1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25 * Copyright (c) 2013 Steven Hartland. All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2017 Joyent, Inc.
28 * Copyright (c) 2017, Intel Corporation.
29 */
30
31/*
32 * The objective of this program is to provide a DMU/ZAP/SPA stress test
33 * that runs entirely in userland, is easy to use, and easy to extend.
34 *
35 * The overall design of the ztest program is as follows:
36 *
37 * (1) For each major functional area (e.g. adding vdevs to a pool,
38 *     creating and destroying datasets, reading and writing objects, etc)
39 *     we have a simple routine to test that functionality.  These
40 *     individual routines do not have to do anything "stressful".
41 *
42 * (2) We turn these simple functionality tests into a stress test by
43 *     running them all in parallel, with as many threads as desired,
44 *     and spread across as many datasets, objects, and vdevs as desired.
45 *
46 * (3) While all this is happening, we inject faults into the pool to
47 *     verify that self-healing data really works.
48 *
49 * (4) Every time we open a dataset, we change its checksum and compression
50 *     functions.  Thus even individual objects vary from block to block
51 *     in which checksum they use and whether they're compressed.
52 *
53 * (5) To verify that we never lose on-disk consistency after a crash,
54 *     we run the entire test in a child of the main process.
55 *     At random times, the child self-immolates with a SIGKILL.
56 *     This is the software equivalent of pulling the power cord.
57 *     The parent then runs the test again, using the existing
58 *     storage pool, as many times as desired. If backwards compatibility
59 *     testing is enabled ztest will sometimes run the "older" version
60 *     of ztest after a SIGKILL.
61 *
62 * (6) To verify that we don't have future leaks or temporal incursions,
63 *     many of the functional tests record the transaction group number
64 *     as part of their data.  When reading old data, they verify that
65 *     the transaction group number is less than the current, open txg.
66 *     If you add a new test, please do this if applicable.
67 *
68 * (7) Threads are created with a reduced stack size, for sanity checking.
69 *     Therefore, it's important not to allocate huge buffers on the stack.
70 *
71 * When run with no arguments, ztest runs for about five minutes and
72 * produces no output if successful.  To get a little bit of information,
73 * specify -V.  To get more information, specify -VV, and so on.
74 *
75 * To turn this into an overnight stress test, use -T to specify run time.
76 *
77 * You can ask more vdevs [-v], datasets [-d], or threads [-t]
78 * to increase the pool capacity, fanout, and overall stress level.
79 *
80 * Use the -k option to set the desired frequency of kills.
81 *
82 * When ztest invokes itself it passes all relevant information through a
83 * temporary file which is mmap-ed in the child process. This allows shared
84 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
85 * stored at offset 0 of this file and contains information on the size and
86 * number of shared structures in the file. The information stored in this file
87 * must remain backwards compatible with older versions of ztest so that
88 * ztest can invoke them during backwards compatibility testing (-B).
89 */
90
91#include <sys/zfs_context.h>
92#include <sys/spa.h>
93#include <sys/dmu.h>
94#include <sys/txg.h>
95#include <sys/dbuf.h>
96#include <sys/zap.h>
97#include <sys/dmu_objset.h>
98#include <sys/poll.h>
99#include <sys/stat.h>
100#include <sys/time.h>
101#include <sys/wait.h>
102#include <sys/mman.h>
103#include <sys/resource.h>
104#include <sys/zio.h>
105#include <sys/zil.h>
106#include <sys/zil_impl.h>
107#include <sys/vdev_draid.h>
108#include <sys/vdev_impl.h>
109#include <sys/vdev_file.h>
110#include <sys/vdev_initialize.h>
111#include <sys/vdev_raidz.h>
112#include <sys/vdev_trim.h>
113#include <sys/spa_impl.h>
114#include <sys/metaslab_impl.h>
115#include <sys/dsl_prop.h>
116#include <sys/dsl_dataset.h>
117#include <sys/dsl_destroy.h>
118#include <sys/dsl_scan.h>
119#include <sys/zio_checksum.h>
120#include <sys/zfs_refcount.h>
121#include <sys/zfeature.h>
122#include <sys/dsl_userhold.h>
123#include <sys/abd.h>
124#include <sys/blake3.h>
125#include <stdio.h>
126#include <stdlib.h>
127#include <unistd.h>
128#include <getopt.h>
129#include <signal.h>
130#include <umem.h>
131#include <ctype.h>
132#include <math.h>
133#include <sys/fs/zfs.h>
134#include <zfs_fletcher.h>
135#include <libnvpair.h>
136#include <libzutil.h>
137#include <sys/crypto/icp.h>
138#include <sys/zfs_impl.h>
139#include <sys/backtrace.h>
140
141static int ztest_fd_data = -1;
142static int ztest_fd_rand = -1;
143
144typedef struct ztest_shared_hdr {
145	uint64_t	zh_hdr_size;
146	uint64_t	zh_opts_size;
147	uint64_t	zh_size;
148	uint64_t	zh_stats_size;
149	uint64_t	zh_stats_count;
150	uint64_t	zh_ds_size;
151	uint64_t	zh_ds_count;
152	uint64_t	zh_scratch_state_size;
153} ztest_shared_hdr_t;
154
155static ztest_shared_hdr_t *ztest_shared_hdr;
156
157enum ztest_class_state {
158	ZTEST_VDEV_CLASS_OFF,
159	ZTEST_VDEV_CLASS_ON,
160	ZTEST_VDEV_CLASS_RND
161};
162
163/* Dedicated RAIDZ Expansion test states */
164typedef enum {
165	RAIDZ_EXPAND_NONE,		/* Default is none, must opt-in	*/
166	RAIDZ_EXPAND_REQUESTED,		/* The '-X' option was used	*/
167	RAIDZ_EXPAND_STARTED,		/* Testing has commenced	*/
168	RAIDZ_EXPAND_KILLED,		/* Reached the proccess kill	*/
169	RAIDZ_EXPAND_CHECKED,		/* Pool scrub verification done	*/
170} raidz_expand_test_state_t;
171
172
173#define	ZO_GVARS_MAX_ARGLEN	((size_t)64)
174#define	ZO_GVARS_MAX_COUNT	((size_t)10)
175
176typedef struct ztest_shared_opts {
177	char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
178	char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
179	char zo_alt_ztest[MAXNAMELEN];
180	char zo_alt_libpath[MAXNAMELEN];
181	uint64_t zo_vdevs;
182	uint64_t zo_vdevtime;
183	size_t zo_vdev_size;
184	int zo_ashift;
185	int zo_mirrors;
186	int zo_raid_do_expand;
187	int zo_raid_children;
188	int zo_raid_parity;
189	char zo_raid_type[8];
190	int zo_draid_data;
191	int zo_draid_spares;
192	int zo_datasets;
193	int zo_threads;
194	uint64_t zo_passtime;
195	uint64_t zo_killrate;
196	int zo_verbose;
197	int zo_init;
198	uint64_t zo_time;
199	uint64_t zo_maxloops;
200	uint64_t zo_metaslab_force_ganging;
201	raidz_expand_test_state_t zo_raidz_expand_test;
202	int zo_mmp_test;
203	int zo_special_vdevs;
204	int zo_dump_dbgmsg;
205	int zo_gvars_count;
206	char zo_gvars[ZO_GVARS_MAX_COUNT][ZO_GVARS_MAX_ARGLEN];
207} ztest_shared_opts_t;
208
209/* Default values for command line options. */
210#define	DEFAULT_POOL "ztest"
211#define	DEFAULT_VDEV_DIR "/tmp"
212#define	DEFAULT_VDEV_COUNT 5
213#define	DEFAULT_VDEV_SIZE (SPA_MINDEVSIZE * 4)	/* 256m default size */
214#define	DEFAULT_VDEV_SIZE_STR "256M"
215#define	DEFAULT_ASHIFT SPA_MINBLOCKSHIFT
216#define	DEFAULT_MIRRORS 2
217#define	DEFAULT_RAID_CHILDREN 4
218#define	DEFAULT_RAID_PARITY 1
219#define	DEFAULT_DRAID_DATA 4
220#define	DEFAULT_DRAID_SPARES 1
221#define	DEFAULT_DATASETS_COUNT 7
222#define	DEFAULT_THREADS 23
223#define	DEFAULT_RUN_TIME 300 /* 300 seconds */
224#define	DEFAULT_RUN_TIME_STR "300 sec"
225#define	DEFAULT_PASS_TIME 60 /* 60 seconds */
226#define	DEFAULT_PASS_TIME_STR "60 sec"
227#define	DEFAULT_KILL_RATE 70 /* 70% kill rate */
228#define	DEFAULT_KILLRATE_STR "70%"
229#define	DEFAULT_INITS 1
230#define	DEFAULT_MAX_LOOPS 50 /* 5 minutes */
231#define	DEFAULT_FORCE_GANGING (64 << 10)
232#define	DEFAULT_FORCE_GANGING_STR "64K"
233
234/* Simplifying assumption: -1 is not a valid default. */
235#define	NO_DEFAULT -1
236
237static const ztest_shared_opts_t ztest_opts_defaults = {
238	.zo_pool = DEFAULT_POOL,
239	.zo_dir = DEFAULT_VDEV_DIR,
240	.zo_alt_ztest = { '\0' },
241	.zo_alt_libpath = { '\0' },
242	.zo_vdevs = DEFAULT_VDEV_COUNT,
243	.zo_ashift = DEFAULT_ASHIFT,
244	.zo_mirrors = DEFAULT_MIRRORS,
245	.zo_raid_children = DEFAULT_RAID_CHILDREN,
246	.zo_raid_parity = DEFAULT_RAID_PARITY,
247	.zo_raid_type = VDEV_TYPE_RAIDZ,
248	.zo_vdev_size = DEFAULT_VDEV_SIZE,
249	.zo_draid_data = DEFAULT_DRAID_DATA,	/* data drives */
250	.zo_draid_spares = DEFAULT_DRAID_SPARES, /* distributed spares */
251	.zo_datasets = DEFAULT_DATASETS_COUNT,
252	.zo_threads = DEFAULT_THREADS,
253	.zo_passtime = DEFAULT_PASS_TIME,
254	.zo_killrate = DEFAULT_KILL_RATE,
255	.zo_verbose = 0,
256	.zo_mmp_test = 0,
257	.zo_init = DEFAULT_INITS,
258	.zo_time = DEFAULT_RUN_TIME,
259	.zo_maxloops = DEFAULT_MAX_LOOPS, /* max loops during spa_freeze() */
260	.zo_metaslab_force_ganging = DEFAULT_FORCE_GANGING,
261	.zo_special_vdevs = ZTEST_VDEV_CLASS_RND,
262	.zo_gvars_count = 0,
263	.zo_raidz_expand_test = RAIDZ_EXPAND_NONE,
264};
265
266extern uint64_t metaslab_force_ganging;
267extern uint64_t metaslab_df_alloc_threshold;
268extern uint64_t zfs_deadman_synctime_ms;
269extern uint_t metaslab_preload_limit;
270extern int zfs_compressed_arc_enabled;
271extern int zfs_abd_scatter_enabled;
272extern uint_t dmu_object_alloc_chunk_shift;
273extern boolean_t zfs_force_some_double_word_sm_entries;
274extern unsigned long zio_decompress_fail_fraction;
275extern unsigned long zfs_reconstruct_indirect_damage_fraction;
276extern uint64_t raidz_expand_max_reflow_bytes;
277extern uint_t raidz_expand_pause_point;
278
279
280static ztest_shared_opts_t *ztest_shared_opts;
281static ztest_shared_opts_t ztest_opts;
282static const char *const ztest_wkeydata = "abcdefghijklmnopqrstuvwxyz012345";
283
284typedef struct ztest_shared_ds {
285	uint64_t	zd_seq;
286} ztest_shared_ds_t;
287
288static ztest_shared_ds_t *ztest_shared_ds;
289#define	ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
290
291typedef struct ztest_scratch_state {
292	uint64_t	zs_raidz_scratch_verify_pause;
293} ztest_shared_scratch_state_t;
294
295static ztest_shared_scratch_state_t *ztest_scratch_state;
296
297#define	BT_MAGIC	0x123456789abcdefULL
298#define	MAXFAULTS(zs) \
299	(MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raid_parity + 1) - 1)
300
301enum ztest_io_type {
302	ZTEST_IO_WRITE_TAG,
303	ZTEST_IO_WRITE_PATTERN,
304	ZTEST_IO_WRITE_ZEROES,
305	ZTEST_IO_TRUNCATE,
306	ZTEST_IO_SETATTR,
307	ZTEST_IO_REWRITE,
308	ZTEST_IO_TYPES
309};
310
311typedef struct ztest_block_tag {
312	uint64_t	bt_magic;
313	uint64_t	bt_objset;
314	uint64_t	bt_object;
315	uint64_t	bt_dnodesize;
316	uint64_t	bt_offset;
317	uint64_t	bt_gen;
318	uint64_t	bt_txg;
319	uint64_t	bt_crtxg;
320} ztest_block_tag_t;
321
322typedef struct bufwad {
323	uint64_t	bw_index;
324	uint64_t	bw_txg;
325	uint64_t	bw_data;
326} bufwad_t;
327
328/*
329 * It would be better to use a rangelock_t per object.  Unfortunately
330 * the rangelock_t is not a drop-in replacement for rl_t, because we
331 * still need to map from object ID to rangelock_t.
332 */
333typedef enum {
334	ZTRL_READER,
335	ZTRL_WRITER,
336	ZTRL_APPEND
337} rl_type_t;
338
339typedef struct rll {
340	void		*rll_writer;
341	int		rll_readers;
342	kmutex_t	rll_lock;
343	kcondvar_t	rll_cv;
344} rll_t;
345
346typedef struct rl {
347	uint64_t	rl_object;
348	uint64_t	rl_offset;
349	uint64_t	rl_size;
350	rll_t		*rl_lock;
351} rl_t;
352
353#define	ZTEST_RANGE_LOCKS	64
354#define	ZTEST_OBJECT_LOCKS	64
355
356/*
357 * Object descriptor.  Used as a template for object lookup/create/remove.
358 */
359typedef struct ztest_od {
360	uint64_t	od_dir;
361	uint64_t	od_object;
362	dmu_object_type_t od_type;
363	dmu_object_type_t od_crtype;
364	uint64_t	od_blocksize;
365	uint64_t	od_crblocksize;
366	uint64_t	od_crdnodesize;
367	uint64_t	od_gen;
368	uint64_t	od_crgen;
369	char		od_name[ZFS_MAX_DATASET_NAME_LEN];
370} ztest_od_t;
371
372/*
373 * Per-dataset state.
374 */
375typedef struct ztest_ds {
376	ztest_shared_ds_t *zd_shared;
377	objset_t	*zd_os;
378	pthread_rwlock_t zd_zilog_lock;
379	zilog_t		*zd_zilog;
380	ztest_od_t	*zd_od;		/* debugging aid */
381	char		zd_name[ZFS_MAX_DATASET_NAME_LEN];
382	kmutex_t	zd_dirobj_lock;
383	rll_t		zd_object_lock[ZTEST_OBJECT_LOCKS];
384	rll_t		zd_range_lock[ZTEST_RANGE_LOCKS];
385} ztest_ds_t;
386
387/*
388 * Per-iteration state.
389 */
390typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
391
392typedef struct ztest_info {
393	ztest_func_t	*zi_func;	/* test function */
394	uint64_t	zi_iters;	/* iterations per execution */
395	uint64_t	*zi_interval;	/* execute every <interval> seconds */
396	const char	*zi_funcname;	/* name of test function */
397} ztest_info_t;
398
399typedef struct ztest_shared_callstate {
400	uint64_t	zc_count;	/* per-pass count */
401	uint64_t	zc_time;	/* per-pass time */
402	uint64_t	zc_next;	/* next time to call this function */
403} ztest_shared_callstate_t;
404
405static ztest_shared_callstate_t *ztest_shared_callstate;
406#define	ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
407
408ztest_func_t ztest_dmu_read_write;
409ztest_func_t ztest_dmu_write_parallel;
410ztest_func_t ztest_dmu_object_alloc_free;
411ztest_func_t ztest_dmu_object_next_chunk;
412ztest_func_t ztest_dmu_commit_callbacks;
413ztest_func_t ztest_zap;
414ztest_func_t ztest_zap_parallel;
415ztest_func_t ztest_zil_commit;
416ztest_func_t ztest_zil_remount;
417ztest_func_t ztest_dmu_read_write_zcopy;
418ztest_func_t ztest_dmu_objset_create_destroy;
419ztest_func_t ztest_dmu_prealloc;
420ztest_func_t ztest_fzap;
421ztest_func_t ztest_dmu_snapshot_create_destroy;
422ztest_func_t ztest_dsl_prop_get_set;
423ztest_func_t ztest_spa_prop_get_set;
424ztest_func_t ztest_spa_create_destroy;
425ztest_func_t ztest_fault_inject;
426ztest_func_t ztest_dmu_snapshot_hold;
427ztest_func_t ztest_mmp_enable_disable;
428ztest_func_t ztest_scrub;
429ztest_func_t ztest_dsl_dataset_promote_busy;
430ztest_func_t ztest_vdev_attach_detach;
431ztest_func_t ztest_vdev_raidz_attach;
432ztest_func_t ztest_vdev_LUN_growth;
433ztest_func_t ztest_vdev_add_remove;
434ztest_func_t ztest_vdev_class_add;
435ztest_func_t ztest_vdev_aux_add_remove;
436ztest_func_t ztest_split_pool;
437ztest_func_t ztest_reguid;
438ztest_func_t ztest_spa_upgrade;
439ztest_func_t ztest_device_removal;
440ztest_func_t ztest_spa_checkpoint_create_discard;
441ztest_func_t ztest_initialize;
442ztest_func_t ztest_trim;
443ztest_func_t ztest_blake3;
444ztest_func_t ztest_fletcher;
445ztest_func_t ztest_fletcher_incr;
446ztest_func_t ztest_verify_dnode_bt;
447
448static uint64_t zopt_always = 0ULL * NANOSEC;		/* all the time */
449static uint64_t zopt_incessant = 1ULL * NANOSEC / 10;	/* every 1/10 second */
450static uint64_t zopt_often = 1ULL * NANOSEC;		/* every second */
451static uint64_t zopt_sometimes = 10ULL * NANOSEC;	/* every 10 seconds */
452static uint64_t zopt_rarely = 60ULL * NANOSEC;		/* every 60 seconds */
453
454#define	ZTI_INIT(func, iters, interval) \
455	{   .zi_func = (func), \
456	    .zi_iters = (iters), \
457	    .zi_interval = (interval), \
458	    .zi_funcname = # func }
459
460static ztest_info_t ztest_info[] = {
461	ZTI_INIT(ztest_dmu_read_write, 1, &zopt_always),
462	ZTI_INIT(ztest_dmu_write_parallel, 10, &zopt_always),
463	ZTI_INIT(ztest_dmu_object_alloc_free, 1, &zopt_always),
464	ZTI_INIT(ztest_dmu_object_next_chunk, 1, &zopt_sometimes),
465	ZTI_INIT(ztest_dmu_commit_callbacks, 1, &zopt_always),
466	ZTI_INIT(ztest_zap, 30, &zopt_always),
467	ZTI_INIT(ztest_zap_parallel, 100, &zopt_always),
468	ZTI_INIT(ztest_split_pool, 1, &zopt_sometimes),
469	ZTI_INIT(ztest_zil_commit, 1, &zopt_incessant),
470	ZTI_INIT(ztest_zil_remount, 1, &zopt_sometimes),
471	ZTI_INIT(ztest_dmu_read_write_zcopy, 1, &zopt_often),
472	ZTI_INIT(ztest_dmu_objset_create_destroy, 1, &zopt_often),
473	ZTI_INIT(ztest_dsl_prop_get_set, 1, &zopt_often),
474	ZTI_INIT(ztest_spa_prop_get_set, 1, &zopt_sometimes),
475#if 0
476	ZTI_INIT(ztest_dmu_prealloc, 1, &zopt_sometimes),
477#endif
478	ZTI_INIT(ztest_fzap, 1, &zopt_sometimes),
479	ZTI_INIT(ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes),
480	ZTI_INIT(ztest_spa_create_destroy, 1, &zopt_sometimes),
481	ZTI_INIT(ztest_fault_inject, 1, &zopt_sometimes),
482	ZTI_INIT(ztest_dmu_snapshot_hold, 1, &zopt_sometimes),
483	ZTI_INIT(ztest_mmp_enable_disable, 1, &zopt_sometimes),
484	ZTI_INIT(ztest_reguid, 1, &zopt_rarely),
485	ZTI_INIT(ztest_scrub, 1, &zopt_rarely),
486	ZTI_INIT(ztest_spa_upgrade, 1, &zopt_rarely),
487	ZTI_INIT(ztest_dsl_dataset_promote_busy, 1, &zopt_rarely),
488	ZTI_INIT(ztest_vdev_attach_detach, 1, &zopt_sometimes),
489	ZTI_INIT(ztest_vdev_raidz_attach, 1, &zopt_sometimes),
490	ZTI_INIT(ztest_vdev_LUN_growth, 1, &zopt_rarely),
491	ZTI_INIT(ztest_vdev_add_remove, 1, &ztest_opts.zo_vdevtime),
492	ZTI_INIT(ztest_vdev_class_add, 1, &ztest_opts.zo_vdevtime),
493	ZTI_INIT(ztest_vdev_aux_add_remove, 1, &ztest_opts.zo_vdevtime),
494	ZTI_INIT(ztest_device_removal, 1, &zopt_sometimes),
495	ZTI_INIT(ztest_spa_checkpoint_create_discard, 1, &zopt_rarely),
496	ZTI_INIT(ztest_initialize, 1, &zopt_sometimes),
497	ZTI_INIT(ztest_trim, 1, &zopt_sometimes),
498	ZTI_INIT(ztest_blake3, 1, &zopt_rarely),
499	ZTI_INIT(ztest_fletcher, 1, &zopt_rarely),
500	ZTI_INIT(ztest_fletcher_incr, 1, &zopt_rarely),
501	ZTI_INIT(ztest_verify_dnode_bt, 1, &zopt_sometimes),
502};
503
504#define	ZTEST_FUNCS	(sizeof (ztest_info) / sizeof (ztest_info_t))
505
506/*
507 * The following struct is used to hold a list of uncalled commit callbacks.
508 * The callbacks are ordered by txg number.
509 */
510typedef struct ztest_cb_list {
511	kmutex_t	zcl_callbacks_lock;
512	list_t		zcl_callbacks;
513} ztest_cb_list_t;
514
515/*
516 * Stuff we need to share writably between parent and child.
517 */
518typedef struct ztest_shared {
519	boolean_t	zs_do_init;
520	hrtime_t	zs_proc_start;
521	hrtime_t	zs_proc_stop;
522	hrtime_t	zs_thread_start;
523	hrtime_t	zs_thread_stop;
524	hrtime_t	zs_thread_kill;
525	uint64_t	zs_enospc_count;
526	uint64_t	zs_vdev_next_leaf;
527	uint64_t	zs_vdev_aux;
528	uint64_t	zs_alloc;
529	uint64_t	zs_space;
530	uint64_t	zs_splits;
531	uint64_t	zs_mirrors;
532	uint64_t	zs_metaslab_sz;
533	uint64_t	zs_metaslab_df_alloc_threshold;
534	uint64_t	zs_guid;
535} ztest_shared_t;
536
537#define	ID_PARALLEL	-1ULL
538
539static char ztest_dev_template[] = "%s/%s.%llua";
540static char ztest_aux_template[] = "%s/%s.%s.%llu";
541static ztest_shared_t *ztest_shared;
542
543static spa_t *ztest_spa = NULL;
544static ztest_ds_t *ztest_ds;
545
546static kmutex_t ztest_vdev_lock;
547static boolean_t ztest_device_removal_active = B_FALSE;
548static boolean_t ztest_pool_scrubbed = B_FALSE;
549static kmutex_t ztest_checkpoint_lock;
550
551/*
552 * The ztest_name_lock protects the pool and dataset namespace used by
553 * the individual tests. To modify the namespace, consumers must grab
554 * this lock as writer. Grabbing the lock as reader will ensure that the
555 * namespace does not change while the lock is held.
556 */
557static pthread_rwlock_t ztest_name_lock;
558
559static boolean_t ztest_dump_core = B_TRUE;
560static boolean_t ztest_exiting;
561
562/* Global commit callback list */
563static ztest_cb_list_t zcl;
564/* Commit cb delay */
565static uint64_t zc_min_txg_delay = UINT64_MAX;
566static int zc_cb_counter = 0;
567
568/*
569 * Minimum number of commit callbacks that need to be registered for us to check
570 * whether the minimum txg delay is acceptable.
571 */
572#define	ZTEST_COMMIT_CB_MIN_REG	100
573
574/*
575 * If a number of txgs equal to this threshold have been created after a commit
576 * callback has been registered but not called, then we assume there is an
577 * implementation bug.
578 */
579#define	ZTEST_COMMIT_CB_THRESH	(TXG_CONCURRENT_STATES + 1000)
580
581enum ztest_object {
582	ZTEST_META_DNODE = 0,
583	ZTEST_DIROBJ,
584	ZTEST_OBJECTS
585};
586
587static __attribute__((noreturn)) void usage(boolean_t requested);
588static int ztest_scrub_impl(spa_t *spa);
589
590/*
591 * These libumem hooks provide a reasonable set of defaults for the allocator's
592 * debugging facilities.
593 */
594const char *
595_umem_debug_init(void)
596{
597	return ("default,verbose"); /* $UMEM_DEBUG setting */
598}
599
600const char *
601_umem_logging_init(void)
602{
603	return ("fail,contents"); /* $UMEM_LOGGING setting */
604}
605
606static void
607dump_debug_buffer(void)
608{
609	ssize_t ret __attribute__((unused));
610
611	if (!ztest_opts.zo_dump_dbgmsg)
612		return;
613
614	/*
615	 * We use write() instead of printf() so that this function
616	 * is safe to call from a signal handler.
617	 */
618	ret = write(STDERR_FILENO, "\n", 1);
619	zfs_dbgmsg_print(STDERR_FILENO, "ztest");
620}
621
622static void sig_handler(int signo)
623{
624	struct sigaction action;
625
626	libspl_backtrace(STDERR_FILENO);
627	dump_debug_buffer();
628
629	/*
630	 * Restore default action and re-raise signal so SIGSEGV and
631	 * SIGABRT can trigger a core dump.
632	 */
633	action.sa_handler = SIG_DFL;
634	sigemptyset(&action.sa_mask);
635	action.sa_flags = 0;
636	(void) sigaction(signo, &action, NULL);
637	raise(signo);
638}
639
640#define	FATAL_MSG_SZ	1024
641
642static const char *fatal_msg;
643
644static __attribute__((format(printf, 2, 3))) __attribute__((noreturn)) void
645fatal(int do_perror, const char *message, ...)
646{
647	va_list args;
648	int save_errno = errno;
649	char *buf;
650
651	(void) fflush(stdout);
652	buf = umem_alloc(FATAL_MSG_SZ, UMEM_NOFAIL);
653	if (buf == NULL)
654		goto out;
655
656	va_start(args, message);
657	(void) sprintf(buf, "ztest: ");
658	/* LINTED */
659	(void) vsprintf(buf + strlen(buf), message, args);
660	va_end(args);
661	if (do_perror) {
662		(void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
663		    ": %s", strerror(save_errno));
664	}
665	(void) fprintf(stderr, "%s\n", buf);
666	fatal_msg = buf;			/* to ease debugging */
667
668out:
669	if (ztest_dump_core)
670		abort();
671	else
672		dump_debug_buffer();
673
674	exit(3);
675}
676
677static int
678str2shift(const char *buf)
679{
680	const char *ends = "BKMGTPEZ";
681	int i;
682
683	if (buf[0] == '\0')
684		return (0);
685	for (i = 0; i < strlen(ends); i++) {
686		if (toupper(buf[0]) == ends[i])
687			break;
688	}
689	if (i == strlen(ends)) {
690		(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
691		    buf);
692		usage(B_FALSE);
693	}
694	if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
695		return (10*i);
696	}
697	(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
698	usage(B_FALSE);
699}
700
701static uint64_t
702nicenumtoull(const char *buf)
703{
704	char *end;
705	uint64_t val;
706
707	val = strtoull(buf, &end, 0);
708	if (end == buf) {
709		(void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
710		usage(B_FALSE);
711	} else if (end[0] == '.') {
712		double fval = strtod(buf, &end);
713		fval *= pow(2, str2shift(end));
714		/*
715		 * UINT64_MAX is not exactly representable as a double.
716		 * The closest representation is UINT64_MAX + 1, so we
717		 * use a >= comparison instead of > for the bounds check.
718		 */
719		if (fval >= (double)UINT64_MAX) {
720			(void) fprintf(stderr, "ztest: value too large: %s\n",
721			    buf);
722			usage(B_FALSE);
723		}
724		val = (uint64_t)fval;
725	} else {
726		int shift = str2shift(end);
727		if (shift >= 64 || (val << shift) >> shift != val) {
728			(void) fprintf(stderr, "ztest: value too large: %s\n",
729			    buf);
730			usage(B_FALSE);
731		}
732		val <<= shift;
733	}
734	return (val);
735}
736
737typedef struct ztest_option {
738	const char	short_opt;
739	const char	*long_opt;
740	const char	*long_opt_param;
741	const char	*comment;
742	unsigned int	default_int;
743	const char	*default_str;
744} ztest_option_t;
745
746/*
747 * The following option_table is used for generating the usage info as well as
748 * the long and short option information for calling getopt_long().
749 */
750static ztest_option_t option_table[] = {
751	{ 'v',	"vdevs", "INTEGER", "Number of vdevs", DEFAULT_VDEV_COUNT,
752	    NULL},
753	{ 's',	"vdev-size", "INTEGER", "Size of each vdev",
754	    NO_DEFAULT, DEFAULT_VDEV_SIZE_STR},
755	{ 'a',	"alignment-shift", "INTEGER",
756	    "Alignment shift; use 0 for random", DEFAULT_ASHIFT, NULL},
757	{ 'm',	"mirror-copies", "INTEGER", "Number of mirror copies",
758	    DEFAULT_MIRRORS, NULL},
759	{ 'r',	"raid-disks", "INTEGER", "Number of raidz/draid disks",
760	    DEFAULT_RAID_CHILDREN, NULL},
761	{ 'R',	"raid-parity", "INTEGER", "Raid parity",
762	    DEFAULT_RAID_PARITY, NULL},
763	{ 'K',  "raid-kind", "raidz|eraidz|draid|random", "Raid kind",
764	    NO_DEFAULT, "random"},
765	{ 'D',	"draid-data", "INTEGER", "Number of draid data drives",
766	    DEFAULT_DRAID_DATA, NULL},
767	{ 'S',	"draid-spares", "INTEGER", "Number of draid spares",
768	    DEFAULT_DRAID_SPARES, NULL},
769	{ 'd',	"datasets", "INTEGER", "Number of datasets",
770	    DEFAULT_DATASETS_COUNT, NULL},
771	{ 't',	"threads", "INTEGER", "Number of ztest threads",
772	    DEFAULT_THREADS, NULL},
773	{ 'g',	"gang-block-threshold", "INTEGER",
774	    "Metaslab gang block threshold",
775	    NO_DEFAULT, DEFAULT_FORCE_GANGING_STR},
776	{ 'i',	"init-count", "INTEGER", "Number of times to initialize pool",
777	    DEFAULT_INITS, NULL},
778	{ 'k',	"kill-percentage", "INTEGER", "Kill percentage",
779	    NO_DEFAULT, DEFAULT_KILLRATE_STR},
780	{ 'p',	"pool-name", "STRING", "Pool name",
781	    NO_DEFAULT, DEFAULT_POOL},
782	{ 'f',	"vdev-file-directory", "PATH", "File directory for vdev files",
783	    NO_DEFAULT, DEFAULT_VDEV_DIR},
784	{ 'M',	"multi-host", NULL,
785	    "Multi-host; simulate pool imported on remote host",
786	    NO_DEFAULT, NULL},
787	{ 'E',	"use-existing-pool", NULL,
788	    "Use existing pool instead of creating new one", NO_DEFAULT, NULL},
789	{ 'T',	"run-time", "INTEGER", "Total run time",
790	    NO_DEFAULT, DEFAULT_RUN_TIME_STR},
791	{ 'P',	"pass-time", "INTEGER", "Time per pass",
792	    NO_DEFAULT, DEFAULT_PASS_TIME_STR},
793	{ 'F',	"freeze-loops", "INTEGER", "Max loops in spa_freeze()",
794	    DEFAULT_MAX_LOOPS, NULL},
795	{ 'B',	"alt-ztest", "PATH", "Alternate ztest path",
796	    NO_DEFAULT, NULL},
797	{ 'C',	"vdev-class-state", "on|off|random", "vdev class state",
798	    NO_DEFAULT, "random"},
799	{ 'X', "raidz-expansion", NULL,
800	    "Perform a dedicated raidz expansion test",
801	    NO_DEFAULT, NULL},
802	{ 'o',	"option", "\"OPTION=INTEGER\"",
803	    "Set global variable to an unsigned 32-bit integer value",
804	    NO_DEFAULT, NULL},
805	{ 'G',	"dump-debug-msg", NULL,
806	    "Dump zfs_dbgmsg buffer before exiting due to an error",
807	    NO_DEFAULT, NULL},
808	{ 'V',	"verbose", NULL,
809	    "Verbose (use multiple times for ever more verbosity)",
810	    NO_DEFAULT, NULL},
811	{ 'h',	"help",	NULL, "Show this help",
812	    NO_DEFAULT, NULL},
813	{0, 0, 0, 0, 0, 0}
814};
815
816static struct option *long_opts = NULL;
817static char *short_opts = NULL;
818
819static void
820init_options(void)
821{
822	ASSERT3P(long_opts, ==, NULL);
823	ASSERT3P(short_opts, ==, NULL);
824
825	int count = sizeof (option_table) / sizeof (option_table[0]);
826	long_opts = umem_alloc(sizeof (struct option) * count, UMEM_NOFAIL);
827
828	short_opts = umem_alloc(sizeof (char) * 2 * count, UMEM_NOFAIL);
829	int short_opt_index = 0;
830
831	for (int i = 0; i < count; i++) {
832		long_opts[i].val = option_table[i].short_opt;
833		long_opts[i].name = option_table[i].long_opt;
834		long_opts[i].has_arg = option_table[i].long_opt_param != NULL
835		    ? required_argument : no_argument;
836		long_opts[i].flag = NULL;
837		short_opts[short_opt_index++] = option_table[i].short_opt;
838		if (option_table[i].long_opt_param != NULL) {
839			short_opts[short_opt_index++] = ':';
840		}
841	}
842}
843
844static void
845fini_options(void)
846{
847	int count = sizeof (option_table) / sizeof (option_table[0]);
848
849	umem_free(long_opts, sizeof (struct option) * count);
850	umem_free(short_opts, sizeof (char) * 2 * count);
851
852	long_opts = NULL;
853	short_opts = NULL;
854}
855
856static __attribute__((noreturn)) void
857usage(boolean_t requested)
858{
859	char option[80];
860	FILE *fp = requested ? stdout : stderr;
861
862	(void) fprintf(fp, "Usage: %s [OPTIONS...]\n", DEFAULT_POOL);
863	for (int i = 0; option_table[i].short_opt != 0; i++) {
864		if (option_table[i].long_opt_param != NULL) {
865			(void) sprintf(option, "  -%c --%s=%s",
866			    option_table[i].short_opt,
867			    option_table[i].long_opt,
868			    option_table[i].long_opt_param);
869		} else {
870			(void) sprintf(option, "  -%c --%s",
871			    option_table[i].short_opt,
872			    option_table[i].long_opt);
873		}
874		(void) fprintf(fp, "  %-43s%s", option,
875		    option_table[i].comment);
876
877		if (option_table[i].long_opt_param != NULL) {
878			if (option_table[i].default_str != NULL) {
879				(void) fprintf(fp, " (default: %s)",
880				    option_table[i].default_str);
881			} else if (option_table[i].default_int != NO_DEFAULT) {
882				(void) fprintf(fp, " (default: %u)",
883				    option_table[i].default_int);
884			}
885		}
886		(void) fprintf(fp, "\n");
887	}
888	exit(requested ? 0 : 1);
889}
890
891static uint64_t
892ztest_random(uint64_t range)
893{
894	uint64_t r;
895
896	ASSERT3S(ztest_fd_rand, >=, 0);
897
898	if (range == 0)
899		return (0);
900
901	if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
902		fatal(B_TRUE, "short read from /dev/urandom");
903
904	return (r % range);
905}
906
907static void
908ztest_parse_name_value(const char *input, ztest_shared_opts_t *zo)
909{
910	char name[32];
911	char *value;
912	int state = ZTEST_VDEV_CLASS_RND;
913
914	(void) strlcpy(name, input, sizeof (name));
915
916	value = strchr(name, '=');
917	if (value == NULL) {
918		(void) fprintf(stderr, "missing value in property=value "
919		    "'-C' argument (%s)\n", input);
920		usage(B_FALSE);
921	}
922	*(value) = '\0';
923	value++;
924
925	if (strcmp(value, "on") == 0) {
926		state = ZTEST_VDEV_CLASS_ON;
927	} else if (strcmp(value, "off") == 0) {
928		state = ZTEST_VDEV_CLASS_OFF;
929	} else if (strcmp(value, "random") == 0) {
930		state = ZTEST_VDEV_CLASS_RND;
931	} else {
932		(void) fprintf(stderr, "invalid property value '%s'\n", value);
933		usage(B_FALSE);
934	}
935
936	if (strcmp(name, "special") == 0) {
937		zo->zo_special_vdevs = state;
938	} else {
939		(void) fprintf(stderr, "invalid property name '%s'\n", name);
940		usage(B_FALSE);
941	}
942	if (zo->zo_verbose >= 3)
943		(void) printf("%s vdev state is '%s'\n", name, value);
944}
945
946static void
947process_options(int argc, char **argv)
948{
949	char *path;
950	ztest_shared_opts_t *zo = &ztest_opts;
951
952	int opt;
953	uint64_t value;
954	const char *raid_kind = "random";
955
956	memcpy(zo, &ztest_opts_defaults, sizeof (*zo));
957
958	init_options();
959
960	while ((opt = getopt_long(argc, argv, short_opts, long_opts,
961	    NULL)) != EOF) {
962		value = 0;
963		switch (opt) {
964		case 'v':
965		case 's':
966		case 'a':
967		case 'm':
968		case 'r':
969		case 'R':
970		case 'D':
971		case 'S':
972		case 'd':
973		case 't':
974		case 'g':
975		case 'i':
976		case 'k':
977		case 'T':
978		case 'P':
979		case 'F':
980			value = nicenumtoull(optarg);
981		}
982		switch (opt) {
983		case 'v':
984			zo->zo_vdevs = value;
985			break;
986		case 's':
987			zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
988			break;
989		case 'a':
990			zo->zo_ashift = value;
991			break;
992		case 'm':
993			zo->zo_mirrors = value;
994			break;
995		case 'r':
996			zo->zo_raid_children = MAX(1, value);
997			break;
998		case 'R':
999			zo->zo_raid_parity = MIN(MAX(value, 1), 3);
1000			break;
1001		case 'K':
1002			raid_kind = optarg;
1003			break;
1004		case 'D':
1005			zo->zo_draid_data = MAX(1, value);
1006			break;
1007		case 'S':
1008			zo->zo_draid_spares = MAX(1, value);
1009			break;
1010		case 'd':
1011			zo->zo_datasets = MAX(1, value);
1012			break;
1013		case 't':
1014			zo->zo_threads = MAX(1, value);
1015			break;
1016		case 'g':
1017			zo->zo_metaslab_force_ganging =
1018			    MAX(SPA_MINBLOCKSIZE << 1, value);
1019			break;
1020		case 'i':
1021			zo->zo_init = value;
1022			break;
1023		case 'k':
1024			zo->zo_killrate = value;
1025			break;
1026		case 'p':
1027			(void) strlcpy(zo->zo_pool, optarg,
1028			    sizeof (zo->zo_pool));
1029			break;
1030		case 'f':
1031			path = realpath(optarg, NULL);
1032			if (path == NULL) {
1033				(void) fprintf(stderr, "error: %s: %s\n",
1034				    optarg, strerror(errno));
1035				usage(B_FALSE);
1036			} else {
1037				(void) strlcpy(zo->zo_dir, path,
1038				    sizeof (zo->zo_dir));
1039				free(path);
1040			}
1041			break;
1042		case 'M':
1043			zo->zo_mmp_test = 1;
1044			break;
1045		case 'V':
1046			zo->zo_verbose++;
1047			break;
1048		case 'X':
1049			zo->zo_raidz_expand_test = RAIDZ_EXPAND_REQUESTED;
1050			break;
1051		case 'E':
1052			zo->zo_init = 0;
1053			break;
1054		case 'T':
1055			zo->zo_time = value;
1056			break;
1057		case 'P':
1058			zo->zo_passtime = MAX(1, value);
1059			break;
1060		case 'F':
1061			zo->zo_maxloops = MAX(1, value);
1062			break;
1063		case 'B':
1064			(void) strlcpy(zo->zo_alt_ztest, optarg,
1065			    sizeof (zo->zo_alt_ztest));
1066			break;
1067		case 'C':
1068			ztest_parse_name_value(optarg, zo);
1069			break;
1070		case 'o':
1071			if (zo->zo_gvars_count >= ZO_GVARS_MAX_COUNT) {
1072				(void) fprintf(stderr,
1073				    "max global var count (%zu) exceeded\n",
1074				    ZO_GVARS_MAX_COUNT);
1075				usage(B_FALSE);
1076			}
1077			char *v = zo->zo_gvars[zo->zo_gvars_count];
1078			if (strlcpy(v, optarg, ZO_GVARS_MAX_ARGLEN) >=
1079			    ZO_GVARS_MAX_ARGLEN) {
1080				(void) fprintf(stderr,
1081				    "global var option '%s' is too long\n",
1082				    optarg);
1083				usage(B_FALSE);
1084			}
1085			zo->zo_gvars_count++;
1086			break;
1087		case 'G':
1088			zo->zo_dump_dbgmsg = 1;
1089			break;
1090		case 'h':
1091			usage(B_TRUE);
1092			break;
1093		case '?':
1094		default:
1095			usage(B_FALSE);
1096			break;
1097		}
1098	}
1099
1100	fini_options();
1101
1102	/* Force compatible options for raidz expansion run */
1103	if (zo->zo_raidz_expand_test == RAIDZ_EXPAND_REQUESTED) {
1104		zo->zo_mmp_test = 0;
1105		zo->zo_mirrors = 0;
1106		zo->zo_vdevs = 1;
1107		zo->zo_vdev_size = DEFAULT_VDEV_SIZE * 2;
1108		zo->zo_raid_do_expand = B_FALSE;
1109		raid_kind = "raidz";
1110	}
1111
1112	if (strcmp(raid_kind, "random") == 0) {
1113		switch (ztest_random(3)) {
1114		case 0:
1115			raid_kind = "raidz";
1116			break;
1117		case 1:
1118			raid_kind = "eraidz";
1119			break;
1120		case 2:
1121			raid_kind = "draid";
1122			break;
1123		}
1124
1125		if (ztest_opts.zo_verbose >= 3)
1126			(void) printf("choosing RAID type '%s'\n", raid_kind);
1127	}
1128
1129	if (strcmp(raid_kind, "draid") == 0) {
1130		uint64_t min_devsize;
1131
1132		/* With fewer disk use 256M, otherwise 128M is OK */
1133		min_devsize = (ztest_opts.zo_raid_children < 16) ?
