1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
24 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2016, 2017, Intel Corporation.
26 * Copyright (c) 2017 Open-E, Inc. All Rights Reserved.
27 * Copyright (c) 2023, Klara Inc.
28 */
29
30/*
31 * ZFS syseventd module.
32 *
33 * file origin: openzfs/usr/src/cmd/syseventd/modules/zfs_mod/zfs_mod.c
34 *
35 * The purpose of this module is to identify when devices are added to the
36 * system, and appropriately online or replace the affected vdevs.
37 *
38 * When a device is added to the system:
39 *
40 * 	1. Search for any vdevs whose devid matches that of the newly added
41 *	   device.
42 *
43 * 	2. If no vdevs are found, then search for any vdevs whose udev path
44 *	   matches that of the new device.
45 *
46 *	3. If no vdevs match by either method, then ignore the event.
47 *
48 * 	4. Attempt to online the device with a flag to indicate that it should
49 *	   be unspared when resilvering completes.  If this succeeds, then the
50 *	   same device was inserted and we should continue normally.
51 *
52 *	5. If the pool does not have the 'autoreplace' property set, attempt to
53 *	   online the device again without the unspare flag, which will
54 *	   generate a FMA fault.
55 *
56 *	6. If the pool has the 'autoreplace' property set, and the matching vdev
57 *	   is a whole disk, then label the new disk and attempt a 'zpool
58 *	   replace'.
59 *
60 * The module responds to EC_DEV_ADD events.  The special ESC_ZFS_VDEV_CHECK
61 * event indicates that a device failed to open during pool load, but the
62 * autoreplace property was set.  In this case, we deferred the associated
63 * FMA fault until our module had a chance to process the autoreplace logic.
64 * If the device could not be replaced, then the second online attempt will
65 * trigger the FMA fault that we skipped earlier.
66 *
67 * On Linux udev provides a disk insert for both the disk and the partition.
68 */
69
70#include <ctype.h>
71#include <fcntl.h>
72#include <libnvpair.h>
73#include <libzfs.h>
74#include <libzutil.h>
75#include <limits.h>
76#include <stddef.h>
77#include <stdlib.h>
78#include <string.h>
79#include <syslog.h>
80#include <sys/list.h>
81#include <sys/sunddi.h>
82#include <sys/sysevent/eventdefs.h>
83#include <sys/sysevent/dev.h>
84#include <thread_pool.h>
85#include <pthread.h>
86#include <unistd.h>
87#include <errno.h>
88#include "zfs_agents.h"
89#include "../zed_log.h"
90
91#define	DEV_BYID_PATH	"/dev/disk/by-id/"
92#define	DEV_BYPATH_PATH	"/dev/disk/by-path/"
93#define	DEV_BYVDEV_PATH	"/dev/disk/by-vdev/"
94
95typedef void (*zfs_process_func_t)(zpool_handle_t *, nvlist_t *, boolean_t);
96
97libzfs_handle_t *g_zfshdl;
98list_t g_pool_list;	/* list of unavailable pools at initialization */
99list_t g_device_list;	/* list of disks with asynchronous label request */
100tpool_t *g_tpool;
101boolean_t g_enumeration_done;
102pthread_t g_zfs_tid;	/* zfs_enum_pools() thread */
103
104typedef struct unavailpool {
105	zpool_handle_t	*uap_zhp;
106	list_node_t	uap_node;
107} unavailpool_t;
108
109typedef struct pendingdev {
110	char		pd_physpath[128];
111	list_node_t	pd_node;
112} pendingdev_t;
113
114static int
115zfs_toplevel_state(zpool_handle_t *zhp)
116{
117	nvlist_t *nvroot;
118	vdev_stat_t *vs;
119	unsigned int c;
120
121	verify(nvlist_lookup_nvlist(zpool_get_config(zhp, NULL),
122	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
123	verify(nvlist_lookup_uint64_array(nvroot, ZPOOL_CONFIG_VDEV_STATS,
124	    (uint64_t **)&vs, &c) == 0);
125	return (vs->vs_state);
126}
127
128static int
129zfs_unavail_pool(zpool_handle_t *zhp, void *data)
130{
131	zed_log_msg(LOG_INFO, "zfs_unavail_pool: examining '%s' (state %d)",
132	    zpool_get_name(zhp), (int)zfs_toplevel_state(zhp));
133
134	if (zfs_toplevel_state(zhp) < VDEV_STATE_DEGRADED) {
135		unavailpool_t *uap;
136		uap = malloc(sizeof (unavailpool_t));
137		if (uap == NULL) {
138			perror("malloc");
139			exit(EXIT_FAILURE);
140		}
141
142		uap->uap_zhp = zhp;
143		list_insert_tail((list_t *)data, uap);
144	} else {
145		zpool_close(zhp);
146	}
147	return (0);
148}
149
150/*
151 * Write an array of strings to the zed log
152 */
153static void lines_to_zed_log_msg(char **lines, int lines_cnt)
154{
155	int i;
156	for (i = 0; i < lines_cnt; i++) {
157		zed_log_msg(LOG_INFO, "%s", lines[i]);
158	}
159}
160
161/*
162 * Two stage replace on Linux
163 * since we get disk notifications
164 * we can wait for partitioned disk slice to show up!
165 *
166 * First stage tags the disk, initiates async partitioning, and returns
167 * Second stage finds the tag and proceeds to ZFS labeling/replace
168 *
169 * disk-add --> label-disk + tag-disk --> partition-add --> zpool_vdev_attach
170 *
171 * 1. physical match with no fs, no partition
172 *	tag it top, partition disk
173 *
174 * 2. physical match again, see partition and tag
175 *
176 */
177
178/*
179 * The device associated with the given vdev (either by devid or physical path)
180 * has been added to the system.  If 'isdisk' is set, then we only attempt a
181 * replacement if it's a whole disk.  This also implies that we should label the
182 * disk first.
183 *
184 * First, we attempt to online the device (making sure to undo any spare
185 * operation when finished).  If this succeeds, then we're done.  If it fails,
186 * and the new state is VDEV_CANT_OPEN, it indicates that the device was opened,
187 * but that the label was not what we expected.  If the 'autoreplace' property
188 * is enabled, then we relabel the disk (if specified), and attempt a 'zpool
189 * replace'.  If the online is successful, but the new state is something else
190 * (REMOVED or FAULTED), it indicates that we're out of sync or in some sort of
191 * race, and we should avoid attempting to relabel the disk.
