1/*
2 *  Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 *  Copyright (C) 2007 The Regents of the University of California.
4 *  Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 *  Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6 *  UCRL-CODE-235197
7 *
8 *  This file is part of the SPL, Solaris Porting Layer.
9 *
10 *  The SPL is free software; you can redistribute it and/or modify it
11 *  under the terms of the GNU General Public License as published by the
12 *  Free Software Foundation; either version 2 of the License, or (at your
13 *  option) any later version.
14 *
15 *  The SPL is distributed in the hope that it will be useful, but WITHOUT
16 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18 *  for more details.
19 *
20 *  You should have received a copy of the GNU General Public License along
21 *  with the SPL.  If not, see <http://www.gnu.org/licenses/>.
22 */
23
24#include <linux/percpu_compat.h>
25#include <sys/kmem.h>
26#include <sys/kmem_cache.h>
27#include <sys/taskq.h>
28#include <sys/timer.h>
29#include <sys/vmem.h>
30#include <sys/wait.h>
31#include <sys/string.h>
32#include <linux/slab.h>
33#include <linux/swap.h>
34#include <linux/prefetch.h>
35
36/*
37 * Within the scope of spl-kmem.c file the kmem_cache_* definitions
38 * are removed to allow access to the real Linux slab allocator.
39 */
40#undef kmem_cache_destroy
41#undef kmem_cache_create
42#undef kmem_cache_alloc
43#undef kmem_cache_free
44
45
46/*
47 * Linux 3.16 replaced smp_mb__{before,after}_{atomic,clear}_{dec,inc,bit}()
48 * with smp_mb__{before,after}_atomic() because they were redundant. This is
49 * only used inside our SLAB allocator, so we implement an internal wrapper
50 * here to give us smp_mb__{before,after}_atomic() on older kernels.
51 */
52#ifndef smp_mb__before_atomic
53#define	smp_mb__before_atomic(x) smp_mb__before_clear_bit(x)
54#endif
55
56#ifndef smp_mb__after_atomic
57#define	smp_mb__after_atomic(x) smp_mb__after_clear_bit(x)
58#endif
59
60/* BEGIN CSTYLED */
61/*
62 * Cache magazines are an optimization designed to minimize the cost of
63 * allocating memory.  They do this by keeping a per-cpu cache of recently
64 * freed objects, which can then be reallocated without taking a lock. This
65 * can improve performance on highly contended caches.  However, because
66 * objects in magazines will prevent otherwise empty slabs from being
67 * immediately released this may not be ideal for low memory machines.
68 *
69 * For this reason spl_kmem_cache_magazine_size can be used to set a maximum
70 * magazine size.  When this value is set to 0 the magazine size will be
71 * automatically determined based on the object size.  Otherwise magazines
72 * will be limited to 2-256 objects per magazine (i.e per cpu).  Magazines
73 * may never be entirely disabled in this implementation.
74 */
75static unsigned int spl_kmem_cache_magazine_size = 0;
76module_param(spl_kmem_cache_magazine_size, uint, 0444);
77MODULE_PARM_DESC(spl_kmem_cache_magazine_size,
78	"Default magazine size (2-256), set automatically (0)");
79
80static unsigned int spl_kmem_cache_obj_per_slab = SPL_KMEM_CACHE_OBJ_PER_SLAB;
81module_param(spl_kmem_cache_obj_per_slab, uint, 0644);
82MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab, "Number of objects per slab");
83
84static unsigned int spl_kmem_cache_max_size = SPL_KMEM_CACHE_MAX_SIZE;
85module_param(spl_kmem_cache_max_size, uint, 0644);
86MODULE_PARM_DESC(spl_kmem_cache_max_size, "Maximum size of slab in MB");
87
88/*
89 * For small objects the Linux slab allocator should be used to make the most
90 * efficient use of the memory.  However, large objects are not supported by
91 * the Linux slab and therefore the SPL implementation is preferred.  A cutoff
92 * of 16K was determined to be optimal for architectures using 4K pages and
93 * to also work well on architecutres using larger 64K page sizes.
94 */
95static unsigned int spl_kmem_cache_slab_limit =
96    SPL_MAX_KMEM_ORDER_NR_PAGES * PAGE_SIZE;
97module_param(spl_kmem_cache_slab_limit, uint, 0644);
98MODULE_PARM_DESC(spl_kmem_cache_slab_limit,
99	"Objects less than N bytes use the Linux slab");
100
101/*
102 * The number of threads available to allocate new slabs for caches.  This
103 * should not need to be tuned but it is available for performance analysis.
104 */
105static unsigned int spl_kmem_cache_kmem_threads = 4;
106module_param(spl_kmem_cache_kmem_threads, uint, 0444);
107MODULE_PARM_DESC(spl_kmem_cache_kmem_threads,
108	"Number of spl_kmem_cache threads");
109/* END CSTYLED */
110
111/*
112 * Slab allocation interfaces
113 *
114 * While the Linux slab implementation was inspired by the Solaris
115 * implementation I cannot use it to emulate the Solaris APIs.  I
116 * require two features which are not provided by the Linux slab.
117 *
118 * 1) Constructors AND destructors.  Recent versions of the Linux
119 *    kernel have removed support for destructors.  This is a deal
120 *    breaker for the SPL which contains particularly expensive
121 *    initializers for mutex's, condition variables, etc.  We also
122 *    require a minimal level of cleanup for these data types unlike
123 *    many Linux data types which do need to be explicitly destroyed.
124 *
125 * 2) Virtual address space backed slab.  Callers of the Solaris slab
126 *    expect it to work well for both small are very large allocations.
127 *    Because of memory fragmentation the Linux slab which is backed
128 *    by kmalloc'ed memory performs very badly when confronted with
129 *    large numbers of large allocations.  Basing the slab on the
130 *    virtual address space removes the need for contiguous pages
131 *    and greatly improve performance for large allocations.
132 *
133 * For these reasons, the SPL has its own slab implementation with
134 * the needed features.  It is not as highly optimized as either the
135 * Solaris or Linux slabs, but it should get me most of what is
136 * needed until it can be optimized or obsoleted by another approach.
137 *
138 * One serious concern I do have about this method is the relatively
139 * small virtual address space on 32bit arches.  This will seriously
140 * constrain the size of the slab caches and their performance.