1134		    (256ULL << 20) : (128ULL << 20);
1135
1136		/* No top-level mirrors with dRAID for now */
1137		zo->zo_mirrors = 0;
1138
1139		/* Use more appropriate defaults for dRAID */
1140		if (zo->zo_vdevs == ztest_opts_defaults.zo_vdevs)
1141			zo->zo_vdevs = 1;
1142		if (zo->zo_raid_children ==
1143		    ztest_opts_defaults.zo_raid_children)
1144			zo->zo_raid_children = 16;
1145		if (zo->zo_ashift < 12)
1146			zo->zo_ashift = 12;
1147		if (zo->zo_vdev_size < min_devsize)
1148			zo->zo_vdev_size = min_devsize;
1149
1150		if (zo->zo_draid_data + zo->zo_raid_parity >
1151		    zo->zo_raid_children - zo->zo_draid_spares) {
1152			(void) fprintf(stderr, "error: too few draid "
1153			    "children (%d) for stripe width (%d)\n",
1154			    zo->zo_raid_children,
1155			    zo->zo_draid_data + zo->zo_raid_parity);
1156			usage(B_FALSE);
1157		}
1158
1159		(void) strlcpy(zo->zo_raid_type, VDEV_TYPE_DRAID,
1160		    sizeof (zo->zo_raid_type));
1161
1162	} else if (strcmp(raid_kind, "eraidz") == 0) {
1163		/* using eraidz (expandable raidz) */
1164		zo->zo_raid_do_expand = B_TRUE;
1165
1166		/* tests expect top-level to be raidz */
1167		zo->zo_mirrors = 0;
1168		zo->zo_vdevs = 1;
1169
1170		/* Make sure parity is less than data columns */
1171		zo->zo_raid_parity = MIN(zo->zo_raid_parity,
1172		    zo->zo_raid_children - 1);
1173
1174	} else /* using raidz */ {
1175		ASSERT0(strcmp(raid_kind, "raidz"));
1176
1177		zo->zo_raid_parity = MIN(zo->zo_raid_parity,
1178		    zo->zo_raid_children - 1);
1179	}
1180
1181	zo->zo_vdevtime =
1182	    (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
1183	    UINT64_MAX >> 2);
1184
1185	if (*zo->zo_alt_ztest) {
1186		const char *invalid_what = "ztest";
1187		char *val = zo->zo_alt_ztest;
1188		if (0 != access(val, X_OK) ||
1189		    (strrchr(val, '/') == NULL && (errno == EINVAL)))
1190			goto invalid;
1191
1192		int dirlen = strrchr(val, '/') - val;
1193		strlcpy(zo->zo_alt_libpath, val,
1194		    MIN(sizeof (zo->zo_alt_libpath), dirlen + 1));
1195		invalid_what = "library path", val = zo->zo_alt_libpath;
1196		if (strrchr(val, '/') == NULL && (errno == EINVAL))
1197			goto invalid;
1198		*strrchr(val, '/') = '\0';
1199		strlcat(val, "/lib", sizeof (zo->zo_alt_libpath));
1200
1201		if (0 != access(zo->zo_alt_libpath, X_OK))
1202			goto invalid;
1203		return;
1204
1205invalid:
1206		ztest_dump_core = B_FALSE;
1207		fatal(B_TRUE, "invalid alternate %s %s", invalid_what, val);
1208	}
1209}
1210
1211static void
1212ztest_kill(ztest_shared_t *zs)
1213{
1214	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
1215	zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
1216
1217	/*
1218	 * Before we kill ourselves, make sure that the config is updated.
1219	 * See comment above spa_write_cachefile().
1220	 */
1221	if (raidz_expand_pause_point != RAIDZ_EXPAND_PAUSE_NONE) {
1222		if (mutex_tryenter(&spa_namespace_lock)) {
1223			spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE,
1224			    B_FALSE);
1225			mutex_exit(&spa_namespace_lock);
1226
1227			ztest_scratch_state->zs_raidz_scratch_verify_pause =
1228			    raidz_expand_pause_point;
1229		} else {
1230			/*
1231			 * Do not verify scratch object in case if
1232			 * spa_namespace_lock cannot be acquired,
1233			 * it can cause deadlock in spa_config_update().
1234			 */
1235			raidz_expand_pause_point = RAIDZ_EXPAND_PAUSE_NONE;
1236
1237			return;
1238		}
1239	} else {
1240		mutex_enter(&spa_namespace_lock);
1241		spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE, B_FALSE);
1242		mutex_exit(&spa_namespace_lock);
1243	}
1244
1245	(void) raise(SIGKILL);
1246}
1247
1248static void
1249ztest_record_enospc(const char *s)
1250{
1251	(void) s;
1252	ztest_shared->zs_enospc_count++;
1253}
1254
1255static uint64_t
1256ztest_get_ashift(void)
1257{
1258	if (ztest_opts.zo_ashift == 0)
1259		return (SPA_MINBLOCKSHIFT + ztest_random(5));
1260	return (ztest_opts.zo_ashift);
1261}
1262
1263static boolean_t
1264ztest_is_draid_spare(const char *name)
1265{
1266	uint64_t spare_id = 0, parity = 0, vdev_id = 0;
1267
1268	if (sscanf(name, VDEV_TYPE_DRAID "%"PRIu64"-%"PRIu64"-%"PRIu64"",
1269	    &parity, &vdev_id, &spare_id) == 3) {
1270		return (B_TRUE);
1271	}
1272
1273	return (B_FALSE);
1274}
1275
1276static nvlist_t *
1277make_vdev_file(const char *path, const char *aux, const char *pool,
1278    size_t size, uint64_t ashift)
1279{
1280	char *pathbuf = NULL;
1281	uint64_t vdev;
1282	nvlist_t *file;
1283	boolean_t draid_spare = B_FALSE;
1284
1285
1286	if (ashift == 0)
1287		ashift = ztest_get_ashift();
1288
1289	if (path == NULL) {
1290		pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1291		path = pathbuf;
1292
1293		if (aux != NULL) {
1294			vdev = ztest_shared->zs_vdev_aux;
1295			(void) snprintf(pathbuf, MAXPATHLEN,
1296			    ztest_aux_template, ztest_opts.zo_dir,
1297			    pool == NULL ? ztest_opts.zo_pool : pool,
1298			    aux, vdev);
1299		} else {
1300			vdev = ztest_shared->zs_vdev_next_leaf++;
1301			(void) snprintf(pathbuf, MAXPATHLEN,
1302			    ztest_dev_template, ztest_opts.zo_dir,
1303			    pool == NULL ? ztest_opts.zo_pool : pool, vdev);
1304		}
1305	} else {
1306		draid_spare = ztest_is_draid_spare(path);
1307	}
1308
1309	if (size != 0 && !draid_spare) {
1310		int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
1311		if (fd == -1)
1312			fatal(B_TRUE, "can't open %s", path);
1313		if (ftruncate(fd, size) != 0)
1314			fatal(B_TRUE, "can't ftruncate %s", path);
1315		(void) close(fd);
1316	}
1317
1318	file = fnvlist_alloc();
1319	fnvlist_add_string(file, ZPOOL_CONFIG_TYPE,
1320	    draid_spare ? VDEV_TYPE_DRAID_SPARE : VDEV_TYPE_FILE);
1321	fnvlist_add_string(file, ZPOOL_CONFIG_PATH, path);
1322	fnvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift);
1323	umem_free(pathbuf, MAXPATHLEN);
1324
1325	return (file);
1326}
1327
1328static nvlist_t *
1329make_vdev_raid(const char *path, const char *aux, const char *pool, size_t size,
1330    uint64_t ashift, int r)
1331{
1332	nvlist_t *raid, **child;
1333	int c;
1334
1335	if (r < 2)
1336		return (make_vdev_file(path, aux, pool, size, ashift));
1337	child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
1338
1339	for (c = 0; c < r; c++)
1340		child[c] = make_vdev_file(path, aux, pool, size, ashift);
1341
1342	raid = fnvlist_alloc();
1343	fnvlist_add_string(raid, ZPOOL_CONFIG_TYPE,
1344	    ztest_opts.zo_raid_type);
1345	fnvlist_add_uint64(raid, ZPOOL_CONFIG_NPARITY,
1346	    ztest_opts.zo_raid_parity);
1347	fnvlist_add_nvlist_array(raid, ZPOOL_CONFIG_CHILDREN,
1348	    (const nvlist_t **)child, r);
1349
1350	if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0) {
1351		uint64_t ndata = ztest_opts.zo_draid_data;
1352		uint64_t nparity = ztest_opts.zo_raid_parity;
1353		uint64_t nspares = ztest_opts.zo_draid_spares;
1354		uint64_t children = ztest_opts.zo_raid_children;
1355		uint64_t ngroups = 1;
1356
1357		/*
1358		 * Calculate the minimum number of groups required to fill a
1359		 * slice. This is the LCM of the stripe width (data + parity)
1360		 * and the number of data drives (children - spares).
1361		 */
1362		while (ngroups * (ndata + nparity) % (children - nspares) != 0)
1363			ngroups++;
1364
1365		/* Store the basic dRAID configuration. */
1366		fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NDATA, ndata);
1367		fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NSPARES, nspares);
1368		fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups);
1369	}
1370
1371	for (c = 0; c < r; c++)
1372		fnvlist_free(child[c]);
1373
1374	umem_free(child, r * sizeof (nvlist_t *));
1375
1376	return (raid);
1377}
1378
1379static nvlist_t *
1380make_vdev_mirror(const char *path, const char *aux, const char *pool,
1381    size_t size, uint64_t ashift, int r, int m)
1382{
1383	nvlist_t *mirror, **child;
1384	int c;
1385
1386	if (m < 1)
1387		return (make_vdev_raid(path, aux, pool, size, ashift, r));
1388
1389	child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
1390
1391	for (c = 0; c < m; c++)
1392		child[c] = make_vdev_raid(path, aux, pool, size, ashift, r);
1393
1394	mirror = fnvlist_alloc();
1395	fnvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, VDEV_TYPE_MIRROR);
1396	fnvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
1397	    (const nvlist_t **)child, m);
1398
1399	for (c = 0; c < m; c++)
1400		fnvlist_free(child[c]);
1401
1402	umem_free(child, m * sizeof (nvlist_t *));
1403
1404	return (mirror);
1405}
1406
1407static nvlist_t *
1408make_vdev_root(const char *path, const char *aux, const char *pool, size_t size,
1409    uint64_t ashift, const char *class, int r, int m, int t)
1410{
1411	nvlist_t *root, **child;
1412	int c;
1413	boolean_t log;
1414
1415	ASSERT3S(t, >, 0);
1416
1417	log = (class != NULL && strcmp(class, "log") == 0);
1418
1419	child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
1420
1421	for (c = 0; c < t; c++) {
1422		child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
1423		    r, m);
1424		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, log);
1425
1426		if (class != NULL && class[0] != '\0') {
1427			ASSERT(m > 1 || log);   /* expecting a mirror */
1428			fnvlist_add_string(child[c],
1429			    ZPOOL_CONFIG_ALLOCATION_BIAS, class);
1430		}
1431	}
1432
1433	root = fnvlist_alloc();
1434	fnvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
1435	fnvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
1436	    (const nvlist_t **)child, t);
1437
1438	for (c = 0; c < t; c++)
1439		fnvlist_free(child[c]);
1440
1441	umem_free(child, t * sizeof (nvlist_t *));
1442
1443	return (root);
1444}
1445
1446/*
1447 * Find a random spa version. Returns back a random spa version in the
1448 * range [initial_version, SPA_VERSION_FEATURES].
1449 */
1450static uint64_t
1451ztest_random_spa_version(uint64_t initial_version)
1452{
1453	uint64_t version = initial_version;
1454
1455	if (version <= SPA_VERSION_BEFORE_FEATURES) {
1456		version = version +
1457		    ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
1458	}
1459
1460	if (version > SPA_VERSION_BEFORE_FEATURES)
1461		version = SPA_VERSION_FEATURES;
1462
1463	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
1464	return (version);
1465}
1466
1467static int
1468ztest_random_blocksize(void)
1469{
1470	ASSERT3U(ztest_spa->spa_max_ashift, !=, 0);
1471
1472	/*
1473	 * Choose a block size >= the ashift.
1474	 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
1475	 */
1476	int maxbs = SPA_OLD_MAXBLOCKSHIFT;
1477	if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
1478		maxbs = 20;
1479	uint64_t block_shift =
1480	    ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
1481	return (1 << (SPA_MINBLOCKSHIFT + block_shift));
1482}
1483
1484static int
1485ztest_random_dnodesize(void)
1486{
1487	int slots;
1488	int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT;
1489
1490	if (max_slots == DNODE_MIN_SLOTS)
1491		return (DNODE_MIN_SIZE);
1492
1493	/*
1494	 * Weight the random distribution more heavily toward smaller
1495	 * dnode sizes since that is more likely to reflect real-world
1496	 * usage.
1497	 */
1498	ASSERT3U(max_slots, >, 4);
1499	switch (ztest_random(10)) {
1500	case 0:
1501		slots = 5 + ztest_random(max_slots - 4);
1502		break;
1503	case 1 ... 4:
1504		slots = 2 + ztest_random(3);
1505		break;
1506	default:
1507		slots = 1;
1508		break;
1509	}
1510
1511	return (slots << DNODE_SHIFT);
1512}
1513
1514static int
1515ztest_random_ibshift(void)
1516{
1517	return (DN_MIN_INDBLKSHIFT +
1518	    ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
1519}
1520
1521static uint64_t
1522ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
1523{
1524	uint64_t top;
1525	vdev_t *rvd = spa->spa_root_vdev;
1526	vdev_t *tvd;
1527
1528	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
1529
1530	do {
1531		top = ztest_random(rvd->vdev_children);
1532		tvd = rvd->vdev_child[top];
1533	} while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) ||
1534	    tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1535
1536	return (top);
1537}
1538
1539static uint64_t
1540ztest_random_dsl_prop(zfs_prop_t prop)
1541{
1542	uint64_t value;
1543
1544	do {
1545		value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1546	} while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1547
1548	return (value);
1549}
1550
1551static int
1552ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1553    boolean_t inherit)
1554{
1555	const char *propname = zfs_prop_to_name(prop);
1556	const char *valname;
1557	char *setpoint;
1558	uint64_t curval;
1559	int error;
1560
1561	error = dsl_prop_set_int(osname, propname,
1562	    (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1563
1564	if (error == ENOSPC) {
1565		ztest_record_enospc(FTAG);
1566		return (error);
1567	}
1568	ASSERT0(error);
1569
1570	setpoint = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1571	VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1572
1573	if (ztest_opts.zo_verbose >= 6) {
1574		int err;
1575
1576		err = zfs_prop_index_to_string(prop, curval, &valname);
1577		if (err)
1578			(void) printf("%s %s = %llu at '%s'\n", osname,
1579			    propname, (unsigned long long)curval, setpoint);
1580		else
1581			(void) printf("%s %s = %s at '%s'\n",
1582			    osname, propname, valname, setpoint);
1583	}
1584	umem_free(setpoint, MAXPATHLEN);
1585
1586	return (error);
1587}
1588
1589static int
1590ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1591{
1592	spa_t *spa = ztest_spa;
1593	nvlist_t *props = NULL;
1594	int error;
1595
1596	props = fnvlist_alloc();
1597	fnvlist_add_uint64(props, zpool_prop_to_name(prop), value);
1598
1599	error = spa_prop_set(spa, props);
1600
1601	fnvlist_free(props);
1602
1603	if (error == ENOSPC) {
1604		ztest_record_enospc(FTAG);
1605		return (error);
1606	}
1607	ASSERT0(error);
1608
1609	return (error);
1610}
1611
1612static int
1613ztest_dmu_objset_own(const char *name, dmu_objset_type_t type,
1614    boolean_t readonly, boolean_t decrypt, const void *tag, objset_t **osp)
1615{
1616	int err;
1617	char *cp = NULL;
1618	char ddname[ZFS_MAX_DATASET_NAME_LEN];
1619
1620	strlcpy(ddname, name, sizeof (ddname));
1621	cp = strchr(ddname, '@');
1622	if (cp != NULL)
1623		*cp = '\0';
1624
1625	err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1626	while (decrypt && err == EACCES) {
1627		dsl_crypto_params_t *dcp;
1628		nvlist_t *crypto_args = fnvlist_alloc();
1629
1630		fnvlist_add_uint8_array(crypto_args, "wkeydata",
1631		    (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
1632		VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL,
1633		    crypto_args, &dcp));
1634		err = spa_keystore_load_wkey(ddname, dcp, B_FALSE);
1635		/*
1636		 * Note: if there was an error loading, the wkey was not
1637		 * consumed, and needs to be freed.
1638		 */
1639		dsl_crypto_params_free(dcp, (err != 0));
1640		fnvlist_free(crypto_args);
1641
1642		if (err == EINVAL) {
1643			/*
1644			 * We couldn't load a key for this dataset so try
1645			 * the parent. This loop will eventually hit the
1646			 * encryption root since ztest only makes clones
1647			 * as children of their origin datasets.
1648			 */
1649			cp = strrchr(ddname, '/');
1650			if (cp == NULL)
1651				return (err);
1652
1653			*cp = '\0';
1654			err = EACCES;
1655			continue;
1656		} else if (err != 0) {
1657			break;
1658		}
1659
1660		err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1661		break;
1662	}
1663
1664	return (err);
1665}
1666
1667static void
1668ztest_rll_init(rll_t *rll)
1669{
1670	rll->rll_writer = NULL;
1671	rll->rll_readers = 0;
1672	mutex_init(&rll->rll_lock, NULL, MUTEX_DEFAULT, NULL);
1673	cv_init(&rll->rll_cv, NULL, CV_DEFAULT, NULL);
1674}
1675
1676static void
1677ztest_rll_destroy(rll_t *rll)
1678{
1679	ASSERT3P(rll->rll_writer, ==, NULL);
1680	ASSERT0(rll->rll_readers);
1681	mutex_destroy(&rll->rll_lock);
1682	cv_destroy(&rll->rll_cv);
1683}
1684
1685static void
1686ztest_rll_lock(rll_t *rll, rl_type_t type)
1687{
1688	mutex_enter(&rll->rll_lock);
1689
1690	if (type == ZTRL_READER) {
1691		while (rll->rll_writer != NULL)
1692			(void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1693		rll->rll_readers++;
1694	} else {
1695		while (rll->rll_writer != NULL || rll->rll_readers)
1696			(void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1697		rll->rll_writer = curthread;
1698	}
1699
1700	mutex_exit(&rll->rll_lock);
1701}
1702
1703static void
1704ztest_rll_unlock(rll_t *rll)
1705{
1706	mutex_enter(&rll->rll_lock);
1707
1708	if (rll->rll_writer) {
1709		ASSERT0(rll->rll_readers);
1710		rll->rll_writer = NULL;
1711	} else {
1712		ASSERT3S(rll->rll_readers, >, 0);
1713		ASSERT3P(rll->rll_writer, ==, NULL);
1714		rll->rll_readers--;
1715	}
1716
1717	if (rll->rll_writer == NULL && rll->rll_readers == 0)
1718		cv_broadcast(&rll->rll_cv);
1719
1720	mutex_exit(&rll->rll_lock);
1721}
1722
1723static void
1724ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1725{
1726	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1727
1728	ztest_rll_lock(rll, type);
1729}
1730
1731static void
1732ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1733{
1734	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1735
1736	ztest_rll_unlock(rll);
1737}
1738
1739static rl_t *
1740ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1741    uint64_t size, rl_type_t type)
1742{
1743	uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1744	rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1745	rl_t *rl;
1746
1747	rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1748	rl->rl_object = object;
1749	rl->rl_offset = offset;
1750	rl->rl_size = size;
1751	rl->rl_lock = rll;
1752
1753	ztest_rll_lock(rll, type);
1754
1755	return (rl);
1756}
1757
1758static void
1759ztest_range_unlock(rl_t *rl)
1760{
1761	rll_t *rll = rl->rl_lock;
1762
1763	ztest_rll_unlock(rll);
1764
1765	umem_free(rl, sizeof (*rl));
1766}
1767
1768static void
1769ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1770{
1771	zd->zd_os = os;
1772	zd->zd_zilog = dmu_objset_zil(os);
1773	zd->zd_shared = szd;
1774	dmu_objset_name(os, zd->zd_name);
1775	int l;
1776
1777	if (zd->zd_shared != NULL)
1778		zd->zd_shared->zd_seq = 0;
1779
1780	VERIFY0(pthread_rwlock_init(&zd->zd_zilog_lock, NULL));
1781	mutex_init(&zd->zd_dirobj_lock, NULL, MUTEX_DEFAULT, NULL);
1782
1783	for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1784		ztest_rll_init(&zd->zd_object_lock[l]);
1785
1786	for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1787		ztest_rll_init(&zd->zd_range_lock[l]);
1788}
1789
1790static void
1791ztest_zd_fini(ztest_ds_t *zd)
1792{
1793	int l;
1794
1795	mutex_destroy(&zd->zd_dirobj_lock);
1796	(void) pthread_rwlock_destroy(&zd->zd_zilog_lock);
1797
1798	for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1799		ztest_rll_destroy(&zd->zd_object_lock[l]);
1800
1801	for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1802		ztest_rll_destroy(&zd->zd_range_lock[l]);
1803}
1804
1805#define	TXG_MIGHTWAIT	(ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1806
1807static uint64_t
1808ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1809{
1810	uint64_t txg;
1811	int error;
1812
1813	/*
1814	 * Attempt to assign tx to some transaction group.
1815	 */
1816	error = dmu_tx_assign(tx, txg_how);
1817	if (error) {
1818		if (error == ERESTART) {
1819			ASSERT3U(txg_how, ==, TXG_NOWAIT);
1820			dmu_tx_wait(tx);
1821		} else {
1822			ASSERT3U(error, ==, ENOSPC);
1823			ztest_record_enospc(tag);
1824		}
1825		dmu_tx_abort(tx);
1826		return (0);
1827	}
1828	txg = dmu_tx_get_txg(tx);
1829	ASSERT3U(txg, !=, 0);
1830	return (txg);
1831}
1832
1833static void
1834ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1835    uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1836    uint64_t crtxg)
1837{
1838	bt->bt_magic = BT_MAGIC;
1839	bt->bt_objset = dmu_objset_id(os);
1840	bt->bt_object = object;
1841	bt->bt_dnodesize = dnodesize;
1842	bt->bt_offset = offset;
1843	bt->bt_gen = gen;
1844	bt->bt_txg = txg;
1845	bt->bt_crtxg = crtxg;
1846}
1847
1848static void
1849ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1850    uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1851    uint64_t crtxg)
1852{
1853	ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1854	ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1855	ASSERT3U(bt->bt_object, ==, object);
1856	ASSERT3U(bt->bt_dnodesize, ==, dnodesize);
1857	ASSERT3U(bt->bt_offset, ==, offset);
1858	ASSERT3U(bt->bt_gen, <=, gen);
1859	ASSERT3U(bt->bt_txg, <=, txg);
1860	ASSERT3U(bt->bt_crtxg, ==, crtxg);
1861}
1862
1863static ztest_block_tag_t *
1864ztest_bt_bonus(dmu_buf_t *db)
1865{
1866	dmu_object_info_t doi;
1867	ztest_block_tag_t *bt;
1868
1869	dmu_object_info_from_db(db, &doi);
1870	ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1871	ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1872	bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1873
1874	return (bt);
1875}
1876
1877/*
1878 * Generate a token to fill up unused bonus buffer space.  Try to make
1879 * it unique to the object, generation, and offset to verify that data
1880 * is not getting overwritten by data from other dnodes.
1881 */
1882#define	ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \
1883	(((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset))
1884
1885/*
1886 * Fill up the unused bonus buffer region before the block tag with a
1887 * verifiable pattern. Filling the whole bonus area with non-zero data
1888 * helps ensure that all dnode traversal code properly skips the
1889 * interior regions of large dnodes.
1890 */
1891static void
1892ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1893    objset_t *os, uint64_t gen)
1894{
1895	uint64_t *bonusp;
1896
1897	ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8));
1898
1899	for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1900		uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1901		    gen, bonusp - (uint64_t *)db->db_data);
1902		*bonusp = token;
1903	}
1904}
1905
1906/*
1907 * Verify that the unused area of a bonus buffer is filled with the
1908 * expected tokens.
1909 */
1910static void
1911ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1912    objset_t *os, uint64_t gen)
1913{
1914	uint64_t *bonusp;
1915
1916	for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1917		uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1918		    gen, bonusp - (uint64_t *)db->db_data);
1919		VERIFY3U(*bonusp, ==, token);
1920	}
1921}
1922
1923/*
1924 * ZIL logging ops
1925 */
1926
1927#define	lrz_type	lr_mode
1928#define	lrz_blocksize	lr_uid
1929#define	lrz_ibshift	lr_gid
1930#define	lrz_bonustype	lr_rdev
1931#define	lrz_dnodesize	lr_crtime[1]
1932
1933static void
1934ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1935{
1936	char *name = (void *)(lr + 1);		/* name follows lr */
1937	size_t namesize = strlen(name) + 1;
1938	itx_t *itx;
1939
1940	if (zil_replaying(zd->zd_zilog, tx))
1941		return;
1942
1943	itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1944	memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1945	    sizeof (*lr) + namesize - sizeof (lr_t));
1946
1947	zil_itx_assign(zd->zd_zilog, itx, tx);
1948}
1949
1950static void
1951ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1952{
1953	char *name = (void *)(lr + 1);		/* name follows lr */
1954	size_t namesize = strlen(name) + 1;
1955	itx_t *itx;
1956
1957	if (zil_replaying(zd->zd_zilog, tx))
1958		return;
1959
1960	itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1961	memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1962	    sizeof (*lr) + namesize - sizeof (lr_t));
1963
1964	itx->itx_oid = object;
1965	zil_itx_assign(zd->zd_zilog, itx, tx);
1966}
1967
1968static void
1969ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1970{
1971	itx_t *itx;
1972	itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1973
1974	if (zil_replaying(zd->zd_zilog, tx))
1975		return;
1976
1977	if (lr->lr_length > zil_max_log_data(zd->zd_zilog, sizeof (lr_write_t)))
1978		write_state = WR_INDIRECT;
1979
1980	itx = zil_itx_create(TX_WRITE,
1981	    sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1982
1983	if (write_state == WR_COPIED &&
1984	    dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1985	    ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1986		zil_itx_destroy(itx);
1987		itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1988		write_state = WR_NEED_COPY;
1989	}
1990	itx->itx_private = zd;
1991	itx->itx_wr_state = write_state;
1992	itx->itx_sync = (ztest_random(8) == 0);
1993
1994	memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1995	    sizeof (*lr) - sizeof (lr_t));
1996
1997	zil_itx_assign(zd->zd_zilog, itx, tx);
1998}
1999
2000static void
2001ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
2002{
2003	itx_t *itx;
2004
2005	if (zil_replaying(zd->zd_zilog, tx))
2006		return;
2007
2008	itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
2009	memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
2010	    sizeof (*lr) - sizeof (lr_t));
2011
2012	itx->itx_sync = B_FALSE;
2013	zil_itx_assign(zd->zd_zilog, itx, tx);
2014}
2015
2016static void
2017ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
2018{
2019	itx_t *itx;
2020
2021	if (zil_replaying(zd->zd_zilog, tx))
2022		return;
2023
2024	itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
2025	memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
2026	    sizeof (*lr) - sizeof (lr_t));
2027
2028	itx->itx_sync = B_FALSE;
2029	zil_itx_assign(zd->zd_zilog, itx, tx);
2030}
2031
2032/*
2033 * ZIL replay ops
2034 */
2035static int
2036ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap)
2037{
2038	ztest_ds_t *zd = arg1;
2039	lr_create_t *lr = arg2;
2040	char *name = (void *)(lr + 1);		/* name follows lr */
2041	objset_t *os = zd->zd_os;
2042	ztest_block_tag_t *bbt;
2043	dmu_buf_t *db;
2044	dmu_tx_t *tx;
2045	uint64_t txg;
2046	int error = 0;
2047	int bonuslen;
2048
2049	if (byteswap)
2050		byteswap_uint64_array(lr, sizeof (*lr));
2051
2052	ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
2053	ASSERT3S(name[0], !=, '\0');
2054
2055	tx = dmu_tx_create(os);
2056
2057	dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
2058
2059	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
2060		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
2061	} else {
2062		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
2063	}
2064
2065	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2066	if (txg == 0)
2067		return (ENOSPC);
2068
2069	ASSERT3U(dmu_objset_zil(os)->zl_replay, ==, !!lr->lr_foid);
2070	bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize);
2071
2072	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
2073		if (lr->lr_foid == 0) {
2074			lr->lr_foid = zap_create_dnsize(os,
2075			    lr->lrz_type, lr->lrz_bonustype,
2076			    bonuslen, lr->lrz_dnodesize, tx);
2077		} else {
2078			error = zap_create_claim_dnsize(os, lr->lr_foid,
2079			    lr->lrz_type, lr->lrz_bonustype,
2080			    bonuslen, lr->lrz_dnodesize, tx);
2081		}
2082	} else {
2083		if (lr->lr_foid == 0) {
2084			lr->lr_foid = dmu_object_alloc_dnsize(os,
2085			    lr->lrz_type, 0, lr->lrz_bonustype,
2086			    bonuslen, lr->lrz_dnodesize, tx);
2087		} else {
2088			error = dmu_object_claim_dnsize(os, lr->lr_foid,
2089			    lr->lrz_type, 0, lr->lrz_bonustype,
2090			    bonuslen, lr->lrz_dnodesize, tx);
2091		}
2092	}
2093
2094	if (error) {
2095		ASSERT3U(error, ==, EEXIST);
2096		ASSERT(zd->zd_zilog->zl_replay);
2097		dmu_tx_commit(tx);
2098		return (error);
2099	}
2100
2101	ASSERT3U(lr->lr_foid, !=, 0);
2102
2103	if (lr->lrz_type != DMU_OT_ZAP_OTHER)
2104		VERIFY0(dmu_object_set_blocksize(os, lr->lr_foid,
2105		    lr->lrz_blocksize, lr->lrz_ibshift, tx));
2106
2107	VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2108	bbt = ztest_bt_bonus(db);
2109	dmu_buf_will_dirty(db, tx);
2110	ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL,
2111	    lr->lr_gen, txg, txg);
2112	ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen);
2113	dmu_buf_rele(db, FTAG);
2114
2115	VERIFY0(zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
2116	    &lr->lr_foid, tx));
2117
2118	(void) ztest_log_create(zd, tx, lr);
2119
2120	dmu_tx_commit(tx);
2121
2122	return (0);
2123}
2124
2125static int
2126ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap)
2127{
2128	ztest_ds_t *zd = arg1;
2129	lr_remove_t *lr = arg2;
2130	char *name = (void *)(lr + 1);		/* name follows lr */
2131	objset_t *os = zd->zd_os;
2132	dmu_object_info_t doi;
2133	dmu_tx_t *tx;
2134	uint64_t object, txg;
2135
2136	if (byteswap)
2137		byteswap_uint64_array(lr, sizeof (*lr));
2138
2139	ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
2140	ASSERT3S(name[0], !=, '\0');
2141
2142	VERIFY0(
2143	    zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
2144	ASSERT3U(object, !=, 0);
2145
2146	ztest_object_lock(zd, object, ZTRL_WRITER);
2147
2148	VERIFY0(dmu_object_info(os, object, &doi));
2149
2150	tx = dmu_tx_create(os);
2151
2152	dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
2153	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
2154
2155	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2156	if (txg == 0) {
2157		ztest_object_unlock(zd, object);
2158		return (ENOSPC);
2159	}
2160
2161	if (doi.doi_type == DMU_OT_ZAP_OTHER) {
2162		VERIFY0(zap_destroy(os, object, tx));
2163	} else {
2164		VERIFY0(dmu_object_free(os, object, tx));
2165	}
2166
2167	VERIFY0(zap_remove(os, lr->lr_doid, name, tx));
2168
2169	(void) ztest_log_remove(zd, tx, lr, object);
2170
2171	dmu_tx_commit(tx);
2172
2173	ztest_object_unlock(zd, object);
2174
2175	return (0);
2176}
2177
2178static int
2179ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap)
2180{
2181	ztest_ds_t *zd = arg1;
2182	lr_write_t *lr = arg2;
2183	objset_t *os = zd->zd_os;
2184	void *data = lr + 1;			/* data follows lr */
2185	uint64_t offset, length;
2186	ztest_block_tag_t *bt = data;
2187	ztest_block_tag_t *bbt;
2188	uint64_t gen, txg, lrtxg, crtxg;
2189	dmu_object_info_t doi;
2190	dmu_tx_t *tx;
2191	dmu_buf_t *db;
2192	arc_buf_t *abuf = NULL;
2193	rl_t *rl;
2194
2195	if (byteswap)
2196		byteswap_uint64_array(lr, sizeof (*lr));
2197
2198	offset = lr->lr_offset;
2199	length = lr->lr_length;
2200
2201	/* If it's a dmu_sync() block, write the whole block */
2202	if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
2203		uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
2204		if (length < blocksize) {
2205			offset -= offset % blocksize;
2206			length = blocksize;
2207		}
2208	}
2209
2210	if (bt->bt_magic == BSWAP_64(BT_MAGIC))
2211		byteswap_uint64_array(bt, sizeof (*bt));
2212
2213	if (bt->bt_magic != BT_MAGIC)
2214		bt = NULL;
2215
2216	ztest_object_lock(zd, lr->lr_foid, ZTRL_READER);
2217	rl = ztest_range_lock(zd, lr->lr_foid, offset, length, ZTRL_WRITER);
2218
2219	VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2220
2221	dmu_object_info_from_db(db, &doi);
2222
2223	bbt = ztest_bt_bonus(db);
2224	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2225	gen = bbt->bt_gen;
2226	crtxg = bbt->bt_crtxg;
2227	lrtxg = lr->lr_common.lrc_txg;
2228
2229	tx = dmu_tx_create(os);
2230
2231	dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
2232
2233	if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
2234	    P2PHASE(offset, length) == 0)
2235		abuf = dmu_request_arcbuf(db, length);
2236
2237	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2238	if (txg == 0) {
2239		if (abuf != NULL)
2240			dmu_return_arcbuf(abuf);
2241		dmu_buf_rele(db, FTAG);
2242		ztest_range_unlock(rl);
2243		ztest_object_unlock(zd, lr->lr_foid);
2244		return (ENOSPC);
2245	}
2246
2247	if (bt != NULL) {
2248		/*
2249		 * Usually, verify the old data before writing new data --
2250		 * but not always, because we also want to verify correct
2251		 * behavior when the data was not recently read into cache.
