1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2016, 2017 Intel Corporation.
26 * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>.
27 */
28
29/*
30 * Functions to convert between a list of vdevs and an nvlist representing the
31 * configuration.  Each entry in the list can be one of:
32 *
33 * 	Device vdevs
34 * 		disk=(path=..., devid=...)
35 * 		file=(path=...)
36 *
37 * 	Group vdevs
38 * 		raidz[1|2]=(...)
39 * 		mirror=(...)
40 *
41 * 	Hot spares
42 *
43 * While the underlying implementation supports it, group vdevs cannot contain
44 * other group vdevs.  All userland verification of devices is contained within
45 * this file.  If successful, the nvlist returned can be passed directly to the
46 * kernel; we've done as much verification as possible in userland.
47 *
48 * Hot spares are a special case, and passed down as an array of disk vdevs, at
49 * the same level as the root of the vdev tree.
50 *
51 * The only function exported by this file is 'make_root_vdev'.  The
52 * function performs several passes:
53 *
54 * 	1. Construct the vdev specification.  Performs syntax validation and
55 *         makes sure each device is valid.
56 * 	2. Check for devices in use.  Using libblkid to make sure that no
57 *         devices are also in use.  Some can be overridden using the 'force'
58 *         flag, others cannot.
59 * 	3. Check for replication errors if the 'force' flag is not specified.
60 *         validates that the replication level is consistent across the
61 *         entire pool.
62 * 	4. Call libzfs to label any whole disks with an EFI label.
63 */
64
65#include <assert.h>
66#include <ctype.h>
67#include <errno.h>
68#include <fcntl.h>
69#include <libintl.h>
70#include <libnvpair.h>
71#include <libzutil.h>
72#include <limits.h>
73#include <sys/spa.h>
74#include <stdio.h>
75#include <string.h>
76#include <unistd.h>
77#include "zpool_util.h"
78#include <sys/zfs_context.h>
79#include <sys/stat.h>
80
81/*
82 * For any given vdev specification, we can have multiple errors.  The
83 * vdev_error() function keeps track of whether we have seen an error yet, and
84 * prints out a header if its the first error we've seen.
85 */
86boolean_t error_seen;
87boolean_t is_force;
88
89void
90vdev_error(const char *fmt, ...)
91{
92	va_list ap;
93
94	if (!error_seen) {
95		(void) fprintf(stderr, gettext("invalid vdev specification\n"));
96		if (!is_force)
97			(void) fprintf(stderr, gettext("use '-f' to override "
98			    "the following errors:\n"));
99		else
100			(void) fprintf(stderr, gettext("the following errors "
101			    "must be manually repaired:\n"));
102		error_seen = B_TRUE;
103	}
104
105	va_start(ap, fmt);
106	(void) vfprintf(stderr, fmt, ap);
107	va_end(ap);
108}
109
110/*
111 * Check that a file is valid.  All we can do in this case is check that it's
112 * not in use by another pool, and not in use by swap.
113 */
114int
115check_file_generic(const char *file, boolean_t force, boolean_t isspare)
116{
117	char  *name;
118	int fd;
119	int ret = 0;
120	pool_state_t state;
121	boolean_t inuse;
122
123	if ((fd = open(file, O_RDONLY)) < 0)
124		return (0);
125
126	if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) {
127		const char *desc;
128
129		switch (state) {
130		case POOL_STATE_ACTIVE:
131			desc = gettext("active");
132			break;
133
134		case POOL_STATE_EXPORTED:
135			desc = gettext("exported");
136			break;
137
138		case POOL_STATE_POTENTIALLY_ACTIVE:
139			desc = gettext("potentially active");
140			break;
141
142		default:
143			desc = gettext("unknown");
144			break;
145		}
146
147		/*
148		 * Allow hot spares to be shared between pools.
149		 */
150		if (state == POOL_STATE_SPARE && isspare) {
151			free(name);
152			(void) close(fd);
153			return (0);
154		}
155
156		if (state == POOL_STATE_ACTIVE ||
157		    state == POOL_STATE_SPARE || !force) {
158			switch (state) {
159			case POOL_STATE_SPARE:
160				vdev_error(gettext("%s is reserved as a hot "
161				    "spare for pool %s\n"), file, name);
162				break;
163			default:
164				vdev_error(gettext("%s is part of %s pool "
165				    "'%s'\n"), file, desc, name);
166				break;
167			}
168			ret = -1;
169		}
170
171		free(name);
172	}
173
174	(void) close(fd);
175	return (ret);
176}
177
178/*
179 * This may be a shorthand device path or it could be total gibberish.
180 * Check to see if it is a known device available in zfs_vdev_paths.
181 * As part of this check, see if we've been given an entire disk
182 * (minus the slice number).
183 */
184static int
185is_shorthand_path(const char *arg, char *path, size_t path_size,
186    struct stat64 *statbuf, boolean_t *wholedisk)
187{
188	int error;
189
190	error = zfs_resolve_shortname(arg, path, path_size);
191	if (error == 0) {
192		*wholedisk = zfs_dev_is_whole_disk(path);
193		if (*wholedisk || (stat64(path, statbuf) == 0))
194			return (0);
195	}
196
197	strlcpy(path, arg, path_size);
198	memset(statbuf, 0, sizeof (*statbuf));
199	*wholedisk = B_FALSE;
200
201	return (error);
202}
203
204/*
205 * Determine if the given path is a hot spare within the given configuration.
206 * If no configuration is given we rely solely on the label.
207 */
208static boolean_t
209is_spare(nvlist_t *config, const char *path)
210{
211	int fd;
212	pool_state_t state;
213	char *name = NULL;
214	nvlist_t *label;
215	uint64_t guid, spareguid;
216	nvlist_t *nvroot;
217	nvlist_t **spares;
218	uint_t i, nspares;
219	boolean_t inuse;
220
221	if (zpool_is_draid_spare(path))
222		return (B_TRUE);
223
224	if ((fd = open(path, O_RDONLY|O_DIRECT)) < 0)
225		return (B_FALSE);
226
227	if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 ||
228	    !inuse ||
229	    state != POOL_STATE_SPARE ||
230	    zpool_read_label(fd, &label, NULL) != 0) {
231		free(name);
232		(void) close(fd);
233		return (B_FALSE);
234	}
235	free(name);
236	(void) close(fd);
237
238	if (config == NULL) {
239		nvlist_free(label);
240		return (B_TRUE);
241	}
242
243	verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0);
244	nvlist_free(label);
245
246	verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
247	    &nvroot) == 0);
248	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
249	    &spares, &nspares) == 0) {
250		for (i = 0; i < nspares; i++) {
251			verify(nvlist_lookup_uint64(spares[i],
252			    ZPOOL_CONFIG_GUID, &spareguid) == 0);
253			if (spareguid == guid)
254				return (B_TRUE);
255		}
256	}
257
258	return (B_FALSE);
259}
260
261/*
262 * Create a leaf vdev.  Determine if this is a file or a device.  If it's a
263 * device, fill in the device id to make a complete nvlist.  Valid forms for a
264 * leaf vdev are:
265 *
266 *	/dev/xxx	Complete disk path
267 *	/xxx		Full path to file
268 *	xxx		Shorthand for <zfs_vdev_paths>/xxx
269 *	draid*		Virtual dRAID spare
270 */
271static nvlist_t *
272make_leaf_vdev(nvlist_t *props, const char *arg, boolean_t is_primary)
273{
274	char path[MAXPATHLEN];
275	struct stat64 statbuf;
276	nvlist_t *vdev = NULL;
277	const char *type = NULL;
278	boolean_t wholedisk = B_FALSE;
279	uint64_t ashift = 0;
280	int err;
281
282	/*
283	 * Determine what type of vdev this is, and put the full path into
284	 * 'path'.  We detect whether this is a device of file afterwards by
285	 * checking the st_mode of the file.
