1/*-
2 * Copyright (c) 2002 McAfee, Inc.
3 * All rights reserved.
4 *
5 * This software was developed for the FreeBSD Project by Marshall
6 * Kirk McKusick and McAfee Research,, the Security Research Division of
7 * McAfee, Inc. under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as
8 * part of the DARPA CHATS research program
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31/*
32 * CDDL HEADER START
33 *
34 * The contents of this file are subject to the terms of the
35 * Common Development and Distribution License (the "License").
36 * You may not use this file except in compliance with the License.
37 *
38 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
39 * or http://www.opensolaris.org/os/licensing.
40 * See the License for the specific language governing permissions
41 * and limitations under the License.
42 *
43 * When distributing Covered Code, include this CDDL HEADER in each
44 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
45 * If applicable, add the following below this CDDL HEADER, with the
46 * fields enclosed by brackets "[]" replaced with your own identifying
47 * information: Portions Copyright [yyyy] [name of copyright owner]
48 *
49 * CDDL HEADER END
50 */
51/*
52 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
53 * Use is subject to license terms.
54 */
55/*
56 * Copyright 2013 by Saso Kiselkov. All rights reserved.
57 */
58/*
59 * Copyright (c) 2020 by Delphix. All rights reserved.
60 */
61
62#include <sys/queue.h>
63
64#ifndef _ZFSIMPL_H_
65#define	_ZFSIMPL_H_
66
67#define	MAXNAMELEN	256
68
69#define _NOTE(s)
70
71/*
72 * AVL comparator helpers
73 */
74#define	AVL_ISIGN(a)	(((a) > 0) - ((a) < 0))
75#define	AVL_CMP(a, b)	(((a) > (b)) - ((a) < (b)))
76#define	AVL_PCMP(a, b)	\
77	(((uintptr_t)(a) > (uintptr_t)(b)) - ((uintptr_t)(a) < (uintptr_t)(b)))
78
79#if !defined(NEED_SOLARIS_BOOLEAN)	/* Only defined when we'll define this elsewhere */
80typedef enum { B_FALSE, B_TRUE } boolean_t;
81#endif
82
83/* CRC64 table */
84#define	ZFS_CRC64_POLY	0xC96C5795D7870F42ULL	/* ECMA-182, reflected form */
85
86/*
87 * Macros for various sorts of alignment and rounding when the alignment
88 * is known to be a power of 2.
89 */
90#define	P2ALIGN(x, align)		((x) & -(align))
91#define	P2PHASE(x, align)		((x) & ((align) - 1))
92#define	P2NPHASE(x, align)		(-(x) & ((align) - 1))
93#define	P2ROUNDUP(x, align)		(-(-(x) & -(align)))
94#define	P2END(x, align)			(-(~(x) & -(align)))
95#define	P2PHASEUP(x, align, phase)	((phase) - (((phase) - (x)) & -(align)))
96#define	P2BOUNDARY(off, len, align)	(((off) ^ ((off) + (len) - 1)) > (align) - 1)
97
98/*
99 * General-purpose 32-bit and 64-bit bitfield encodings.
100 */
101#define	BF32_DECODE(x, low, len)	P2PHASE((x) >> (low), 1U << (len))
102#define	BF64_DECODE(x, low, len)	P2PHASE((x) >> (low), 1ULL << (len))
103#define	BF32_ENCODE(x, low, len)	(P2PHASE((x), 1U << (len)) << (low))
104#define	BF64_ENCODE(x, low, len)	(P2PHASE((x), 1ULL << (len)) << (low))
105
106#define	BF32_GET(x, low, len)		BF32_DECODE(x, low, len)
107#define	BF64_GET(x, low, len)		BF64_DECODE(x, low, len)
108
109#define	BF32_SET(x, low, len, val)	\
110	((x) ^= BF32_ENCODE((x >> low) ^ (val), low, len))
111#define	BF64_SET(x, low, len, val)	\
112	((x) ^= BF64_ENCODE((x >> low) ^ (val), low, len))
113
114#define	BF32_GET_SB(x, low, len, shift, bias)	\
115	((BF32_GET(x, low, len) + (bias)) << (shift))
116#define	BF64_GET_SB(x, low, len, shift, bias)	\
117	((BF64_GET(x, low, len) + (bias)) << (shift))
118
119#define	BF32_SET_SB(x, low, len, shift, bias, val)	\
120	BF32_SET(x, low, len, ((val) >> (shift)) - (bias))
121#define	BF64_SET_SB(x, low, len, shift, bias, val)	\
122	BF64_SET(x, low, len, ((val) >> (shift)) - (bias))
123
124/*
125 * Macros to reverse byte order
126 */
127#define	BSWAP_8(x)	((x) & 0xff)
128#define	BSWAP_16(x)	((BSWAP_8(x) << 8) | BSWAP_8((x) >> 8))
129#define	BSWAP_32(x)	((BSWAP_16(x) << 16) | BSWAP_16((x) >> 16))
130#define	BSWAP_64(x)	((BSWAP_32(x) << 32) | BSWAP_32((x) >> 32))
131
132#define	SPA_MINBLOCKSHIFT	9
133#define	SPA_OLDMAXBLOCKSHIFT	17
134#define	SPA_MAXBLOCKSHIFT	24
135#define	SPA_MINBLOCKSIZE	(1ULL << SPA_MINBLOCKSHIFT)
136#define	SPA_OLDMAXBLOCKSIZE	(1ULL << SPA_OLDMAXBLOCKSHIFT)
137#define	SPA_MAXBLOCKSIZE	(1ULL << SPA_MAXBLOCKSHIFT)
138
139/*
140 * The DVA size encodings for LSIZE and PSIZE support blocks up to 32MB.
141 * The ASIZE encoding should be at least 64 times larger (6 more bits)
142 * to support up to 4-way RAID-Z mirror mode with worst-case gang block
143 * overhead, three DVAs per bp, plus one more bit in case we do anything
144 * else that expands the ASIZE.
145 */
146#define	SPA_LSIZEBITS		16	/* LSIZE up to 32M (2^16 * 512)	*/
147#define	SPA_PSIZEBITS		16	/* PSIZE up to 32M (2^16 * 512)	*/
148#define	SPA_ASIZEBITS		24	/* ASIZE up to 64 times larger	*/
149
150/*
151 * All SPA data is represented by 128-bit data virtual addresses (DVAs).
152 * The members of the dva_t should be considered opaque outside the SPA.
153 */
154typedef struct dva {
155	uint64_t	dva_word[2];
156} dva_t;
157
158/*
159 * Each block has a 256-bit checksum -- strong enough for cryptographic hashes.
160 */
161typedef struct zio_cksum {
162	uint64_t	zc_word[4];
163} zio_cksum_t;
164
165/*
166 * Some checksums/hashes need a 256-bit initialization salt. This salt is kept
167 * secret and is suitable for use in MAC algorithms as the key.
168 */
169typedef struct zio_cksum_salt {
170	uint8_t		zcs_bytes[32];
171} zio_cksum_salt_t;
172
173/*
174 * Each block is described by its DVAs, time of birth, checksum, etc.
