on log blocks whose offset (in bytes) is before the evicted offset
8764	 * (in bytes) by searching in the list of pointers to log blocks
8765	 * present in the L2ARC device.
8766	 */
8767	for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf;
8768	    lb_ptr_buf = lb_ptr_buf_prev) {
8769
8770		lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf);
8771
8772		/* L2BLK_GET_PSIZE returns aligned size for log blocks */
8773		uint64_t asize = L2BLK_GET_PSIZE(
8774		    (lb_ptr_buf->lb_ptr)->lbp_prop);
8775
8776		/*
8777		 * We don't worry about log blocks left behind (ie
8778		 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers()
8779		 * will never write more than l2arc_evict() evicts.
8780		 */
8781		if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) {
8782			break;
8783		} else {
8784			vdev_space_update(vd, -asize, 0, 0);
8785			ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
8786			ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
8787			zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
8788			    lb_ptr_buf);
8789			(void) zfs_refcount_remove(&dev->l2ad_lb_count,
8790			    lb_ptr_buf);
8791			list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf);
8792			kmem_free(lb_ptr_buf->lb_ptr,
8793			    sizeof (l2arc_log_blkptr_t));
8794			kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
8795		}
8796	}
8797
8798	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
8799		hdr_prev = list_prev(buflist, hdr);
8800
8801		ASSERT(!HDR_EMPTY(hdr));
8802		hash_lock = HDR_LOCK(hdr);
8803
8804		/*
8805		 * We cannot use mutex_enter or else we can deadlock
8806		 * with l2arc_write_buffers (due to swapping the order
8807		 * the hash lock and l2ad_mtx are taken).
8808		 */
8809		if (!mutex_tryenter(hash_lock)) {
8810			/*
8811			 * Missed the hash lock.  Retry.
8812			 */
8813			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
8814			mutex_exit(&dev->l2ad_mtx);
8815			mutex_enter(hash_lock);
8816			mutex_exit(hash_lock);
8817			goto retry;
8818		}
8819
8820		/*
8821		 * A header can't be on this list if it doesn't have L2 header.
8822		 */
8823		ASSERT(HDR_HAS_L2HDR(hdr));
8824
8825		/* Ensure this header has finished being written. */
8826		ASSERT(!HDR_L2_WRITING(hdr));
8827		ASSERT(!HDR_L2_WRITE_HEAD(hdr));
8828
8829		if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict ||
8830		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
8831			/*
8832			 * We've evicted to the target address,
8833			 * or the end of the device.
8834			 */
8835			mutex_exit(hash_lock);
8836			break;
8837		}
8838
8839		if (!HDR_HAS_L1HDR(hdr)) {
8840			ASSERT(!HDR_L2_READING(hdr));
8841			/*
8842			 * This doesn't exist in the ARC.  Destroy.
8843			 * arc_hdr_destroy() will call list_remove()
8844			 * and decrement arcstat_l2_lsize.
8845			 */
8846			arc_change_state(arc_anon, hdr);
8847			arc_hdr_destroy(hdr);
8848		} else {
8849			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
8850			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
8851			/*
8852			 * Invalidate issued or about to be issued
8853			 * reads, since we may be about to write
8854			 * over this location.
8855			 */
8856			if (HDR_L2_READING(hdr)) {
8857				ARCSTAT_BUMP(arcstat_l2_evict_reading);
8858				arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
8859			}
8860
8861			arc_hdr_l2hdr_destroy(hdr);
8862		}
8863		mutex_exit(hash_lock);
8864	}
8865	mutex_exit(&dev->l2ad_mtx);
8866
8867out:
8868	/*
8869	 * We need to check if we evict all buffers, otherwise we may iterate
8870	 * unnecessarily.
8871	 */
8872	if (!all && rerun) {
8873		/*
8874		 * Bump device hand to the device start if it is approaching the
8875		 * end. l2arc_evict() has already evicted ahead for this case.
8876		 */
8877		dev->l2ad_hand = dev->l2ad_start;
8878		dev->l2ad_evict = dev->l2ad_start;
8879		dev->l2ad_first = B_FALSE;
8880		goto top;
8881	}
8882
8883	if (!all) {
8884		/*
8885		 * In case of cache device removal (all) the following
8886		 * assertions may be violated without functional consequences
8887		 * as the device is about to be removed.
8888		 */
8889		ASSERT3U(dev->l2ad_hand + distance, <, dev->l2ad_end);
8890		if (!dev->l2ad_first)
8891			ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict);
8892	}
8893}
8894
8895/*
8896 * Handle any abd transforms that might be required for writing to the L2ARC.
8897 * If successful, this function will always return an abd with the data
8898 * transformed as it is on disk in a new abd of asize bytes.
8899 */
8900static int
8901l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize,
8902    abd_t **abd_out)
8903{
8904	int ret;
8905	abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd;
8906	enum zio_compress compress = HDR_GET_COMPRESS(hdr);
8907	uint64_t psize = HDR_GET_PSIZE(hdr);
8908	uint64_t size = arc_hdr_size(hdr);
8909	boolean_t ismd = HDR_ISTYPE_METADATA(hdr);
8910	boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
8911	dsl_crypto_key_t *dck = NULL;
8912	uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 };
8913	boolean_t no_crypt = B_FALSE;
8914
8915	ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8916	    !HDR_COMPRESSION_ENABLED(hdr)) ||
8917	    HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize);
8918	ASSERT3U(psize, <=, asize);
8919
8920	/*
8921	 * If this data simply needs its own buffer, we simply allocate it
8922	 * and copy the data. This may be done to eliminate a dependency on a
8923	 * shared buffer or to reallocate the buffer to match asize.
8924	 */
8925	if (HDR_HAS_RABD(hdr)) {
8926		ASSERT3U(asize, >, psize);
8927		to_write = abd_alloc_for_io(asize, ismd);
8928		abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize);
8929		abd_zero_off(to_write, psize, asize - psize);
8930		goto out;
8931	}
8932
8933	if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) &&
8934	    !HDR_ENCRYPTED(hdr)) {
8935		ASSERT3U(size, ==, psize);
8936		to_write = abd_alloc_for_io(asize, ismd);
8937		abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
8938		if (asize > size)
8939			abd_zero_off(to_write, size, asize - size);
8940		goto out;
8941	}
8942
8943	if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) {
8944		size_t bufsize = MAX(size, asize);
8945		void *buf = zio_buf_alloc(bufsize);
8946		uint64_t csize = zio_compress_data(compress, to_write, &buf,
8947		    size, hdr->b_complevel);
8948		if (csize > psize) {
8949			/*
8950			 * We can't re-compress the block into the original
8951			 * psize.  Even if it fits into asize, it does not
8952			 * matter, since checksum will never match on read.
8953			 */
8954			zio_buf_free(buf, bufsize);
8955			return (SET_ERROR(EIO));
8956		}
8957		if (asize > csize)
8958			memset((char *)buf + csize, 0, asize - csize);
8959		to_write = cabd = abd_get_from_buf(buf, bufsize);
8960		abd_take_ownership_of_buf(cabd, B_TRUE);
8961	}
8962
8963	if (HDR_ENCRYPTED(hdr)) {
8964		eabd = abd_alloc_for_io(asize, ismd);
8965
8966		/*
8967		 * If the dataset was disowned before the buffer
8968		 * made it to this point, the key to re-encrypt
8969		 * it won't be available. In this case we simply
8970		 * won't write the buffer to the L2ARC.
8971		 */
8972		ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj,
8973		    FTAG, &dck);
8974		if (ret != 0)
8975			goto error;
8976
8977		ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
8978		    hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt,
8979		    hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd,
8980		    &no_crypt);
8981		if (ret != 0)
8982			goto error;
8983
8984		if (no_crypt)
8985			abd_copy(eabd, to_write, psize);
8986
8987		if (psize != asize)
8988			abd_zero_off(eabd, psize, asize - psize);
8989
8990		/* assert that the MAC we got here matches the one we saved */
8991		ASSERT0(memcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN));
8992		spa_keystore_dsl_key_rele(spa, dck, FTAG);
8993
8994		if (to_write == cabd)
8995			abd_free(cabd);
8996
8997		to_write = eabd;
8998	}
8999
9000out:
9001	ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd);
9002	*abd_out = to_write;
9003	return (0);
9004
9005error:
9006	if (dck != NULL)
9007		spa_keystore_dsl_key_rele(spa, dck, FTAG);
9008	if (cabd != NULL)
9009		abd_free(cabd);
9010	if (eabd != NULL)
9011		abd_free(eabd);
9012
9013	*abd_out = NULL;
9014	return (ret);
9015}
9016
9017static void
9018l2arc_blk_fetch_done(zio_t *zio)
9019{
9020	l2arc_read_callback_t *cb;
9021
9022	cb = zio->io_private;
9023	if (cb->l2rcb_abd != NULL)
9024		abd_free(cb->l2rcb_abd);
9025	kmem_free(cb, sizeof (l2arc_read_callback_t));
9026}
9027
9028/*
9029 * Find and write ARC buffers to the L2ARC device.
9030 *
9031 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
9032 * for reading until they have completed writing.
