1/*-
2 * Copyright (c) 2010 Isilon Systems, Inc.
3 * Copyright (c) 2010 iX Systems, Inc.
4 * Copyright (c) 2010 Panasas, Inc.
5 * Copyright (c) 2013-2021 Mellanox Technologies, Ltd.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice unmodified, this list of conditions, and the following
13 *    disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31#include "opt_global.h"
32#include "opt_stack.h"
33
34#include <sys/param.h>
35#include <sys/systm.h>
36#include <sys/malloc.h>
37#include <sys/kernel.h>
38#include <sys/sysctl.h>
39#include <sys/proc.h>
40#include <sys/sglist.h>
41#include <sys/sleepqueue.h>
42#include <sys/refcount.h>
43#include <sys/lock.h>
44#include <sys/mutex.h>
45#include <sys/bus.h>
46#include <sys/eventhandler.h>
47#include <sys/fcntl.h>
48#include <sys/file.h>
49#include <sys/filio.h>
50#include <sys/rwlock.h>
51#include <sys/mman.h>
52#include <sys/stack.h>
53#include <sys/sysent.h>
54#include <sys/time.h>
55#include <sys/user.h>
56
57#include <vm/vm.h>
58#include <vm/pmap.h>
59#include <vm/vm_object.h>
60#include <vm/vm_page.h>
61#include <vm/vm_pager.h>
62
63#include <machine/stdarg.h>
64
65#if defined(__i386__) || defined(__amd64__)
66#include <machine/cputypes.h>
67#include <machine/md_var.h>
68#endif
69
70#include <linux/kobject.h>
71#include <linux/cpu.h>
72#include <linux/device.h>
73#include <linux/slab.h>
74#include <linux/module.h>
75#include <linux/moduleparam.h>
76#include <linux/cdev.h>
77#include <linux/file.h>
78#include <linux/sysfs.h>
79#include <linux/mm.h>
80#include <linux/io.h>
81#include <linux/vmalloc.h>
82#include <linux/netdevice.h>
83#include <linux/timer.h>
84#include <linux/interrupt.h>
85#include <linux/uaccess.h>
86#include <linux/utsname.h>
87#include <linux/list.h>
88#include <linux/kthread.h>
89#include <linux/kernel.h>
90#include <linux/compat.h>
91#include <linux/io-mapping.h>
92#include <linux/poll.h>
93#include <linux/smp.h>
94#include <linux/wait_bit.h>
95#include <linux/rcupdate.h>
96#include <linux/interval_tree.h>
97#include <linux/interval_tree_generic.h>
98
99#if defined(__i386__) || defined(__amd64__)
100#include <asm/smp.h>
101#include <asm/processor.h>
102#endif
103
104#include <xen/xen.h>
105#ifdef XENHVM
106#undef xen_pv_domain
107#undef xen_initial_domain
108/* xen/xen-os.h redefines __must_check */
109#undef __must_check
110#include <xen/xen-os.h>
111#endif
112
113SYSCTL_NODE(_compat, OID_AUTO, linuxkpi, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
114    "LinuxKPI parameters");
115
116int linuxkpi_debug;
117SYSCTL_INT(_compat_linuxkpi, OID_AUTO, debug, CTLFLAG_RWTUN,
118    &linuxkpi_debug, 0, "Set to enable pr_debug() prints. Clear to disable.");
119
120int linuxkpi_warn_dump_stack = 0;
121SYSCTL_INT(_compat_linuxkpi, OID_AUTO, warn_dump_stack, CTLFLAG_RWTUN,
122    &linuxkpi_warn_dump_stack, 0,
123    "Set to enable stack traces from WARN_ON(). Clear to disable.");
124
125static struct timeval lkpi_net_lastlog;
126static int lkpi_net_curpps;
127static int lkpi_net_maxpps = 99;
128SYSCTL_INT(_compat_linuxkpi, OID_AUTO, net_ratelimit, CTLFLAG_RWTUN,
129    &lkpi_net_maxpps, 0, "Limit number of LinuxKPI net messages per second.");
130
131MALLOC_DEFINE(M_KMALLOC, "lkpikmalloc", "Linux kmalloc compat");
132
133#include <linux/rbtree.h>
134/* Undo Linux compat changes. */
135#undef RB_ROOT
136#undef file
137#undef cdev
138#define	RB_ROOT(head)	(head)->rbh_root
139
140static void linux_destroy_dev(struct linux_cdev *);
141static void linux_cdev_deref(struct linux_cdev *ldev);
142static struct vm_area_struct *linux_cdev_handle_find(void *handle);
143
144cpumask_t cpu_online_mask;
145static cpumask_t **static_single_cpu_mask;
146static cpumask_t *static_single_cpu_mask_lcs;
147struct kobject linux_class_root;
148struct device linux_root_device;
149struct class linux_class_misc;
150struct list_head pci_drivers;
151struct list_head pci_devices;
152spinlock_t pci_lock;
153struct uts_namespace init_uts_ns;
154
155unsigned long linux_timer_hz_mask;
156
157wait_queue_head_t linux_bit_waitq;
158wait_queue_head_t linux_var_waitq;
159
160int
161panic_cmp(struct rb_node *one, struct rb_node *two)
162{
163	panic("no cmp");
164}
165
166RB_GENERATE(linux_root, rb_node, __entry, panic_cmp);
167
168#define	START(node)	((node)->start)
169#define	LAST(node)	((node)->last)
170
171INTERVAL_TREE_DEFINE(struct interval_tree_node, rb, unsigned long,, START,
172    LAST,, lkpi_interval_tree)
173
174static void
175linux_device_release(struct device *dev)
176{
177	pr_debug("linux_device_release: %s\n", dev_name(dev));
178	kfree(dev);
179}
180
181static ssize_t
182linux_class_show(struct kobject *kobj, struct attribute *attr, char *buf)
183{
184	struct class_attribute *dattr;
185	ssize_t error;
186
187	dattr = container_of(attr, struct class_attribute, attr);
188	error = -EIO;
189	if (dattr->show)
190		error = dattr->show(container_of(kobj, struct class, kobj),
191		    dattr, buf);
192	return (error);
193}
194
195static ssize_t
196linux_class_store(struct kobject *kobj, struct attribute *attr, const char *buf,
197    size_t count)
198{
199	struct class_attribute *dattr;
200	ssize_t error;
201
202	dattr = container_of(attr, struct class_attribute, attr);
203	error = -EIO;
204	if (dattr->store)
205		error = dattr->store(container_of(kobj, struct class, kobj),
206		    dattr, buf, count);
207	return (error);
208}
209
210static void
211linux_class_release(struct kobject *kobj)
212{
213	struct class *class;
214
215	class = container_of(kobj, struct class, kobj);
216	if (class->class_release)
217		class->class_release(class);
218}
219
220static const struct sysfs_ops linux_class_sysfs = {
221	.show  = linux_class_show,
222	.store = linux_class_store,
223};
224
225const struct kobj_type linux_class_ktype = {
226	.release = linux_class_release,
227	.sysfs_ops = &linux_class_sysfs
228};
229
230static void
231linux_dev_release(struct kobject *kobj)
232{
233	struct device *dev;
234
235	dev = container_of(kobj, struct device, kobj);
236	/* This is the precedence defined by linux. */
237	if (dev->release)
238		dev->release(dev);
239	else if (dev->class && dev->class->dev_release)
240		dev->class->dev_release(dev);
241}
242
243static ssize_t
244linux_dev_show(struct kobject *kobj, struct attribute *attr, char *buf)
245{
246	struct device_attribute *dattr;
247	ssize_t error;
248
249	dattr = container_of(attr, struct device_attribute, attr);
250	error = -EIO;
251	if (dattr->show)
252		error = dattr->show(container_of(kobj, struct device, kobj),
253		    dattr, buf);
254	return (error);
255}
256
257static ssize_t
258linux_dev_store(struct kobject *kobj, struct attribute *attr, const char *buf,
259    size_t count)
260{
261	struct device_attribute *dattr;
262	ssize_t error;
263
264	dattr = container_of(attr, struct device_attribute, attr);
265	error = -EIO;
266	if (dattr->store)
267		error = dattr->store(container_of(kobj, struct device, kobj),
268		    dattr, buf, count);
269	return (error);
270}
271
272static const struct sysfs_ops linux_dev_sysfs = {
273	.show  = linux_dev_show,
274	.store = linux_dev_store,
275};
276
277const struct kobj_type linux_dev_ktype = {
278	.release = linux_dev_release,
279	.sysfs_ops = &linux_dev_sysfs
280};
281
282struct device *
283device_create(struct class *class, struct device *parent, dev_t devt,
284    void *drvdata, const char *fmt, ...)
285{
286	struct device *dev;
287	va_list args;
288
289	dev = kzalloc(sizeof(*dev), M_WAITOK);
290	dev->parent = parent;
291	dev->class = class;
292	dev->devt = devt;
293	dev->driver_data = drvdata;
294	dev->release = linux_device_release;
295	va_start(args, fmt);
296	kobject_set_name_vargs(&dev->kobj, fmt, args);
297	va_end(args);
298	device_register(dev);
299
300	return (dev);
301}
302
303struct device *
304device_create_groups_vargs(struct class *class, struct device *parent,
305    dev_t devt, void *drvdata, const struct attribute_group **groups,
306    const char *fmt, va_list args)
307{
308	struct device *dev = NULL;
309	int retval = -ENODEV;
310
311	if (class == NULL || IS_ERR(class))
312		goto error;
313
314	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
315	if (!dev) {
316		retval = -ENOMEM;
317		goto error;
318	}
319
320	dev->devt = devt;
321	dev->class = class;
322	dev->parent = parent;
323	dev->groups = groups;
324	dev->release = device_create_release;
325	/* device_initialize() needs the class and parent to be set */
326	device_initialize(dev);
327	dev_set_drvdata(dev, drvdata);
328
329	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
330	if (retval)
331		goto error;
332
333	retval = device_add(dev);
334	if (retval)
335		goto error;
336
337	return dev;
338
339error:
340	put_device(dev);
341	return ERR_PTR(retval);
342}
343
344struct class *
345class_create(struct module *owner, const char *name)
346{
347	struct class *class;
348	int error;
349
350	class = kzalloc(sizeof(*class), M_WAITOK);
351	class->owner = owner;
352	class->name = name;
353	class->class_release = linux_class_kfree;
354	error = class_register(class);
355	if (error) {
356		kfree(class);
357		return (NULL);
358	}
359
360	return (class);
361}
362
363static void
364linux_kq_lock(void *arg)
365{
366	spinlock_t *s = arg;
367
368	spin_lock(s);
369}
370static void
371linux_kq_unlock(void *arg)
372{
373	spinlock_t *s = arg;
374
375	spin_unlock(s);
376}
377
378static void
379linux_kq_assert_lock(void *arg, int what)
380{
381#ifdef INVARIANTS
382	spinlock_t *s = arg;
383
384	if (what == LA_LOCKED)
385		mtx_assert(s, MA_OWNED);
386	else
387		mtx_assert(s, MA_NOTOWNED);
388#endif
389}
390
391static void
392linux_file_kqfilter_poll(struct linux_file *, int);
393
394struct linux_file *
395linux_file_alloc(void)
396{
397	struct linux_file *filp;
398
399	filp = kzalloc(sizeof(*filp), GFP_KERNEL);
400
401	/* set initial refcount */
402	filp->f_count = 1;
403
404	/* setup fields needed by kqueue support */
405	spin_lock_init(&filp->f_kqlock);
406	knlist_init(&filp->f_selinfo.si_note, &filp->f_kqlock,
407	    linux_kq_lock, linux_kq_unlock, linux_kq_assert_lock);
408
409	return (filp);
410}
411
412void
413linux_file_free(struct linux_file *filp)
414{
415	if (filp->_file == NULL) {
416		if (filp->f_op != NULL && filp->f_op->release != NULL)
417			filp->f_op->release(filp->f_vnode, filp);
418		if (filp->f_shmem != NULL)
419			vm_object_deallocate(filp->f_shmem);
420		kfree_rcu(filp, rcu);
421	} else {
422		/*
423		 * The close method of the character device or file
424		 * will free the linux_file structure:
425		 */
426		_fdrop(filp->_file, curthread);
427	}
428}
429
430struct linux_cdev *
431cdev_alloc(void)
432{
433	struct linux_cdev *cdev;
434
435	cdev = kzalloc(sizeof(struct linux_cdev), M_WAITOK);
436	kobject_init(&cdev->kobj, &linux_cdev_ktype);
437	cdev->refs = 1;
438	return (cdev);
439}
440
441static int
442linux_cdev_pager_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot,
443    vm_page_t *mres)
444{
445	struct vm_area_struct *vmap;
446
447	vmap = linux_cdev_handle_find(vm_obj->handle);
448
449	MPASS(vmap != NULL);
450	MPASS(vmap->vm_private_data == vm_obj->handle);
451
452	if (likely(vmap->vm_ops != NULL && offset < vmap->vm_len)) {
453		vm_paddr_t paddr = IDX_TO_OFF(vmap->vm_pfn) + offset;
454		vm_page_t page;
455
456		if (((*mres)->flags & PG_FICTITIOUS) != 0) {
457			/*
458			 * If the passed in result page is a fake
459			 * page, update it with the new physical
460			 * address.