141 */
142
143struct list_head spl_kmem_cache_list;   /* List of caches */
144struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
145static taskq_t *spl_kmem_cache_taskq;   /* Task queue for aging / reclaim */
146
147static void spl_cache_shrink(spl_kmem_cache_t *skc, void *obj);
148
149static void *
150kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
151{
152	gfp_t lflags = kmem_flags_convert(flags);
153	void *ptr;
154
155	ptr = spl_vmalloc(size, lflags | __GFP_HIGHMEM);
156
157	/* Resulting allocated memory will be page aligned */
158	ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
159
160	return (ptr);
161}
162
163static void
164kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
165{
166	ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
167
168	/*
169	 * The Linux direct reclaim path uses this out of band value to
170	 * determine if forward progress is being made.  Normally this is
171	 * incremented by kmem_freepages() which is part of the various
172	 * Linux slab implementations.  However, since we are using none
173	 * of that infrastructure we are responsible for incrementing it.
174	 */
175	if (current->reclaim_state)
176#ifdef	HAVE_RECLAIM_STATE_RECLAIMED
177		current->reclaim_state->reclaimed += size >> PAGE_SHIFT;
178#else
179		current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT;
180#endif
181	vfree(ptr);
182}
183
184/*
185 * Required space for each aligned sks.
186 */
187static inline uint32_t
188spl_sks_size(spl_kmem_cache_t *skc)
189{
190	return (P2ROUNDUP_TYPED(sizeof (spl_kmem_slab_t),
191	    skc->skc_obj_align, uint32_t));
192}
193
194/*
195 * Required space for each aligned object.
196 */
197static inline uint32_t
198spl_obj_size(spl_kmem_cache_t *skc)
199{
200	uint32_t align = skc->skc_obj_align;
201
202	return (P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) +
203	    P2ROUNDUP_TYPED(sizeof (spl_kmem_obj_t), align, uint32_t));
204}
205
206uint64_t
207spl_kmem_cache_inuse(kmem_cache_t *cache)
208{
209	return (cache->skc_obj_total);
210}
211EXPORT_SYMBOL(spl_kmem_cache_inuse);
212
213uint64_t
214spl_kmem_cache_entry_size(kmem_cache_t *cache)
215{
216	return (cache->skc_obj_size);
217}
218EXPORT_SYMBOL(spl_kmem_cache_entry_size);
219
220/*
221 * Lookup the spl_kmem_object_t for an object given that object.
222 */
223static inline spl_kmem_obj_t *
224spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj)
225{
226	return (obj + P2ROUNDUP_TYPED(skc->skc_obj_size,
227	    skc->skc_obj_align, uint32_t));
228}
229
230/*
231 * It's important that we pack the spl_kmem_obj_t structure and the
232 * actual objects in to one large address space to minimize the number
233 * of calls to the allocator.  It is far better to do a few large
234 * allocations and then subdivide it ourselves.  Now which allocator
235 * we use requires balancing a few trade offs.
236 *
237 * For small objects we use kmem_alloc() because as long as you are
238 * only requesting a small number of pages (ideally just one) its cheap.
239 * However, when you start requesting multiple pages with kmem_alloc()
240 * it gets increasingly expensive since it requires contiguous pages.
241 * For this reason we shift to vmem_alloc() for slabs of large objects
242 * which removes the need for contiguous pages.  We do not use
243 * vmem_alloc() in all cases because there is significant locking
244 * overhead in __get_vm_area_node().  This function takes a single
245 * global lock when acquiring an available virtual address range which
246 * serializes all vmem_alloc()'s for all slab caches.  Using slightly
247 * different allocation functions for small and large objects should
248 * give us the best of both worlds.
249 *
250 * +------------------------+
251 * | spl_kmem_slab_t --+-+  |
252 * | skc_obj_size    <-+ |  |
253 * | spl_kmem_obj_t      |  |
254 * | skc_obj_size    <---+  |
255 * | spl_kmem_obj_t      |  |
256 * | ...                 v  |
257 * +------------------------+
258 */
259static spl_kmem_slab_t *
260spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
261{
262	spl_kmem_slab_t *sks;
263	void *base;
264	uint32_t obj_size;
265
266	base = kv_alloc(skc, skc->skc_slab_size, flags);
267	if (base == NULL)
268		return (NULL);
269
270	sks = (spl_kmem_slab_t *)base;
271	sks->sks_magic = SKS_MAGIC;
272	sks->sks_objs = skc->skc_slab_objs;
273	sks->sks_age = jiffies;
274	sks->sks_cache = skc;
275	INIT_LIST_HEAD(&sks->sks_list);
276	INIT_LIST_HEAD(&sks->sks_free_list);
277	sks->sks_ref = 0;
278	obj_size = spl_obj_size(skc);
279
280	for (int i = 0; i < sks->sks_objs; i++) {
281		void *obj = base + spl_sks_size(skc) + (i * obj_size);
282
283		ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
284		spl_kmem_obj_t *sko = spl_sko_from_obj(skc, obj);
285		sko->sko_addr = obj;
286		sko->sko_magic = SKO_MAGIC;
287		sko->sko_slab = sks;
288		INIT_LIST_HEAD(&sko->sko_list);
289		list_add_tail(&sko->sko_list, &sks->sks_free_list);
290	}
291
292	return (sks);
293}
294
295/*
296 * Remove a slab from complete or partial list, it must be called with
297 * the 'skc->skc_lock' held but the actual free must be performed
298 * outside the lock to prevent deadlocking on vmem addresses.
299 */
300static void
301spl_slab_free(spl_kmem_slab_t *sks,
302    struct list_head *sks_list, struct list_head *sko_list)
303{
304	spl_kmem_cache_t *skc;
305
306	ASSERT(sks->sks_magic == SKS_MAGIC);
307	ASSERT(sks->sks_ref == 0);
308
309	skc = sks->sks_cache;
310	ASSERT(skc->skc_magic == SKC_MAGIC);
311
312	/*
313	 * Update slab/objects counters in the cache, then remove the
314	 * slab from the skc->skc_partial_list.  Finally add the slab
315	 * and all its objects in to the private work lists where the
316	 * destructors will be called and the memory freed to the system.
317	 */
318	skc->skc_obj_total -= sks->sks_objs;
319	skc->skc_slab_total--;
320	list_del(&sks->sks_list);
321	list_add(&sks->sks_list, sks_list);
322	list_splice_init(&sks->sks_free_list, sko_list);
323}
324
325/*
326 * Reclaim empty slabs at the end of the partial list.