192 *
193 * Also can arrive here from a ESC_ZFS_VDEV_CHECK event
194 */
195static void
196zfs_process_add(zpool_handle_t *zhp, nvlist_t *vdev, boolean_t labeled)
197{
198	const char *path;
199	vdev_state_t newstate;
200	nvlist_t *nvroot, *newvd;
201	pendingdev_t *device;
202	uint64_t wholedisk = 0ULL;
203	uint64_t offline = 0ULL, faulted = 0ULL;
204	uint64_t guid = 0ULL;
205	uint64_t is_spare = 0;
206	const char *physpath = NULL, *new_devid = NULL, *enc_sysfs_path = NULL;
207	char rawpath[PATH_MAX], fullpath[PATH_MAX];
208	char pathbuf[PATH_MAX];
209	int ret;
210	int online_flag = ZFS_ONLINE_CHECKREMOVE | ZFS_ONLINE_UNSPARE;
211	boolean_t is_sd = B_FALSE;
212	boolean_t is_mpath_wholedisk = B_FALSE;
213	uint_t c;
214	vdev_stat_t *vs;
215	char **lines = NULL;
216	int lines_cnt = 0;
217
218	/*
219	 * Get the persistent path, typically under the '/dev/disk/by-id' or
220	 * '/dev/disk/by-vdev' directories.  Note that this path can change
221	 * when a vdev is replaced with a new disk.
222	 */
223	if (nvlist_lookup_string(vdev, ZPOOL_CONFIG_PATH, &path) != 0)
224		return;
225
226	/* Skip healthy disks */
227	verify(nvlist_lookup_uint64_array(vdev, ZPOOL_CONFIG_VDEV_STATS,
228	    (uint64_t **)&vs, &c) == 0);
229	if (vs->vs_state == VDEV_STATE_HEALTHY) {
230		zed_log_msg(LOG_INFO, "%s: %s is already healthy, skip it.",
231		    __func__, path);
232		return;
233	}
234
235	(void) nvlist_lookup_string(vdev, ZPOOL_CONFIG_PHYS_PATH, &physpath);
236
237	update_vdev_config_dev_sysfs_path(vdev, path,
238	    ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH);
239	(void) nvlist_lookup_string(vdev, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
240	    &enc_sysfs_path);
241
242	(void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk);
243	(void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_OFFLINE, &offline);
244	(void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_FAULTED, &faulted);
245
246	(void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_GUID, &guid);
247	(void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_IS_SPARE, &is_spare);
248
249	/*
250	 * Special case:
251	 *
252	 * We've seen times where a disk won't have a ZPOOL_CONFIG_PHYS_PATH
253	 * entry in their config. For example, on this force-faulted disk:
254	 *
255	 *	children[0]:
256	 *	   type: 'disk'
257	 *	   id: 0
258	 *	   guid: 14309659774640089719
259	 *        path: '/dev/disk/by-vdev/L28'
260	 *        whole_disk: 0
261	 *        DTL: 654
262	 *        create_txg: 4
263	 *        com.delphix:vdev_zap_leaf: 1161
264	 *        faulted: 1
265	 *        aux_state: 'external'
266	 *	children[1]:
267	 *        type: 'disk'
268	 *        id: 1
269	 *        guid: 16002508084177980912
270	 *        path: '/dev/disk/by-vdev/L29'
271	 *        devid: 'dm-uuid-mpath-35000c500a61d68a3'
272	 *        phys_path: 'L29'
273	 *        vdev_enc_sysfs_path: '/sys/class/enclosure/0:0:1:0/SLOT 30 32'
274	 *        whole_disk: 0
275	 *        DTL: 1028
276	 *        create_txg: 4
277	 *        com.delphix:vdev_zap_leaf: 131
278	 *
279	 * If the disk's path is a /dev/disk/by-vdev/ path, then we can infer
280	 * the ZPOOL_CONFIG_PHYS_PATH from the by-vdev disk name.
281	 */
282	if (physpath == NULL && path != NULL) {
283		/* If path begins with "/dev/disk/by-vdev/" ... */
284		if (strncmp(path, DEV_BYVDEV_PATH,
285		    strlen(DEV_BYVDEV_PATH)) == 0) {
286			/* Set physpath to the char after "/dev/disk/by-vdev" */
287			physpath = &path[strlen(DEV_BYVDEV_PATH)];
288		}
289	}
290
291	/*
292	 * We don't want to autoreplace offlined disks.  However, we do want to
293	 * replace force-faulted disks (`zpool offline -f`).  Force-faulted
294	 * disks have both offline=1 and faulted=1 in the nvlist.
295	 */
296	if (offline && !faulted) {
297		zed_log_msg(LOG_INFO, "%s: %s is offline, skip autoreplace",
298		    __func__, path);
299		return;
300	}
301
302	is_mpath_wholedisk = is_mpath_whole_disk(path);
303	zed_log_msg(LOG_INFO, "zfs_process_add: pool '%s' vdev '%s', phys '%s'"
304	    " %s blank disk, %s mpath blank disk, %s labeled, enc sysfs '%s', "
305	    "(guid %llu)",
306	    zpool_get_name(zhp), path,
307	    physpath ? physpath : "NULL",
308	    wholedisk ? "is" : "not",
309	    is_mpath_wholedisk? "is" : "not",
310	    labeled ? "is" : "not",
311	    enc_sysfs_path,
312	    (long long unsigned int)guid);
313
314	/*
315	 * The VDEV guid is preferred for identification (gets passed in path)
316	 */
317	if (guid != 0) {
318		(void) snprintf(fullpath, sizeof (fullpath), "%llu",
319		    (long long unsigned int)guid);
320	} else {
321		/*
322		 * otherwise use path sans partition suffix for whole disks
323		 */
324		(void) strlcpy(fullpath, path, sizeof (fullpath));
325		if (wholedisk) {
326			char *spath = zfs_strip_partition(fullpath);
327			if (!spath) {
328				zed_log_msg(LOG_INFO, "%s: Can't alloc",
329				    __func__);
330				return;
331			}
332
333			(void) strlcpy(fullpath, spath, sizeof (fullpath));
334			free(spath);
335		}
336	}
337
338	if (is_spare)
339		online_flag |= ZFS_ONLINE_SPARE;
340
341	/*
342	 * Attempt to online the device.
343	 */
344	if (zpool_vdev_online(zhp, fullpath, online_flag, &newstate) == 0 &&
345	    (newstate == VDEV_STATE_HEALTHY ||
346	    newstate == VDEV_STATE_DEGRADED)) {
347		zed_log_msg(LOG_INFO,
348		    "  zpool_vdev_online: vdev '%s' ('%s') is "
349		    "%s", fullpath, physpath, (newstate == VDEV_STATE_HEALTHY) ?