2252		 */
2253		ASSERT(doi.doi_data_block_size);
2254		ASSERT0(offset % doi.doi_data_block_size);
2255		if (ztest_random(4) != 0) {
2256			int prefetch = ztest_random(2) ?
2257			    DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
2258			ztest_block_tag_t rbt;
2259
2260			VERIFY(dmu_read(os, lr->lr_foid, offset,
2261			    sizeof (rbt), &rbt, prefetch) == 0);
2262			if (rbt.bt_magic == BT_MAGIC) {
2263				ztest_bt_verify(&rbt, os, lr->lr_foid, 0,
2264				    offset, gen, txg, crtxg);
2265			}
2266		}
2267
2268		/*
2269		 * Writes can appear to be newer than the bonus buffer because
2270		 * the ztest_get_data() callback does a dmu_read() of the
2271		 * open-context data, which may be different than the data
2272		 * as it was when the write was generated.
2273		 */
2274		if (zd->zd_zilog->zl_replay) {
2275			ztest_bt_verify(bt, os, lr->lr_foid, 0, offset,
2276			    MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
2277			    bt->bt_crtxg);
2278		}
2279
2280		/*
2281		 * Set the bt's gen/txg to the bonus buffer's gen/txg
2282		 * so that all of the usual ASSERTs will work.
2283		 */
2284		ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg,
2285		    crtxg);
2286	}
2287
2288	if (abuf == NULL) {
2289		dmu_write(os, lr->lr_foid, offset, length, data, tx);
2290	} else {
2291		memcpy(abuf->b_data, data, length);
2292		VERIFY0(dmu_assign_arcbuf_by_dbuf(db, offset, abuf, tx));
2293	}
2294
2295	(void) ztest_log_write(zd, tx, lr);
2296
2297	dmu_buf_rele(db, FTAG);
2298
2299	dmu_tx_commit(tx);
2300
2301	ztest_range_unlock(rl);
2302	ztest_object_unlock(zd, lr->lr_foid);
2303
2304	return (0);
2305}
2306
2307static int
2308ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
2309{
2310	ztest_ds_t *zd = arg1;
2311	lr_truncate_t *lr = arg2;
2312	objset_t *os = zd->zd_os;
2313	dmu_tx_t *tx;
2314	uint64_t txg;
2315	rl_t *rl;
2316
2317	if (byteswap)
2318		byteswap_uint64_array(lr, sizeof (*lr));
2319
2320	ztest_object_lock(zd, lr->lr_foid, ZTRL_READER);
2321	rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
2322	    ZTRL_WRITER);
2323
2324	tx = dmu_tx_create(os);
2325
2326	dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
2327
2328	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2329	if (txg == 0) {
2330		ztest_range_unlock(rl);
2331		ztest_object_unlock(zd, lr->lr_foid);
2332		return (ENOSPC);
2333	}
2334
2335	VERIFY0(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
2336	    lr->lr_length, tx));
2337
2338	(void) ztest_log_truncate(zd, tx, lr);
2339
2340	dmu_tx_commit(tx);
2341
2342	ztest_range_unlock(rl);
2343	ztest_object_unlock(zd, lr->lr_foid);
2344
2345	return (0);
2346}
2347
2348static int
2349ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap)
2350{
2351	ztest_ds_t *zd = arg1;
2352	lr_setattr_t *lr = arg2;
2353	objset_t *os = zd->zd_os;
2354	dmu_tx_t *tx;
2355	dmu_buf_t *db;
2356	ztest_block_tag_t *bbt;
2357	uint64_t txg, lrtxg, crtxg, dnodesize;
2358
2359	if (byteswap)
2360		byteswap_uint64_array(lr, sizeof (*lr));
2361
2362	ztest_object_lock(zd, lr->lr_foid, ZTRL_WRITER);
2363
2364	VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2365
2366	tx = dmu_tx_create(os);
2367	dmu_tx_hold_bonus(tx, lr->lr_foid);
2368
2369	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2370	if (txg == 0) {
2371		dmu_buf_rele(db, FTAG);
2372		ztest_object_unlock(zd, lr->lr_foid);
2373		return (ENOSPC);
2374	}
2375
2376	bbt = ztest_bt_bonus(db);
2377	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2378	crtxg = bbt->bt_crtxg;
2379	lrtxg = lr->lr_common.lrc_txg;
2380	dnodesize = bbt->bt_dnodesize;
2381
2382	if (zd->zd_zilog->zl_replay) {
2383		ASSERT3U(lr->lr_size, !=, 0);
2384		ASSERT3U(lr->lr_mode, !=, 0);
2385		ASSERT3U(lrtxg, !=, 0);
2386	} else {
2387		/*
2388		 * Randomly change the size and increment the generation.
2389		 */
2390		lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
2391		    sizeof (*bbt);
2392		lr->lr_mode = bbt->bt_gen + 1;
2393		ASSERT0(lrtxg);
2394	}
2395
2396	/*
2397	 * Verify that the current bonus buffer is not newer than our txg.
2398	 */
2399	ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2400	    MAX(txg, lrtxg), crtxg);
2401
2402	dmu_buf_will_dirty(db, tx);
2403
2404	ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
2405	ASSERT3U(lr->lr_size, <=, db->db_size);
2406	VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
2407	bbt = ztest_bt_bonus(db);
2408
2409	ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2410	    txg, crtxg);
2411	ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen);
2412	dmu_buf_rele(db, FTAG);
2413
2414	(void) ztest_log_setattr(zd, tx, lr);
2415
2416	dmu_tx_commit(tx);
2417
2418	ztest_object_unlock(zd, lr->lr_foid);
2419
2420	return (0);
2421}
2422
2423static zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
2424	NULL,			/* 0 no such transaction type */
2425	ztest_replay_create,	/* TX_CREATE */
2426	NULL,			/* TX_MKDIR */
2427	NULL,			/* TX_MKXATTR */
2428	NULL,			/* TX_SYMLINK */
2429	ztest_replay_remove,	/* TX_REMOVE */
2430	NULL,			/* TX_RMDIR */
2431	NULL,			/* TX_LINK */
2432	NULL,			/* TX_RENAME */
2433	ztest_replay_write,	/* TX_WRITE */
2434	ztest_replay_truncate,	/* TX_TRUNCATE */
2435	ztest_replay_setattr,	/* TX_SETATTR */
2436	NULL,			/* TX_ACL */
2437	NULL,			/* TX_CREATE_ACL */
2438	NULL,			/* TX_CREATE_ATTR */
2439	NULL,			/* TX_CREATE_ACL_ATTR */
2440	NULL,			/* TX_MKDIR_ACL */
2441	NULL,			/* TX_MKDIR_ATTR */
2442	NULL,			/* TX_MKDIR_ACL_ATTR */
2443	NULL,			/* TX_WRITE2 */
2444	NULL,			/* TX_SETSAXATTR */
2445	NULL,			/* TX_RENAME_EXCHANGE */
2446	NULL,			/* TX_RENAME_WHITEOUT */
2447};
2448
2449/*
2450 * ZIL get_data callbacks
2451 */
2452
2453static void
2454ztest_get_done(zgd_t *zgd, int error)
2455{
2456	(void) error;
2457	ztest_ds_t *zd = zgd->zgd_private;
2458	uint64_t object = ((rl_t *)zgd->zgd_lr)->rl_object;
2459
2460	if (zgd->zgd_db)
2461		dmu_buf_rele(zgd->zgd_db, zgd);
2462
2463	ztest_range_unlock((rl_t *)zgd->zgd_lr);
2464	ztest_object_unlock(zd, object);
2465
2466	umem_free(zgd, sizeof (*zgd));
2467}
2468
2469static int
2470ztest_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
2471    struct lwb *lwb, zio_t *zio)
2472{
2473	(void) arg2;
2474	ztest_ds_t *zd = arg;
2475	objset_t *os = zd->zd_os;
2476	uint64_t object = lr->lr_foid;
2477	uint64_t offset = lr->lr_offset;
2478	uint64_t size = lr->lr_length;
2479	uint64_t txg = lr->lr_common.lrc_txg;
2480	uint64_t crtxg;
2481	dmu_object_info_t doi;
2482	dmu_buf_t *db;
2483	zgd_t *zgd;
2484	int error;
2485
2486	ASSERT3P(lwb, !=, NULL);
2487	ASSERT3U(size, !=, 0);
2488
2489	ztest_object_lock(zd, object, ZTRL_READER);
2490	error = dmu_bonus_hold(os, object, FTAG, &db);
2491	if (error) {
2492		ztest_object_unlock(zd, object);
2493		return (error);
2494	}
2495
2496	crtxg = ztest_bt_bonus(db)->bt_crtxg;
2497
2498	if (crtxg == 0 || crtxg > txg) {
2499		dmu_buf_rele(db, FTAG);
2500		ztest_object_unlock(zd, object);
2501		return (ENOENT);
2502	}
2503
2504	dmu_object_info_from_db(db, &doi);
2505	dmu_buf_rele(db, FTAG);
2506	db = NULL;
2507
2508	zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
2509	zgd->zgd_lwb = lwb;
2510	zgd->zgd_private = zd;
2511
2512	if (buf != NULL) {	/* immediate write */
2513		zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
2514		    object, offset, size, ZTRL_READER);
2515
2516		error = dmu_read(os, object, offset, size, buf,
2517		    DMU_READ_NO_PREFETCH);
2518		ASSERT0(error);
2519	} else {
2520		ASSERT3P(zio, !=, NULL);
2521		size = doi.doi_data_block_size;
2522		if (ISP2(size)) {
2523			offset = P2ALIGN_TYPED(offset, size, uint64_t);
2524		} else {
2525			ASSERT3U(offset, <, size);
2526			offset = 0;
2527		}
2528
2529		zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
2530		    object, offset, size, ZTRL_READER);
2531
2532		error = dmu_buf_hold_noread(os, object, offset, zgd, &db);
2533
2534		if (error == 0) {
2535			blkptr_t *bp = &lr->lr_blkptr;
2536
2537			zgd->zgd_db = db;
2538			zgd->zgd_bp = bp;
2539
2540			ASSERT3U(db->db_offset, ==, offset);
2541			ASSERT3U(db->db_size, ==, size);
2542
2543			error = dmu_sync(zio, lr->lr_common.lrc_txg,
2544			    ztest_get_done, zgd);
2545
2546			if (error == 0)
2547				return (0);
2548		}
2549	}
2550
2551	ztest_get_done(zgd, error);
2552
2553	return (error);
2554}
2555
2556static void *
2557ztest_lr_alloc(size_t lrsize, char *name)
2558{
2559	char *lr;
2560	size_t namesize = name ? strlen(name) + 1 : 0;
2561
2562	lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
2563
2564	if (name)
2565		memcpy(lr + lrsize, name, namesize);
2566
2567	return (lr);
2568}
2569
2570static void
2571ztest_lr_free(void *lr, size_t lrsize, char *name)
2572{
2573	size_t namesize = name ? strlen(name) + 1 : 0;
2574
2575	umem_free(lr, lrsize + namesize);
2576}
2577
2578/*
2579 * Lookup a bunch of objects.  Returns the number of objects not found.
2580 */
2581static int
2582ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
2583{
2584	int missing = 0;
2585	int error;
2586	int i;
2587
2588	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2589
2590	for (i = 0; i < count; i++, od++) {
2591		od->od_object = 0;
2592		error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
2593		    sizeof (uint64_t), 1, &od->od_object);
2594		if (error) {
2595			ASSERT3S(error, ==, ENOENT);
2596			ASSERT0(od->od_object);
2597			missing++;
2598		} else {
2599			dmu_buf_t *db;
2600			ztest_block_tag_t *bbt;
2601			dmu_object_info_t doi;
2602
2603			ASSERT3U(od->od_object, !=, 0);
2604			ASSERT0(missing);	/* there should be no gaps */
2605
2606			ztest_object_lock(zd, od->od_object, ZTRL_READER);
2607			VERIFY0(dmu_bonus_hold(zd->zd_os, od->od_object,
2608			    FTAG, &db));
2609			dmu_object_info_from_db(db, &doi);
2610			bbt = ztest_bt_bonus(db);
2611			ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2612			od->od_type = doi.doi_type;
2613			od->od_blocksize = doi.doi_data_block_size;
2614			od->od_gen = bbt->bt_gen;
2615			dmu_buf_rele(db, FTAG);
2616			ztest_object_unlock(zd, od->od_object);
2617		}
2618	}
2619
2620	return (missing);
2621}
2622
2623static int
2624ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
2625{
2626	int missing = 0;
2627	int i;
2628
2629	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2630
2631	for (i = 0; i < count; i++, od++) {
2632		if (missing) {
2633			od->od_object = 0;
2634			missing++;
2635			continue;
2636		}
2637
2638		lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2639
2640		lr->lr_doid = od->od_dir;
2641		lr->lr_foid = 0;	/* 0 to allocate, > 0 to claim */
2642		lr->lrz_type = od->od_crtype;
2643		lr->lrz_blocksize = od->od_crblocksize;
2644		lr->lrz_ibshift = ztest_random_ibshift();
2645		lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2646		lr->lrz_dnodesize = od->od_crdnodesize;
2647		lr->lr_gen = od->od_crgen;
2648		lr->lr_crtime[0] = time(NULL);
2649
2650		if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2651			ASSERT0(missing);
2652			od->od_object = 0;
2653			missing++;
2654		} else {
2655			od->od_object = lr->lr_foid;
2656			od->od_type = od->od_crtype;
2657			od->od_blocksize = od->od_crblocksize;
2658			od->od_gen = od->od_crgen;
2659			ASSERT3U(od->od_object, !=, 0);
2660		}
2661
2662		ztest_lr_free(lr, sizeof (*lr), od->od_name);
2663	}
2664
2665	return (missing);
2666}
2667
2668static int
2669ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2670{
2671	int missing = 0;
2672	int error;
2673	int i;
2674
2675	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2676
2677	od += count - 1;
2678
2679	for (i = count - 1; i >= 0; i--, od--) {
2680		if (missing) {
2681			missing++;
2682			continue;
2683		}
2684
2685		/*
2686		 * No object was found.
2687		 */
2688		if (od->od_object == 0)
2689			continue;
2690
2691		lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2692
2693		lr->lr_doid = od->od_dir;
2694
2695		if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2696			ASSERT3U(error, ==, ENOSPC);
2697			missing++;
2698		} else {
2699			od->od_object = 0;
2700		}
2701		ztest_lr_free(lr, sizeof (*lr), od->od_name);
2702	}
2703
2704	return (missing);
2705}
2706
2707static int
2708ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2709    const void *data)
2710{
2711	lr_write_t *lr;
2712	int error;
2713
2714	lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2715
2716	lr->lr_foid = object;
2717	lr->lr_offset = offset;
2718	lr->lr_length = size;
2719	lr->lr_blkoff = 0;
2720	BP_ZERO(&lr->lr_blkptr);
2721
2722	memcpy(lr + 1, data, size);
2723
2724	error = ztest_replay_write(zd, lr, B_FALSE);
2725
2726	ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2727
2728	return (error);
2729}
2730
2731static int
2732ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2733{
2734	lr_truncate_t *lr;
2735	int error;
2736
2737	lr = ztest_lr_alloc(sizeof (*lr), NULL);
2738
2739	lr->lr_foid = object;
2740	lr->lr_offset = offset;
2741	lr->lr_length = size;
2742
2743	error = ztest_replay_truncate(zd, lr, B_FALSE);
2744
2745	ztest_lr_free(lr, sizeof (*lr), NULL);
2746
2747	return (error);
2748}
2749
2750static int
2751ztest_setattr(ztest_ds_t *zd, uint64_t object)
2752{
2753	lr_setattr_t *lr;
2754	int error;
2755
2756	lr = ztest_lr_alloc(sizeof (*lr), NULL);
2757
2758	lr->lr_foid = object;
2759	lr->lr_size = 0;
2760	lr->lr_mode = 0;
2761
2762	error = ztest_replay_setattr(zd, lr, B_FALSE);
2763
2764	ztest_lr_free(lr, sizeof (*lr), NULL);
2765
2766	return (error);
2767}
2768
2769static void
2770ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2771{
2772	objset_t *os = zd->zd_os;
2773	dmu_tx_t *tx;
2774	uint64_t txg;
2775	rl_t *rl;
2776
2777	txg_wait_synced(dmu_objset_pool(os), 0);
2778
2779	ztest_object_lock(zd, object, ZTRL_READER);
2780	rl = ztest_range_lock(zd, object, offset, size, ZTRL_WRITER);
2781
2782	tx = dmu_tx_create(os);
2783
2784	dmu_tx_hold_write(tx, object, offset, size);
2785
2786	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2787
2788	if (txg != 0) {
2789		dmu_prealloc(os, object, offset, size, tx);
2790		dmu_tx_commit(tx);
2791		txg_wait_synced(dmu_objset_pool(os), txg);
2792	} else {
2793		(void) dmu_free_long_range(os, object, offset, size);
2794	}
2795
2796	ztest_range_unlock(rl);
2797	ztest_object_unlock(zd, object);
2798}
2799
2800static void
2801ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2802{
2803	int err;
2804	ztest_block_tag_t wbt;
2805	dmu_object_info_t doi;
2806	enum ztest_io_type io_type;
2807	uint64_t blocksize;
2808	void *data;
2809
2810	VERIFY0(dmu_object_info(zd->zd_os, object, &doi));
2811	blocksize = doi.doi_data_block_size;
2812	data = umem_alloc(blocksize, UMEM_NOFAIL);
2813
2814	/*
2815	 * Pick an i/o type at random, biased toward writing block tags.
2816	 */
2817	io_type = ztest_random(ZTEST_IO_TYPES);
2818	if (ztest_random(2) == 0)
2819		io_type = ZTEST_IO_WRITE_TAG;
2820
2821	(void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2822
2823	switch (io_type) {
2824
2825	case ZTEST_IO_WRITE_TAG:
2826		ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize,
2827		    offset, 0, 0, 0);
2828		(void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2829		break;
2830
2831	case ZTEST_IO_WRITE_PATTERN:
2832		(void) memset(data, 'a' + (object + offset) % 5, blocksize);
2833		if (ztest_random(2) == 0) {
2834			/*
2835			 * Induce fletcher2 collisions to ensure that
2836			 * zio_ddt_collision() detects and resolves them
2837			 * when using fletcher2-verify for deduplication.
2838			 */
2839			((uint64_t *)data)[0] ^= 1ULL << 63;
2840			((uint64_t *)data)[4] ^= 1ULL << 63;
2841		}
2842		(void) ztest_write(zd, object, offset, blocksize, data);
2843		break;
2844
2845	case ZTEST_IO_WRITE_ZEROES:
2846		memset(data, 0, blocksize);
2847		(void) ztest_write(zd, object, offset, blocksize, data);
2848		break;
2849
2850	case ZTEST_IO_TRUNCATE:
2851		(void) ztest_truncate(zd, object, offset, blocksize);
2852		break;
2853
2854	case ZTEST_IO_SETATTR:
2855		(void) ztest_setattr(zd, object);
2856		break;
2857	default:
2858		break;
2859
2860	case ZTEST_IO_REWRITE:
2861		(void) pthread_rwlock_rdlock(&ztest_name_lock);
2862		err = ztest_dsl_prop_set_uint64(zd->zd_name,
2863		    ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2864		    B_FALSE);
2865		ASSERT(err == 0 || err == ENOSPC);
2866		err = ztest_dsl_prop_set_uint64(zd->zd_name,
2867		    ZFS_PROP_COMPRESSION,
2868		    ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2869		    B_FALSE);
2870		ASSERT(err == 0 || err == ENOSPC);
2871		(void) pthread_rwlock_unlock(&ztest_name_lock);
2872
2873		VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2874		    DMU_READ_NO_PREFETCH));
2875
2876		(void) ztest_write(zd, object, offset, blocksize, data);
2877		break;
2878	}
2879
2880	(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2881
2882	umem_free(data, blocksize);
2883}
2884
2885/*
2886 * Initialize an object description template.
2887 */
2888static void
2889ztest_od_init(ztest_od_t *od, uint64_t id, const char *tag, uint64_t index,
2890    dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize,
2891    uint64_t gen)
2892{
2893	od->od_dir = ZTEST_DIROBJ;
2894	od->od_object = 0;
2895
2896	od->od_crtype = type;
2897	od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2898	od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize();
2899	od->od_crgen = gen;
2900
2901	od->od_type = DMU_OT_NONE;
2902	od->od_blocksize = 0;
2903	od->od_gen = 0;
2904
2905	(void) snprintf(od->od_name, sizeof (od->od_name),
2906	    "%s(%"PRId64")[%"PRIu64"]",
2907	    tag, id, index);
2908}
2909
2910/*
2911 * Lookup or create the objects for a test using the od template.
2912 * If the objects do not all exist, or if 'remove' is specified,
2913 * remove any existing objects and create new ones.  Otherwise,
2914 * use the existing objects.
2915 */
2916static int
2917ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2918{
2919	int count = size / sizeof (*od);
2920	int rv = 0;
2921
2922	mutex_enter(&zd->zd_dirobj_lock);
2923	if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2924	    (ztest_remove(zd, od, count) != 0 ||
2925	    ztest_create(zd, od, count) != 0))
2926		rv = -1;
2927	zd->zd_od = od;
2928	mutex_exit(&zd->zd_dirobj_lock);
2929
2930	return (rv);
2931}
2932
2933void
2934ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2935{
2936	(void) id;
2937	zilog_t *zilog = zd->zd_zilog;
2938
2939	(void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2940
2941	zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2942
2943	/*
2944	 * Remember the committed values in zd, which is in parent/child
2945	 * shared memory.  If we die, the next iteration of ztest_run()
2946	 * will verify that the log really does contain this record.
2947	 */
2948	mutex_enter(&zilog->zl_lock);
2949	ASSERT3P(zd->zd_shared, !=, NULL);
2950	ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2951	zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2952	mutex_exit(&zilog->zl_lock);
2953
2954	(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2955}
2956
2957/*
2958 * This function is designed to simulate the operations that occur during a
2959 * mount/unmount operation.  We hold the dataset across these operations in an
2960 * attempt to expose any implicit assumptions about ZIL management.
2961 */
2962void
2963ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2964{
2965	(void) id;
2966	objset_t *os = zd->zd_os;
2967
2968	/*
2969	 * We hold the ztest_vdev_lock so we don't cause problems with
2970	 * other threads that wish to remove a log device, such as
2971	 * ztest_device_removal().
2972	 */
2973	mutex_enter(&ztest_vdev_lock);
2974
2975	/*
2976	 * We grab the zd_dirobj_lock to ensure that no other thread is
2977	 * updating the zil (i.e. adding in-memory log records) and the
2978	 * zd_zilog_lock to block any I/O.
2979	 */
2980	mutex_enter(&zd->zd_dirobj_lock);
2981	(void) pthread_rwlock_wrlock(&zd->zd_zilog_lock);
2982
2983	/* zfsvfs_teardown() */
2984	zil_close(zd->zd_zilog);
2985
2986	/* zfsvfs_setup() */
2987	VERIFY3P(zil_open(os, ztest_get_data, NULL), ==, zd->zd_zilog);
2988	zil_replay(os, zd, ztest_replay_vector);
2989
2990	(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2991	mutex_exit(&zd->zd_dirobj_lock);
2992	mutex_exit(&ztest_vdev_lock);
2993}
2994
2995/*
2996 * Verify that we can't destroy an active pool, create an existing pool,
2997 * or create a pool with a bad vdev spec.
2998 */
2999void
3000ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
3001{
3002	(void) zd, (void) id;
3003	ztest_shared_opts_t *zo = &ztest_opts;
3004	spa_t *spa;
3005	nvlist_t *nvroot;
3006
3007	if (zo->zo_mmp_test)
3008		return;
3009
3010	/*
3011	 * Attempt to create using a bad file.
3012	 */
3013	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
3014	VERIFY3U(ENOENT, ==,
3015	    spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL));
3016	fnvlist_free(nvroot);
3017
3018	/*
3019	 * Attempt to create using a bad mirror.
3020	 */
3021	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 2, 1);
3022	VERIFY3U(ENOENT, ==,
3023	    spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL));
3024	fnvlist_free(nvroot);
3025
3026	/*
3027	 * Attempt to create an existing pool.  It shouldn't matter
3028	 * what's in the nvroot; we should fail with EEXIST.
3029	 */
3030	(void) pthread_rwlock_rdlock(&ztest_name_lock);
3031	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
3032	VERIFY3U(EEXIST, ==,
3033	    spa_create(zo->zo_pool, nvroot, NULL, NULL, NULL));
3034	fnvlist_free(nvroot);
3035
3036	/*
3037	 * We open a reference to the spa and then we try to export it
3038	 * expecting one of the following errors:
3039	 *
3040	 * EBUSY
3041	 *	Because of the reference we just opened.
3042	 *
3043	 * ZFS_ERR_EXPORT_IN_PROGRESS
3044	 *	For the case that there is another ztest thread doing
3045	 *	an export concurrently.
3046	 */
3047	VERIFY0(spa_open(zo->zo_pool, &spa, FTAG));
3048	int error = spa_destroy(zo->zo_pool);
3049	if (error != EBUSY && error != ZFS_ERR_EXPORT_IN_PROGRESS) {
3050		fatal(B_FALSE, "spa_destroy(%s) returned unexpected value %d",
3051		    spa->spa_name, error);
3052	}
3053	spa_close(spa, FTAG);
3054
3055	(void) pthread_rwlock_unlock(&ztest_name_lock);
3056}
3057
3058/*
3059 * Start and then stop the MMP threads to ensure the startup and shutdown code
3060 * works properly.  Actual protection and property-related code tested via ZTS.
3061 */
3062void
3063ztest_mmp_enable_disable(ztest_ds_t *zd, uint64_t id)
3064{
3065	(void) zd, (void) id;
3066	ztest_shared_opts_t *zo = &ztest_opts;
3067	spa_t *spa = ztest_spa;
3068
3069	if (zo->zo_mmp_test)
3070		return;
3071
3072	/*
3073	 * Since enabling MMP involves setting a property, it could not be done
3074	 * while the pool is suspended.
3075	 */
3076	if (spa_suspended(spa))
3077		return;
3078
3079	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3080	mutex_enter(&spa->spa_props_lock);
3081
3082	zfs_multihost_fail_intervals = 0;
3083
3084	if (!spa_multihost(spa)) {
3085		spa->spa_multihost = B_TRUE;
3086		mmp_thread_start(spa);
3087	}
3088
3089	mutex_exit(&spa->spa_props_lock);
3090	spa_config_exit(spa, SCL_CONFIG, FTAG);
3091
3092	txg_wait_synced(spa_get_dsl(spa), 0);
3093	mmp_signal_all_threads();
3094	txg_wait_synced(spa_get_dsl(spa), 0);
3095
3096	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3097	mutex_enter(&spa->spa_props_lock);
3098
3099	if (spa_multihost(spa)) {
3100		mmp_thread_stop(spa);
3101		spa->spa_multihost = B_FALSE;
3102	}
3103
3104	mutex_exit(&spa->spa_props_lock);
3105	spa_config_exit(spa, SCL_CONFIG, FTAG);
3106}
3107
3108static int
3109ztest_get_raidz_children(spa_t *spa)
3110{
3111	(void) spa;
3112	vdev_t *raidvd;
3113
3114	ASSERT(MUTEX_HELD(&ztest_vdev_lock));
3115
3116	if (ztest_opts.zo_raid_do_expand) {
3117		raidvd = ztest_spa->spa_root_vdev->vdev_child[0];
3118
3119		ASSERT(raidvd->vdev_ops == &vdev_raidz_ops);
3120
3121		return (raidvd->vdev_children);
3122	}
3123
3124	return (ztest_opts.zo_raid_children);
3125}
3126
3127void
3128ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
3129{
3130	(void) zd, (void) id;
3131	spa_t *spa;
3132	uint64_t initial_version = SPA_VERSION_INITIAL;
3133	uint64_t raidz_children, version, newversion;
3134	nvlist_t *nvroot, *props;
3135	char *name;
3136
3137	if (ztest_opts.zo_mmp_test)
3138		return;
3139
3140	/* dRAID added after feature flags, skip upgrade test. */
3141	if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0)
3142		return;
3143
3144	mutex_enter(&ztest_vdev_lock);
3145	name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
3146
3147	/*
3148	 * Clean up from previous runs.
3149	 */
3150	(void) spa_destroy(name);
3151
3152	raidz_children = ztest_get_raidz_children(ztest_spa);
3153
3154	nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
3155	    NULL, raidz_children, ztest_opts.zo_mirrors, 1);
3156
3157	/*
3158	 * If we're configuring a RAIDZ device then make sure that the
3159	 * initial version is capable of supporting that feature.
3160	 */
3161	switch (ztest_opts.zo_raid_parity) {
3162	case 0:
3163	case 1:
3164		initial_version = SPA_VERSION_INITIAL;
3165		break;
3166	case 2:
3167		initial_version = SPA_VERSION_RAIDZ2;
3168		break;
3169	case 3:
3170		initial_version = SPA_VERSION_RAIDZ3;
3171		break;
3172	}
3173
3174	/*
3175	 * Create a pool with a spa version that can be upgraded. Pick
3176	 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
3177	 */
3178	do {
3179		version = ztest_random_spa_version(initial_version);
3180	} while (version > SPA_VERSION_BEFORE_FEATURES);
3181
3182	props = fnvlist_alloc();
3183	fnvlist_add_uint64(props,
3184	    zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
3185	VERIFY0(spa_create(name, nvroot, props, NULL, NULL));
3186	fnvlist_free(nvroot);
3187	fnvlist_free(props);
3188
3189	VERIFY0(spa_open(name, &spa, FTAG));
3190	VERIFY3U(spa_version(spa), ==, version);
3191	newversion = ztest_random_spa_version(version + 1);
3192
3193	if (ztest_opts.zo_verbose >= 4) {
3194		(void) printf("upgrading spa version from "
3195		    "%"PRIu64" to %"PRIu64"\n",
3196		    version, newversion);
3197	}
3198
3199	spa_upgrade(spa, newversion);
3200	VERIFY3U(spa_version(spa), >, version);
3201	VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
3202	    zpool_prop_to_name(ZPOOL_PROP_VERSION)));
3203	spa_close(spa, FTAG);
3204
3205	kmem_strfree(name);
3206	mutex_exit(&ztest_vdev_lock);
3207}
3208
3209static void
3210ztest_spa_checkpoint(spa_t *spa)
3211{
3212	ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
3213
3214	int error = spa_checkpoint(spa->spa_name);
3215
3216	switch (error) {
3217	case 0:
3218	case ZFS_ERR_DEVRM_IN_PROGRESS:
3219	case ZFS_ERR_DISCARDING_CHECKPOINT:
3220	case ZFS_ERR_CHECKPOINT_EXISTS:
3221	case ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS:
3222		break;
3223	case ENOSPC:
3224		ztest_record_enospc(FTAG);
3225		break;
3226	default:
3227		fatal(B_FALSE, "spa_checkpoint(%s) = %d", spa->spa_name, error);
3228	}
3229}
3230
3231static void
3232ztest_spa_discard_checkpoint(spa_t *spa)
3233{
3234	ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
3235
3236	int error = spa_checkpoint_discard(spa->spa_name);
3237
3238	switch (error) {
3239	case 0:
3240	case ZFS_ERR_DISCARDING_CHECKPOINT:
3241	case ZFS_ERR_NO_CHECKPOINT:
3242		break;
3243	default:
3244		fatal(B_FALSE, "spa_discard_checkpoint(%s) = %d",
3245		    spa->spa_name, error);
3246	}
3247
3248}
3249
3250void
3251ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id)
3252{
3253	(void) zd, (void) id;
3254	spa_t *spa = ztest_spa;
3255
3256	mutex_enter(&ztest_checkpoint_lock);
3257	if (ztest_random(2) == 0) {
3258		ztest_spa_checkpoint(spa);
3259	} else {
3260		ztest_spa_discard_checkpoint(spa);
3261	}
3262	mutex_exit(&ztest_checkpoint_lock);
3263}
3264
3265
3266static vdev_t *
3267vdev_lookup_by_path(vdev_t *vd, const char *path)
3268{
3269	vdev_t *mvd;
3270	int c;
3271
3272	if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
3273		return (vd);
3274
3275	for (c = 0; c < vd->vdev_children; c++)
3276		if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
3277		    NULL)
3278			return (mvd);
3279
3280	return (NULL);
3281}
3282
3283static int
3284spa_num_top_vdevs(spa_t *spa)
3285{
3286	vdev_t *rvd = spa->spa_root_vdev;
3287	ASSERT3U(spa_config_held(spa, SCL_VDEV, RW_READER), ==, SCL_VDEV);
3288	return (rvd->vdev_children);
3289}
3290
3291/*
3292 * Verify that vdev_add() works as expected.
3293 */
3294void
3295ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
3296{
3297	(void) zd, (void) id;
3298	ztest_shared_t *zs = ztest_shared;
3299	spa_t *spa = ztest_spa;
3300	uint64_t leaves;
3301	uint64_t guid;
3302	uint64_t raidz_children;
3303
3304	nvlist_t *nvroot;
3305	int error;
3306
3307	if (ztest_opts.zo_mmp_test)
3308		return;
3309
3310	mutex_enter(&ztest_vdev_lock);
3311	raidz_children = ztest_get_raidz_children(spa);
3312	leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * raidz_children;
3313
3314	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3315
3316	ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
3317
3318	/*
3319	 * If we have slogs then remove them 1/4 of the time.
3320	 */
3321	if (spa_has_slogs(spa) && ztest_random(4) == 0) {
3322		metaslab_group_t *mg;
3323
3324		/*
3325		 * find the first real slog in log allocation class
3326		 */
3327		mg =  spa_log_class(spa)->mc_allocator[0].mca_rotor;
3328		while (!mg->mg_vd->vdev_islog)
3329			mg = mg->mg_next;
3330
3331		guid = mg->mg_vd->vdev_guid;
3332
3333		spa_config_exit(spa, SCL_VDEV, FTAG);
3334
3335		/*
3336		 * We have to grab the zs_name_lock as writer to
3337		 * prevent a race between removing a slog (dmu_objset_find)
3338		 * and destroying a dataset. Removing the slog will
3339		 * grab a reference on the dataset which may cause
3340		 * dsl_destroy_head() to fail with EBUSY thus
3341		 * leaving the dataset in an inconsistent state.
3342		 */
3343		pthread_rwlock_wrlock(&ztest_name_lock);
3344		error = spa_vdev_remove(spa, guid, B_FALSE);
3345		pthread_rwlock_unlock(&ztest_name_lock);
3346
3347		switch (error) {
3348		case 0:
3349		case EEXIST:	/* Generic zil_reset() error */
3350		case EBUSY:	/* Replay required */
3351		case EACCES:	/* Crypto key not loaded */
3352		case ZFS_ERR_CHECKPOINT_EXISTS:
3353		case ZFS_ERR_DISCARDING_CHECKPOINT:
3354			break;
3355		default:
3356			fatal(B_FALSE, "spa_vdev_remove() = %d", error);
3357		}
3358	} else {
3359		spa_config_exit(spa, SCL_VDEV, FTAG);
3360
3361		/*
3362		 * Make 1/4 of the devices be log devices
3363		 */
3364		nvroot = make_vdev_root(NULL, NULL, NULL,
3365		    ztest_opts.zo_vdev_size, 0, (ztest_random(4) == 0) ?
3366		    "log" : NULL, raidz_children, zs->zs_mirrors,
3367		    1);
3368
3369		error = spa_vdev_add(spa, nvroot, B_FALSE);
3370		fnvlist_free(nvroot);
3371
3372		switch (error) {
3373		case 0:
3374			break;
3375		case ENOSPC:
3376			ztest_record_enospc("spa_vdev_add");
3377			break;
3378		default:
3379			fatal(B_FALSE, "spa_vdev_add() = %d", error);
3380		}
3381	}
3382
3383	mutex_exit(&ztest_vdev_lock);
3384}
3385
3386void
3387ztest_vdev_class_add(ztest_ds_t *zd, uint64_t id)
3388{
3389	(void) zd, (void) id;
3390	ztest_shared_t *zs = ztest_shared;
3391	spa_t *spa = ztest_spa;
3392	uint64_t leaves;
3393	nvlist_t *nvroot;
3394	uint64_t raidz_children;
3395	const char *class = (ztest_random(2) == 0) ?
3396	    VDEV_ALLOC_BIAS_SPECIAL : VDEV_ALLOC_BIAS_DEDUP;
3397	int error;
3398
3399	/*
3400	 * By default add a special vdev 50% of the time
3401	 */
3402	if ((ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_OFF) ||
3403	    (ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_RND &&
3404	    ztest_random(2) == 0)) {
3405		return;
3406	}
3407
3408	mutex_enter(&ztest_vdev_lock);
3409
3410	/* Only test with mirrors */
3411	if (zs->zs_mirrors < 2) {
3412		mutex_exit(&ztest_vdev_lock);
3413		return;
3414	}
3415
3416	/* requires feature@allocation_classes */
3417	if (!spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)) {
3418		mutex_exit(&ztest_vdev_lock);
3419		return;
3420	}
3421
3422	raidz_children = ztest_get_raidz_children(spa);
3423	leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * raidz_children;
3424
3425	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3426	ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
3427	spa_config_exit(spa, SCL_VDEV, FTAG);
3428
3429	nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
3430	    class, raidz_children, zs->zs_mirrors, 1);
3431
3432	error = spa_vdev_add(spa, nvroot, B_FALSE);
3433	fnvlist_free(nvroot);
3434
3435	if (error == ENOSPC)
3436		ztest_record_enospc("spa_vdev_add");
3437	else if (error != 0)
3438		fatal(B_FALSE, "spa_vdev_add() = %d", error);
3439
3440	/*
3441	 * 50% of the time allow small blocks in the special class
3442	 */
3443	if (error == 0 &&
3444	    spa_special_class(spa)->mc_groups == 1 && ztest_random(2) == 0) {
3445		if (ztest_opts.zo_verbose >= 3)
3446			(void) printf("Enabling special VDEV small blocks\n");
3447		error = ztest_dsl_prop_set_uint64(zd->zd_name,
3448		    ZFS_PROP_SPECIAL_SMALL_BLOCKS, 32768, B_FALSE);
3449		ASSERT(error == 0 || error == ENOSPC);
3450	}
3451
3452	mutex_exit(&ztest_vdev_lock);
3453
3454	if (ztest_opts.zo_verbose >= 3) {
3455		metaslab_class_t *mc;
3456
3457		if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL) == 0)
3458			mc = spa_special_class(spa);
3459		else
3460			mc = spa_dedup_class(spa);
3461		(void) printf("Added a %s mirrored vdev (of %d)\n",
3462		    class, (int)mc->mc_groups);
3463	}
3464}
3465
3466/*
3467 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
3468 */
3469void
3470ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
3471{
3472	(void) zd, (void) id;
3473	ztest_shared_t *zs = ztest_shared;
3474	spa_t *spa = ztest_spa;
3475	vdev_t *rvd = spa->spa_root_vdev;
3476	spa_aux_vdev_t *sav;
3477	const char *aux;
3478	char *path;
3479	uint64_t guid = 0;
3480	int error, ignore_err = 0;
3481
3482	if (ztest_opts.zo_mmp_test)
3483		return;
3484
3485	path = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3486
3487	if (ztest_random(2) == 0) {
3488		sav = &spa->spa_spares;
3489		aux = ZPOOL_CONFIG_SPARES;
3490	} else {
3491		sav = &spa->spa_l2cache;
3492		aux = ZPOOL_CONFIG_L2CACHE;
3493	}
3494
3495	mutex_enter(&ztest_vdev_lock);
3496
3497	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3498
3499	if (sav->sav_count != 0 && ztest_random(4) == 0) {
3500		/*
3501		 * Pick a random device to remove.