327 */
328static void
329spl_slab_reclaim(spl_kmem_cache_t *skc)
330{
331	spl_kmem_slab_t *sks = NULL, *m = NULL;
332	spl_kmem_obj_t *sko = NULL, *n = NULL;
333	LIST_HEAD(sks_list);
334	LIST_HEAD(sko_list);
335
336	/*
337	 * Empty slabs and objects must be moved to a private list so they
338	 * can be safely freed outside the spin lock.  All empty slabs are
339	 * at the end of skc->skc_partial_list, therefore once a non-empty
340	 * slab is found we can stop scanning.
341	 */
342	spin_lock(&skc->skc_lock);
343	list_for_each_entry_safe_reverse(sks, m,
344	    &skc->skc_partial_list, sks_list) {
345
346		if (sks->sks_ref > 0)
347			break;
348
349		spl_slab_free(sks, &sks_list, &sko_list);
350	}
351	spin_unlock(&skc->skc_lock);
352
353	/*
354	 * The following two loops ensure all the object destructors are run,
355	 * and the slabs themselves are freed.  This is all done outside the
356	 * skc->skc_lock since this allows the destructor to sleep, and
357	 * allows us to perform a conditional reschedule when a freeing a
358	 * large number of objects and slabs back to the system.
359	 */
360
361	list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
362		ASSERT(sko->sko_magic == SKO_MAGIC);
363	}
364
365	list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
366		ASSERT(sks->sks_magic == SKS_MAGIC);
367		kv_free(skc, sks, skc->skc_slab_size);
368	}
369}
370
371static spl_kmem_emergency_t *
372spl_emergency_search(struct rb_root *root, void *obj)
373{
374	struct rb_node *node = root->rb_node;
375	spl_kmem_emergency_t *ske;
376	unsigned long address = (unsigned long)obj;
377
378	while (node) {
379		ske = container_of(node, spl_kmem_emergency_t, ske_node);
380
381		if (address < ske->ske_obj)
382			node = node->rb_left;
383		else if (address > ske->ske_obj)
384			node = node->rb_right;
385		else
386			return (ske);
387	}
388
389	return (NULL);
390}
391
392static int
393spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske)
394{
395	struct rb_node **new = &(root->rb_node), *parent = NULL;
396	spl_kmem_emergency_t *ske_tmp;
397	unsigned long address = ske->ske_obj;
398
399	while (*new) {
400		ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node);
401
402		parent = *new;
403		if (address < ske_tmp->ske_obj)
404			new = &((*new)->rb_left);
405		else if (address > ske_tmp->ske_obj)
406			new = &((*new)->rb_right);
407		else
408			return (0);
409	}
410
411	rb_link_node(&ske->ske_node, parent, new);
412	rb_insert_color(&ske->ske_node, root);
413
414	return (1);
415}
416
417/*
418 * Allocate a single emergency object and track it in a red black tree.
419 */
420static int
421spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj)
422{
423	gfp_t lflags = kmem_flags_convert(flags);
424	spl_kmem_emergency_t *ske;
425	int order = get_order(skc->skc_obj_size);
426	int empty;
427
428	/* Last chance use a partial slab if one now exists */
429	spin_lock(&skc->skc_lock);
430	empty = list_empty(&skc->skc_partial_list);
431	spin_unlock(&skc->skc_lock);
432	if (!empty)
433		return (-EEXIST);
434
435	ske = kmalloc(sizeof (*ske), lflags);
436	if (ske == NULL)
437		return (-ENOMEM);
438
439	ske->ske_obj = __get_free_pages(lflags, order);
440	if (ske->ske_obj == 0) {
441		kfree(ske);
442		return (-ENOMEM);
443	}
444
445	spin_lock(&skc->skc_lock);
446	empty = spl_emergency_insert(&skc->skc_emergency_tree, ske);
447	if (likely(empty)) {
448		skc->skc_obj_total++;
449		skc->skc_obj_emergency++;
450		if (skc->skc_obj_emergency > skc->skc_obj_emergency_max)
451			skc->skc_obj_emergency_max = skc->skc_obj_emergency;
452	}
453	spin_unlock(&skc->skc_lock);
454
455	if (unlikely(!empty)) {
456		free_pages(ske->ske_obj, order);
457		kfree(ske);
458		return (-EINVAL);
459	}
460
461	*obj = (void *)ske->ske_obj;
462
463	return (0);
464}
465
466/*
467 * Locate the passed object in the red black tree and free it.
468 */
469static int
470spl_emergency_free(spl_kmem_cache_t *skc, void *obj)
471{
472	spl_kmem_emergency_t *ske;
473	int order = get_order(skc->skc_obj_size);
474
475	spin_lock(&skc->skc_lock);
476	ske = spl_emergency_search(&skc->skc_emergency_tree, obj);
477	if (ske) {
478		rb_erase(&ske->ske_node, &skc->skc_emergency_tree);
479		skc->skc_obj_emergency--;
480		skc->skc_obj_total--;
481	}
482	spin_unlock(&skc->skc_lock);
483
484	if (ske == NULL)
485		return (-ENOENT);
486
487	free_pages(ske->ske_obj, order);
488	kfree(ske);
489
490	return (0);
491}
492
493/*
494 * Release objects from the per-cpu magazine back to their slab.  The flush
495 * argument contains the max number of entries to remove from the magazine.
496 */
497static void
498spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
499{
500	spin_lock(&skc->skc_lock);
501
502	ASSERT(skc->skc_magic == SKC_MAGIC);
503	ASSERT(skm->skm_magic == SKM_MAGIC);
504
505	int count = MIN(flush, skm->skm_avail);
506	for (int i = 0; i < count; i++)
507		spl_cache_shrink(skc, skm->skm_objs[i]);
508
509	skm->skm_avail -= count;
510	memmove(skm->skm_objs, &(skm->skm_objs[count]),
511	    sizeof (void *) * skm->skm_avail);
512
513	spin_unlock(&skc->skc_lock);
514}
515
516/*
517 * Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
518 * When on-slab we want to target spl_kmem_cache_obj_per_slab.  However,
519 * for very small objects we may end up with more than this so as not
520 * to waste space in the minimal allocation of a single page.
521 */
522static int
523spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
524{
525	uint32_t sks_size, obj_size, max_size, tgt_size, tgt_objs;
526
527	sks_size = spl_sks_size(skc);
528	obj_size = spl_obj_size(skc);
529	max_size = (spl_kmem_cache_max_size * 1024 * 1024);
530	tgt_size = (spl_kmem_cache_obj_per_slab * obj_size + sks_size);
531
532	if (tgt_size <= max_size) {
533		tgt_objs = (tgt_size - sks_size) / obj_size;
534	} else {
535		tgt_objs = (max_size - sks_size) / obj_size;
536		tgt_size = (tgt_objs * obj_size) + sks_size;
537	}
538
539	if (tgt_objs == 0)
540		return (-ENOSPC);
541
542	*objs = tgt_objs;
543	*size = tgt_size;
544
545	return (0);
546}
547
548/*
549 * Make a guess at reasonable per-cpu magazine size based on the size of
550 * each object and the cost of caching N of them in each magazine.  Long
551 * term this should really adapt based on an observed usage heuristic.