350		    "HEALTHY" : "DEGRADED");
351		return;
352	}
353
354	/*
355	 * vdev_id alias rule for using scsi_debug devices (FMA automated
356	 * testing)
357	 */
358	if (physpath != NULL && strcmp("scsidebug", physpath) == 0)
359		is_sd = B_TRUE;
360
361	/*
362	 * If the pool doesn't have the autoreplace property set, then use
363	 * vdev online to trigger a FMA fault by posting an ereport.
364	 */
365	if (!zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOREPLACE, NULL) ||
366	    !(wholedisk || is_mpath_wholedisk) || (physpath == NULL)) {
367		(void) zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_FORCEFAULT,
368		    &newstate);
369		zed_log_msg(LOG_INFO, "Pool's autoreplace is not enabled or "
370		    "not a blank disk for '%s' ('%s')", fullpath,
371		    physpath);
372		return;
373	}
374
375	/*
376	 * Convert physical path into its current device node.  Rawpath
377	 * needs to be /dev/disk/by-vdev for a scsi_debug device since
378	 * /dev/disk/by-path will not be present.
379	 */
380	(void) snprintf(rawpath, sizeof (rawpath), "%s%s",
381	    is_sd ? DEV_BYVDEV_PATH : DEV_BYPATH_PATH, physpath);
382
383	if (realpath(rawpath, pathbuf) == NULL && !is_mpath_wholedisk) {
384		zed_log_msg(LOG_INFO, "  realpath: %s failed (%s)",
385		    rawpath, strerror(errno));
386
387		int err = zpool_vdev_online(zhp, fullpath,
388		    ZFS_ONLINE_FORCEFAULT, &newstate);
389
390		zed_log_msg(LOG_INFO, "  zpool_vdev_online: %s FORCEFAULT (%s) "
391		    "err %d, new state %d",
392		    fullpath, libzfs_error_description(g_zfshdl), err,
393		    err ? (int)newstate : 0);
394		return;
395	}
396
397	/* Only autoreplace bad disks */
398	if ((vs->vs_state != VDEV_STATE_DEGRADED) &&
399	    (vs->vs_state != VDEV_STATE_FAULTED) &&
400	    (vs->vs_state != VDEV_STATE_REMOVED) &&
401	    (vs->vs_state != VDEV_STATE_CANT_OPEN)) {
402		zed_log_msg(LOG_INFO, "  not autoreplacing since disk isn't in "
403		    "a bad state (currently %llu)", vs->vs_state);
404		return;
405	}
406
407	nvlist_lookup_string(vdev, "new_devid", &new_devid);
408
409	if (is_mpath_wholedisk) {
410		/* Don't label device mapper or multipath disks. */
411		zed_log_msg(LOG_INFO,
412		    "  it's a multipath wholedisk, don't label");
413		if (zpool_prepare_disk(zhp, vdev, "autoreplace", &lines,
414		    &lines_cnt) != 0) {
415			zed_log_msg(LOG_INFO,
416			    "  zpool_prepare_disk: could not "
417			    "prepare '%s' (%s)", fullpath,
418			    libzfs_error_description(g_zfshdl));
419			if (lines_cnt > 0) {
420				zed_log_msg(LOG_INFO,
421				    "  zfs_prepare_disk output:");
422				lines_to_zed_log_msg(lines, lines_cnt);
423			}
424			libzfs_free_str_array(lines, lines_cnt);
425			return;
426		}
427	} else if (!labeled) {
428		/*
429		 * we're auto-replacing a raw disk, so label it first
430		 */
431		char *leafname;
432
433		/*
434		 * If this is a request to label a whole disk, then attempt to
435		 * write out the label.  Before we can label the disk, we need
436		 * to map the physical string that was matched on to the under
437		 * lying device node.
438		 *
439		 * If any part of this process fails, then do a force online
440		 * to trigger a ZFS fault for the device (and any hot spare
441		 * replacement).
442		 */
443		leafname = strrchr(pathbuf, '/') + 1;
444
445		/*
446		 * If this is a request to label a whole disk, then attempt to
447		 * write out the label.
448		 */
449		if (zpool_prepare_and_label_disk(g_zfshdl, zhp, leafname,
450		    vdev, "autoreplace", &lines, &lines_cnt) != 0) {
451			zed_log_msg(LOG_WARNING,
452			    "  zpool_prepare_and_label_disk: could not "
453			    "label '%s' (%s)", leafname,
454			    libzfs_error_description(g_zfshdl));
455			if (lines_cnt > 0) {
456				zed_log_msg(LOG_INFO,
457				"  zfs_prepare_disk output:");
458				lines_to_zed_log_msg(lines, lines_cnt);
459			}
460			libzfs_free_str_array(lines, lines_cnt);
461
462			(void) zpool_vdev_online(zhp, fullpath,
463			    ZFS_ONLINE_FORCEFAULT, &newstate);
464			return;
465		}
466
467		/*
468		 * The disk labeling is asynchronous on Linux. Just record
469		 * this label request and return as there will be another
470		 * disk add event for the partition after the labeling is
471		 * completed.
472		 */
473		device = malloc(sizeof (pendingdev_t));
474		if (device == NULL) {
475			perror("malloc");
476			exit(EXIT_FAILURE);
477		}
478
479		(void) strlcpy(device->pd_physpath, physpath,
480		    sizeof (device->pd_physpath));
481		list_insert_tail(&g_device_list, device);
482
483		zed_log_msg(LOG_NOTICE, "  zpool_label_disk: async '%s' (%llu)",
484		    leafname, (u_longlong_t)guid);
485
486		return;	/* resumes at EC_DEV_ADD.ESC_DISK for partition */
487
488	} else /* labeled */ {
489		boolean_t found = B_FALSE;
490		/*
491		 * match up with request above to label the disk
492		 */
493		for (device = list_head(&g_device_list); device != NULL;
494		    device = list_next(&g_device_list, device)) {
495			if (strcmp(physpath, device->pd_physpath) == 0) {
496				list_remove(&g_device_list, device);
497				free(device);
498				found = B_TRUE;
499				break;
500			}
501			zed_log_msg(LOG_INFO, "zpool_label_disk: %s != %s",
502			    physpath, device->pd_physpath);
503		}
504		if (!found) {
505			/* unexpected partition slice encountered */
506			zed_log_msg(LOG_WARNING, "labeled disk %s was "
507			    "unexpected here", fullpath);
508			(void) zpool_vdev_online(zhp, fullpath,
509			    ZFS_ONLINE_FORCEFAULT, &newstate);
510			return;
511		}
512
513		zed_log_msg(LOG_INFO, "  zpool_label_disk: resume '%s' (%llu)",
514		    physpath, (u_longlong_t)guid);
515
516		/*
517		 * Paths that begin with '/dev/disk/by-id/' will change and so
518		 * they must be updated before calling zpool_vdev_attach().