286	 */
287	if (arg[0] == '/') {
288		/*
289		 * Complete device or file path.  Exact type is determined by
290		 * examining the file descriptor afterwards.  Symbolic links
291		 * are resolved to their real paths to determine whole disk
292		 * and S_ISBLK/S_ISREG type checks.  However, we are careful
293		 * to store the given path as ZPOOL_CONFIG_PATH to ensure we
294		 * can leverage udev's persistent device labels.
295		 */
296		if (realpath(arg, path) == NULL) {
297			(void) fprintf(stderr,
298			    gettext("cannot resolve path '%s'\n"), arg);
299			return (NULL);
300		}
301
302		wholedisk = zfs_dev_is_whole_disk(path);
303		if (!wholedisk && (stat64(path, &statbuf) != 0)) {
304			(void) fprintf(stderr,
305			    gettext("cannot open '%s': %s\n"),
306			    path, strerror(errno));
307			return (NULL);
308		}
309
310		/* After whole disk check restore original passed path */
311		strlcpy(path, arg, sizeof (path));
312	} else if (zpool_is_draid_spare(arg)) {
313		if (!is_primary) {
314			(void) fprintf(stderr,
315			    gettext("cannot open '%s': dRAID spares can only "
316			    "be used to replace primary vdevs\n"), arg);
317			return (NULL);
318		}
319
320		wholedisk = B_TRUE;
321		strlcpy(path, arg, sizeof (path));
322		type = VDEV_TYPE_DRAID_SPARE;
323	} else {
324		err = is_shorthand_path(arg, path, sizeof (path),
325		    &statbuf, &wholedisk);
326		if (err != 0) {
327			/*
328			 * If we got ENOENT, then the user gave us
329			 * gibberish, so try to direct them with a
330			 * reasonable error message.  Otherwise,
331			 * regurgitate strerror() since it's the best we
332			 * can do.
333			 */
334			if (err == ENOENT) {
335				(void) fprintf(stderr,
336				    gettext("cannot open '%s': no such "
337				    "device in %s\n"), arg, DISK_ROOT);
338				(void) fprintf(stderr,
339				    gettext("must be a full path or "
340				    "shorthand device name\n"));
341				return (NULL);
342			} else {
343				(void) fprintf(stderr,
344				    gettext("cannot open '%s': %s\n"),
345				    path, strerror(errno));
346				return (NULL);
347			}
348		}
349	}
350
351	if (type == NULL) {
352		/*
353		 * Determine whether this is a device or a file.
354		 */
355		if (wholedisk || S_ISBLK(statbuf.st_mode)) {
356			type = VDEV_TYPE_DISK;
357		} else if (S_ISREG(statbuf.st_mode)) {
358			type = VDEV_TYPE_FILE;
359		} else {
360			fprintf(stderr, gettext("cannot use '%s': must "
361			    "be a block device or regular file\n"), path);
362			return (NULL);
363		}
364	}
365
366	/*
367	 * Finally, we have the complete device or file, and we know that it is
368	 * acceptable to use.  Construct the nvlist to describe this vdev.  All
369	 * vdevs have a 'path' element, and devices also have a 'devid' element.
370	 */
371	verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
372	verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
373	verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
374
375	/* Lookup and add the enclosure sysfs path (if exists) */
376	update_vdev_config_dev_sysfs_path(vdev, path,
377	    ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH);
378
379	if (strcmp(type, VDEV_TYPE_DISK) == 0)
380		verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
381		    (uint64_t)wholedisk) == 0);
382
383	/*
384	 * Override defaults if custom properties are provided.
385	 */
386	if (props != NULL) {
387		const char *value = NULL;
388
389		if (nvlist_lookup_string(props,
390		    zpool_prop_to_name(ZPOOL_PROP_ASHIFT), &value) == 0) {
391			if (zfs_nicestrtonum(NULL, value, &ashift) != 0) {
392				(void) fprintf(stderr,
393				    gettext("ashift must be a number.\n"));
394				return (NULL);
395			}
396			if (ashift != 0 &&
397			    (ashift < ASHIFT_MIN || ashift > ASHIFT_MAX)) {
398				(void) fprintf(stderr,
399				    gettext("invalid 'ashift=%" PRIu64 "' "
400				    "property: only values between %" PRId32 " "
401				    "and %" PRId32 " are allowed.\n"),
402				    ashift, ASHIFT_MIN, ASHIFT_MAX);
403				return (NULL);
404			}
405		}
406	}
407
408	/*
409	 * If the device is known to incorrectly report its physical sector
410	 * size explicitly provide the known correct value.
411	 */
412	if (ashift == 0) {
413		int sector_size;
414
415		if (check_sector_size_database(path, &sector_size) == B_TRUE)
416			ashift = highbit64(sector_size) - 1;
417	}
418
419	if (ashift > 0)
420		(void) nvlist_add_uint64(vdev, ZPOOL_CONFIG_ASHIFT, ashift);
421
422	return (vdev);
423}
424
425/*
426 * Go through and verify the replication level of the pool is consistent.
427 * Performs the following checks:
428 *
429 * 	For the new spec, verifies that devices in mirrors and raidz are the
430 * 	same size.
431 *
432 * 	If the current configuration already has inconsistent replication
433 * 	levels, ignore any other potential problems in the new spec.
434 *
435 * 	Otherwise, make sure that the current spec (if there is one) and the new
436 * 	spec have consistent replication levels.
437 *
438 *	If there is no current spec (create), make sure new spec has at least
439 *	one general purpose vdev.
440 */
441typedef struct replication_level {
442	const char *zprl_type;
443	uint64_t zprl_children;
444	uint64_t zprl_parity;
445} replication_level_t;
446
447#define	ZPOOL_FUZZ	(16 * 1024 * 1024)
448
449/*
450 * N.B. For the purposes of comparing replication levels dRAID can be
451 * considered functionally equivalent to raidz.
452 */
453static boolean_t
454is_raidz_mirror(replication_level_t *a, replication_level_t *b,
455    replication_level_t **raidz, replication_level_t **mirror)
456{
457	if ((strcmp(a->zprl_type, "raidz") == 0 ||
458	    strcmp(a->zprl_type, "draid") == 0) &&
459	    strcmp(b->zprl_type, "mirror") == 0) {
460		*raidz = a;
461		*mirror = b;
462		return (B_TRUE);
463	}
464	return (B_FALSE);
465}
466
467/*
468 * Comparison for determining if dRAID and raidz where passed in either order.
469 */
470static boolean_t
471is_raidz_draid(replication_level_t *a, replication_level_t *b)
472{
473	if ((strcmp(a->zprl_type, "raidz") == 0 ||
474	    strcmp(a->zprl_type, "draid") == 0) &&
475	    (strcmp(b->zprl_type, "raidz") == 0 ||
476	    strcmp(b->zprl_type, "draid") == 0)) {
477		return (B_TRUE);
478	}
479
480	return (B_FALSE);
481}
482
483/*
484 * Given a list of toplevel vdevs, return the current replication level.  If
485 * the config is inconsistent, then NULL is returned.  If 'fatal' is set, then
486 * an error message will be displayed for each self-inconsistent vdev.
487 */
488static replication_level_t *
489get_replication(nvlist_t *nvroot, boolean_t fatal)
490{
491	nvlist_t **top;
492	uint_t t, toplevels;
493	nvlist_t **child;
494	uint_t c, children;
495	nvlist_t *nv;
496	const char *type;
497	replication_level_t lastrep = {0};
498	replication_level_t rep;
499	replication_level_t *ret;
500	replication_level_t *raidz, *mirror;
501	boolean_t dontreport;
502
503	ret = safe_malloc(sizeof (replication_level_t));
504
505	verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
506	    &top, &toplevels) == 0);
507
508	for (t = 0; t < toplevels; t++) {
509		uint64_t is_log = B_FALSE;
510
511		nv = top[t];
512
513		/*
514		 * For separate logs we ignore the top level vdev replication
515		 * constraints.
516		 */
517		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log);
518		if (is_log)
519			continue;
520
521		/*
522		 * Ignore holes introduced by removing aux devices, along
523		 * with indirect vdevs introduced by previously removed
524		 * vdevs.