9033 * The headroom_boost is an in-out parameter used to maintain headroom boost
9034 * state between calls to this function.
9035 *
9036 * Returns the number of bytes actually written (which may be smaller than
9037 * the delta by which the device hand has changed due to alignment and the
9038 * writing of log blocks).
9039 */
9040static uint64_t
9041l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
9042{
9043	arc_buf_hdr_t 		*hdr, *head, *marker;
9044	uint64_t 		write_asize, write_psize, headroom;
9045	boolean_t		full, from_head = !arc_warm;
9046	l2arc_write_callback_t	*cb = NULL;
9047	zio_t 			*pio, *wzio;
9048	uint64_t 		guid = spa_load_guid(spa);
9049	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
9050
9051	ASSERT3P(dev->l2ad_vdev, !=, NULL);
9052
9053	pio = NULL;
9054	write_asize = write_psize = 0;
9055	full = B_FALSE;
9056	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
9057	arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
9058	marker = arc_state_alloc_marker();
9059
9060	/*
9061	 * Copy buffers for L2ARC writing.
9062	 */
9063	for (int pass = 0; pass < L2ARC_FEED_TYPES; pass++) {
9064		/*
9065		 * If pass == 1 or 3, we cache MRU metadata and data
9066		 * respectively.
9067		 */
9068		if (l2arc_mfuonly) {
9069			if (pass == 1 || pass == 3)
9070				continue;
9071		}
9072
9073		uint64_t passed_sz = 0;
9074		headroom = target_sz * l2arc_headroom;
9075		if (zfs_compressed_arc_enabled)
9076			headroom = (headroom * l2arc_headroom_boost) / 100;
9077
9078		/*
9079		 * Until the ARC is warm and starts to evict, read from the
9080		 * head of the ARC lists rather than the tail.
9081		 */
9082		multilist_sublist_t *mls = l2arc_sublist_lock(pass);
9083		ASSERT3P(mls, !=, NULL);
9084		if (from_head)
9085			hdr = multilist_sublist_head(mls);
9086		else
9087			hdr = multilist_sublist_tail(mls);
9088
9089		while (hdr != NULL) {
9090			kmutex_t *hash_lock;
9091			abd_t *to_write = NULL;
9092
9093			hash_lock = HDR_LOCK(hdr);
9094			if (!mutex_tryenter(hash_lock)) {
9095skip:
9096				/* Skip this buffer rather than waiting. */
9097				if (from_head)
9098					hdr = multilist_sublist_next(mls, hdr);
9099				else
9100					hdr = multilist_sublist_prev(mls, hdr);
9101				continue;
9102			}
9103
9104			passed_sz += HDR_GET_LSIZE(hdr);
9105			if (l2arc_headroom != 0 && passed_sz > headroom) {
9106				/*
9107				 * Searched too far.
9108				 */
9109				mutex_exit(hash_lock);
9110				break;
9111			}
9112
9113			if (!l2arc_write_eligible(guid, hdr)) {
9114				mutex_exit(hash_lock);
9115				goto skip;
9116			}
9117
9118			ASSERT(HDR_HAS_L1HDR(hdr));
9119			ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
9120			ASSERT3U(arc_hdr_size(hdr), >, 0);
9121			ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
9122			    HDR_HAS_RABD(hdr));
9123			uint64_t psize = HDR_GET_PSIZE(hdr);
9124			uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
9125			    psize);
9126
9127			/*
9128			 * If the allocated size of this buffer plus the max
9129			 * size for the pending log block exceeds the evicted
9130			 * target size, terminate writing buffers for this run.
9131			 */
9132			if (write_asize + asize +
9133			    sizeof (l2arc_log_blk_phys_t) > target_sz) {
9134				full = B_TRUE;
9135				mutex_exit(hash_lock);
9136				break;
9137			}
9138
9139			/*
9140			 * We should not sleep with sublist lock held or it
9141			 * may block ARC eviction.  Insert a marker to save
9142			 * the position and drop the lock.
9143			 */
9144			if (from_head) {
9145				multilist_sublist_insert_after(mls, hdr,
9146				    marker);
9147			} else {
9148				multilist_sublist_insert_before(mls, hdr,
9149				    marker);
9150			}
9151			multilist_sublist_unlock(mls);
9152
9153			/*
9154			 * If this header has b_rabd, we can use this since it
9155			 * must always match the data exactly as it exists on
9156			 * disk. Otherwise, the L2ARC can normally use the
9157			 * hdr's data, but if we're sharing data between the
9158			 * hdr and one of its bufs, L2ARC needs its own copy of
9159			 * the data so that the ZIO below can't race with the
9160			 * buf consumer. To ensure that this copy will be
9161			 * available for the lifetime of the ZIO and be cleaned
9162			 * up afterwards, we add it to the l2arc_free_on_write
9163			 * queue. If we need to apply any transforms to the
9164			 * data (compression, encryption) we will also need the
9165			 * extra buffer.
9166			 */
9167			if (HDR_HAS_RABD(hdr) && psize == asize) {
9168				to_write = hdr->b_crypt_hdr.b_rabd;
9169			} else if ((HDR_COMPRESSION_ENABLED(hdr) ||
9170			    HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) &&
9171			    !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) &&
9172			    psize == asize) {
9173				to_write = hdr->b_l1hdr.b_pabd;
9174			} else {
9175				int ret;
9176				arc_buf_contents_t type = arc_buf_type(hdr);
9177
9178				ret = l2arc_apply_transforms(spa, hdr, asize,
9179				    &to_write);
9180				if (ret != 0) {
9181					arc_hdr_clear_flags(hdr,
9182					    ARC_FLAG_L2CACHE);
9183					mutex_exit(hash_lock);
9184					goto next;
9185				}
9186
9187				l2arc_free_abd_on_write(to_write, asize, type);
9188			}
9189
9190			hdr->b_l2hdr.b_dev = dev;
9191			hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
9192			hdr->b_l2hdr.b_hits = 0;
9193			hdr->b_l2hdr.b_arcs_state =
9194			    hdr->b_l1hdr.b_state->arcs_state;
9195			mutex_enter(&dev->l2ad_mtx);
9196			if (pio == NULL) {
9197				/*
9198				 * Insert a dummy header on the buflist so
9199				 * l2arc_write_done() can find where the
9200				 * write buffers begin without searching.
9201				 */
9202				list_insert_head(&dev->l2ad_buflist, head);
9203			}
9204			list_insert_head(&dev->l2ad_buflist, hdr);
9205			mutex_exit(&dev->l2ad_mtx);
9206			arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR |
9207			    ARC_FLAG_L2_WRITING);
9208
9209			(void) zfs_refcount_add_many(&dev->l2ad_alloc,
9210			    arc_hdr_size(hdr), hdr);
9211			l2arc_hdr_arcstats_increment(hdr);
9212
9213			boolean_t commit = l2arc_log_blk_insert(dev, hdr);
9214			mutex_exit(hash_lock);
9215
9216			if (pio == NULL) {
9217				cb = kmem_alloc(
9218				    sizeof (l2arc_write_callback_t), KM_SLEEP);
9219				cb->l2wcb_dev = dev;
9220				cb->l2wcb_head = head;
9221				list_create(&cb->l2wcb_abd_list,
9222				    sizeof (l2arc_lb_abd_buf_t),
9223				    offsetof(l2arc_lb_abd_buf_t, node));
9224				pio = zio_root(spa, l2arc_write_done, cb,
9225				    ZIO_FLAG_CANFAIL);
9226			}
9227
9228			wzio = zio_write_phys(pio, dev->l2ad_vdev,
9229			    dev->l2ad_hand, asize, to_write,
9230			    ZIO_CHECKSUM_OFF, NULL, hdr,
9231			    ZIO_PRIORITY_ASYNC_WRITE,
9232			    ZIO_FLAG_CANFAIL, B_FALSE);
9233
9234			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
9235			    zio_t *, wzio);
9236			zio_nowait(wzio);
9237
9238			write_psize += psize;
9239			write_asize += asize;
9240			dev->l2ad_hand += asize;
9241			vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
9242
9243			if (commit) {
9244				/* l2ad_hand will be adjusted inside. */
9245				write_asize +=
9246				    l2arc_log_blk_commit(dev, pio, cb);
9247			}
9248
9249next:
9250			multilist_sublist_lock(mls);
9251			if (from_head)
9252				hdr = multilist_sublist_next(mls, marker);
9253			else
9254				hdr = multilist_sublist_prev(mls, marker);
9255			multilist_sublist_remove(mls, marker);
9256		}
9257
9258		multilist_sublist_unlock(mls);
9259
9260		if (full == B_TRUE)
9261			break;
9262	}
9263
9264	arc_state_free_marker(marker);
9265
9266	/* No buffers selected for writing? */
9267	if (pio == NULL) {
9268		ASSERT0(write_psize);
9269		ASSERT(!HDR_HAS_L1HDR(head));
9270		kmem_cache_free(hdr_l2only_cache, head);
9271
9272		/*
9273		 * Although we did not write any buffers l2ad_evict may
9274		 * have advanced.