519		 */
520		if (strncmp(path, DEV_BYID_PATH, strlen(DEV_BYID_PATH)) == 0) {
521			(void) snprintf(pathbuf, sizeof (pathbuf), "%s%s",
522			    DEV_BYID_PATH, new_devid);
523			zed_log_msg(LOG_INFO, "  zpool_label_disk: path '%s' "
524			    "replaced by '%s'", path, pathbuf);
525			path = pathbuf;
526		}
527	}
528
529	libzfs_free_str_array(lines, lines_cnt);
530
531	/*
532	 * Construct the root vdev to pass to zpool_vdev_attach().  While adding
533	 * the entire vdev structure is harmless, we construct a reduced set of
534	 * path/physpath/wholedisk to keep it simple.
535	 */
536	if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) {
537		zed_log_msg(LOG_WARNING, "zfs_mod: nvlist_alloc out of memory");
538		return;
539	}
540	if (nvlist_alloc(&newvd, NV_UNIQUE_NAME, 0) != 0) {
541		zed_log_msg(LOG_WARNING, "zfs_mod: nvlist_alloc out of memory");
542		nvlist_free(nvroot);
543		return;
544	}
545
546	if (nvlist_add_string(newvd, ZPOOL_CONFIG_TYPE, VDEV_TYPE_DISK) != 0 ||
547	    nvlist_add_string(newvd, ZPOOL_CONFIG_PATH, path) != 0 ||
548	    nvlist_add_string(newvd, ZPOOL_CONFIG_DEVID, new_devid) != 0 ||
549	    (physpath != NULL && nvlist_add_string(newvd,
550	    ZPOOL_CONFIG_PHYS_PATH, physpath) != 0) ||
551	    (enc_sysfs_path != NULL && nvlist_add_string(newvd,
552	    ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, enc_sysfs_path) != 0) ||
553	    nvlist_add_uint64(newvd, ZPOOL_CONFIG_WHOLE_DISK, wholedisk) != 0 ||
554	    nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) != 0 ||
555	    nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
556	    (const nvlist_t **)&newvd, 1) != 0) {
557		zed_log_msg(LOG_WARNING, "zfs_mod: unable to add nvlist pairs");
558		nvlist_free(newvd);
559		nvlist_free(nvroot);
560		return;
561	}
562
563	nvlist_free(newvd);
564
565	/*
566	 * Wait for udev to verify the links exist, then auto-replace
567	 * the leaf disk at same physical location.
568	 */
569	if (zpool_label_disk_wait(path, DISK_LABEL_WAIT) != 0) {
570		zed_log_msg(LOG_WARNING, "zfs_mod: pool '%s', after labeling "
571		    "replacement disk, the expected disk partition link '%s' "
572		    "is missing after waiting %u ms",
573		    zpool_get_name(zhp), path, DISK_LABEL_WAIT);
574		nvlist_free(nvroot);
575		return;
576	}
577
578	/*
579	 * Prefer sequential resilvering when supported (mirrors and dRAID),
580	 * otherwise fallback to a traditional healing resilver.
581	 */
582	ret = zpool_vdev_attach(zhp, fullpath, path, nvroot, B_TRUE, B_TRUE);
583	if (ret != 0) {
584		ret = zpool_vdev_attach(zhp, fullpath, path, nvroot,
585		    B_TRUE, B_FALSE);
586	}
587
588	zed_log_msg(LOG_WARNING, "  zpool_vdev_replace: %s with %s (%s)",
589	    fullpath, path, (ret == 0) ? "no errors" :
590	    libzfs_error_description(g_zfshdl));
591
592	nvlist_free(nvroot);
593}
594
595/*
596 * Utility functions to find a vdev matching given criteria.
597 */
598typedef struct dev_data {
599	const char		*dd_compare;
600	const char		*dd_prop;
601	zfs_process_func_t	dd_func;
602	boolean_t		dd_found;
603	boolean_t		dd_islabeled;
604	uint64_t		dd_pool_guid;
605	uint64_t		dd_vdev_guid;
606	uint64_t		dd_new_vdev_guid;
607	const char		*dd_new_devid;
608	uint64_t		dd_num_spares;
609} dev_data_t;
610
611static void
612zfs_iter_vdev(zpool_handle_t *zhp, nvlist_t *nvl, void *data)
613{
614	dev_data_t *dp = data;
615	const char *path = NULL;
616	uint_t c, children;
617	nvlist_t **child;
618	uint64_t guid = 0;
619	uint64_t isspare = 0;
620
621	/*
622	 * First iterate over any children.
623	 */
624	if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN,
625	    &child, &children) == 0) {
626		for (c = 0; c < children; c++)
627			zfs_iter_vdev(zhp, child[c], data);
628	}
629
630	/*
631	 * Iterate over any spares and cache devices
632	 */
633	if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_SPARES,
634	    &child, &children) == 0) {
635		for (c = 0; c < children; c++)
636			zfs_iter_vdev(zhp, child[c], data);
637	}
638	if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_L2CACHE,
639	    &child, &children) == 0) {
640		for (c = 0; c < children; c++)
641			zfs_iter_vdev(zhp, child[c], data);
642	}
643
644	/* once a vdev was matched and processed there is nothing left to do */
645	if (dp->dd_found && dp->dd_num_spares == 0)
646		return;
647	(void) nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_GUID, &guid);
648
649	/*
650	 * Match by GUID if available otherwise fallback to devid or physical
651	 */
652	if (dp->dd_vdev_guid != 0) {
653		if (guid != dp->dd_vdev_guid)
654			return;
655		zed_log_msg(LOG_INFO, "  zfs_iter_vdev: matched on %llu", guid);
656		dp->dd_found = B_TRUE;
657
658	} else if (dp->dd_compare != NULL) {
659		/*
660		 * NOTE: On Linux there is an event for partition, so unlike
661		 * illumos, substring matching is not required to accommodate
662		 * the partition suffix. An exact match will be present in
663		 * the dp->dd_compare value.
664		 * If the attached disk already contains a vdev GUID, it means
665		 * the disk is not clean. In such a scenario, the physical path
666		 * would be a match that makes the disk faulted when trying to
667		 * online it. So, we would only want to proceed if either GUID
668		 * matches with the last attached disk or the disk is in clean
669		 * state.