552 */
553static int
554spl_magazine_size(spl_kmem_cache_t *skc)
555{
556	uint32_t obj_size = spl_obj_size(skc);
557	int size;
558
559	if (spl_kmem_cache_magazine_size > 0)
560		return (MAX(MIN(spl_kmem_cache_magazine_size, 256), 2));
561
562	/* Per-magazine sizes below assume a 4Kib page size */
563	if (obj_size > (PAGE_SIZE * 256))
564		size = 4;  /* Minimum 4Mib per-magazine */
565	else if (obj_size > (PAGE_SIZE * 32))
566		size = 16; /* Minimum 2Mib per-magazine */
567	else if (obj_size > (PAGE_SIZE))
568		size = 64; /* Minimum 256Kib per-magazine */
569	else if (obj_size > (PAGE_SIZE / 4))
570		size = 128; /* Minimum 128Kib per-magazine */
571	else
572		size = 256;
573
574	return (size);
575}
576
577/*
578 * Allocate a per-cpu magazine to associate with a specific core.
579 */
580static spl_kmem_magazine_t *
581spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu)
582{
583	spl_kmem_magazine_t *skm;
584	int size = sizeof (spl_kmem_magazine_t) +
585	    sizeof (void *) * skc->skc_mag_size;
586
587	skm = kmalloc_node(size, GFP_KERNEL, cpu_to_node(cpu));
588	if (skm) {
589		skm->skm_magic = SKM_MAGIC;
590		skm->skm_avail = 0;
591		skm->skm_size = skc->skc_mag_size;
592		skm->skm_refill = skc->skc_mag_refill;
593		skm->skm_cache = skc;
594		skm->skm_cpu = cpu;
595	}
596
597	return (skm);
598}
599
600/*
601 * Free a per-cpu magazine associated with a specific core.
602 */
603static void
604spl_magazine_free(spl_kmem_magazine_t *skm)
605{
606	ASSERT(skm->skm_magic == SKM_MAGIC);
607	ASSERT(skm->skm_avail == 0);
608	kfree(skm);
609}
610
611/*
612 * Create all pre-cpu magazines of reasonable sizes.
613 */
614static int
615spl_magazine_create(spl_kmem_cache_t *skc)
616{
617	int i = 0;
618
619	ASSERT((skc->skc_flags & KMC_SLAB) == 0);
620
621	skc->skc_mag = kzalloc(sizeof (spl_kmem_magazine_t *) *
622	    num_possible_cpus(), kmem_flags_convert(KM_SLEEP));
623	skc->skc_mag_size = spl_magazine_size(skc);
624	skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
625
626	for_each_possible_cpu(i) {
627		skc->skc_mag[i] = spl_magazine_alloc(skc, i);
628		if (!skc->skc_mag[i]) {
629			for (i--; i >= 0; i--)
630				spl_magazine_free(skc->skc_mag[i]);
631
632			kfree(skc->skc_mag);
633			return (-ENOMEM);
634		}
635	}
636
637	return (0);
638}
639
640/*
641 * Destroy all pre-cpu magazines.
642 */
643static void
644spl_magazine_destroy(spl_kmem_cache_t *skc)
645{
646	spl_kmem_magazine_t *skm;
647	int i = 0;
648
649	ASSERT((skc->skc_flags & KMC_SLAB) == 0);
650
651	for_each_possible_cpu(i) {
652		skm = skc->skc_mag[i];
653		spl_cache_flush(skc, skm, skm->skm_avail);
654		spl_magazine_free(skm);
655	}
656
657	kfree(skc->skc_mag);
658}
659
660/*
661 * Create a object cache based on the following arguments:
662 * name		cache name
663 * size		cache object size
664 * align	cache object alignment
665 * ctor		cache object constructor
666 * dtor		cache object destructor
667 * reclaim	cache object reclaim
668 * priv		cache private data for ctor/dtor/reclaim
669 * vmp		unused must be NULL
670 * flags
671 *	KMC_KVMEM       Force kvmem backed SPL cache
672 *	KMC_SLAB        Force Linux slab backed cache
673 *	KMC_NODEBUG	Disable debugging (unsupported)
674 */
675spl_kmem_cache_t *
676spl_kmem_cache_create(const char *name, size_t size, size_t align,
677    spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor, void *reclaim,
678    void *priv, void *vmp, int flags)
679{
680	gfp_t lflags = kmem_flags_convert(KM_SLEEP);
681	spl_kmem_cache_t *skc;
682	int rc;
683
684	/*
685	 * Unsupported flags
686	 */
687	ASSERT(vmp == NULL);
688	ASSERT(reclaim == NULL);
689
690	might_sleep();
691
692	skc = kzalloc(sizeof (*skc), lflags);
693	if (skc == NULL)
694		return (NULL);
695
696	skc->skc_magic = SKC_MAGIC;
697	skc->skc_name_size = strlen(name) + 1;
698	skc->skc_name = kmalloc(skc->skc_name_size, lflags);
699	if (skc->skc_name == NULL) {
700		kfree(skc);
701		return (NULL);
702	}
703	strlcpy(skc->skc_name, name, skc->skc_name_size);
704
705	skc->skc_ctor = ctor;
706	skc->skc_dtor = dtor;
707	skc->skc_private = priv;
708	skc->skc_vmp = vmp;
709	skc->skc_linux_cache = NULL;
710	skc->skc_flags = flags;
711	skc->skc_obj_size = size;
712	skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
713	atomic_set(&skc->skc_ref, 0);
714
715	INIT_LIST_HEAD(&skc->skc_list);
716	INIT_LIST_HEAD(&skc->skc_complete_list);
717	INIT_LIST_HEAD(&skc->skc_partial_list);
718	skc->skc_emergency_tree = RB_ROOT;
719	spin_lock_init(&skc->skc_lock);
720	init_waitqueue_head(&skc->skc_waitq);
721	skc->skc_slab_fail = 0;
722	skc->skc_slab_create = 0;
723	skc->skc_slab_destroy = 0;
724	skc->skc_slab_total = 0;
725	skc->skc_slab_alloc = 0;
726	skc->skc_slab_max = 0;
727	skc->skc_obj_total = 0;
728	skc->skc_obj_alloc = 0;
729	skc->skc_obj_max = 0;
730	skc->skc_obj_deadlock = 0;
731	skc->skc_obj_emergency = 0;
732	skc->skc_obj_emergency_max = 0;
733
734	rc = percpu_counter_init_common(&skc->skc_linux_alloc, 0,
735	    GFP_KERNEL);
736	if (rc != 0) {
737		kfree(skc);
738		return (NULL);
739	}
740
741	/*
742	 * Verify the requested alignment restriction is sane.