9275		 */
9276		if (dev->l2ad_evict != l2dhdr->dh_evict)
9277			l2arc_dev_hdr_update(dev);
9278
9279		return (0);
9280	}
9281
9282	if (!dev->l2ad_first)
9283		ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict);
9284
9285	ASSERT3U(write_asize, <=, target_sz);
9286	ARCSTAT_BUMP(arcstat_l2_writes_sent);
9287	ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
9288
9289	dev->l2ad_writing = B_TRUE;
9290	(void) zio_wait(pio);
9291	dev->l2ad_writing = B_FALSE;
9292
9293	/*
9294	 * Update the device header after the zio completes as
9295	 * l2arc_write_done() may have updated the memory holding the log block
9296	 * pointers in the device header.
9297	 */
9298	l2arc_dev_hdr_update(dev);
9299
9300	return (write_asize);
9301}
9302
9303static boolean_t
9304l2arc_hdr_limit_reached(void)
9305{
9306	int64_t s = aggsum_upper_bound(&arc_sums.arcstat_l2_hdr_size);
9307
9308	return (arc_reclaim_needed() ||
9309	    (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100));
9310}
9311
9312/*
9313 * This thread feeds the L2ARC at regular intervals.  This is the beating
9314 * heart of the L2ARC.
9315 */
9316static  __attribute__((noreturn)) void
9317l2arc_feed_thread(void *unused)
9318{
9319	(void) unused;
9320	callb_cpr_t cpr;
9321	l2arc_dev_t *dev;
9322	spa_t *spa;
9323	uint64_t size, wrote;
9324	clock_t begin, next = ddi_get_lbolt();
9325	fstrans_cookie_t cookie;
9326
9327	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
9328
9329	mutex_enter(&l2arc_feed_thr_lock);
9330
9331	cookie = spl_fstrans_mark();
9332	while (l2arc_thread_exit == 0) {
9333		CALLB_CPR_SAFE_BEGIN(&cpr);
9334		(void) cv_timedwait_idle(&l2arc_feed_thr_cv,
9335		    &l2arc_feed_thr_lock, next);
9336		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
9337		next = ddi_get_lbolt() + hz;
9338
9339		/*
9340		 * Quick check for L2ARC devices.
9341		 */
9342		mutex_enter(&l2arc_dev_mtx);
9343		if (l2arc_ndev == 0) {
9344			mutex_exit(&l2arc_dev_mtx);
9345			continue;
9346		}
9347		mutex_exit(&l2arc_dev_mtx);
9348		begin = ddi_get_lbolt();
9349
9350		/*
9351		 * This selects the next l2arc device to write to, and in
9352		 * doing so the next spa to feed from: dev->l2ad_spa.   This
9353		 * will return NULL if there are now no l2arc devices or if
9354		 * they are all faulted.
9355		 *
9356		 * If a device is returned, its spa's config lock is also
9357		 * held to prevent device removal.  l2arc_dev_get_next()
9358		 * will grab and release l2arc_dev_mtx.
9359		 */
9360		if ((dev = l2arc_dev_get_next()) == NULL)
9361			continue;
9362
9363		spa = dev->l2ad_spa;
9364		ASSERT3P(spa, !=, NULL);
9365
9366		/*
9367		 * If the pool is read-only then force the feed thread to
9368		 * sleep a little longer.
9369		 */
9370		if (!spa_writeable(spa)) {
9371			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
9372			spa_config_exit(spa, SCL_L2ARC, dev);
9373			continue;
9374		}
9375
9376		/*
9377		 * Avoid contributing to memory pressure.
9378		 */
9379		if (l2arc_hdr_limit_reached()) {
9380			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
9381			spa_config_exit(spa, SCL_L2ARC, dev);
9382			continue;
9383		}
9384
9385		ARCSTAT_BUMP(arcstat_l2_feeds);
9386
9387		size = l2arc_write_size(dev);
9388
9389		/*
9390		 * Evict L2ARC buffers that will be overwritten.
9391		 */
9392		l2arc_evict(dev, size, B_FALSE);
9393
9394		/*
9395		 * Write ARC buffers.
9396		 */
9397		wrote = l2arc_write_buffers(spa, dev, size);
9398
9399		/*
9400		 * Calculate interval between writes.
9401		 */
9402		next = l2arc_write_interval(begin, size, wrote);
9403		spa_config_exit(spa, SCL_L2ARC, dev);
9404	}
9405	spl_fstrans_unmark(cookie);
9406
9407	l2arc_thread_exit = 0;
9408	cv_broadcast(&l2arc_feed_thr_cv);
9409	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
9410	thread_exit();
9411}
9412
9413boolean_t
9414l2arc_vdev_present(vdev_t *vd)
9415{
9416	return (l2arc_vdev_get(vd) != NULL);
9417}
9418
9419/*
9420 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if
9421 * the vdev_t isn't an L2ARC device.
9422 */
9423l2arc_dev_t *
9424l2arc_vdev_get(vdev_t *vd)
9425{
9426	l2arc_dev_t	*dev;
9427
9428	mutex_enter(&l2arc_dev_mtx);
9429	for (dev = list_head(l2arc_dev_list); dev != NULL;
9430	    dev = list_next(l2arc_dev_list, dev)) {
9431		if (dev->l2ad_vdev == vd)
9432			break;
9433	}
9434	mutex_exit(&l2arc_dev_mtx);
9435
9436	return (dev);
9437}
9438
9439static void
9440l2arc_rebuild_dev(l2arc_dev_t *dev, boolean_t reopen)
9441{
9442	l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
9443	uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
9444	spa_t *spa = dev->l2ad_spa;
9445
9446	/*
9447	 * The L2ARC has to hold at least the payload of one log block for
9448	 * them to be restored (persistent L2ARC). The payload of a log block
9449	 * depends on the amount of its log entries. We always write log blocks
9450	 * with 1022 entries. How many of them are committed or restored depends
9451	 * on the size of the L2ARC device. Thus the maximum payload of
9452	 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device
9453	 * is less than that, we reduce the amount of committed and restored
9454	 * log entries per block so as to enable persistence.
9455	 */
9456	if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) {
9457		dev->l2ad_log_entries = 0;
9458	} else {
9459		dev->l2ad_log_entries = MIN((dev->l2ad_end -
9460		    dev->l2ad_start) >> SPA_MAXBLOCKSHIFT,
9461		    L2ARC_LOG_BLK_MAX_ENTRIES);
9462	}
9463
9464	/*
9465	 * Read the device header, if an error is returned do not rebuild L2ARC.
9466	 */
9467	if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) {
9468		/*
9469		 * If we are onlining a cache device (vdev_reopen) that was
9470		 * still present (l2arc_vdev_present()) and rebuild is enabled,
9471		 * we should evict all ARC buffers and pointers to log blocks
9472		 * and reclaim their space before restoring its contents to
9473		 * L2ARC.
9474		 */
9475		if (reopen) {
9476			if (!l2arc_rebuild_enabled) {
9477				return;
9478			} else {
9479				l2arc_evict(dev, 0, B_TRUE);
9480				/* start a new log block */
9481				dev->l2ad_log_ent_idx = 0;
9482				dev->l2ad_log_blk_payload_asize = 0;
9483				dev->l2ad_log_blk_payload_start = 0;
9484			}
9485		}
9486		/*
9487		 * Just mark the device as pending for a rebuild. We won't
9488		 * be starting a rebuild in line here as it would block pool
9489		 * import. Instead spa_load_impl will hand that off to an
9490		 * async task which will call l2arc_spa_rebuild_start.
9491		 */
9492		dev->l2ad_rebuild = B_TRUE;
9493	} else if (spa_writeable(spa)) {
9494		/*
9495		 * In this case TRIM the whole device if l2arc_trim_ahead > 0,
9496		 * otherwise create a new header. We zero out the memory holding
9497		 * the header to reset dh_start_lbps. If we TRIM the whole
9498		 * device the new header will be written by
9499		 * vdev_trim_l2arc_thread() at the end of the TRIM to update the
9500		 * trim_state in the header too. When reading the header, if
9501		 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0
9502		 * we opt to TRIM the whole device again.
9503		 */
9504		if (l2arc_trim_ahead > 0) {
9505			dev->l2ad_trim_all = B_TRUE;
9506		} else {
9507			memset(l2dhdr, 0, l2dhdr_asize);
9508			l2arc_dev_hdr_update(dev);
9509		}
9510	}
9511}
9512
9513/*
9514 * Add a vdev for use by the L2ARC.  By this point the spa has already
9515 * validated the vdev and opened it.
9516 */
9517void
9518l2arc_add_vdev(spa_t *spa, vdev_t *vd)
9519{
9520	l2arc_dev_t		*adddev;
9521	uint64_t		l2dhdr_asize;
9522
9523	ASSERT(!l2arc_vdev_present(vd));
9524
9525	/*
9526	 * Create a new l2arc device entry.