461			 */
462			page = *mres;
463			vm_page_updatefake(page, paddr, vm_obj->memattr);
464		} else {
465			/*
466			 * Replace the passed in "mres" page with our
467			 * own fake page and free up the all of the
468			 * original pages.
469			 */
470			VM_OBJECT_WUNLOCK(vm_obj);
471			page = vm_page_getfake(paddr, vm_obj->memattr);
472			VM_OBJECT_WLOCK(vm_obj);
473
474			vm_page_replace(page, vm_obj, (*mres)->pindex, *mres);
475			*mres = page;
476		}
477		vm_page_valid(page);
478		return (VM_PAGER_OK);
479	}
480	return (VM_PAGER_FAIL);
481}
482
483static int
484linux_cdev_pager_populate(vm_object_t vm_obj, vm_pindex_t pidx, int fault_type,
485    vm_prot_t max_prot, vm_pindex_t *first, vm_pindex_t *last)
486{
487	struct vm_area_struct *vmap;
488	int err;
489
490	/* get VM area structure */
491	vmap = linux_cdev_handle_find(vm_obj->handle);
492	MPASS(vmap != NULL);
493	MPASS(vmap->vm_private_data == vm_obj->handle);
494
495	VM_OBJECT_WUNLOCK(vm_obj);
496
497	linux_set_current(curthread);
498
499	down_write(&vmap->vm_mm->mmap_sem);
500	if (unlikely(vmap->vm_ops == NULL)) {
501		err = VM_FAULT_SIGBUS;
502	} else {
503		struct vm_fault vmf;
504
505		/* fill out VM fault structure */
506		vmf.virtual_address = (void *)(uintptr_t)IDX_TO_OFF(pidx);
507		vmf.flags = (fault_type & VM_PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
508		vmf.pgoff = 0;
509		vmf.page = NULL;
510		vmf.vma = vmap;
511
512		vmap->vm_pfn_count = 0;
513		vmap->vm_pfn_pcount = &vmap->vm_pfn_count;
514		vmap->vm_obj = vm_obj;
515
516		err = vmap->vm_ops->fault(&vmf);
517
518		while (vmap->vm_pfn_count == 0 && err == VM_FAULT_NOPAGE) {
519			kern_yield(PRI_USER);
520			err = vmap->vm_ops->fault(&vmf);
521		}
522	}
523
524	/* translate return code */
525	switch (err) {
526	case VM_FAULT_OOM:
527		err = VM_PAGER_AGAIN;
528		break;
529	case VM_FAULT_SIGBUS:
530		err = VM_PAGER_BAD;
531		break;
532	case VM_FAULT_NOPAGE:
533		/*
534		 * By contract the fault handler will return having
535		 * busied all the pages itself. If pidx is already
536		 * found in the object, it will simply xbusy the first
537		 * page and return with vm_pfn_count set to 1.
538		 */
539		*first = vmap->vm_pfn_first;
540		*last = *first + vmap->vm_pfn_count - 1;
541		err = VM_PAGER_OK;
542		break;
543	default:
544		err = VM_PAGER_ERROR;
545		break;
546	}
547	up_write(&vmap->vm_mm->mmap_sem);
548	VM_OBJECT_WLOCK(vm_obj);
549	return (err);
550}
551
552static struct rwlock linux_vma_lock;
553static TAILQ_HEAD(, vm_area_struct) linux_vma_head =
554    TAILQ_HEAD_INITIALIZER(linux_vma_head);
555
556static void
557linux_cdev_handle_free(struct vm_area_struct *vmap)
558{
559	/* Drop reference on vm_file */
560	if (vmap->vm_file != NULL)
561		fput(vmap->vm_file);
562
563	/* Drop reference on mm_struct */
564	mmput(vmap->vm_mm);
565
566	kfree(vmap);
567}
568
569static void
570linux_cdev_handle_remove(struct vm_area_struct *vmap)
571{
572	rw_wlock(&linux_vma_lock);
573	TAILQ_REMOVE(&linux_vma_head, vmap, vm_entry);
574	rw_wunlock(&linux_vma_lock);
575}
576
577static struct vm_area_struct *
578linux_cdev_handle_find(void *handle)
579{
580	struct vm_area_struct *vmap;
581
582	rw_rlock(&linux_vma_lock);
583	TAILQ_FOREACH(vmap, &linux_vma_head, vm_entry) {
584		if (vmap->vm_private_data == handle)
585			break;
586	}
587	rw_runlock(&linux_vma_lock);
588	return (vmap);
589}
590
591static int
592linux_cdev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
593		      vm_ooffset_t foff, struct ucred *cred, u_short *color)
594{
595
596	MPASS(linux_cdev_handle_find(handle) != NULL);
597	*color = 0;
598	return (0);
599}
600
601static void
602linux_cdev_pager_dtor(void *handle)
603{
604	const struct vm_operations_struct *vm_ops;
605	struct vm_area_struct *vmap;
606
607	vmap = linux_cdev_handle_find(handle);
608	MPASS(vmap != NULL);
609
610	/*
611	 * Remove handle before calling close operation to prevent
612	 * other threads from reusing the handle pointer.
613	 */
614	linux_cdev_handle_remove(vmap);
615
616	down_write(&vmap->vm_mm->mmap_sem);
617	vm_ops = vmap->vm_ops;
618	if (likely(vm_ops != NULL))
619		vm_ops->close(vmap);
620	up_write(&vmap->vm_mm->mmap_sem);
621
622	linux_cdev_handle_free(vmap);
623}
624
625static struct cdev_pager_ops linux_cdev_pager_ops[2] = {
626  {
627	/* OBJT_MGTDEVICE */
628	.cdev_pg_populate	= linux_cdev_pager_populate,
629	.cdev_pg_ctor	= linux_cdev_pager_ctor,
630	.cdev_pg_dtor	= linux_cdev_pager_dtor
631  },
632  {
633	/* OBJT_DEVICE */
634	.cdev_pg_fault	= linux_cdev_pager_fault,
635	.cdev_pg_ctor	= linux_cdev_pager_ctor,
636	.cdev_pg_dtor	= linux_cdev_pager_dtor
637  },
638};
639
640int
641zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
642    unsigned long size)
643{
644	vm_object_t obj;
645	vm_page_t m;
646
647	obj = vma->vm_obj;
648	if (obj == NULL || (obj->flags & OBJ_UNMANAGED) != 0)
649		return (-ENOTSUP);
650	VM_OBJECT_RLOCK(obj);
651	for (m = vm_page_find_least(obj, OFF_TO_IDX(address));
652	    m != NULL && m->pindex < OFF_TO_IDX(address + size);
653	    m = TAILQ_NEXT(m, listq))
654		pmap_remove_all(m);
655	VM_OBJECT_RUNLOCK(obj);
656	return (0);
657}
658
659void
660vma_set_file(struct vm_area_struct *vma, struct linux_file *file)
661{
662	struct linux_file *tmp;
663
664	/* Changing an anonymous vma with this is illegal */
665	get_file(file);
666	tmp = vma->vm_file;
667	vma->vm_file = file;
668	fput(tmp);
669}
670
671static struct file_operations dummy_ldev_ops = {
672	/* XXXKIB */
673};
674
675static struct linux_cdev dummy_ldev = {
676	.ops = &dummy_ldev_ops,
677};
678
679#define	LDEV_SI_DTR	0x0001
680#define	LDEV_SI_REF	0x0002
681
682static void
683linux_get_fop(struct linux_file *filp, const struct file_operations **fop,
684    struct linux_cdev **dev)
685{
686	struct linux_cdev *ldev;
687	u_int siref;
688
689	ldev = filp->f_cdev;
690	*fop = filp->f_op;
691	if (ldev != NULL) {
692		if (ldev->kobj.ktype == &linux_cdev_static_ktype) {
693			refcount_acquire(&ldev->refs);
694		} else {
695			for (siref = ldev->siref;;) {
696				if ((siref & LDEV_SI_DTR) != 0) {
697					ldev = &dummy_ldev;
698					*fop = ldev->ops;
699					siref = ldev->siref;
700					MPASS((ldev->siref & LDEV_SI_DTR) == 0);
701				} else if (atomic_fcmpset_int(&ldev->siref,
702				    &siref, siref + LDEV_SI_REF)) {
703					break;
704				}
705			}
706		}
707	}
708	*dev = ldev;
709}
710
711static void
712linux_drop_fop(struct linux_cdev *ldev)
713{
714
715	if (ldev == NULL)
716		return;
717	if (ldev->kobj.ktype == &linux_cdev_static_ktype) {
718		linux_cdev_deref(ldev);
719	} else {
720		MPASS(ldev->kobj.ktype == &linux_cdev_ktype);
721		MPASS((ldev->siref & ~LDEV_SI_DTR) != 0);
722		atomic_subtract_int(&ldev->siref, LDEV_SI_REF);
723	}
724}
725
726#define	OPW(fp,td,code) ({			\
727	struct file *__fpop;			\
728	__typeof(code) __retval;		\
729						\
730	__fpop = (td)->td_fpop;			\
731	(td)->td_fpop = (fp);			\
732	__retval = (code);			\
733	(td)->td_fpop = __fpop;			\
734	__retval;				\
735})
736
737static int
738linux_dev_fdopen(struct cdev *dev, int fflags, struct thread *td,
739    struct file *file)
740{
741	struct linux_cdev *ldev;
742	struct linux_file *filp;
743	const struct file_operations *fop;
744	int error;
745
746	ldev = dev->si_drv1;
747
748	filp = linux_file_alloc();
749	filp->f_dentry = &filp->f_dentry_store;
750	filp->f_op = ldev->ops;
751	filp->f_mode = file->f_flag;
752	filp->f_flags = file->f_flag;
753	filp->f_vnode = file->f_vnode;
754	filp->_file = file;
755	refcount_acquire(&ldev->refs);
756	filp->f_cdev = ldev;
757
758	linux_set_current(td);
759	linux_get_fop(filp, &fop, &ldev);
760
761	if (fop->open != NULL) {
762		error = -fop->open(file->f_vnode, filp);
763		if (error != 0) {
764			linux_drop_fop(ldev);
765			linux_cdev_deref(filp->f_cdev);
766			kfree(filp);
767			return (error);
768		}
769	}
770
771	/* hold on to the vnode - used for fstat() */
772	vhold(filp->f_vnode);
773
774	/* release the file from devfs */
775	finit(file, filp->f_mode, DTYPE_DEV, filp, &linuxfileops);
776	linux_drop_fop(ldev);
777	return (ENXIO);
778}
779
780#define	LINUX_IOCTL_MIN_PTR 0x10000UL
781#define	LINUX_IOCTL_MAX_PTR (LINUX_IOCTL_MIN_PTR + IOCPARM_MAX)
782
783static inline int
784linux_remap_address(void **uaddr, size_t len)
785{
786	uintptr_t uaddr_val = (uintptr_t)(*uaddr);
787
788	if (unlikely(uaddr_val >= LINUX_IOCTL_MIN_PTR &&
789	    uaddr_val < LINUX_IOCTL_MAX_PTR)) {
790		struct task_struct *pts = current;
791		if (pts == NULL) {
792			*uaddr = NULL;
793			return (1);
794		}
795
796		/* compute data offset */
797		uaddr_val -= LINUX_IOCTL_MIN_PTR;
798
799		/* check that length is within bounds */
800		if ((len > IOCPARM_MAX) ||
801		    (uaddr_val + len) > pts->bsd_ioctl_len) {
802			*uaddr = NULL;
803			return (1);
804		}
805
806		/* re-add kernel buffer address */
807		uaddr_val += (uintptr_t)pts->bsd_ioctl_data;
808
809		/* update address location */
810		*uaddr = (void *)uaddr_val;
811		return (1);
812	}
813	return (0);
814}
815
816int
817linux_copyin(const void *uaddr, void *kaddr, size_t len)
818{
819	if (linux_remap_address(__DECONST(void **, &uaddr), len)) {
820		if (uaddr == NULL)
821			return (-EFAULT);
822		memcpy(kaddr, uaddr, len);
823		return (0);
824	}
825	return (-copyin(uaddr, kaddr, len));
826}
827
828int
829linux_copyout(const void *kaddr, void *uaddr, size_t len)
830{
831	if (linux_remap_address(&uaddr, len)) {
832		if (uaddr == NULL)
833			return (-EFAULT);
834		memcpy(uaddr, kaddr, len);
835		return (0);
836	}
837	return (-copyout(kaddr, uaddr, len));
838}
839
840size_t
841linux_clear_user(void *_uaddr, size_t _len)
842{
843	uint8_t *uaddr = _uaddr;
844	size_t len = _len;
845
846	/* make sure uaddr is aligned before going into the fast loop */
847	while (((uintptr_t)uaddr & 7) != 0 && len > 7) {
848		if (subyte(uaddr, 0))
849			return (_len);
850		uaddr++;
851		len--;
852	}
853
854	/* zero 8 bytes at a time */
855	while (len > 7) {
856#ifdef __LP64__
857		if (suword64(uaddr, 0))
858			return (_len);
859#else
860		if (suword32(uaddr, 0))
861			return (_len);
862		if (suword32(uaddr + 4, 0))
863			return (_len);
864#endif
865		uaddr += 8;
866		len -= 8;
867	}
868
869	/* zero fill end, if any */
870	while (len > 0) {