743	 */
744	if (align) {
745		VERIFY(ISP2(align));
746		VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN);
747		VERIFY3U(align, <=, PAGE_SIZE);
748		skc->skc_obj_align = align;
749	}
750
751	/*
752	 * When no specific type of slab is requested (kmem, vmem, or
753	 * linuxslab) then select a cache type based on the object size
754	 * and default tunables.
755	 */
756	if (!(skc->skc_flags & (KMC_SLAB | KMC_KVMEM))) {
757		if (spl_kmem_cache_slab_limit &&
758		    size <= (size_t)spl_kmem_cache_slab_limit) {
759			/*
760			 * Objects smaller than spl_kmem_cache_slab_limit can
761			 * use the Linux slab for better space-efficiency.
762			 */
763			skc->skc_flags |= KMC_SLAB;
764		} else {
765			/*
766			 * All other objects are considered large and are
767			 * placed on kvmem backed slabs.
768			 */
769			skc->skc_flags |= KMC_KVMEM;
770		}
771	}
772
773	/*
774	 * Given the type of slab allocate the required resources.
775	 */
776	if (skc->skc_flags & KMC_KVMEM) {
777		rc = spl_slab_size(skc,
778		    &skc->skc_slab_objs, &skc->skc_slab_size);
779		if (rc)
780			goto out;
781
782		rc = spl_magazine_create(skc);
783		if (rc)
784			goto out;
785	} else {
786		unsigned long slabflags = 0;
787
788		if (size > spl_kmem_cache_slab_limit)
789			goto out;
790
791#if defined(SLAB_USERCOPY)
792		/*
793		 * Required for PAX-enabled kernels if the slab is to be
794		 * used for copying between user and kernel space.
795		 */
796		slabflags |= SLAB_USERCOPY;
797#endif
798
799#if defined(HAVE_KMEM_CACHE_CREATE_USERCOPY)
800		/*
801		 * Newer grsec patchset uses kmem_cache_create_usercopy()
802		 * instead of SLAB_USERCOPY flag
803		 */
804		skc->skc_linux_cache = kmem_cache_create_usercopy(
805		    skc->skc_name, size, align, slabflags, 0, size, NULL);
806#else
807		skc->skc_linux_cache = kmem_cache_create(
808		    skc->skc_name, size, align, slabflags, NULL);
809#endif
810		if (skc->skc_linux_cache == NULL)
811			goto out;
812	}
813
814	down_write(&spl_kmem_cache_sem);
815	list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
816	up_write(&spl_kmem_cache_sem);
817
818	return (skc);
819out:
820	kfree(skc->skc_name);
821	percpu_counter_destroy(&skc->skc_linux_alloc);
822	kfree(skc);
823	return (NULL);
824}
825EXPORT_SYMBOL(spl_kmem_cache_create);
826
827/*
828 * Register a move callback for cache defragmentation.
829 * XXX: Unimplemented but harmless to stub out for now.
830 */
831void
832spl_kmem_cache_set_move(spl_kmem_cache_t *skc,
833    kmem_cbrc_t (move)(void *, void *, size_t, void *))
834{
835	ASSERT(move != NULL);
836}
837EXPORT_SYMBOL(spl_kmem_cache_set_move);
838
839/*
840 * Destroy a cache and all objects associated with the cache.
841 */
842void
843spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
844{
845	DECLARE_WAIT_QUEUE_HEAD(wq);
846	taskqid_t id;
847
848	ASSERT(skc->skc_magic == SKC_MAGIC);
849	ASSERT(skc->skc_flags & (KMC_KVMEM | KMC_SLAB));
850
851	down_write(&spl_kmem_cache_sem);
852	list_del_init(&skc->skc_list);
853	up_write(&spl_kmem_cache_sem);
854
855	/* Cancel any and wait for any pending delayed tasks */
856	VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));
857
858	spin_lock(&skc->skc_lock);
859	id = skc->skc_taskqid;
860	spin_unlock(&skc->skc_lock);
861
862	taskq_cancel_id(spl_kmem_cache_taskq, id);
863
864	/*
865	 * Wait until all current callers complete, this is mainly
866	 * to catch the case where a low memory situation triggers a
867	 * cache reaping action which races with this destroy.
868	 */
869	wait_event(wq, atomic_read(&skc->skc_ref) == 0);
870
871	if (skc->skc_flags & KMC_KVMEM) {
872		spl_magazine_destroy(skc);
873		spl_slab_reclaim(skc);
874	} else {
875		ASSERT(skc->skc_flags & KMC_SLAB);
876		kmem_cache_destroy(skc->skc_linux_cache);
877	}
878
879	spin_lock(&skc->skc_lock);
880
881	/*
882	 * Validate there are no objects in use and free all the
883	 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers.
884	 */
885	ASSERT3U(skc->skc_slab_alloc, ==, 0);
886	ASSERT3U(skc->skc_obj_alloc, ==, 0);
887	ASSERT3U(skc->skc_slab_total, ==, 0);
888	ASSERT3U(skc->skc_obj_total, ==, 0);
889	ASSERT3U(skc->skc_obj_emergency, ==, 0);
890	ASSERT(list_empty(&skc->skc_complete_list));
891
892	ASSERT3U(percpu_counter_sum(&skc->skc_linux_alloc), ==, 0);
893	percpu_counter_destroy(&skc->skc_linux_alloc);
894
895	spin_unlock(&skc->skc_lock);
896
897	kfree(skc->skc_name);
898	kfree(skc);
899}
900EXPORT_SYMBOL(spl_kmem_cache_destroy);
901
902/*
903 * Allocate an object from a slab attached to the cache.  This is used to
904 * repopulate the per-cpu magazine caches in batches when they run low.