175 * The word-by-word, bit-by-bit layout of the blkptr is as follows:
176 *
177 *	64	56	48	40	32	24	16	8	0
178 *	+-------+-------+-------+-------+-------+-------+-------+-------+
179 * 0	|		vdev1		| GRID  |	  ASIZE		|
180 *	+-------+-------+-------+-------+-------+-------+-------+-------+
181 * 1	|G|			 offset1				|
182 *	+-------+-------+-------+-------+-------+-------+-------+-------+
183 * 2	|		vdev2		| GRID  |	  ASIZE		|
184 *	+-------+-------+-------+-------+-------+-------+-------+-------+
185 * 3	|G|			 offset2				|
186 *	+-------+-------+-------+-------+-------+-------+-------+-------+
187 * 4	|		vdev3		| GRID  |	  ASIZE		|
188 *	+-------+-------+-------+-------+-------+-------+-------+-------+
189 * 5	|G|			 offset3				|
190 *	+-------+-------+-------+-------+-------+-------+-------+-------+
191 * 6	|BDX|lvl| type	| cksum |E| comp|    PSIZE	|     LSIZE	|
192 *	+-------+-------+-------+-------+-------+-------+-------+-------+
193 * 7	|			padding					|
194 *	+-------+-------+-------+-------+-------+-------+-------+-------+
195 * 8	|			padding					|
196 *	+-------+-------+-------+-------+-------+-------+-------+-------+
197 * 9	|			physical birth txg			|
198 *	+-------+-------+-------+-------+-------+-------+-------+-------+
199 * a	|			logical birth txg			|
200 *	+-------+-------+-------+-------+-------+-------+-------+-------+
201 * b	|			fill count				|
202 *	+-------+-------+-------+-------+-------+-------+-------+-------+
203 * c	|			checksum[0]				|
204 *	+-------+-------+-------+-------+-------+-------+-------+-------+
205 * d	|			checksum[1]				|
206 *	+-------+-------+-------+-------+-------+-------+-------+-------+
207 * e	|			checksum[2]				|
208 *	+-------+-------+-------+-------+-------+-------+-------+-------+
209 * f	|			checksum[3]				|
210 *	+-------+-------+-------+-------+-------+-------+-------+-------+
211 *
212 * Legend:
213 *
214 * vdev		virtual device ID
215 * offset	offset into virtual device
216 * LSIZE	logical size
217 * PSIZE	physical size (after compression)
218 * ASIZE	allocated size (including RAID-Z parity and gang block headers)
219 * GRID		RAID-Z layout information (reserved for future use)
220 * cksum	checksum function
221 * comp		compression function
222 * G		gang block indicator
223 * B		byteorder (endianness)
224 * D		dedup
225 * X		encryption (on version 30, which is not supported)
226 * E		blkptr_t contains embedded data (see below)
227 * lvl		level of indirection
228 * type		DMU object type
229 * phys birth	txg of block allocation; zero if same as logical birth txg
230 * log. birth	transaction group in which the block was logically born
231 * fill count	number of non-zero blocks under this bp
232 * checksum[4]	256-bit checksum of the data this bp describes
233 */
234
235/*
236 * "Embedded" blkptr_t's don't actually point to a block, instead they
237 * have a data payload embedded in the blkptr_t itself.  See the comment
238 * in blkptr.c for more details.
239 *
240 * The blkptr_t is laid out as follows:
241 *
242 *	64	56	48	40	32	24	16	8	0
243 *	+-------+-------+-------+-------+-------+-------+-------+-------+
244 * 0	|      payload                                                  |
245 * 1	|      payload                                                  |
246 * 2	|      payload                                                  |
247 * 3	|      payload                                                  |
248 * 4	|      payload                                                  |
249 * 5	|      payload                                                  |
250 *	+-------+-------+-------+-------+-------+-------+-------+-------+
251 * 6	|BDX|lvl| type	| etype |E| comp| PSIZE|              LSIZE	|
252 *	+-------+-------+-------+-------+-------+-------+-------+-------+
253 * 7	|      payload                                                  |
254 * 8	|      payload                                                  |
255 * 9	|      payload                                                  |
256 *	+-------+-------+-------+-------+-------+-------+-------+-------+
257 * a	|			logical birth txg			|
258 *	+-------+-------+-------+-------+-------+-------+-------+-------+
259 * b	|      payload                                                  |
260 * c	|      payload                                                  |
261 * d	|      payload                                                  |
262 * e	|      payload                                                  |
263 * f	|      payload                                                  |
264 *	+-------+-------+-------+-------+-------+-------+-------+-------+
265 *
266 * Legend:
267 *
268 * payload		contains the embedded data
269 * B (byteorder)	byteorder (endianness)
270 * D (dedup)		padding (set to zero)
271 * X			encryption (set to zero; see above)
272 * E (embedded)		set to one
273 * lvl			indirection level
274 * type			DMU object type
275 * etype		how to interpret embedded data (BP_EMBEDDED_TYPE_*)
276 * comp			compression function of payload
277 * PSIZE		size of payload after compression, in bytes
278 * LSIZE		logical size of payload, in bytes
279 *			note that 25 bits is enough to store the largest
280 *			"normal" BP's LSIZE (2^16 * 2^9) in bytes
281 * log. birth		transaction group in which the block was logically born
282 *
283 * Note that LSIZE and PSIZE are stored in bytes, whereas for non-embedded
284 * bp's they are stored in units of SPA_MINBLOCKSHIFT.
285 * Generally, the generic BP_GET_*() macros can be used on embedded BP's.
286 * The B, D, X, lvl, type, and comp fields are stored the same as with normal
287 * BP's so the BP_SET_* macros can be used with them.  etype, PSIZE, LSIZE must
288 * be set with the BPE_SET_* macros.  BP_SET_EMBEDDED() should be called before
289 * other macros, as they assert that they are only used on BP's of the correct
290 * "embedded-ness".
291 */
292
293#define	BPE_GET_ETYPE(bp)	\
294	(ASSERT(BP_IS_EMBEDDED(bp)), \
295	BF64_GET((bp)->blk_prop, 40, 8))
296#define	BPE_SET_ETYPE(bp, t)	do { \
297	ASSERT(BP_IS_EMBEDDED(bp)); \
298	BF64_SET((bp)->blk_prop, 40, 8, t); \
299_NOTE(CONSTCOND) } while (0)
300
301#define	BPE_GET_LSIZE(bp)	\
302	(ASSERT(BP_IS_EMBEDDED(bp)), \
303	BF64_GET_SB((bp)->blk_prop, 0, 25, 0, 1))
304#define	BPE_SET_LSIZE(bp, x)	do { \
305	ASSERT(BP_IS_EMBEDDED(bp)); \
306	BF64_SET_SB((bp)->blk_prop, 0, 25, 0, 1, x); \
307_NOTE(CONSTCOND) } while (0)
308
309#define	BPE_GET_PSIZE(bp)	\
310	(ASSERT(BP_IS_EMBEDDED(bp)), \
311	BF64_GET_SB((bp)->blk_prop, 25, 7, 0, 1))
312#define	BPE_SET_PSIZE(bp, x)	do { \
313	ASSERT(BP_IS_EMBEDDED(bp)); \
314	BF64_SET_SB((bp)->blk_prop, 25, 7, 0, 1, x); \
315_NOTE(CONSTCOND) } while (0)
316
317typedef enum bp_embedded_type {
318	BP_EMBEDDED_TYPE_DATA,
319	BP_EMBEDDED_TYPE_RESERVED, /* Reserved for an unintegrated feature. */
320	NUM_BP_EMBEDDED_TYPES = BP_EMBEDDED_TYPE_RESERVED
321} bp_embedded_type_t;
322
323#define	BPE_NUM_WORDS 14
324#define	BPE_PAYLOAD_SIZE (BPE_NUM_WORDS * sizeof (uint64_t))
325#define	BPE_IS_PAYLOADWORD(bp, wp) \
326	((wp) != &(bp)->blk_prop && (wp) != &(bp)->blk_birth)
327
328#define	SPA_BLKPTRSHIFT	7		/* blkptr_t is 128 bytes	*/
329#define	SPA_DVAS_PER_BP	3		/* Number of DVAs in a bp	*/
330
331typedef struct blkptr {
332	dva_t		blk_dva[SPA_DVAS_PER_BP]; /* Data Virtual Addresses */
333	uint64_t	blk_prop;	/* size, compression, type, etc	    */
334	uint64_t	blk_pad[2];	/* Extra space for the future	    */
335	uint64_t	blk_phys_birth;	/* txg when block was allocated	    */
336	uint64_t	blk_birth;	/* transaction group at birth	    */
337	uint64_t	blk_fill;	/* fill count			    */
338	zio_cksum_t	blk_cksum;	/* 256-bit checksum		    */
339} blkptr_t;
340
341/*
342 * Macros to get and set fields in a bp or DVA.