670		 */
671		if (nvlist_lookup_string(nvl, dp->dd_prop, &path) != 0 ||
672		    strcmp(dp->dd_compare, path) != 0) {
673			return;
674		}
675		if (dp->dd_new_vdev_guid != 0 && dp->dd_new_vdev_guid != guid) {
676			zed_log_msg(LOG_INFO, "  %s: no match (GUID:%llu"
677			    " != vdev GUID:%llu)", __func__,
678			    dp->dd_new_vdev_guid, guid);
679			return;
680		}
681
682		zed_log_msg(LOG_INFO, "  zfs_iter_vdev: matched %s on %s",
683		    dp->dd_prop, path);
684		dp->dd_found = B_TRUE;
685
686		/* pass the new devid for use by auto-replacing code */
687		if (dp->dd_new_devid != NULL) {
688			(void) nvlist_add_string(nvl, "new_devid",
689			    dp->dd_new_devid);
690		}
691	}
692
693	if (dp->dd_found == B_TRUE && nvlist_lookup_uint64(nvl,
694	    ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
695		dp->dd_num_spares++;
696
697	(dp->dd_func)(zhp, nvl, dp->dd_islabeled);
698}
699
700static void
701zfs_enable_ds(void *arg)
702{
703	unavailpool_t *pool = (unavailpool_t *)arg;
704
705	(void) zpool_enable_datasets(pool->uap_zhp, NULL, 0, 512);
706	zpool_close(pool->uap_zhp);
707	free(pool);
708}
709
710static int
711zfs_iter_pool(zpool_handle_t *zhp, void *data)
712{
713	nvlist_t *config, *nvl;
714	dev_data_t *dp = data;
715	uint64_t pool_guid;
716	unavailpool_t *pool;
717
718	zed_log_msg(LOG_INFO, "zfs_iter_pool: evaluating vdevs on %s (by %s)",
719	    zpool_get_name(zhp), dp->dd_vdev_guid ? "GUID" : dp->dd_prop);
720
721	/*
722	 * For each vdev in this pool, look for a match to apply dd_func
723	 */
724	if ((config = zpool_get_config(zhp, NULL)) != NULL) {
725		if (dp->dd_pool_guid == 0 ||
726		    (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
727		    &pool_guid) == 0 && pool_guid == dp->dd_pool_guid)) {
728			(void) nvlist_lookup_nvlist(config,
729			    ZPOOL_CONFIG_VDEV_TREE, &nvl);
730			zfs_iter_vdev(zhp, nvl, data);
731		}
732	} else {
733		zed_log_msg(LOG_INFO, "%s: no config\n", __func__);
734	}
735
736	/*
737	 * if this pool was originally unavailable,
738	 * then enable its datasets asynchronously
739	 */
740	if (g_enumeration_done)  {
741		for (pool = list_head(&g_pool_list); pool != NULL;
742		    pool = list_next(&g_pool_list, pool)) {
743
744			if (strcmp(zpool_get_name(zhp),
745			    zpool_get_name(pool->uap_zhp)))
746				continue;
747			if (zfs_toplevel_state(zhp) >= VDEV_STATE_DEGRADED) {
748				list_remove(&g_pool_list, pool);
749				(void) tpool_dispatch(g_tpool, zfs_enable_ds,
750				    pool);
751				break;
752			}
753		}
754	}
755
756	zpool_close(zhp);
757
758	/* cease iteration after a match */
759	return (dp->dd_found && dp->dd_num_spares == 0);
760}
761
762/*
763 * Given a physical device location, iterate over all
764 * (pool, vdev) pairs which correspond to that location.
765 */
766static boolean_t
767devphys_iter(const char *physical, const char *devid, zfs_process_func_t func,
768    boolean_t is_slice, uint64_t new_vdev_guid)
769{
770	dev_data_t data = { 0 };
771
772	data.dd_compare = physical;
773	data.dd_func = func;
774	data.dd_prop = ZPOOL_CONFIG_PHYS_PATH;
775	data.dd_found = B_FALSE;
776	data.dd_islabeled = is_slice;
777	data.dd_new_devid = devid;	/* used by auto replace code */
778	data.dd_new_vdev_guid = new_vdev_guid;
779
780	(void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
781
782	return (data.dd_found);
783}
784
785/*
786 * Given a device identifier, find any vdevs with a matching by-vdev
787 * path.  Normally we shouldn't need this as the comparison would be
788 * made earlier in the devphys_iter().  For example, if we were replacing
789 * /dev/disk/by-vdev/L28, normally devphys_iter() would match the
790 * ZPOOL_CONFIG_PHYS_PATH of "L28" from the old disk config to "L28"
791 * of the new disk config.  However, we've seen cases where
792 * ZPOOL_CONFIG_PHYS_PATH was not in the config for the old disk.  Here's
793 * an example of a real 2-disk mirror pool where one disk was force
794 * faulted:
795 *
796 *       com.delphix:vdev_zap_top: 129
797 *           children[0]:
798 *               type: 'disk'
799 *               id: 0
800 *               guid: 14309659774640089719
801 *               path: '/dev/disk/by-vdev/L28'
802 *               whole_disk: 0
803 *               DTL: 654
804 *               create_txg: 4
805 *               com.delphix:vdev_zap_leaf: 1161
806 *               faulted: 1
807 *               aux_state: 'external'
808 *           children[1]:
809 *               type: 'disk'
810 *               id: 1
811 *               guid: 16002508084177980912
812 *               path: '/dev/disk/by-vdev/L29'
813 *               devid: 'dm-uuid-mpath-35000c500a61d68a3'
814 *               phys_path: 'L29'
815 *               vdev_enc_sysfs_path: '/sys/class/enclosure/0:0:1:0/SLOT 30 32'
816 *               whole_disk: 0
817 *               DTL: 1028
818 *               create_txg: 4
819 *               com.delphix:vdev_zap_leaf: 131
820 *
821 * So in the case above, the only thing we could compare is the path.
822 *
823 * We can do this because we assume by-vdev paths are authoritative as physical
824 * paths.  We could not assume this for normal paths like /dev/sda since the
825 * physical location /dev/sda points to could change over time.
826 */
827static boolean_t
828by_vdev_path_iter(const char *by_vdev_path, const char *devid,
829    zfs_process_func_t func, boolean_t is_slice)
830{
831	dev_data_t data = { 0 };
832
833	data.dd_compare = by_vdev_path;
834	data.dd_func = func;
835	data.dd_prop = ZPOOL_CONFIG_PATH;
836	data.dd_found = B_FALSE;
837	data.dd_islabeled = is_slice;
838	data.dd_new_devid = devid;
839
840	if (strncmp(by_vdev_path, DEV_BYVDEV_PATH,
841	    strlen(DEV_BYVDEV_PATH)) != 0) {
842		/* by_vdev_path doesn't start with "/dev/disk/by-vdev/" */
843		return (B_FALSE);
844	}
845
846	(void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
847
848	return (data.dd_found);
849}
850
851/*
852 * Given a device identifier, find any vdevs with a matching devid.