905 */
906static void *
907spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
908{
909	spl_kmem_obj_t *sko;
910
911	ASSERT(skc->skc_magic == SKC_MAGIC);
912	ASSERT(sks->sks_magic == SKS_MAGIC);
913
914	sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
915	ASSERT(sko->sko_magic == SKO_MAGIC);
916	ASSERT(sko->sko_addr != NULL);
917
918	/* Remove from sks_free_list */
919	list_del_init(&sko->sko_list);
920
921	sks->sks_age = jiffies;
922	sks->sks_ref++;
923	skc->skc_obj_alloc++;
924
925	/* Track max obj usage statistics */
926	if (skc->skc_obj_alloc > skc->skc_obj_max)
927		skc->skc_obj_max = skc->skc_obj_alloc;
928
929	/* Track max slab usage statistics */
930	if (sks->sks_ref == 1) {
931		skc->skc_slab_alloc++;
932
933		if (skc->skc_slab_alloc > skc->skc_slab_max)
934			skc->skc_slab_max = skc->skc_slab_alloc;
935	}
936
937	return (sko->sko_addr);
938}
939
940/*
941 * Generic slab allocation function to run by the global work queues.
942 * It is responsible for allocating a new slab, linking it in to the list
943 * of partial slabs, and then waking any waiters.
944 */
945static int
946__spl_cache_grow(spl_kmem_cache_t *skc, int flags)
947{
948	spl_kmem_slab_t *sks;
949
950	fstrans_cookie_t cookie = spl_fstrans_mark();
951	sks = spl_slab_alloc(skc, flags);
952	spl_fstrans_unmark(cookie);
953
954	spin_lock(&skc->skc_lock);
955	if (sks) {
956		skc->skc_slab_total++;
957		skc->skc_obj_total += sks->sks_objs;
958		list_add_tail(&sks->sks_list, &skc->skc_partial_list);
959
960		smp_mb__before_atomic();
961		clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
962		smp_mb__after_atomic();
963	}
964	spin_unlock(&skc->skc_lock);
965
966	return (sks == NULL ? -ENOMEM : 0);
967}
968
969static void
970spl_cache_grow_work(void *data)
971{
972	spl_kmem_alloc_t *ska = (spl_kmem_alloc_t *)data;
973	spl_kmem_cache_t *skc = ska->ska_cache;
974
975	int error = __spl_cache_grow(skc, ska->ska_flags);
976
977	atomic_dec(&skc->skc_ref);
978	smp_mb__before_atomic();
979	clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
980	smp_mb__after_atomic();
981	if (error == 0)
982		wake_up_all(&skc->skc_waitq);
983
984	kfree(ska);
985}
986
987/*
988 * Returns non-zero when a new slab should be available.
989 */
990static int
991spl_cache_grow_wait(spl_kmem_cache_t *skc)
992{
993	return (!test_bit(KMC_BIT_GROWING, &skc->skc_flags));
994}
995
996/*
997 * No available objects on any slabs, create a new slab.  Note that this
998 * functionality is disabled for KMC_SLAB caches which are backed by the
999 * Linux slab.
1000 */
1001static int
1002spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj)
1003{
1004	int remaining, rc = 0;
1005
1006	ASSERT0(flags & ~KM_PUBLIC_MASK);
1007	ASSERT(skc->skc_magic == SKC_MAGIC);
1008	ASSERT((skc->skc_flags & KMC_SLAB) == 0);
1009
1010	*obj = NULL;
1011
1012	/*
1013	 * Since we can't sleep attempt an emergency allocation to satisfy
1014	 * the request.  The only alterative is to fail the allocation but
1015	 * it's preferable try.  The use of KM_NOSLEEP is expected to be rare.
1016	 */
1017	if (flags & KM_NOSLEEP)
1018		return (spl_emergency_alloc(skc, flags, obj));
1019
1020	might_sleep();
1021
1022	/*
1023	 * Before allocating a new slab wait for any reaping to complete and
1024	 * then return so the local magazine can be rechecked for new objects.
1025	 */
1026	if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
1027		rc = spl_wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING,
1028		    TASK_UNINTERRUPTIBLE);
1029		return (rc ? rc : -EAGAIN);
1030	}
1031
1032	/*
1033	 * Note: It would be nice to reduce the overhead of context switch
1034	 * and improve NUMA locality, by trying to allocate a new slab in the
1035	 * current process context with KM_NOSLEEP flag.
1036	 *
1037	 * However, this can't be applied to vmem/kvmem due to a bug that
1038	 * spl_vmalloc() doesn't honor gfp flags in page table allocation.
1039	 */
1040
1041	/*
1042	 * This is handled by dispatching a work request to the global work
1043	 * queue.  This allows us to asynchronously allocate a new slab while
1044	 * retaining the ability to safely fall back to a smaller synchronous
1045	 * allocations to ensure forward progress is always maintained.
1046	 */
1047	if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) {
1048		spl_kmem_alloc_t *ska;
1049
1050		ska = kmalloc(sizeof (*ska), kmem_flags_convert(flags));
1051		if (ska == NULL) {
1052			clear_bit_unlock(KMC_BIT_GROWING, &skc->skc_flags);
1053			smp_mb__after_atomic();
1054			wake_up_all(&skc->skc_waitq);
1055			return (-ENOMEM);
1056		}
1057
1058		atomic_inc(&skc->skc_ref);
1059		ska->ska_cache = skc;
1060		ska->ska_flags = flags;
1061		taskq_init_ent(&ska->ska_tqe);
1062		taskq_dispatch_ent(spl_kmem_cache_taskq,
1063		    spl_cache_grow_work, ska, 0, &ska->ska_tqe);
1064	}
1065
1066	/*
1067	 * The goal here is to only detect the rare case where a virtual slab
1068	 * allocation has deadlocked.  We must be careful to minimize the use
1069	 * of emergency objects which are more expensive to track.  Therefore,
1070	 * we set a very long timeout for the asynchronous allocation and if
1071	 * the timeout is reached the cache is flagged as deadlocked.  From
1072	 * this point only new emergency objects will be allocated until the
1073	 * asynchronous allocation completes and clears the deadlocked flag.
1074	 */
1075	if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) {
1076		rc = spl_emergency_alloc(skc, flags, obj);
1077	} else {
1078		remaining = wait_event_timeout(skc->skc_waitq,
1079		    spl_cache_grow_wait(skc), HZ / 10);
1080
1081		if (!remaining) {
1082			spin_lock(&skc->skc_lock);
1083			if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) {
1084				set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
1085				skc->skc_obj_deadlock++;
1086			}
1087			spin_unlock(&skc->skc_lock);
1088		}
1089
1090		rc = -ENOMEM;
1091	}
1092
1093	return (rc);
1094}
1095
1096/*
1097 * Refill a per-cpu magazine with objects from the slabs for this cache.