3502		 */
3503		vdev_t *svd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3504
3505		/* dRAID spares cannot be removed; try anyways to see ENOTSUP */
3506		if (strstr(svd->vdev_path, VDEV_TYPE_DRAID) != NULL)
3507			ignore_err = ENOTSUP;
3508
3509		guid = svd->vdev_guid;
3510	} else {
3511		/*
3512		 * Find an unused device we can add.
3513		 */
3514		zs->zs_vdev_aux = 0;
3515		for (;;) {
3516			int c;
3517			(void) snprintf(path, MAXPATHLEN, ztest_aux_template,
3518			    ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
3519			    zs->zs_vdev_aux);
3520			for (c = 0; c < sav->sav_count; c++)
3521				if (strcmp(sav->sav_vdevs[c]->vdev_path,
3522				    path) == 0)
3523					break;
3524			if (c == sav->sav_count &&
3525			    vdev_lookup_by_path(rvd, path) == NULL)
3526				break;
3527			zs->zs_vdev_aux++;
3528		}
3529	}
3530
3531	spa_config_exit(spa, SCL_VDEV, FTAG);
3532
3533	if (guid == 0) {
3534		/*
3535		 * Add a new device.
3536		 */
3537		nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
3538		    (ztest_opts.zo_vdev_size * 5) / 4, 0, NULL, 0, 0, 1);
3539		error = spa_vdev_add(spa, nvroot, B_FALSE);
3540
3541		switch (error) {
3542		case 0:
3543			break;
3544		default:
3545			fatal(B_FALSE, "spa_vdev_add(%p) = %d", nvroot, error);
3546		}
3547		fnvlist_free(nvroot);
3548	} else {
3549		/*
3550		 * Remove an existing device.  Sometimes, dirty its
3551		 * vdev state first to make sure we handle removal
3552		 * of devices that have pending state changes.
3553		 */
3554		if (ztest_random(2) == 0)
3555			(void) vdev_online(spa, guid, 0, NULL);
3556
3557		error = spa_vdev_remove(spa, guid, B_FALSE);
3558
3559		switch (error) {
3560		case 0:
3561		case EBUSY:
3562		case ZFS_ERR_CHECKPOINT_EXISTS:
3563		case ZFS_ERR_DISCARDING_CHECKPOINT:
3564			break;
3565		default:
3566			if (error != ignore_err)
3567				fatal(B_FALSE,
3568				    "spa_vdev_remove(%"PRIu64") = %d",
3569				    guid, error);
3570		}
3571	}
3572
3573	mutex_exit(&ztest_vdev_lock);
3574
3575	umem_free(path, MAXPATHLEN);
3576}
3577
3578/*
3579 * split a pool if it has mirror tlvdevs
3580 */
3581void
3582ztest_split_pool(ztest_ds_t *zd, uint64_t id)
3583{
3584	(void) zd, (void) id;
3585	ztest_shared_t *zs = ztest_shared;
3586	spa_t *spa = ztest_spa;
3587	vdev_t *rvd = spa->spa_root_vdev;
3588	nvlist_t *tree, **child, *config, *split, **schild;
3589	uint_t c, children, schildren = 0, lastlogid = 0;
3590	int error = 0;
3591
3592	if (ztest_opts.zo_mmp_test)
3593		return;
3594
3595	mutex_enter(&ztest_vdev_lock);
3596
3597	/* ensure we have a usable config; mirrors of raidz aren't supported */
3598	if (zs->zs_mirrors < 3 || ztest_opts.zo_raid_children > 1) {
3599		mutex_exit(&ztest_vdev_lock);
3600		return;
3601	}
3602
3603	/* clean up the old pool, if any */
3604	(void) spa_destroy("splitp");
3605
3606	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3607
3608	/* generate a config from the existing config */
3609	mutex_enter(&spa->spa_props_lock);
3610	tree = fnvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE);
3611	mutex_exit(&spa->spa_props_lock);
3612
3613	VERIFY0(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN,
3614	    &child, &children));
3615
3616	schild = umem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
3617	    UMEM_NOFAIL);
3618	for (c = 0; c < children; c++) {
3619		vdev_t *tvd = rvd->vdev_child[c];
3620		nvlist_t **mchild;
3621		uint_t mchildren;
3622
3623		if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
3624			schild[schildren] = fnvlist_alloc();
3625			fnvlist_add_string(schild[schildren],
3626			    ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE);
3627			fnvlist_add_uint64(schild[schildren],
3628			    ZPOOL_CONFIG_IS_HOLE, 1);
3629			if (lastlogid == 0)
3630				lastlogid = schildren;
3631			++schildren;
3632			continue;
3633		}
3634		lastlogid = 0;
3635		VERIFY0(nvlist_lookup_nvlist_array(child[c],
3636		    ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren));
3637		schild[schildren++] = fnvlist_dup(mchild[0]);
3638	}
3639
3640	/* OK, create a config that can be used to split */
3641	split = fnvlist_alloc();
3642	fnvlist_add_string(split, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
3643	fnvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN,
3644	    (const nvlist_t **)schild, lastlogid != 0 ? lastlogid : schildren);
3645
3646	config = fnvlist_alloc();
3647	fnvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split);
3648
3649	for (c = 0; c < schildren; c++)
3650		fnvlist_free(schild[c]);
3651	umem_free(schild, rvd->vdev_children * sizeof (nvlist_t *));
3652	fnvlist_free(split);
3653
3654	spa_config_exit(spa, SCL_VDEV, FTAG);
3655
3656	(void) pthread_rwlock_wrlock(&ztest_name_lock);
3657	error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
3658	(void) pthread_rwlock_unlock(&ztest_name_lock);
3659
3660	fnvlist_free(config);
3661
3662	if (error == 0) {
3663		(void) printf("successful split - results:\n");
3664		mutex_enter(&spa_namespace_lock);
3665		show_pool_stats(spa);
3666		show_pool_stats(spa_lookup("splitp"));
3667		mutex_exit(&spa_namespace_lock);
3668		++zs->zs_splits;
3669		--zs->zs_mirrors;
3670	}
3671	mutex_exit(&ztest_vdev_lock);
3672}
3673
3674/*
3675 * Verify that we can attach and detach devices.
3676 */
3677void
3678ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
3679{
3680	(void) zd, (void) id;
3681	ztest_shared_t *zs = ztest_shared;
3682	spa_t *spa = ztest_spa;
3683	spa_aux_vdev_t *sav = &spa->spa_spares;
3684	vdev_t *rvd = spa->spa_root_vdev;
3685	vdev_t *oldvd, *newvd, *pvd;
3686	nvlist_t *root;
3687	uint64_t leaves;
3688	uint64_t leaf, top;
3689	uint64_t ashift = ztest_get_ashift();
3690	uint64_t oldguid, pguid;
3691	uint64_t oldsize, newsize;
3692	uint64_t raidz_children;
3693	char *oldpath, *newpath;
3694	int replacing;
3695	int oldvd_has_siblings = B_FALSE;
3696	int newvd_is_spare = B_FALSE;
3697	int newvd_is_dspare = B_FALSE;
3698	int oldvd_is_log;
3699	int oldvd_is_special;
3700	int error, expected_error;
3701
3702	if (ztest_opts.zo_mmp_test)
3703		return;
3704
3705	oldpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3706	newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3707
3708	mutex_enter(&ztest_vdev_lock);
3709	raidz_children = ztest_get_raidz_children(spa);
3710	leaves = MAX(zs->zs_mirrors, 1) * raidz_children;
3711
3712	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3713
3714	/*
3715	 * If a vdev is in the process of being removed, its removal may
3716	 * finish while we are in progress, leading to an unexpected error
3717	 * value.  Don't bother trying to attach while we are in the middle
3718	 * of removal.
3719	 */
3720	if (ztest_device_removal_active) {
3721		spa_config_exit(spa, SCL_ALL, FTAG);
3722		goto out;
3723	}
3724
3725	/*
3726	 * RAIDZ leaf VDEV mirrors are not currently supported while a
3727	 * RAIDZ expansion is in progress.
3728	 */
3729	if (ztest_opts.zo_raid_do_expand) {
3730		spa_config_exit(spa, SCL_ALL, FTAG);
3731		goto out;
3732	}
3733
3734	/*
3735	 * Decide whether to do an attach or a replace.
3736	 */
3737	replacing = ztest_random(2);
3738
3739	/*
3740	 * Pick a random top-level vdev.
3741	 */
3742	top = ztest_random_vdev_top(spa, B_TRUE);
3743
3744	/*
3745	 * Pick a random leaf within it.
3746	 */
3747	leaf = ztest_random(leaves);
3748
3749	/*
3750	 * Locate this vdev.
3751	 */
3752	oldvd = rvd->vdev_child[top];
3753
3754	/* pick a child from the mirror */
3755	if (zs->zs_mirrors >= 1) {
3756		ASSERT3P(oldvd->vdev_ops, ==, &vdev_mirror_ops);
3757		ASSERT3U(oldvd->vdev_children, >=, zs->zs_mirrors);
3758		oldvd = oldvd->vdev_child[leaf / raidz_children];
3759	}
3760
3761	/* pick a child out of the raidz group */
3762	if (ztest_opts.zo_raid_children > 1) {
3763		if (strcmp(oldvd->vdev_ops->vdev_op_type, "raidz") == 0)
3764			ASSERT3P(oldvd->vdev_ops, ==, &vdev_raidz_ops);
3765		else
3766			ASSERT3P(oldvd->vdev_ops, ==, &vdev_draid_ops);
3767		oldvd = oldvd->vdev_child[leaf % raidz_children];
3768	}
3769
3770	/*
3771	 * If we're already doing an attach or replace, oldvd may be a
3772	 * mirror vdev -- in which case, pick a random child.
3773	 */
3774	while (oldvd->vdev_children != 0) {
3775		oldvd_has_siblings = B_TRUE;
3776		ASSERT3U(oldvd->vdev_children, >=, 2);
3777		oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
3778	}
3779
3780	oldguid = oldvd->vdev_guid;
3781	oldsize = vdev_get_min_asize(oldvd);
3782	oldvd_is_log = oldvd->vdev_top->vdev_islog;
3783	oldvd_is_special =
3784	    oldvd->vdev_top->vdev_alloc_bias == VDEV_BIAS_SPECIAL ||
3785	    oldvd->vdev_top->vdev_alloc_bias == VDEV_BIAS_DEDUP;
3786	(void) strlcpy(oldpath, oldvd->vdev_path, MAXPATHLEN);
3787	pvd = oldvd->vdev_parent;
3788	pguid = pvd->vdev_guid;
3789
3790	/*
3791	 * If oldvd has siblings, then half of the time, detach it.  Prior
3792	 * to the detach the pool is scrubbed in order to prevent creating
3793	 * unrepairable blocks as a result of the data corruption injection.
3794	 */
3795	if (oldvd_has_siblings && ztest_random(2) == 0) {
3796		spa_config_exit(spa, SCL_ALL, FTAG);
3797
3798		error = ztest_scrub_impl(spa);
3799		if (error)
3800			goto out;
3801
3802		error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
3803		if (error != 0 && error != ENODEV && error != EBUSY &&
3804		    error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS &&
3805		    error != ZFS_ERR_DISCARDING_CHECKPOINT)
3806			fatal(B_FALSE, "detach (%s) returned %d",
3807			    oldpath, error);
3808		goto out;
3809	}
3810
3811	/*
3812	 * For the new vdev, choose with equal probability between the two
3813	 * standard paths (ending in either 'a' or 'b') or a random hot spare.
3814	 */
3815	if (sav->sav_count != 0 && ztest_random(3) == 0) {
3816		newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3817		newvd_is_spare = B_TRUE;
3818
3819		if (newvd->vdev_ops == &vdev_draid_spare_ops)
3820			newvd_is_dspare = B_TRUE;
3821
3822		(void) strlcpy(newpath, newvd->vdev_path, MAXPATHLEN);
3823	} else {
3824		(void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
3825		    ztest_opts.zo_dir, ztest_opts.zo_pool,
3826		    top * leaves + leaf);
3827		if (ztest_random(2) == 0)
3828			newpath[strlen(newpath) - 1] = 'b';
3829		newvd = vdev_lookup_by_path(rvd, newpath);
3830	}
3831
3832	if (newvd) {
3833		/*
3834		 * Reopen to ensure the vdev's asize field isn't stale.
3835		 */
3836		vdev_reopen(newvd);
3837		newsize = vdev_get_min_asize(newvd);
3838	} else {
3839		/*
3840		 * Make newsize a little bigger or smaller than oldsize.
3841		 * If it's smaller, the attach should fail.
3842		 * If it's larger, and we're doing a replace,
3843		 * we should get dynamic LUN growth when we're done.
3844		 */
3845		newsize = 10 * oldsize / (9 + ztest_random(3));
3846	}
3847
3848	/*
3849	 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
3850	 * unless it's a replace; in that case any non-replacing parent is OK.
3851	 *
3852	 * If newvd is already part of the pool, it should fail with EBUSY.
3853	 *
3854	 * If newvd is too small, it should fail with EOVERFLOW.
3855	 *
3856	 * If newvd is a distributed spare and it's being attached to a
3857	 * dRAID which is not its parent it should fail with EINVAL.
3858	 */
3859	if (pvd->vdev_ops != &vdev_mirror_ops &&
3860	    pvd->vdev_ops != &vdev_root_ops && (!replacing ||
3861	    pvd->vdev_ops == &vdev_replacing_ops ||
3862	    pvd->vdev_ops == &vdev_spare_ops))
3863		expected_error = ENOTSUP;
3864	else if (newvd_is_spare &&
3865	    (!replacing || oldvd_is_log || oldvd_is_special))
3866		expected_error = ENOTSUP;
3867	else if (newvd == oldvd)
3868		expected_error = replacing ? 0 : EBUSY;
3869	else if (vdev_lookup_by_path(rvd, newpath) != NULL)
3870		expected_error = EBUSY;
3871	else if (!newvd_is_dspare && newsize < oldsize)
3872		expected_error = EOVERFLOW;
3873	else if (ashift > oldvd->vdev_top->vdev_ashift)
3874		expected_error = EDOM;
3875	else if (newvd_is_dspare && pvd != vdev_draid_spare_get_parent(newvd))
3876		expected_error = EINVAL;
3877	else
3878		expected_error = 0;
3879
3880	spa_config_exit(spa, SCL_ALL, FTAG);
3881
3882	/*
3883	 * Build the nvlist describing newpath.
3884	 */
3885	root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
3886	    ashift, NULL, 0, 0, 1);
3887
3888	/*
3889	 * When supported select either a healing or sequential resilver.
3890	 */
3891	boolean_t rebuilding = B_FALSE;
3892	if (pvd->vdev_ops == &vdev_mirror_ops ||
3893	    pvd->vdev_ops ==  &vdev_root_ops) {
3894		rebuilding = !!ztest_random(2);
3895	}
3896
3897	error = spa_vdev_attach(spa, oldguid, root, replacing, rebuilding);
3898
3899	fnvlist_free(root);
3900
3901	/*
3902	 * If our parent was the replacing vdev, but the replace completed,
3903	 * then instead of failing with ENOTSUP we may either succeed,
3904	 * fail with ENODEV, or fail with EOVERFLOW.
3905	 */
3906	if (expected_error == ENOTSUP &&
3907	    (error == 0 || error == ENODEV || error == EOVERFLOW))
3908		expected_error = error;
3909
3910	/*
3911	 * If someone grew the LUN, the replacement may be too small.
3912	 */
3913	if (error == EOVERFLOW || error == EBUSY)
3914		expected_error = error;
3915
3916	if (error == ZFS_ERR_CHECKPOINT_EXISTS ||
3917	    error == ZFS_ERR_DISCARDING_CHECKPOINT ||
3918	    error == ZFS_ERR_RESILVER_IN_PROGRESS ||
3919	    error == ZFS_ERR_REBUILD_IN_PROGRESS)
3920		expected_error = error;
3921
3922	if (error != expected_error && expected_error != EBUSY) {
3923		fatal(B_FALSE, "attach (%s %"PRIu64", %s %"PRIu64", %d) "
3924		    "returned %d, expected %d",
3925		    oldpath, oldsize, newpath,
3926		    newsize, replacing, error, expected_error);
3927	}
3928out:
3929	mutex_exit(&ztest_vdev_lock);
3930
3931	umem_free(oldpath, MAXPATHLEN);
3932	umem_free(newpath, MAXPATHLEN);
3933}
3934
3935static void
3936raidz_scratch_verify(void)
3937{
3938	spa_t *spa;
3939	uint64_t write_size, logical_size, offset;
3940	raidz_reflow_scratch_state_t state;
3941	vdev_raidz_expand_t *vre;
3942	vdev_t *raidvd;
3943
3944	ASSERT(raidz_expand_pause_point == RAIDZ_EXPAND_PAUSE_NONE);
3945
3946	if (ztest_scratch_state->zs_raidz_scratch_verify_pause == 0)
3947		return;
3948
3949	kernel_init(SPA_MODE_READ);
3950
3951	mutex_enter(&spa_namespace_lock);
3952	spa = spa_lookup(ztest_opts.zo_pool);
3953	ASSERT(spa);
3954	spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP;
3955	mutex_exit(&spa_namespace_lock);
3956
3957	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
3958
3959	ASSERT3U(RRSS_GET_OFFSET(&spa->spa_uberblock), !=, UINT64_MAX);
3960
3961	mutex_enter(&ztest_vdev_lock);
3962
3963	spa_config_enter(spa, SCL_ALL, FTAG, RW_READER);
3964
3965	vre = spa->spa_raidz_expand;
3966	if (vre == NULL)
3967		goto out;
3968
3969	raidvd = vdev_lookup_top(spa, vre->vre_vdev_id);
3970	offset = RRSS_GET_OFFSET(&spa->spa_uberblock);
3971	state = RRSS_GET_STATE(&spa->spa_uberblock);
3972	write_size = P2ALIGN_TYPED(VDEV_BOOT_SIZE, 1 << raidvd->vdev_ashift,
3973	    uint64_t);
3974	logical_size = write_size * raidvd->vdev_children;
3975
3976	switch (state) {
3977		/*
3978		 * Initial state of reflow process.  RAIDZ expansion was
3979		 * requested by user, but scratch object was not created.
3980		 */
3981		case RRSS_SCRATCH_NOT_IN_USE:
3982			ASSERT3U(offset, ==, 0);
3983			break;
3984
3985		/*
3986		 * Scratch object was synced and stored in boot area.
3987		 */
3988		case RRSS_SCRATCH_VALID:
3989
3990		/*
3991		 * Scratch object was synced back to raidz start offset,
3992		 * raidz is ready for sector by sector reflow process.
3993		 */
3994		case RRSS_SCRATCH_INVALID_SYNCED:
3995
3996		/*
3997		 * Scratch object was synced back to raidz start offset
3998		 * on zpool importing, raidz is ready for sector by sector
3999		 * reflow process.
4000		 */
4001		case RRSS_SCRATCH_INVALID_SYNCED_ON_IMPORT:
4002			ASSERT3U(offset, ==, logical_size);
4003			break;
4004
4005		/*
4006		 * Sector by sector reflow process started.
4007		 */
4008		case RRSS_SCRATCH_INVALID_SYNCED_REFLOW:
4009			ASSERT3U(offset, >=, logical_size);
4010			break;
4011	}
4012
4013out:
4014	spa_config_exit(spa, SCL_ALL, FTAG);
4015
4016	mutex_exit(&ztest_vdev_lock);
4017
4018	ztest_scratch_state->zs_raidz_scratch_verify_pause = 0;
4019
4020	spa_close(spa, FTAG);
4021	kernel_fini();
4022}
4023
4024static void
4025ztest_scratch_thread(void *arg)
4026{
4027	(void) arg;
4028
4029	/* wait up to 10 seconds */
4030	for (int t = 100; t > 0; t -= 1) {
4031		if (raidz_expand_pause_point == RAIDZ_EXPAND_PAUSE_NONE)
4032			thread_exit();
4033
4034		(void) poll(NULL, 0, 100);
4035	}
4036
4037	/* killed when the scratch area progress reached a certain point */
4038	ztest_kill(ztest_shared);
4039}
4040
4041/*
4042 * Verify that we can attach raidz device.
4043 */
4044void
4045ztest_vdev_raidz_attach(ztest_ds_t *zd, uint64_t id)
4046{
4047	(void) zd, (void) id;
4048	ztest_shared_t *zs = ztest_shared;
4049	spa_t *spa = ztest_spa;
4050	uint64_t leaves, raidz_children, newsize, ashift = ztest_get_ashift();
4051	kthread_t *scratch_thread = NULL;
4052	vdev_t *newvd, *pvd;
4053	nvlist_t *root;
4054	char *newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
4055	int error, expected_error = 0;
4056
4057	mutex_enter(&ztest_vdev_lock);
4058
4059	spa_config_enter(spa, SCL_ALL, FTAG, RW_READER);
4060
4061	/* Only allow attach when raid-kind = 'eraidz' */
4062	if (!ztest_opts.zo_raid_do_expand) {
4063		spa_config_exit(spa, SCL_ALL, FTAG);
4064		goto out;
4065	}
4066
4067	if (ztest_opts.zo_mmp_test) {
4068		spa_config_exit(spa, SCL_ALL, FTAG);
4069		goto out;
4070	}
4071
4072	if (ztest_device_removal_active) {
4073		spa_config_exit(spa, SCL_ALL, FTAG);
4074		goto out;
4075	}
4076
4077	pvd = vdev_lookup_top(spa, 0);
4078
4079	ASSERT(pvd->vdev_ops == &vdev_raidz_ops);
4080
4081	/*
4082	 * Get size of a child of the raidz group,
4083	 * make sure device is a bit bigger
4084	 */
4085	newvd = pvd->vdev_child[ztest_random(pvd->vdev_children)];
4086	newsize = 10 * vdev_get_min_asize(newvd) / (9 + ztest_random(2));
4087
4088	/*
4089	 * Get next attached leaf id
4090	 */
4091	raidz_children = ztest_get_raidz_children(spa);
4092	leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * raidz_children;
4093	zs->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
4094
4095	if (spa->spa_raidz_expand)
4096		expected_error = ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS;
4097
4098	spa_config_exit(spa, SCL_ALL, FTAG);
4099
4100	/*
4101	 * Path to vdev to be attached
4102	 */
4103	(void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
4104	    ztest_opts.zo_dir, ztest_opts.zo_pool, zs->zs_vdev_next_leaf);
4105
4106	/*
4107	 * Build the nvlist describing newpath.
4108	 */
4109	root = make_vdev_root(newpath, NULL, NULL, newsize, ashift, NULL,
4110	    0, 0, 1);
4111
4112	/*
4113	 * 50% of the time, set raidz_expand_pause_point to cause
4114	 * raidz_reflow_scratch_sync() to pause at a certain point and
4115	 * then kill the test after 10 seconds so raidz_scratch_verify()
4116	 * can confirm consistency when the pool is imported.
4117	 */
4118	if (ztest_random(2) == 0 && expected_error == 0) {
4119		raidz_expand_pause_point =
4120		    ztest_random(RAIDZ_EXPAND_PAUSE_SCRATCH_POST_REFLOW_2) + 1;
4121		scratch_thread = thread_create(NULL, 0, ztest_scratch_thread,
4122		    ztest_shared, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
4123	}
4124
4125	error = spa_vdev_attach(spa, pvd->vdev_guid, root, B_FALSE, B_FALSE);
4126
4127	nvlist_free(root);
4128
4129	if (error == EOVERFLOW || error == ENXIO ||
4130	    error == ZFS_ERR_CHECKPOINT_EXISTS ||
4131	    error == ZFS_ERR_DISCARDING_CHECKPOINT)
4132		expected_error = error;
4133
4134	if (error != 0 && error != expected_error) {
4135		fatal(0, "raidz attach (%s %"PRIu64") returned %d, expected %d",
4136		    newpath, newsize, error, expected_error);
4137	}
4138
4139	if (raidz_expand_pause_point) {
4140		if (error != 0) {
4141			/*
4142			 * Do not verify scratch object in case of error
4143			 * returned by vdev attaching.
4144			 */
4145			raidz_expand_pause_point = RAIDZ_EXPAND_PAUSE_NONE;
4146		}
4147
4148		VERIFY0(thread_join(scratch_thread));
4149	}
4150out:
4151	mutex_exit(&ztest_vdev_lock);
4152
4153	umem_free(newpath, MAXPATHLEN);
4154}
4155
4156void
4157ztest_device_removal(ztest_ds_t *zd, uint64_t id)
4158{
4159	(void) zd, (void) id;
4160	spa_t *spa = ztest_spa;
4161	vdev_t *vd;
4162	uint64_t guid;
4163	int error;
4164
4165	mutex_enter(&ztest_vdev_lock);
4166
4167	if (ztest_device_removal_active) {
4168		mutex_exit(&ztest_vdev_lock);
4169		return;
4170	}
4171
4172	/*
4173	 * Remove a random top-level vdev and wait for removal to finish.
4174	 */
4175	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4176	vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE));
4177	guid = vd->vdev_guid;
4178	spa_config_exit(spa, SCL_VDEV, FTAG);
4179
4180	error = spa_vdev_remove(spa, guid, B_FALSE);
4181	if (error == 0) {
4182		ztest_device_removal_active = B_TRUE;
4183		mutex_exit(&ztest_vdev_lock);
4184
4185		/*
4186		 * spa->spa_vdev_removal is created in a sync task that
4187		 * is initiated via dsl_sync_task_nowait(). Since the
4188		 * task may not run before spa_vdev_remove() returns, we
4189		 * must wait at least 1 txg to ensure that the removal
4190		 * struct has been created.
4191		 */
4192		txg_wait_synced(spa_get_dsl(spa), 0);
4193
4194		while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
4195			txg_wait_synced(spa_get_dsl(spa), 0);
4196	} else {
4197		mutex_exit(&ztest_vdev_lock);
4198		return;
4199	}
4200
4201	/*
4202	 * The pool needs to be scrubbed after completing device removal.
4203	 * Failure to do so may result in checksum errors due to the
4204	 * strategy employed by ztest_fault_inject() when selecting which
4205	 * offset are redundant and can be damaged.
4206	 */
4207	error = spa_scan(spa, POOL_SCAN_SCRUB);
4208	if (error == 0) {
4209		while (dsl_scan_scrubbing(spa_get_dsl(spa)))
4210			txg_wait_synced(spa_get_dsl(spa), 0);
4211	}
4212
4213	mutex_enter(&ztest_vdev_lock);
4214	ztest_device_removal_active = B_FALSE;
4215	mutex_exit(&ztest_vdev_lock);
4216}
4217
4218/*
4219 * Callback function which expands the physical size of the vdev.
4220 */
4221static vdev_t *
4222grow_vdev(vdev_t *vd, void *arg)
4223{
4224	spa_t *spa __maybe_unused = vd->vdev_spa;
4225	size_t *newsize = arg;
4226	size_t fsize;
4227	int fd;
4228
4229	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
4230	ASSERT(vd->vdev_ops->vdev_op_leaf);
4231
4232	if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
4233		return (vd);
4234
4235	fsize = lseek(fd, 0, SEEK_END);
4236	VERIFY0(ftruncate(fd, *newsize));
4237
4238	if (ztest_opts.zo_verbose >= 6) {
4239		(void) printf("%s grew from %lu to %lu bytes\n",
4240		    vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
4241	}
4242	(void) close(fd);
4243	return (NULL);
4244}
4245
4246/*
4247 * Callback function which expands a given vdev by calling vdev_online().
4248 */
4249static vdev_t *
4250online_vdev(vdev_t *vd, void *arg)
4251{
4252	(void) arg;
4253	spa_t *spa = vd->vdev_spa;
4254	vdev_t *tvd = vd->vdev_top;
4255	uint64_t guid = vd->vdev_guid;
4256	uint64_t generation = spa->spa_config_generation + 1;
4257	vdev_state_t newstate = VDEV_STATE_UNKNOWN;
4258	int error;
4259
4260	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
4261	ASSERT(vd->vdev_ops->vdev_op_leaf);
4262
4263	/* Calling vdev_online will initialize the new metaslabs */
4264	spa_config_exit(spa, SCL_STATE, spa);
4265	error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
4266	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4267
4268	/*
4269	 * If vdev_online returned an error or the underlying vdev_open
4270	 * failed then we abort the expand. The only way to know that
4271	 * vdev_open fails is by checking the returned newstate.
4272	 */
4273	if (error || newstate != VDEV_STATE_HEALTHY) {
4274		if (ztest_opts.zo_verbose >= 5) {
4275			(void) printf("Unable to expand vdev, state %u, "
4276			    "error %d\n", newstate, error);
4277		}
4278		return (vd);
4279	}
4280	ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
4281
4282	/*
4283	 * Since we dropped the lock we need to ensure that we're
4284	 * still talking to the original vdev. It's possible this
4285	 * vdev may have been detached/replaced while we were
4286	 * trying to online it.
4287	 */
4288	if (generation != spa->spa_config_generation) {
4289		if (ztest_opts.zo_verbose >= 5) {
4290			(void) printf("vdev configuration has changed, "
4291			    "guid %"PRIu64", state %"PRIu64", "
4292			    "expected gen %"PRIu64", got gen %"PRIu64"\n",
4293			    guid,
4294			    tvd->vdev_state,
4295			    generation,
4296			    spa->spa_config_generation);
4297		}
4298		return (vd);
4299	}
4300	return (NULL);
4301}
4302
4303/*
4304 * Traverse the vdev tree calling the supplied function.
4305 * We continue to walk the tree until we either have walked all
4306 * children or we receive a non-NULL return from the callback.
4307 * If a NULL callback is passed, then we just return back the first
4308 * leaf vdev we encounter.
4309 */
4310static vdev_t *
4311vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
4312{
4313	uint_t c;
4314
4315	if (vd->vdev_ops->vdev_op_leaf) {
4316		if (func == NULL)
4317			return (vd);
4318		else
4319			return (func(vd, arg));
4320	}
4321
4322	for (c = 0; c < vd->vdev_children; c++) {
4323		vdev_t *cvd = vd->vdev_child[c];
4324		if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
4325			return (cvd);
4326	}
4327	return (NULL);
4328}
4329
4330/*
4331 * Verify that dynamic LUN growth works as expected.
4332 */
4333void
4334ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
4335{
4336	(void) zd, (void) id;
4337	spa_t *spa = ztest_spa;
4338	vdev_t *vd, *tvd;
4339	metaslab_class_t *mc;
4340	metaslab_group_t *mg;
4341	size_t psize, newsize;
4342	uint64_t top;
4343	uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
4344
4345	mutex_enter(&ztest_checkpoint_lock);
4346	mutex_enter(&ztest_vdev_lock);
4347	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4348
4349	/*
4350	 * If there is a vdev removal in progress, it could complete while
4351	 * we are running, in which case we would not be able to verify
4352	 * that the metaslab_class space increased (because it decreases
4353	 * when the device removal completes).
4354	 */
4355	if (ztest_device_removal_active) {
4356		spa_config_exit(spa, SCL_STATE, spa);
4357		mutex_exit(&ztest_vdev_lock);
4358		mutex_exit(&ztest_checkpoint_lock);
4359		return;
4360	}
4361
4362	/*
4363	 * If we are under raidz expansion, the test can failed because the
4364	 * metaslabs count will not increase immediately after the vdev is
4365	 * expanded. It will happen only after raidz expansion completion.
4366	 */
4367	if (spa->spa_raidz_expand) {
4368		spa_config_exit(spa, SCL_STATE, spa);
4369		mutex_exit(&ztest_vdev_lock);
4370		mutex_exit(&ztest_checkpoint_lock);
4371		return;
4372	}
4373
4374	top = ztest_random_vdev_top(spa, B_TRUE);
4375
4376	tvd = spa->spa_root_vdev->vdev_child[top];
4377	mg = tvd->vdev_mg;
4378	mc = mg->mg_class;
4379	old_ms_count = tvd->vdev_ms_count;
4380	old_class_space = metaslab_class_get_space(mc);
4381
4382	/*
4383	 * Determine the size of the first leaf vdev associated with
4384	 * our top-level device.
4385	 */
4386	vd = vdev_walk_tree(tvd, NULL, NULL);
4387	ASSERT3P(vd, !=, NULL);
4388	ASSERT(vd->vdev_ops->vdev_op_leaf);
4389
4390	psize = vd->vdev_psize;
4391
4392	/*
4393	 * We only try to expand the vdev if it's healthy, less than 4x its
4394	 * original size, and it has a valid psize.
4395	 */
4396	if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
4397	    psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
4398		spa_config_exit(spa, SCL_STATE, spa);
4399		mutex_exit(&ztest_vdev_lock);
4400		mutex_exit(&ztest_checkpoint_lock);
4401		return;
4402	}
4403	ASSERT3U(psize, >, 0);
4404	newsize = psize + MAX(psize / 8, SPA_MAXBLOCKSIZE);
4405	ASSERT3U(newsize, >, psize);
4406
4407	if (ztest_opts.zo_verbose >= 6) {
4408		(void) printf("Expanding LUN %s from %lu to %lu\n",
4409		    vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
4410	}
4411
4412	/*
4413	 * Growing the vdev is a two step process:
4414	 *	1). expand the physical size (i.e. relabel)
4415	 *	2). online the vdev to create the new metaslabs
4416	 */
4417	if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
4418	    vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
4419	    tvd->vdev_state != VDEV_STATE_HEALTHY) {
4420		if (ztest_opts.zo_verbose >= 5) {
4421			(void) printf("Could not expand LUN because "
4422			    "the vdev configuration changed.\n");
4423		}
4424		spa_config_exit(spa, SCL_STATE, spa);
4425		mutex_exit(&ztest_vdev_lock);
4426		mutex_exit(&ztest_checkpoint_lock);
4427		return;
4428	}
4429
4430	spa_config_exit(spa, SCL_STATE, spa);
4431
4432	/*
4433	 * Expanding the LUN will update the config asynchronously,
4434	 * thus we must wait for the async thread to complete any
4435	 * pending tasks before proceeding.
4436	 */
4437	for (;;) {
4438		boolean_t done;
4439		mutex_enter(&spa->spa_async_lock);
4440		done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
4441		mutex_exit(&spa->spa_async_lock);
4442		if (done)
4443			break;
4444		txg_wait_synced(spa_get_dsl(spa), 0);
4445		(void) poll(NULL, 0, 100);
4446	}
4447
4448	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4449
4450	tvd = spa->spa_root_vdev->vdev_child[top];
4451	new_ms_count = tvd->vdev_ms_count;
4452	new_class_space = metaslab_class_get_space(mc);
4453
4454	if (tvd->vdev_mg != mg || mg->mg_class != mc) {
4455		if (ztest_opts.zo_verbose >= 5) {
4456			(void) printf("Could not verify LUN expansion due to "
4457			    "intervening vdev offline or remove.\n");
4458		}
4459		spa_config_exit(spa, SCL_STATE, spa);
4460		mutex_exit(&ztest_vdev_lock);
4461		mutex_exit(&ztest_checkpoint_lock);
4462		return;
4463	}
4464
4465	/*
4466	 * Make sure we were able to grow the vdev.
4467	 */
4468	if (new_ms_count <= old_ms_count) {
4469		fatal(B_FALSE,
4470		    "LUN expansion failed: ms_count %"PRIu64" < %"PRIu64"\n",
4471		    old_ms_count, new_ms_count);
4472	}
4473
4474	/*
4475	 * Make sure we were able to grow the pool.
4476	 */
4477	if (new_class_space <= old_class_space) {
4478		fatal(B_FALSE,
4479		    "LUN expansion failed: class_space %"PRIu64" < %"PRIu64"\n",
4480		    old_class_space, new_class_space);
4481	}
4482
4483	if (ztest_opts.zo_verbose >= 5) {
4484		char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ];
4485
4486		nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf));
4487		nicenum(new_class_space, newnumbuf, sizeof (newnumbuf));
4488		(void) printf("%s grew from %s to %s\n",
4489		    spa->spa_name, oldnumbuf, newnumbuf);
4490	}
4491
4492	spa_config_exit(spa, SCL_STATE, spa);
4493	mutex_exit(&ztest_vdev_lock);
4494	mutex_exit(&ztest_checkpoint_lock);
4495}
4496
4497/*
4498 * Verify that dmu_objset_{create,destroy,open,close} work as expected.
4499 */
4500static void
4501ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
4502{
4503	(void) arg, (void) cr;
4504
4505	/*
4506	 * Create the objects common to all ztest datasets.
4507	 */
4508	VERIFY0(zap_create_claim(os, ZTEST_DIROBJ,
4509	    DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx));
4510}
4511
4512static int
4513ztest_dataset_create(char *dsname)
4514{
4515	int err;
4516	uint64_t rand;
4517	dsl_crypto_params_t *dcp = NULL;
4518
4519	/*
4520	 * 50% of the time, we create encrypted datasets
4521	 * using a random cipher suite and a hard-coded
4522	 * wrapping key.
4523	 */
4524	rand = ztest_random(2);
4525	if (rand != 0) {
4526		nvlist_t *crypto_args = fnvlist_alloc();
4527		nvlist_t *props = fnvlist_alloc();
4528
4529		/* slight bias towards the default cipher suite */
4530		rand = ztest_random(ZIO_CRYPT_FUNCTIONS);
4531		if (rand < ZIO_CRYPT_AES_128_CCM)
4532			rand = ZIO_CRYPT_ON;
4533
4534		fnvlist_add_uint64(props,
4535		    zfs_prop_to_name(ZFS_PROP_ENCRYPTION), rand);
4536		fnvlist_add_uint8_array(crypto_args, "wkeydata",
4537		    (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
4538
4539		/*
4540		 * These parameters aren't really used by the kernel. They
4541		 * are simply stored so that userspace knows how to load
4542		 * the wrapping key.