343 */
344#define	DVA_GET_ASIZE(dva)	\
345	BF64_GET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, SPA_MINBLOCKSHIFT, 0)
346#define	DVA_SET_ASIZE(dva, x)	\
347	BF64_SET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, \
348	SPA_MINBLOCKSHIFT, 0, x)
349
350#define	DVA_GET_GRID(dva)	BF64_GET((dva)->dva_word[0], 24, 8)
351#define	DVA_SET_GRID(dva, x)	BF64_SET((dva)->dva_word[0], 24, 8, x)
352
353#define	DVA_GET_VDEV(dva)	BF64_GET((dva)->dva_word[0], 32, 32)
354#define	DVA_SET_VDEV(dva, x)	BF64_SET((dva)->dva_word[0], 32, 32, x)
355
356#define	DVA_GET_OFFSET(dva)	\
357	BF64_GET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0)
358#define	DVA_SET_OFFSET(dva, x)	\
359	BF64_SET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0, x)
360
361#define	DVA_GET_GANG(dva)	BF64_GET((dva)->dva_word[1], 63, 1)
362#define	DVA_SET_GANG(dva, x)	BF64_SET((dva)->dva_word[1], 63, 1, x)
363
364#define	BP_GET_LSIZE(bp)	\
365	(BP_IS_EMBEDDED(bp) ?	\
366	(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA ? BPE_GET_LSIZE(bp) : 0): \
367	BF64_GET_SB((bp)->blk_prop, 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1))
368#define	BP_SET_LSIZE(bp, x)	do { \
369	ASSERT(!BP_IS_EMBEDDED(bp)); \
370	BF64_SET_SB((bp)->blk_prop, \
371	    0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \
372_NOTE(CONSTCOND) } while (0)
373
374#define	BP_GET_PSIZE(bp)	\
375	BF64_GET_SB((bp)->blk_prop, 16, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1)
376#define	BP_SET_PSIZE(bp, x)	\
377	BF64_SET_SB((bp)->blk_prop, 16, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1, x)
378
379#define	BP_GET_COMPRESS(bp)	BF64_GET((bp)->blk_prop, 32, 7)
380#define	BP_SET_COMPRESS(bp, x)	BF64_SET((bp)->blk_prop, 32, 7, x)
381
382#define	BP_GET_CHECKSUM(bp)	BF64_GET((bp)->blk_prop, 40, 8)
383#define	BP_SET_CHECKSUM(bp, x)	BF64_SET((bp)->blk_prop, 40, 8, x)
384
385#define	BP_GET_TYPE(bp)		BF64_GET((bp)->blk_prop, 48, 8)
386#define	BP_SET_TYPE(bp, x)	BF64_SET((bp)->blk_prop, 48, 8, x)
387
388#define	BP_GET_LEVEL(bp)	BF64_GET((bp)->blk_prop, 56, 5)
389#define	BP_SET_LEVEL(bp, x)	BF64_SET((bp)->blk_prop, 56, 5, x)
390
391#define	BP_IS_EMBEDDED(bp)	BF64_GET((bp)->blk_prop, 39, 1)
392
393#define	BP_GET_DEDUP(bp)	BF64_GET((bp)->blk_prop, 62, 1)
394#define	BP_SET_DEDUP(bp, x)	BF64_SET((bp)->blk_prop, 62, 1, x)
395
396#define	BP_GET_BYTEORDER(bp)	BF64_GET((bp)->blk_prop, 63, 1)
397#define	BP_SET_BYTEORDER(bp, x)	BF64_SET((bp)->blk_prop, 63, 1, x)
398
399#define	BP_PHYSICAL_BIRTH(bp)		\
400	((bp)->blk_phys_birth ? (bp)->blk_phys_birth : (bp)->blk_birth)
401
402#define	BP_SET_BIRTH(bp, logical, physical)	\
403{						\
404	ASSERT(!BP_IS_EMBEDDED(bp));		\
405	(bp)->blk_birth = (logical);		\
406	(bp)->blk_phys_birth = ((logical) == (physical) ? 0 : (physical)); \
407}
408
409#define	BP_GET_FILL(bp)				\
410	((BP_IS_EMBEDDED(bp)) ? 1 : (bp)->blk_fill)
411
412#define	BP_SET_FILL(bp, fill)			\
413{						\
414	(bp)->blk_fill = fill;			\
415}
416
417#define	BP_GET_ASIZE(bp)	\
418	(DVA_GET_ASIZE(&(bp)->blk_dva[0]) + DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
419		DVA_GET_ASIZE(&(bp)->blk_dva[2]))
420
421#define	BP_GET_UCSIZE(bp) \
422	((BP_GET_LEVEL(bp) > 0 || dmu_ot[BP_GET_TYPE(bp)].ot_metadata) ? \
423	BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp));
424
425#define	BP_GET_NDVAS(bp)	\
426	(!!DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \
427	!!DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
428	!!DVA_GET_ASIZE(&(bp)->blk_dva[2]))
429
430#define	DVA_EQUAL(dva1, dva2)	\
431	((dva1)->dva_word[1] == (dva2)->dva_word[1] && \
432	(dva1)->dva_word[0] == (dva2)->dva_word[0])
433
434#define	ZIO_CHECKSUM_EQUAL(zc1, zc2) \
435	(0 == (((zc1).zc_word[0] - (zc2).zc_word[0]) | \
436	((zc1).zc_word[1] - (zc2).zc_word[1]) | \
437	((zc1).zc_word[2] - (zc2).zc_word[2]) | \
438	((zc1).zc_word[3] - (zc2).zc_word[3])))
439
440
441#define	DVA_IS_VALID(dva)	(DVA_GET_ASIZE(dva) != 0)
442
443#define	ZIO_SET_CHECKSUM(zcp, w0, w1, w2, w3)	\
444{						\
445	(zcp)->zc_word[0] = w0;			\
446	(zcp)->zc_word[1] = w1;			\
447	(zcp)->zc_word[2] = w2;			\
448	(zcp)->zc_word[3] = w3;			\
449}
450
451#define	BP_IDENTITY(bp)		(&(bp)->blk_dva[0])
452#define	BP_IS_GANG(bp)		DVA_GET_GANG(BP_IDENTITY(bp))
453#define	DVA_IS_EMPTY(dva)	((dva)->dva_word[0] == 0ULL &&  \
454	(dva)->dva_word[1] == 0ULL)
455#define	BP_IS_HOLE(bp)		DVA_IS_EMPTY(BP_IDENTITY(bp))
456#define	BP_IS_OLDER(bp, txg)	(!BP_IS_HOLE(bp) && (bp)->blk_birth < (txg))
457
458#define	BP_ZERO(bp)				\
459{						\
460	(bp)->blk_dva[0].dva_word[0] = 0;	\
461	(bp)->blk_dva[0].dva_word[1] = 0;	\
462	(bp)->blk_dva[1].dva_word[0] = 0;	\
463	(bp)->blk_dva[1].dva_word[1] = 0;	\
464	(bp)->blk_dva[2].dva_word[0] = 0;	\
465	(bp)->blk_dva[2].dva_word[1] = 0;	\
466	(bp)->blk_prop = 0;			\
467	(bp)->blk_pad[0] = 0;			\
468	(bp)->blk_pad[1] = 0;			\
469	(bp)->blk_phys_birth = 0;		\
470	(bp)->blk_birth = 0;			\
471	(bp)->blk_fill = 0;			\
472	ZIO_SET_CHECKSUM(&(bp)->blk_cksum, 0, 0, 0, 0);	\
473}
474
475#if BYTE_ORDER == _BIG_ENDIAN
476#define	ZFS_HOST_BYTEORDER	(0ULL)
477#else
478#define	ZFS_HOST_BYTEORDER	(1ULL)
479#endif
480
481#define	BP_SHOULD_BYTESWAP(bp)	(BP_GET_BYTEORDER(bp) != ZFS_HOST_BYTEORDER)
482#define	BPE_NUM_WORDS 14
483#define	BPE_PAYLOAD_SIZE (BPE_NUM_WORDS * sizeof (uint64_t))
484#define	BPE_IS_PAYLOADWORD(bp, wp) \
485	((wp) != &(bp)->blk_prop && (wp) != &(bp)->blk_birth)
486
487/*
488 * Embedded checksum
489 */
490#define	ZEC_MAGIC	0x210da7ab10c7a11ULL
491
492typedef struct zio_eck {
493	uint64_t	zec_magic;	/* for validation, endianness	*/
494	zio_cksum_t	zec_cksum;	/* 256-bit checksum		*/
495} zio_eck_t;
496
497/*
498 * Gang block headers are self-checksumming and contain an array
499 * of block pointers.