525		 */
526		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
527		if (strcmp(type, VDEV_TYPE_HOLE) == 0 ||
528		    strcmp(type, VDEV_TYPE_INDIRECT) == 0)
529			continue;
530
531		if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
532		    &child, &children) != 0) {
533			/*
534			 * This is a 'file' or 'disk' vdev.
535			 */
536			rep.zprl_type = type;
537			rep.zprl_children = 1;
538			rep.zprl_parity = 0;
539		} else {
540			int64_t vdev_size;
541
542			/*
543			 * This is a mirror or RAID-Z vdev.  Go through and make
544			 * sure the contents are all the same (files vs. disks),
545			 * keeping track of the number of elements in the
546			 * process.
547			 *
548			 * We also check that the size of each vdev (if it can
549			 * be determined) is the same.
550			 */
551			rep.zprl_type = type;
552			rep.zprl_children = 0;
553
554			if (strcmp(type, VDEV_TYPE_RAIDZ) == 0 ||
555			    strcmp(type, VDEV_TYPE_DRAID) == 0) {
556				verify(nvlist_lookup_uint64(nv,
557				    ZPOOL_CONFIG_NPARITY,
558				    &rep.zprl_parity) == 0);
559				assert(rep.zprl_parity != 0);
560			} else {
561				rep.zprl_parity = 0;
562			}
563
564			/*
565			 * The 'dontreport' variable indicates that we've
566			 * already reported an error for this spec, so don't
567			 * bother doing it again.
568			 */
569			type = NULL;
570			dontreport = 0;
571			vdev_size = -1LL;
572			for (c = 0; c < children; c++) {
573				nvlist_t *cnv = child[c];
574				const char *path;
575				struct stat64 statbuf;
576				int64_t size = -1LL;
577				const char *childtype;
578				int fd, err;
579
580				rep.zprl_children++;
581
582				verify(nvlist_lookup_string(cnv,
583				    ZPOOL_CONFIG_TYPE, &childtype) == 0);
584
585				/*
586				 * If this is a replacing or spare vdev, then
587				 * get the real first child of the vdev: do this
588				 * in a loop because replacing and spare vdevs
589				 * can be nested.
590				 */
591				while (strcmp(childtype,
592				    VDEV_TYPE_REPLACING) == 0 ||
593				    strcmp(childtype, VDEV_TYPE_SPARE) == 0) {
594					nvlist_t **rchild;
595					uint_t rchildren;
596
597					verify(nvlist_lookup_nvlist_array(cnv,
598					    ZPOOL_CONFIG_CHILDREN, &rchild,
599					    &rchildren) == 0);
600					assert(rchildren == 2);
601					cnv = rchild[0];
602
603					verify(nvlist_lookup_string(cnv,
604					    ZPOOL_CONFIG_TYPE,
605					    &childtype) == 0);
606				}
607
608				verify(nvlist_lookup_string(cnv,
609				    ZPOOL_CONFIG_PATH, &path) == 0);
610
611				/*
612				 * If we have a raidz/mirror that combines disks
613				 * with files, report it as an error.
614				 */
615				if (!dontreport && type != NULL &&
616				    strcmp(type, childtype) != 0) {
617					if (ret != NULL)
618						free(ret);
619					ret = NULL;
620					if (fatal)
621						vdev_error(gettext(
622						    "mismatched replication "
623						    "level: %s contains both "
624						    "files and devices\n"),
625						    rep.zprl_type);
626					else
627						return (NULL);
628					dontreport = B_TRUE;
629				}
630
631				/*
632				 * According to stat(2), the value of 'st_size'
633				 * is undefined for block devices and character
634				 * devices.  But there is no effective way to
635				 * determine the real size in userland.
636				 *
637				 * Instead, we'll take advantage of an
638				 * implementation detail of spec_size().  If the
639				 * device is currently open, then we (should)
640				 * return a valid size.
641				 *
642				 * If we still don't get a valid size (indicated
643				 * by a size of 0 or MAXOFFSET_T), then ignore
644				 * this device altogether.
645				 */
646				if ((fd = open(path, O_RDONLY)) >= 0) {
647					err = fstat64_blk(fd, &statbuf);
648					(void) close(fd);
649				} else {
650					err = stat64(path, &statbuf);
651				}
652
653				if (err != 0 ||
654				    statbuf.st_size == 0 ||
655				    statbuf.st_size == MAXOFFSET_T)
656					continue;
657
658				size = statbuf.st_size;
659
660				/*
661				 * Also make sure that devices and
662				 * slices have a consistent size.  If
663				 * they differ by a significant amount
664				 * (~16MB) then report an error.
665				 */
666				if (!dontreport &&
667				    (vdev_size != -1LL &&
668				    (llabs(size - vdev_size) >
669				    ZPOOL_FUZZ))) {
670					if (ret != NULL)
671						free(ret);
672					ret = NULL;
673					if (fatal)
674						vdev_error(gettext(
675						    "%s contains devices of "
676						    "different sizes\n"),
677						    rep.zprl_type);
678					else
679						return (NULL);
680					dontreport = B_TRUE;
681				}
682
683				type = childtype;
684				vdev_size = size;
685			}
686		}
687
688		/*
689		 * At this point, we have the replication of the last toplevel
690		 * vdev in 'rep'.  Compare it to 'lastrep' to see if it is
691		 * different.
692		 */
693		if (lastrep.zprl_type != NULL) {
694			if (is_raidz_mirror(&lastrep, &rep, &raidz, &mirror) ||
695			    is_raidz_mirror(&rep, &lastrep, &raidz, &mirror)) {
696				/*
697				 * Accepted raidz and mirror when they can
698				 * handle the same number of disk failures.
699				 */
700				if (raidz->zprl_parity !=
701				    mirror->zprl_children - 1) {
702					if (ret != NULL)
703						free(ret);
704					ret = NULL;
705					if (fatal)
706						vdev_error(gettext(
707						    "mismatched replication "
708						    "level: "
709						    "%s and %s vdevs with "
710						    "different redundancy, "
711						    "%llu vs. %llu (%llu-way) "
712						    "are present\n"),
713						    raidz->zprl_type,
714						    mirror->zprl_type,
715						    (u_longlong_t)
716						    raidz->zprl_parity,
717						    (u_longlong_t)
718						    mirror->zprl_children - 1,
719						    (u_longlong_t)
720						    mirror->zprl_children);
721					else
722						return (NULL);
723				}
724			} else if (is_raidz_draid(&lastrep, &rep)) {
725				/*
726				 * Accepted raidz and draid when they can
727				 * handle the same number of disk failures.
728				 */
729				if (lastrep.zprl_parity != rep.zprl_parity) {
730					if (ret != NULL)
731						free(ret);
732					ret = NULL;
733					if (fatal)
734						vdev_error(gettext(
735						    "mismatched replication "
736						    "level: %s and %s vdevs "
737						    "with different "
738						    "redundancy, %llu vs. "
739						    "%llu are present\n"),
740						    lastrep.zprl_type,
741						    rep.zprl_type,
742						    (u_longlong_t)
743						    lastrep.zprl_parity,
744						    (u_longlong_t)
745						    rep.zprl_parity);
746					else
747						return (NULL);
748				}
749			} else if (strcmp(lastrep.zprl_type, rep.zprl_type) !=
750			    0) {
751				if (ret != NULL)
752					free(ret);
753				ret = NULL;
754				if (fatal)
755					vdev_error(gettext(
756					    "mismatched replication level: "
757					    "both %s and %s vdevs are "
758					    "present\n"),
759					    lastrep.zprl_type, rep.zprl_type);
760				else
761					return (NULL);
762			} else if (lastrep.zprl_parity != rep.zprl_parity) {
763				if (ret)
764					free(ret);
765				ret = NULL;
766				if (fatal)
767					vdev_error(gettext(
768					    "mismatched replication level: "
769					    "both %llu and %llu device parity "
770					    "%s vdevs are present\n"),
771					    (u_longlong_t)
772					    lastrep.zprl_parity,
773					    (u_longlong_t)rep.zprl_parity,
774					    rep.zprl_type);
775				else
776					return (NULL);
777			} else if (lastrep.zprl_children != rep.zprl_children) {
778				if (ret)
779					free(ret);
780				ret = NULL;
781				if (fatal)
782					vdev_error(gettext(
783					    "mismatched replication level: "
784					    "both %llu-way and %llu-way %s "
785					    "vdevs are present\n"),
786					    (u_longlong_t)
787					    lastrep.zprl_children,
788					    (u_longlong_t)
789					    rep.zprl_children,
790					    rep.zprl_type);
791				else
792					return (NULL);
793			}
794		}
795		lastrep = rep;
796	}
797
798	if (ret != NULL)
799		*ret = rep;
800
801	return (ret);
802}
803
804/*
805 * Check the replication level of the vdev spec against the current pool.  Calls
806 * get_replication() to make sure the new spec is self-consistent.  If the pool
807 * has a consistent replication level, then we ignore any errors.  Otherwise,
808 * report any difference between the two.