871		if (subyte(uaddr, 0))
872			return (_len);
873		uaddr++;
874		len--;
875	}
876	return (0);
877}
878
879int
880linux_access_ok(const void *uaddr, size_t len)
881{
882	uintptr_t saddr;
883	uintptr_t eaddr;
884
885	/* get start and end address */
886	saddr = (uintptr_t)uaddr;
887	eaddr = (uintptr_t)uaddr + len;
888
889	/* verify addresses are valid for userspace */
890	return ((saddr == eaddr) ||
891	    (eaddr > saddr && eaddr <= VM_MAXUSER_ADDRESS));
892}
893
894/*
895 * This function should return either EINTR or ERESTART depending on
896 * the signal type sent to this thread:
897 */
898static int
899linux_get_error(struct task_struct *task, int error)
900{
901	/* check for signal type interrupt code */
902	if (error == EINTR || error == ERESTARTSYS || error == ERESTART) {
903		error = -linux_schedule_get_interrupt_value(task);
904		if (error == 0)
905			error = EINTR;
906	}
907	return (error);
908}
909
910static int
911linux_file_ioctl_sub(struct file *fp, struct linux_file *filp,
912    const struct file_operations *fop, u_long cmd, caddr_t data,
913    struct thread *td)
914{
915	struct task_struct *task = current;
916	unsigned size;
917	int error;
918
919	size = IOCPARM_LEN(cmd);
920	/* refer to logic in sys_ioctl() */
921	if (size > 0) {
922		/*
923		 * Setup hint for linux_copyin() and linux_copyout().
924		 *
925		 * Background: Linux code expects a user-space address
926		 * while FreeBSD supplies a kernel-space address.
927		 */
928		task->bsd_ioctl_data = data;
929		task->bsd_ioctl_len = size;
930		data = (void *)LINUX_IOCTL_MIN_PTR;
931	} else {
932		/* fetch user-space pointer */
933		data = *(void **)data;
934	}
935#ifdef COMPAT_FREEBSD32
936	if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
937		/* try the compat IOCTL handler first */
938		if (fop->compat_ioctl != NULL) {
939			error = -OPW(fp, td, fop->compat_ioctl(filp,
940			    cmd, (u_long)data));
941		} else {
942			error = ENOTTY;
943		}
944
945		/* fallback to the regular IOCTL handler, if any */
946		if (error == ENOTTY && fop->unlocked_ioctl != NULL) {
947			error = -OPW(fp, td, fop->unlocked_ioctl(filp,
948			    cmd, (u_long)data));
949		}
950	} else
951#endif
952	{
953		if (fop->unlocked_ioctl != NULL) {
954			error = -OPW(fp, td, fop->unlocked_ioctl(filp,
955			    cmd, (u_long)data));
956		} else {
957			error = ENOTTY;
958		}
959	}
960	if (size > 0) {
961		task->bsd_ioctl_data = NULL;
962		task->bsd_ioctl_len = 0;
963	}
964
965	if (error == EWOULDBLOCK) {
966		/* update kqfilter status, if any */
967		linux_file_kqfilter_poll(filp,
968		    LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
969	} else {
970		error = linux_get_error(task, error);
971	}
972	return (error);
973}
974
975#define	LINUX_POLL_TABLE_NORMAL ((poll_table *)1)
976
977/*
978 * This function atomically updates the poll wakeup state and returns
979 * the previous state at the time of update.
980 */
981static uint8_t
982linux_poll_wakeup_state(atomic_t *v, const uint8_t *pstate)
983{
984	int c, old;
985
986	c = v->counter;
987
988	while ((old = atomic_cmpxchg(v, c, pstate[c])) != c)
989		c = old;
990
991	return (c);
992}
993
994static int
995linux_poll_wakeup_callback(wait_queue_t *wq, unsigned int wq_state, int flags, void *key)
996{
997	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
998		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */
999		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1000		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_READY,
1001		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_READY, /* NOP */
1002	};
1003	struct linux_file *filp = container_of(wq, struct linux_file, f_wait_queue.wq);
1004
1005	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1006	case LINUX_FWQ_STATE_QUEUED:
1007		linux_poll_wakeup(filp);
1008		return (1);
1009	default:
1010		return (0);
1011	}
1012}
1013
1014void
1015linux_poll_wait(struct linux_file *filp, wait_queue_head_t *wqh, poll_table *p)
1016{
1017	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1018		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_NOT_READY,
1019		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1020		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_QUEUED, /* NOP */
1021		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_QUEUED,
1022	};
1023
1024	/* check if we are called inside the select system call */
1025	if (p == LINUX_POLL_TABLE_NORMAL)
1026		selrecord(curthread, &filp->f_selinfo);
1027
1028	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1029	case LINUX_FWQ_STATE_INIT:
1030		/* NOTE: file handles can only belong to one wait-queue */
1031		filp->f_wait_queue.wqh = wqh;
1032		filp->f_wait_queue.wq.func = &linux_poll_wakeup_callback;
1033		add_wait_queue(wqh, &filp->f_wait_queue.wq);
1034		atomic_set(&filp->f_wait_queue.state, LINUX_FWQ_STATE_QUEUED);
1035		break;
1036	default:
1037		break;
1038	}
1039}
1040
1041static void
1042linux_poll_wait_dequeue(struct linux_file *filp)
1043{
1044	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1045		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT,	/* NOP */
1046		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_INIT,
1047		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_INIT,
1048		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_INIT,
1049	};
1050
1051	seldrain(&filp->f_selinfo);
1052
1053	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1054	case LINUX_FWQ_STATE_NOT_READY:
1055	case LINUX_FWQ_STATE_QUEUED:
1056	case LINUX_FWQ_STATE_READY:
1057		remove_wait_queue(filp->f_wait_queue.wqh, &filp->f_wait_queue.wq);
1058		break;
1059	default:
1060		break;
1061	}
1062}
1063
1064void
1065linux_poll_wakeup(struct linux_file *filp)
1066{
1067	/* this function should be NULL-safe */
1068	if (filp == NULL)
1069		return;
1070
1071	selwakeup(&filp->f_selinfo);
1072
1073	spin_lock(&filp->f_kqlock);
1074	filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ |
1075	    LINUX_KQ_FLAG_NEED_WRITE;
1076
1077	/* make sure the "knote" gets woken up */
1078	KNOTE_LOCKED(&filp->f_selinfo.si_note, 1);
1079	spin_unlock(&filp->f_kqlock);
1080}
1081
1082static void
1083linux_file_kqfilter_detach(struct knote *kn)
1084{
1085	struct linux_file *filp = kn->kn_hook;
1086
1087	spin_lock(&filp->f_kqlock);
1088	knlist_remove(&filp->f_selinfo.si_note, kn, 1);
1089	spin_unlock(&filp->f_kqlock);
1090}
1091
1092static int
1093linux_file_kqfilter_read_event(struct knote *kn, long hint)
1094{
1095	struct linux_file *filp = kn->kn_hook;
1096
1097	mtx_assert(&filp->f_kqlock, MA_OWNED);
1098
1099	return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_READ) ? 1 : 0);
1100}
1101
1102static int
1103linux_file_kqfilter_write_event(struct knote *kn, long hint)
1104{
1105	struct linux_file *filp = kn->kn_hook;
1106
1107	mtx_assert(&filp->f_kqlock, MA_OWNED);
1108
1109	return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_WRITE) ? 1 : 0);
1110}
1111
1112static struct filterops linux_dev_kqfiltops_read = {
1113	.f_isfd = 1,
1114	.f_detach = linux_file_kqfilter_detach,
1115	.f_event = linux_file_kqfilter_read_event,
1116};
1117
1118static struct filterops linux_dev_kqfiltops_write = {
1119	.f_isfd = 1,
1120	.f_detach = linux_file_kqfilter_detach,
1121	.f_event = linux_file_kqfilter_write_event,
1122};
1123
1124static void
1125linux_file_kqfilter_poll(struct linux_file *filp, int kqflags)
1126{
1127	struct thread *td;
1128	const struct file_operations *fop;
1129	struct linux_cdev *ldev;
1130	int temp;
1131
1132	if ((filp->f_kqflags & kqflags) == 0)
1133		return;
1134
1135	td = curthread;
1136
1137	linux_get_fop(filp, &fop, &ldev);
1138	/* get the latest polling state */
1139	temp = OPW(filp->_file, td, fop->poll(filp, NULL));
1140	linux_drop_fop(ldev);
1141
1142	spin_lock(&filp->f_kqlock);
1143	/* clear kqflags */
1144	filp->f_kqflags &= ~(LINUX_KQ_FLAG_NEED_READ |
1145	    LINUX_KQ_FLAG_NEED_WRITE);
1146	/* update kqflags */
1147	if ((temp & (POLLIN | POLLOUT)) != 0) {
1148		if ((temp & POLLIN) != 0)
1149			filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ;
1150		if ((temp & POLLOUT) != 0)
1151			filp->f_kqflags |= LINUX_KQ_FLAG_NEED_WRITE;
1152
1153		/* make sure the "knote" gets woken up */
1154		KNOTE_LOCKED(&filp->f_selinfo.si_note, 0);
1155	}
1156	spin_unlock(&filp->f_kqlock);
1157}
1158
1159static int
1160linux_file_kqfilter(struct file *file, struct knote *kn)
1161{
1162	struct linux_file *filp;
1163	struct thread *td;
1164	int error;
1165
1166	td = curthread;
1167	filp = (struct linux_file *)file->f_data;
1168	filp->f_flags = file->f_flag;
1169	if (filp->f_op->poll == NULL)
1170		return (EINVAL);
1171
1172	spin_lock(&filp->f_kqlock);
1173	switch (kn->kn_filter) {
1174	case EVFILT_READ:
1175		filp->f_kqflags |= LINUX_KQ_FLAG_HAS_READ;
1176		kn->kn_fop = &linux_dev_kqfiltops_read;
1177		kn->kn_hook = filp;
1178		knlist_add(&filp->f_selinfo.si_note, kn, 1);
1179		error = 0;
1180		break;
1181	case EVFILT_WRITE:
1182		filp->f_kqflags |= LINUX_KQ_FLAG_HAS_WRITE;
1183		kn->kn_fop = &linux_dev_kqfiltops_write;
1184		kn->kn_hook = filp;
1185		knlist_add(&filp->f_selinfo.si_note, kn, 1);
1186		error = 0;
1187		break;
1188	default:
1189		error = EINVAL;
1190		break;
1191	}
1192	spin_unlock(&filp->f_kqlock);
1193
1194	if (error == 0) {
1195		linux_set_current(td);
1196
1197		/* update kqfilter status, if any */
1198		linux_file_kqfilter_poll(filp,
1199		    LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
1200	}
1201	return (error);
1202}
1203
1204static int
1205linux_file_mmap_single(struct file *fp, const struct file_operations *fop,
1206    vm_ooffset_t *offset, vm_size_t size, struct vm_object **object,
1207    int nprot, bool is_shared, struct thread *td)
1208{
1209	struct task_struct *task;
1210	struct vm_area_struct *vmap;
1211	struct mm_struct *mm;
1212	struct linux_file *filp;
1213	vm_memattr_t attr;
1214	int error;
1215
1216	filp = (struct linux_file *)fp->f_data;
1217	filp->f_flags = fp->f_flag;
1218
1219	if (fop->mmap == NULL)
1220		return (EOPNOTSUPP);
1221
1222	linux_set_current(td);
1223
1224	/*
1225	 * The same VM object might be shared by multiple processes
1226	 * and the mm_struct is usually freed when a process exits.