500 */
501#define	SPA_GANGBLOCKSIZE	SPA_MINBLOCKSIZE
502#define	SPA_GBH_NBLKPTRS	((SPA_GANGBLOCKSIZE - \
503	sizeof (zio_eck_t)) / sizeof (blkptr_t))
504#define	SPA_GBH_FILLER		((SPA_GANGBLOCKSIZE - \
505	sizeof (zio_eck_t) - \
506	(SPA_GBH_NBLKPTRS * sizeof (blkptr_t))) /\
507	sizeof (uint64_t))
508
509typedef struct zio_gbh {
510	blkptr_t		zg_blkptr[SPA_GBH_NBLKPTRS];
511	uint64_t		zg_filler[SPA_GBH_FILLER];
512	zio_eck_t		zg_tail;
513} zio_gbh_phys_t;
514
515#define	VDEV_RAIDZ_MAXPARITY	3
516
517#define	VDEV_PAD_SIZE		(8 << 10)
518/* 2 padding areas (vl_pad1 and vl_be) to skip */
519#define	VDEV_SKIP_SIZE		VDEV_PAD_SIZE * 2
520#define	VDEV_PHYS_SIZE		(112 << 10)
521#define	VDEV_UBERBLOCK_RING	(128 << 10)
522
523/*
524 * MMP blocks occupy the last MMP_BLOCKS_PER_LABEL slots in the uberblock
525 * ring when MMP is enabled.
526 */
527#define	MMP_BLOCKS_PER_LABEL	1
528
529/* The largest uberblock we support is 8k. */
530#define	MAX_UBERBLOCK_SHIFT	(13)
531#define	VDEV_UBERBLOCK_SHIFT(vd)	\
532	MIN(MAX((vd)->v_top->v_ashift, UBERBLOCK_SHIFT), MAX_UBERBLOCK_SHIFT)
533#define	VDEV_UBERBLOCK_COUNT(vd)	\
534	(VDEV_UBERBLOCK_RING >> VDEV_UBERBLOCK_SHIFT(vd))
535#define	VDEV_UBERBLOCK_OFFSET(vd, n)	\
536	offsetof(vdev_label_t, vl_uberblock[(n) << VDEV_UBERBLOCK_SHIFT(vd)])
537#define	VDEV_UBERBLOCK_SIZE(vd)		(1ULL << VDEV_UBERBLOCK_SHIFT(vd))
538
539typedef struct vdev_phys {
540	char		vp_nvlist[VDEV_PHYS_SIZE - sizeof (zio_eck_t)];
541	zio_eck_t	vp_zbt;
542} vdev_phys_t;
543
544typedef enum vbe_vers {
545	/* The bootenv file is stored as ascii text in the envblock */
546	VB_RAW = 0,
547
548	/*
549	 * The bootenv file is converted to an nvlist and then packed into the
550	 * envblock.
551	 */
552	VB_NVLIST = 1
553} vbe_vers_t;
554
555typedef struct vdev_boot_envblock {
556	uint64_t	vbe_version;
557	char		vbe_bootenv[VDEV_PAD_SIZE - sizeof (uint64_t) -
558			sizeof (zio_eck_t)];
559 	zio_eck_t	vbe_zbt;
560} vdev_boot_envblock_t;
561
562_Static_assert(sizeof (vdev_boot_envblock_t) == VDEV_PAD_SIZE,
563    "bad size for vdev_boot_envblock_t");
564
565typedef struct vdev_label {
566	char		vl_pad1[VDEV_PAD_SIZE];			/*  8K  */
567	vdev_boot_envblock_t	vl_be;				/*  8K  */
568	vdev_phys_t	vl_vdev_phys;				/* 112K	*/
569	char		vl_uberblock[VDEV_UBERBLOCK_RING];	/* 128K	*/
570} vdev_label_t;							/* 256K total */
571
572/*
573 * vdev_dirty() flags
574 */
575#define	VDD_METASLAB	0x01
576#define	VDD_DTL		0x02
577
578/*
579 * Size and offset of embedded boot loader region on each label.
580 * The total size of the first two labels plus the boot area is 4MB.
581 */
582#define	VDEV_BOOT_OFFSET	(2 * sizeof (vdev_label_t))
583#define	VDEV_BOOT_SIZE		(7ULL << 19)			/* 3.5M	*/
584
585/*
586 * Size of label regions at the start and end of each leaf device.
587 */
588#define	VDEV_LABEL_START_SIZE	(2 * sizeof (vdev_label_t) + VDEV_BOOT_SIZE)
589#define	VDEV_LABEL_END_SIZE	(2 * sizeof (vdev_label_t))
590#define	VDEV_LABELS		4
591
592enum zio_checksum {
593	ZIO_CHECKSUM_INHERIT = 0,
594	ZIO_CHECKSUM_ON,
595	ZIO_CHECKSUM_OFF,
596	ZIO_CHECKSUM_LABEL,
597	ZIO_CHECKSUM_GANG_HEADER,
598	ZIO_CHECKSUM_ZILOG,
599	ZIO_CHECKSUM_FLETCHER_2,
600	ZIO_CHECKSUM_FLETCHER_4,
601	ZIO_CHECKSUM_SHA256,
602	ZIO_CHECKSUM_ZILOG2,
603	ZIO_CHECKSUM_NOPARITY,
604	ZIO_CHECKSUM_SHA512,
605	ZIO_CHECKSUM_SKEIN,
606	ZIO_CHECKSUM_EDONR,
607	ZIO_CHECKSUM_BLAKE3,
608	ZIO_CHECKSUM_FUNCTIONS
609};
610
611#define	ZIO_CHECKSUM_ON_VALUE	ZIO_CHECKSUM_FLETCHER_4
612#define	ZIO_CHECKSUM_DEFAULT	ZIO_CHECKSUM_ON
613
614enum zio_compress {
615	ZIO_COMPRESS_INHERIT = 0,
616	ZIO_COMPRESS_ON,
617	ZIO_COMPRESS_OFF,
618	ZIO_COMPRESS_LZJB,
619	ZIO_COMPRESS_EMPTY,
620	ZIO_COMPRESS_GZIP_1,
621	ZIO_COMPRESS_GZIP_2,
622	ZIO_COMPRESS_GZIP_3,
623	ZIO_COMPRESS_GZIP_4,
624	ZIO_COMPRESS_GZIP_5,
625	ZIO_COMPRESS_GZIP_6,
626	ZIO_COMPRESS_GZIP_7,
627	ZIO_COMPRESS_GZIP_8,
628	ZIO_COMPRESS_GZIP_9,
629	ZIO_COMPRESS_ZLE,
630	ZIO_COMPRESS_LZ4,
631	ZIO_COMPRESS_ZSTD,
632	ZIO_COMPRESS_FUNCTIONS
633};
634
635enum zio_zstd_levels {
636	ZIO_ZSTD_LEVEL_INHERIT = 0,
637	ZIO_ZSTD_LEVEL_1,
638#define	ZIO_ZSTD_LEVEL_MIN	ZIO_ZSTD_LEVEL_1
639	ZIO_ZSTD_LEVEL_2,
640	ZIO_ZSTD_LEVEL_3,
641#define	ZIO_ZSTD_LEVEL_DEFAULT	ZIO_ZSTD_LEVEL_3
642	ZIO_ZSTD_LEVEL_4,
643	ZIO_ZSTD_LEVEL_5,
644	ZIO_ZSTD_LEVEL_6,
645	ZIO_ZSTD_LEVEL_7,
646	ZIO_ZSTD_LEVEL_8,
647	ZIO_ZSTD_LEVEL_9,
648	ZIO_ZSTD_LEVEL_10,
649	ZIO_ZSTD_LEVEL_11,
650	ZIO_ZSTD_LEVEL_12,
651	ZIO_ZSTD_LEVEL_13,
652	ZIO_ZSTD_LEVEL_14,
653	ZIO_ZSTD_LEVEL_15,
654	ZIO_ZSTD_LEVEL_16,
655	ZIO_ZSTD_LEVEL_17,
656	ZIO_ZSTD_LEVEL_18,
657	ZIO_ZSTD_LEVEL_19,
658#define	ZIO_ZSTD_LEVEL_MAX	ZIO_ZSTD_LEVEL_19
659	ZIO_ZSTD_LEVEL_RESERVE = 101, /* Leave room for new positive levels */
660	ZIO_ZSTD_LEVEL_FAST, /* Fast levels are negative */
661	ZIO_ZSTD_LEVEL_FAST_1,
662#define	ZIO_ZSTD_LEVEL_FAST_DEFAULT	ZIO_ZSTD_LEVEL_FAST_1
663	ZIO_ZSTD_LEVEL_FAST_2,
664	ZIO_ZSTD_LEVEL_FAST_3,
665	ZIO_ZSTD_LEVEL_FAST_4,