9527	 */
9528	adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
9529	adddev->l2ad_spa = spa;
9530	adddev->l2ad_vdev = vd;
9531	/* leave extra size for an l2arc device header */
9532	l2dhdr_asize = adddev->l2ad_dev_hdr_asize =
9533	    MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift);
9534	adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize;
9535	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
9536	ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end);
9537	adddev->l2ad_hand = adddev->l2ad_start;
9538	adddev->l2ad_evict = adddev->l2ad_start;
9539	adddev->l2ad_first = B_TRUE;
9540	adddev->l2ad_writing = B_FALSE;
9541	adddev->l2ad_trim_all = B_FALSE;
9542	list_link_init(&adddev->l2ad_node);
9543	adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP);
9544
9545	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
9546	/*
9547	 * This is a list of all ARC buffers that are still valid on the
9548	 * device.
9549	 */
9550	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
9551	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
9552
9553	/*
9554	 * This is a list of pointers to log blocks that are still present
9555	 * on the device.
9556	 */
9557	list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t),
9558	    offsetof(l2arc_lb_ptr_buf_t, node));
9559
9560	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
9561	zfs_refcount_create(&adddev->l2ad_alloc);
9562	zfs_refcount_create(&adddev->l2ad_lb_asize);
9563	zfs_refcount_create(&adddev->l2ad_lb_count);
9564
9565	/*
9566	 * Decide if dev is eligible for L2ARC rebuild or whole device
9567	 * trimming. This has to happen before the device is added in the
9568	 * cache device list and l2arc_dev_mtx is released. Otherwise
9569	 * l2arc_feed_thread() might already start writing on the
9570	 * device.
9571	 */
9572	l2arc_rebuild_dev(adddev, B_FALSE);
9573
9574	/*
9575	 * Add device to global list
9576	 */
9577	mutex_enter(&l2arc_dev_mtx);
9578	list_insert_head(l2arc_dev_list, adddev);
9579	atomic_inc_64(&l2arc_ndev);
9580	mutex_exit(&l2arc_dev_mtx);
9581}
9582
9583/*
9584 * Decide if a vdev is eligible for L2ARC rebuild, called from vdev_reopen()
9585 * in case of onlining a cache device.
9586 */
9587void
9588l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen)
9589{
9590	l2arc_dev_t		*dev = NULL;
9591
9592	dev = l2arc_vdev_get(vd);
9593	ASSERT3P(dev, !=, NULL);
9594
9595	/*
9596	 * In contrast to l2arc_add_vdev() we do not have to worry about
9597	 * l2arc_feed_thread() invalidating previous content when onlining a
9598	 * cache device. The device parameters (l2ad*) are not cleared when
9599	 * offlining the device and writing new buffers will not invalidate
9600	 * all previous content. In worst case only buffers that have not had
9601	 * their log block written to the device will be lost.
9602	 * When onlining the cache device (ie offline->online without exporting
9603	 * the pool in between) this happens:
9604	 * vdev_reopen() -> vdev_open() -> l2arc_rebuild_vdev()
9605	 * 			|			|
9606	 * 		vdev_is_dead() = B_FALSE	l2ad_rebuild = B_TRUE
9607	 * During the time where vdev_is_dead = B_FALSE and until l2ad_rebuild
9608	 * is set to B_TRUE we might write additional buffers to the device.
9609	 */
9610	l2arc_rebuild_dev(dev, reopen);
9611}
9612
9613/*
9614 * Remove a vdev from the L2ARC.
9615 */
9616void
9617l2arc_remove_vdev(vdev_t *vd)
9618{
9619	l2arc_dev_t *remdev = NULL;
9620
9621	/*
9622	 * Find the device by vdev
9623	 */
9624	remdev = l2arc_vdev_get(vd);
9625	ASSERT3P(remdev, !=, NULL);
9626
9627	/*
9628	 * Cancel any ongoing or scheduled rebuild.
9629	 */
9630	mutex_enter(&l2arc_rebuild_thr_lock);
9631	if (remdev->l2ad_rebuild_began == B_TRUE) {
9632		remdev->l2ad_rebuild_cancel = B_TRUE;
9633		while (remdev->l2ad_rebuild == B_TRUE)
9634			cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock);
9635	}
9636	mutex_exit(&l2arc_rebuild_thr_lock);
9637
9638	/*
9639	 * Remove device from global list
9640	 */
9641	mutex_enter(&l2arc_dev_mtx);
9642	list_remove(l2arc_dev_list, remdev);
9643	l2arc_dev_last = NULL;		/* may have been invalidated */
9644	atomic_dec_64(&l2arc_ndev);
9645	mutex_exit(&l2arc_dev_mtx);
9646
9647	/*
9648	 * Clear all buflists and ARC references.  L2ARC device flush.
9649	 */
9650	l2arc_evict(remdev, 0, B_TRUE);
9651	list_destroy(&remdev->l2ad_buflist);
9652	ASSERT(list_is_empty(&remdev->l2ad_lbptr_list));
9653	list_destroy(&remdev->l2ad_lbptr_list);
9654	mutex_destroy(&remdev->l2ad_mtx);
9655	zfs_refcount_destroy(&remdev->l2ad_alloc);
9656	zfs_refcount_destroy(&remdev->l2ad_lb_asize);
9657	zfs_refcount_destroy(&remdev->l2ad_lb_count);
9658	kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize);
9659	vmem_free(remdev, sizeof (l2arc_dev_t));
9660}
9661
9662void
9663l2arc_init(void)
9664{
9665	l2arc_thread_exit = 0;
9666	l2arc_ndev = 0;
9667
9668	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
9669	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
9670	mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL);
9671	cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL);
9672	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
9673	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
9674
9675	l2arc_dev_list = &L2ARC_dev_list;
9676	l2arc_free_on_write = &L2ARC_free_on_write;
9677	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
9678	    offsetof(l2arc_dev_t, l2ad_node));
9679	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
9680	    offsetof(l2arc_data_free_t, l2df_list_node));
9681}
9682
9683void
9684l2arc_fini(void)
9685{
9686	mutex_destroy(&l2arc_feed_thr_lock);
9687	cv_destroy(&l2arc_feed_thr_cv);
9688	mutex_destroy(&l2arc_rebuild_thr_lock);
9689	cv_destroy(&l2arc_rebuild_thr_cv);
9690	mutex_destroy(&l2arc_dev_mtx);
9691	mutex_destroy(&l2arc_free_on_write_mtx);
9692
9693	list_destroy(l2arc_dev_list);
9694	list_destroy(l2arc_free_on_write);
9695}
9696
9697void
9698l2arc_start(void)
9699{
9700	if (!(spa_mode_global & SPA_MODE_WRITE))
9701		return;
9702
9703	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
9704	    TS_RUN, defclsyspri);
9705}
9706
9707void
9708l2arc_stop(void)
9709{
9710	if (!(spa_mode_global & SPA_MODE_WRITE))
9711		return;
9712
9713	mutex_enter(&l2arc_feed_thr_lock);
9714	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
9715	l2arc_thread_exit = 1;
9716	while (l2arc_thread_exit != 0)
9717		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
9718	mutex_exit(&l2arc_feed_thr_lock);
9719}
9720
9721/*
9722 * Punches out rebuild threads for the L2ARC devices in a spa. This should
9723 * be called after pool import from the spa async thread, since starting
9724 * these threads directly from spa_import() will make them part of the
9725 * "zpool import" context and delay process exit (and thus pool import).
9726 */
9727void
9728l2arc_spa_rebuild_start(spa_t *spa)
9729{
9730	ASSERT(MUTEX_HELD(&spa_namespace_lock));
9731
9732	/*
9733	 * Locate the spa's l2arc devices and kick off rebuild threads.
9734	 */
9735	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
9736		l2arc_dev_t *dev =
9737		    l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
9738		if (dev == NULL) {
9739			/* Don't attempt a rebuild if the vdev is UNAVAIL */
9740			continue;
9741		}
9742		mutex_enter(&l2arc_rebuild_thr_lock);
9743		if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) {
9744			dev->l2ad_rebuild_began = B_TRUE;
9745			(void) thread_create(NULL, 0, l2arc_dev_rebuild_thread,
9746			    dev, 0, &p0, TS_RUN, minclsyspri);
9747		}
9748		mutex_exit(&l2arc_rebuild_thr_lock);
9749	}
9750}
9751
9752/*
9753 * Main entry point for L2ARC rebuilding.
9754 */
9755static __attribute__((noreturn)) void
9756l2arc_dev_rebuild_thread(void *arg)
9757{
9758	l2arc_dev_t *dev = arg;
9759
9760	VERIFY(!dev->l2ad_rebuild_cancel);
9761	VERIFY(dev->l2ad_rebuild);
9762	(void) l2arc_rebuild(dev);
9763	mutex_enter(&l2arc_rebuild_thr_lock);
9764	dev->l2ad_rebuild_began = B_FALSE;
9765	dev->l2ad_rebuild = B_FALSE;
9766	mutex_exit(&l2arc_rebuild_thr_lock);
9767
9768	thread_exit();
9769}
9770
9771/*
9772 * This function implements the actual L2ARC metadata rebuild. It:
9773 * starts reading the log block chain and restores each block's contents
9774 * to memory (reconstructing arc_buf_hdr_t's).