1227	 *
1228	 * The atomic reference below makes sure the mm_struct is
1229	 * available as long as the vmap is in the linux_vma_head.
1230	 */
1231	task = current;
1232	mm = task->mm;
1233	if (atomic_inc_not_zero(&mm->mm_users) == 0)
1234		return (EINVAL);
1235
1236	vmap = kzalloc(sizeof(*vmap), GFP_KERNEL);
1237	vmap->vm_start = 0;
1238	vmap->vm_end = size;
1239	vmap->vm_pgoff = *offset / PAGE_SIZE;
1240	vmap->vm_pfn = 0;
1241	vmap->vm_flags = vmap->vm_page_prot = (nprot & VM_PROT_ALL);
1242	if (is_shared)
1243		vmap->vm_flags |= VM_SHARED;
1244	vmap->vm_ops = NULL;
1245	vmap->vm_file = get_file(filp);
1246	vmap->vm_mm = mm;
1247
1248	if (unlikely(down_write_killable(&vmap->vm_mm->mmap_sem))) {
1249		error = linux_get_error(task, EINTR);
1250	} else {
1251		error = -OPW(fp, td, fop->mmap(filp, vmap));
1252		error = linux_get_error(task, error);
1253		up_write(&vmap->vm_mm->mmap_sem);
1254	}
1255
1256	if (error != 0) {
1257		linux_cdev_handle_free(vmap);
1258		return (error);
1259	}
1260
1261	attr = pgprot2cachemode(vmap->vm_page_prot);
1262
1263	if (vmap->vm_ops != NULL) {
1264		struct vm_area_struct *ptr;
1265		void *vm_private_data;
1266		bool vm_no_fault;
1267
1268		if (vmap->vm_ops->open == NULL ||
1269		    vmap->vm_ops->close == NULL ||
1270		    vmap->vm_private_data == NULL) {
1271			/* free allocated VM area struct */
1272			linux_cdev_handle_free(vmap);
1273			return (EINVAL);
1274		}
1275
1276		vm_private_data = vmap->vm_private_data;
1277
1278		rw_wlock(&linux_vma_lock);
1279		TAILQ_FOREACH(ptr, &linux_vma_head, vm_entry) {
1280			if (ptr->vm_private_data == vm_private_data)
1281				break;
1282		}
1283		/* check if there is an existing VM area struct */
1284		if (ptr != NULL) {
1285			/* check if the VM area structure is invalid */
1286			if (ptr->vm_ops == NULL ||
1287			    ptr->vm_ops->open == NULL ||
1288			    ptr->vm_ops->close == NULL) {
1289				error = ESTALE;
1290				vm_no_fault = 1;
1291			} else {
1292				error = EEXIST;
1293				vm_no_fault = (ptr->vm_ops->fault == NULL);
1294			}
1295		} else {
1296			/* insert VM area structure into list */
1297			TAILQ_INSERT_TAIL(&linux_vma_head, vmap, vm_entry);
1298			error = 0;
1299			vm_no_fault = (vmap->vm_ops->fault == NULL);
1300		}
1301		rw_wunlock(&linux_vma_lock);
1302
1303		if (error != 0) {
1304			/* free allocated VM area struct */
1305			linux_cdev_handle_free(vmap);
1306			/* check for stale VM area struct */
1307			if (error != EEXIST)
1308				return (error);
1309		}
1310
1311		/* check if there is no fault handler */
1312		if (vm_no_fault) {
1313			*object = cdev_pager_allocate(vm_private_data, OBJT_DEVICE,
1314			    &linux_cdev_pager_ops[1], size, nprot, *offset,
1315			    td->td_ucred);
1316		} else {
1317			*object = cdev_pager_allocate(vm_private_data, OBJT_MGTDEVICE,
1318			    &linux_cdev_pager_ops[0], size, nprot, *offset,
1319			    td->td_ucred);
1320		}
1321
1322		/* check if allocating the VM object failed */
1323		if (*object == NULL) {
1324			if (error == 0) {
1325				/* remove VM area struct from list */
1326				linux_cdev_handle_remove(vmap);
1327				/* free allocated VM area struct */
1328				linux_cdev_handle_free(vmap);
1329			}
1330			return (EINVAL);
1331		}
1332	} else {
1333		struct sglist *sg;
1334
1335		sg = sglist_alloc(1, M_WAITOK);
1336		sglist_append_phys(sg,
1337		    (vm_paddr_t)vmap->vm_pfn << PAGE_SHIFT, vmap->vm_len);
1338
1339		*object = vm_pager_allocate(OBJT_SG, sg, vmap->vm_len,
1340		    nprot, 0, td->td_ucred);
1341
1342		linux_cdev_handle_free(vmap);
1343
1344		if (*object == NULL) {
1345			sglist_free(sg);
1346			return (EINVAL);
1347		}
1348	}
1349
1350	if (attr != VM_MEMATTR_DEFAULT) {
1351		VM_OBJECT_WLOCK(*object);
1352		vm_object_set_memattr(*object, attr);
1353		VM_OBJECT_WUNLOCK(*object);
1354	}
1355	*offset = 0;
1356	return (0);
1357}
1358
1359struct cdevsw linuxcdevsw = {
1360	.d_version = D_VERSION,
1361	.d_fdopen = linux_dev_fdopen,
1362	.d_name = "lkpidev",
1363};
1364
1365static int
1366linux_file_read(struct file *file, struct uio *uio, struct ucred *active_cred,
1367    int flags, struct thread *td)
1368{
1369	struct linux_file *filp;
1370	const struct file_operations *fop;
1371	struct linux_cdev *ldev;
1372	ssize_t bytes;
1373	int error;
1374
1375	error = 0;
1376	filp = (struct linux_file *)file->f_data;
1377	filp->f_flags = file->f_flag;
1378	/* XXX no support for I/O vectors currently */
1379	if (uio->uio_iovcnt != 1)
1380		return (EOPNOTSUPP);
1381	if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1382		return (EINVAL);
1383	linux_set_current(td);
1384	linux_get_fop(filp, &fop, &ldev);
1385	if (fop->read != NULL) {
1386		bytes = OPW(file, td, fop->read(filp,
1387		    uio->uio_iov->iov_base,
1388		    uio->uio_iov->iov_len, &uio->uio_offset));
1389		if (bytes >= 0) {
1390			uio->uio_iov->iov_base =
1391			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1392			uio->uio_iov->iov_len -= bytes;
1393			uio->uio_resid -= bytes;
1394		} else {
1395			error = linux_get_error(current, -bytes);
1396		}
1397	} else
1398		error = ENXIO;
1399
1400	/* update kqfilter status, if any */
1401	linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_READ);
1402	linux_drop_fop(ldev);
1403
1404	return (error);
1405}
1406
1407static int
1408linux_file_write(struct file *file, struct uio *uio, struct ucred *active_cred,
1409    int flags, struct thread *td)
1410{
1411	struct linux_file *filp;
1412	const struct file_operations *fop;
1413	struct linux_cdev *ldev;
1414	ssize_t bytes;
1415	int error;
1416
1417	filp = (struct linux_file *)file->f_data;
1418	filp->f_flags = file->f_flag;
1419	/* XXX no support for I/O vectors currently */
1420	if (uio->uio_iovcnt != 1)
1421		return (EOPNOTSUPP);
1422	if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1423		return (EINVAL);
1424	linux_set_current(td);
1425	linux_get_fop(filp, &fop, &ldev);
1426	if (fop->write != NULL) {
1427		bytes = OPW(file, td, fop->write(filp,
1428		    uio->uio_iov->iov_base,
1429		    uio->uio_iov->iov_len, &uio->uio_offset));
1430		if (bytes >= 0) {
1431			uio->uio_iov->iov_base =
1432			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1433			uio->uio_iov->iov_len -= bytes;
1434			uio->uio_resid -= bytes;
1435			error = 0;
1436		} else {
1437			error = linux_get_error(current, -bytes);
1438		}
1439	} else
1440		error = ENXIO;
1441
1442	/* update kqfilter status, if any */
1443	linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_WRITE);
1444
1445	linux_drop_fop(ldev);
1446
1447	return (error);
1448}
1449
1450static int
1451linux_file_poll(struct file *file, int events, struct ucred *active_cred,
1452    struct thread *td)
1453{
1454	struct linux_file *filp;
1455	const struct file_operations *fop;
1456	struct linux_cdev *ldev;
1457	int revents;
1458
1459	filp = (struct linux_file *)file->f_data;
1460	filp->f_flags = file->f_flag;
1461	linux_set_current(td);
1462	linux_get_fop(filp, &fop, &ldev);
1463	if (fop->poll != NULL) {
1464		revents = OPW(file, td, fop->poll(filp,
1465		    LINUX_POLL_TABLE_NORMAL)) & events;
1466	} else {
1467		revents = 0;
1468	}
1469	linux_drop_fop(ldev);
1470	return (revents);
1471}
1472
1473static int
1474linux_file_close(struct file *file, struct thread *td)
1475{
1476	struct linux_file *filp;
1477	int (*release)(struct inode *, struct linux_file *);
1478	const struct file_operations *fop;
1479	struct linux_cdev *ldev;
1480	int error;
1481
1482	filp = (struct linux_file *)file->f_data;
1483
1484	KASSERT(file_count(filp) == 0,