809 */
810static int
811check_replication(nvlist_t *config, nvlist_t *newroot)
812{
813	nvlist_t **child;
814	uint_t	children;
815	replication_level_t *current = NULL, *new;
816	replication_level_t *raidz, *mirror;
817	int ret;
818
819	/*
820	 * If we have a current pool configuration, check to see if it's
821	 * self-consistent.  If not, simply return success.
822	 */
823	if (config != NULL) {
824		nvlist_t *nvroot;
825
826		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
827		    &nvroot) == 0);
828		if ((current = get_replication(nvroot, B_FALSE)) == NULL)
829			return (0);
830	}
831	/*
832	 * for spares there may be no children, and therefore no
833	 * replication level to check
834	 */
835	if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN,
836	    &child, &children) != 0) || (children == 0)) {
837		free(current);
838		return (0);
839	}
840
841	/*
842	 * If all we have is logs then there's no replication level to check.
843	 */
844	if (num_logs(newroot) == children) {
845		free(current);
846		return (0);
847	}
848
849	/*
850	 * Get the replication level of the new vdev spec, reporting any
851	 * inconsistencies found.
852	 */
853	if ((new = get_replication(newroot, B_TRUE)) == NULL) {
854		free(current);
855		return (-1);
856	}
857
858	/*
859	 * Check to see if the new vdev spec matches the replication level of
860	 * the current pool.
861	 */
862	ret = 0;
863	if (current != NULL) {
864		if (is_raidz_mirror(current, new, &raidz, &mirror) ||
865		    is_raidz_mirror(new, current, &raidz, &mirror)) {
866			if (raidz->zprl_parity != mirror->zprl_children - 1) {
867				vdev_error(gettext(
868				    "mismatched replication level: pool and "
869				    "new vdev with different redundancy, %s "
870				    "and %s vdevs, %llu vs. %llu (%llu-way)\n"),
871				    raidz->zprl_type,
872				    mirror->zprl_type,
873				    (u_longlong_t)raidz->zprl_parity,
874				    (u_longlong_t)mirror->zprl_children - 1,
875				    (u_longlong_t)mirror->zprl_children);
876				ret = -1;
877			}
878		} else if (strcmp(current->zprl_type, new->zprl_type) != 0) {
879			vdev_error(gettext(
880			    "mismatched replication level: pool uses %s "
881			    "and new vdev is %s\n"),
882			    current->zprl_type, new->zprl_type);
883			ret = -1;
884		} else if (current->zprl_parity != new->zprl_parity) {
885			vdev_error(gettext(
886			    "mismatched replication level: pool uses %llu "
887			    "device parity and new vdev uses %llu\n"),
888			    (u_longlong_t)current->zprl_parity,
889			    (u_longlong_t)new->zprl_parity);
890			ret = -1;
891		} else if (current->zprl_children != new->zprl_children) {
892			vdev_error(gettext(
893			    "mismatched replication level: pool uses %llu-way "
894			    "%s and new vdev uses %llu-way %s\n"),
895			    (u_longlong_t)current->zprl_children,
896			    current->zprl_type,
897			    (u_longlong_t)new->zprl_children,
898			    new->zprl_type);
899			ret = -1;
900		}
901	}
902
903	free(new);
904	if (current != NULL)
905		free(current);
906
907	return (ret);
908}
909
910static int
911zero_label(const char *path)
912{
913	const int size = 4096;
914	char buf[size];
915	int err, fd;
916
917	if ((fd = open(path, O_WRONLY|O_EXCL)) < 0) {
918		(void) fprintf(stderr, gettext("cannot open '%s': %s\n"),
919		    path, strerror(errno));
920		return (-1);
921	}
922
923	memset(buf, 0, size);
924	err = write(fd, buf, size);
925	(void) fdatasync(fd);
926	(void) close(fd);
927
928	if (err == -1) {
929		(void) fprintf(stderr, gettext("cannot zero first %d bytes "
930		    "of '%s': %s\n"), size, path, strerror(errno));
931		return (-1);
932	}
933
934	if (err != size) {
935		(void) fprintf(stderr, gettext("could only zero %d/%d bytes "
936		    "of '%s'\n"), err, size, path);
937		return (-1);
938	}
939
940	return (0);
941}
942
943static void
944lines_to_stderr(char *lines[], int lines_cnt)
945{
946	int i;
947	for (i = 0; i < lines_cnt; i++) {
948		fprintf(stderr, "%s\n", lines[i]);
949	}
950}
951
952/*
953 * Go through and find any whole disks in the vdev specification, labelling them
954 * as appropriate.  When constructing the vdev spec, we were unable to open this
955 * device in order to provide a devid.  Now that we have labelled the disk and
956 * know that slice 0 is valid, we can construct the devid now.
957 *
958 * If the disk was already labeled with an EFI label, we will have gotten the
959 * devid already (because we were able to open the whole disk).  Otherwise, we
960 * need to get the devid after we label the disk.
961 */
962static int
963make_disks(zpool_handle_t *zhp, nvlist_t *nv, boolean_t replacing)
964{
965	nvlist_t **child;
966	uint_t c, children;
967	const char *type, *path;
968	char devpath[MAXPATHLEN];
969	char udevpath[MAXPATHLEN];
970	uint64_t wholedisk;
971	struct stat64 statbuf;
972	int is_exclusive = 0;
973	int fd;
974	int ret;
975
976	verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
977
978	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
979	    &child, &children) != 0) {
980
981		if (strcmp(type, VDEV_TYPE_DISK) != 0)
982			return (0);
983
984		/*
985		 * We have a disk device.  If this is a whole disk write
986		 * out the efi partition table, otherwise write zero's to
987		 * the first 4k of the partition.  This is to ensure that
988		 * libblkid will not misidentify the partition due to a
989		 * magic value left by the previous filesystem.
990		 */
991		verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path));
992		verify(!nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
993		    &wholedisk));
994
995		if (!wholedisk) {
996			/*
997			 * Update device id string for mpath nodes (Linux only)
998			 */
999			if (is_mpath_whole_disk(path))
1000				update_vdev_config_dev_strs(nv);
1001
1002			if (!is_spare(NULL, path))
1003				(void) zero_label(path);
1004			return (0);
1005		}
1006
1007		if (realpath(path, devpath) == NULL) {
1008			ret = errno;
1009			(void) fprintf(stderr,
1010			    gettext("cannot resolve path '%s'\n"), path);
1011			return (ret);
1012		}
1013
1014		/*
1015		 * Remove any previously existing symlink from a udev path to
1016		 * the device before labeling the disk.  This ensures that
1017		 * only newly created links are used.  Otherwise there is a
1018		 * window between when udev deletes and recreates the link
1019		 * during which access attempts will fail with ENOENT.