853 * On Linux we can match devid directly which is always a whole disk.
854 */
855static boolean_t
856devid_iter(const char *devid, zfs_process_func_t func, boolean_t is_slice)
857{
858	dev_data_t data = { 0 };
859
860	data.dd_compare = devid;
861	data.dd_func = func;
862	data.dd_prop = ZPOOL_CONFIG_DEVID;
863	data.dd_found = B_FALSE;
864	data.dd_islabeled = is_slice;
865	data.dd_new_devid = devid;
866
867	(void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
868
869	return (data.dd_found);
870}
871
872/*
873 * Given a device guid, find any vdevs with a matching guid.
874 */
875static boolean_t
876guid_iter(uint64_t pool_guid, uint64_t vdev_guid, const char *devid,
877    zfs_process_func_t func, boolean_t is_slice)
878{
879	dev_data_t data = { 0 };
880
881	data.dd_func = func;
882	data.dd_found = B_FALSE;
883	data.dd_pool_guid = pool_guid;
884	data.dd_vdev_guid = vdev_guid;
885	data.dd_islabeled = is_slice;
886	data.dd_new_devid = devid;
887
888	(void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
889
890	return (data.dd_found);
891}
892
893/*
894 * Handle a EC_DEV_ADD.ESC_DISK event.
895 *
896 * illumos
897 *	Expects: DEV_PHYS_PATH string in schema
898 *	Matches: vdev's ZPOOL_CONFIG_PHYS_PATH or ZPOOL_CONFIG_DEVID
899 *
900 *      path: '/dev/dsk/c0t1d0s0' (persistent)
901 *     devid: 'id1,sd@SATA_____Hitachi_HDS72101______JP2940HZ3H74MC/a'
902 * phys_path: '/pci@0,0/pci103c,1609@11/disk@1,0:a'
903 *
904 * linux
905 *	provides: DEV_PHYS_PATH and DEV_IDENTIFIER strings in schema
906 *	Matches: vdev's ZPOOL_CONFIG_PHYS_PATH or ZPOOL_CONFIG_DEVID
907 *
908 *      path: '/dev/sdc1' (not persistent)
909 *     devid: 'ata-SAMSUNG_HD204UI_S2HGJD2Z805891-part1'
910 * phys_path: 'pci-0000:04:00.0-sas-0x4433221106000000-lun-0'
911 */
912static int
913zfs_deliver_add(nvlist_t *nvl)
914{
915	const char *devpath = NULL, *devid = NULL;
916	uint64_t pool_guid = 0, vdev_guid = 0;
917	boolean_t is_slice;
918
919	/*
920	 * Expecting a devid string and an optional physical location and guid
921	 */
922	if (nvlist_lookup_string(nvl, DEV_IDENTIFIER, &devid) != 0) {
923		zed_log_msg(LOG_INFO, "%s: no dev identifier\n", __func__);
924		return (-1);
925	}
926
927	(void) nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devpath);
928	(void) nvlist_lookup_uint64(nvl, ZFS_EV_POOL_GUID, &pool_guid);
929	(void) nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID, &vdev_guid);
930
931	is_slice = (nvlist_lookup_boolean(nvl, DEV_IS_PART) == 0);
932
933	zed_log_msg(LOG_INFO, "zfs_deliver_add: adding %s (%s) (is_slice %d)",
934	    devid, devpath ? devpath : "NULL", is_slice);
935
936	/*
937	 * Iterate over all vdevs looking for a match in the following order:
938	 * 1. ZPOOL_CONFIG_DEVID (identifies the unique disk)
939	 * 2. ZPOOL_CONFIG_PHYS_PATH (identifies disk physical location).
940	 * 3. ZPOOL_CONFIG_GUID (identifies unique vdev).
941	 * 4. ZPOOL_CONFIG_PATH for /dev/disk/by-vdev devices only (since
942	 *    by-vdev paths represent physical paths).
943	 */
944	if (devid_iter(devid, zfs_process_add, is_slice))
945		return (0);
946	if (devpath != NULL && devphys_iter(devpath, devid, zfs_process_add,
947	    is_slice, vdev_guid))
948		return (0);
949	if (vdev_guid != 0)
950		(void) guid_iter(pool_guid, vdev_guid, devid, zfs_process_add,
951		    is_slice);
952
953	if (devpath != NULL) {
954		/* Can we match a /dev/disk/by-vdev/ path? */
955		char by_vdev_path[MAXPATHLEN];
956		snprintf(by_vdev_path, sizeof (by_vdev_path),
957		    "/dev/disk/by-vdev/%s", devpath);
958		if (by_vdev_path_iter(by_vdev_path, devid, zfs_process_add,
959		    is_slice))
960			return (0);
961	}
962
963	return (0);
964}
965
966/*
967 * Called when we receive a VDEV_CHECK event, which indicates a device could not
968 * be opened during initial pool open, but the autoreplace property was set on
969 * the pool.  In this case, we treat it as if it were an add event.
970 */
971static int
972zfs_deliver_check(nvlist_t *nvl)
973{
974	dev_data_t data = { 0 };
975
976	if (nvlist_lookup_uint64(nvl, ZFS_EV_POOL_GUID,
977	    &data.dd_pool_guid) != 0 ||
978	    nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID,
979	    &data.dd_vdev_guid) != 0 ||
980	    data.dd_vdev_guid == 0)
981		return (0);
982
983	zed_log_msg(LOG_INFO, "zfs_deliver_check: pool '%llu', vdev %llu",
984	    data.dd_pool_guid, data.dd_vdev_guid);
985
986	data.dd_func = zfs_process_add;
987
988	(void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
989
990	return (0);
991}
992
993/*
994 * Given a path to a vdev, lookup the vdev's physical size from its
995 * config nvlist.
996 *
997 * Returns the vdev's physical size in bytes on success, 0 on error.
998 */
999static uint64_t
1000vdev_size_from_config(zpool_handle_t *zhp, const char *vdev_path)
1001{
1002	nvlist_t *nvl = NULL;
1003	boolean_t avail_spare, l2cache, log;
1004	vdev_stat_t *vs = NULL;
1005	uint_t c;
1006
1007	nvl = zpool_find_vdev(zhp, vdev_path, &avail_spare, &l2cache, &log);
1008	if (!nvl)
1009		return (0);
1010
1011	verify(nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_VDEV_STATS,
1012	    (uint64_t **)&vs, &c) == 0);
1013	if (!vs) {
1014		zed_log_msg(LOG_INFO, "%s: no nvlist for '%s'", __func__,
1015		    vdev_path);
1016		return (0);
1017	}
1018
1019	return (vs->vs_pspace);
1020}
1021
1022/*
1023 * Given a path to a vdev, lookup if the vdev is a "whole disk" in the
1024 * config nvlist.  "whole disk" means that ZFS was passed a whole disk
1025 * at pool creation time, which it partitioned up and has full control over.