4543		 */
4544		fnvlist_add_uint64(props,
4545		    zfs_prop_to_name(ZFS_PROP_KEYFORMAT), ZFS_KEYFORMAT_RAW);
4546		fnvlist_add_string(props,
4547		    zfs_prop_to_name(ZFS_PROP_KEYLOCATION), "prompt");
4548		fnvlist_add_uint64(props,
4549		    zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 0ULL);
4550		fnvlist_add_uint64(props,
4551		    zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 0ULL);
4552
4553		VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, props,
4554		    crypto_args, &dcp));
4555
4556		/*
4557		 * Cycle through all available encryption implementations
4558		 * to verify interoperability.
4559		 */
4560		VERIFY0(gcm_impl_set("cycle"));
4561		VERIFY0(aes_impl_set("cycle"));
4562
4563		fnvlist_free(crypto_args);
4564		fnvlist_free(props);
4565	}
4566
4567	err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, dcp,
4568	    ztest_objset_create_cb, NULL);
4569	dsl_crypto_params_free(dcp, !!err);
4570
4571	rand = ztest_random(100);
4572	if (err || rand < 80)
4573		return (err);
4574
4575	if (ztest_opts.zo_verbose >= 5)
4576		(void) printf("Setting dataset %s to sync always\n", dsname);
4577	return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
4578	    ZFS_SYNC_ALWAYS, B_FALSE));
4579}
4580
4581static int
4582ztest_objset_destroy_cb(const char *name, void *arg)
4583{
4584	(void) arg;
4585	objset_t *os;
4586	dmu_object_info_t doi;
4587	int error;
4588
4589	/*
4590	 * Verify that the dataset contains a directory object.
4591	 */
4592	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
4593	    B_TRUE, FTAG, &os));
4594	error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
4595	if (error != ENOENT) {
4596		/* We could have crashed in the middle of destroying it */
4597		ASSERT0(error);
4598		ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
4599		ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
4600	}
4601	dmu_objset_disown(os, B_TRUE, FTAG);
4602
4603	/*
4604	 * Destroy the dataset.
4605	 */
4606	if (strchr(name, '@') != NULL) {
4607		error = dsl_destroy_snapshot(name, B_TRUE);
4608		if (error != ECHRNG) {
4609			/*
4610			 * The program was executed, but encountered a runtime
4611			 * error, such as insufficient slop, or a hold on the
4612			 * dataset.
4613			 */
4614			ASSERT0(error);
4615		}
4616	} else {
4617		error = dsl_destroy_head(name);
4618		if (error == ENOSPC) {
4619			/* There could be checkpoint or insufficient slop */
4620			ztest_record_enospc(FTAG);
4621		} else if (error != EBUSY) {
4622			/* There could be a hold on this dataset */
4623			ASSERT0(error);
4624		}
4625	}
4626	return (0);
4627}
4628
4629static boolean_t
4630ztest_snapshot_create(char *osname, uint64_t id)
4631{
4632	char snapname[ZFS_MAX_DATASET_NAME_LEN];
4633	int error;
4634
4635	(void) snprintf(snapname, sizeof (snapname), "%"PRIu64"", id);
4636
4637	error = dmu_objset_snapshot_one(osname, snapname);
4638	if (error == ENOSPC) {
4639		ztest_record_enospc(FTAG);
4640		return (B_FALSE);
4641	}
4642	if (error != 0 && error != EEXIST && error != ECHRNG) {
4643		fatal(B_FALSE, "ztest_snapshot_create(%s@%s) = %d", osname,
4644		    snapname, error);
4645	}
4646	return (B_TRUE);
4647}
4648
4649static boolean_t
4650ztest_snapshot_destroy(char *osname, uint64_t id)
4651{
4652	char snapname[ZFS_MAX_DATASET_NAME_LEN];
4653	int error;
4654
4655	(void) snprintf(snapname, sizeof (snapname), "%s@%"PRIu64"",
4656	    osname, id);
4657
4658	error = dsl_destroy_snapshot(snapname, B_FALSE);
4659	if (error != 0 && error != ENOENT && error != ECHRNG)
4660		fatal(B_FALSE, "ztest_snapshot_destroy(%s) = %d",
4661		    snapname, error);
4662	return (B_TRUE);
4663}
4664
4665void
4666ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
4667{
4668	(void) zd;
4669	ztest_ds_t *zdtmp;
4670	int iters;
4671	int error;
4672	objset_t *os, *os2;
4673	char name[ZFS_MAX_DATASET_NAME_LEN];
4674	zilog_t *zilog;
4675	int i;
4676
4677	zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
4678
4679	(void) pthread_rwlock_rdlock(&ztest_name_lock);
4680
4681	(void) snprintf(name, sizeof (name), "%s/temp_%"PRIu64"",
4682	    ztest_opts.zo_pool, id);
4683
4684	/*
4685	 * If this dataset exists from a previous run, process its replay log
4686	 * half of the time.  If we don't replay it, then dsl_destroy_head()
4687	 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
4688	 */
4689	if (ztest_random(2) == 0 &&
4690	    ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
4691	    B_TRUE, FTAG, &os) == 0) {
4692		ztest_zd_init(zdtmp, NULL, os);
4693		zil_replay(os, zdtmp, ztest_replay_vector);
4694		ztest_zd_fini(zdtmp);
4695		dmu_objset_disown(os, B_TRUE, FTAG);
4696	}
4697
4698	/*
4699	 * There may be an old instance of the dataset we're about to
4700	 * create lying around from a previous run.  If so, destroy it
4701	 * and all of its snapshots.
4702	 */
4703	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
4704	    DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
4705
4706	/*
4707	 * Verify that the destroyed dataset is no longer in the namespace.
4708	 * It may still be present if the destroy above fails with ENOSPC.
4709	 */
4710	error = ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, B_TRUE,
4711	    FTAG, &os);
4712	if (error == 0) {
4713		dmu_objset_disown(os, B_TRUE, FTAG);
4714		ztest_record_enospc(FTAG);
4715		goto out;
4716	}
4717	VERIFY3U(ENOENT, ==, error);
4718
4719	/*
4720	 * Verify that we can create a new dataset.
4721	 */
4722	error = ztest_dataset_create(name);
4723	if (error) {
4724		if (error == ENOSPC) {
4725			ztest_record_enospc(FTAG);
4726			goto out;
4727		}
4728		fatal(B_FALSE, "dmu_objset_create(%s) = %d", name, error);
4729	}
4730
4731	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE,
4732	    FTAG, &os));
4733
4734	ztest_zd_init(zdtmp, NULL, os);
4735
4736	/*
4737	 * Open the intent log for it.
4738	 */
4739	zilog = zil_open(os, ztest_get_data, NULL);
4740
4741	/*
4742	 * Put some objects in there, do a little I/O to them,
4743	 * and randomly take a couple of snapshots along the way.
4744	 */
4745	iters = ztest_random(5);
4746	for (i = 0; i < iters; i++) {
4747		ztest_dmu_object_alloc_free(zdtmp, id);
4748		if (ztest_random(iters) == 0)
4749			(void) ztest_snapshot_create(name, i);
4750	}
4751
4752	/*
4753	 * Verify that we cannot create an existing dataset.
4754	 */
4755	VERIFY3U(EEXIST, ==,
4756	    dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL, NULL));
4757
4758	/*
4759	 * Verify that we can hold an objset that is also owned.
4760	 */
4761	VERIFY0(dmu_objset_hold(name, FTAG, &os2));
4762	dmu_objset_rele(os2, FTAG);
4763
4764	/*
4765	 * Verify that we cannot own an objset that is already owned.
4766	 */
4767	VERIFY3U(EBUSY, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER,
4768	    B_FALSE, B_TRUE, FTAG, &os2));
4769
4770	zil_close(zilog);
4771	dmu_objset_disown(os, B_TRUE, FTAG);
4772	ztest_zd_fini(zdtmp);
4773out:
4774	(void) pthread_rwlock_unlock(&ztest_name_lock);
4775
4776	umem_free(zdtmp, sizeof (ztest_ds_t));
4777}
4778
4779/*
4780 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
4781 */
4782void
4783ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
4784{
4785	(void) pthread_rwlock_rdlock(&ztest_name_lock);
4786	(void) ztest_snapshot_destroy(zd->zd_name, id);
4787	(void) ztest_snapshot_create(zd->zd_name, id);
4788	(void) pthread_rwlock_unlock(&ztest_name_lock);
4789}
4790
4791/*
4792 * Cleanup non-standard snapshots and clones.
4793 */
4794static void
4795ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
4796{
4797	char *snap1name;
4798	char *clone1name;
4799	char *snap2name;
4800	char *clone2name;
4801	char *snap3name;
4802	int error;
4803
4804	snap1name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4805	clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4806	snap2name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4807	clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4808	snap3name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4809
4810	(void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"",
4811	    osname, id);
4812	(void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"",
4813	    osname, id);
4814	(void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"",
4815	    clone1name, id);
4816	(void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"",
4817	    osname, id);
4818	(void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"",
4819	    clone1name, id);
4820
4821	error = dsl_destroy_head(clone2name);
4822	if (error && error != ENOENT)
4823		fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone2name, error);
4824	error = dsl_destroy_snapshot(snap3name, B_FALSE);
4825	if (error && error != ENOENT)
4826		fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4827		    snap3name, error);
4828	error = dsl_destroy_snapshot(snap2name, B_FALSE);
4829	if (error && error != ENOENT)
4830		fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4831		    snap2name, error);
4832	error = dsl_destroy_head(clone1name);
4833	if (error && error != ENOENT)
4834		fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone1name, error);
4835	error = dsl_destroy_snapshot(snap1name, B_FALSE);
4836	if (error && error != ENOENT)
4837		fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4838		    snap1name, error);
4839
4840	umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4841	umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4842	umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4843	umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4844	umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4845}
4846
4847/*
4848 * Verify dsl_dataset_promote handles EBUSY
4849 */
4850void
4851ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
4852{
4853	objset_t *os;
4854	char *snap1name;
4855	char *clone1name;
4856	char *snap2name;
4857	char *clone2name;
4858	char *snap3name;
4859	char *osname = zd->zd_name;
4860	int error;
4861
4862	snap1name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4863	clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4864	snap2name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4865	clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4866	snap3name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4867
4868	(void) pthread_rwlock_rdlock(&ztest_name_lock);
4869
4870	ztest_dsl_dataset_cleanup(osname, id);
4871
4872	(void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"",
4873	    osname, id);
4874	(void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"",
4875	    osname, id);
4876	(void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"",
4877	    clone1name, id);
4878	(void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"",
4879	    osname, id);
4880	(void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"",
4881	    clone1name, id);
4882
4883	error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
4884	if (error && error != EEXIST) {
4885		if (error == ENOSPC) {
4886			ztest_record_enospc(FTAG);
4887			goto out;
4888		}
4889		fatal(B_FALSE, "dmu_take_snapshot(%s) = %d", snap1name, error);
4890	}
4891
4892	error = dmu_objset_clone(clone1name, snap1name);
4893	if (error) {
4894		if (error == ENOSPC) {
4895			ztest_record_enospc(FTAG);
4896			goto out;
4897		}
4898		fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone1name, error);
4899	}
4900
4901	error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
4902	if (error && error != EEXIST) {
4903		if (error == ENOSPC) {
4904			ztest_record_enospc(FTAG);
4905			goto out;
4906		}
4907		fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap2name, error);
4908	}
4909
4910	error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
4911	if (error && error != EEXIST) {
4912		if (error == ENOSPC) {
4913			ztest_record_enospc(FTAG);
4914			goto out;
4915		}
4916		fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap3name, error);
4917	}
4918
4919	error = dmu_objset_clone(clone2name, snap3name);
4920	if (error) {
4921		if (error == ENOSPC) {
4922			ztest_record_enospc(FTAG);
4923			goto out;
4924		}
4925		fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone2name, error);
4926	}
4927
4928	error = ztest_dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, B_TRUE,
4929	    FTAG, &os);
4930	if (error)
4931		fatal(B_FALSE, "dmu_objset_own(%s) = %d", snap2name, error);
4932	error = dsl_dataset_promote(clone2name, NULL);
4933	if (error == ENOSPC) {
4934		dmu_objset_disown(os, B_TRUE, FTAG);
4935		ztest_record_enospc(FTAG);
4936		goto out;
4937	}
4938	if (error != EBUSY)
4939		fatal(B_FALSE, "dsl_dataset_promote(%s), %d, not EBUSY",
4940		    clone2name, error);
4941	dmu_objset_disown(os, B_TRUE, FTAG);
4942
4943out:
4944	ztest_dsl_dataset_cleanup(osname, id);
4945
4946	(void) pthread_rwlock_unlock(&ztest_name_lock);
4947
4948	umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4949	umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4950	umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4951	umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4952	umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4953}
4954
4955#undef OD_ARRAY_SIZE
4956#define	OD_ARRAY_SIZE	4
4957
4958/*
4959 * Verify that dmu_object_{alloc,free} work as expected.
4960 */
4961void
4962ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
4963{
4964	ztest_od_t *od;
4965	int batchsize;
4966	int size;
4967	int b;
4968
4969	size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4970	od = umem_alloc(size, UMEM_NOFAIL);
4971	batchsize = OD_ARRAY_SIZE;
4972
4973	for (b = 0; b < batchsize; b++)
4974		ztest_od_init(od + b, id, FTAG, b, DMU_OT_UINT64_OTHER,
4975		    0, 0, 0);
4976
4977	/*
4978	 * Destroy the previous batch of objects, create a new batch,
4979	 * and do some I/O on the new objects.
4980	 */
4981	if (ztest_object_init(zd, od, size, B_TRUE) != 0) {
4982		zd->zd_od = NULL;
4983		umem_free(od, size);
4984		return;
4985	}
4986
4987	while (ztest_random(4 * batchsize) != 0)
4988		ztest_io(zd, od[ztest_random(batchsize)].od_object,
4989		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4990
4991	umem_free(od, size);
4992}
4993
4994/*
4995 * Rewind the global allocator to verify object allocation backfilling.
4996 */
4997void
4998ztest_dmu_object_next_chunk(ztest_ds_t *zd, uint64_t id)
4999{
5000	(void) id;
5001	objset_t *os = zd->zd_os;
5002	uint_t dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift;
5003	uint64_t object;
5004
5005	/*
5006	 * Rewind the global allocator randomly back to a lower object number
5007	 * to force backfilling and reclamation of recently freed dnodes.
5008	 */
5009	mutex_enter(&os->os_obj_lock);
5010	object = ztest_random(os->os_obj_next_chunk);
5011	os->os_obj_next_chunk = P2ALIGN_TYPED(object, dnodes_per_chunk,
5012	    uint64_t);
5013	mutex_exit(&os->os_obj_lock);
5014}
5015
5016#undef OD_ARRAY_SIZE
5017#define	OD_ARRAY_SIZE	2
5018
5019/*
5020 * Verify that dmu_{read,write} work as expected.
5021 */
5022void
5023ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
5024{
5025	int size;
5026	ztest_od_t *od;
5027
5028	objset_t *os = zd->zd_os;
5029	size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
5030	od = umem_alloc(size, UMEM_NOFAIL);
5031	dmu_tx_t *tx;
5032	int freeit, error;
5033	uint64_t i, n, s, txg;
5034	bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
5035	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
5036	uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
5037	uint64_t regions = 997;
5038	uint64_t stride = 123456789ULL;
5039	uint64_t width = 40;
5040	int free_percent = 5;
5041
5042	/*
5043	 * This test uses two objects, packobj and bigobj, that are always
5044	 * updated together (i.e. in the same tx) so that their contents are
5045	 * in sync and can be compared.  Their contents relate to each other
5046	 * in a simple way: packobj is a dense array of 'bufwad' structures,
5047	 * while bigobj is a sparse array of the same bufwads.  Specifically,
5048	 * for any index n, there are three bufwads that should be identical:
5049	 *
5050	 *	packobj, at offset n * sizeof (bufwad_t)
5051	 *	bigobj, at the head of the nth chunk
5052	 *	bigobj, at the tail of the nth chunk
5053	 *
5054	 * The chunk size is arbitrary. It doesn't have to be a power of two,
5055	 * and it doesn't have any relation to the object blocksize.
5056	 * The only requirement is that it can hold at least two bufwads.
5057	 *
5058	 * Normally, we write the bufwad to each of these locations.
5059	 * However, free_percent of the time we instead write zeroes to
5060	 * packobj and perform a dmu_free_range() on bigobj.  By comparing
5061	 * bigobj to packobj, we can verify that the DMU is correctly
5062	 * tracking which parts of an object are allocated and free,
5063	 * and that the contents of the allocated blocks are correct.
5064	 */
5065
5066	/*
5067	 * Read the directory info.  If it's the first time, set things up.
5068	 */
5069	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, chunksize);
5070	ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
5071	    chunksize);
5072
5073	if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
5074		umem_free(od, size);
5075		return;
5076	}
5077
5078	bigobj = od[0].od_object;
5079	packobj = od[1].od_object;
5080	chunksize = od[0].od_gen;
5081	ASSERT3U(chunksize, ==, od[1].od_gen);
5082
5083	/*
5084	 * Prefetch a random chunk of the big object.
5085	 * Our aim here is to get some async reads in flight
5086	 * for blocks that we may free below; the DMU should
5087	 * handle this race correctly.
5088	 */
5089	n = ztest_random(regions) * stride + ztest_random(width);
5090	s = 1 + ztest_random(2 * width - 1);
5091	dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
5092	    ZIO_PRIORITY_SYNC_READ);
5093
5094	/*
5095	 * Pick a random index and compute the offsets into packobj and bigobj.
5096	 */
5097	n = ztest_random(regions) * stride + ztest_random(width);
5098	s = 1 + ztest_random(width - 1);
5099
5100	packoff = n * sizeof (bufwad_t);
5101	packsize = s * sizeof (bufwad_t);
5102
5103	bigoff = n * chunksize;
5104	bigsize = s * chunksize;
5105
5106	packbuf = umem_alloc(packsize, UMEM_NOFAIL);
5107	bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
5108
5109	/*
5110	 * free_percent of the time, free a range of bigobj rather than
5111	 * overwriting it.
5112	 */
5113	freeit = (ztest_random(100) < free_percent);
5114
5115	/*
5116	 * Read the current contents of our objects.
5117	 */
5118	error = dmu_read(os, packobj, packoff, packsize, packbuf,
5119	    DMU_READ_PREFETCH);
5120	ASSERT0(error);
5121	error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
5122	    DMU_READ_PREFETCH);
5123	ASSERT0(error);
5124
5125	/*
5126	 * Get a tx for the mods to both packobj and bigobj.
5127	 */
5128	tx = dmu_tx_create(os);
5129
5130	dmu_tx_hold_write(tx, packobj, packoff, packsize);
5131
5132	if (freeit)
5133		dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
5134	else
5135		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
5136
5137	/* This accounts for setting the checksum/compression. */
5138	dmu_tx_hold_bonus(tx, bigobj);
5139
5140	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5141	if (txg == 0) {
5142		umem_free(packbuf, packsize);
5143		umem_free(bigbuf, bigsize);
5144		umem_free(od, size);
5145		return;
5146	}
5147
5148	enum zio_checksum cksum;
5149	do {
5150		cksum = (enum zio_checksum)
5151		    ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
5152	} while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
5153	dmu_object_set_checksum(os, bigobj, cksum, tx);
5154
5155	enum zio_compress comp;
5156	do {
5157		comp = (enum zio_compress)
5158		    ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
5159	} while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
5160	dmu_object_set_compress(os, bigobj, comp, tx);
5161
5162	/*
5163	 * For each index from n to n + s, verify that the existing bufwad
5164	 * in packobj matches the bufwads at the head and tail of the
5165	 * corresponding chunk in bigobj.  Then update all three bufwads
5166	 * with the new values we want to write out.
5167	 */
5168	for (i = 0; i < s; i++) {
5169		/* LINTED */
5170		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
5171		/* LINTED */
5172		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
5173		/* LINTED */
5174		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
5175
5176		ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
5177		ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
5178
5179		if (pack->bw_txg > txg)
5180			fatal(B_FALSE,
5181			    "future leak: got %"PRIx64", open txg is %"PRIx64"",
5182			    pack->bw_txg, txg);
5183
5184		if (pack->bw_data != 0 && pack->bw_index != n + i)
5185			fatal(B_FALSE, "wrong index: "
5186			    "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"",
5187			    pack->bw_index, n, i);
5188
5189		if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0)
5190			fatal(B_FALSE, "pack/bigH mismatch in %p/%p",
5191			    pack, bigH);
5192
5193		if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0)
5194			fatal(B_FALSE, "pack/bigT mismatch in %p/%p",
5195			    pack, bigT);
5196
5197		if (freeit) {
5198			memset(pack, 0, sizeof (bufwad_t));
5199		} else {
5200			pack->bw_index = n + i;
5201			pack->bw_txg = txg;
5202			pack->bw_data = 1 + ztest_random(-2ULL);
5203		}
5204		*bigH = *pack;
5205		*bigT = *pack;
5206	}
5207
5208	/*
5209	 * We've verified all the old bufwads, and made new ones.
5210	 * Now write them out.
5211	 */
5212	dmu_write(os, packobj, packoff, packsize, packbuf, tx);
5213
5214	if (freeit) {
5215		if (ztest_opts.zo_verbose >= 7) {
5216			(void) printf("freeing offset %"PRIx64" size %"PRIx64""
5217			    " txg %"PRIx64"\n",
5218			    bigoff, bigsize, txg);
5219		}
5220		VERIFY0(dmu_free_range(os, bigobj, bigoff, bigsize, tx));
5221	} else {
5222		if (ztest_opts.zo_verbose >= 7) {
5223			(void) printf("writing offset %"PRIx64" size %"PRIx64""
5224			    " txg %"PRIx64"\n",
5225			    bigoff, bigsize, txg);
5226		}
5227		dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
5228	}
5229
5230	dmu_tx_commit(tx);
5231
5232	/*
5233	 * Sanity check the stuff we just wrote.
5234	 */
5235	{
5236		void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
5237		void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
5238
5239		VERIFY0(dmu_read(os, packobj, packoff,
5240		    packsize, packcheck, DMU_READ_PREFETCH));
5241		VERIFY0(dmu_read(os, bigobj, bigoff,
5242		    bigsize, bigcheck, DMU_READ_PREFETCH));
5243
5244		ASSERT0(memcmp(packbuf, packcheck, packsize));
5245		ASSERT0(memcmp(bigbuf, bigcheck, bigsize));
5246
5247		umem_free(packcheck, packsize);
5248		umem_free(bigcheck, bigsize);
5249	}
5250
5251	umem_free(packbuf, packsize);
5252	umem_free(bigbuf, bigsize);
5253	umem_free(od, size);
5254}
5255
5256static void
5257compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
5258    uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
5259{
5260	uint64_t i;
5261	bufwad_t *pack;
5262	bufwad_t *bigH;
5263	bufwad_t *bigT;
5264
5265	/*
5266	 * For each index from n to n + s, verify that the existing bufwad
5267	 * in packobj matches the bufwads at the head and tail of the
5268	 * corresponding chunk in bigobj.  Then update all three bufwads
5269	 * with the new values we want to write out.
5270	 */
5271	for (i = 0; i < s; i++) {
5272		/* LINTED */
5273		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
5274		/* LINTED */
5275		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
5276		/* LINTED */
5277		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
5278
5279		ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
5280		ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
5281
5282		if (pack->bw_txg > txg)
5283			fatal(B_FALSE,
5284			    "future leak: got %"PRIx64", open txg is %"PRIx64"",
5285			    pack->bw_txg, txg);
5286
5287		if (pack->bw_data != 0 && pack->bw_index != n + i)
5288			fatal(B_FALSE, "wrong index: "
5289			    "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"",
5290			    pack->bw_index, n, i);
5291
5292		if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0)
5293			fatal(B_FALSE, "pack/bigH mismatch in %p/%p",
5294			    pack, bigH);
5295
5296		if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0)
5297			fatal(B_FALSE, "pack/bigT mismatch in %p/%p",
5298			    pack, bigT);
5299
5300		pack->bw_index = n + i;
5301		pack->bw_txg = txg;
5302		pack->bw_data = 1 + ztest_random(-2ULL);
5303
5304		*bigH = *pack;
5305		*bigT = *pack;
5306	}
5307}
5308
5309#undef OD_ARRAY_SIZE
5310#define	OD_ARRAY_SIZE	2
5311
5312void
5313ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
5314{
5315	objset_t *os = zd->zd_os;
5316	ztest_od_t *od;
5317	dmu_tx_t *tx;
5318	uint64_t i;
5319	int error;
5320	int size;
5321	uint64_t n, s, txg;
5322	bufwad_t *packbuf, *bigbuf;
5323	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
5324	uint64_t blocksize = ztest_random_blocksize();
5325	uint64_t chunksize = blocksize;
5326	uint64_t regions = 997;
5327	uint64_t stride = 123456789ULL;
5328	uint64_t width = 9;
5329	dmu_buf_t *bonus_db;
5330	arc_buf_t **bigbuf_arcbufs;
5331	dmu_object_info_t doi;
5332
5333	size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
5334	od = umem_alloc(size, UMEM_NOFAIL);
5335
5336	/*
5337	 * This test uses two objects, packobj and bigobj, that are always
5338	 * updated together (i.e. in the same tx) so that their contents are
5339	 * in sync and can be compared.  Their contents relate to each other
5340	 * in a simple way: packobj is a dense array of 'bufwad' structures,
5341	 * while bigobj is a sparse array of the same bufwads.  Specifically,
5342	 * for any index n, there are three bufwads that should be identical:
5343	 *
5344	 *	packobj, at offset n * sizeof (bufwad_t)
5345	 *	bigobj, at the head of the nth chunk
5346	 *	bigobj, at the tail of the nth chunk
5347	 *
5348	 * The chunk size is set equal to bigobj block size so that
5349	 * dmu_assign_arcbuf_by_dbuf() can be tested for object updates.
5350	 */
5351
5352	/*
5353	 * Read the directory info.  If it's the first time, set things up.
5354	 */
5355	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
5356	ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
5357	    chunksize);
5358
5359
5360	if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
5361		umem_free(od, size);
5362		return;
5363	}
5364
5365	bigobj = od[0].od_object;
5366	packobj = od[1].od_object;
5367	blocksize = od[0].od_blocksize;
5368	chunksize = blocksize;
5369	ASSERT3U(chunksize, ==, od[1].od_gen);
5370
5371	VERIFY0(dmu_object_info(os, bigobj, &doi));
5372	VERIFY(ISP2(doi.doi_data_block_size));
5373	VERIFY3U(chunksize, ==, doi.doi_data_block_size);
5374	VERIFY3U(chunksize, >=, 2 * sizeof (bufwad_t));
5375
5376	/*
5377	 * Pick a random index and compute the offsets into packobj and bigobj.
5378	 */
5379	n = ztest_random(regions) * stride + ztest_random(width);
5380	s = 1 + ztest_random(width - 1);
5381
5382	packoff = n * sizeof (bufwad_t);
5383	packsize = s * sizeof (bufwad_t);
5384
5385	bigoff = n * chunksize;
5386	bigsize = s * chunksize;
5387
5388	packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
5389	bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
5390
5391	VERIFY0(dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
5392
5393	bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
5394
5395	/*
5396	 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
5397	 * Iteration 1 test zcopy to already referenced dbufs.
5398	 * Iteration 2 test zcopy to dirty dbuf in the same txg.
5399	 * Iteration 3 test zcopy to dbuf dirty in previous txg.
5400	 * Iteration 4 test zcopy when dbuf is no longer dirty.
5401	 * Iteration 5 test zcopy when it can't be done.
5402	 * Iteration 6 one more zcopy write.
5403	 */
5404	for (i = 0; i < 7; i++) {
5405		uint64_t j;
5406		uint64_t off;
5407
5408		/*
5409		 * In iteration 5 (i == 5) use arcbufs
5410		 * that don't match bigobj blksz to test
5411		 * dmu_assign_arcbuf_by_dbuf() when it can't directly
5412		 * assign an arcbuf to a dbuf.
5413		 */
5414		for (j = 0; j < s; j++) {
5415			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5416				bigbuf_arcbufs[j] =
5417				    dmu_request_arcbuf(bonus_db, chunksize);
5418			} else {
5419				bigbuf_arcbufs[2 * j] =
5420				    dmu_request_arcbuf(bonus_db, chunksize / 2);
5421				bigbuf_arcbufs[2 * j + 1] =
5422				    dmu_request_arcbuf(bonus_db, chunksize / 2);
5423			}
5424		}
5425
5426		/*
5427		 * Get a tx for the mods to both packobj and bigobj.
5428		 */
5429		tx = dmu_tx_create(os);
5430
5431		dmu_tx_hold_write(tx, packobj, packoff, packsize);
5432		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
5433
5434		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5435		if (txg == 0) {
5436			umem_free(packbuf, packsize);
5437			umem_free(bigbuf, bigsize);
5438			for (j = 0; j < s; j++) {
5439				if (i != 5 ||
5440				    chunksize < (SPA_MINBLOCKSIZE * 2)) {
5441					dmu_return_arcbuf(bigbuf_arcbufs[j]);
5442				} else {
5443					dmu_return_arcbuf(
5444					    bigbuf_arcbufs[2 * j]);
5445					dmu_return_arcbuf(
5446					    bigbuf_arcbufs[2 * j + 1]);
5447				}
5448			}
5449			umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
5450			umem_free(od, size);
5451			dmu_buf_rele(bonus_db, FTAG);
5452			return;
5453		}
5454
5455		/*
5456		 * 50% of the time don't read objects in the 1st iteration to
5457		 * test dmu_assign_arcbuf_by_dbuf() for the case when there are
5458		 * no existing dbufs for the specified offsets.
5459		 */
5460		if (i != 0 || ztest_random(2) != 0) {
5461			error = dmu_read(os, packobj, packoff,
5462			    packsize, packbuf, DMU_READ_PREFETCH);
5463			ASSERT0(error);
5464			error = dmu_read(os, bigobj, bigoff, bigsize,
5465			    bigbuf, DMU_READ_PREFETCH);
5466			ASSERT0(error);
5467		}
5468		compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
5469		    n, chunksize, txg);
5470
5471		/*
5472		 * We've verified all the old bufwads, and made new ones.
5473		 * Now write them out.
5474		 */
5475		dmu_write(os, packobj, packoff, packsize, packbuf, tx);
5476		if (ztest_opts.zo_verbose >= 7) {
5477			(void) printf("writing offset %"PRIx64" size %"PRIx64""
5478			    " txg %"PRIx64"\n",
5479			    bigoff, bigsize, txg);
5480		}
5481		for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
5482			dmu_buf_t *dbt;
5483			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5484				memcpy(bigbuf_arcbufs[j]->b_data,
5485				    (caddr_t)bigbuf + (off - bigoff),
5486				    chunksize);
5487			} else {
5488				memcpy(bigbuf_arcbufs[2 * j]->b_data,
5489				    (caddr_t)bigbuf + (off - bigoff),
5490				    chunksize / 2);
5491				memcpy(bigbuf_arcbufs[2 * j + 1]->b_data,
5492				    (caddr_t)bigbuf + (off - bigoff) +
5493				    chunksize / 2,
5494				    chunksize / 2);
5495			}
5496
5497			if (i == 1) {
5498				VERIFY(dmu_buf_hold(os, bigobj, off,
5499				    FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
5500			}
5501			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5502				VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5503				    off, bigbuf_arcbufs[j], tx));
5504			} else {
5505				VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5506				    off, bigbuf_arcbufs[2 * j], tx));
5507				VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5508				    off + chunksize / 2,
5509				    bigbuf_arcbufs[2 * j + 1], tx));
5510			}
5511			if (i == 1) {
5512				dmu_buf_rele(dbt, FTAG);
5513			}
5514		}
5515		dmu_tx_commit(tx);
5516
5517		/*
5518		 * Sanity check the stuff we just wrote.
5519		 */
5520		{
5521			void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
5522			void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
5523
5524			VERIFY0(dmu_read(os, packobj, packoff,
5525			    packsize, packcheck, DMU_READ_PREFETCH));
5526			VERIFY0(dmu_read(os, bigobj, bigoff,
5527			    bigsize, bigcheck, DMU_READ_PREFETCH));
5528
5529			ASSERT0(memcmp(packbuf, packcheck, packsize));
5530			ASSERT0(memcmp(bigbuf, bigcheck, bigsize));
5531
5532			umem_free(packcheck, packsize);
5533			umem_free(bigcheck, bigsize);
5534		}
5535		if (i == 2) {
5536			txg_wait_open(dmu_objset_pool(os), 0, B_TRUE);
5537		} else if (i == 3) {
5538			txg_wait_synced(dmu_objset_pool(os), 0);
5539		}
5540	}
5541
5542	dmu_buf_rele(bonus_db, FTAG);
5543	umem_free(packbuf, packsize);
5544	umem_free(bigbuf, bigsize);
5545	umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
5546	umem_free(od, size);
5547}
5548
5549void
5550ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
5551{
5552	(void) id;
5553	ztest_od_t *od;
5554
5555	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5556	uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
5557	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5558
5559	/*
5560	 * Have multiple threads write to large offsets in an object
5561	 * to verify that parallel writes to an object -- even to the
5562	 * same blocks within the object -- doesn't cause any trouble.
5563	 */
5564	ztest_od_init(od, ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
5565
5566	if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0)
5567		return;
5568
5569	while (ztest_random(10) != 0)
5570		ztest_io(zd, od->od_object, offset);
5571
5572	umem_free(od, sizeof (ztest_od_t));
5573}
5574
5575void
5576ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
5577{
5578	ztest_od_t *od;
5579	uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
5580	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5581	uint64_t count = ztest_random(20) + 1;
5582	uint64_t blocksize = ztest_random_blocksize();
5583	void *data;
5584
5585	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5586
5587	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
5588
5589	if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5590	    !ztest_random(2)) != 0) {
5591		umem_free(od, sizeof (ztest_od_t));
5592		return;
5593	}
5594
5595	if (ztest_truncate(zd, od->od_object, offset, count * blocksize) != 0) {
5596		umem_free(od, sizeof (ztest_od_t));
5597		return;
5598	}
5599
5600	ztest_prealloc(zd, od->od_object, offset, count * blocksize);
5601
5602	data = umem_zalloc(blocksize, UMEM_NOFAIL);
5603
5604	while (ztest_random(count) != 0) {
5605		uint64_t randoff = offset + (ztest_random(count) * blocksize);
5606		if (ztest_write(zd, od->od_object, randoff, blocksize,
5607		    data) != 0)
5608			break;
5609		while (ztest_random(4) != 0)
5610			ztest_io(zd, od->od_object, randoff);
5611	}
5612
5613	umem_free(data, blocksize);
5614	umem_free(od, sizeof (ztest_od_t));
5615}
5616
5617/*
5618 * Verify that zap_{create,destroy,add,remove,update} work as expected.
5619 */
5620#define	ZTEST_ZAP_MIN_INTS	1
5621#define	ZTEST_ZAP_MAX_INTS	4
5622#define	ZTEST_ZAP_MAX_PROPS	1000
5623
5624void
5625ztest_zap(ztest_ds_t *zd, uint64_t id)
5626{
5627	objset_t *os = zd->zd_os;
5628	ztest_od_t *od;
5629	uint64_t object;
5630	uint64_t txg, last_txg;
5631	uint64_t value[ZTEST_ZAP_MAX_INTS];
5632	uint64_t zl_ints, zl_intsize, prop;
5633	int i, ints;
5634	dmu_tx_t *tx;
5635	char propname[100], txgname[100];
5636	int error;
5637	const char *const hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
5638
5639	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5640	ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5641
5642	if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5643	    !ztest_random(2)) != 0)
5644		goto out;
5645
5646	object = od->od_object;
5647
5648	/*
5649	 * Generate a known hash collision, and verify that
5650	 * we can lookup and remove both entries.
5651	 */
5652	tx = dmu_tx_create(os);
5653	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5654	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5655	if (txg == 0)
5656		goto out;
5657	for (i = 0; i < 2; i++) {
5658		value[i] = i;
5659		VERIFY0(zap_add(os, object, hc[i], sizeof (uint64_t),
5660		    1, &value[i], tx));
5661	}
5662	for (i = 0; i < 2; i++) {
5663		VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
5664		    sizeof (uint64_t), 1, &value[i], tx));
5665		VERIFY0(
5666		    zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
5667		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5668		ASSERT3U(zl_ints, ==, 1);
5669	}
5670	for (i = 0; i < 2; i++) {
5671		VERIFY0(zap_remove(os, object, hc[i], tx));
5672	}
5673	dmu_tx_commit(tx);
5674
5675	/*
5676	 * Generate a bunch of random entries.
5677	 */
5678	ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
5679
5680	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5681	(void) sprintf(propname, "prop_%"PRIu64"", prop);
5682	(void) sprintf(txgname, "txg_%"PRIu64"", prop);
5683	memset(value, 0, sizeof (value));
5684	last_txg = 0;
5685
5686	/*
5687	 * If these zap entries already exist, validate their contents.
5688	 */
5689	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5690	if (error == 0) {
5691		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5692		ASSERT3U(zl_ints, ==, 1);
5693
5694		VERIFY0(zap_lookup(os, object, txgname, zl_intsize,
5695		    zl_ints, &last_txg));
5696
5697		VERIFY0(zap_length(os, object, propname, &zl_intsize,
5698		    &zl_ints));
5699
5700		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5701		ASSERT3U(zl_ints, ==, ints);
5702
5703		VERIFY0(zap_lookup(os, object, propname, zl_intsize,
5704		    zl_ints, value));
5705
5706		for (i = 0; i < ints; i++) {
5707			ASSERT3U(value[i], ==, last_txg + object + i);
5708		}
5709	} else {
5710		ASSERT3U(error, ==, ENOENT);
5711	}
5712
5713	/*
5714	 * Atomically update two entries in our zap object.
5715	 * The first is named txg_%llu, and contains the txg
5716	 * in which the property was last updated.  The second
5717	 * is named prop_%llu, and the nth element of its value
5718	 * should be txg + object + n.
5719	 */
5720	tx = dmu_tx_create(os);
5721	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5722	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5723	if (txg == 0)
5724		goto out;
5725
5726	if (last_txg > txg)
5727		fatal(B_FALSE, "zap future leak: old %"PRIu64" new %"PRIu64"",
5728		    last_txg, txg);
5729
5730	for (i = 0; i < ints; i++)
5731		value[i] = txg + object + i;
5732
5733	VERIFY0(zap_update(os, object, txgname, sizeof (uint64_t),
5734	    1, &txg, tx));
5735	VERIFY0(zap_update(os, object, propname, sizeof (uint64_t),
5736	    ints, value, tx));
5737
5738	dmu_tx_commit(tx);
5739
5740	/*
5741	 * Remove a random pair of entries.