666	ZIO_ZSTD_LEVEL_FAST_5,
667	ZIO_ZSTD_LEVEL_FAST_6,
668	ZIO_ZSTD_LEVEL_FAST_7,
669	ZIO_ZSTD_LEVEL_FAST_8,
670	ZIO_ZSTD_LEVEL_FAST_9,
671	ZIO_ZSTD_LEVEL_FAST_10,
672	ZIO_ZSTD_LEVEL_FAST_20,
673	ZIO_ZSTD_LEVEL_FAST_30,
674	ZIO_ZSTD_LEVEL_FAST_40,
675	ZIO_ZSTD_LEVEL_FAST_50,
676	ZIO_ZSTD_LEVEL_FAST_60,
677	ZIO_ZSTD_LEVEL_FAST_70,
678	ZIO_ZSTD_LEVEL_FAST_80,
679	ZIO_ZSTD_LEVEL_FAST_90,
680	ZIO_ZSTD_LEVEL_FAST_100,
681	ZIO_ZSTD_LEVEL_FAST_500,
682	ZIO_ZSTD_LEVEL_FAST_1000,
683#define	ZIO_ZSTD_LEVEL_FAST_MAX	ZIO_ZSTD_LEVEL_FAST_1000
684	ZIO_ZSTD_LEVEL_AUTO = 251, /* Reserved for future use */
685	ZIO_ZSTD_LEVEL_LEVELS
686};
687
688#define	ZIO_COMPRESS_ON_VALUE	ZIO_COMPRESS_LZJB
689#define	ZIO_COMPRESS_DEFAULT	ZIO_COMPRESS_OFF
690
691/*
692 * On-disk version number.
693 */
694#define	SPA_VERSION_1			1ULL
695#define	SPA_VERSION_2			2ULL
696#define	SPA_VERSION_3			3ULL
697#define	SPA_VERSION_4			4ULL
698#define	SPA_VERSION_5			5ULL
699#define	SPA_VERSION_6			6ULL
700#define	SPA_VERSION_7			7ULL
701#define	SPA_VERSION_8			8ULL
702#define	SPA_VERSION_9			9ULL
703#define	SPA_VERSION_10			10ULL
704#define	SPA_VERSION_11			11ULL
705#define	SPA_VERSION_12			12ULL
706#define	SPA_VERSION_13			13ULL
707#define	SPA_VERSION_14			14ULL
708#define	SPA_VERSION_15			15ULL
709#define	SPA_VERSION_16			16ULL
710#define	SPA_VERSION_17			17ULL
711#define	SPA_VERSION_18			18ULL
712#define	SPA_VERSION_19			19ULL
713#define	SPA_VERSION_20			20ULL
714#define	SPA_VERSION_21			21ULL
715#define	SPA_VERSION_22			22ULL
716#define	SPA_VERSION_23			23ULL
717#define	SPA_VERSION_24			24ULL
718#define	SPA_VERSION_25			25ULL
719#define	SPA_VERSION_26			26ULL
720#define	SPA_VERSION_27			27ULL
721#define	SPA_VERSION_28			28ULL
722#define	SPA_VERSION_5000		5000ULL
723
724/*
725 * When bumping up SPA_VERSION, make sure GRUB ZFS understands the on-disk
726 * format change. Go to usr/src/grub/grub-0.97/stage2/{zfs-include/, fsys_zfs*},
727 * and do the appropriate changes.  Also bump the version number in
728 * usr/src/grub/capability.
729 */
730#define	SPA_VERSION			SPA_VERSION_5000
731#define	SPA_VERSION_STRING		"5000"
732
733/*
734 * Symbolic names for the changes that caused a SPA_VERSION switch.
735 * Used in the code when checking for presence or absence of a feature.
736 * Feel free to define multiple symbolic names for each version if there
737 * were multiple changes to on-disk structures during that version.
738 *
739 * NOTE: When checking the current SPA_VERSION in your code, be sure
740 *       to use spa_version() since it reports the version of the
741 *       last synced uberblock.  Checking the in-flight version can
742 *       be dangerous in some cases.
743 */
744#define	SPA_VERSION_INITIAL		SPA_VERSION_1
745#define	SPA_VERSION_DITTO_BLOCKS	SPA_VERSION_2
746#define	SPA_VERSION_SPARES		SPA_VERSION_3
747#define	SPA_VERSION_RAID6		SPA_VERSION_3
748#define	SPA_VERSION_BPLIST_ACCOUNT	SPA_VERSION_3
749#define	SPA_VERSION_RAIDZ_DEFLATE	SPA_VERSION_3
750#define	SPA_VERSION_DNODE_BYTES		SPA_VERSION_3
751#define	SPA_VERSION_ZPOOL_HISTORY	SPA_VERSION_4
752#define	SPA_VERSION_GZIP_COMPRESSION	SPA_VERSION_5
753#define	SPA_VERSION_BOOTFS		SPA_VERSION_6
754#define	SPA_VERSION_SLOGS		SPA_VERSION_7
755#define	SPA_VERSION_DELEGATED_PERMS	SPA_VERSION_8
756#define	SPA_VERSION_FUID		SPA_VERSION_9
757#define	SPA_VERSION_REFRESERVATION	SPA_VERSION_9
758#define	SPA_VERSION_REFQUOTA		SPA_VERSION_9
759#define	SPA_VERSION_UNIQUE_ACCURATE	SPA_VERSION_9
760#define	SPA_VERSION_L2CACHE		SPA_VERSION_10
761#define	SPA_VERSION_NEXT_CLONES		SPA_VERSION_11
762#define	SPA_VERSION_ORIGIN		SPA_VERSION_11
763#define	SPA_VERSION_DSL_SCRUB		SPA_VERSION_11
764#define	SPA_VERSION_SNAP_PROPS		SPA_VERSION_12
765#define	SPA_VERSION_USED_BREAKDOWN	SPA_VERSION_13
766#define	SPA_VERSION_PASSTHROUGH_X	SPA_VERSION_14
767#define SPA_VERSION_USERSPACE		SPA_VERSION_15
768#define	SPA_VERSION_STMF_PROP		SPA_VERSION_16
769#define	SPA_VERSION_RAIDZ3		SPA_VERSION_17
770#define	SPA_VERSION_USERREFS		SPA_VERSION_18
771#define	SPA_VERSION_HOLES		SPA_VERSION_19
772#define	SPA_VERSION_ZLE_COMPRESSION	SPA_VERSION_20
773#define	SPA_VERSION_DEDUP		SPA_VERSION_21
774#define	SPA_VERSION_RECVD_PROPS		SPA_VERSION_22
775#define	SPA_VERSION_SLIM_ZIL		SPA_VERSION_23
776#define	SPA_VERSION_SA			SPA_VERSION_24
777#define	SPA_VERSION_SCAN		SPA_VERSION_25
778#define	SPA_VERSION_DIR_CLONES		SPA_VERSION_26
779#define	SPA_VERSION_DEADLISTS		SPA_VERSION_26
780#define	SPA_VERSION_FAST_SNAP		SPA_VERSION_27
781#define	SPA_VERSION_MULTI_REPLACE	SPA_VERSION_28
782#define	SPA_VERSION_BEFORE_FEATURES	SPA_VERSION_28
783#define	SPA_VERSION_FEATURES		SPA_VERSION_5000
784
785#define	SPA_VERSION_IS_SUPPORTED(v) \
786	(((v) >= SPA_VERSION_INITIAL && (v) <= SPA_VERSION_BEFORE_FEATURES) || \
787	((v) >= SPA_VERSION_FEATURES && (v) <= SPA_VERSION))
788
789/*
790 * The following are configuration names used in the nvlist describing a pool's
791 * configuration.