1020		 */
1021		strlcpy(udevpath, path, MAXPATHLEN);
1022		(void) zfs_append_partition(udevpath, MAXPATHLEN);
1023
1024		fd = open(devpath, O_RDWR|O_EXCL);
1025		if (fd == -1) {
1026			if (errno == EBUSY)
1027				is_exclusive = 1;
1028#ifdef __FreeBSD__
1029			if (errno == EPERM)
1030				is_exclusive = 1;
1031#endif
1032		} else {
1033			(void) close(fd);
1034		}
1035
1036		/*
1037		 * If the partition exists, contains a valid spare label,
1038		 * and is opened exclusively there is no need to partition
1039		 * it.  Hot spares have already been partitioned and are
1040		 * held open exclusively by the kernel as a safety measure.
1041		 *
1042		 * If the provided path is for a /dev/disk/ device its
1043		 * symbolic link will be removed, partition table created,
1044		 * and then block until udev creates the new link.
1045		 */
1046		if (!is_exclusive && !is_spare(NULL, udevpath)) {
1047			char *devnode = strrchr(devpath, '/') + 1;
1048			char **lines = NULL;
1049			int lines_cnt = 0;
1050
1051			ret = strncmp(udevpath, UDISK_ROOT, strlen(UDISK_ROOT));
1052			if (ret == 0) {
1053				ret = lstat64(udevpath, &statbuf);
1054				if (ret == 0 && S_ISLNK(statbuf.st_mode))
1055					(void) unlink(udevpath);
1056			}
1057
1058			/*
1059			 * When labeling a pool the raw device node name
1060			 * is provided as it appears under /dev/.
1061			 *
1062			 * Note that 'zhp' will be NULL when we're creating a
1063			 * pool.
1064			 */
1065			if (zpool_prepare_and_label_disk(g_zfs, zhp, devnode,
1066			    nv, zhp == NULL ? "create" :
1067			    replacing ? "replace" : "add", &lines,
1068			    &lines_cnt) != 0) {
1069				(void) fprintf(stderr,
1070				    gettext(
1071				    "Error preparing/labeling disk.\n"));
1072				if (lines_cnt > 0) {
1073					(void) fprintf(stderr,
1074					gettext("zfs_prepare_disk output:\n"));
1075					lines_to_stderr(lines, lines_cnt);
1076				}
1077
1078				libzfs_free_str_array(lines, lines_cnt);
1079				return (-1);
1080			}
1081			libzfs_free_str_array(lines, lines_cnt);
1082
1083			/*
1084			 * Wait for udev to signal the device is available
1085			 * by the provided path.
1086			 */
1087			ret = zpool_label_disk_wait(udevpath, DISK_LABEL_WAIT);
1088			if (ret) {
1089				(void) fprintf(stderr,
1090				    gettext("missing link: %s was "
1091				    "partitioned but %s is missing\n"),
1092				    devnode, udevpath);
1093				return (ret);
1094			}
1095
1096			ret = zero_label(udevpath);
1097			if (ret)
1098				return (ret);
1099		}
1100
1101		/*
1102		 * Update the path to refer to the partition.  The presence of
1103		 * the 'whole_disk' field indicates to the CLI that we should
1104		 * chop off the partition number when displaying the device in
1105		 * future output.
1106		 */
1107		verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, udevpath) == 0);
1108
1109		/*
1110		 * Update device id strings for whole disks (Linux only)
1111		 */
1112		update_vdev_config_dev_strs(nv);
1113
1114		return (0);
1115	}
1116
1117	for (c = 0; c < children; c++)
1118		if ((ret = make_disks(zhp, child[c], replacing)) != 0)
1119			return (ret);
1120
1121	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1122	    &child, &children) == 0)
1123		for (c = 0; c < children; c++)
1124			if ((ret = make_disks(zhp, child[c], replacing)) != 0)
1125				return (ret);
1126
1127	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1128	    &child, &children) == 0)
1129		for (c = 0; c < children; c++)
1130			if ((ret = make_disks(zhp, child[c], replacing)) != 0)
1131				return (ret);
1132
1133	return (0);
1134}
1135
1136/*
1137 * Go through and find any devices that are in use.  We rely on libdiskmgt for
1138 * the majority of this task.
1139 */
1140static boolean_t
1141is_device_in_use(nvlist_t *config, nvlist_t *nv, boolean_t force,
1142    boolean_t replacing, boolean_t isspare)
1143{
1144	nvlist_t **child;
1145	uint_t c, children;
1146	const char *type, *path;
1147	int ret = 0;
1148	char buf[MAXPATHLEN];
1149	uint64_t wholedisk = B_FALSE;
1150	boolean_t anyinuse = B_FALSE;
1151
1152	verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
1153
1154	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1155	    &child, &children) != 0) {
1156
1157		verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path));
1158		if (strcmp(type, VDEV_TYPE_DISK) == 0)
1159			verify(!nvlist_lookup_uint64(nv,
1160			    ZPOOL_CONFIG_WHOLE_DISK, &wholedisk));
1161
1162		/*
1163		 * As a generic check, we look to see if this is a replace of a
1164		 * hot spare within the same pool.  If so, we allow it
1165		 * regardless of what libblkid or zpool_in_use() says.
1166		 */
1167		if (replacing) {
1168			(void) strlcpy(buf, path, sizeof (buf));
1169			if (wholedisk) {
1170				ret = zfs_append_partition(buf,  sizeof (buf));
1171				if (ret == -1)
1172					return (-1);
1173			}
1174
1175			if (is_spare(config, buf))
1176				return (B_FALSE);
1177		}
1178
1179		if (strcmp(type, VDEV_TYPE_DISK) == 0)
1180			ret = check_device(path, force, isspare, wholedisk);
1181
1182		else if (strcmp(type, VDEV_TYPE_FILE) == 0)
1183			ret = check_file(path, force, isspare);
1184
1185		return (ret != 0);
1186	}
1187
1188	for (c = 0; c < children; c++)
1189		if (is_device_in_use(config, child[c], force, replacing,
1190		    B_FALSE))
1191			anyinuse = B_TRUE;
1192
1193	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1194	    &child, &children) == 0)
1195		for (c = 0; c < children; c++)
1196			if (is_device_in_use(config, child[c], force, replacing,
1197			    B_TRUE))
1198				anyinuse = B_TRUE;
1199
1200	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1201	    &child, &children) == 0)
1202		for (c = 0; c < children; c++)
1203			if (is_device_in_use(config, child[c], force, replacing,
1204			    B_FALSE))
1205				anyinuse = B_TRUE;
1206
1207	return (anyinuse);
1208}
1209
1210/*
1211 * Returns the parity level extracted from a raidz or draid type.
1212 * If the parity cannot be determined zero is returned.
1213 */
1214static int
1215get_parity(const char *type)
1216{
1217	long parity = 0;
1218	const char *p;
1219
1220	if (strncmp(type, VDEV_TYPE_RAIDZ, strlen(VDEV_TYPE_RAIDZ)) == 0) {
1221		p = type + strlen(VDEV_TYPE_RAIDZ);
1222
1223		if (*p == '\0') {
1224			/* when unspecified default to single parity */
1225			return (1);
1226		} else if (*p == '0') {
1227			/* no zero prefixes allowed */
1228			return (0);
1229		} else {
1230			/* 0-3, no suffixes allowed */
1231			char *end;
1232			errno = 0;
1233			parity = strtol(p, &end, 10);
1234			if (errno != 0 || *end != '\0' ||
1235			    parity < 1 || parity > VDEV_RAIDZ_MAXPARITY) {
1236				return (0);
1237			}
1238		}
1239	} else if (strncmp(type, VDEV_TYPE_DRAID,
1240	    strlen(VDEV_TYPE_DRAID)) == 0) {
1241		p = type + strlen(VDEV_TYPE_DRAID);
1242
1243		if (*p == '\0' || *p == ':') {
1244			/* when unspecified default to single parity */
1245			return (1);
1246		} else if (*p == '0') {
1247			/* no zero prefixes allowed */
1248			return (0);
1249		} else {
1250			/* 0-3, allowed suffixes: '\0' or ':' */
1251			char *end;
1252			errno = 0;
1253			parity = strtol(p, &end, 10);
1254			if (errno != 0 ||
1255			    parity < 1 || parity > VDEV_DRAID_MAXPARITY ||
1256			    (*end != '\0' && *end != ':')) {
1257				return (0);
1258			}
1259		}
1260	}
1261
1262	return ((int)parity);
1263}
1264
1265/*
1266 * Assign the minimum and maximum number of devices allowed for
1267 * the specified type.  On error NULL is returned, otherwise the
1268 * type prefix is returned (raidz, mirror, etc).