1026 * Thus a partition with wholedisk=1 set tells us that zfs created the
1027 * partition at creation time.  A partition without whole disk set would have
1028 * been created by externally (like with fdisk) and passed to ZFS.
1029 *
1030 * Returns the whole disk value (either 0 or 1).
1031 */
1032static uint64_t
1033vdev_whole_disk_from_config(zpool_handle_t *zhp, const char *vdev_path)
1034{
1035	nvlist_t *nvl = NULL;
1036	boolean_t avail_spare, l2cache, log;
1037	uint64_t wholedisk = 0;
1038
1039	nvl = zpool_find_vdev(zhp, vdev_path, &avail_spare, &l2cache, &log);
1040	if (!nvl)
1041		return (0);
1042
1043	(void) nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk);
1044
1045	return (wholedisk);
1046}
1047
1048/*
1049 * If the device size grew more than 1% then return true.
1050 */
1051#define	DEVICE_GREW(oldsize, newsize) \
1052		    ((newsize > oldsize) && \
1053		    ((newsize / (newsize - oldsize)) <= 100))
1054
1055static int
1056zfsdle_vdev_online(zpool_handle_t *zhp, void *data)
1057{
1058	boolean_t avail_spare, l2cache;
1059	nvlist_t *udev_nvl = data;
1060	nvlist_t *tgt;
1061	int error;
1062
1063	const char *tmp_devname;
1064	char devname[MAXPATHLEN] = "";
1065	uint64_t guid;
1066
1067	if (nvlist_lookup_uint64(udev_nvl, ZFS_EV_VDEV_GUID, &guid) == 0) {
1068		sprintf(devname, "%llu", (u_longlong_t)guid);
1069	} else if (nvlist_lookup_string(udev_nvl, DEV_PHYS_PATH,
1070	    &tmp_devname) == 0) {
1071		strlcpy(devname, tmp_devname, MAXPATHLEN);
1072		zfs_append_partition(devname, MAXPATHLEN);
1073	} else {
1074		zed_log_msg(LOG_INFO, "%s: no guid or physpath", __func__);
1075	}
1076
1077	zed_log_msg(LOG_INFO, "zfsdle_vdev_online: searching for '%s' in '%s'",
1078	    devname, zpool_get_name(zhp));
1079
1080	if ((tgt = zpool_find_vdev_by_physpath(zhp, devname,
1081	    &avail_spare, &l2cache, NULL)) != NULL) {
1082		const char *path;
1083		char fullpath[MAXPATHLEN];
1084		uint64_t wholedisk = 0;
1085
1086		error = nvlist_lookup_string(tgt, ZPOOL_CONFIG_PATH, &path);
1087		if (error) {
1088			zpool_close(zhp);
1089			return (0);
1090		}
1091
1092		(void) nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_WHOLE_DISK,
1093		    &wholedisk);
1094
1095		if (wholedisk) {
1096			char *tmp;
1097			path = strrchr(path, '/');
1098			if (path != NULL) {
1099				tmp = zfs_strip_partition(path + 1);
1100				if (tmp == NULL) {
1101					zpool_close(zhp);
1102					return (0);
1103				}
1104			} else {
1105				zpool_close(zhp);
1106				return (0);
1107			}
1108
1109			(void) strlcpy(fullpath, tmp, sizeof (fullpath));
1110			free(tmp);
1111
1112			/*
1113			 * We need to reopen the pool associated with this
1114			 * device so that the kernel can update the size of
1115			 * the expanded device.  When expanding there is no
1116			 * need to restart the scrub from the beginning.
1117			 */
1118			boolean_t scrub_restart = B_FALSE;
1119			(void) zpool_reopen_one(zhp, &scrub_restart);
1120		} else {
1121			(void) strlcpy(fullpath, path, sizeof (fullpath));
1122		}
1123
1124		if (zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOEXPAND, NULL)) {
1125			vdev_state_t newstate;
1126
1127			if (zpool_get_state(zhp) != POOL_STATE_UNAVAIL) {
1128				/*
1129				 * If this disk size has not changed, then
1130				 * there's no need to do an autoexpand.  To
1131				 * check we look at the disk's size in its
1132				 * config, and compare it to the disk size
1133				 * that udev is reporting.
1134				 */
1135				uint64_t udev_size = 0, conf_size = 0,
1136				    wholedisk = 0, udev_parent_size = 0;
1137
1138				/*
1139				 * Get the size of our disk that udev is
1140				 * reporting.
1141				 */
1142				if (nvlist_lookup_uint64(udev_nvl, DEV_SIZE,
1143				    &udev_size) != 0) {
1144					udev_size = 0;
1145				}
1146
1147				/*
1148				 * Get the size of our disk's parent device
1149				 * from udev (where sda1's parent is sda).
1150				 */
1151				if (nvlist_lookup_uint64(udev_nvl,
1152				    DEV_PARENT_SIZE, &udev_parent_size) != 0) {
1153					udev_parent_size = 0;
1154				}
1155
1156				conf_size = vdev_size_from_config(zhp,
1157				    fullpath);
1158
1159				wholedisk = vdev_whole_disk_from_config(zhp,
1160				    fullpath);
1161
1162				/*
1163				 * Only attempt an autoexpand if the vdev size
1164				 * changed.  There are two different cases
1165				 * to consider.
1166				 *
1167				 * 1. wholedisk=1
1168				 * If you do a 'zpool create' on a whole disk
1169				 * (like /dev/sda), then zfs will create
1170				 * partitions on the disk (like /dev/sda1).  In
1171				 * that case, wholedisk=1 will be set in the
1172				 * partition's nvlist config.  So zed will need
1173				 * to see if your parent device (/dev/sda)
1174				 * expanded in size, and if so, then attempt
1175				 * the autoexpand.
1176				 *
1177				 * 2. wholedisk=0
1178				 * If you do a 'zpool create' on an existing
1179				 * partition, or a device that doesn't allow
1180				 * partitions, then wholedisk=0, and you will
1181				 * simply need to check if the device itself
1182				 * expanded in size.