9775 *
9776 * Operation stops under any of the following conditions:
9777 *
9778 * 1) We reach the end of the log block chain.
9779 * 2) We encounter *any* error condition (cksum errors, io errors)
9780 */
9781static int
9782l2arc_rebuild(l2arc_dev_t *dev)
9783{
9784	vdev_t			*vd = dev->l2ad_vdev;
9785	spa_t			*spa = vd->vdev_spa;
9786	int			err = 0;
9787	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
9788	l2arc_log_blk_phys_t	*this_lb, *next_lb;
9789	zio_t			*this_io = NULL, *next_io = NULL;
9790	l2arc_log_blkptr_t	lbps[2];
9791	l2arc_lb_ptr_buf_t	*lb_ptr_buf;
9792	boolean_t		lock_held;
9793
9794	this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP);
9795	next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP);
9796
9797	/*
9798	 * We prevent device removal while issuing reads to the device,
9799	 * then during the rebuilding phases we drop this lock again so
9800	 * that a spa_unload or device remove can be initiated - this is
9801	 * safe, because the spa will signal us to stop before removing
9802	 * our device and wait for us to stop.
9803	 */
9804	spa_config_enter(spa, SCL_L2ARC, vd, RW_READER);
9805	lock_held = B_TRUE;
9806
9807	/*
9808	 * Retrieve the persistent L2ARC device state.
9809	 * L2BLK_GET_PSIZE returns aligned size for log blocks.
9810	 */
9811	dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start);
9812	dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr +
9813	    L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop),
9814	    dev->l2ad_start);
9815	dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
9816
9817	vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time;
9818	vd->vdev_trim_state = l2dhdr->dh_trim_state;
9819
9820	/*
9821	 * In case the zfs module parameter l2arc_rebuild_enabled is false
9822	 * we do not start the rebuild process.
9823	 */
9824	if (!l2arc_rebuild_enabled)
9825		goto out;
9826
9827	/* Prepare the rebuild process */
9828	memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps));
9829
9830	/* Start the rebuild process */
9831	for (;;) {
9832		if (!l2arc_log_blkptr_valid(dev, &lbps[0]))
9833			break;
9834
9835		if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1],
9836		    this_lb, next_lb, this_io, &next_io)) != 0)
9837			goto out;
9838
9839		/*
9840		 * Our memory pressure valve. If the system is running low
9841		 * on memory, rather than swamping memory with new ARC buf
9842		 * hdrs, we opt not to rebuild the L2ARC. At this point,
9843		 * however, we have already set up our L2ARC dev to chain in
9844		 * new metadata log blocks, so the user may choose to offline/
9845		 * online the L2ARC dev at a later time (or re-import the pool)
9846		 * to reconstruct it (when there's less memory pressure).
9847		 */
9848		if (l2arc_hdr_limit_reached()) {
9849			ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem);
9850			cmn_err(CE_NOTE, "System running low on memory, "
9851			    "aborting L2ARC rebuild.");
9852			err = SET_ERROR(ENOMEM);
9853			goto out;
9854		}
9855
9856		spa_config_exit(spa, SCL_L2ARC, vd);
9857		lock_held = B_FALSE;
9858
9859		/*
9860		 * Now that we know that the next_lb checks out alright, we
9861		 * can start reconstruction from this log block.
9862		 * L2BLK_GET_PSIZE returns aligned size for log blocks.
9863		 */
9864		uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
9865		l2arc_log_blk_restore(dev, this_lb, asize);
9866
9867		/*
9868		 * log block restored, include its pointer in the list of
9869		 * pointers to log blocks present in the L2ARC device.
9870		 */
9871		lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
9872		lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t),
9873		    KM_SLEEP);
9874		memcpy(lb_ptr_buf->lb_ptr, &lbps[0],
9875		    sizeof (l2arc_log_blkptr_t));
9876		mutex_enter(&dev->l2ad_mtx);
9877		list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf);
9878		ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
9879		ARCSTAT_BUMP(arcstat_l2_log_blk_count);
9880		zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
9881		zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
9882		mutex_exit(&dev->l2ad_mtx);
9883		vdev_space_update(vd, asize, 0, 0);
9884
9885		/*
9886		 * Protection against loops of log blocks:
9887		 *
9888		 *				       l2ad_hand  l2ad_evict
9889		 *                                         V	      V
9890		 * l2ad_start |=======================================| l2ad_end
9891		 *             -----|||----|||---|||----|||
9892		 *                  (3)    (2)   (1)    (0)
9893		 *             ---|||---|||----|||---|||
9894		 *		  (7)   (6)    (5)   (4)
9895		 *
9896		 * In this situation the pointer of log block (4) passes
9897		 * l2arc_log_blkptr_valid() but the log block should not be
9898		 * restored as it is overwritten by the payload of log block
9899		 * (0). Only log blocks (0)-(3) should be restored. We check
9900		 * whether l2ad_evict lies in between the payload starting
9901		 * offset of the next log block (lbps[1].lbp_payload_start)
9902		 * and the payload starting offset of the present log block
9903		 * (lbps[0].lbp_payload_start). If true and this isn't the
9904		 * first pass, we are looping from the beginning and we should
9905		 * stop.
9906		 */
9907		if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
9908		    lbps[0].lbp_payload_start, dev->l2ad_evict) &&
9909		    !dev->l2ad_first)
9910			goto out;
9911
9912		kpreempt(KPREEMPT_SYNC);
9913		for (;;) {
9914			mutex_enter(&l2arc_rebuild_thr_lock);
9915			if (dev->l2ad_rebuild_cancel) {
9916				dev->l2ad_rebuild = B_FALSE;
9917				cv_signal(&l2arc_rebuild_thr_cv);
9918				mutex_exit(&l2arc_rebuild_thr_lock);
9919				err = SET_ERROR(ECANCELED);
9920				goto out;
9921			}
9922			mutex_exit(&l2arc_rebuild_thr_lock);
9923			if (spa_config_tryenter(spa, SCL_L2ARC, vd,
9924			    RW_READER)) {
9925				lock_held = B_TRUE;
9926				break;
9927			}
9928			/*
9929			 * L2ARC config lock held by somebody in writer,
9930			 * possibly due to them trying to remove us. They'll
9931			 * likely to want us to shut down, so after a little
9932			 * delay, we check l2ad_rebuild_cancel and retry
9933			 * the lock again.
9934			 */
9935			delay(1);
9936		}
9937
9938		/*
9939		 * Continue with the next log block.
9940		 */
9941		lbps[0] = lbps[1];
9942		lbps[1] = this_lb->lb_prev_lbp;
9943		PTR_SWAP(this_lb, next_lb);
9944		this_io = next_io;
9945		next_io = NULL;
9946	}
9947
9948	if (this_io != NULL)
9949		l2arc_log_blk_fetch_abort(this_io);
9950out:
9951	if (next_io != NULL)
9952		l2arc_log_blk_fetch_abort(next_io);
9953	vmem_free(this_lb, sizeof (*this_lb));
9954	vmem_free(next_lb, sizeof (*next_lb));
9955
9956	if (!l2arc_rebuild_enabled) {
9957		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9958		    "disabled");
9959	} else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) {
9960		ARCSTAT_BUMP(arcstat_l2_rebuild_success);
9961		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9962		    "successful, restored %llu blocks",
9963		    (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
9964	} else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) {
9965		/*
9966		 * No error but also nothing restored, meaning the lbps array
9967		 * in the device header points to invalid/non-present log
9968		 * blocks. Reset the header.
9969		 */
9970		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9971		    "no valid log blocks");
9972		memset(l2dhdr, 0, dev->l2ad_dev_hdr_asize);
9973		l2arc_dev_hdr_update(dev);
9974	} else if (err == ECANCELED) {
9975		/*
9976		 * In case the rebuild was canceled do not log to spa history
9977		 * log as the pool may be in the process of being removed.
9978		 */
9979		zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks",
9980		    (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
9981	} else if (err != 0) {
9982		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9983		    "aborted, restored %llu blocks",
9984		    (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
9985	}
9986
9987	if (lock_held)
9988		spa_config_exit(spa, SCL_L2ARC, vd);
9989
9990	return (err);
9991}
9992
9993/*
9994 * Attempts to read the device header on the provided L2ARC device and writes
9995 * it to `hdr'. On success, this function returns 0, otherwise the appropriate
9996 * error code is returned.