1485	    ("File refcount(%d) is not zero", file_count(filp)));
1486
1487	if (td == NULL)
1488		td = curthread;
1489
1490	error = 0;
1491	filp->f_flags = file->f_flag;
1492	linux_set_current(td);
1493	linux_poll_wait_dequeue(filp);
1494	linux_get_fop(filp, &fop, &ldev);
1495	/*
1496	 * Always use the real release function, if any, to avoid
1497	 * leaking device resources:
1498	 */
1499	release = filp->f_op->release;
1500	if (release != NULL)
1501		error = -OPW(file, td, release(filp->f_vnode, filp));
1502	funsetown(&filp->f_sigio);
1503	if (filp->f_vnode != NULL)
1504		vdrop(filp->f_vnode);
1505	linux_drop_fop(ldev);
1506	ldev = filp->f_cdev;
1507	if (ldev != NULL)
1508		linux_cdev_deref(ldev);
1509	linux_synchronize_rcu(RCU_TYPE_REGULAR);
1510	kfree(filp);
1511
1512	return (error);
1513}
1514
1515static int
1516linux_file_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *cred,
1517    struct thread *td)
1518{
1519	struct linux_file *filp;
1520	const struct file_operations *fop;
1521	struct linux_cdev *ldev;
1522	struct fiodgname_arg *fgn;
1523	const char *p;
1524	int error, i;
1525
1526	error = 0;
1527	filp = (struct linux_file *)fp->f_data;
1528	filp->f_flags = fp->f_flag;
1529	linux_get_fop(filp, &fop, &ldev);
1530
1531	linux_set_current(td);
1532	switch (cmd) {
1533	case FIONBIO:
1534		break;
1535	case FIOASYNC:
1536		if (fop->fasync == NULL)
1537			break;
1538		error = -OPW(fp, td, fop->fasync(0, filp, fp->f_flag & FASYNC));
1539		break;
1540	case FIOSETOWN:
1541		error = fsetown(*(int *)data, &filp->f_sigio);
1542		if (error == 0) {
1543			if (fop->fasync == NULL)
1544				break;
1545			error = -OPW(fp, td, fop->fasync(0, filp,
1546			    fp->f_flag & FASYNC));
1547		}
1548		break;
1549	case FIOGETOWN:
1550		*(int *)data = fgetown(&filp->f_sigio);
1551		break;
1552	case FIODGNAME:
1553#ifdef	COMPAT_FREEBSD32
1554	case FIODGNAME_32:
1555#endif
1556		if (filp->f_cdev == NULL || filp->f_cdev->cdev == NULL) {
1557			error = ENXIO;
1558			break;
1559		}
1560		fgn = data;
1561		p = devtoname(filp->f_cdev->cdev);
1562		i = strlen(p) + 1;
1563		if (i > fgn->len) {
1564			error = EINVAL;
1565			break;
1566		}
1567		error = copyout(p, fiodgname_buf_get_ptr(fgn, cmd), i);
1568		break;
1569	default:
1570		error = linux_file_ioctl_sub(fp, filp, fop, cmd, data, td);
1571		break;
1572	}
1573	linux_drop_fop(ldev);
1574	return (error);
1575}
1576
1577static int
1578linux_file_mmap_sub(struct thread *td, vm_size_t objsize, vm_prot_t prot,
1579    vm_prot_t maxprot, int flags, struct file *fp,
1580    vm_ooffset_t *foff, const struct file_operations *fop, vm_object_t *objp)
1581{
1582	/*
1583	 * Character devices do not provide private mappings
1584	 * of any kind:
1585	 */
1586	if ((maxprot & VM_PROT_WRITE) == 0 &&
1587	    (prot & VM_PROT_WRITE) != 0)
1588		return (EACCES);
1589	if ((flags & (MAP_PRIVATE | MAP_COPY)) != 0)
1590		return (EINVAL);
1591
1592	return (linux_file_mmap_single(fp, fop, foff, objsize, objp,
1593	    (int)prot, (flags & MAP_SHARED) ? true : false, td));
1594}
1595
1596static int
1597linux_file_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
1598    vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
1599    struct thread *td)
1600{
1601	struct linux_file *filp;
1602	const struct file_operations *fop;
1603	struct linux_cdev *ldev;
1604	struct mount *mp;
1605	struct vnode *vp;
1606	vm_object_t object;
1607	vm_prot_t maxprot;
1608	int error;
1609
1610	filp = (struct linux_file *)fp->f_data;
1611
1612	vp = filp->f_vnode;
1613	if (vp == NULL)
1614		return (EOPNOTSUPP);
1615
1616	/*
1617	 * Ensure that file and memory protections are
1618	 * compatible.
1619	 */
1620	mp = vp->v_mount;
1621	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
1622		maxprot = VM_PROT_NONE;
1623		if ((prot & VM_PROT_EXECUTE) != 0)
1624			return (EACCES);
1625	} else
1626		maxprot = VM_PROT_EXECUTE;
1627	if ((fp->f_flag & FREAD) != 0)
1628		maxprot |= VM_PROT_READ;
1629	else if ((prot & VM_PROT_READ) != 0)
1630		return (EACCES);
1631
1632	/*
1633	 * If we are sharing potential changes via MAP_SHARED and we
1634	 * are trying to get write permission although we opened it
1635	 * without asking for it, bail out.
1636	 *
1637	 * Note that most character devices always share mappings.
1638	 *
1639	 * Rely on linux_file_mmap_sub() to fail invalid MAP_PRIVATE
1640	 * requests rather than doing it here.
1641	 */
1642	if ((flags & MAP_SHARED) != 0) {
1643		if ((fp->f_flag & FWRITE) != 0)
1644			maxprot |= VM_PROT_WRITE;
1645		else if ((prot & VM_PROT_WRITE) != 0)
1646			return (EACCES);
1647	}
1648	maxprot &= cap_maxprot;
1649
1650	linux_get_fop(filp, &fop, &ldev);
1651	error = linux_file_mmap_sub(td, size, prot, maxprot, flags, fp,
1652	    &foff, fop, &object);
1653	if (error != 0)
1654		goto out;
1655
1656	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
1657	    foff, FALSE, td);
1658	if (error != 0)
1659		vm_object_deallocate(object);
1660out:
1661	linux_drop_fop(ldev);
1662	return (error);
1663}
1664
1665static int
1666linux_file_stat(struct file *fp, struct stat *sb, struct ucred *active_cred)
1667{
1668	struct linux_file *filp;
1669	struct vnode *vp;
1670	int error;
1671
1672	filp = (struct linux_file *)fp->f_data;
1673	if (filp->f_vnode == NULL)
1674		return (EOPNOTSUPP);
1675
1676	vp = filp->f_vnode;
1677
1678	vn_lock(vp, LK_SHARED | LK_RETRY);
1679	error = VOP_STAT(vp, sb, curthread->td_ucred, NOCRED);
1680	VOP_UNLOCK(vp);
1681
1682	return (error);
1683}
1684
1685static int
1686linux_file_fill_kinfo(struct file *fp, struct kinfo_file *kif,
1687    struct filedesc *fdp)
1688{
1689	struct linux_file *filp;
1690	struct vnode *vp;
1691	int error;
1692
1693	filp = fp->f_data;
1694	vp = filp->f_vnode;
1695	if (vp == NULL) {
1696		error = 0;
1697		kif->kf_type = KF_TYPE_DEV;
1698	} else {
1699		vref(vp);
1700		FILEDESC_SUNLOCK(fdp);
1701		error = vn_fill_kinfo_vnode(vp, kif);
1702		vrele(vp);
1703		kif->kf_type = KF_TYPE_VNODE;
1704		FILEDESC_SLOCK(fdp);
1705	}
1706	return (error);
1707}
1708
1709unsigned int
1710linux_iminor(struct inode *inode)
1711{
1712	struct linux_cdev *ldev;
1713
1714	if (inode == NULL || inode->v_rdev == NULL ||
1715	    inode->v_rdev->si_devsw != &linuxcdevsw)
1716		return (-1U);
1717	ldev = inode->v_rdev->si_drv1;
1718	if (ldev == NULL)
1719		return (-1U);
1720
1721	return (minor(ldev->dev));
1722}
1723
1724static int
1725linux_file_kcmp(struct file *fp1, struct file *fp2, struct thread *td)
1726{
1727	struct linux_file *filp1, *filp2;
1728
1729	if (fp2->f_type != DTYPE_DEV)
1730		return (3);
1731
1732	filp1 = fp1->f_data;
1733	filp2 = fp2->f_data;
1734	return (kcmp_cmp((uintptr_t)filp1->f_cdev, (uintptr_t)filp2->f_cdev));
1735}
1736
1737struct fileops linuxfileops = {
1738	.fo_read = linux_file_read,
1739	.fo_write = linux_file_write,
1740	.fo_truncate = invfo_truncate,
1741	.fo_kqfilter = linux_file_kqfilter,
1742	.fo_stat = linux_file_stat,
1743	.fo_fill_kinfo = linux_file_fill_kinfo,
1744	.fo_poll = linux_file_poll,
1745	.fo_close = linux_file_close,
1746	.fo_ioctl = linux_file_ioctl,
1747	.fo_mmap = linux_file_mmap,
1748	.fo_chmod = invfo_chmod,
1749	.fo_chown = invfo_chown,
1750	.fo_sendfile = invfo_sendfile,
1751	.fo_cmp = linux_file_kcmp,
1752	.fo_flags = DFLAG_PASSABLE,
1753};
1754
1755/*
1756 * Hash of vmmap addresses.  This is infrequently accessed and does not
1757 * need to be particularly large.  This is done because we must store the
1758 * caller's idea of the map size to properly unmap.