1098 * Ideally the magazine can be repopulated using existing objects which have
1099 * been released, however if we are unable to locate enough free objects new
1100 * slabs of objects will be created.  On success NULL is returned, otherwise
1101 * the address of a single emergency object is returned for use by the caller.
1102 */
1103static void *
1104spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
1105{
1106	spl_kmem_slab_t *sks;
1107	int count = 0, rc, refill;
1108	void *obj = NULL;
1109
1110	ASSERT(skc->skc_magic == SKC_MAGIC);
1111	ASSERT(skm->skm_magic == SKM_MAGIC);
1112
1113	refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
1114	spin_lock(&skc->skc_lock);
1115
1116	while (refill > 0) {
1117		/* No slabs available we may need to grow the cache */
1118		if (list_empty(&skc->skc_partial_list)) {
1119			spin_unlock(&skc->skc_lock);
1120
1121			local_irq_enable();
1122			rc = spl_cache_grow(skc, flags, &obj);
1123			local_irq_disable();
1124
1125			/* Emergency object for immediate use by caller */
1126			if (rc == 0 && obj != NULL)
1127				return (obj);
1128
1129			if (rc)
1130				goto out;
1131
1132			/* Rescheduled to different CPU skm is not local */
1133			if (skm != skc->skc_mag[smp_processor_id()])
1134				goto out;
1135
1136			/*
1137			 * Potentially rescheduled to the same CPU but
1138			 * allocations may have occurred from this CPU while
1139			 * we were sleeping so recalculate max refill.
1140			 */
1141			refill = MIN(refill, skm->skm_size - skm->skm_avail);
1142
1143			spin_lock(&skc->skc_lock);
1144			continue;
1145		}
1146
1147		/* Grab the next available slab */
1148		sks = list_entry((&skc->skc_partial_list)->next,
1149		    spl_kmem_slab_t, sks_list);
1150		ASSERT(sks->sks_magic == SKS_MAGIC);
1151		ASSERT(sks->sks_ref < sks->sks_objs);
1152		ASSERT(!list_empty(&sks->sks_free_list));
1153
1154		/*
1155		 * Consume as many objects as needed to refill the requested
1156		 * cache.  We must also be careful not to overfill it.
1157		 */
1158		while (sks->sks_ref < sks->sks_objs && refill-- > 0 &&
1159		    ++count) {
1160			ASSERT(skm->skm_avail < skm->skm_size);
1161			ASSERT(count < skm->skm_size);
1162			skm->skm_objs[skm->skm_avail++] =
1163			    spl_cache_obj(skc, sks);
1164		}
1165
1166		/* Move slab to skc_complete_list when full */
1167		if (sks->sks_ref == sks->sks_objs) {
1168			list_del(&sks->sks_list);
1169			list_add(&sks->sks_list, &skc->skc_complete_list);
1170		}
1171	}
1172
1173	spin_unlock(&skc->skc_lock);
1174out:
1175	return (NULL);
1176}
1177
1178/*
1179 * Release an object back to the slab from which it came.
1180 */
1181static void
1182spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
1183{
1184	spl_kmem_slab_t *sks = NULL;
1185	spl_kmem_obj_t *sko = NULL;
1186
1187	ASSERT(skc->skc_magic == SKC_MAGIC);
1188
1189	sko = spl_sko_from_obj(skc, obj);
1190	ASSERT(sko->sko_magic == SKO_MAGIC);
1191	sks = sko->sko_slab;
1192	ASSERT(sks->sks_magic == SKS_MAGIC);
1193	ASSERT(sks->sks_cache == skc);
1194	list_add(&sko->sko_list, &sks->sks_free_list);
1195
1196	sks->sks_age = jiffies;
1197	sks->sks_ref--;
1198	skc->skc_obj_alloc--;
1199
1200	/*
1201	 * Move slab to skc_partial_list when no longer full.  Slabs
1202	 * are added to the head to keep the partial list is quasi-full
1203	 * sorted order.  Fuller at the head, emptier at the tail.
1204	 */
1205	if (sks->sks_ref == (sks->sks_objs - 1)) {
1206		list_del(&sks->sks_list);
1207		list_add(&sks->sks_list, &skc->skc_partial_list);
1208	}
1209
1210	/*
1211	 * Move empty slabs to the end of the partial list so
1212	 * they can be easily found and freed during reclamation.
1213	 */
1214	if (sks->sks_ref == 0) {
1215		list_del(&sks->sks_list);
1216		list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1217		skc->skc_slab_alloc--;
1218	}
1219}
1220
1221/*
1222 * Allocate an object from the per-cpu magazine, or if the magazine
1223 * is empty directly allocate from a slab and repopulate the magazine.
1224 */
1225void *
1226spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
1227{
1228	spl_kmem_magazine_t *skm;
1229	void *obj = NULL;
1230
1231	ASSERT0(flags & ~KM_PUBLIC_MASK);
1232	ASSERT(skc->skc_magic == SKC_MAGIC);
1233	ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1234
1235	/*
1236	 * Allocate directly from a Linux slab.  All optimizations are left
1237	 * to the underlying cache we only need to guarantee that KM_SLEEP
1238	 * callers will never fail.
1239	 */
1240	if (skc->skc_flags & KMC_SLAB) {
1241		struct kmem_cache *slc = skc->skc_linux_cache;
1242		do {
1243			obj = kmem_cache_alloc(slc, kmem_flags_convert(flags));
1244		} while ((obj == NULL) && !(flags & KM_NOSLEEP));
1245
1246		if (obj != NULL) {
1247			/*
1248			 * Even though we leave everything up to the
1249			 * underlying cache we still keep track of
1250			 * how many objects we've allocated in it for
1251			 * better debuggability.
1252			 */
1253			percpu_counter_inc(&skc->skc_linux_alloc);
1254		}
1255		goto ret;
1256	}
1257
1258	local_irq_disable();
1259
1260restart:
1261	/*
1262	 * Safe to update per-cpu structure without lock, but
1263	 * in the restart case we must be careful to reacquire
1264	 * the local magazine since this may have changed
1265	 * when we need to grow the cache.