9997 */
9998static int
9999l2arc_dev_hdr_read(l2arc_dev_t *dev)
10000{
10001	int			err;
10002	uint64_t		guid;
10003	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
10004	const uint64_t		l2dhdr_asize = dev->l2ad_dev_hdr_asize;
10005	abd_t 			*abd;
10006
10007	guid = spa_guid(dev->l2ad_vdev->vdev_spa);
10008
10009	abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
10010
10011	err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev,
10012	    VDEV_LABEL_START_SIZE, l2dhdr_asize, abd,
10013	    ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
10014	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY |
10015	    ZIO_FLAG_SPECULATIVE, B_FALSE));
10016
10017	abd_free(abd);
10018
10019	if (err != 0) {
10020		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors);
10021		zfs_dbgmsg("L2ARC IO error (%d) while reading device header, "
10022		    "vdev guid: %llu", err,
10023		    (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10024		return (err);
10025	}
10026
10027	if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
10028		byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr));
10029
10030	if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC ||
10031	    l2dhdr->dh_spa_guid != guid ||
10032	    l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid ||
10033	    l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION ||
10034	    l2dhdr->dh_log_entries != dev->l2ad_log_entries ||
10035	    l2dhdr->dh_end != dev->l2ad_end ||
10036	    !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end,
10037	    l2dhdr->dh_evict) ||
10038	    (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE &&
10039	    l2arc_trim_ahead > 0)) {
10040		/*
10041		 * Attempt to rebuild a device containing no actual dev hdr
10042		 * or containing a header from some other pool or from another
10043		 * version of persistent L2ARC.
10044		 */
10045		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported);
10046		return (SET_ERROR(ENOTSUP));
10047	}
10048
10049	return (0);
10050}
10051
10052/*
10053 * Reads L2ARC log blocks from storage and validates their contents.
10054 *
10055 * This function implements a simple fetcher to make sure that while
10056 * we're processing one buffer the L2ARC is already fetching the next
10057 * one in the chain.
10058 *
10059 * The arguments this_lp and next_lp point to the current and next log block
10060 * address in the block chain. Similarly, this_lb and next_lb hold the
10061 * l2arc_log_blk_phys_t's of the current and next L2ARC blk.
10062 *
10063 * The `this_io' and `next_io' arguments are used for block fetching.
10064 * When issuing the first blk IO during rebuild, you should pass NULL for
10065 * `this_io'. This function will then issue a sync IO to read the block and
10066 * also issue an async IO to fetch the next block in the block chain. The
10067 * fetched IO is returned in `next_io'. On subsequent calls to this
10068 * function, pass the value returned in `next_io' from the previous call
10069 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO.
10070 * Prior to the call, you should initialize your `next_io' pointer to be
10071 * NULL. If no fetch IO was issued, the pointer is left set at NULL.
10072 *
10073 * On success, this function returns 0, otherwise it returns an appropriate
10074 * error code. On error the fetching IO is aborted and cleared before
10075 * returning from this function. Therefore, if we return `success', the
10076 * caller can assume that we have taken care of cleanup of fetch IOs.
10077 */
10078static int
10079l2arc_log_blk_read(l2arc_dev_t *dev,
10080    const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp,
10081    l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
10082    zio_t *this_io, zio_t **next_io)
10083{
10084	int		err = 0;
10085	zio_cksum_t	cksum;
10086	abd_t		*abd = NULL;
10087	uint64_t	asize;
10088
10089	ASSERT(this_lbp != NULL && next_lbp != NULL);
10090	ASSERT(this_lb != NULL && next_lb != NULL);
10091	ASSERT(next_io != NULL && *next_io == NULL);
10092	ASSERT(l2arc_log_blkptr_valid(dev, this_lbp));
10093
10094	/*
10095	 * Check to see if we have issued the IO for this log block in a
10096	 * previous run. If not, this is the first call, so issue it now.
10097	 */
10098	if (this_io == NULL) {
10099		this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp,
10100		    this_lb);
10101	}
10102
10103	/*
10104	 * Peek to see if we can start issuing the next IO immediately.
10105	 */
10106	if (l2arc_log_blkptr_valid(dev, next_lbp)) {
10107		/*
10108		 * Start issuing IO for the next log block early - this
10109		 * should help keep the L2ARC device busy while we
10110		 * decompress and restore this log block.
10111		 */
10112		*next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp,
10113		    next_lb);
10114	}
10115
10116	/* Wait for the IO to read this log block to complete */
10117	if ((err = zio_wait(this_io)) != 0) {
10118		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors);
10119		zfs_dbgmsg("L2ARC IO error (%d) while reading log block, "
10120		    "offset: %llu, vdev guid: %llu", err,
10121		    (u_longlong_t)this_lbp->lbp_daddr,
10122		    (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10123		goto cleanup;
10124	}
10125
10126	/*
10127	 * Make sure the buffer checks out.
10128	 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10129	 */
10130	asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop);
10131	fletcher_4_native(this_lb, asize, NULL, &cksum);
10132	if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) {
10133		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors);
10134		zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, "
10135		    "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu",
10136		    (u_longlong_t)this_lbp->lbp_daddr,
10137		    (u_longlong_t)dev->l2ad_vdev->vdev_guid,
10138		    (u_longlong_t)dev->l2ad_hand,
10139		    (u_longlong_t)dev->l2ad_evict);
10140		err = SET_ERROR(ECKSUM);
10141		goto cleanup;
10142	}
10143
10144	/* Now we can take our time decoding this buffer */
10145	switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) {
10146	case ZIO_COMPRESS_OFF:
10147		break;
10148	case ZIO_COMPRESS_LZ4:
10149		abd = abd_alloc_for_io(asize, B_TRUE);
10150		abd_copy_from_buf_off(abd, this_lb, 0, asize);
10151		if ((err = zio_decompress_data(
10152		    L2BLK_GET_COMPRESS((this_lbp)->lbp_prop),
10153		    abd, this_lb, asize, sizeof (*this_lb), NULL)) != 0) {
10154			err = SET_ERROR(EINVAL);
10155			goto cleanup;
10156		}
10157		break;
10158	default:
10159		err = SET_ERROR(EINVAL);
10160		goto cleanup;
10161	}
10162	if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
10163		byteswap_uint64_array(this_lb, sizeof (*this_lb));
10164	if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) {
10165		err = SET_ERROR(EINVAL);
10166		goto cleanup;
10167	}
10168cleanup:
10169	/* Abort an in-flight fetch I/O in case of error */
10170	if (err != 0 && *next_io != NULL) {
10171		l2arc_log_blk_fetch_abort(*next_io);
10172		*next_io = NULL;
10173	}
10174	if (abd != NULL)
10175		abd_free(abd);
10176	return (err);
10177}
10178
10179/*
10180 * Restores the payload of a log block to ARC. This creates empty ARC hdr
10181 * entries which only contain an l2arc hdr, essentially restoring the
10182 * buffers to their L2ARC evicted state. This function also updates space
10183 * usage on the L2ARC vdev to make sure it tracks restored buffers.
10184 */
10185static void
10186l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb,
10187    uint64_t lb_asize)
10188{
10189	uint64_t	size = 0, asize = 0;
10190	uint64_t	log_entries = dev->l2ad_log_entries;
10191
10192	/*
10193	 * Usually arc_adapt() is called only for data, not headers, but
10194	 * since we may allocate significant amount of memory here, let ARC
10195	 * grow its arc_c.
10196	 */
10197	arc_adapt(log_entries * HDR_L2ONLY_SIZE);
10198
10199	for (int i = log_entries - 1; i >= 0; i--) {
10200		/*
10201		 * Restore goes in the reverse temporal direction to preserve
10202		 * correct temporal ordering of buffers in the l2ad_buflist.
10203		 * l2arc_hdr_restore also does a list_insert_tail instead of
10204		 * list_insert_head on the l2ad_buflist:
10205		 *
10206		 *		LIST	l2ad_buflist		LIST
10207		 *		HEAD  <------ (time) ------	TAIL
10208		 * direction	+-----+-----+-----+-----+-----+    direction
10209		 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild
10210		 * fill		+-----+-----+-----+-----+-----+
10211		 *		^				^
10212		 *		|				|
10213		 *		|				|
10214		 *	l2arc_feed_thread		l2arc_rebuild
10215		 *	will place new bufs here	restores bufs here
10216		 *
10217		 * During l2arc_rebuild() the device is not used by
10218		 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true.
10219		 */
10220		size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop);
10221		asize += vdev_psize_to_asize(dev->l2ad_vdev,
10222		    L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop));
10223		l2arc_hdr_restore(&lb->lb_entries[i], dev);
10224	}
10225
10226	/*
10227	 * Record rebuild stats:
10228	 *	size		Logical size of restored buffers in the L2ARC
10229	 *	asize		Aligned size of restored buffers in the L2ARC
10230	 */
10231	ARCSTAT_INCR(arcstat_l2_rebuild_size, size);
10232	ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize);
10233	ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries);
10234	ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize);
10235	ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize);
10236	ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks);
10237}
10238
10239/*
10240 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put
10241 * into a state indicating that it has been evicted to L2ARC.
10242 */
10243static void
10244l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev)
10245{
10246	arc_buf_hdr_t		*hdr, *exists;
10247	kmutex_t		*hash_lock;
10248	arc_buf_contents_t	type = L2BLK_GET_TYPE((le)->le_prop);
10249	uint64_t		asize;
10250
10251	/*
10252	 * Do all the allocation before grabbing any locks, this lets us
10253	 * sleep if memory is full and we don't have to deal with failed
10254	 * allocations.