792 */
793#define	ZPOOL_CONFIG_VERSION		"version"
794#define	ZPOOL_CONFIG_POOL_NAME		"name"
795#define	ZPOOL_CONFIG_POOL_STATE		"state"
796#define	ZPOOL_CONFIG_POOL_TXG		"txg"
797#define	ZPOOL_CONFIG_POOL_GUID		"pool_guid"
798#define	ZPOOL_CONFIG_CREATE_TXG		"create_txg"
799#define	ZPOOL_CONFIG_TOP_GUID		"top_guid"
800#define	ZPOOL_CONFIG_VDEV_TREE		"vdev_tree"
801#define	ZPOOL_CONFIG_TYPE		"type"
802#define	ZPOOL_CONFIG_CHILDREN		"children"
803#define	ZPOOL_CONFIG_ID			"id"
804#define	ZPOOL_CONFIG_GUID		"guid"
805#define	ZPOOL_CONFIG_INDIRECT_OBJECT	"com.delphix:indirect_object"
806#define	ZPOOL_CONFIG_INDIRECT_BIRTHS	"com.delphix:indirect_births"
807#define	ZPOOL_CONFIG_PREV_INDIRECT_VDEV	"com.delphix:prev_indirect_vdev"
808#define	ZPOOL_CONFIG_PATH		"path"
809#define	ZPOOL_CONFIG_DEVID		"devid"
810#define	ZPOOL_CONFIG_METASLAB_ARRAY	"metaslab_array"
811#define	ZPOOL_CONFIG_METASLAB_SHIFT	"metaslab_shift"
812#define	ZPOOL_CONFIG_ASHIFT		"ashift"
813#define	ZPOOL_CONFIG_ASIZE		"asize"
814#define	ZPOOL_CONFIG_DTL		"DTL"
815#define	ZPOOL_CONFIG_STATS		"stats"
816#define	ZPOOL_CONFIG_WHOLE_DISK		"whole_disk"
817#define	ZPOOL_CONFIG_ERRCOUNT		"error_count"
818#define	ZPOOL_CONFIG_NOT_PRESENT	"not_present"
819#define	ZPOOL_CONFIG_SPARES		"spares"
820#define	ZPOOL_CONFIG_IS_SPARE		"is_spare"
821#define	ZPOOL_CONFIG_NPARITY		"nparity"
822#define	ZPOOL_CONFIG_HOSTID		"hostid"
823#define	ZPOOL_CONFIG_HOSTNAME		"hostname"
824#define	ZPOOL_CONFIG_IS_LOG		"is_log"
825#define	ZPOOL_CONFIG_TIMESTAMP		"timestamp" /* not stored on disk */
826#define	ZPOOL_CONFIG_FEATURES_FOR_READ	"features_for_read"
827#define	ZPOOL_CONFIG_VDEV_CHILDREN	"vdev_children"
828
829/*
830 * The persistent vdev state is stored as separate values rather than a single
831 * 'vdev_state' entry.  This is because a device can be in multiple states, such
832 * as offline and degraded.
833 */
834#define	ZPOOL_CONFIG_OFFLINE            "offline"
835#define	ZPOOL_CONFIG_FAULTED            "faulted"
836#define	ZPOOL_CONFIG_DEGRADED           "degraded"
837#define	ZPOOL_CONFIG_REMOVED            "removed"
838#define	ZPOOL_CONFIG_FRU		"fru"
839#define	ZPOOL_CONFIG_AUX_STATE		"aux_state"
840
841#define	VDEV_TYPE_ROOT			"root"
842#define	VDEV_TYPE_MIRROR		"mirror"
843#define	VDEV_TYPE_REPLACING		"replacing"
844#define	VDEV_TYPE_RAIDZ			"raidz"
845#define	VDEV_TYPE_DISK			"disk"
846#define	VDEV_TYPE_FILE			"file"
847#define	VDEV_TYPE_MISSING		"missing"
848#define	VDEV_TYPE_HOLE			"hole"
849#define	VDEV_TYPE_SPARE			"spare"
850#define	VDEV_TYPE_LOG			"log"
851#define	VDEV_TYPE_L2CACHE		"l2cache"
852#define	VDEV_TYPE_INDIRECT		"indirect"
853
854/*
855 * This is needed in userland to report the minimum necessary device size.
856 */
857#define	SPA_MINDEVSIZE		(64ULL << 20)
858
859/*
860 * The location of the pool configuration repository, shared between kernel and
861 * userland.
862 */
863#define	ZPOOL_CACHE		"/boot/zfs/zpool.cache"
864
865/*
866 * vdev states are ordered from least to most healthy.
867 * A vdev that's CANT_OPEN or below is considered unusable.
868 */
869typedef enum vdev_state {
870	VDEV_STATE_UNKNOWN = 0,	/* Uninitialized vdev			*/
871	VDEV_STATE_CLOSED,	/* Not currently open			*/
872	VDEV_STATE_OFFLINE,	/* Not allowed to open			*/
873	VDEV_STATE_REMOVED,	/* Explicitly removed from system	*/
874	VDEV_STATE_CANT_OPEN,	/* Tried to open, but failed		*/
875	VDEV_STATE_FAULTED,	/* External request to fault device	*/
876	VDEV_STATE_DEGRADED,	/* Replicated vdev with unhealthy kids	*/
877	VDEV_STATE_HEALTHY	/* Presumed good			*/
878} vdev_state_t;
879
880/*
881 * vdev aux states.  When a vdev is in the CANT_OPEN state, the aux field
882 * of the vdev stats structure uses these constants to distinguish why.