1266	 */
1267	skm = skc->skc_mag[smp_processor_id()];
1268	ASSERT(skm->skm_magic == SKM_MAGIC);
1269
1270	if (likely(skm->skm_avail)) {
1271		/* Object available in CPU cache, use it */
1272		obj = skm->skm_objs[--skm->skm_avail];
1273	} else {
1274		obj = spl_cache_refill(skc, skm, flags);
1275		if ((obj == NULL) && !(flags & KM_NOSLEEP))
1276			goto restart;
1277
1278		local_irq_enable();
1279		goto ret;
1280	}
1281
1282	local_irq_enable();
1283	ASSERT(obj);
1284	ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
1285
1286ret:
1287	/* Pre-emptively migrate object to CPU L1 cache */
1288	if (obj) {
1289		if (obj && skc->skc_ctor)
1290			skc->skc_ctor(obj, skc->skc_private, flags);
1291		else
1292			prefetchw(obj);
1293	}
1294
1295	return (obj);
1296}
1297EXPORT_SYMBOL(spl_kmem_cache_alloc);
1298
1299/*
1300 * Free an object back to the local per-cpu magazine, there is no
1301 * guarantee that this is the same magazine the object was originally
1302 * allocated from.  We may need to flush entire from the magazine
1303 * back to the slabs to make space.
1304 */
1305void
1306spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
1307{
1308	spl_kmem_magazine_t *skm;
1309	unsigned long flags;
1310	int do_reclaim = 0;
1311	int do_emergency = 0;
1312
1313	ASSERT(skc->skc_magic == SKC_MAGIC);
1314	ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1315
1316	/*
1317	 * Run the destructor
1318	 */
1319	if (skc->skc_dtor)
1320		skc->skc_dtor(obj, skc->skc_private);
1321
1322	/*
1323	 * Free the object from the Linux underlying Linux slab.
1324	 */
1325	if (skc->skc_flags & KMC_SLAB) {
1326		kmem_cache_free(skc->skc_linux_cache, obj);
1327		percpu_counter_dec(&skc->skc_linux_alloc);
1328		return;
1329	}
1330
1331	/*
1332	 * While a cache has outstanding emergency objects all freed objects
1333	 * must be checked.  However, since emergency objects will never use
1334	 * a virtual address these objects can be safely excluded as an
1335	 * optimization.
1336	 */
1337	if (!is_vmalloc_addr(obj)) {
1338		spin_lock(&skc->skc_lock);
1339		do_emergency = (skc->skc_obj_emergency > 0);
1340		spin_unlock(&skc->skc_lock);
1341
1342		if (do_emergency && (spl_emergency_free(skc, obj) == 0))
1343			return;
1344	}
1345
1346	local_irq_save(flags);
1347
1348	/*
1349	 * Safe to update per-cpu structure without lock, but
1350	 * no remote memory allocation tracking is being performed
1351	 * it is entirely possible to allocate an object from one
1352	 * CPU cache and return it to another.
1353	 */
1354	skm = skc->skc_mag[smp_processor_id()];
1355	ASSERT(skm->skm_magic == SKM_MAGIC);
1356
1357	/*
1358	 * Per-CPU cache full, flush it to make space for this object,
1359	 * this may result in an empty slab which can be reclaimed once
1360	 * interrupts are re-enabled.
1361	 */
1362	if (unlikely(skm->skm_avail >= skm->skm_size)) {
1363		spl_cache_flush(skc, skm, skm->skm_refill);
1364		do_reclaim = 1;
1365	}
1366
1367	/* Available space in cache, use it */
1368	skm->skm_objs[skm->skm_avail++] = obj;
1369
1370	local_irq_restore(flags);
1371
1372	if (do_reclaim)
1373		spl_slab_reclaim(skc);
1374}
1375EXPORT_SYMBOL(spl_kmem_cache_free);
1376
1377/*
1378 * Depending on how many and which objects are released it may simply
1379 * repopulate the local magazine which will then need to age-out.  Objects
1380 * which cannot fit in the magazine will be released back to their slabs
1381 * which will also need to age out before being released.  This is all just
1382 * best effort and we do not want to thrash creating and destroying slabs.
1383 */
1384void
1385spl_kmem_cache_reap_now(spl_kmem_cache_t *skc)
1386{
1387	ASSERT(skc->skc_magic == SKC_MAGIC);
1388	ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1389
1390	if (skc->skc_flags & KMC_SLAB)
1391		return;
1392
1393	atomic_inc(&skc->skc_ref);
1394
1395	/*
1396	 * Prevent concurrent cache reaping when contended.
1397	 */
1398	if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags))
1399		goto out;
1400
1401	/* Reclaim from the magazine and free all now empty slabs. */
1402	unsigned long irq_flags;
1403	local_irq_save(irq_flags);
1404	spl_kmem_magazine_t *skm = skc->skc_mag[smp_processor_id()];
1405	spl_cache_flush(skc, skm, skm->skm_avail);
1406	local_irq_restore(irq_flags);
1407
1408	spl_slab_reclaim(skc);
1409	clear_bit_unlock(KMC_BIT_REAPING, &skc->skc_flags);
1410	smp_mb__after_atomic();
1411	wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING);
1412out:
1413	atomic_dec(&skc->skc_ref);
1414}
1415EXPORT_SYMBOL(spl_kmem_cache_reap_now);
1416
1417/*
1418 * This is stubbed out for code consistency with other platforms.  There
1419 * is existing logic to prevent concurrent reaping so while this is ugly
1420 * it should do no harm.
1421 */
1422int
1423spl_kmem_cache_reap_active(void)
1424{
1425	return (0);
1426}
1427EXPORT_SYMBOL(spl_kmem_cache_reap_active);
1428
1429/*
1430 * Reap all free slabs from all registered caches.
1431 */
1432void
1433spl_kmem_reap(void)
1434{
1435	spl_kmem_cache_t *skc = NULL;
1436
1437	down_read(&spl_kmem_cache_sem);
1438	list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
1439		spl_kmem_cache_reap_now(skc);
1440	}
1441	up_read(&spl_kmem_cache_sem);
1442}
1443EXPORT_SYMBOL(spl_kmem_reap);
1444
1445int
1446spl_kmem_cache_init(void)
1447{
1448	init_rwsem(&spl_kmem_cache_sem);
1449	INIT_LIST_HEAD(&spl_kmem_cache_list);
1450	spl_kmem_cache_taskq = taskq_create("spl_kmem_cache",
1451	    spl_kmem_cache_kmem_threads, maxclsyspri,
1452	    spl_kmem_cache_kmem_threads * 8, INT_MAX,
1453	    TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
1454
1455	if (spl_kmem_cache_taskq == NULL)
1456		return (-ENOMEM);
1457
1458	return (0);
1459}
1460
1461void
1462spl_kmem_cache_fini(void)
1463{
1464	taskq_destroy(spl_kmem_cache_taskq);
1465}
1466