10255	 */
10256	hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type,
10257	    dev, le->le_dva, le->le_daddr,
10258	    L2BLK_GET_PSIZE((le)->le_prop), le->le_birth,
10259	    L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel,
10260	    L2BLK_GET_PROTECTED((le)->le_prop),
10261	    L2BLK_GET_PREFETCH((le)->le_prop),
10262	    L2BLK_GET_STATE((le)->le_prop));
10263	asize = vdev_psize_to_asize(dev->l2ad_vdev,
10264	    L2BLK_GET_PSIZE((le)->le_prop));
10265
10266	/*
10267	 * vdev_space_update() has to be called before arc_hdr_destroy() to
10268	 * avoid underflow since the latter also calls vdev_space_update().
10269	 */
10270	l2arc_hdr_arcstats_increment(hdr);
10271	vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10272
10273	mutex_enter(&dev->l2ad_mtx);
10274	list_insert_tail(&dev->l2ad_buflist, hdr);
10275	(void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
10276	mutex_exit(&dev->l2ad_mtx);
10277
10278	exists = buf_hash_insert(hdr, &hash_lock);
10279	if (exists) {
10280		/* Buffer was already cached, no need to restore it. */
10281		arc_hdr_destroy(hdr);
10282		/*
10283		 * If the buffer is already cached, check whether it has
10284		 * L2ARC metadata. If not, enter them and update the flag.
10285		 * This is important is case of onlining a cache device, since
10286		 * we previously evicted all L2ARC metadata from ARC.
10287		 */
10288		if (!HDR_HAS_L2HDR(exists)) {
10289			arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR);
10290			exists->b_l2hdr.b_dev = dev;
10291			exists->b_l2hdr.b_daddr = le->le_daddr;
10292			exists->b_l2hdr.b_arcs_state =
10293			    L2BLK_GET_STATE((le)->le_prop);
10294			mutex_enter(&dev->l2ad_mtx);
10295			list_insert_tail(&dev->l2ad_buflist, exists);
10296			(void) zfs_refcount_add_many(&dev->l2ad_alloc,
10297			    arc_hdr_size(exists), exists);
10298			mutex_exit(&dev->l2ad_mtx);
10299			l2arc_hdr_arcstats_increment(exists);
10300			vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10301		}
10302		ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached);
10303	}
10304
10305	mutex_exit(hash_lock);
10306}
10307
10308/*
10309 * Starts an asynchronous read IO to read a log block. This is used in log
10310 * block reconstruction to start reading the next block before we are done
10311 * decoding and reconstructing the current block, to keep the l2arc device
10312 * nice and hot with read IO to process.
10313 * The returned zio will contain a newly allocated memory buffers for the IO
10314 * data which should then be freed by the caller once the zio is no longer
10315 * needed (i.e. due to it having completed). If you wish to abort this
10316 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes
10317 * care of disposing of the allocated buffers correctly.
10318 */
10319static zio_t *
10320l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp,
10321    l2arc_log_blk_phys_t *lb)
10322{
10323	uint32_t		asize;
10324	zio_t			*pio;
10325	l2arc_read_callback_t	*cb;
10326
10327	/* L2BLK_GET_PSIZE returns aligned size for log blocks */
10328	asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
10329	ASSERT(asize <= sizeof (l2arc_log_blk_phys_t));
10330
10331	cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP);
10332	cb->l2rcb_abd = abd_get_from_buf(lb, asize);
10333	pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb,
10334	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY);
10335	(void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize,
10336	    cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL,
10337	    ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL |
10338	    ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE));
10339
10340	return (pio);
10341}
10342
10343/*
10344 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data
10345 * buffers allocated for it.
10346 */
10347static void
10348l2arc_log_blk_fetch_abort(zio_t *zio)
10349{
10350	(void) zio_wait(zio);
10351}
10352
10353/*
10354 * Creates a zio to update the device header on an l2arc device.
10355 */
10356void
10357l2arc_dev_hdr_update(l2arc_dev_t *dev)
10358{
10359	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
10360	const uint64_t		l2dhdr_asize = dev->l2ad_dev_hdr_asize;
10361	abd_t			*abd;
10362	int			err;
10363
10364	VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER));
10365
10366	l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC;
10367	l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION;
10368	l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa);
10369	l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid;
10370	l2dhdr->dh_log_entries = dev->l2ad_log_entries;
10371	l2dhdr->dh_evict = dev->l2ad_evict;
10372	l2dhdr->dh_start = dev->l2ad_start;
10373	l2dhdr->dh_end = dev->l2ad_end;
10374	l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize);
10375	l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count);
10376	l2dhdr->dh_flags = 0;
10377	l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time;
10378	l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state;
10379	if (dev->l2ad_first)
10380		l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST;
10381
10382	abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
10383
10384	err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev,
10385	    VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL,
10386	    NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE));
10387
10388	abd_free(abd);
10389
10390	if (err != 0) {
10391		zfs_dbgmsg("L2ARC IO error (%d) while writing device header, "
10392		    "vdev guid: %llu", err,
10393		    (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10394	}
10395}
10396
10397/*
10398 * Commits a log block to the L2ARC device. This routine is invoked from
10399 * l2arc_write_buffers when the log block fills up.
10400 * This function allocates some memory to temporarily hold the serialized
10401 * buffer to be written. This is then released in l2arc_write_done.
10402 */
10403static uint64_t
10404l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb)
10405{
10406	l2arc_log_blk_phys_t	*lb = &dev->l2ad_log_blk;
10407	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
10408	uint64_t		psize, asize;
10409	zio_t			*wzio;
10410	l2arc_lb_abd_buf_t	*abd_buf;
10411	uint8_t			*tmpbuf = NULL;
10412	l2arc_lb_ptr_buf_t	*lb_ptr_buf;
10413
10414	VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries);
10415
10416	abd_buf = zio_buf_alloc(sizeof (*abd_buf));
10417	abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb));
10418	lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
10419	lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP);
10420
10421	/* link the buffer into the block chain */
10422	lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1];
10423	lb->lb_magic = L2ARC_LOG_BLK_MAGIC;
10424
10425	/*
10426	 * l2arc_log_blk_commit() may be called multiple times during a single
10427	 * l2arc_write_buffers() call. Save the allocated abd buffers in a list
10428	 * so we can free them in l2arc_write_done() later on.
10429	 */
10430	list_insert_tail(&cb->l2wcb_abd_list, abd_buf);
10431
10432	/* try to compress the buffer */
10433	psize = zio_compress_data(ZIO_COMPRESS_LZ4,
10434	    abd_buf->abd, (void **) &tmpbuf, sizeof (*lb), 0);
10435
10436	/* a log block is never entirely zero */
10437	ASSERT(psize != 0);
10438	asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
10439	ASSERT(asize <= sizeof (*lb));
10440
10441	/*
10442	 * Update the start log block pointer in the device header to point
10443	 * to the log block we're about to write.
10444	 */
10445	l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0];
10446	l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand;
10447	l2dhdr->dh_start_lbps[0].lbp_payload_asize =
10448	    dev->l2ad_log_blk_payload_asize;
10449	l2dhdr->dh_start_lbps[0].lbp_payload_start =
10450	    dev->l2ad_log_blk_payload_start;
10451	L2BLK_SET_LSIZE(
10452	    (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb));
10453	L2BLK_SET_PSIZE(
10454	    (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize);
10455	L2BLK_SET_CHECKSUM(
10456	    (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10457	    ZIO_CHECKSUM_FLETCHER_4);
10458	if (asize < sizeof (*lb)) {
10459		/* compression succeeded */
10460		memset(tmpbuf + psize, 0, asize - psize);
10461		L2BLK_SET_COMPRESS(
10462		    (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10463		    ZIO_COMPRESS_LZ4);
10464	} else {
10465		/* compression failed */
10466		memcpy(tmpbuf, lb, sizeof (*lb));
10467		L2BLK_SET_COMPRESS(
10468		    (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10469		    ZIO_COMPRESS_OFF);
10470	}
10471
10472	/* checksum what we're about to write */
10473	fletcher_4_native(tmpbuf, asize, NULL,
10474	    &l2dhdr->dh_start_lbps[0].lbp_cksum);
10475
10476	abd_free(abd_buf->abd);
10477
10478	/* perform the write itself */
10479	abd_buf->abd = abd_get_from_buf(tmpbuf, sizeof (*lb));
10480	abd_take_ownership_of_buf(abd_buf->abd, B_TRUE);
10481	wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand,
10482	    asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL,
10483	    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE);
10484	DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio);
10485	(void) zio_nowait(wzio);
10486
10487	dev->l2ad_hand += asize;
10488	/*
10489	 * Include the committed log block's pointer  in the list of pointers
10490	 * to log blocks present in the L2ARC device.
10491	 */
10492	memcpy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[0],
10493	    sizeof (l2arc_log_blkptr_t));
10494	mutex_enter(&dev->l2ad_mtx);
10495	list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf);
10496	ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
10497	ARCSTAT_BUMP(arcstat_l2_log_blk_count);
10498	zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
10499	zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
10500	mutex_exit(&dev->l2ad_mtx);
10501	vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10502
10503	/* bump the kstats */
10504	ARCSTAT_INCR(arcstat_l2_write_bytes, asize);
10505	ARCSTAT_BUMP(arcstat_l2_log_blk_writes);
10506	ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize);
10507	ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio,
10508	    dev->l2ad_log_blk_payload_asize / asize);
10509
10510	/* start a new log block */
10511	dev->l2ad_log_ent_idx = 0;
10512	dev->l2ad_log_blk_payload_asize = 0;
10513	dev->l2ad_log_blk_payload_start = 0;
10514
10515	return (asize);
10516}
10517
10518/*
10519 * Validates an L2ARC log block address to make sure that it can be read
10520 * from the provided L2ARC device.