883 */
884typedef enum vdev_aux {
885	VDEV_AUX_NONE,		/* no error				*/
886	VDEV_AUX_OPEN_FAILED,	/* ldi_open_*() or vn_open() failed	*/
887	VDEV_AUX_CORRUPT_DATA,	/* bad label or disk contents		*/
888	VDEV_AUX_NO_REPLICAS,	/* insufficient number of replicas	*/
889	VDEV_AUX_BAD_GUID_SUM,	/* vdev guid sum doesn't match		*/
890	VDEV_AUX_TOO_SMALL,	/* vdev size is too small		*/
891	VDEV_AUX_BAD_LABEL,	/* the label is OK but invalid		*/
892	VDEV_AUX_VERSION_NEWER,	/* on-disk version is too new		*/
893	VDEV_AUX_VERSION_OLDER,	/* on-disk version is too old		*/
894	VDEV_AUX_SPARED		/* hot spare used in another pool	*/
895} vdev_aux_t;
896
897/*
898 * pool state.  The following states are written to disk as part of the normal
899 * SPA lifecycle: ACTIVE, EXPORTED, DESTROYED, SPARE.  The remaining states are
900 * software abstractions used at various levels to communicate pool state.
901 */
902typedef enum pool_state {
903	POOL_STATE_ACTIVE = 0,		/* In active use		*/
904	POOL_STATE_EXPORTED,		/* Explicitly exported		*/
905	POOL_STATE_DESTROYED,		/* Explicitly destroyed		*/
906	POOL_STATE_SPARE,		/* Reserved for hot spare use	*/
907	POOL_STATE_UNINITIALIZED,	/* Internal spa_t state		*/
908	POOL_STATE_UNAVAIL,		/* Internal libzfs state	*/
909	POOL_STATE_POTENTIALLY_ACTIVE	/* Internal libzfs state	*/
910} pool_state_t;
911
912/*
913 * The uberblock version is incremented whenever an incompatible on-disk
914 * format change is made to the SPA, DMU, or ZAP.
915 *
916 * Note: the first two fields should never be moved.  When a storage pool
917 * is opened, the uberblock must be read off the disk before the version
918 * can be checked.  If the ub_version field is moved, we may not detect
919 * version mismatch.  If the ub_magic field is moved, applications that
920 * expect the magic number in the first word won't work.
921 */
922#define	UBERBLOCK_MAGIC		0x00bab10c		/* oo-ba-bloc!	*/
923#define	UBERBLOCK_SHIFT		10			/* up to 1K	*/
924
925#define	MMP_MAGIC		0xa11cea11		/* all-see-all  */
926
927#define	MMP_INTERVAL_VALID_BIT	0x01
928#define	MMP_SEQ_VALID_BIT	0x02
929#define	MMP_FAIL_INT_VALID_BIT	0x04
930
931#define	MMP_VALID(ubp)		(ubp->ub_magic == UBERBLOCK_MAGIC && \
932				    ubp->ub_mmp_magic == MMP_MAGIC)
933#define	MMP_INTERVAL_VALID(ubp)	(MMP_VALID(ubp) && (ubp->ub_mmp_config & \
934				    MMP_INTERVAL_VALID_BIT))
935#define	MMP_SEQ_VALID(ubp)	(MMP_VALID(ubp) && (ubp->ub_mmp_config & \
936				    MMP_SEQ_VALID_BIT))
937#define	MMP_FAIL_INT_VALID(ubp)	(MMP_VALID(ubp) && (ubp->ub_mmp_config & \
938				    MMP_FAIL_INT_VALID_BIT))
939
940#define	MMP_INTERVAL(ubp)	((ubp->ub_mmp_config & 0x00000000FFFFFF00) \
941				    >> 8)
942#define	MMP_SEQ(ubp)		((ubp->ub_mmp_config & 0x0000FFFF00000000) \
943				    >> 32)
944#define	MMP_FAIL_INT(ubp)	((ubp->ub_mmp_config & 0xFFFF000000000000) \
945				    >> 48)
946
947typedef struct uberblock {
948	uint64_t	ub_magic;	/* UBERBLOCK_MAGIC		*/
949	uint64_t	ub_version;	/* SPA_VERSION			*/
950	uint64_t	ub_txg;		/* txg of last sync		*/
951	uint64_t	ub_guid_sum;	/* sum of all vdev guids	*/
952	uint64_t	ub_timestamp;	/* UTC time of last sync	*/
953	blkptr_t	ub_rootbp;	/* MOS objset_phys_t		*/
954	/* highest SPA_VERSION supported by software that wrote this txg */
955	uint64_t	ub_software_version;
956	/* Maybe missing in uberblocks we read, but always written */
957	uint64_t	ub_mmp_magic;
958	/*
959	 * If ub_mmp_delay == 0 and ub_mmp_magic is valid, MMP is off.
960	 * Otherwise, nanosec since last MMP write.
961	 */
962	uint64_t	ub_mmp_delay;
963
964	/*
965	 * The ub_mmp_config contains the multihost write interval, multihost
966	 * fail intervals, sequence number for sub-second granularity, and
967	 * valid bit mask.  This layout is as follows:
968	 *
969	 *   64      56      48      40      32      24      16      8       0
970	 *   +-------+-------+-------+-------+-------+-------+-------+-------+
971	 * 0 | Fail Intervals|      Seq      |   Write Interval (ms) | VALID |
972	 *   +-------+-------+-------+-------+-------+-------+-------+-------+
973	 *
974	 * This allows a write_interval of (2^24/1000)s, over 4.5 hours
975	 *
976	 * VALID Bits:
977	 * - 0x01 - Write Interval (ms)
978	 * - 0x02 - Sequence number exists
979	 * - 0x04 - Fail Intervals
980	 * - 0xf8 - Reserved
981	 */
982	uint64_t	ub_mmp_config;
983
984	/*
985	 * ub_checkpoint_txg indicates two things about the current uberblock:
986	 *
987	 * 1] If it is not zero then this uberblock is a checkpoint. If it is
988	 *    zero, then this uberblock is not a checkpoint.
989	 *
990	 * 2] On checkpointed uberblocks, the value of ub_checkpoint_txg is
991	 *    the ub_txg that the uberblock had at the time we moved it to
992	 *    the MOS config.
993	 *
994	 * The field is set when we checkpoint the uberblock and continues to
995	 * hold that value even after we've rewound (unlike the ub_txg that
996	 * is reset to a higher value).
997	 *
998	 * Besides checks used to determine whether we are reopening the
999	 * pool from a checkpointed uberblock [see spa_ld_select_uberblock()],
1000	 * the value of the field is used to determine which ZIL blocks have
1001	 * been allocated according to the ms_sm when we are rewinding to a
1002	 * checkpoint. Specifically, if blk_birth > ub_checkpoint_txg, then
1003	 * the ZIL block is not allocated [see uses of spa_min_claim_txg()].
1004	 */
1005	uint64_t	ub_checkpoint_txg;
1006} uberblock_t;
1007
1008/*
1009 * Flags.
1010 */
1011#define	DNODE_MUST_BE_ALLOCATED	1
1012#define	DNODE_MUST_BE_FREE	2
1013
1014/*
1015 * Fixed constants.
1016 */
1017#define	DNODE_SHIFT		9	/* 512 bytes */
1018#define	DN_MIN_INDBLKSHIFT	12	/* 4k */
1019#define	DN_MAX_INDBLKSHIFT	17	/* 128k */
1020#define	DNODE_BLOCK_SHIFT	14	/* 16k */
1021#define	DNODE_CORE_SIZE		64	/* 64 bytes for dnode sans blkptrs */
1022#define	DN_MAX_OBJECT_SHIFT	48	/* 256 trillion (zfs_fid_t limit) */
1023#define	DN_MAX_OFFSET_SHIFT	64	/* 2^64 bytes in a dnode */
1024
1025/*
1026 * Derived constants.