1759 */
1760struct vmmap {
1761	LIST_ENTRY(vmmap)	vm_next;
1762	void 			*vm_addr;
1763	unsigned long		vm_size;
1764};
1765
1766struct vmmaphd {
1767	struct vmmap *lh_first;
1768};
1769#define	VMMAP_HASH_SIZE	64
1770#define	VMMAP_HASH_MASK	(VMMAP_HASH_SIZE - 1)
1771#define	VM_HASH(addr)	((uintptr_t)(addr) >> PAGE_SHIFT) & VMMAP_HASH_MASK
1772static struct vmmaphd vmmaphead[VMMAP_HASH_SIZE];
1773static struct mtx vmmaplock;
1774
1775static void
1776vmmap_add(void *addr, unsigned long size)
1777{
1778	struct vmmap *vmmap;
1779
1780	vmmap = kmalloc(sizeof(*vmmap), GFP_KERNEL);
1781	mtx_lock(&vmmaplock);
1782	vmmap->vm_size = size;
1783	vmmap->vm_addr = addr;
1784	LIST_INSERT_HEAD(&vmmaphead[VM_HASH(addr)], vmmap, vm_next);
1785	mtx_unlock(&vmmaplock);
1786}
1787
1788static struct vmmap *
1789vmmap_remove(void *addr)
1790{
1791	struct vmmap *vmmap;
1792
1793	mtx_lock(&vmmaplock);
1794	LIST_FOREACH(vmmap, &vmmaphead[VM_HASH(addr)], vm_next)
1795		if (vmmap->vm_addr == addr)
1796			break;
1797	if (vmmap)
1798		LIST_REMOVE(vmmap, vm_next);
1799	mtx_unlock(&vmmaplock);
1800
1801	return (vmmap);
1802}
1803
1804#if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__) || defined(__riscv)
1805void *
1806_ioremap_attr(vm_paddr_t phys_addr, unsigned long size, int attr)
1807{
1808	void *addr;
1809
1810	addr = pmap_mapdev_attr(phys_addr, size, attr);
1811	if (addr == NULL)
1812		return (NULL);
1813	vmmap_add(addr, size);
1814
1815	return (addr);
1816}
1817#endif
1818
1819void
1820iounmap(void *addr)
1821{
1822	struct vmmap *vmmap;
1823
1824	vmmap = vmmap_remove(addr);
1825	if (vmmap == NULL)
1826		return;
1827#if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__) || defined(__riscv)
1828	pmap_unmapdev(addr, vmmap->vm_size);
1829#endif
1830	kfree(vmmap);
1831}
1832
1833void *
1834vmap(struct page **pages, unsigned int count, unsigned long flags, int prot)
1835{
1836	vm_offset_t off;
1837	size_t size;
1838
1839	size = count * PAGE_SIZE;
1840	off = kva_alloc(size);
1841	if (off == 0)
1842		return (NULL);
1843	vmmap_add((void *)off, size);
1844	pmap_qenter(off, pages, count);
1845
1846	return ((void *)off);
1847}
1848
1849void
1850vunmap(void *addr)
1851{
1852	struct vmmap *vmmap;
1853
1854	vmmap = vmmap_remove(addr);
1855	if (vmmap == NULL)
1856		return;
1857	pmap_qremove((vm_offset_t)addr, vmmap->vm_size / PAGE_SIZE);
1858	kva_free((vm_offset_t)addr, vmmap->vm_size);
1859	kfree(vmmap);
1860}
1861
1862static char *
1863devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt, va_list ap)
1864{
1865	unsigned int len;
1866	char *p;
1867	va_list aq;
1868
1869	va_copy(aq, ap);
1870	len = vsnprintf(NULL, 0, fmt, aq);
1871	va_end(aq);
1872
1873	if (dev != NULL)
1874		p = devm_kmalloc(dev, len + 1, gfp);
1875	else
1876		p = kmalloc(len + 1, gfp);
1877	if (p != NULL)
1878		vsnprintf(p, len + 1, fmt, ap);
1879
1880	return (p);
1881}
1882
1883char *
1884kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
1885{
1886
1887	return (devm_kvasprintf(NULL, gfp, fmt, ap));
1888}
1889
1890char *
1891lkpi_devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...)
1892{
1893	va_list ap;
1894	char *p;
1895
1896	va_start(ap, fmt);
1897	p = devm_kvasprintf(dev, gfp, fmt, ap);
1898	va_end(ap);
1899
1900	return (p);
1901}
1902
1903char *
1904kasprintf(gfp_t gfp, const char *fmt, ...)
1905{
1906	va_list ap;
1907	char *p;
1908
1909	va_start(ap, fmt);
1910	p = kvasprintf(gfp, fmt, ap);
1911	va_end(ap);
1912
1913	return (p);
1914}
1915
1916static void
1917linux_timer_callback_wrapper(void *context)
1918{
1919	struct timer_list *timer;
1920
1921	timer = context;
1922
1923	/* the timer is about to be shutdown permanently */
1924	if (timer->function == NULL)
1925		return;
1926
1927	if (linux_set_current_flags(curthread, M_NOWAIT)) {
1928		/* try again later */
1929		callout_reset(&timer->callout, 1,
1930		    &linux_timer_callback_wrapper, timer);
1931		return;
1932	}
1933
1934	timer->function(timer->data);
1935}
1936
1937int
1938mod_timer(struct timer_list *timer, int expires)
1939{
1940	int ret;
1941
1942	timer->expires = expires;
1943	ret = callout_reset(&timer->callout,
1944	    linux_timer_jiffies_until(expires),
1945	    &linux_timer_callback_wrapper, timer);
1946
1947	MPASS(ret == 0 || ret == 1);
1948
1949	return (ret == 1);
1950}
1951
1952void
1953add_timer(struct timer_list *timer)
1954{
1955
1956	callout_reset(&timer->callout,
1957	    linux_timer_jiffies_until(timer->expires),
1958	    &linux_timer_callback_wrapper, timer);
1959}
1960
1961void
1962add_timer_on(struct timer_list *timer, int cpu)
1963{
1964
1965	callout_reset_on(&timer->callout,
1966	    linux_timer_jiffies_until(timer->expires),
1967	    &linux_timer_callback_wrapper, timer, cpu);
1968}
1969
1970int
1971del_timer(struct timer_list *timer)
1972{
1973
1974	if (callout_stop(&(timer)->callout) == -1)
1975		return (0);
1976	return (1);
1977}
1978
1979int
1980del_timer_sync(struct timer_list *timer)
1981{
1982
1983	if (callout_drain(&(timer)->callout) == -1)
1984		return (0);
1985	return (1);
1986}
1987
1988int
1989timer_delete_sync(struct timer_list *timer)
1990{
1991
1992	return (del_timer_sync(timer));
1993}
1994
1995int
1996timer_shutdown_sync(struct timer_list *timer)
1997{
1998
1999	timer->function = NULL;
2000	return (del_timer_sync(timer));
2001}
2002
2003/* greatest common divisor, Euclid equation */
2004static uint64_t
2005lkpi_gcd_64(uint64_t a, uint64_t b)
2006{
2007	uint64_t an;
2008	uint64_t bn;
2009
2010	while (b != 0) {
2011		an = b;
2012		bn = a % b;
2013		a = an;
2014		b = bn;
2015	}
2016	return (a);
2017}
2018
2019uint64_t lkpi_nsec2hz_rem;
2020uint64_t lkpi_nsec2hz_div = 1000000000ULL;
2021uint64_t lkpi_nsec2hz_max;
2022
2023uint64_t lkpi_usec2hz_rem;
2024uint64_t lkpi_usec2hz_div = 1000000ULL;
2025uint64_t lkpi_usec2hz_max;
2026
2027uint64_t lkpi_msec2hz_rem;
2028uint64_t lkpi_msec2hz_div = 1000ULL;
2029uint64_t lkpi_msec2hz_max;
2030
2031static void
2032linux_timer_init(void *arg)
2033{
2034	uint64_t gcd;
2035
2036	/*
2037	 * Compute an internal HZ value which can divide 2**32 to
2038	 * avoid timer rounding problems when the tick value wraps
2039	 * around 2**32:
2040	 */
2041	linux_timer_hz_mask = 1;
2042	while (linux_timer_hz_mask < (unsigned long)hz)
2043		linux_timer_hz_mask *= 2;
2044	linux_timer_hz_mask--;
2045
2046	/* compute some internal constants */
2047
2048	lkpi_nsec2hz_rem = hz;
2049	lkpi_usec2hz_rem = hz;
2050	lkpi_msec2hz_rem = hz;
2051
2052	gcd = lkpi_gcd_64(lkpi_nsec2hz_rem, lkpi_nsec2hz_div);
2053	lkpi_nsec2hz_rem /= gcd;
2054	lkpi_nsec2hz_div /= gcd;
2055	lkpi_nsec2hz_max = -1ULL / lkpi_nsec2hz_rem;
2056
2057	gcd = lkpi_gcd_64(lkpi_usec2hz_rem, lkpi_usec2hz_div);
2058	lkpi_usec2hz_rem /= gcd;
2059	lkpi_usec2hz_div /= gcd;
2060	lkpi_usec2hz_max = -1ULL / lkpi_usec2hz_rem;
2061
2062	gcd = lkpi_gcd_64(lkpi_msec2hz_rem, lkpi_msec2hz_div);
2063	lkpi_msec2hz_rem /= gcd;
2064	lkpi_msec2hz_div /= gcd;
2065	lkpi_msec2hz_max = -1ULL / lkpi_msec2hz_rem;
2066}
2067SYSINIT(linux_timer, SI_SUB_DRIVERS, SI_ORDER_FIRST, linux_timer_init, NULL);
2068
2069void
2070linux_complete_common(struct completion *c, int all)
2071{
2072	int wakeup_swapper;
2073
2074	sleepq_lock(c);
2075	if (all) {
2076		c->done = UINT_MAX;
2077		wakeup_swapper = sleepq_broadcast(c, SLEEPQ_SLEEP, 0, 0);
2078	} else {
2079		if (c->done != UINT_MAX)
2080			c->done++;
2081		wakeup_swapper = sleepq_signal(c, SLEEPQ_SLEEP, 0, 0);
2082	}
2083	sleepq_release(c);
2084	if (wakeup_swapper)
2085		kick_proc0();
2086}
2087
2088/*
2089 * Indefinite wait for done != 0 with or without signals.
2090 */
2091int
2092linux_wait_for_common(struct completion *c, int flags)
2093{
2094	struct task_struct *task;
2095	int error;
2096
2097	if (SCHEDULER_STOPPED())
2098		return (0);
2099
2100	task = current;
2101
2102	if (flags != 0)
2103		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
2104	else
2105		flags = SLEEPQ_SLEEP;
2106	error = 0;
2107	for (;;) {
2108		sleepq_lock(c);
2109		if (c->done)
2110			break;
2111		sleepq_add(c, NULL, "completion", flags, 0);
2112		if (flags & SLEEPQ_INTERRUPTIBLE) {
2113			DROP_GIANT();
2114			error = -sleepq_wait_sig(c, 0);
2115			PICKUP_GIANT();
2116			if (error != 0) {
2117				linux_schedule_save_interrupt_value(task, error);
2118				error = -ERESTARTSYS;
2119				goto intr;
2120			}
2121		} else {
2122			DROP_GIANT();
2123			sleepq_wait(c, 0);
2124			PICKUP_GIANT();
2125		}
2126	}
2127	if (c->done != UINT_MAX)
2128		c->done--;
2129	sleepq_release(c);
2130
2131intr:
2132	return (error);
2133}
2134
2135/*
2136 * Time limited wait for done != 0 with or without signals.