10521 */
10522boolean_t
10523l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp)
10524{
10525	/* L2BLK_GET_PSIZE returns aligned size for log blocks */
10526	uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
10527	uint64_t end = lbp->lbp_daddr + asize - 1;
10528	uint64_t start = lbp->lbp_payload_start;
10529	boolean_t evicted = B_FALSE;
10530
10531	/*
10532	 * A log block is valid if all of the following conditions are true:
10533	 * - it fits entirely (including its payload) between l2ad_start and
10534	 *   l2ad_end
10535	 * - it has a valid size
10536	 * - neither the log block itself nor part of its payload was evicted
10537	 *   by l2arc_evict():
10538	 *
10539	 *		l2ad_hand          l2ad_evict
10540	 *		|			 |	lbp_daddr
10541	 *		|     start		 |	|  end
10542	 *		|     |			 |	|  |
10543	 *		V     V		         V	V  V
10544	 *   l2ad_start ============================================ l2ad_end
10545	 *                    --------------------------||||
10546	 *				^		 ^
10547	 *				|		log block
10548	 *				payload
10549	 */
10550
10551	evicted =
10552	    l2arc_range_check_overlap(start, end, dev->l2ad_hand) ||
10553	    l2arc_range_check_overlap(start, end, dev->l2ad_evict) ||
10554	    l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) ||
10555	    l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end);
10556
10557	return (start >= dev->l2ad_start && end <= dev->l2ad_end &&
10558	    asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) &&
10559	    (!evicted || dev->l2ad_first));
10560}
10561
10562/*
10563 * Inserts ARC buffer header `hdr' into the current L2ARC log block on
10564 * the device. The buffer being inserted must be present in L2ARC.
10565 * Returns B_TRUE if the L2ARC log block is full and needs to be committed
10566 * to L2ARC, or B_FALSE if it still has room for more ARC buffers.
10567 */
10568static boolean_t
10569l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr)
10570{
10571	l2arc_log_blk_phys_t	*lb = &dev->l2ad_log_blk;
10572	l2arc_log_ent_phys_t	*le;
10573
10574	if (dev->l2ad_log_entries == 0)
10575		return (B_FALSE);
10576
10577	int index = dev->l2ad_log_ent_idx++;
10578
10579	ASSERT3S(index, <, dev->l2ad_log_entries);
10580	ASSERT(HDR_HAS_L2HDR(hdr));
10581
10582	le = &lb->lb_entries[index];
10583	memset(le, 0, sizeof (*le));
10584	le->le_dva = hdr->b_dva;
10585	le->le_birth = hdr->b_birth;
10586	le->le_daddr = hdr->b_l2hdr.b_daddr;
10587	if (index == 0)
10588		dev->l2ad_log_blk_payload_start = le->le_daddr;
10589	L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr));
10590	L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr));
10591	L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr));
10592	le->le_complevel = hdr->b_complevel;
10593	L2BLK_SET_TYPE((le)->le_prop, hdr->b_type);
10594	L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr)));
10595	L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr)));
10596	L2BLK_SET_STATE((le)->le_prop, hdr->b_l2hdr.b_arcs_state);
10597
10598	dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev,
10599	    HDR_GET_PSIZE(hdr));
10600
10601	return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries);
10602}
10603
10604/*
10605 * Checks whether a given L2ARC device address sits in a time-sequential
10606 * range. The trick here is that the L2ARC is a rotary buffer, so we can't
10607 * just do a range comparison, we need to handle the situation in which the
10608 * range wraps around the end of the L2ARC device. Arguments:
10609 *	bottom -- Lower end of the range to check (written to earlier).
10610 *	top    -- Upper end of the range to check (written to later).
10611 *	check  -- The address for which we want to determine if it sits in
10612 *		  between the top and bottom.
10613 *
10614 * The 3-way conditional below represents the following cases:
10615 *
10616 *	bottom < top : Sequentially ordered case:
10617 *	  <check>--------+-------------------+
10618 *	                 |  (overlap here?)  |
10619 *	 L2ARC dev       V                   V
10620 *	 |---------------<bottom>============<top>--------------|
10621 *
10622 *	bottom > top: Looped-around case:
10623 *	                      <check>--------+------------------+
10624 *	                                     |  (overlap here?) |
10625 *	 L2ARC dev                           V                  V
10626 *	 |===============<top>---------------<bottom>===========|
10627 *	 ^               ^
10628 *	 |  (or here?)   |
10629 *	 +---------------+---------<check>
10630 *
10631 *	top == bottom : Just a single address comparison.
10632 */
10633boolean_t
10634l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check)
10635{
10636	if (bottom < top)
10637		return (bottom <= check && check <= top);
10638	else if (bottom > top)
10639		return (check <= top || bottom <= check);
10640	else
10641		return (check == top);
10642}
10643
10644EXPORT_SYMBOL(arc_buf_size);
10645EXPORT_SYMBOL(arc_write);
10646EXPORT_SYMBOL(arc_read);
10647EXPORT_SYMBOL(arc_buf_info);
10648EXPORT_SYMBOL(arc_getbuf_func);
10649EXPORT_SYMBOL(arc_add_prune_callback);
10650EXPORT_SYMBOL(arc_remove_prune_callback);
10651
10652ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_min,
10653	spl_param_get_u64, ZMOD_RW, "Minimum ARC size in bytes");
10654
10655ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_max,
10656	spl_param_get_u64, ZMOD_RW, "Maximum ARC size in bytes");
10657
10658ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_balance, UINT, ZMOD_RW,
10659	"Balance between metadata and data on ghost hits.");
10660
10661ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int,
10662	param_get_uint, ZMOD_RW, "Seconds before growing ARC size");
10663
10664ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int,
10665	param_get_uint, ZMOD_RW, "log2(fraction of ARC to reclaim)");
10666
10667ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW,
10668	"Percent of pagecache to reclaim ARC to");
10669
10670ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, UINT, ZMOD_RD,
10671	"Target average block size");
10672
10673ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW,
10674	"Disable compressed ARC buffers");
10675
10676ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int,
10677	param_get_uint, ZMOD_RW, "Min life of prefetch block in ms");
10678
10679ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms,
10680    param_set_arc_int, param_get_uint, ZMOD_RW,
10681	"Min life of prescient prefetched block in ms");
10682
10683ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, U64, ZMOD_RW,
10684	"Max write bytes per interval");
10685
10686ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, U64, ZMOD_RW,
10687	"Extra write bytes during device warmup");
10688
10689ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, U64, ZMOD_RW,
10690	"Number of max device writes to precache");
10691
10692ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, U64, ZMOD_RW,
10693	"Compressed l2arc_headroom multiplier");
10694
10695ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, U64, ZMOD_RW,
10696	"TRIM ahead L2ARC write size multiplier");
10697
10698ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, U64, ZMOD_RW,
10699	"Seconds between L2ARC writing");
10700
10701ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, U64, ZMOD_RW,
10702	"Min feed interval in milliseconds");
10703
10704ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW,
10705	"Skip caching prefetched buffers");
10706
10707ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW,
10708	"Turbo L2ARC warmup");
10709
10710ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW,
10711	"No reads during writes");
10712
10713ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, UINT, ZMOD_RW,
10714	"Percent of ARC size allowed for L2ARC-only headers");
10715
10716ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW,
10717	"Rebuild the L2ARC when importing a pool");
10718
10719ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, U64, ZMOD_RW,
10720	"Min size in bytes to write rebuild log blocks in L2ARC");
10721
10722ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, mfuonly, INT, ZMOD_RW,
10723	"Cache only MFU data from ARC into L2ARC");
10724
10725ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, exclude_special, INT, ZMOD_RW,
10726	"Exclude dbufs on special vdevs from being cached to L2ARC if set.");
10727
10728ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int,
10729	param_get_uint, ZMOD_RW, "System free memory I/O throttle in bytes");
10730
10731ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_u64,
10732	spl_param_get_u64, ZMOD_RW, "System free memory target size in bytes");
10733
10734ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_u64,
10735	spl_param_get_u64, ZMOD_RW, "Minimum bytes of dnodes in ARC");
10736
10737ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent,
10738    param_set_arc_int, param_get_uint, ZMOD_RW,
10739	"Percent of ARC meta buffers for dnodes");
10740
10741ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, UINT, ZMOD_RW,
10742	"Percentage of excess dnodes to try to unpin");
10743
10744ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, UINT, ZMOD_RW,
10745	"When full, ARC allocation waits for eviction of this % of alloc size");
10746
10747ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_batch_limit, UINT, ZMOD_RW,
10748	"The number of headers to evict per sublist before moving to the next");
10749
10750ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, prune_task_threads, INT, ZMOD_RW,
10751	"Number of arc_prune threads");
10752