5742	 */
5743	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5744	(void) sprintf(propname, "prop_%"PRIu64"", prop);
5745	(void) sprintf(txgname, "txg_%"PRIu64"", prop);
5746
5747	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5748
5749	if (error == ENOENT)
5750		goto out;
5751
5752	ASSERT0(error);
5753
5754	tx = dmu_tx_create(os);
5755	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5756	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5757	if (txg == 0)
5758		goto out;
5759	VERIFY0(zap_remove(os, object, txgname, tx));
5760	VERIFY0(zap_remove(os, object, propname, tx));
5761	dmu_tx_commit(tx);
5762out:
5763	umem_free(od, sizeof (ztest_od_t));
5764}
5765
5766/*
5767 * Test case to test the upgrading of a microzap to fatzap.
5768 */
5769void
5770ztest_fzap(ztest_ds_t *zd, uint64_t id)
5771{
5772	objset_t *os = zd->zd_os;
5773	ztest_od_t *od;
5774	uint64_t object, txg, value;
5775
5776	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5777	ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5778
5779	if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5780	    !ztest_random(2)) != 0)
5781		goto out;
5782	object = od->od_object;
5783
5784	/*
5785	 * Add entries to this ZAP and make sure it spills over
5786	 * and gets upgraded to a fatzap. Also, since we are adding
5787	 * 2050 entries we should see ptrtbl growth and leaf-block split.
5788	 */
5789	for (value = 0; value < 2050; value++) {
5790		char name[ZFS_MAX_DATASET_NAME_LEN];
5791		dmu_tx_t *tx;
5792		int error;
5793
5794		(void) snprintf(name, sizeof (name), "fzap-%"PRIu64"-%"PRIu64"",
5795		    id, value);
5796
5797		tx = dmu_tx_create(os);
5798		dmu_tx_hold_zap(tx, object, B_TRUE, name);
5799		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5800		if (txg == 0)
5801			goto out;
5802		error = zap_add(os, object, name, sizeof (uint64_t), 1,
5803		    &value, tx);
5804		ASSERT(error == 0 || error == EEXIST);
5805		dmu_tx_commit(tx);
5806	}
5807out:
5808	umem_free(od, sizeof (ztest_od_t));
5809}
5810
5811void
5812ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
5813{
5814	(void) id;
5815	objset_t *os = zd->zd_os;
5816	ztest_od_t *od;
5817	uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
5818	dmu_tx_t *tx;
5819	int i, namelen, error;
5820	int micro = ztest_random(2);
5821	char name[20], string_value[20];
5822	void *data;
5823
5824	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5825	ztest_od_init(od, ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0, 0);
5826
5827	if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5828		umem_free(od, sizeof (ztest_od_t));
5829		return;
5830	}
5831
5832	object = od->od_object;
5833
5834	/*
5835	 * Generate a random name of the form 'xxx.....' where each
5836	 * x is a random printable character and the dots are dots.
5837	 * There are 94 such characters, and the name length goes from
5838	 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
5839	 */
5840	namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
5841
5842	for (i = 0; i < 3; i++)
5843		name[i] = '!' + ztest_random('~' - '!' + 1);
5844	for (; i < namelen - 1; i++)
5845		name[i] = '.';
5846	name[i] = '\0';
5847
5848	if ((namelen & 1) || micro) {
5849		wsize = sizeof (txg);
5850		wc = 1;
5851		data = &txg;
5852	} else {
5853		wsize = 1;
5854		wc = namelen;
5855		data = string_value;
5856	}
5857
5858	count = -1ULL;
5859	VERIFY0(zap_count(os, object, &count));
5860	ASSERT3S(count, !=, -1ULL);
5861
5862	/*
5863	 * Select an operation: length, lookup, add, update, remove.
5864	 */
5865	i = ztest_random(5);
5866
5867	if (i >= 2) {
5868		tx = dmu_tx_create(os);
5869		dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5870		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5871		if (txg == 0) {
5872			umem_free(od, sizeof (ztest_od_t));
5873			return;
5874		}
5875		memcpy(string_value, name, namelen);
5876	} else {
5877		tx = NULL;
5878		txg = 0;
5879		memset(string_value, 0, namelen);
5880	}
5881
5882	switch (i) {
5883
5884	case 0:
5885		error = zap_length(os, object, name, &zl_wsize, &zl_wc);
5886		if (error == 0) {
5887			ASSERT3U(wsize, ==, zl_wsize);
5888			ASSERT3U(wc, ==, zl_wc);
5889		} else {
5890			ASSERT3U(error, ==, ENOENT);
5891		}
5892		break;
5893
5894	case 1:
5895		error = zap_lookup(os, object, name, wsize, wc, data);
5896		if (error == 0) {
5897			if (data == string_value &&
5898			    memcmp(name, data, namelen) != 0)
5899				fatal(B_FALSE, "name '%s' != val '%s' len %d",
5900				    name, (char *)data, namelen);
5901		} else {
5902			ASSERT3U(error, ==, ENOENT);
5903		}
5904		break;
5905
5906	case 2:
5907		error = zap_add(os, object, name, wsize, wc, data, tx);
5908		ASSERT(error == 0 || error == EEXIST);
5909		break;
5910
5911	case 3:
5912		VERIFY0(zap_update(os, object, name, wsize, wc, data, tx));
5913		break;
5914
5915	case 4:
5916		error = zap_remove(os, object, name, tx);
5917		ASSERT(error == 0 || error == ENOENT);
5918		break;
5919	}
5920
5921	if (tx != NULL)
5922		dmu_tx_commit(tx);
5923
5924	umem_free(od, sizeof (ztest_od_t));
5925}
5926
5927/*
5928 * Commit callback data.
5929 */
5930typedef struct ztest_cb_data {
5931	list_node_t		zcd_node;
5932	uint64_t		zcd_txg;
5933	int			zcd_expected_err;
5934	boolean_t		zcd_added;
5935	boolean_t		zcd_called;
5936	spa_t			*zcd_spa;
5937} ztest_cb_data_t;
5938
5939/* This is the actual commit callback function */
5940static void
5941ztest_commit_callback(void *arg, int error)
5942{
5943	ztest_cb_data_t *data = arg;
5944	uint64_t synced_txg;
5945
5946	VERIFY3P(data, !=, NULL);
5947	VERIFY3S(data->zcd_expected_err, ==, error);
5948	VERIFY(!data->zcd_called);
5949
5950	synced_txg = spa_last_synced_txg(data->zcd_spa);
5951	if (data->zcd_txg > synced_txg)
5952		fatal(B_FALSE,
5953		    "commit callback of txg %"PRIu64" called prematurely, "
5954		    "last synced txg = %"PRIu64"\n",
5955		    data->zcd_txg, synced_txg);
5956
5957	data->zcd_called = B_TRUE;
5958
5959	if (error == ECANCELED) {
5960		ASSERT0(data->zcd_txg);
5961		ASSERT(!data->zcd_added);
5962
5963		/*
5964		 * The private callback data should be destroyed here, but
5965		 * since we are going to check the zcd_called field after
5966		 * dmu_tx_abort(), we will destroy it there.
5967		 */
5968		return;
5969	}
5970
5971	ASSERT(data->zcd_added);
5972	ASSERT3U(data->zcd_txg, !=, 0);
5973
5974	(void) mutex_enter(&zcl.zcl_callbacks_lock);
5975
5976	/* See if this cb was called more quickly */
5977	if ((synced_txg - data->zcd_txg) < zc_min_txg_delay)
5978		zc_min_txg_delay = synced_txg - data->zcd_txg;
5979
5980	/* Remove our callback from the list */
5981	list_remove(&zcl.zcl_callbacks, data);
5982
5983	(void) mutex_exit(&zcl.zcl_callbacks_lock);
5984
5985	umem_free(data, sizeof (ztest_cb_data_t));
5986}
5987
5988/* Allocate and initialize callback data structure */
5989static ztest_cb_data_t *
5990ztest_create_cb_data(objset_t *os, uint64_t txg)
5991{
5992	ztest_cb_data_t *cb_data;
5993
5994	cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
5995
5996	cb_data->zcd_txg = txg;
5997	cb_data->zcd_spa = dmu_objset_spa(os);
5998	list_link_init(&cb_data->zcd_node);
5999
6000	return (cb_data);
6001}
6002
6003/*
6004 * Commit callback test.
6005 */
6006void
6007ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
6008{
6009	objset_t *os = zd->zd_os;
6010	ztest_od_t *od;
6011	dmu_tx_t *tx;
6012	ztest_cb_data_t *cb_data[3], *tmp_cb;
6013	uint64_t old_txg, txg;
6014	int i, error = 0;
6015
6016	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
6017	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
6018
6019	if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
6020		umem_free(od, sizeof (ztest_od_t));
6021		return;
6022	}
6023
6024	tx = dmu_tx_create(os);
6025
6026	cb_data[0] = ztest_create_cb_data(os, 0);
6027	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
6028
6029	dmu_tx_hold_write(tx, od->od_object, 0, sizeof (uint64_t));
6030
6031	/* Every once in a while, abort the transaction on purpose */
6032	if (ztest_random(100) == 0)
6033		error = -1;
6034
6035	if (!error)
6036		error = dmu_tx_assign(tx, TXG_NOWAIT);
6037
6038	txg = error ? 0 : dmu_tx_get_txg(tx);
6039
6040	cb_data[0]->zcd_txg = txg;
6041	cb_data[1] = ztest_create_cb_data(os, txg);
6042	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
6043
6044	if (error) {
6045		/*
6046		 * It's not a strict requirement to call the registered
6047		 * callbacks from inside dmu_tx_abort(), but that's what
6048		 * it's supposed to happen in the current implementation
6049		 * so we will check for that.
6050		 */
6051		for (i = 0; i < 2; i++) {
6052			cb_data[i]->zcd_expected_err = ECANCELED;
6053			VERIFY(!cb_data[i]->zcd_called);
6054		}
6055
6056		dmu_tx_abort(tx);
6057
6058		for (i = 0; i < 2; i++) {
6059			VERIFY(cb_data[i]->zcd_called);
6060			umem_free(cb_data[i], sizeof (ztest_cb_data_t));
6061		}
6062
6063		umem_free(od, sizeof (ztest_od_t));
6064		return;
6065	}
6066
6067	cb_data[2] = ztest_create_cb_data(os, txg);
6068	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
6069
6070	/*
6071	 * Read existing data to make sure there isn't a future leak.
6072	 */
6073	VERIFY0(dmu_read(os, od->od_object, 0, sizeof (uint64_t),
6074	    &old_txg, DMU_READ_PREFETCH));
6075
6076	if (old_txg > txg)
6077		fatal(B_FALSE,
6078		    "future leak: got %"PRIu64", open txg is %"PRIu64"",
6079		    old_txg, txg);
6080
6081	dmu_write(os, od->od_object, 0, sizeof (uint64_t), &txg, tx);
6082
6083	(void) mutex_enter(&zcl.zcl_callbacks_lock);
6084
6085	/*
6086	 * Since commit callbacks don't have any ordering requirement and since
6087	 * it is theoretically possible for a commit callback to be called
6088	 * after an arbitrary amount of time has elapsed since its txg has been
6089	 * synced, it is difficult to reliably determine whether a commit
6090	 * callback hasn't been called due to high load or due to a flawed
6091	 * implementation.
6092	 *
6093	 * In practice, we will assume that if after a certain number of txgs a
6094	 * commit callback hasn't been called, then most likely there's an
6095	 * implementation bug..
6096	 */
6097	tmp_cb = list_head(&zcl.zcl_callbacks);
6098	if (tmp_cb != NULL &&
6099	    tmp_cb->zcd_txg + ZTEST_COMMIT_CB_THRESH < txg) {
6100		fatal(B_FALSE,
6101		    "Commit callback threshold exceeded, "
6102		    "oldest txg: %"PRIu64", open txg: %"PRIu64"\n",
6103		    tmp_cb->zcd_txg, txg);
6104	}
6105
6106	/*
6107	 * Let's find the place to insert our callbacks.
6108	 *
6109	 * Even though the list is ordered by txg, it is possible for the
6110	 * insertion point to not be the end because our txg may already be
6111	 * quiescing at this point and other callbacks in the open txg
6112	 * (from other objsets) may have sneaked in.
6113	 */
6114	tmp_cb = list_tail(&zcl.zcl_callbacks);
6115	while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
6116		tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
6117
6118	/* Add the 3 callbacks to the list */
6119	for (i = 0; i < 3; i++) {
6120		if (tmp_cb == NULL)
6121			list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
6122		else
6123			list_insert_after(&zcl.zcl_callbacks, tmp_cb,
6124			    cb_data[i]);
6125
6126		cb_data[i]->zcd_added = B_TRUE;
6127		VERIFY(!cb_data[i]->zcd_called);
6128
6129		tmp_cb = cb_data[i];
6130	}
6131
6132	zc_cb_counter += 3;
6133
6134	(void) mutex_exit(&zcl.zcl_callbacks_lock);
6135
6136	dmu_tx_commit(tx);
6137
6138	umem_free(od, sizeof (ztest_od_t));
6139}
6140
6141/*
6142 * Visit each object in the dataset. Verify that its properties
6143 * are consistent what was stored in the block tag when it was created,
6144 * and that its unused bonus buffer space has not been overwritten.
6145 */
6146void
6147ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id)
6148{
6149	(void) id;
6150	objset_t *os = zd->zd_os;
6151	uint64_t obj;
6152	int err = 0;
6153
6154	for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) {
6155		ztest_block_tag_t *bt = NULL;
6156		dmu_object_info_t doi;
6157		dmu_buf_t *db;
6158
6159		ztest_object_lock(zd, obj, ZTRL_READER);
6160		if (dmu_bonus_hold(os, obj, FTAG, &db) != 0) {
6161			ztest_object_unlock(zd, obj);
6162			continue;
6163		}
6164
6165		dmu_object_info_from_db(db, &doi);
6166		if (doi.doi_bonus_size >= sizeof (*bt))
6167			bt = ztest_bt_bonus(db);
6168
6169		if (bt && bt->bt_magic == BT_MAGIC) {
6170			ztest_bt_verify(bt, os, obj, doi.doi_dnodesize,
6171			    bt->bt_offset, bt->bt_gen, bt->bt_txg,
6172			    bt->bt_crtxg);
6173			ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen);
6174		}
6175
6176		dmu_buf_rele(db, FTAG);
6177		ztest_object_unlock(zd, obj);
6178	}
6179}
6180
6181void
6182ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
6183{
6184	(void) id;
6185	zfs_prop_t proplist[] = {
6186		ZFS_PROP_CHECKSUM,
6187		ZFS_PROP_COMPRESSION,
6188		ZFS_PROP_COPIES,
6189		ZFS_PROP_DEDUP
6190	};
6191
6192	(void) pthread_rwlock_rdlock(&ztest_name_lock);
6193
6194	for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) {
6195		int error = ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
6196		    ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
6197		ASSERT(error == 0 || error == ENOSPC);
6198	}
6199
6200	int error = ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_RECORDSIZE,
6201	    ztest_random_blocksize(), (int)ztest_random(2));
6202	ASSERT(error == 0 || error == ENOSPC);
6203
6204	(void) pthread_rwlock_unlock(&ztest_name_lock);
6205}
6206
6207void
6208ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
6209{
6210	(void) zd, (void) id;
6211	nvlist_t *props = NULL;
6212
6213	(void) pthread_rwlock_rdlock(&ztest_name_lock);
6214
6215	(void) ztest_spa_prop_set_uint64(ZPOOL_PROP_AUTOTRIM, ztest_random(2));
6216
6217	VERIFY0(spa_prop_get(ztest_spa, &props));
6218
6219	if (ztest_opts.zo_verbose >= 6)
6220		dump_nvlist(props, 4);
6221
6222	fnvlist_free(props);
6223
6224	(void) pthread_rwlock_unlock(&ztest_name_lock);
6225}
6226
6227static int
6228user_release_one(const char *snapname, const char *holdname)
6229{
6230	nvlist_t *snaps, *holds;
6231	int error;
6232
6233	snaps = fnvlist_alloc();
6234	holds = fnvlist_alloc();
6235	fnvlist_add_boolean(holds, holdname);
6236	fnvlist_add_nvlist(snaps, snapname, holds);
6237	fnvlist_free(holds);
6238	error = dsl_dataset_user_release(snaps, NULL);
6239	fnvlist_free(snaps);
6240	return (error);
6241}
6242
6243/*
6244 * Test snapshot hold/release and deferred destroy.
6245 */
6246void
6247ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
6248{
6249	int error;
6250	objset_t *os = zd->zd_os;
6251	objset_t *origin;
6252	char snapname[100];
6253	char fullname[100];
6254	char clonename[100];
6255	char tag[100];
6256	char osname[ZFS_MAX_DATASET_NAME_LEN];
6257	nvlist_t *holds;
6258
6259	(void) pthread_rwlock_rdlock(&ztest_name_lock);
6260
6261	dmu_objset_name(os, osname);
6262
6263	(void) snprintf(snapname, sizeof (snapname), "sh1_%"PRIu64"", id);
6264	(void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
6265	(void) snprintf(clonename, sizeof (clonename), "%s/ch1_%"PRIu64"",
6266	    osname, id);
6267	(void) snprintf(tag, sizeof (tag), "tag_%"PRIu64"", id);
6268
6269	/*
6270	 * Clean up from any previous run.
6271	 */
6272	error = dsl_destroy_head(clonename);
6273	if (error != ENOENT)
6274		ASSERT0(error);
6275	error = user_release_one(fullname, tag);
6276	if (error != ESRCH && error != ENOENT)
6277		ASSERT0(error);
6278	error = dsl_destroy_snapshot(fullname, B_FALSE);
6279	if (error != ENOENT)
6280		ASSERT0(error);
6281
6282	/*
6283	 * Create snapshot, clone it, mark snap for deferred destroy,
6284	 * destroy clone, verify snap was also destroyed.
6285	 */
6286	error = dmu_objset_snapshot_one(osname, snapname);
6287	if (error) {
6288		if (error == ENOSPC) {
6289			ztest_record_enospc("dmu_objset_snapshot");
6290			goto out;
6291		}
6292		fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error);
6293	}
6294
6295	error = dmu_objset_clone(clonename, fullname);
6296	if (error) {
6297		if (error == ENOSPC) {
6298			ztest_record_enospc("dmu_objset_clone");
6299			goto out;
6300		}
6301		fatal(B_FALSE, "dmu_objset_clone(%s) = %d", clonename, error);
6302	}
6303
6304	error = dsl_destroy_snapshot(fullname, B_TRUE);
6305	if (error) {
6306		fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
6307		    fullname, error);
6308	}
6309
6310	error = dsl_destroy_head(clonename);
6311	if (error)
6312		fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clonename, error);
6313
6314	error = dmu_objset_hold(fullname, FTAG, &origin);
6315	if (error != ENOENT)
6316		fatal(B_FALSE, "dmu_objset_hold(%s) = %d", fullname, error);
6317
6318	/*
6319	 * Create snapshot, add temporary hold, verify that we can't
6320	 * destroy a held snapshot, mark for deferred destroy,
6321	 * release hold, verify snapshot was destroyed.
6322	 */
6323	error = dmu_objset_snapshot_one(osname, snapname);
6324	if (error) {
6325		if (error == ENOSPC) {
6326			ztest_record_enospc("dmu_objset_snapshot");
6327			goto out;
6328		}
6329		fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error);
6330	}
6331
6332	holds = fnvlist_alloc();
6333	fnvlist_add_string(holds, fullname, tag);
6334	error = dsl_dataset_user_hold(holds, 0, NULL);
6335	fnvlist_free(holds);
6336
6337	if (error == ENOSPC) {
6338		ztest_record_enospc("dsl_dataset_user_hold");
6339		goto out;
6340	} else if (error) {
6341		fatal(B_FALSE, "dsl_dataset_user_hold(%s, %s) = %u",
6342		    fullname, tag, error);
6343	}
6344
6345	error = dsl_destroy_snapshot(fullname, B_FALSE);
6346	if (error != EBUSY) {
6347		fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
6348		    fullname, error);
6349	}
6350
6351	error = dsl_destroy_snapshot(fullname, B_TRUE);
6352	if (error) {
6353		fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
6354		    fullname, error);
6355	}
6356
6357	error = user_release_one(fullname, tag);
6358	if (error)
6359		fatal(B_FALSE, "user_release_one(%s, %s) = %d",
6360		    fullname, tag, error);
6361
6362	VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
6363
6364out:
6365	(void) pthread_rwlock_unlock(&ztest_name_lock);
6366}
6367
6368/*
6369 * Inject random faults into the on-disk data.
6370 */
6371void
6372ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
6373{
6374	(void) zd, (void) id;
6375	ztest_shared_t *zs = ztest_shared;
6376	spa_t *spa = ztest_spa;
6377	int fd;
6378	uint64_t offset;
6379	uint64_t leaves;
6380	uint64_t bad = 0x1990c0ffeedecadeull;
6381	uint64_t top, leaf;
6382	uint64_t raidz_children;
6383	char *path0;
6384	char *pathrand;
6385	size_t fsize;
6386	int bshift = SPA_MAXBLOCKSHIFT + 2;
6387	int iters = 1000;
6388	int maxfaults;
6389	int mirror_save;
6390	vdev_t *vd0 = NULL;
6391	uint64_t guid0 = 0;
6392	boolean_t islog = B_FALSE;
6393	boolean_t injected = B_FALSE;
6394
6395	path0 = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6396	pathrand = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6397
6398	mutex_enter(&ztest_vdev_lock);
6399
6400	/*
6401	 * Device removal is in progress, fault injection must be disabled
6402	 * until it completes and the pool is scrubbed.  The fault injection
6403	 * strategy for damaging blocks does not take in to account evacuated
6404	 * blocks which may have already been damaged.
6405	 */
6406	if (ztest_device_removal_active)
6407		goto out;
6408
6409	/*
6410	 * The fault injection strategy for damaging blocks cannot be used
6411	 * if raidz expansion is in progress. The leaves value
6412	 * (attached raidz children) is variable and strategy for damaging
6413	 * blocks will corrupt same data blocks on different child vdevs
6414	 * because of the reflow process.
6415	 */
6416	if (spa->spa_raidz_expand != NULL)
6417		goto out;
6418
6419	maxfaults = MAXFAULTS(zs);
6420	raidz_children = ztest_get_raidz_children(spa);
6421	leaves = MAX(zs->zs_mirrors, 1) * raidz_children;
6422	mirror_save = zs->zs_mirrors;
6423
6424	ASSERT3U(leaves, >=, 1);
6425
6426	/*
6427	 * While ztest is running the number of leaves will not change.  This
6428	 * is critical for the fault injection logic as it determines where
6429	 * errors can be safely injected such that they are always repairable.
6430	 *
6431	 * When restarting ztest a different number of leaves may be requested
6432	 * which will shift the regions to be damaged.  This is fine as long
6433	 * as the pool has been scrubbed prior to using the new mapping.
6434	 * Failure to do can result in non-repairable damage being injected.
6435	 */
6436	if (ztest_pool_scrubbed == B_FALSE)
6437		goto out;
6438
6439	/*
6440	 * Grab the name lock as reader. There are some operations
6441	 * which don't like to have their vdevs changed while
6442	 * they are in progress (i.e. spa_change_guid). Those
6443	 * operations will have grabbed the name lock as writer.
6444	 */
6445	(void) pthread_rwlock_rdlock(&ztest_name_lock);
6446
6447	/*
6448	 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
6449	 */
6450	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6451
6452	if (ztest_random(2) == 0) {
6453		/*
6454		 * Inject errors on a normal data device or slog device.
6455		 */
6456		top = ztest_random_vdev_top(spa, B_TRUE);
6457		leaf = ztest_random(leaves) + zs->zs_splits;
6458
6459		/*
6460		 * Generate paths to the first leaf in this top-level vdev,
6461		 * and to the random leaf we selected.  We'll induce transient
6462		 * write failures and random online/offline activity on leaf 0,
6463		 * and we'll write random garbage to the randomly chosen leaf.
6464		 */
6465		(void) snprintf(path0, MAXPATHLEN, ztest_dev_template,
6466		    ztest_opts.zo_dir, ztest_opts.zo_pool,
6467		    top * leaves + zs->zs_splits);
6468		(void) snprintf(pathrand, MAXPATHLEN, ztest_dev_template,
6469		    ztest_opts.zo_dir, ztest_opts.zo_pool,
6470		    top * leaves + leaf);
6471
6472		vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
6473		if (vd0 != NULL && vd0->vdev_top->vdev_islog)
6474			islog = B_TRUE;
6475
6476		/*
6477		 * If the top-level vdev needs to be resilvered
6478		 * then we only allow faults on the device that is
6479		 * resilvering.
6480		 */
6481		if (vd0 != NULL && maxfaults != 1 &&
6482		    (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
6483		    vd0->vdev_resilver_txg != 0)) {
6484			/*
6485			 * Make vd0 explicitly claim to be unreadable,
6486			 * or unwritable, or reach behind its back
6487			 * and close the underlying fd.  We can do this if
6488			 * maxfaults == 0 because we'll fail and reexecute,
6489			 * and we can do it if maxfaults >= 2 because we'll
6490			 * have enough redundancy.  If maxfaults == 1, the
6491			 * combination of this with injection of random data
6492			 * corruption below exceeds the pool's fault tolerance.
6493			 */
6494			vdev_file_t *vf = vd0->vdev_tsd;
6495
6496			zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d",
6497			    (long long)vd0->vdev_id, (int)maxfaults);
6498
6499			if (vf != NULL && ztest_random(3) == 0) {
6500				(void) close(vf->vf_file->f_fd);
6501				vf->vf_file->f_fd = -1;
6502			} else if (ztest_random(2) == 0) {
6503				vd0->vdev_cant_read = B_TRUE;
6504			} else {
6505				vd0->vdev_cant_write = B_TRUE;
6506			}
6507			guid0 = vd0->vdev_guid;
6508		}
6509	} else {
6510		/*
6511		 * Inject errors on an l2cache device.
6512		 */
6513		spa_aux_vdev_t *sav = &spa->spa_l2cache;
6514
6515		if (sav->sav_count == 0) {
6516			spa_config_exit(spa, SCL_STATE, FTAG);
6517			(void) pthread_rwlock_unlock(&ztest_name_lock);
6518			goto out;
6519		}
6520		vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
6521		guid0 = vd0->vdev_guid;
6522		(void) strlcpy(path0, vd0->vdev_path, MAXPATHLEN);
6523		(void) strlcpy(pathrand, vd0->vdev_path, MAXPATHLEN);
6524
6525		leaf = 0;
6526		leaves = 1;
6527		maxfaults = INT_MAX;	/* no limit on cache devices */
6528	}
6529
6530	spa_config_exit(spa, SCL_STATE, FTAG);
6531	(void) pthread_rwlock_unlock(&ztest_name_lock);
6532
6533	/*
6534	 * If we can tolerate two or more faults, or we're dealing
6535	 * with a slog, randomly online/offline vd0.
6536	 */
6537	if ((maxfaults >= 2 || islog) && guid0 != 0) {
6538		if (ztest_random(10) < 6) {
6539			int flags = (ztest_random(2) == 0 ?
6540			    ZFS_OFFLINE_TEMPORARY : 0);
6541
6542			/*
6543			 * We have to grab the zs_name_lock as writer to
6544			 * prevent a race between offlining a slog and
6545			 * destroying a dataset. Offlining the slog will
6546			 * grab a reference on the dataset which may cause
6547			 * dsl_destroy_head() to fail with EBUSY thus
6548			 * leaving the dataset in an inconsistent state.
6549			 */
6550			if (islog)
6551				(void) pthread_rwlock_wrlock(&ztest_name_lock);
6552
6553			VERIFY3U(vdev_offline(spa, guid0, flags), !=, EBUSY);
6554
6555			if (islog)
6556				(void) pthread_rwlock_unlock(&ztest_name_lock);
6557		} else {
6558			/*
6559			 * Ideally we would like to be able to randomly
6560			 * call vdev_[on|off]line without holding locks
6561			 * to force unpredictable failures but the side
6562			 * effects of vdev_[on|off]line prevent us from
6563			 * doing so.
6564			 */
6565			(void) vdev_online(spa, guid0, 0, NULL);
6566		}
6567	}
6568
6569	if (maxfaults == 0)
6570		goto out;
6571
6572	/*
6573	 * We have at least single-fault tolerance, so inject data corruption.
6574	 */
6575	fd = open(pathrand, O_RDWR);
6576
6577	if (fd == -1) /* we hit a gap in the device namespace */
6578		goto out;
6579
6580	fsize = lseek(fd, 0, SEEK_END);
6581
6582	while (--iters != 0) {
6583		/*
6584		 * The offset must be chosen carefully to ensure that
6585		 * we do not inject a given logical block with errors
6586		 * on two different leaf devices, because ZFS can not
6587		 * tolerate that (if maxfaults==1).
6588		 *
6589		 * To achieve this we divide each leaf device into
6590		 * chunks of size (# leaves * SPA_MAXBLOCKSIZE * 4).
6591		 * Each chunk is further divided into error-injection
6592		 * ranges (can accept errors) and clear ranges (we do
6593		 * not inject errors in those). Each error-injection
6594		 * range can accept errors only for a single leaf vdev.
6595		 * Error-injection ranges are separated by clear ranges.
6596		 *
6597		 * For example, with 3 leaves, each chunk looks like:
6598		 *    0 to  32M: injection range for leaf 0
6599		 *  32M to  64M: clear range - no injection allowed
6600		 *  64M to  96M: injection range for leaf 1
6601		 *  96M to 128M: clear range - no injection allowed
6602		 * 128M to 160M: injection range for leaf 2
6603		 * 160M to 192M: clear range - no injection allowed
6604		 *
6605		 * Each clear range must be large enough such that a
6606		 * single block cannot straddle it. This way a block
6607		 * can't be a target in two different injection ranges
6608		 * (on different leaf vdevs).
6609		 */
6610		offset = ztest_random(fsize / (leaves << bshift)) *
6611		    (leaves << bshift) + (leaf << bshift) +
6612		    (ztest_random(1ULL << (bshift - 1)) & -8ULL);
6613
6614		/*
6615		 * Only allow damage to the labels at one end of the vdev.
6616		 *
6617		 * If all labels are damaged, the device will be totally
6618		 * inaccessible, which will result in loss of data,
6619		 * because we also damage (parts of) the other side of
6620		 * the mirror/raidz.
6621		 *
6622		 * Additionally, we will always have both an even and an
6623		 * odd label, so that we can handle crashes in the
6624		 * middle of vdev_config_sync().
6625		 */
6626		if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
6627			continue;
6628
6629		/*
6630		 * The two end labels are stored at the "end" of the disk, but
6631		 * the end of the disk (vdev_psize) is aligned to
6632		 * sizeof (vdev_label_t).
6633		 */
6634		uint64_t psize = P2ALIGN_TYPED(fsize, sizeof (vdev_label_t),
6635		    uint64_t);
6636		if ((leaf & 1) == 1 &&
6637		    offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
6638			continue;
6639
6640		if (mirror_save != zs->zs_mirrors) {
6641			(void) close(fd);
6642			goto out;
6643		}
6644
6645		if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
6646			fatal(B_TRUE,
6647			    "can't inject bad word at 0x%"PRIx64" in %s",
6648			    offset, pathrand);
6649
6650		if (ztest_opts.zo_verbose >= 7)
6651			(void) printf("injected bad word into %s,"
6652			    " offset 0x%"PRIx64"\n", pathrand, offset);
6653
6654		injected = B_TRUE;
6655	}
6656
6657	(void) close(fd);
6658out:
6659	mutex_exit(&ztest_vdev_lock);
6660
6661	if (injected && ztest_opts.zo_raid_do_expand) {
6662		int error = spa_scan(spa, POOL_SCAN_SCRUB);
6663		if (error == 0) {
6664			while (dsl_scan_scrubbing(spa_get_dsl(spa)))
6665				txg_wait_synced(spa_get_dsl(spa), 0);
6666		}
6667	}
6668
6669	umem_free(path0, MAXPATHLEN);
6670	umem_free(pathrand, MAXPATHLEN);
6671}
6672
6673/*
6674 * By design ztest will never inject uncorrectable damage in to the pool.
6675 * Issue a scrub, wait for it to complete, and verify there is never any
6676 * persistent damage.
6677 *
6678 * Only after a full scrub has been completed is it safe to start injecting
6679 * data corruption.  See the comment in zfs_fault_inject().
6680 */
6681static int
6682ztest_scrub_impl(spa_t *spa)
6683{
6684	int error = spa_scan(spa, POOL_SCAN_SCRUB);
6685	if (error)
6686		return (error);
6687
6688	while (dsl_scan_scrubbing(spa_get_dsl(spa)))
6689		txg_wait_synced(spa_get_dsl(spa), 0);
6690
6691	if (spa_approx_errlog_size(spa) > 0)
6692		return (ECKSUM);
6693
6694	ztest_pool_scrubbed = B_TRUE;
6695
6696	return (0);
6697}
6698
6699/*
6700 * Scrub the pool.
6701 */
6702void
6703ztest_scrub(ztest_ds_t *zd, uint64_t id)
6704{
6705	(void) zd, (void) id;
6706	spa_t *spa = ztest_spa;
6707	int error;
6708
6709	/*
6710	 * Scrub in progress by device removal.
6711	 */
6712	if (ztest_device_removal_active)
6713		return;
6714
6715	/*
6716	 * Start a scrub, wait a moment, then force a restart.
6717	 */
6718	(void) spa_scan(spa, POOL_SCAN_SCRUB);
6719	(void) poll(NULL, 0, 100);
6720
6721	error = ztest_scrub_impl(spa);
6722	if (error == EBUSY)
6723		error = 0;
6724	ASSERT0(error);
6725}
6726
6727/*
6728 * Change the guid for the pool.