2137 */
2138int
2139linux_wait_for_timeout_common(struct completion *c, int timeout, int flags)
2140{
2141	struct task_struct *task;
2142	int end = jiffies + timeout;
2143	int error;
2144
2145	if (SCHEDULER_STOPPED())
2146		return (0);
2147
2148	task = current;
2149
2150	if (flags != 0)
2151		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
2152	else
2153		flags = SLEEPQ_SLEEP;
2154
2155	for (;;) {
2156		sleepq_lock(c);
2157		if (c->done)
2158			break;
2159		sleepq_add(c, NULL, "completion", flags, 0);
2160		sleepq_set_timeout(c, linux_timer_jiffies_until(end));
2161
2162		DROP_GIANT();
2163		if (flags & SLEEPQ_INTERRUPTIBLE)
2164			error = -sleepq_timedwait_sig(c, 0);
2165		else
2166			error = -sleepq_timedwait(c, 0);
2167		PICKUP_GIANT();
2168
2169		if (error != 0) {
2170			/* check for timeout */
2171			if (error == -EWOULDBLOCK) {
2172				error = 0;	/* timeout */
2173			} else {
2174				/* signal happened */
2175				linux_schedule_save_interrupt_value(task, error);
2176				error = -ERESTARTSYS;
2177			}
2178			goto done;
2179		}
2180	}
2181	if (c->done != UINT_MAX)
2182		c->done--;
2183	sleepq_release(c);
2184
2185	/* return how many jiffies are left */
2186	error = linux_timer_jiffies_until(end);
2187done:
2188	return (error);
2189}
2190
2191int
2192linux_try_wait_for_completion(struct completion *c)
2193{
2194	int isdone;
2195
2196	sleepq_lock(c);
2197	isdone = (c->done != 0);
2198	if (c->done != 0 && c->done != UINT_MAX)
2199		c->done--;
2200	sleepq_release(c);
2201	return (isdone);
2202}
2203
2204int
2205linux_completion_done(struct completion *c)
2206{
2207	int isdone;
2208
2209	sleepq_lock(c);
2210	isdone = (c->done != 0);
2211	sleepq_release(c);
2212	return (isdone);
2213}
2214
2215static void
2216linux_cdev_deref(struct linux_cdev *ldev)
2217{
2218	if (refcount_release(&ldev->refs) &&
2219	    ldev->kobj.ktype == &linux_cdev_ktype)
2220		kfree(ldev);
2221}
2222
2223static void
2224linux_cdev_release(struct kobject *kobj)
2225{
2226	struct linux_cdev *cdev;
2227	struct kobject *parent;
2228
2229	cdev = container_of(kobj, struct linux_cdev, kobj);
2230	parent = kobj->parent;
2231	linux_destroy_dev(cdev);
2232	linux_cdev_deref(cdev);
2233	kobject_put(parent);
2234}
2235
2236static void
2237linux_cdev_static_release(struct kobject *kobj)
2238{
2239	struct cdev *cdev;
2240	struct linux_cdev *ldev;
2241
2242	ldev = container_of(kobj, struct linux_cdev, kobj);
2243	cdev = ldev->cdev;
2244	if (cdev != NULL) {
2245		destroy_dev(cdev);
2246		ldev->cdev = NULL;
2247	}
2248	kobject_put(kobj->parent);
2249}
2250
2251int
2252linux_cdev_device_add(struct linux_cdev *ldev, struct device *dev)
2253{
2254	int ret;
2255
2256	if (dev->devt != 0) {
2257		/* Set parent kernel object. */
2258		ldev->kobj.parent = &dev->kobj;
2259
2260		/*
2261		 * Unlike Linux we require the kobject of the
2262		 * character device structure to have a valid name
2263		 * before calling this function:
2264		 */
2265		if (ldev->kobj.name == NULL)
2266			return (-EINVAL);
2267
2268		ret = cdev_add(ldev, dev->devt, 1);
2269		if (ret)
2270			return (ret);
2271	}
2272	ret = device_add(dev);
2273	if (ret != 0 && dev->devt != 0)
2274		cdev_del(ldev);
2275	return (ret);
2276}
2277
2278void
2279linux_cdev_device_del(struct linux_cdev *ldev, struct device *dev)
2280{
2281	device_del(dev);
2282
2283	if (dev->devt != 0)
2284		cdev_del(ldev);
2285}
2286
2287static void
2288linux_destroy_dev(struct linux_cdev *ldev)
2289{
2290
2291	if (ldev->cdev == NULL)
2292		return;
2293
2294	MPASS((ldev->siref & LDEV_SI_DTR) == 0);
2295	MPASS(ldev->kobj.ktype == &linux_cdev_ktype);
2296
2297	atomic_set_int(&ldev->siref, LDEV_SI_DTR);
2298	while ((atomic_load_int(&ldev->siref) & ~LDEV_SI_DTR) != 0)
2299		pause("ldevdtr", hz / 4);
2300
2301	destroy_dev(ldev->cdev);
2302	ldev->cdev = NULL;
2303}
2304
2305const struct kobj_type linux_cdev_ktype = {
2306	.release = linux_cdev_release,
2307};
2308
2309const struct kobj_type linux_cdev_static_ktype = {
2310	.release = linux_cdev_static_release,
2311};
2312
2313static void
2314linux_handle_ifnet_link_event(void *arg, struct ifnet *ifp, int linkstate)
2315{
2316	struct notifier_block *nb;
2317	struct netdev_notifier_info ni;
2318
2319	nb = arg;
2320	ni.ifp = ifp;
2321	ni.dev = (struct net_device *)ifp;
2322	if (linkstate == LINK_STATE_UP)
2323		nb->notifier_call(nb, NETDEV_UP, &ni);
2324	else
2325		nb->notifier_call(nb, NETDEV_DOWN, &ni);
2326}
2327
2328static void
2329linux_handle_ifnet_arrival_event(void *arg, struct ifnet *ifp)
2330{
2331	struct notifier_block *nb;
2332	struct netdev_notifier_info ni;
2333
2334	nb = arg;
2335	ni.ifp = ifp;
2336	ni.dev = (struct net_device *)ifp;
2337	nb->notifier_call(nb, NETDEV_REGISTER, &ni);
2338}
2339
2340static void
2341linux_handle_ifnet_departure_event(void *arg, struct ifnet *ifp)
2342{
2343	struct notifier_block *nb;
2344	struct netdev_notifier_info ni;
2345
2346	nb = arg;
2347	ni.ifp = ifp;
2348	ni.dev = (struct net_device *)ifp;
2349	nb->notifier_call(nb, NETDEV_UNREGISTER, &ni);
2350}
2351
2352static void
2353linux_handle_iflladdr_event(void *arg, struct ifnet *ifp)
2354{
2355	struct notifier_block *nb;
2356	struct netdev_notifier_info ni;
2357
2358	nb = arg;
2359	ni.ifp = ifp;
2360	ni.dev = (struct net_device *)ifp;
2361	nb->notifier_call(nb, NETDEV_CHANGEADDR, &ni);
2362}
2363
2364static void
2365linux_handle_ifaddr_event(void *arg, struct ifnet *ifp)
2366{
2367	struct notifier_block *nb;
2368	struct netdev_notifier_info ni;
2369
2370	nb = arg;
2371	ni.ifp = ifp;
2372	ni.dev = (struct net_device *)ifp;
2373	nb->notifier_call(nb, NETDEV_CHANGEIFADDR, &ni);
2374}
2375
2376int
2377register_netdevice_notifier(struct notifier_block *nb)
2378{
2379
2380	nb->tags[NETDEV_UP] = EVENTHANDLER_REGISTER(
2381	    ifnet_link_event, linux_handle_ifnet_link_event, nb, 0);
2382	nb->tags[NETDEV_REGISTER] = EVENTHANDLER_REGISTER(
2383	    ifnet_arrival_event, linux_handle_ifnet_arrival_event, nb, 0);
2384	nb->tags[NETDEV_UNREGISTER] = EVENTHANDLER_REGISTER(
2385	    ifnet_departure_event, linux_handle_ifnet_departure_event, nb, 0);
2386	nb->tags[NETDEV_CHANGEADDR] = EVENTHANDLER_REGISTER(
2387	    iflladdr_event, linux_handle_iflladdr_event, nb, 0);
2388
2389	return (0);
2390}
2391
2392int
2393register_inetaddr_notifier(struct notifier_block *nb)
2394{
2395
2396	nb->tags[NETDEV_CHANGEIFADDR] = EVENTHANDLER_REGISTER(
2397	    ifaddr_event, linux_handle_ifaddr_event, nb, 0);
2398	return (0);
2399}
2400
2401int
2402unregister_netdevice_notifier(struct notifier_block *nb)
2403{
2404
2405	EVENTHANDLER_DEREGISTER(ifnet_link_event,
2406	    nb->tags[NETDEV_UP]);
2407	EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
2408	    nb->tags[NETDEV_REGISTER]);
2409	EVENTHANDLER_DEREGISTER(ifnet_departure_event,
2410	    nb->tags[NETDEV_UNREGISTER]);
2411	EVENTHANDLER_DEREGISTER(iflladdr_event,
2412	    nb->tags[NETDEV_CHANGEADDR]);
2413
2414	return (0);
2415}
2416
2417int
2418unregister_inetaddr_notifier(struct notifier_block *nb)
2419{
2420
2421	EVENTHANDLER_DEREGISTER(ifaddr_event,
2422	    nb->tags[NETDEV_CHANGEIFADDR]);
2423
2424	return (0);
2425}
2426
2427struct list_sort_thunk {
2428	int (*cmp)(void *, struct list_head *, struct list_head *);
2429	void *priv;
2430};
2431
2432static inline int
2433linux_le_cmp(const void *d1, const void *d2, void *priv)
2434{
2435	struct list_head *le1, *le2;
2436	struct list_sort_thunk *thunk;
2437
2438	thunk = priv;
2439	le1 = *(__DECONST(struct list_head **, d1));
2440	le2 = *(__DECONST(struct list_head **, d2));
2441	return ((thunk->cmp)(thunk->priv, le1, le2));
2442}
2443
2444void
2445list_sort(void *priv, struct list_head *head, int (*cmp)(void *priv,
2446    struct list_head *a, struct list_head *b))
2447{
2448	struct list_sort_thunk thunk;
2449	struct list_head **ar, *le;
2450	size_t count, i;
2451
2452	count = 0;
2453	list_for_each(le, head)
2454		count++;
2455	ar = malloc(sizeof(struct list_head *) * count, M_KMALLOC, M_WAITOK);
2456	i = 0;
2457	list_for_each(le, head)
2458		ar[i++] = le;
2459	thunk.cmp = cmp;
2460	thunk.priv = priv;
2461	qsort_r(ar, count, sizeof(struct list_head *), linux_le_cmp, &thunk);
2462	INIT_LIST_HEAD(head);
2463	for (i = 0; i < count; i++)
2464		list_add_tail(ar[i], head);
2465	free(ar, M_KMALLOC);
2466}
2467
2468#if defined(__i386__) || defined(__amd64__)
2469int
2470linux_wbinvd_on_all_cpus(void)
2471{
2472
2473	pmap_invalidate_cache();
2474	return (0);
2475}
2476#endif
2477
2478int
2479linux_on_each_cpu(void callback(void *), void *data)
2480{
2481
2482	smp_rendezvous(smp_no_rendezvous_barrier, callback,
2483	    smp_no_rendezvous_barrier, data);
2484	return (0);
2485}
2486
2487int
2488linux_in_atomic(void)
2489{
2490
2491	return ((curthread->td_pflags & TDP_NOFAULTING) != 0);
2492}
2493
2494struct linux_cdev *
2495linux_find_cdev(const char *name, unsigned major, unsigned minor)
2496{
2497	dev_t dev = MKDEV(major, minor);
2498	struct cdev *cdev;
2499
2500	dev_lock();
2501	LIST_FOREACH(cdev, &linuxcdevsw.d_devs, si_list) {
2502		struct linux_cdev *ldev = cdev->si_drv1;
2503		if (ldev->dev == dev &&
2504		    strcmp(kobject_name(&ldev->kobj), name) == 0) {
2505			break;
2506		}
2507	}
2508	dev_unlock();
2509
2510	return (cdev != NULL ? cdev->si_drv1 : NULL);
2511}
2512
2513int
2514__register_chrdev(unsigned int major, unsigned int baseminor,
2515    unsigned int count, const char *name,
2516    const struct file_operations *fops)
2517{
2518	struct linux_cdev *cdev;
2519	int ret = 0;
2520	int i;
2521
2522	for (i = baseminor; i < baseminor + count; i++) {
2523		cdev = cdev_alloc();
2524		cdev->ops = fops;
2525		kobject_set_name(&cdev->kobj, name);
2526
2527		ret = cdev_add(cdev, makedev(major, i), 1);
2528		if (ret != 0)
2529			break;
2530	}
2531	return (ret);
2532}
2533
2534int
2535__register_chrdev_p(unsigned int major, unsigned int baseminor,