1269 */
1270static const char *
1271is_grouping(const char *type, int *mindev, int *maxdev)
1272{
1273	int nparity;
1274
1275	if (strncmp(type, VDEV_TYPE_RAIDZ, strlen(VDEV_TYPE_RAIDZ)) == 0 ||
1276	    strncmp(type, VDEV_TYPE_DRAID, strlen(VDEV_TYPE_DRAID)) == 0) {
1277		nparity = get_parity(type);
1278		if (nparity == 0)
1279			return (NULL);
1280		if (mindev != NULL)
1281			*mindev = nparity + 1;
1282		if (maxdev != NULL)
1283			*maxdev = 255;
1284
1285		if (strncmp(type, VDEV_TYPE_RAIDZ,
1286		    strlen(VDEV_TYPE_RAIDZ)) == 0) {
1287			return (VDEV_TYPE_RAIDZ);
1288		} else {
1289			return (VDEV_TYPE_DRAID);
1290		}
1291	}
1292
1293	if (maxdev != NULL)
1294		*maxdev = INT_MAX;
1295
1296	if (strcmp(type, "mirror") == 0) {
1297		if (mindev != NULL)
1298			*mindev = 2;
1299		return (VDEV_TYPE_MIRROR);
1300	}
1301
1302	if (strcmp(type, "spare") == 0) {
1303		if (mindev != NULL)
1304			*mindev = 1;
1305		return (VDEV_TYPE_SPARE);
1306	}
1307
1308	if (strcmp(type, "log") == 0) {
1309		if (mindev != NULL)
1310			*mindev = 1;
1311		return (VDEV_TYPE_LOG);
1312	}
1313
1314	if (strcmp(type, VDEV_ALLOC_BIAS_SPECIAL) == 0 ||
1315	    strcmp(type, VDEV_ALLOC_BIAS_DEDUP) == 0) {
1316		if (mindev != NULL)
1317			*mindev = 1;
1318		return (type);
1319	}
1320
1321	if (strcmp(type, "cache") == 0) {
1322		if (mindev != NULL)
1323			*mindev = 1;
1324		return (VDEV_TYPE_L2CACHE);
1325	}
1326
1327	return (NULL);
1328}
1329
1330/*
1331 * Extract the configuration parameters encoded in the dRAID type and
1332 * use them to generate a dRAID configuration.  The expected format is:
1333 *
1334 * draid[<parity>][:<data><d|D>][:<children><c|C>][:<spares><s|S>]
1335 *
1336 * The intent is to be able to generate a good configuration when no
1337 * additional information is provided.  The only mandatory component
1338 * of the 'type' is the 'draid' prefix.  If a value is not provided
1339 * then reasonable defaults are used.  The optional components may
1340 * appear in any order but the d/s/c suffix is required.
1341 *
1342 * Valid inputs:
1343 * - data:     number of data devices per group (1-255)
1344 * - parity:   number of parity blocks per group (1-3)
1345 * - spares:   number of distributed spare (0-100)
1346 * - children: total number of devices (1-255)
1347 *
1348 * Examples:
1349 * - zpool create tank draid <devices...>
1350 * - zpool create tank draid2:8d:51c:2s <devices...>
1351 */
1352static int
1353draid_config_by_type(nvlist_t *nv, const char *type, uint64_t children)
1354{
1355	uint64_t nparity = 1;
1356	uint64_t nspares = 0;
1357	uint64_t ndata = UINT64_MAX;
1358	uint64_t ngroups = 1;
1359	long value;
1360
1361	if (strncmp(type, VDEV_TYPE_DRAID, strlen(VDEV_TYPE_DRAID)) != 0)
1362		return (EINVAL);
1363
1364	nparity = (uint64_t)get_parity(type);
1365	if (nparity == 0 || nparity > VDEV_DRAID_MAXPARITY) {
1366		fprintf(stderr,
1367		    gettext("invalid dRAID parity level %llu; must be "
1368		    "between 1 and %d\n"), (u_longlong_t)nparity,
1369		    VDEV_DRAID_MAXPARITY);
1370		return (EINVAL);
1371	}
1372
1373	char *p = (char *)type;
1374	while ((p = strchr(p, ':')) != NULL) {
1375		char *end;
1376
1377		p = p + 1;
1378		errno = 0;
1379
1380		if (!isdigit(p[0])) {
1381			(void) fprintf(stderr, gettext("invalid dRAID "
1382			    "syntax; expected [:<number><c|d|s>] not '%s'\n"),
1383			    type);
1384			return (EINVAL);
1385		}
1386
1387		/* Expected non-zero value with c/d/s suffix */
1388		value = strtol(p, &end, 10);
1389		char suffix = tolower(*end);
1390		if (errno != 0 ||
1391		    (suffix != 'c' && suffix != 'd' && suffix != 's')) {
1392			(void) fprintf(stderr, gettext("invalid dRAID "
1393			    "syntax; expected [:<number><c|d|s>] not '%s'\n"),
1394			    type);
1395			return (EINVAL);
1396		}
1397
1398		if (suffix == 'c') {
1399			if ((uint64_t)value != children) {
1400				fprintf(stderr,
1401				    gettext("invalid number of dRAID children; "
1402				    "%llu required but %llu provided\n"),
1403				    (u_longlong_t)value,
1404				    (u_longlong_t)children);
1405				return (EINVAL);
1406			}
1407		} else if (suffix == 'd') {
1408			ndata = (uint64_t)value;
1409		} else if (suffix == 's') {
1410			nspares = (uint64_t)value;
1411		} else {
1412			verify(0); /* Unreachable */
1413		}
1414	}
1415
1416	/*
1417	 * When a specific number of data disks is not provided limit a
1418	 * redundancy group to 8 data disks.  This value was selected to
1419	 * provide a reasonable tradeoff between capacity and performance.
1420	 */
1421	if (ndata == UINT64_MAX) {
1422		if (children > nspares + nparity) {
1423			ndata = MIN(children - nspares - nparity, 8);
1424		} else {
1425			fprintf(stderr, gettext("request number of "
1426			    "distributed spares %llu and parity level %llu\n"
1427			    "leaves no disks available for data\n"),
1428			    (u_longlong_t)nspares, (u_longlong_t)nparity);
1429			return (EINVAL);
1430		}
1431	}
1432
1433	/* Verify the maximum allowed group size is never exceeded. */
1434	if (ndata == 0 || (ndata + nparity > children - nspares)) {
1435		fprintf(stderr, gettext("requested number of dRAID data "
1436		    "disks per group %llu is too high,\nat most %llu disks "
1437		    "are available for data\n"), (u_longlong_t)ndata,
1438		    (u_longlong_t)(children - nspares - nparity));
1439		return (EINVAL);
1440	}
1441
1442	/*
1443	 * Verify the requested number of spares can be satisfied.
1444	 * An arbitrary limit of 100 distributed spares is applied.
1445	 */
1446	if (nspares > 100 || nspares > (children - (ndata + nparity))) {
1447		fprintf(stderr,
1448		    gettext("invalid number of dRAID spares %llu; additional "
1449		    "disks would be required\n"), (u_longlong_t)nspares);
1450		return (EINVAL);
1451	}
1452
1453	/* Verify the requested number children is sufficient. */
1454	if (children < (ndata + nparity + nspares)) {
1455		fprintf(stderr, gettext("%llu disks were provided, but at "
1456		    "least %llu disks are required for this config\n"),
1457		    (u_longlong_t)children,
1458		    (u_longlong_t)(ndata + nparity + nspares));
1459	}
1460
1461	if (children > VDEV_DRAID_MAX_CHILDREN) {
1462		fprintf(stderr, gettext("%llu disks were provided, but "
1463		    "dRAID only supports up to %u disks"),
1464		    (u_longlong_t)children, VDEV_DRAID_MAX_CHILDREN);
1465	}
1466
1467	/*
1468	 * Calculate the minimum number of groups required to fill a slice.