6729 */
6730void
6731ztest_reguid(ztest_ds_t *zd, uint64_t id)
6732{
6733	(void) zd, (void) id;
6734	spa_t *spa = ztest_spa;
6735	uint64_t orig, load;
6736	int error;
6737	ztest_shared_t *zs = ztest_shared;
6738
6739	if (ztest_opts.zo_mmp_test)
6740		return;
6741
6742	orig = spa_guid(spa);
6743	load = spa_load_guid(spa);
6744
6745	(void) pthread_rwlock_wrlock(&ztest_name_lock);
6746	error = spa_change_guid(spa);
6747	zs->zs_guid = spa_guid(spa);
6748	(void) pthread_rwlock_unlock(&ztest_name_lock);
6749
6750	if (error != 0)
6751		return;
6752
6753	if (ztest_opts.zo_verbose >= 4) {
6754		(void) printf("Changed guid old %"PRIu64" -> %"PRIu64"\n",
6755		    orig, spa_guid(spa));
6756	}
6757
6758	VERIFY3U(orig, !=, spa_guid(spa));
6759	VERIFY3U(load, ==, spa_load_guid(spa));
6760}
6761
6762void
6763ztest_blake3(ztest_ds_t *zd, uint64_t id)
6764{
6765	(void) zd, (void) id;
6766	hrtime_t end = gethrtime() + NANOSEC;
6767	zio_cksum_salt_t salt;
6768	void *salt_ptr = &salt.zcs_bytes;
6769	struct abd *abd_data, *abd_meta;
6770	void *buf, *templ;
6771	int i, *ptr;
6772	uint32_t size;
6773	BLAKE3_CTX ctx;
6774	const zfs_impl_t *blake3 = zfs_impl_get_ops("blake3");
6775
6776	size = ztest_random_blocksize();
6777	buf = umem_alloc(size, UMEM_NOFAIL);
6778	abd_data = abd_alloc(size, B_FALSE);
6779	abd_meta = abd_alloc(size, B_TRUE);
6780
6781	for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6782		*ptr = ztest_random(UINT_MAX);
6783	memset(salt_ptr, 'A', 32);
6784
6785	abd_copy_from_buf_off(abd_data, buf, 0, size);
6786	abd_copy_from_buf_off(abd_meta, buf, 0, size);
6787
6788	while (gethrtime() <= end) {
6789		int run_count = 100;
6790		zio_cksum_t zc_ref1, zc_ref2;
6791		zio_cksum_t zc_res1, zc_res2;
6792
6793		void *ref1 = &zc_ref1;
6794		void *ref2 = &zc_ref2;
6795		void *res1 = &zc_res1;
6796		void *res2 = &zc_res2;
6797
6798		/* BLAKE3_KEY_LEN = 32 */
6799		VERIFY0(blake3->setname("generic"));
6800		templ = abd_checksum_blake3_tmpl_init(&salt);
6801		Blake3_InitKeyed(&ctx, salt_ptr);
6802		Blake3_Update(&ctx, buf, size);
6803		Blake3_Final(&ctx, ref1);
6804		zc_ref2 = zc_ref1;
6805		ZIO_CHECKSUM_BSWAP(&zc_ref2);
6806		abd_checksum_blake3_tmpl_free(templ);
6807
6808		VERIFY0(blake3->setname("cycle"));
6809		while (run_count-- > 0) {
6810
6811			/* Test current implementation */
6812			Blake3_InitKeyed(&ctx, salt_ptr);
6813			Blake3_Update(&ctx, buf, size);
6814			Blake3_Final(&ctx, res1);
6815			zc_res2 = zc_res1;
6816			ZIO_CHECKSUM_BSWAP(&zc_res2);
6817
6818			VERIFY0(memcmp(ref1, res1, 32));
6819			VERIFY0(memcmp(ref2, res2, 32));
6820
6821			/* Test ABD - data */
6822			templ = abd_checksum_blake3_tmpl_init(&salt);
6823			abd_checksum_blake3_native(abd_data, size,
6824			    templ, &zc_res1);
6825			abd_checksum_blake3_byteswap(abd_data, size,
6826			    templ, &zc_res2);
6827
6828			VERIFY0(memcmp(ref1, res1, 32));
6829			VERIFY0(memcmp(ref2, res2, 32));
6830
6831			/* Test ABD - metadata */
6832			abd_checksum_blake3_native(abd_meta, size,
6833			    templ, &zc_res1);
6834			abd_checksum_blake3_byteswap(abd_meta, size,
6835			    templ, &zc_res2);
6836			abd_checksum_blake3_tmpl_free(templ);
6837
6838			VERIFY0(memcmp(ref1, res1, 32));
6839			VERIFY0(memcmp(ref2, res2, 32));
6840
6841		}
6842	}
6843
6844	abd_free(abd_data);
6845	abd_free(abd_meta);
6846	umem_free(buf, size);
6847}
6848
6849void
6850ztest_fletcher(ztest_ds_t *zd, uint64_t id)
6851{
6852	(void) zd, (void) id;
6853	hrtime_t end = gethrtime() + NANOSEC;
6854
6855	while (gethrtime() <= end) {
6856		int run_count = 100;
6857		void *buf;
6858		struct abd *abd_data, *abd_meta;
6859		uint32_t size;
6860		int *ptr;
6861		int i;
6862		zio_cksum_t zc_ref;
6863		zio_cksum_t zc_ref_byteswap;
6864
6865		size = ztest_random_blocksize();
6866
6867		buf = umem_alloc(size, UMEM_NOFAIL);
6868		abd_data = abd_alloc(size, B_FALSE);
6869		abd_meta = abd_alloc(size, B_TRUE);
6870
6871		for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6872			*ptr = ztest_random(UINT_MAX);
6873
6874		abd_copy_from_buf_off(abd_data, buf, 0, size);
6875		abd_copy_from_buf_off(abd_meta, buf, 0, size);
6876
6877		VERIFY0(fletcher_4_impl_set("scalar"));
6878		fletcher_4_native(buf, size, NULL, &zc_ref);
6879		fletcher_4_byteswap(buf, size, NULL, &zc_ref_byteswap);
6880
6881		VERIFY0(fletcher_4_impl_set("cycle"));
6882		while (run_count-- > 0) {
6883			zio_cksum_t zc;
6884			zio_cksum_t zc_byteswap;
6885
6886			fletcher_4_byteswap(buf, size, NULL, &zc_byteswap);
6887			fletcher_4_native(buf, size, NULL, &zc);
6888
6889			VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6890			VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6891			    sizeof (zc_byteswap)));
6892
6893			/* Test ABD - data */
6894			abd_fletcher_4_byteswap(abd_data, size, NULL,
6895			    &zc_byteswap);
6896			abd_fletcher_4_native(abd_data, size, NULL, &zc);
6897
6898			VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6899			VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6900			    sizeof (zc_byteswap)));
6901
6902			/* Test ABD - metadata */
6903			abd_fletcher_4_byteswap(abd_meta, size, NULL,
6904			    &zc_byteswap);
6905			abd_fletcher_4_native(abd_meta, size, NULL, &zc);
6906
6907			VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6908			VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6909			    sizeof (zc_byteswap)));
6910
6911		}
6912
6913		umem_free(buf, size);
6914		abd_free(abd_data);
6915		abd_free(abd_meta);
6916	}
6917}
6918
6919void
6920ztest_fletcher_incr(ztest_ds_t *zd, uint64_t id)
6921{
6922	(void) zd, (void) id;
6923	void *buf;
6924	size_t size;
6925	int *ptr;
6926	int i;
6927	zio_cksum_t zc_ref;
6928	zio_cksum_t zc_ref_bswap;
6929
6930	hrtime_t end = gethrtime() + NANOSEC;
6931
6932	while (gethrtime() <= end) {
6933		int run_count = 100;
6934
6935		size = ztest_random_blocksize();
6936		buf = umem_alloc(size, UMEM_NOFAIL);
6937
6938		for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6939			*ptr = ztest_random(UINT_MAX);
6940
6941		VERIFY0(fletcher_4_impl_set("scalar"));
6942		fletcher_4_native(buf, size, NULL, &zc_ref);
6943		fletcher_4_byteswap(buf, size, NULL, &zc_ref_bswap);
6944
6945		VERIFY0(fletcher_4_impl_set("cycle"));
6946
6947		while (run_count-- > 0) {
6948			zio_cksum_t zc;
6949			zio_cksum_t zc_bswap;
6950			size_t pos = 0;
6951
6952			ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
6953			ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
6954
6955			while (pos < size) {
6956				size_t inc = 64 * ztest_random(size / 67);
6957				/* sometimes add few bytes to test non-simd */
6958				if (ztest_random(100) < 10)
6959					inc += P2ALIGN_TYPED(ztest_random(64),
6960					    sizeof (uint32_t), uint64_t);
6961
6962				if (inc > (size - pos))
6963					inc = size - pos;
6964
6965				fletcher_4_incremental_native(buf + pos, inc,
6966				    &zc);
6967				fletcher_4_incremental_byteswap(buf + pos, inc,
6968				    &zc_bswap);
6969
6970				pos += inc;
6971			}
6972
6973			VERIFY3U(pos, ==, size);
6974
6975			VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
6976			VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
6977
6978			/*
6979			 * verify if incremental on the whole buffer is
6980			 * equivalent to non-incremental version
6981			 */
6982			ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
6983			ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
6984
6985			fletcher_4_incremental_native(buf, size, &zc);
6986			fletcher_4_incremental_byteswap(buf, size, &zc_bswap);
6987
6988			VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
6989			VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
6990		}
6991
6992		umem_free(buf, size);
6993	}
6994}
6995
6996static int
6997ztest_set_global_vars(void)
6998{
6999	for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
7000		char *kv = ztest_opts.zo_gvars[i];
7001		VERIFY3U(strlen(kv), <=, ZO_GVARS_MAX_ARGLEN);
7002		VERIFY3U(strlen(kv), >, 0);
7003		int err = set_global_var(kv);
7004		if (ztest_opts.zo_verbose > 0) {
7005			(void) printf("setting global var %s ... %s\n", kv,
7006			    err ? "failed" : "ok");
7007		}
7008		if (err != 0) {
7009			(void) fprintf(stderr,
7010			    "failed to set global var '%s'\n", kv);
7011			return (err);
7012		}
7013	}
7014	return (0);
7015}
7016
7017static char **
7018ztest_global_vars_to_zdb_args(void)
7019{
7020	char **args = calloc(2*ztest_opts.zo_gvars_count + 1, sizeof (char *));
7021	char **cur = args;
7022	if (args == NULL)
7023		return (NULL);
7024	for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
7025		*cur++ = (char *)"-o";
7026		*cur++ = ztest_opts.zo_gvars[i];
7027	}
7028	ASSERT3P(cur, ==, &args[2*ztest_opts.zo_gvars_count]);
7029	*cur = NULL;
7030	return (args);
7031}
7032
7033/* The end of strings is indicated by a NULL element */
7034static char *
7035join_strings(char **strings, const char *sep)
7036{
7037	size_t totallen = 0;
7038	for (char **sp = strings; *sp != NULL; sp++) {
7039		totallen += strlen(*sp);
7040		totallen += strlen(sep);
7041	}
7042	if (totallen > 0) {
7043		ASSERT(totallen >= strlen(sep));
7044		totallen -= strlen(sep);
7045	}
7046
7047	size_t buflen = totallen + 1;
7048	char *o = umem_alloc(buflen, UMEM_NOFAIL); /* trailing 0 byte */
7049	o[0] = '\0';
7050	for (char **sp = strings; *sp != NULL; sp++) {
7051		size_t would;
7052		would = strlcat(o, *sp, buflen);
7053		VERIFY3U(would, <, buflen);
7054		if (*(sp+1) == NULL) {
7055			break;
7056		}
7057		would = strlcat(o, sep, buflen);
7058		VERIFY3U(would, <, buflen);
7059	}
7060	ASSERT3S(strlen(o), ==, totallen);
7061	return (o);
7062}
7063
7064static int
7065ztest_check_path(char *path)
7066{
7067	struct stat s;
7068	/* return true on success */
7069	return (!stat(path, &s));
7070}
7071
7072static void
7073ztest_get_zdb_bin(char *bin, int len)
7074{
7075	char *zdb_path;
7076	/*
7077	 * Try to use $ZDB and in-tree zdb path. If not successful, just
7078	 * let popen to search through PATH.
7079	 */
7080	if ((zdb_path = getenv("ZDB"))) {
7081		strlcpy(bin, zdb_path, len); /* In env */
7082		if (!ztest_check_path(bin)) {
7083			ztest_dump_core = 0;
7084			fatal(B_TRUE, "invalid ZDB '%s'", bin);
7085		}
7086		return;
7087	}
7088
7089	VERIFY3P(realpath(getexecname(), bin), !=, NULL);
7090	if (strstr(bin, ".libs/ztest")) {
7091		strstr(bin, ".libs/ztest")[0] = '\0'; /* In-tree */
7092		strcat(bin, "zdb");
7093		if (ztest_check_path(bin))
7094			return;
7095	}
7096	strcpy(bin, "zdb");
7097}
7098
7099static vdev_t *
7100ztest_random_concrete_vdev_leaf(vdev_t *vd)
7101{
7102	if (vd == NULL)
7103		return (NULL);
7104
7105	if (vd->vdev_children == 0)
7106		return (vd);
7107
7108	vdev_t *eligible[vd->vdev_children];
7109	int eligible_idx = 0, i;
7110	for (i = 0; i < vd->vdev_children; i++) {
7111		vdev_t *cvd = vd->vdev_child[i];
7112		if (cvd->vdev_top->vdev_removing)
7113			continue;
7114		if (cvd->vdev_children > 0 ||
7115		    (vdev_is_concrete(cvd) && !cvd->vdev_detached)) {
7116			eligible[eligible_idx++] = cvd;
7117		}
7118	}
7119	VERIFY3S(eligible_idx, >, 0);
7120
7121	uint64_t child_no = ztest_random(eligible_idx);
7122	return (ztest_random_concrete_vdev_leaf(eligible[child_no]));
7123}
7124
7125void
7126ztest_initialize(ztest_ds_t *zd, uint64_t id)
7127{
7128	(void) zd, (void) id;
7129	spa_t *spa = ztest_spa;
7130	int error = 0;
7131
7132	mutex_enter(&ztest_vdev_lock);
7133
7134	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
7135
7136	/* Random leaf vdev */
7137	vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
7138	if (rand_vd == NULL) {
7139		spa_config_exit(spa, SCL_VDEV, FTAG);
7140		mutex_exit(&ztest_vdev_lock);
7141		return;
7142	}
7143
7144	/*
7145	 * The random vdev we've selected may change as soon as we
7146	 * drop the spa_config_lock. We create local copies of things
7147	 * we're interested in.
7148	 */
7149	uint64_t guid = rand_vd->vdev_guid;
7150	char *path = strdup(rand_vd->vdev_path);
7151	boolean_t active = rand_vd->vdev_initialize_thread != NULL;
7152
7153	zfs_dbgmsg("vd %px, guid %llu", rand_vd, (u_longlong_t)guid);
7154	spa_config_exit(spa, SCL_VDEV, FTAG);
7155
7156	uint64_t cmd = ztest_random(POOL_INITIALIZE_FUNCS);
7157
7158	nvlist_t *vdev_guids = fnvlist_alloc();
7159	nvlist_t *vdev_errlist = fnvlist_alloc();
7160	fnvlist_add_uint64(vdev_guids, path, guid);
7161	error = spa_vdev_initialize(spa, vdev_guids, cmd, vdev_errlist);
7162	fnvlist_free(vdev_guids);
7163	fnvlist_free(vdev_errlist);
7164
7165	switch (cmd) {
7166	case POOL_INITIALIZE_CANCEL:
7167		if (ztest_opts.zo_verbose >= 4) {
7168			(void) printf("Cancel initialize %s", path);
7169			if (!active)
7170				(void) printf(" failed (no initialize active)");
7171			(void) printf("\n");
7172		}
7173		break;
7174	case POOL_INITIALIZE_START:
7175		if (ztest_opts.zo_verbose >= 4) {
7176			(void) printf("Start initialize %s", path);
7177			if (active && error == 0)
7178				(void) printf(" failed (already active)");
7179			else if (error != 0)
7180				(void) printf(" failed (error %d)", error);
7181			(void) printf("\n");
7182		}
7183		break;
7184	case POOL_INITIALIZE_SUSPEND:
7185		if (ztest_opts.zo_verbose >= 4) {
7186			(void) printf("Suspend initialize %s", path);
7187			if (!active)
7188				(void) printf(" failed (no initialize active)");
7189			(void) printf("\n");
7190		}
7191		break;
7192	}
7193	free(path);
7194	mutex_exit(&ztest_vdev_lock);
7195}
7196
7197void
7198ztest_trim(ztest_ds_t *zd, uint64_t id)
7199{
7200	(void) zd, (void) id;
7201	spa_t *spa = ztest_spa;
7202	int error = 0;
7203
7204	mutex_enter(&ztest_vdev_lock);
7205
7206	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
7207
7208	/* Random leaf vdev */
7209	vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
7210	if (rand_vd == NULL) {
7211		spa_config_exit(spa, SCL_VDEV, FTAG);
7212		mutex_exit(&ztest_vdev_lock);
7213		return;
7214	}
7215
7216	/*
7217	 * The random vdev we've selected may change as soon as we
7218	 * drop the spa_config_lock. We create local copies of things
7219	 * we're interested in.
7220	 */
7221	uint64_t guid = rand_vd->vdev_guid;
7222	char *path = strdup(rand_vd->vdev_path);
7223	boolean_t active = rand_vd->vdev_trim_thread != NULL;
7224
7225	zfs_dbgmsg("vd %p, guid %llu", rand_vd, (u_longlong_t)guid);
7226	spa_config_exit(spa, SCL_VDEV, FTAG);
7227
7228	uint64_t cmd = ztest_random(POOL_TRIM_FUNCS);
7229	uint64_t rate = 1 << ztest_random(30);
7230	boolean_t partial = (ztest_random(5) > 0);
7231	boolean_t secure = (ztest_random(5) > 0);
7232
7233	nvlist_t *vdev_guids = fnvlist_alloc();
7234	nvlist_t *vdev_errlist = fnvlist_alloc();
7235	fnvlist_add_uint64(vdev_guids, path, guid);
7236	error = spa_vdev_trim(spa, vdev_guids, cmd, rate, partial,
7237	    secure, vdev_errlist);
7238	fnvlist_free(vdev_guids);
7239	fnvlist_free(vdev_errlist);
7240
7241	switch (cmd) {
7242	case POOL_TRIM_CANCEL:
7243		if (ztest_opts.zo_verbose >= 4) {
7244			(void) printf("Cancel TRIM %s", path);
7245			if (!active)
7246				(void) printf(" failed (no TRIM active)");
7247			(void) printf("\n");
7248		}
7249		break;
7250	case POOL_TRIM_START:
7251		if (ztest_opts.zo_verbose >= 4) {
7252			(void) printf("Start TRIM %s", path);
7253			if (active && error == 0)
7254				(void) printf(" failed (already active)");
7255			else if (error != 0)
7256				(void) printf(" failed (error %d)", error);
7257			(void) printf("\n");
7258		}
7259		break;
7260	case POOL_TRIM_SUSPEND:
7261		if (ztest_opts.zo_verbose >= 4) {
7262			(void) printf("Suspend TRIM %s", path);
7263			if (!active)
7264				(void) printf(" failed (no TRIM active)");
7265			(void) printf("\n");
7266		}
7267		break;
7268	}
7269	free(path);
7270	mutex_exit(&ztest_vdev_lock);
7271}
7272
7273/*
7274 * Verify pool integrity by running zdb.
7275 */
7276static void
7277ztest_run_zdb(uint64_t guid)
7278{
7279	int status;
7280	char *bin;
7281	char *zdb;
7282	char *zbuf;
7283	const int len = MAXPATHLEN + MAXNAMELEN + 20;
7284	FILE *fp;
7285
7286	bin = umem_alloc(len, UMEM_NOFAIL);
7287	zdb = umem_alloc(len, UMEM_NOFAIL);
7288	zbuf = umem_alloc(1024, UMEM_NOFAIL);
7289
7290	ztest_get_zdb_bin(bin, len);
7291
7292	char **set_gvars_args = ztest_global_vars_to_zdb_args();
7293	if (set_gvars_args == NULL) {
7294		fatal(B_FALSE, "Failed to allocate memory in "
7295		    "ztest_global_vars_to_zdb_args(). Cannot run zdb.\n");
7296	}
7297	char *set_gvars_args_joined = join_strings(set_gvars_args, " ");
7298	free(set_gvars_args);
7299
7300	size_t would = snprintf(zdb, len,
7301	    "%s -bcc%s%s -G -d -Y -e -y %s -p %s %"PRIu64,
7302	    bin,
7303	    ztest_opts.zo_verbose >= 3 ? "s" : "",
7304	    ztest_opts.zo_verbose >= 4 ? "v" : "",
7305	    set_gvars_args_joined,
7306	    ztest_opts.zo_dir,
7307	    guid);
7308	ASSERT3U(would, <, len);
7309
7310	umem_free(set_gvars_args_joined, strlen(set_gvars_args_joined) + 1);
7311
7312	if (ztest_opts.zo_verbose >= 5)
7313		(void) printf("Executing %s\n", zdb);
7314
7315	fp = popen(zdb, "r");
7316
7317	while (fgets(zbuf, 1024, fp) != NULL)
7318		if (ztest_opts.zo_verbose >= 3)
7319			(void) printf("%s", zbuf);
7320
7321	status = pclose(fp);
7322
7323	if (status == 0)
7324		goto out;
7325
7326	ztest_dump_core = 0;
7327	if (WIFEXITED(status))
7328		fatal(B_FALSE, "'%s' exit code %d", zdb, WEXITSTATUS(status));
7329	else
7330		fatal(B_FALSE, "'%s' died with signal %d",
7331		    zdb, WTERMSIG(status));
7332out:
7333	umem_free(bin, len);
7334	umem_free(zdb, len);
7335	umem_free(zbuf, 1024);
7336}
7337
7338static void
7339ztest_walk_pool_directory(const char *header)
7340{
7341	spa_t *spa = NULL;
7342
7343	if (ztest_opts.zo_verbose >= 6)
7344		(void) puts(header);
7345
7346	mutex_enter(&spa_namespace_lock);
7347	while ((spa = spa_next(spa)) != NULL)
7348		if (ztest_opts.zo_verbose >= 6)
7349			(void) printf("\t%s\n", spa_name(spa));
7350	mutex_exit(&spa_namespace_lock);
7351}
7352
7353static void
7354ztest_spa_import_export(char *oldname, char *newname)
7355{
7356	nvlist_t *config, *newconfig;
7357	uint64_t pool_guid;
7358	spa_t *spa;
7359	int error;
7360
7361	if (ztest_opts.zo_verbose >= 4) {
7362		(void) printf("import/export: old = %s, new = %s\n",
7363		    oldname, newname);
7364	}
7365
7366	/*
7367	 * Clean up from previous runs.
7368	 */
7369	(void) spa_destroy(newname);
7370
7371	/*
7372	 * Get the pool's configuration and guid.
7373	 */
7374	VERIFY0(spa_open(oldname, &spa, FTAG));
7375
7376	/*
7377	 * Kick off a scrub to tickle scrub/export races.
7378	 */
7379	if (ztest_random(2) == 0)
7380		(void) spa_scan(spa, POOL_SCAN_SCRUB);
7381
7382	pool_guid = spa_guid(spa);
7383	spa_close(spa, FTAG);
7384
7385	ztest_walk_pool_directory("pools before export");
7386
7387	/*
7388	 * Export it.
7389	 */
7390	VERIFY0(spa_export(oldname, &config, B_FALSE, B_FALSE));
7391
7392	ztest_walk_pool_directory("pools after export");
7393
7394	/*
7395	 * Try to import it.
7396	 */
7397	newconfig = spa_tryimport(config);
7398	ASSERT3P(newconfig, !=, NULL);
7399	fnvlist_free(newconfig);
7400
7401	/*
7402	 * Import it under the new name.
7403	 */
7404	error = spa_import(newname, config, NULL, 0);
7405	if (error != 0) {
7406		dump_nvlist(config, 0);
7407		fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
7408		    oldname, newname, error);
7409	}
7410
7411	ztest_walk_pool_directory("pools after import");
7412
7413	/*
7414	 * Try to import it again -- should fail with EEXIST.
7415	 */
7416	VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
7417
7418	/*
7419	 * Try to import it under a different name -- should fail with EEXIST.
7420	 */
7421	VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
7422
7423	/*
7424	 * Verify that the pool is no longer visible under the old name.
7425	 */
7426	VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
7427
7428	/*
7429	 * Verify that we can open and close the pool using the new name.
7430	 */
7431	VERIFY0(spa_open(newname, &spa, FTAG));
7432	ASSERT3U(pool_guid, ==, spa_guid(spa));
7433	spa_close(spa, FTAG);
7434
7435	fnvlist_free(config);
7436}
7437
7438static void
7439ztest_resume(spa_t *spa)
7440{
7441	if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
7442		(void) printf("resuming from suspended state\n");
7443	spa_vdev_state_enter(spa, SCL_NONE);
7444	vdev_clear(spa, NULL);
7445	(void) spa_vdev_state_exit(spa, NULL, 0);
7446	(void) zio_resume(spa);
7447}
7448
7449static __attribute__((noreturn)) void
7450ztest_resume_thread(void *arg)
7451{
7452	spa_t *spa = arg;
7453
7454	while (!ztest_exiting) {
7455		if (spa_suspended(spa))
7456			ztest_resume(spa);
7457		(void) poll(NULL, 0, 100);
7458
7459		/*
7460		 * Periodically change the zfs_compressed_arc_enabled setting.
7461		 */
7462		if (ztest_random(10) == 0)
7463			zfs_compressed_arc_enabled = ztest_random(2);
7464
7465		/*
7466		 * Periodically change the zfs_abd_scatter_enabled setting.
7467		 */
7468		if (ztest_random(10) == 0)
7469			zfs_abd_scatter_enabled = ztest_random(2);
7470	}
7471
7472	thread_exit();
7473}
7474
7475static __attribute__((noreturn)) void
7476ztest_deadman_thread(void *arg)
7477{
7478	ztest_shared_t *zs = arg;
7479	spa_t *spa = ztest_spa;
7480	hrtime_t delay, overdue, last_run = gethrtime();
7481
7482	delay = (zs->zs_thread_stop - zs->zs_thread_start) +
7483	    MSEC2NSEC(zfs_deadman_synctime_ms);
7484
7485	while (!ztest_exiting) {
7486		/*
7487		 * Wait for the delay timer while checking occasionally
7488		 * if we should stop.
7489		 */
7490		if (gethrtime() < last_run + delay) {
7491			(void) poll(NULL, 0, 1000);
7492			continue;
7493		}
7494
7495		/*
7496		 * If the pool is suspended then fail immediately. Otherwise,
7497		 * check to see if the pool is making any progress. If
7498		 * vdev_deadman() discovers that there hasn't been any recent
7499		 * I/Os then it will end up aborting the tests.
7500		 */
7501		if (spa_suspended(spa) || spa->spa_root_vdev == NULL) {
7502			fatal(B_FALSE,
7503			    "aborting test after %llu seconds because "
7504			    "pool has transitioned to a suspended state.",
7505			    (u_longlong_t)zfs_deadman_synctime_ms / 1000);
7506		}
7507		vdev_deadman(spa->spa_root_vdev, FTAG);
7508
7509		/*
7510		 * If the process doesn't complete within a grace period of
7511		 * zfs_deadman_synctime_ms over the expected finish time,
7512		 * then it may be hung and is terminated.
7513		 */
7514		overdue = zs->zs_proc_stop + MSEC2NSEC(zfs_deadman_synctime_ms);
7515		if (gethrtime() > overdue) {
7516			fatal(B_FALSE,
7517			    "aborting test after %llu seconds because "
7518			    "the process is overdue for termination.",
7519			    (gethrtime() - zs->zs_proc_start) / NANOSEC);
7520		}
7521
7522		(void) printf("ztest has been running for %lld seconds\n",
7523		    (gethrtime() - zs->zs_proc_start) / NANOSEC);
7524
7525		last_run = gethrtime();
7526		delay = MSEC2NSEC(zfs_deadman_checktime_ms);
7527	}
7528
7529	thread_exit();
7530}
7531
7532static void
7533ztest_execute(int test, ztest_info_t *zi, uint64_t id)
7534{
7535	ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
7536	ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
7537	hrtime_t functime = gethrtime();
7538	int i;
7539
7540	for (i = 0; i < zi->zi_iters; i++)
7541		zi->zi_func(zd, id);
7542
7543	functime = gethrtime() - functime;
7544
7545	atomic_add_64(&zc->zc_count, 1);
7546	atomic_add_64(&zc->zc_time, functime);
7547
7548	if (ztest_opts.zo_verbose >= 4)
7549		(void) printf("%6.2f sec in %s\n",
7550		    (double)functime / NANOSEC, zi->zi_funcname);
7551}
7552
7553typedef struct ztest_raidz_expand_io {
7554	uint64_t	rzx_id;
7555	uint64_t	rzx_amount;
7556	uint64_t	rzx_bufsize;
7557	const void	*rzx_buffer;
7558	uint64_t	rzx_alloc_max;
7559	spa_t		*rzx_spa;
7560} ztest_expand_io_t;
7561
7562#undef OD_ARRAY_SIZE
7563#define	OD_ARRAY_SIZE	10
7564
7565/*
7566 * Write a request amount of data to some dataset objects.
7567 * There will be ztest_opts.zo_threads count of these running in parallel.
7568 */
7569static __attribute__((noreturn)) void
7570ztest_rzx_thread(void *arg)
7571{
7572	ztest_expand_io_t *info = (ztest_expand_io_t *)arg;
7573	ztest_od_t *od;
7574	int batchsize;
7575	int od_size;
7576	ztest_ds_t *zd = &ztest_ds[info->rzx_id % ztest_opts.zo_datasets];
7577	spa_t *spa = info->rzx_spa;
7578
7579	od_size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
7580	od = umem_alloc(od_size, UMEM_NOFAIL);
7581	batchsize = OD_ARRAY_SIZE;
7582
7583	/* Create objects to write to */
7584	for (int b = 0; b < batchsize; b++) {
7585		ztest_od_init(od + b, info->rzx_id, FTAG, b,
7586		    DMU_OT_UINT64_OTHER, 0, 0, 0);
7587	}
7588	if (ztest_object_init(zd, od, od_size, B_FALSE) != 0) {
7589		umem_free(od, od_size);
7590		thread_exit();
7591	}
7592
7593	for (uint64_t offset = 0, written = 0; written < info->rzx_amount;
7594	    offset += info->rzx_bufsize) {
7595		/* write to 10 objects */
7596		for (int i = 0; i < batchsize && written < info->rzx_amount;
7597		    i++) {
7598			(void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
7599			ztest_write(zd, od[i].od_object, offset,
7600			    info->rzx_bufsize, info->rzx_buffer);
7601			(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
7602			written += info->rzx_bufsize;
7603		}
7604		txg_wait_synced(spa_get_dsl(spa), 0);
7605		/* due to inflation, we'll typically bail here */
7606		if (metaslab_class_get_alloc(spa_normal_class(spa)) >
7607		    info->rzx_alloc_max) {
7608			break;
7609		}
7610	}
7611
7612	/* Remove a few objects to leave some holes in allocation space */
7613	mutex_enter(&zd->zd_dirobj_lock);
7614	(void) ztest_remove(zd, od, 2);
7615	mutex_exit(&zd->zd_dirobj_lock);
7616
7617	umem_free(od, od_size);
7618
7619	thread_exit();
7620}
7621
7622static __attribute__((noreturn)) void
7623ztest_thread(void *arg)
7624{
7625	int rand;
7626	uint64_t id = (uintptr_t)arg;
7627	ztest_shared_t *zs = ztest_shared;
7628	uint64_t call_next;
7629	hrtime_t now;
7630	ztest_info_t *zi;
7631	ztest_shared_callstate_t *zc;
7632
7633	while ((now = gethrtime()) < zs->zs_thread_stop) {
7634		/*
7635		 * See if it's time to force a crash.
7636		 */
7637		if (now > zs->zs_thread_kill &&
7638		    raidz_expand_pause_point == RAIDZ_EXPAND_PAUSE_NONE) {
7639			ztest_kill(zs);
7640		}
7641
7642		/*
7643		 * If we're getting ENOSPC with some regularity, stop.
7644		 */
7645		if (zs->zs_enospc_count > 10)
7646			break;
7647
7648		/*
7649		 * Pick a random function to execute.
7650		 */
7651		rand = ztest_random(ZTEST_FUNCS);
7652		zi = &ztest_info[rand];
7653		zc = ZTEST_GET_SHARED_CALLSTATE(rand);
7654		call_next = zc->zc_next;
7655
7656		if (now >= call_next &&
7657		    atomic_cas_64(&zc->zc_next, call_next, call_next +
7658		    ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
7659			ztest_execute(rand, zi, id);
7660		}
7661	}
7662
7663	thread_exit();
7664}
7665
7666static void
7667ztest_dataset_name(char *dsname, const char *pool, int d)
7668{
7669	(void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
7670}
7671
7672static void
7673ztest_dataset_destroy(int d)
7674{
7675	char name[ZFS_MAX_DATASET_NAME_LEN];
7676	int t;
7677
7678	ztest_dataset_name(name, ztest_opts.zo_pool, d);
7679
7680	if (ztest_opts.zo_verbose >= 3)
7681		(void) printf("Destroying %s to free up space\n", name);
7682
7683	/*
7684	 * Cleanup any non-standard clones and snapshots.  In general,
7685	 * ztest thread t operates on dataset (t % zopt_datasets),
7686	 * so there may be more than one thing to clean up.
7687	 */
7688	for (t = d; t < ztest_opts.zo_threads;
7689	    t += ztest_opts.zo_datasets)
7690		ztest_dsl_dataset_cleanup(name, t);
7691
7692	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
7693	    DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
7694}
7695
7696static void
7697ztest_dataset_dirobj_verify(ztest_ds_t *zd)
7698{
7699	uint64_t usedobjs, dirobjs, scratch;
7700
7701	/*
7702	 * ZTEST_DIROBJ is the object directory for the entire dataset.
7703	 * Therefore, the number of objects in use should equal the
7704	 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
7705	 * If not, we have an object leak.
7706	 *
7707	 * Note that we can only check this in ztest_dataset_open(),
7708	 * when the open-context and syncing-context values agree.
7709	 * That's because zap_count() returns the open-context value,
7710	 * while dmu_objset_space() returns the rootbp fill count.
7711	 */
7712	VERIFY0(zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
7713	dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
7714	ASSERT3U(dirobjs + 1, ==, usedobjs);
7715}
7716
7717static int
7718ztest_dataset_open(int d)
7719{
7720	ztest_ds_t *zd = &ztest_ds[d];
7721	uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
7722	objset_t *os;
7723	zilog_t *zilog;
7724	char name[ZFS_MAX_DATASET_NAME_LEN];
7725	int error;
7726
7727	ztest_dataset_name(name, ztest_opts.zo_pool, d);
7728
7729	(void) pthread_rwlock_rdlock(&ztest_name_lock);
7730
7731	error = ztest_dataset_create(name);
7732	if (error == ENOSPC) {
7733		(void) pthread_rwlock_unlock(&ztest_name_lock);
7734		ztest_record_enospc(FTAG);
7735		return (error);
7736	}
7737	ASSERT(error == 0 || error == EEXIST);
7738
7739	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
7740	    B_TRUE, zd, &os));
7741	(void) pthread_rwlock_unlock(&ztest_name_lock);
7742
7743	ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
7744
7745	zilog = zd->zd_zilog;
7746
7747	if (zilog->zl_header->zh_claim_lr_seq != 0 &&
7748	    zilog->zl_header->zh_claim_lr_seq < committed_seq)
7749		fatal(B_FALSE, "missing log records: "
7750		    "claimed %"PRIu64" < committed %"PRIu64"",
7751		    zilog->zl_header->zh_claim_lr_seq, committed_seq);
7752
7753	ztest_dataset_dirobj_verify(zd);
7754
7755	zil_replay(os, zd, ztest_replay_vector);
7756
7757	ztest_dataset_dirobj_verify(zd);
7758
7759	if (ztest_opts.zo_verbose >= 6)
7760		(void) printf("%s replay %"PRIu64" blocks, "
7761		    "%"PRIu64" records, seq %"PRIu64"\n",
7762		    zd->zd_name,
7763		    zilog->zl_parse_blk_count,
7764		    zilog->zl_parse_lr_count,
7765		    zilog->zl_replaying_seq);
7766
7767	zilog = zil_open(os, ztest_get_data, NULL);
7768
7769	if (zilog->zl_replaying_seq != 0 &&
7770	    zilog->zl_replaying_seq < committed_seq)
7771		fatal(B_FALSE, "missing log records: "
7772		    "replayed %"PRIu64" < committed %"PRIu64"",
7773		    zilog->zl_replaying_seq, committed_seq);
7774
7775	return (0);
7776}
7777
7778static void
7779ztest_dataset_close(int d)
7780{
7781	ztest_ds_t *zd = &ztest_ds[d];
7782
7783	zil_close(zd->zd_zilog);
7784	dmu_objset_disown(zd->zd_os, B_TRUE, zd);
7785
7786	ztest_zd_fini(zd);
7787}
7788
7789static int
7790ztest_replay_zil_cb(const char *name, void *arg)
7791{
7792	(void) arg;
7793	objset_t *os;
7794	ztest_ds_t *zdtmp;
7795
7796	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_ANY, B_TRUE,
7797	    B_TRUE, FTAG, &os));
7798
7799	zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
7800
7801	ztest_zd_init(zdtmp, NULL, os);
7802	zil_replay(os, zdtmp, ztest_replay_vector);
7803	ztest_zd_fini(zdtmp);
7804
7805	if (dmu_objset_zil(os)->zl_parse_lr_count != 0 &&
7806	    ztest_opts.zo_verbose >= 6) {
7807		zilog_t *zilog = dmu_objset_zil(os);
7808
7809		(void) printf("%s replay %"PRIu64" blocks, "
7810		    "%"PRIu64" records, seq %"PRIu64"\n",
7811		    name,
7812		    zilog->zl_parse_blk_count,
7813		    zilog->zl_parse_lr_count,
7814		    zilog->zl_replaying_seq);
7815	}
7816
7817	umem_free(zdtmp, sizeof (ztest_ds_t));
7818
7819	dmu_objset_disown(os, B_TRUE, FTAG);
7820	return (0);
7821}
7822
7823static void
7824ztest_freeze(void)
7825{
7826	ztest_ds_t *zd = &ztest_ds[0];
7827	spa_t *spa;
7828	int numloops = 0;
7829
7830	/* freeze not supported during RAIDZ expansion */
7831	if (ztest_opts.zo_raid_do_expand)
7832		return;
7833
7834	if (ztest_opts.zo_verbose >= 3)
7835		(void) printf("testing spa_freeze()...\n");
7836
7837	raidz_scratch_verify();
7838	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7839	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7840	VERIFY0(ztest_dataset_open(0));
7841	ztest_spa = spa;
7842
7843	/*
7844	 * Force the first log block to be transactionally allocated.
7845	 * We have to do this before we freeze the pool -- otherwise
7846	 * the log chain won't be anchored.
7847	 */
7848	while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
7849		ztest_dmu_object_alloc_free(zd, 0);
7850		zil_commit(zd->zd_zilog, 0);
7851	}
7852
7853	txg_wait_synced(spa_get_dsl(spa), 0);
7854
7855	/*
7856	 * Freeze the pool.  This stops spa_sync() from doing anything,
7857	 * so that the only way to record changes from now on is the ZIL.
7858	 */
7859	spa_freeze(spa);
7860
7861	/*
7862	 * Because it is hard to predict how much space a write will actually
7863	 * require beforehand, we leave ourselves some fudge space to write over
7864	 * capacity.
7865	 */
7866	uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
7867
7868	/*
7869	 * Run tests that generate log records but don't alter the pool config
7870	 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
7871	 * We do a txg_wait_synced() after each iteration to force the txg
7872	 * to increase well beyond the last synced value in the uberblock.
7873	 * The ZIL should be OK with that.
7874	 *
7875	 * Run a random number of times less than zo_maxloops and ensure we do
7876	 * not run out of space on the pool.
7877	 */
7878	while (ztest_random(10) != 0 &&
7879	    numloops++ < ztest_opts.zo_maxloops &&
7880	    metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
7881		ztest_od_t od;
7882		ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
7883		VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
7884		ztest_io(zd, od.od_object,
7885		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
7886		txg_wait_synced(spa_get_dsl(spa), 0);
7887	}
7888
7889	/*
7890	 * Commit all of the changes we just generated.
7891	 */
7892	zil_commit(zd->zd_zilog, 0);
7893	txg_wait_synced(spa_get_dsl(spa), 0);
7894
7895	/*
7896	 * Close our dataset and close the pool.
7897	 */
7898	ztest_dataset_close(0);
7899	spa_close(spa, FTAG);
7900	kernel_fini();
7901
7902	/*
7903	 * Open and close the pool and dataset to induce log replay.
7904	 */
7905	raidz_scratch_verify();
7906	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7907	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7908	ASSERT3U(spa_freeze_txg(spa), ==, UINT64_MAX);
7909	VERIFY0(ztest_dataset_open(0));
7910	ztest_spa = spa;
7911	txg_wait_synced(spa_get_dsl(spa), 0);
7912	ztest_dataset_close(0);
7913	ztest_reguid(NULL, 0);
7914
7915	spa_close(spa, FTAG);
7916	kernel_fini();
7917}
7918
7919static void
7920ztest_import_impl(void)
7921{
7922	importargs_t args = { 0 };
7923	nvlist_t *cfg = NULL;
7924	int nsearch = 1;
7925	char *searchdirs[nsearch];
7926	int flags = ZFS_IMPORT_MISSING_LOG;
7927
7928	searchdirs[0] = ztest_opts.zo_dir;
7929	args.paths = nsearch;
7930	args.path = searchdirs;
7931	args.can_be_active = B_FALSE;
7932
7933	libpc_handle_t lpch = {
7934		.lpc_lib_handle = NULL,
7935		.lpc_ops = &libzpool_config_ops,
7936		.lpc_printerr = B_TRUE
7937	};
7938	VERIFY0(zpool_find_config(&lpch, ztest_opts.zo_pool, &cfg, &args));
7939	VERIFY0(spa_import(ztest_opts.zo_pool, cfg, NULL, flags));
7940	fnvlist_free(cfg);
7941}
7942
7943/*
7944 * Import a storage pool with the given name.
7945 */
7946static void
7947ztest_import(ztest_shared_t *zs)
7948{
7949	spa_t *spa;
7950
7951	mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
7952	mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
7953	VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
7954
7955	raidz_scratch_verify();
7956	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7957
7958	ztest_import_impl();
7959
7960	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7961	zs->zs_metaslab_sz =
7962	    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
7963	zs->zs_guid = spa_guid(spa);
7964	spa_close(spa, FTAG);
7965
7966	kernel_fini();
7967
7968	if (!ztest_opts.zo_mmp_test) {
7969		ztest_run_zdb(zs->zs_guid);
7970		ztest_freeze();
7971		ztest_run_zdb(zs->zs_guid);
7972	}
7973
7974	(void) pthread_rwlock_destroy(&ztest_name_lock);
7975	mutex_destroy(&ztest_vdev_lock);
7976	mutex_destroy(&ztest_checkpoint_lock);
7977}
7978
7979/*
7980 * After the expansion was killed, check that the pool is healthy
7981 */
7982static void
7983ztest_raidz_expand_check(spa_t *spa)
7984{
7985	ASSERT3U(ztest_opts.zo_raidz_expand_test, ==, RAIDZ_EXPAND_KILLED);
7986	/*
7987	 * Set pool check done flag, main program will run a zdb check
7988	 * of the pool when we exit.