2536    unsigned int count, const char *name,
2537    const struct file_operations *fops, uid_t uid,
2538    gid_t gid, int mode)
2539{
2540	struct linux_cdev *cdev;
2541	int ret = 0;
2542	int i;
2543
2544	for (i = baseminor; i < baseminor + count; i++) {
2545		cdev = cdev_alloc();
2546		cdev->ops = fops;
2547		kobject_set_name(&cdev->kobj, name);
2548
2549		ret = cdev_add_ext(cdev, makedev(major, i), uid, gid, mode);
2550		if (ret != 0)
2551			break;
2552	}
2553	return (ret);
2554}
2555
2556void
2557__unregister_chrdev(unsigned int major, unsigned int baseminor,
2558    unsigned int count, const char *name)
2559{
2560	struct linux_cdev *cdevp;
2561	int i;
2562
2563	for (i = baseminor; i < baseminor + count; i++) {
2564		cdevp = linux_find_cdev(name, major, i);
2565		if (cdevp != NULL)
2566			cdev_del(cdevp);
2567	}
2568}
2569
2570void
2571linux_dump_stack(void)
2572{
2573#ifdef STACK
2574	struct stack st;
2575
2576	stack_save(&st);
2577	stack_print(&st);
2578#endif
2579}
2580
2581int
2582linuxkpi_net_ratelimit(void)
2583{
2584
2585	return (ppsratecheck(&lkpi_net_lastlog, &lkpi_net_curpps,
2586	   lkpi_net_maxpps));
2587}
2588
2589struct io_mapping *
2590io_mapping_create_wc(resource_size_t base, unsigned long size)
2591{
2592	struct io_mapping *mapping;
2593
2594	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2595	if (mapping == NULL)
2596		return (NULL);
2597	return (io_mapping_init_wc(mapping, base, size));
2598}
2599
2600#if defined(__i386__) || defined(__amd64__)
2601bool linux_cpu_has_clflush;
2602struct cpuinfo_x86 boot_cpu_data;
2603struct cpuinfo_x86 *__cpu_data;
2604#endif
2605
2606cpumask_t *
2607lkpi_get_static_single_cpu_mask(int cpuid)
2608{
2609
2610	KASSERT((cpuid >= 0 && cpuid <= mp_maxid), ("%s: invalid cpuid %d\n",
2611	    __func__, cpuid));
2612	KASSERT(!CPU_ABSENT(cpuid), ("%s: cpu with cpuid %d is absent\n",
2613	    __func__, cpuid));
2614
2615	return (static_single_cpu_mask[cpuid]);
2616}
2617
2618bool
2619lkpi_xen_initial_domain(void)
2620{
2621#ifdef XENHVM
2622	return (xen_initial_domain());
2623#else
2624	return (false);
2625#endif
2626}
2627
2628bool
2629lkpi_xen_pv_domain(void)
2630{
2631#ifdef XENHVM
2632	return (xen_pv_domain());
2633#else
2634	return (false);
2635#endif
2636}
2637
2638static void
2639linux_compat_init(void *arg)
2640{
2641	struct sysctl_oid *rootoid;
2642	int i;
2643
2644#if defined(__i386__) || defined(__amd64__)
2645	static const uint32_t x86_vendors[X86_VENDOR_NUM] = {
2646		[X86_VENDOR_INTEL] = CPU_VENDOR_INTEL,
2647		[X86_VENDOR_CYRIX] = CPU_VENDOR_CYRIX,
2648		[X86_VENDOR_AMD] = CPU_VENDOR_AMD,
2649		[X86_VENDOR_UMC] = CPU_VENDOR_UMC,
2650		[X86_VENDOR_CENTAUR] = CPU_VENDOR_CENTAUR,
2651		[X86_VENDOR_TRANSMETA] = CPU_VENDOR_TRANSMETA,
2652		[X86_VENDOR_NSC] = CPU_VENDOR_NSC,
2653		[X86_VENDOR_HYGON] = CPU_VENDOR_HYGON,
2654	};
2655	uint8_t x86_vendor = X86_VENDOR_UNKNOWN;
2656
2657	for (i = 0; i < X86_VENDOR_NUM; i++) {
2658		if (cpu_vendor_id != 0 && cpu_vendor_id == x86_vendors[i]) {
2659			x86_vendor = i;
2660			break;
2661		}
2662	}
2663	linux_cpu_has_clflush = (cpu_feature & CPUID_CLFSH);
2664	boot_cpu_data.x86_clflush_size = cpu_clflush_line_size;
2665	boot_cpu_data.x86_max_cores = mp_ncpus;
2666	boot_cpu_data.x86 = CPUID_TO_FAMILY(cpu_id);
2667	boot_cpu_data.x86_model = CPUID_TO_MODEL(cpu_id);
2668	boot_cpu_data.x86_vendor = x86_vendor;
2669
2670	__cpu_data = mallocarray(mp_maxid + 1,
2671	    sizeof(*__cpu_data), M_KMALLOC, M_WAITOK | M_ZERO);
2672	CPU_FOREACH(i) {
2673		__cpu_data[i].x86_clflush_size = cpu_clflush_line_size;
2674		__cpu_data[i].x86_max_cores = mp_ncpus;
2675		__cpu_data[i].x86 = CPUID_TO_FAMILY(cpu_id);
2676		__cpu_data[i].x86_model = CPUID_TO_MODEL(cpu_id);
2677		__cpu_data[i].x86_vendor = x86_vendor;
2678	}
2679#endif
2680	rw_init(&linux_vma_lock, "lkpi-vma-lock");
2681
2682	rootoid = SYSCTL_ADD_ROOT_NODE(NULL,
2683	    OID_AUTO, "sys", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "sys");
2684	kobject_init(&linux_class_root, &linux_class_ktype);
2685	kobject_set_name(&linux_class_root, "class");
2686	linux_class_root.oidp = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(rootoid),
2687	    OID_AUTO, "class", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "class");
2688	kobject_init(&linux_root_device.kobj, &linux_dev_ktype);
2689	kobject_set_name(&linux_root_device.kobj, "device");
2690	linux_root_device.kobj.oidp = SYSCTL_ADD_NODE(NULL,
2691	    SYSCTL_CHILDREN(rootoid), OID_AUTO, "device",
2692	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "device");
2693	linux_root_device.bsddev = root_bus;
2694	linux_class_misc.name = "misc";
2695	class_register(&linux_class_misc);
2696	INIT_LIST_HEAD(&pci_drivers);
2697	INIT_LIST_HEAD(&pci_devices);
2698	spin_lock_init(&pci_lock);
2699	mtx_init(&vmmaplock, "IO Map lock", NULL, MTX_DEF);
2700	for (i = 0; i < VMMAP_HASH_SIZE; i++)
2701		LIST_INIT(&vmmaphead[i]);
2702	init_waitqueue_head(&linux_bit_waitq);
2703	init_waitqueue_head(&linux_var_waitq);
2704
2705	CPU_COPY(&all_cpus, &cpu_online_mask);
2706	/*
2707	 * Generate a single-CPU cpumask_t for each CPU (possibly) in the system.
2708	 * CPUs are indexed from 0..(mp_maxid).  The entry for cpuid 0 will only
2709	 * have itself in the cpumask, cupid 1 only itself on entry 1, and so on.
2710	 * This is used by cpumask_of() (and possibly others in the future) for,
2711	 * e.g., drivers to pass hints to irq_set_affinity_hint().
2712	 */
2713	static_single_cpu_mask = mallocarray(mp_maxid + 1,
2714	    sizeof(static_single_cpu_mask), M_KMALLOC, M_WAITOK | M_ZERO);
2715
2716	/*
2717	 * When the number of CPUs reach a threshold, we start to save memory
2718	 * given the sets are static by overlapping those having their single
2719	 * bit set at same position in a bitset word.  Asymptotically, this
2720	 * regular scheme is in O(n��) whereas the overlapping one is in O(n)
2721	 * only with n being the maximum number of CPUs, so the gain will become
2722	 * huge quite quickly.  The threshold for 64-bit architectures is 128
2723	 * CPUs.
2724	 */
2725	if (mp_ncpus < (2 * _BITSET_BITS)) {
2726		cpumask_t *sscm_ptr;
2727
2728		/*
2729		 * This represents 'mp_ncpus * __bitset_words(CPU_SETSIZE) *
2730		 * (_BITSET_BITS / 8)' bytes (for comparison with the
2731		 * overlapping scheme).
2732		 */
2733		static_single_cpu_mask_lcs = mallocarray(mp_ncpus,
2734		    sizeof(*static_single_cpu_mask_lcs),
2735		    M_KMALLOC, M_WAITOK | M_ZERO);
2736
2737		sscm_ptr = static_single_cpu_mask_lcs;
2738		CPU_FOREACH(i) {
2739			static_single_cpu_mask[i] = sscm_ptr++;
2740			CPU_SET(i, static_single_cpu_mask[i]);
2741		}
2742	} else {
2743		/* Pointer to a bitset word. */
2744		__typeof(((cpuset_t *)NULL)->__bits[0]) *bwp;
2745
2746		/*
2747		 * Allocate memory for (static) spans of 'cpumask_t' ('cpuset_t'
2748		 * really) with a single bit set that can be reused for all
2749		 * single CPU masks by making them start at different offsets.
2750		 * We need '__bitset_words(CPU_SETSIZE) - 1' bitset words before
2751		 * the word having its single bit set, and the same amount
2752		 * after.
2753		 */
2754		static_single_cpu_mask_lcs = mallocarray(_BITSET_BITS,
2755		    (2 * __bitset_words(CPU_SETSIZE) - 1) * (_BITSET_BITS / 8),
2756		    M_KMALLOC, M_WAITOK | M_ZERO);
2757
2758		/*
2759		 * We rely below on cpuset_t and the bitset generic
2760		 * implementation assigning words in the '__bits' array in the
2761		 * same order of bits (i.e., little-endian ordering, not to be
2762		 * confused with machine endianness, which concerns bits in
2763		 * words and other integers).  This is an imperfect test, but it
2764		 * will detect a change to big-endian ordering.
2765		 */
2766		_Static_assert(
2767		    __bitset_word(_BITSET_BITS + 1, _BITSET_BITS) == 1,
2768		    "Assumes a bitset implementation that is little-endian "
2769		    "on its words");
2770
2771		/* Initialize the single bit of each static span. */
2772		bwp = (__typeof(bwp))static_single_cpu_mask_lcs +
2773		    (__bitset_words(CPU_SETSIZE) - 1);
2774		for (i = 0; i < _BITSET_BITS; i++) {
2775			CPU_SET(i, (cpuset_t *)bwp);
2776			bwp += (2 * __bitset_words(CPU_SETSIZE) - 1);
2777		}
2778
2779		/*
2780		 * Finally set all CPU masks to the proper word in their
2781		 * relevant span.
2782		 */
2783		CPU_FOREACH(i) {
2784			bwp = (__typeof(bwp))static_single_cpu_mask_lcs;
2785			/* Find the non-zero word of the relevant span. */
2786			bwp += (2 * __bitset_words(CPU_SETSIZE) - 1) *
2787			    (i % _BITSET_BITS) +
2788			    __bitset_words(CPU_SETSIZE) - 1;
2789			/* Shift to find the CPU mask start. */
2790			bwp -= (i / _BITSET_BITS);
2791			static_single_cpu_mask[i] = (cpuset_t *)bwp;
2792		}
2793	}
2794
2795	strlcpy(init_uts_ns.name.release, osrelease, sizeof(init_uts_ns.name.release));
2796}
2797SYSINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_init, NULL);
2798
2799static void
2800linux_compat_uninit(void *arg)
2801{
2802	linux_kobject_kfree_name(&linux_class_root);
2803	linux_kobject_kfree_name(&linux_root_device.kobj);
2804	linux_kobject_kfree_name(&linux_class_misc.kobj);
2805
2806	free(static_single_cpu_mask_lcs, M_KMALLOC);
2807	free(static_single_cpu_mask, M_KMALLOC);
2808#if defined(__i386__) || defined(__amd64__)
2809	free(__cpu_data, M_KMALLOC);
2810#endif
2811
2812	mtx_destroy(&vmmaplock);
2813	spin_lock_destroy(&pci_lock);
2814	rw_destroy(&linux_vma_lock);
2815}
2816SYSUNINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_uninit, NULL);
2817
2818/*
2819 * NOTE: Linux frequently uses "unsigned long" for pointer to integer
2820 * conversion and vice versa, where in FreeBSD "uintptr_t" would be
2821 * used. Assert these types have the same size, else some parts of the
2822 * LinuxKPI may not work like expected:
2823 */
2824CTASSERT(sizeof(unsigned long) == sizeof(uintptr_t));
2825