1469	 * This is the LCM of the stripe width (ndata + nparity) and the
1470	 * number of data drives (children - nspares).
1471	 */
1472	while (ngroups * (ndata + nparity) % (children - nspares) != 0)
1473		ngroups++;
1474
1475	/* Store the basic dRAID configuration. */
1476	fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, nparity);
1477	fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, ndata);
1478	fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, nspares);
1479	fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups);
1480
1481	return (0);
1482}
1483
1484/*
1485 * Construct a syntactically valid vdev specification,
1486 * and ensure that all devices and files exist and can be opened.
1487 * Note: we don't bother freeing anything in the error paths
1488 * because the program is just going to exit anyway.
1489 */
1490static nvlist_t *
1491construct_spec(nvlist_t *props, int argc, char **argv)
1492{
1493	nvlist_t *nvroot, *nv, **top, **spares, **l2cache;
1494	int t, toplevels, mindev, maxdev, nspares, nlogs, nl2cache;
1495	const char *type, *fulltype;
1496	boolean_t is_log, is_special, is_dedup, is_spare;
1497	boolean_t seen_logs;
1498
1499	top = NULL;
1500	toplevels = 0;
1501	spares = NULL;
1502	l2cache = NULL;
1503	nspares = 0;
1504	nlogs = 0;
1505	nl2cache = 0;
1506	is_log = is_special = is_dedup = is_spare = B_FALSE;
1507	seen_logs = B_FALSE;
1508	nvroot = NULL;
1509
1510	while (argc > 0) {
1511		fulltype = argv[0];
1512		nv = NULL;
1513
1514		/*
1515		 * If it's a mirror, raidz, or draid the subsequent arguments
1516		 * are its leaves -- until we encounter the next mirror,
1517		 * raidz or draid.
1518		 */
1519		if ((type = is_grouping(fulltype, &mindev, &maxdev)) != NULL) {
1520			nvlist_t **child = NULL;
1521			int c, children = 0;
1522
1523			if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1524				if (spares != NULL) {
1525					(void) fprintf(stderr,
1526					    gettext("invalid vdev "
1527					    "specification: 'spare' can be "
1528					    "specified only once\n"));
1529					goto spec_out;
1530				}
1531				is_spare = B_TRUE;
1532				is_log = is_special = is_dedup = B_FALSE;
1533			}
1534
1535			if (strcmp(type, VDEV_TYPE_LOG) == 0) {
1536				if (seen_logs) {
1537					(void) fprintf(stderr,
1538					    gettext("invalid vdev "
1539					    "specification: 'log' can be "
1540					    "specified only once\n"));
1541					goto spec_out;
1542				}
1543				seen_logs = B_TRUE;
1544				is_log = B_TRUE;
1545				is_special = is_dedup = is_spare = B_FALSE;
1546				argc--;
1547				argv++;
1548				/*
1549				 * A log is not a real grouping device.
1550				 * We just set is_log and continue.
1551				 */
1552				continue;
1553			}
1554
1555			if (strcmp(type, VDEV_ALLOC_BIAS_SPECIAL) == 0) {
1556				is_special = B_TRUE;
1557				is_log = is_dedup = is_spare = B_FALSE;
1558				argc--;
1559				argv++;
1560				continue;
1561			}
1562
1563			if (strcmp(type, VDEV_ALLOC_BIAS_DEDUP) == 0) {
1564				is_dedup = B_TRUE;
1565				is_log = is_special = is_spare = B_FALSE;
1566				argc--;
1567				argv++;
1568				continue;
1569			}
1570
1571			if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1572				if (l2cache != NULL) {
1573					(void) fprintf(stderr,
1574					    gettext("invalid vdev "
1575					    "specification: 'cache' can be "
1576					    "specified only once\n"));
1577					goto spec_out;
1578				}
1579				is_log = is_special = B_FALSE;
1580				is_dedup = is_spare = B_FALSE;
1581			}
1582
1583			if (is_log || is_special || is_dedup) {
1584				if (strcmp(type, VDEV_TYPE_MIRROR) != 0) {
1585					(void) fprintf(stderr,
1586					    gettext("invalid vdev "
1587					    "specification: unsupported '%s' "
1588					    "device: %s\n"), is_log ? "log" :
1589					    "special", type);
1590					goto spec_out;
1591				}
1592				nlogs++;
1593			}
1594
1595			for (c = 1; c < argc; c++) {
1596				if (is_grouping(argv[c], NULL, NULL) != NULL)
1597					break;
1598
1599				children++;
1600				child = realloc(child,
1601				    children * sizeof (nvlist_t *));
1602				if (child == NULL)
1603					zpool_no_memory();
1604				if ((nv = make_leaf_vdev(props, argv[c],
1605				    !(is_log || is_special || is_dedup ||
1606				    is_spare))) == NULL) {
1607					for (c = 0; c < children - 1; c++)
1608						nvlist_free(child[c]);
1609					free(child);
1610					goto spec_out;
1611				}
1612
1613				child[children - 1] = nv;
1614			}
1615
1616			if (children < mindev) {
1617				(void) fprintf(stderr, gettext("invalid vdev "
1618				    "specification: %s requires at least %d "
1619				    "devices\n"), argv[0], mindev);
1620				for (c = 0; c < children; c++)
1621					nvlist_free(child[c]);
1622				free(child);
1623				goto spec_out;
1624			}
1625
1626			if (children > maxdev) {
1627				(void) fprintf(stderr, gettext("invalid vdev "
1628				    "specification: %s supports no more than "
1629				    "%d devices\n"), argv[0], maxdev);
1630				for (c = 0; c < children; c++)
1631					nvlist_free(child[c]);
1632				free(child);
1633				goto spec_out;
1634			}
1635
1636			argc -= c;
1637			argv += c;
1638
1639			if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1640				spares = child;
1641				nspares = children;
1642				continue;
1643			} else if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1644				l2cache = child;
1645				nl2cache = children;
1646				continue;
1647			} else {
1648				/* create a top-level vdev with children */
1649				verify(nvlist_alloc(&nv, NV_UNIQUE_NAME,
1650				    0) == 0);
1651				verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
1652				    type) == 0);
1653				verify(nvlist_add_uint64(nv,
1654				    ZPOOL_CONFIG_IS_LOG, is_log) == 0);
1655				if (is_log) {
1656					verify(nvlist_add_string(nv,
1657					    ZPOOL_CONFIG_ALLOCATION_BIAS,
1658					    VDEV_ALLOC_BIAS_LOG) == 0);
1659				}
1660				if (is_special) {
1661					verify(nvlist_add_string(nv,
1662					    ZPOOL_CONFIG_ALLOCATION_BIAS,
1663					    VDEV_ALLOC_BIAS_SPECIAL) == 0);
1664				}
1665				if (is_dedup) {
1666					verify(nvlist_add_string(nv,
1667					    ZPOOL_CONFIG_ALLOCATION_BIAS,
1668					    VDEV_ALLOC_BIAS_DEDUP) == 0);
1669				}
1670				if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
1671					verify(nvlist_add_uint64(nv,
1672					    ZPOOL_CONFIG_NPARITY,
1673					    mindev - 1) == 0);
1674				}
1675				if (strcmp(type, VDEV_TYPE_DRAID) == 0) {
1676					if (draid_config_by_type(nv,
1677					    fulltype, children) != 0) {
1678						for (c = 0; c < children; c++)
1679							nvlist_free(child[c]);
1680						free(child);
1681						goto spec_out;
1682					}
1683				}
1684				verify(nvlist_add_nvlist_array(nv,
1685				    ZPOOL_CONFIG_CHILDREN,
1686				    (const nvlist_t **)child, children) == 0);
1687
1688				for (c = 0; c < children; c++)
1689					nvlist_free(child[c]);
1690				free(child);
1691			}
1692		} else {
1693			/*
1694			 * We have a device.  Pass off to make_leaf_vdev() to
1695			 * construct the appropriate nvlist describing the vdev.