1183				 */
1184				if (DEVICE_GREW(conf_size, udev_size) ||
1185				    (wholedisk && DEVICE_GREW(conf_size,
1186				    udev_parent_size))) {
1187					error = zpool_vdev_online(zhp, fullpath,
1188					    0, &newstate);
1189
1190					zed_log_msg(LOG_INFO,
1191					    "%s: autoexpanding '%s' from %llu"
1192					    " to %llu bytes in pool '%s': %d",
1193					    __func__, fullpath, conf_size,
1194					    MAX(udev_size, udev_parent_size),
1195					    zpool_get_name(zhp), error);
1196				}
1197			}
1198		}
1199		zpool_close(zhp);
1200		return (1);
1201	}
1202	zpool_close(zhp);
1203	return (0);
1204}
1205
1206/*
1207 * This function handles the ESC_DEV_DLE device change event.  Use the
1208 * provided vdev guid when looking up a disk or partition, when the guid
1209 * is not present assume the entire disk is owned by ZFS and append the
1210 * expected -part1 partition information then lookup by physical path.
1211 */
1212static int
1213zfs_deliver_dle(nvlist_t *nvl)
1214{
1215	const char *devname;
1216	char name[MAXPATHLEN];
1217	uint64_t guid;
1218
1219	if (nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID, &guid) == 0) {
1220		sprintf(name, "%llu", (u_longlong_t)guid);
1221	} else if (nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devname) == 0) {
1222		strlcpy(name, devname, MAXPATHLEN);
1223		zfs_append_partition(name, MAXPATHLEN);
1224	} else {
1225		sprintf(name, "unknown");
1226		zed_log_msg(LOG_INFO, "zfs_deliver_dle: no guid or physpath");
1227	}
1228
1229	if (zpool_iter(g_zfshdl, zfsdle_vdev_online, nvl) != 1) {
1230		zed_log_msg(LOG_INFO, "zfs_deliver_dle: device '%s' not "
1231		    "found", name);
1232		return (1);
1233	}
1234
1235	return (0);
1236}
1237
1238/*
1239 * syseventd daemon module event handler
1240 *
1241 * Handles syseventd daemon zfs device related events:
1242 *
1243 *	EC_DEV_ADD.ESC_DISK
1244 *	EC_DEV_STATUS.ESC_DEV_DLE
1245 *	EC_ZFS.ESC_ZFS_VDEV_CHECK
1246 *
1247 * Note: assumes only one thread active at a time (not thread safe)
1248 */
1249static int
1250zfs_slm_deliver_event(const char *class, const char *subclass, nvlist_t *nvl)
1251{
1252	int ret;
1253	boolean_t is_check = B_FALSE, is_dle = B_FALSE;
1254
1255	if (strcmp(class, EC_DEV_ADD) == 0) {
1256		/*
1257		 * We're mainly interested in disk additions, but we also listen
1258		 * for new loop devices, to allow for simplified testing.
1259		 */
1260		if (strcmp(subclass, ESC_DISK) != 0 &&
1261		    strcmp(subclass, ESC_LOFI) != 0)
1262			return (0);
1263
1264		is_check = B_FALSE;
1265	} else if (strcmp(class, EC_ZFS) == 0 &&
1266	    strcmp(subclass, ESC_ZFS_VDEV_CHECK) == 0) {
1267		/*
1268		 * This event signifies that a device failed to open
1269		 * during pool load, but the 'autoreplace' property was
1270		 * set, so we should pretend it's just been added.
1271		 */
1272		is_check = B_TRUE;
1273	} else if (strcmp(class, EC_DEV_STATUS) == 0 &&
1274	    strcmp(subclass, ESC_DEV_DLE) == 0) {
1275		is_dle = B_TRUE;
1276	} else {
1277		return (0);
1278	}
1279
1280	if (is_dle)
1281		ret = zfs_deliver_dle(nvl);
1282	else if (is_check)
1283		ret = zfs_deliver_check(nvl);
1284	else
1285		ret = zfs_deliver_add(nvl);
1286
1287	return (ret);
1288}
1289
1290static void *
1291zfs_enum_pools(void *arg)
1292{
1293	(void) arg;
1294
1295	(void) zpool_iter(g_zfshdl, zfs_unavail_pool, (void *)&g_pool_list);
1296	/*
1297	 * Linux - instead of using a thread pool, each list entry
1298	 * will spawn a thread when an unavailable pool transitions
1299	 * to available. zfs_slm_fini will wait for these threads.
1300	 */
1301	g_enumeration_done = B_TRUE;
1302	return (NULL);
1303}
1304
1305/*
1306 * called from zed daemon at startup
1307 *
1308 * sent messages from zevents or udev monitor
1309 *
1310 * For now, each agent has its own libzfs instance
1311 */
1312int
1313zfs_slm_init(void)
1314{
1315	if ((g_zfshdl = libzfs_init()) == NULL)
1316		return (-1);
1317
1318	/*
1319	 * collect a list of unavailable pools (asynchronously,
1320	 * since this can take a while)
1321	 */
1322	list_create(&g_pool_list, sizeof (struct unavailpool),
1323	    offsetof(struct unavailpool, uap_node));
1324
1325	if (pthread_create(&g_zfs_tid, NULL, zfs_enum_pools, NULL) != 0) {
1326		list_destroy(&g_pool_list);
1327		libzfs_fini(g_zfshdl);
1328		return (-1);
1329	}
1330
1331	pthread_setname_np(g_zfs_tid, "enum-pools");
1332	list_create(&g_device_list, sizeof (struct pendingdev),
1333	    offsetof(struct pendingdev, pd_node));
1334
1335	return (0);
1336}
1337
1338void
1339zfs_slm_fini(void)
1340{
1341	unavailpool_t *pool;
1342	pendingdev_t *device;
1343
1344	/* wait for zfs_enum_pools thread to complete */
1345	(void) pthread_join(g_zfs_tid, NULL);
1346	/* destroy the thread pool */
1347	if (g_tpool != NULL) {
1348		tpool_wait(g_tpool);
1349		tpool_destroy(g_tpool);
1350	}
1351
1352	while ((pool = list_remove_head(&g_pool_list)) != NULL) {
1353		zpool_close(pool->uap_zhp);
1354		free(pool);
1355	}
1356	list_destroy(&g_pool_list);
1357
1358	while ((device = list_remove_head(&g_device_list)) != NULL)
1359		free(device);
1360	list_destroy(&g_device_list);
1361
1362	libzfs_fini(g_zfshdl);
1363}
1364
1365void
1366zfs_slm_event(const char *class, const char *subclass, nvlist_t *nvl)
1367{
1368	zed_log_msg(LOG_INFO, "zfs_slm_event: %s.%s", class, subclass);
1369	(void) zfs_slm_deliver_event(class, subclass, nvl);
1370}
1371