7989	 */
7990	ztest_shared_opts->zo_raidz_expand_test = RAIDZ_EXPAND_CHECKED;
7991
7992	/* Wait for reflow to finish */
7993	if (ztest_opts.zo_verbose >= 1) {
7994		(void) printf("\nwaiting for reflow to finish ...\n");
7995	}
7996	pool_raidz_expand_stat_t rzx_stats;
7997	pool_raidz_expand_stat_t *pres = &rzx_stats;
7998	do {
7999		txg_wait_synced(spa_get_dsl(spa), 0);
8000		(void) poll(NULL, 0, 500); /* wait 1/2 second */
8001
8002		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8003		(void) spa_raidz_expand_get_stats(spa, pres);
8004		spa_config_exit(spa, SCL_CONFIG, FTAG);
8005	} while (pres->pres_state != DSS_FINISHED &&
8006	    pres->pres_reflowed < pres->pres_to_reflow);
8007
8008	if (ztest_opts.zo_verbose >= 1) {
8009		(void) printf("verifying an interrupted raidz "
8010		    "expansion using a pool scrub ...\n");
8011	}
8012	/* Will fail here if there is non-recoverable corruption detected */
8013	VERIFY0(ztest_scrub_impl(spa));
8014	if (ztest_opts.zo_verbose >= 1) {
8015		(void) printf("raidz expansion scrub check complete\n");
8016	}
8017}
8018
8019/*
8020 * Start a raidz expansion test.  We run some I/O on the pool for a while
8021 * to get some data in the pool.  Then we grow the raidz and
8022 * kill the test at the requested offset into the reflow, verifying that
8023 * doing such does not lead to pool corruption.
8024 */
8025static void
8026ztest_raidz_expand_run(ztest_shared_t *zs, spa_t *spa)
8027{
8028	nvlist_t *root;
8029	pool_raidz_expand_stat_t rzx_stats;
8030	pool_raidz_expand_stat_t *pres = &rzx_stats;
8031	kthread_t **run_threads;
8032	vdev_t *cvd, *rzvd = spa->spa_root_vdev->vdev_child[0];
8033	int total_disks = rzvd->vdev_children;
8034	int data_disks = total_disks - vdev_get_nparity(rzvd);
8035	uint64_t alloc_goal;
8036	uint64_t csize;
8037	int error, t;
8038	int threads = ztest_opts.zo_threads;
8039	ztest_expand_io_t *thread_args;
8040
8041	ASSERT3U(ztest_opts.zo_raidz_expand_test, !=, RAIDZ_EXPAND_NONE);
8042	ASSERT3P(rzvd->vdev_ops, ==, &vdev_raidz_ops);
8043	ztest_opts.zo_raidz_expand_test = RAIDZ_EXPAND_STARTED;
8044
8045	/* Setup a 1 MiB buffer of random data */
8046	uint64_t bufsize = 1024 * 1024;
8047	void *buffer = umem_alloc(bufsize, UMEM_NOFAIL);
8048
8049	if (read(ztest_fd_rand, buffer, bufsize) != bufsize) {
8050		fatal(B_TRUE, "short read from /dev/urandom");
8051	}
8052	/*
8053	 * Put some data in the pool and then attach a vdev to initiate
8054	 * reflow.
8055	 */
8056	run_threads = umem_zalloc(threads * sizeof (kthread_t *), UMEM_NOFAIL);
8057	thread_args = umem_zalloc(threads * sizeof (ztest_expand_io_t),
8058	    UMEM_NOFAIL);
8059	/* Aim for roughly 25% of allocatable space up to 1GB */
8060	alloc_goal = (vdev_get_min_asize(rzvd) * data_disks) / total_disks;
8061	alloc_goal = MIN(alloc_goal >> 2, 1024*1024*1024);
8062	if (ztest_opts.zo_verbose >= 1) {
8063		(void) printf("adding data to pool '%s', goal %llu bytes\n",
8064		    ztest_opts.zo_pool, (u_longlong_t)alloc_goal);
8065	}
8066
8067	/*
8068	 * Kick off all the I/O generators that run in parallel.
8069	 */
8070	for (t = 0; t < threads; t++) {
8071		if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) {
8072			umem_free(run_threads, threads * sizeof (kthread_t *));
8073			umem_free(buffer, bufsize);
8074			return;
8075		}
8076		thread_args[t].rzx_id = t;
8077		thread_args[t].rzx_amount = alloc_goal / threads;
8078		thread_args[t].rzx_bufsize = bufsize;
8079		thread_args[t].rzx_buffer = buffer;
8080		thread_args[t].rzx_alloc_max = alloc_goal;
8081		thread_args[t].rzx_spa = spa;
8082		run_threads[t] = thread_create(NULL, 0, ztest_rzx_thread,
8083		    &thread_args[t], 0, NULL, TS_RUN | TS_JOINABLE,
8084		    defclsyspri);
8085	}
8086
8087	/*
8088	 * Wait for all of the writers to complete.
8089	 */
8090	for (t = 0; t < threads; t++)
8091		VERIFY0(thread_join(run_threads[t]));
8092
8093	/*
8094	 * Close all datasets. This must be done after all the threads
8095	 * are joined so we can be sure none of the datasets are in-use
8096	 * by any of the threads.
8097	 */
8098	for (t = 0; t < ztest_opts.zo_threads; t++) {
8099		if (t < ztest_opts.zo_datasets)
8100			ztest_dataset_close(t);
8101	}
8102
8103	txg_wait_synced(spa_get_dsl(spa), 0);
8104
8105	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
8106	zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
8107
8108	umem_free(buffer, bufsize);
8109	umem_free(run_threads, threads * sizeof (kthread_t *));
8110	umem_free(thread_args, threads * sizeof (ztest_expand_io_t));
8111
8112	/* Set our reflow target to 25%, 50% or 75% of allocated size */
8113	uint_t multiple = ztest_random(3) + 1;
8114	uint64_t reflow_max = (rzvd->vdev_stat.vs_alloc * multiple) / 4;
8115	raidz_expand_max_reflow_bytes = reflow_max;
8116
8117	if (ztest_opts.zo_verbose >= 1) {
8118		(void) printf("running raidz expansion test, killing when "
8119		    "reflow reaches %llu bytes (%u/4 of allocated space)\n",
8120		    (u_longlong_t)reflow_max, multiple);
8121	}
8122
8123	/* XXX - do we want some I/O load during the reflow? */
8124
8125	/*
8126	 * Use a disk size that is larger than existing ones
8127	 */
8128	cvd = rzvd->vdev_child[0];
8129	csize = vdev_get_min_asize(cvd);
8130	csize += csize / 10;
8131	/*
8132	 * Path to vdev to be attached
8133	 */
8134	char *newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
8135	(void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
8136	    ztest_opts.zo_dir, ztest_opts.zo_pool, rzvd->vdev_children);
8137	/*
8138	 * Build the nvlist describing newpath.
8139	 */
8140	root = make_vdev_root(newpath, NULL, NULL, csize, ztest_get_ashift(),
8141	    NULL, 0, 0, 1);
8142	/*
8143	 * Expand the raidz vdev by attaching the new disk
8144	 */
8145	if (ztest_opts.zo_verbose >= 1) {
8146		(void) printf("expanding raidz: %d wide to %d wide with '%s'\n",
8147		    (int)rzvd->vdev_children, (int)rzvd->vdev_children + 1,
8148		    newpath);
8149	}
8150	error = spa_vdev_attach(spa, rzvd->vdev_guid, root, B_FALSE, B_FALSE);
8151	nvlist_free(root);
8152	if (error != 0) {
8153		fatal(0, "raidz expand: attach (%s %llu) returned %d",
8154		    newpath, (long long)csize, error);
8155	}
8156
8157	/*
8158	 * Wait for reflow to begin
8159	 */
8160	while (spa->spa_raidz_expand == NULL) {
8161		txg_wait_synced(spa_get_dsl(spa), 0);
8162		(void) poll(NULL, 0, 100); /* wait 1/10 second */
8163	}
8164	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8165	(void) spa_raidz_expand_get_stats(spa, pres);
8166	spa_config_exit(spa, SCL_CONFIG, FTAG);
8167	while (pres->pres_state != DSS_SCANNING) {
8168		txg_wait_synced(spa_get_dsl(spa), 0);
8169		(void) poll(NULL, 0, 100); /* wait 1/10 second */
8170		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8171		(void) spa_raidz_expand_get_stats(spa, pres);
8172		spa_config_exit(spa, SCL_CONFIG, FTAG);
8173	}
8174
8175	ASSERT3U(pres->pres_state, ==, DSS_SCANNING);
8176	ASSERT3U(pres->pres_to_reflow, !=, 0);
8177	/*
8178	 * Set so when we are killed we go to raidz checking rather than
8179	 * restarting test.
8180	 */
8181	ztest_shared_opts->zo_raidz_expand_test = RAIDZ_EXPAND_KILLED;
8182	if (ztest_opts.zo_verbose >= 1) {
8183		(void) printf("raidz expansion reflow started, waiting for "
8184		    "%llu bytes to be copied\n", (u_longlong_t)reflow_max);
8185	}
8186
8187	/*
8188	 * Wait for reflow maximum to be reached and then kill the test
8189	 */
8190	while (pres->pres_reflowed < reflow_max) {
8191		txg_wait_synced(spa_get_dsl(spa), 0);
8192		(void) poll(NULL, 0, 100); /* wait 1/10 second */
8193		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8194		(void) spa_raidz_expand_get_stats(spa, pres);
8195		spa_config_exit(spa, SCL_CONFIG, FTAG);
8196	}
8197
8198	/* Reset the reflow pause before killing */
8199	raidz_expand_max_reflow_bytes = 0;
8200
8201	if (ztest_opts.zo_verbose >= 1) {
8202		(void) printf("killing raidz expansion test after reflow "
8203		    "reached %llu bytes\n", (u_longlong_t)pres->pres_reflowed);
8204	}
8205
8206	/*
8207	 * Kill ourself to simulate a panic during a reflow.  Our parent will
8208	 * restart the test and the changed flag value will drive the test
8209	 * through the scrub/check code to verify the pool is not corrupted.
8210	 */
8211	ztest_kill(zs);
8212}
8213
8214static void
8215ztest_generic_run(ztest_shared_t *zs, spa_t *spa)
8216{
8217	kthread_t **run_threads;
8218	int t;
8219
8220	run_threads = umem_zalloc(ztest_opts.zo_threads * sizeof (kthread_t *),
8221	    UMEM_NOFAIL);
8222
8223	/*
8224	 * Kick off all the tests that run in parallel.
8225	 */
8226	for (t = 0; t < ztest_opts.zo_threads; t++) {
8227		if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) {
8228			umem_free(run_threads, ztest_opts.zo_threads *
8229			    sizeof (kthread_t *));
8230			return;
8231		}
8232
8233		run_threads[t] = thread_create(NULL, 0, ztest_thread,
8234		    (void *)(uintptr_t)t, 0, NULL, TS_RUN | TS_JOINABLE,
8235		    defclsyspri);
8236	}
8237
8238	/*
8239	 * Wait for all of the tests to complete.
8240	 */
8241	for (t = 0; t < ztest_opts.zo_threads; t++)
8242		VERIFY0(thread_join(run_threads[t]));
8243
8244	/*
8245	 * Close all datasets. This must be done after all the threads
8246	 * are joined so we can be sure none of the datasets are in-use
8247	 * by any of the threads.
8248	 */
8249	for (t = 0; t < ztest_opts.zo_threads; t++) {
8250		if (t < ztest_opts.zo_datasets)
8251			ztest_dataset_close(t);
8252	}
8253
8254	txg_wait_synced(spa_get_dsl(spa), 0);
8255
8256	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
8257	zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
8258
8259	umem_free(run_threads, ztest_opts.zo_threads * sizeof (kthread_t *));
8260}
8261
8262/*
8263 * Setup our test context and kick off threads to run tests on all datasets
8264 * in parallel.
8265 */
8266static void
8267ztest_run(ztest_shared_t *zs)
8268{
8269	spa_t *spa;
8270	objset_t *os;
8271	kthread_t *resume_thread, *deadman_thread;
8272	uint64_t object;
8273	int error;
8274	int t, d;
8275
8276	ztest_exiting = B_FALSE;
8277
8278	/*
8279	 * Initialize parent/child shared state.
8280	 */
8281	mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
8282	mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
8283	VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
8284
8285	zs->zs_thread_start = gethrtime();
8286	zs->zs_thread_stop =
8287	    zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
8288	zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
8289	zs->zs_thread_kill = zs->zs_thread_stop;
8290	if (ztest_random(100) < ztest_opts.zo_killrate) {
8291		zs->zs_thread_kill -=
8292		    ztest_random(ztest_opts.zo_passtime * NANOSEC);
8293	}
8294
8295	mutex_init(&zcl.zcl_callbacks_lock, NULL, MUTEX_DEFAULT, NULL);
8296
8297	list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
8298	    offsetof(ztest_cb_data_t, zcd_node));
8299
8300	/*
8301	 * Open our pool.  It may need to be imported first depending on
8302	 * what tests were running when the previous pass was terminated.
8303	 */
8304	raidz_scratch_verify();
8305	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
8306	error = spa_open(ztest_opts.zo_pool, &spa, FTAG);
8307	if (error) {
8308		VERIFY3S(error, ==, ENOENT);
8309		ztest_import_impl();
8310		VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
8311		zs->zs_metaslab_sz =
8312		    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
8313	}
8314
8315	metaslab_preload_limit = ztest_random(20) + 1;
8316	ztest_spa = spa;
8317
8318	/*
8319	 * XXX - BUGBUG raidz expansion do not run this for generic for now
8320	 */
8321	if (ztest_opts.zo_raidz_expand_test != RAIDZ_EXPAND_NONE)
8322		VERIFY0(vdev_raidz_impl_set("cycle"));
8323
8324	dmu_objset_stats_t dds;
8325	VERIFY0(ztest_dmu_objset_own(ztest_opts.zo_pool,
8326	    DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os));
8327	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
8328	dmu_objset_fast_stat(os, &dds);
8329	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
8330	dmu_objset_disown(os, B_TRUE, FTAG);
8331
8332	/* Give the dedicated raidz expansion test more grace time */
8333	if (ztest_opts.zo_raidz_expand_test != RAIDZ_EXPAND_NONE)
8334		zfs_deadman_synctime_ms *= 2;
8335
8336	/*
8337	 * Create a thread to periodically resume suspended I/O.
8338	 */
8339	resume_thread = thread_create(NULL, 0, ztest_resume_thread,
8340	    spa, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
8341
8342	/*
8343	 * Create a deadman thread and set to panic if we hang.
8344	 */
8345	deadman_thread = thread_create(NULL, 0, ztest_deadman_thread,
8346	    zs, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
8347
8348	spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
8349
8350	/*
8351	 * Verify that we can safely inquire about any object,
8352	 * whether it's allocated or not.  To make it interesting,
8353	 * we probe a 5-wide window around each power of two.
8354	 * This hits all edge cases, including zero and the max.
8355	 */
8356	for (t = 0; t < 64; t++) {
8357		for (d = -5; d <= 5; d++) {
8358			error = dmu_object_info(spa->spa_meta_objset,
8359			    (1ULL << t) + d, NULL);
8360			ASSERT(error == 0 || error == ENOENT ||
8361			    error == EINVAL);
8362		}
8363	}
8364
8365	/*
8366	 * If we got any ENOSPC errors on the previous run, destroy something.
8367	 */
8368	if (zs->zs_enospc_count != 0) {
8369		/* Not expecting ENOSPC errors during raidz expansion tests */
8370		ASSERT3U(ztest_opts.zo_raidz_expand_test, ==,
8371		    RAIDZ_EXPAND_NONE);
8372
8373		int d = ztest_random(ztest_opts.zo_datasets);
8374		ztest_dataset_destroy(d);
8375	}
8376	zs->zs_enospc_count = 0;
8377
8378	/*
8379	 * If we were in the middle of ztest_device_removal() and were killed
8380	 * we need to ensure the removal and scrub complete before running
8381	 * any tests that check ztest_device_removal_active. The removal will
8382	 * be restarted automatically when the spa is opened, but we need to
8383	 * initiate the scrub manually if it is not already in progress. Note
8384	 * that we always run the scrub whenever an indirect vdev exists
8385	 * because we have no way of knowing for sure if ztest_device_removal()
8386	 * fully completed its scrub before the pool was reimported.
8387	 *
8388	 * Does not apply for the RAIDZ expansion specific test runs
8389	 */
8390	if (ztest_opts.zo_raidz_expand_test == RAIDZ_EXPAND_NONE &&
8391	    (spa->spa_removing_phys.sr_state == DSS_SCANNING ||
8392	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1)) {
8393		while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
8394			txg_wait_synced(spa_get_dsl(spa), 0);
8395
8396		error = ztest_scrub_impl(spa);
8397		if (error == EBUSY)
8398			error = 0;
8399		ASSERT0(error);
8400	}
8401
8402	if (ztest_opts.zo_verbose >= 4)
8403		(void) printf("starting main threads...\n");
8404
8405	/*
8406	 * Replay all logs of all datasets in the pool. This is primarily for
8407	 * temporary datasets which wouldn't otherwise get replayed, which
8408	 * can trigger failures when attempting to offline a SLOG in
8409	 * ztest_fault_inject().
8410	 */
8411	(void) dmu_objset_find(ztest_opts.zo_pool, ztest_replay_zil_cb,
8412	    NULL, DS_FIND_CHILDREN);
8413
8414	if (ztest_opts.zo_raidz_expand_test == RAIDZ_EXPAND_REQUESTED)
8415		ztest_raidz_expand_run(zs, spa);
8416	else if (ztest_opts.zo_raidz_expand_test == RAIDZ_EXPAND_KILLED)
8417		ztest_raidz_expand_check(spa);
8418	else
8419		ztest_generic_run(zs, spa);
8420
8421	/* Kill the resume and deadman threads */
8422	ztest_exiting = B_TRUE;
8423	VERIFY0(thread_join(resume_thread));
8424	VERIFY0(thread_join(deadman_thread));
8425	ztest_resume(spa);
8426
8427	/*
8428	 * Right before closing the pool, kick off a bunch of async I/O;
8429	 * spa_close() should wait for it to complete.
8430	 */
8431	for (object = 1; object < 50; object++) {
8432		dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
8433		    ZIO_PRIORITY_SYNC_READ);
8434	}
8435
8436	/* Verify that at least one commit cb was called in a timely fashion */
8437	if (zc_cb_counter >= ZTEST_COMMIT_CB_MIN_REG)
8438		VERIFY0(zc_min_txg_delay);
8439
8440	spa_close(spa, FTAG);
8441
8442	/*
8443	 * Verify that we can loop over all pools.
8444	 */
8445	mutex_enter(&spa_namespace_lock);
8446	for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
8447		if (ztest_opts.zo_verbose > 3)
8448			(void) printf("spa_next: found %s\n", spa_name(spa));
8449	mutex_exit(&spa_namespace_lock);
8450
8451	/*
8452	 * Verify that we can export the pool and reimport it under a
8453	 * different name.
8454	 */
8455	if ((ztest_random(2) == 0) && !ztest_opts.zo_mmp_test) {
8456		char name[ZFS_MAX_DATASET_NAME_LEN];
8457		(void) snprintf(name, sizeof (name), "%s_import",
8458		    ztest_opts.zo_pool);
8459		ztest_spa_import_export(ztest_opts.zo_pool, name);
8460		ztest_spa_import_export(name, ztest_opts.zo_pool);
8461	}
8462
8463	kernel_fini();
8464
8465	list_destroy(&zcl.zcl_callbacks);
8466	mutex_destroy(&zcl.zcl_callbacks_lock);
8467	(void) pthread_rwlock_destroy(&ztest_name_lock);
8468	mutex_destroy(&ztest_vdev_lock);
8469	mutex_destroy(&ztest_checkpoint_lock);
8470}
8471
8472static void
8473print_time(hrtime_t t, char *timebuf)
8474{
8475	hrtime_t s = t / NANOSEC;
8476	hrtime_t m = s / 60;
8477	hrtime_t h = m / 60;
8478	hrtime_t d = h / 24;
8479
8480	s -= m * 60;
8481	m -= h * 60;
8482	h -= d * 24;
8483
8484	timebuf[0] = '\0';
8485
8486	if (d)
8487		(void) sprintf(timebuf,
8488		    "%llud%02lluh%02llum%02llus", d, h, m, s);
8489	else if (h)
8490		(void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
8491	else if (m)
8492		(void) sprintf(timebuf, "%llum%02llus", m, s);
8493	else
8494		(void) sprintf(timebuf, "%llus", s);
8495}
8496
8497static nvlist_t *
8498make_random_props(void)
8499{
8500	nvlist_t *props;
8501
8502	props = fnvlist_alloc();
8503
8504	if (ztest_random(2) == 0)
8505		return (props);
8506
8507	fnvlist_add_uint64(props,
8508	    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 1);
8509
8510	return (props);
8511}
8512
8513/*
8514 * Create a storage pool with the given name and initial vdev size.
8515 * Then test spa_freeze() functionality.
8516 */
8517static void
8518ztest_init(ztest_shared_t *zs)
8519{
8520	spa_t *spa;
8521	nvlist_t *nvroot, *props;
8522	int i;
8523
8524	mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
8525	mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
8526	VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
8527
8528	raidz_scratch_verify();
8529	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
8530
8531	/*
8532	 * Create the storage pool.
8533	 */
8534	(void) spa_destroy(ztest_opts.zo_pool);
8535	ztest_shared->zs_vdev_next_leaf = 0;
8536	zs->zs_splits = 0;
8537	zs->zs_mirrors = ztest_opts.zo_mirrors;
8538	nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
8539	    NULL, ztest_opts.zo_raid_children, zs->zs_mirrors, 1);
8540	props = make_random_props();
8541
8542	/*
8543	 * We don't expect the pool to suspend unless maxfaults == 0,
8544	 * in which case ztest_fault_inject() temporarily takes away
8545	 * the only valid replica.
8546	 */
8547	fnvlist_add_uint64(props,
8548	    zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
8549	    MAXFAULTS(zs) ? ZIO_FAILURE_MODE_PANIC : ZIO_FAILURE_MODE_WAIT);
8550
8551	for (i = 0; i < SPA_FEATURES; i++) {
8552		char *buf;
8553
8554		if (!spa_feature_table[i].fi_zfs_mod_supported)
8555			continue;
8556
8557		/*
8558		 * 75% chance of using the log space map feature. We want ztest
8559		 * to exercise both the code paths that use the log space map
8560		 * feature and the ones that don't.
8561		 */
8562		if (i == SPA_FEATURE_LOG_SPACEMAP && ztest_random(4) == 0)
8563			continue;
8564
8565		VERIFY3S(-1, !=, asprintf(&buf, "feature@%s",
8566		    spa_feature_table[i].fi_uname));
8567		fnvlist_add_uint64(props, buf, 0);
8568		free(buf);
8569	}
8570
8571	VERIFY0(spa_create(ztest_opts.zo_pool, nvroot, props, NULL, NULL));
8572	fnvlist_free(nvroot);
8573	fnvlist_free(props);
8574
8575	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
8576	zs->zs_metaslab_sz =
8577	    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
8578	zs->zs_guid = spa_guid(spa);
8579	spa_close(spa, FTAG);
8580
8581	kernel_fini();
8582
8583	if (!ztest_opts.zo_mmp_test) {
8584		ztest_run_zdb(zs->zs_guid);
8585		ztest_freeze();
8586		ztest_run_zdb(zs->zs_guid);
8587	}
8588
8589	(void) pthread_rwlock_destroy(&ztest_name_lock);
8590	mutex_destroy(&ztest_vdev_lock);
8591	mutex_destroy(&ztest_checkpoint_lock);
8592}
8593
8594static void
8595setup_data_fd(void)
8596{
8597	static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
8598
8599	ztest_fd_data = mkstemp(ztest_name_data);
8600	ASSERT3S(ztest_fd_data, >=, 0);
8601	(void) unlink(ztest_name_data);
8602}
8603
8604static int
8605shared_data_size(ztest_shared_hdr_t *hdr)
8606{
8607	int size;
8608
8609	size = hdr->zh_hdr_size;
8610	size += hdr->zh_opts_size;
8611	size += hdr->zh_size;
8612	size += hdr->zh_stats_size * hdr->zh_stats_count;
8613	size += hdr->zh_ds_size * hdr->zh_ds_count;
8614	size += hdr->zh_scratch_state_size;
8615
8616	return (size);
8617}
8618
8619static void
8620setup_hdr(void)
8621{
8622	int size;
8623	ztest_shared_hdr_t *hdr;
8624
8625	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
8626	    PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
8627	ASSERT3P(hdr, !=, MAP_FAILED);
8628
8629	VERIFY0(ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
8630
8631	hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
8632	hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
8633	hdr->zh_size = sizeof (ztest_shared_t);
8634	hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
8635	hdr->zh_stats_count = ZTEST_FUNCS;
8636	hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
8637	hdr->zh_ds_count = ztest_opts.zo_datasets;
8638	hdr->zh_scratch_state_size = sizeof (ztest_shared_scratch_state_t);
8639
8640	size = shared_data_size(hdr);
8641	VERIFY0(ftruncate(ztest_fd_data, size));
8642
8643	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
8644}
8645
8646static void
8647setup_data(void)
8648{
8649	int size, offset;
8650	ztest_shared_hdr_t *hdr;
8651	uint8_t *buf;
8652
8653	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
8654	    PROT_READ, MAP_SHARED, ztest_fd_data, 0);
8655	ASSERT3P(hdr, !=, MAP_FAILED);
8656
8657	size = shared_data_size(hdr);
8658
8659	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
8660	hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
8661	    PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
8662	ASSERT3P(hdr, !=, MAP_FAILED);
8663	buf = (uint8_t *)hdr;
8664
8665	offset = hdr->zh_hdr_size;
8666	ztest_shared_opts = (void *)&buf[offset];
8667	offset += hdr->zh_opts_size;
8668	ztest_shared = (void *)&buf[offset];
8669	offset += hdr->zh_size;
8670	ztest_shared_callstate = (void *)&buf[offset];
8671	offset += hdr->zh_stats_size * hdr->zh_stats_count;
8672	ztest_shared_ds = (void *)&buf[offset];
8673	offset += hdr->zh_ds_size * hdr->zh_ds_count;
8674	ztest_scratch_state = (void *)&buf[offset];
8675}
8676
8677static boolean_t
8678exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
8679{
8680	pid_t pid;
8681	int status;
8682	char *cmdbuf = NULL;
8683
8684	pid = fork();
8685
8686	if (cmd == NULL) {
8687		cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
8688		(void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
8689		cmd = cmdbuf;
8690	}
8691
8692	if (pid == -1)
8693		fatal(B_TRUE, "fork failed");
8694
8695	if (pid == 0) {	/* child */
8696		char fd_data_str[12];
8697
8698		VERIFY3S(11, >=,
8699		    snprintf(fd_data_str, 12, "%d", ztest_fd_data));
8700		VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1));
8701
8702		if (libpath != NULL) {
8703			const char *curlp = getenv("LD_LIBRARY_PATH");
8704			if (curlp == NULL)
8705				VERIFY0(setenv("LD_LIBRARY_PATH", libpath, 1));
8706			else {
8707				char *newlp = NULL;
8708				VERIFY3S(-1, !=,
8709				    asprintf(&newlp, "%s:%s", libpath, curlp));
8710				VERIFY0(setenv("LD_LIBRARY_PATH", newlp, 1));
8711				free(newlp);
8712			}
8713		}
8714		(void) execl(cmd, cmd, (char *)NULL);
8715		ztest_dump_core = B_FALSE;
8716		fatal(B_TRUE, "exec failed: %s", cmd);
8717	}
8718
8719	if (cmdbuf != NULL) {
8720		umem_free(cmdbuf, MAXPATHLEN);
8721		cmd = NULL;
8722	}
8723
8724	while (waitpid(pid, &status, 0) != pid)
8725		continue;
8726	if (statusp != NULL)
8727		*statusp = status;
8728
8729	if (WIFEXITED(status)) {
8730		if (WEXITSTATUS(status) != 0) {
8731			(void) fprintf(stderr, "child exited with code %d\n",
8732			    WEXITSTATUS(status));
8733			exit(2);
8734		}
8735		return (B_FALSE);
8736	} else if (WIFSIGNALED(status)) {
8737		if (!ignorekill || WTERMSIG(status) != SIGKILL) {
8738			(void) fprintf(stderr, "child died with signal %d\n",
8739			    WTERMSIG(status));
8740			exit(3);
8741		}
8742		return (B_TRUE);
8743	} else {
8744		(void) fprintf(stderr, "something strange happened to child\n");
8745		exit(4);
8746	}
8747}
8748
8749static void
8750ztest_run_init(void)
8751{
8752	int i;
8753
8754	ztest_shared_t *zs = ztest_shared;
8755
8756	/*
8757	 * Blow away any existing copy of zpool.cache
8758	 */
8759	(void) remove(spa_config_path);
8760
8761	if (ztest_opts.zo_init == 0) {
8762		if (ztest_opts.zo_verbose >= 1)
8763			(void) printf("Importing pool %s\n",
8764			    ztest_opts.zo_pool);
8765		ztest_import(zs);
8766		return;
8767	}
8768
8769	/*
8770	 * Create and initialize our storage pool.
8771	 */
8772	for (i = 1; i <= ztest_opts.zo_init; i++) {
8773		memset(zs, 0, sizeof (*zs));
8774		if (ztest_opts.zo_verbose >= 3 &&
8775		    ztest_opts.zo_init != 1) {
8776			(void) printf("ztest_init(), pass %d\n", i);
8777		}
8778		ztest_init(zs);
8779	}
8780}
8781
8782int
8783main(int argc, char **argv)
8784{
8785	int kills = 0;
8786	int iters = 0;
8787	int older = 0;
8788	int newer = 0;
8789	ztest_shared_t *zs;
8790	ztest_info_t *zi;
8791	ztest_shared_callstate_t *zc;
8792	char timebuf[100];
8793	char numbuf[NN_NUMBUF_SZ];
8794	char *cmd;
8795	boolean_t hasalt;
8796	int f, err;
8797	char *fd_data_str = getenv("ZTEST_FD_DATA");
8798	struct sigaction action;
8799
8800	(void) setvbuf(stdout, NULL, _IOLBF, 0);
8801
8802	dprintf_setup(&argc, argv);
8803	zfs_deadman_synctime_ms = 300000;
8804	zfs_deadman_checktime_ms = 30000;
8805	/*
8806	 * As two-word space map entries may not come up often (especially
8807	 * if pool and vdev sizes are small) we want to force at least some
8808	 * of them so the feature get tested.
8809	 */
8810	zfs_force_some_double_word_sm_entries = B_TRUE;
8811
8812	/*
8813	 * Verify that even extensively damaged split blocks with many
8814	 * segments can be reconstructed in a reasonable amount of time
8815	 * when reconstruction is known to be possible.
8816	 *
8817	 * Note: the lower this value is, the more damage we inflict, and
8818	 * the more time ztest spends in recovering that damage. We chose
8819	 * to induce damage 1/100th of the time so recovery is tested but
8820	 * not so frequently that ztest doesn't get to test other code paths.
8821	 */
8822	zfs_reconstruct_indirect_damage_fraction = 100;
8823
8824	action.sa_handler = sig_handler;
8825	sigemptyset(&action.sa_mask);
8826	action.sa_flags = 0;
8827
8828	if (sigaction(SIGSEGV, &action, NULL) < 0) {
8829		(void) fprintf(stderr, "ztest: cannot catch SIGSEGV: %s.\n",
8830		    strerror(errno));
8831		exit(EXIT_FAILURE);
8832	}
8833
8834	if (sigaction(SIGABRT, &action, NULL) < 0) {
8835		(void) fprintf(stderr, "ztest: cannot catch SIGABRT: %s.\n",
8836		    strerror(errno));
8837		exit(EXIT_FAILURE);
8838	}
8839
8840	/*
8841	 * Force random_get_bytes() to use /dev/urandom in order to prevent
8842	 * ztest from needlessly depleting the system entropy pool.
8843	 */
8844	random_path = "/dev/urandom";
8845	ztest_fd_rand = open(random_path, O_RDONLY | O_CLOEXEC);
8846	ASSERT3S(ztest_fd_rand, >=, 0);
8847
8848	if (!fd_data_str) {
8849		process_options(argc, argv);
8850
8851		setup_data_fd();
8852		setup_hdr();
8853		setup_data();
8854		memcpy(ztest_shared_opts, &ztest_opts,
8855		    sizeof (*ztest_shared_opts));
8856	} else {
8857		ztest_fd_data = atoi(fd_data_str);
8858		setup_data();
8859		memcpy(&ztest_opts, ztest_shared_opts, sizeof (ztest_opts));
8860	}
8861	ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
8862
8863	err = ztest_set_global_vars();
8864	if (err != 0 && !fd_data_str) {
8865		/* error message done by ztest_set_global_vars */
8866		exit(EXIT_FAILURE);
8867	} else {
8868		/* children should not be spawned if setting gvars fails */
8869		VERIFY3S(err, ==, 0);
8870	}
8871
8872	/* Override location of zpool.cache */
8873	VERIFY3S(asprintf((char **)&spa_config_path, "%s/zpool.cache",
8874	    ztest_opts.zo_dir), !=, -1);
8875
8876	ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
8877	    UMEM_NOFAIL);
8878	zs = ztest_shared;
8879
8880	if (fd_data_str) {
8881		metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging;
8882		metaslab_df_alloc_threshold =
8883		    zs->zs_metaslab_df_alloc_threshold;
8884
8885		if (zs->zs_do_init)
8886			ztest_run_init();
8887		else
8888			ztest_run(zs);
8889		exit(0);
8890	}
8891
8892	hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
8893
8894	if (ztest_opts.zo_verbose >= 1) {
8895		(void) printf("%"PRIu64" vdevs, %d datasets, %d threads, "
8896		    "%d %s disks, parity %d, %"PRIu64" seconds...\n\n",
8897		    ztest_opts.zo_vdevs,
8898		    ztest_opts.zo_datasets,
8899		    ztest_opts.zo_threads,
8900		    ztest_opts.zo_raid_children,
8901		    ztest_opts.zo_raid_type,
8902		    ztest_opts.zo_raid_parity,
8903		    ztest_opts.zo_time);
8904	}
8905
8906	cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
8907	(void) strlcpy(cmd, getexecname(), MAXNAMELEN);
8908
8909	zs->zs_do_init = B_TRUE;
8910	if (strlen(ztest_opts.zo_alt_ztest) != 0) {
8911		if (ztest_opts.zo_verbose >= 1) {
8912			(void) printf("Executing older ztest for "
8913			    "initialization: %s\n", ztest_opts.zo_alt_ztest);
8914		}
8915		VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
8916		    ztest_opts.zo_alt_libpath, B_FALSE, NULL));
8917	} else {
8918		VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
8919	}
8920	zs->zs_do_init = B_FALSE;
8921
8922	zs->zs_proc_start = gethrtime();
8923	zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
8924
8925	for (f = 0; f < ZTEST_FUNCS; f++) {
8926		zi = &ztest_info[f];
8927		zc = ZTEST_GET_SHARED_CALLSTATE(f);
8928		if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
8929			zc->zc_next = UINT64_MAX;
8930		else
8931			zc->zc_next = zs->zs_proc_start +
8932			    ztest_random(2 * zi->zi_interval[0] + 1);
8933	}
8934
8935	/*
8936	 * Run the tests in a loop.  These tests include fault injection
8937	 * to verify that self-healing data works, and forced crashes
8938	 * to verify that we never lose on-disk consistency.
8939	 */
8940	while (gethrtime() < zs->zs_proc_stop) {
8941		int status;
8942		boolean_t killed;
8943
8944		/*
8945		 * Initialize the workload counters for each function.
8946		 */
8947		for (f = 0; f < ZTEST_FUNCS; f++) {
8948			zc = ZTEST_GET_SHARED_CALLSTATE(f);
8949			zc->zc_count = 0;
8950			zc->zc_time = 0;
8951		}
8952
8953		/* Set the allocation switch size */
8954		zs->zs_metaslab_df_alloc_threshold =
8955		    ztest_random(zs->zs_metaslab_sz / 4) + 1;
8956
8957		if (!hasalt || ztest_random(2) == 0) {
8958			if (hasalt && ztest_opts.zo_verbose >= 1) {
8959				(void) printf("Executing newer ztest: %s\n",
8960				    cmd);
8961			}
8962			newer++;
8963			killed = exec_child(cmd, NULL, B_TRUE, &status);
8964		} else {
8965			if (hasalt && ztest_opts.zo_verbose >= 1) {
8966				(void) printf("Executing older ztest: %s\n",
8967				    ztest_opts.zo_alt_ztest);
8968			}
8969			older++;
8970			killed = exec_child(ztest_opts.zo_alt_ztest,
8971			    ztest_opts.zo_alt_libpath, B_TRUE, &status);
8972		}
8973
8974		if (killed)
8975			kills++;
8976		iters++;
8977
8978		if (ztest_opts.zo_verbose >= 1) {
8979			hrtime_t now = gethrtime();
8980
8981			now = MIN(now, zs->zs_proc_stop);
8982			print_time(zs->zs_proc_stop - now, timebuf);
8983			nicenum(zs->zs_space, numbuf, sizeof (numbuf));
8984
8985			(void) printf("Pass %3d, %8s, %3"PRIu64" ENOSPC, "
8986			    "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
8987			    iters,
8988			    WIFEXITED(status) ? "Complete" : "SIGKILL",
8989			    zs->zs_enospc_count,
8990			    100.0 * zs->zs_alloc / zs->zs_space,
8991			    numbuf,
8992			    100.0 * (now - zs->zs_proc_start) /
8993			    (ztest_opts.zo_time * NANOSEC), timebuf);
8994		}
8995
8996		if (ztest_opts.zo_verbose >= 2) {
8997			(void) printf("\nWorkload summary:\n\n");
8998			(void) printf("%7s %9s   %s\n",
8999			    "Calls", "Time", "Function");
9000			(void) printf("%7s %9s   %s\n",
9001			    "-----", "----", "--------");
9002			for (f = 0; f < ZTEST_FUNCS; f++) {
9003				zi = &ztest_info[f];
9004				zc = ZTEST_GET_SHARED_CALLSTATE(f);
9005				print_time(zc->zc_time, timebuf);
9006				(void) printf("%7"PRIu64" %9s   %s\n",
9007				    zc->zc_count, timebuf,
9008				    zi->zi_funcname);
9009			}
9010			(void) printf("\n");
9011		}
9012
9013		if (!ztest_opts.zo_mmp_test)
9014			ztest_run_zdb(zs->zs_guid);
9015		if (ztest_shared_opts->zo_raidz_expand_test ==
9016		    RAIDZ_EXPAND_CHECKED)
9017			break; /* raidz expand test complete */
9018	}
9019
9020	if (ztest_opts.zo_verbose >= 1) {
9021		if (hasalt) {
9022			(void) printf("%d runs of older ztest: %s\n", older,
9023			    ztest_opts.zo_alt_ztest);
9024			(void) printf("%d runs of newer ztest: %s\n", newer,
9025			    cmd);
9026		}
9027		(void) printf("%d killed, %d completed, %.0f%% kill rate\n",
9028		    kills, iters - kills, (100.0 * kills) / MAX(1, iters));
9029	}
9030
9031	umem_free(cmd, MAXNAMELEN);
9032
9033	return (0);
9034}
9035