1696			 */
1697			if ((nv = make_leaf_vdev(props, argv[0], !(is_log ||
1698			    is_special || is_dedup || is_spare))) == NULL)
1699				goto spec_out;
1700
1701			verify(nvlist_add_uint64(nv,
1702			    ZPOOL_CONFIG_IS_LOG, is_log) == 0);
1703			if (is_log) {
1704				verify(nvlist_add_string(nv,
1705				    ZPOOL_CONFIG_ALLOCATION_BIAS,
1706				    VDEV_ALLOC_BIAS_LOG) == 0);
1707				nlogs++;
1708			}
1709
1710			if (is_special) {
1711				verify(nvlist_add_string(nv,
1712				    ZPOOL_CONFIG_ALLOCATION_BIAS,
1713				    VDEV_ALLOC_BIAS_SPECIAL) == 0);
1714			}
1715			if (is_dedup) {
1716				verify(nvlist_add_string(nv,
1717				    ZPOOL_CONFIG_ALLOCATION_BIAS,
1718				    VDEV_ALLOC_BIAS_DEDUP) == 0);
1719			}
1720			argc--;
1721			argv++;
1722		}
1723
1724		toplevels++;
1725		top = realloc(top, toplevels * sizeof (nvlist_t *));
1726		if (top == NULL)
1727			zpool_no_memory();
1728		top[toplevels - 1] = nv;
1729	}
1730
1731	if (toplevels == 0 && nspares == 0 && nl2cache == 0) {
1732		(void) fprintf(stderr, gettext("invalid vdev "
1733		    "specification: at least one toplevel vdev must be "
1734		    "specified\n"));
1735		goto spec_out;
1736	}
1737
1738	if (seen_logs && nlogs == 0) {
1739		(void) fprintf(stderr, gettext("invalid vdev specification: "
1740		    "log requires at least 1 device\n"));
1741		goto spec_out;
1742	}
1743
1744	/*
1745	 * Finally, create nvroot and add all top-level vdevs to it.
1746	 */
1747	verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0);
1748	verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
1749	    VDEV_TYPE_ROOT) == 0);
1750	verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1751	    (const nvlist_t **)top, toplevels) == 0);
1752	if (nspares != 0)
1753		verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1754		    (const nvlist_t **)spares, nspares) == 0);
1755	if (nl2cache != 0)
1756		verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
1757		    (const nvlist_t **)l2cache, nl2cache) == 0);
1758
1759spec_out:
1760	for (t = 0; t < toplevels; t++)
1761		nvlist_free(top[t]);
1762	for (t = 0; t < nspares; t++)
1763		nvlist_free(spares[t]);
1764	for (t = 0; t < nl2cache; t++)
1765		nvlist_free(l2cache[t]);
1766
1767	free(spares);
1768	free(l2cache);
1769	free(top);
1770
1771	return (nvroot);
1772}
1773
1774nvlist_t *
1775split_mirror_vdev(zpool_handle_t *zhp, char *newname, nvlist_t *props,
1776    splitflags_t flags, int argc, char **argv)
1777{
1778	nvlist_t *newroot = NULL, **child;
1779	uint_t c, children;
1780
1781	if (argc > 0) {
1782		if ((newroot = construct_spec(props, argc, argv)) == NULL) {
1783			(void) fprintf(stderr, gettext("Unable to build a "
1784			    "pool from the specified devices\n"));
1785			return (NULL);
1786		}
1787
1788		if (!flags.dryrun && make_disks(zhp, newroot, B_FALSE) != 0) {
1789			nvlist_free(newroot);
1790			return (NULL);
1791		}
1792
1793		/* avoid any tricks in the spec */
1794		verify(nvlist_lookup_nvlist_array(newroot,
1795		    ZPOOL_CONFIG_CHILDREN, &child, &children) == 0);
1796		for (c = 0; c < children; c++) {
1797			const char *path;
1798			const char *type;
1799			int min, max;
1800
1801			verify(nvlist_lookup_string(child[c],
1802			    ZPOOL_CONFIG_PATH, &path) == 0);
1803			if ((type = is_grouping(path, &min, &max)) != NULL) {
1804				(void) fprintf(stderr, gettext("Cannot use "
1805				    "'%s' as a device for splitting\n"), type);
1806				nvlist_free(newroot);
1807				return (NULL);
1808			}
1809		}
1810	}
1811
1812	if (zpool_vdev_split(zhp, newname, &newroot, props, flags) != 0) {
1813		nvlist_free(newroot);
1814		return (NULL);
1815	}
1816
1817	return (newroot);
1818}
1819
1820static int
1821num_normal_vdevs(nvlist_t *nvroot)
1822{
1823	nvlist_t **top;
1824	uint_t t, toplevels, normal = 0;
1825
1826	verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1827	    &top, &toplevels) == 0);
1828
1829	for (t = 0; t < toplevels; t++) {
1830		uint64_t log = B_FALSE;
1831
1832		(void) nvlist_lookup_uint64(top[t], ZPOOL_CONFIG_IS_LOG, &log);
1833		if (log)
1834			continue;
1835		if (nvlist_exists(top[t], ZPOOL_CONFIG_ALLOCATION_BIAS))
1836			continue;
1837
1838		normal++;
1839	}
1840
1841	return (normal);
1842}
1843
1844/*
1845 * Get and validate the contents of the given vdev specification.  This ensures
1846 * that the nvlist returned is well-formed, that all the devices exist, and that
1847 * they are not currently in use by any other known consumer.  The 'poolconfig'
1848 * parameter is the current configuration of the pool when adding devices
1849 * existing pool, and is used to perform additional checks, such as changing the
1850 * replication level of the pool.  It can be 'NULL' to indicate that this is a
1851 * new pool.  The 'force' flag controls whether devices should be forcefully
1852 * added, even if they appear in use.
1853 */
1854nvlist_t *
1855make_root_vdev(zpool_handle_t *zhp, nvlist_t *props, int force, int check_rep,
1856    boolean_t replacing, boolean_t dryrun, int argc, char **argv)
1857{
1858	nvlist_t *newroot;
1859	nvlist_t *poolconfig = NULL;
1860	is_force = force;
1861
1862	/*
1863	 * Construct the vdev specification.  If this is successful, we know
1864	 * that we have a valid specification, and that all devices can be
1865	 * opened.
1866	 */
1867	if ((newroot = construct_spec(props, argc, argv)) == NULL)
1868		return (NULL);
1869
1870	if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL)) {
1871		nvlist_free(newroot);
1872		return (NULL);
1873	}
1874
1875	/*
1876	 * Validate each device to make sure that it's not shared with another
1877	 * subsystem.  We do this even if 'force' is set, because there are some
1878	 * uses (such as a dedicated dump device) that even '-f' cannot
1879	 * override.
1880	 */
1881	if (is_device_in_use(poolconfig, newroot, force, replacing, B_FALSE)) {
1882		nvlist_free(newroot);
1883		return (NULL);
1884	}
1885
1886	/*
1887	 * Check the replication level of the given vdevs and report any errors
1888	 * found.  We include the existing pool spec, if any, as we need to
1889	 * catch changes against the existing replication level.
1890	 */
1891	if (check_rep && check_replication(poolconfig, newroot) != 0) {
1892		nvlist_free(newroot);
1893		return (NULL);
1894	}
1895
1896	/*
1897	 * On pool create the new vdev spec must have one normal vdev.
1898	 */
1899	if (poolconfig == NULL && num_normal_vdevs(newroot) == 0) {
1900		vdev_error(gettext("at least one general top-level vdev must "
1901		    "be specified\n"));
1902		nvlist_free(newroot);
1903		return (NULL);
1904	}
1905
1906	/*
1907	 * Run through the vdev specification and label any whole disks found.
1908	 */
1909	if (!dryrun && make_disks(zhp, newroot, replacing) != 0) {
1910		nvlist_free(newroot);
1911		return (NULL);
1912	}
1913
1914	return (newroot);
1915}
1916