1027 */
1028#define	DNODE_MIN_SIZE		(1 << DNODE_SHIFT)
1029#define	DNODE_MAX_SIZE		(1 << DNODE_BLOCK_SHIFT)
1030#define	DNODE_BLOCK_SIZE	(1 << DNODE_BLOCK_SHIFT)
1031#define	DNODE_MIN_SLOTS		(DNODE_MIN_SIZE >> DNODE_SHIFT)
1032#define	DNODE_MAX_SLOTS		(DNODE_MAX_SIZE >> DNODE_SHIFT)
1033#define	DN_BONUS_SIZE(dnsize)	((dnsize) - DNODE_CORE_SIZE - \
1034	(1 << SPA_BLKPTRSHIFT))
1035#define	DN_SLOTS_TO_BONUSLEN(slots)	DN_BONUS_SIZE((slots) << DNODE_SHIFT)
1036#define	DN_OLD_MAX_BONUSLEN		(DN_BONUS_SIZE(DNODE_MIN_SIZE))
1037#define	DN_MAX_NBLKPTR		((DNODE_MIN_SIZE - DNODE_CORE_SIZE) >> \
1038	SPA_BLKPTRSHIFT)
1039#define	DN_MAX_OBJECT		(1ULL << DN_MAX_OBJECT_SHIFT)
1040#define	DN_ZERO_BONUSLEN	(DN_BONUS_SIZE(DNODE_MAX_SIZE) + 1)
1041
1042#define	DNODES_PER_BLOCK_SHIFT	(DNODE_BLOCK_SHIFT - DNODE_SHIFT)
1043#define	DNODES_PER_BLOCK	(1ULL << DNODES_PER_BLOCK_SHIFT)
1044#define	DNODES_PER_LEVEL_SHIFT	(DN_MAX_INDBLKSHIFT - SPA_BLKPTRSHIFT)
1045
1046/* The +2 here is a cheesy way to round up */
1047#define	DN_MAX_LEVELS	(2 + ((DN_MAX_OFFSET_SHIFT - SPA_MINBLOCKSHIFT) / \
1048	(DN_MIN_INDBLKSHIFT - SPA_BLKPTRSHIFT)))
1049
1050#define	DN_BONUS(dnp)	((void*)((dnp)->dn_bonus + \
1051	(((dnp)->dn_nblkptr - 1) * sizeof (blkptr_t))))
1052
1053#define	DN_USED_BYTES(dnp) (((dnp)->dn_flags & DNODE_FLAG_USED_BYTES) ? \
1054	(dnp)->dn_used : (dnp)->dn_used << SPA_MINBLOCKSHIFT)
1055
1056#define	EPB(blkshift, typeshift)	(1 << (blkshift - typeshift))
1057
1058/* Is dn_used in bytes?  if not, it's in multiples of SPA_MINBLOCKSIZE */
1059#define	DNODE_FLAG_USED_BYTES		(1<<0)
1060#define	DNODE_FLAG_USERUSED_ACCOUNTED	(1<<1)
1061
1062/* Does dnode have a SA spill blkptr in bonus? */
1063#define	DNODE_FLAG_SPILL_BLKPTR	(1<<2)
1064
1065typedef struct dnode_phys {
1066	uint8_t dn_type;		/* dmu_object_type_t */
1067	uint8_t dn_indblkshift;		/* ln2(indirect block size) */
1068	uint8_t dn_nlevels;		/* 1=dn_blkptr->data blocks */
1069	uint8_t dn_nblkptr;		/* length of dn_blkptr */
1070	uint8_t dn_bonustype;		/* type of data in bonus buffer */
1071	uint8_t	dn_checksum;		/* ZIO_CHECKSUM type */
1072	uint8_t	dn_compress;		/* ZIO_COMPRESS type */
1073	uint8_t dn_flags;		/* DNODE_FLAG_* */
1074	uint16_t dn_datablkszsec;	/* data block size in 512b sectors */
1075	uint16_t dn_bonuslen;		/* length of dn_bonus */
1076	uint8_t dn_extra_slots;		/* # of subsequent slots consumed */
1077	uint8_t dn_pad2[3];
1078
1079	/* accounting is protected by dn_dirty_mtx */
1080	uint64_t dn_maxblkid;		/* largest allocated block ID */
1081	uint64_t dn_used;		/* bytes (or sectors) of disk space */
1082
1083	uint64_t dn_pad3[4];
1084
1085	/*
1086	 * The tail region is 448 bytes for a 512 byte dnode, and
1087	 * correspondingly larger for larger dnode sizes. The spill
1088	 * block pointer, when present, is always at the end of the tail
1089	 * region. There are three ways this space may be used, using
1090	 * a 512 byte dnode for this diagram:
1091	 *
1092	 * 0       64      128     192     256     320     384     448 (offset)
1093	 * +---------------+---------------+---------------+-------+
1094	 * | dn_blkptr[0]  | dn_blkptr[1]  | dn_blkptr[2]  | /     |
1095	 * +---------------+---------------+---------------+-------+
1096	 * | dn_blkptr[0]  | dn_bonus[0..319]                      |
1097	 * +---------------+-----------------------+---------------+
1098	 * | dn_blkptr[0]  | dn_bonus[0..191]      | dn_spill      |
1099	 * +---------------+-----------------------+---------------+
1100	 */
1101	union {
1102		blkptr_t dn_blkptr[1+DN_OLD_MAX_BONUSLEN/sizeof (blkptr_t)];
1103		struct {
1104			blkptr_t __dn_ignore1;
1105			uint8_t dn_bonus[DN_OLD_MAX_BONUSLEN];
1106		};
1107		struct {
1108			blkptr_t __dn_ignore2;
1109			uint8_t __dn_ignore3[DN_OLD_MAX_BONUSLEN -
1110			    sizeof (blkptr_t)];
1111			blkptr_t dn_spill;
1112		};
1113	};
1114} dnode_phys_t;
1115
1116#define	DN_SPILL_BLKPTR(dnp)	(blkptr_t *)((char *)(dnp) + \
1117	(((dnp)->dn_extra_slots + 1) << DNODE_SHIFT) - (1 << SPA_BLKPTRSHIFT))
1118
1119typedef enum dmu_object_byteswap {
1120	DMU_BSWAP_UINT8,
1121	DMU_BSWAP_UINT16,
1122	DMU_BSWAP_UINT32,
1123	DMU_BSWAP_UINT64,
1124	DMU_BSWAP_ZAP,
1125	DMU_BSWAP_DNODE,
1126	DMU_BSWAP_OBJSET,
1127	DMU_BSWAP_ZNODE,
1128	DMU_BSWAP_OLDACL,
1129	DMU_BSWAP_ACL,
1130	/*
1131	 * Allocating a new byteswap type number makes the on-disk format
1132	 * incompatible with any other format that uses the same number.
1133	 *
1134	 * Data can usually be structured to work with one of the
1135	 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types.
1136	 */
1137	DMU_BSWAP_NUMFUNCS
1138} dmu_object_byteswap_t;
1139
1140#define	DMU_OT_NEWTYPE 0x80
1141#define	DMU_OT_METADATA 0x40
1142#define	DMU_OT_BYTESWAP_MASK 0x3f
1143
1144/*
1145 * Defines a uint8_t object type. Object types specify if the data
1146 * in the object is metadata (boolean) and how to byteswap the data
1147 * (dmu_object_byteswap_t).
1148 */
1149#define	DMU_OT(byteswap, metadata) \
1150	(DMU_OT_NEWTYPE | \
1151	((metadata) ? DMU_OT_METADATA : 0) | \
1152	((byteswap) & DMU_OT_BYTESWAP_MASK))
1153
1154typedef enum dmu_object_type {
1155	DMU_OT_NONE,
1156	/* general: */
1157	DMU_OT_OBJECT_DIRECTORY,	/* ZAP */
1158	DMU_OT_OBJECT_ARRAY,		/* UINT64 */
1159	DMU_OT_PACKED_NVLIST,		/* UINT8 (XDR by nvlist_pack/unpack) */
1160	DMU_OT_PACKED_NVLIST_SIZE,	/* UINT64 */
1161	DMU_OT_BPOBJ,			/* UINT64 */
1162	DMU_OT_BPOBJ_HDR,		/* UINT64 */
1163	/* spa: */
1164	DMU_OT_SPACE_MAP_HEADER,	/* UINT64 */
1165	DMU_OT_SPACE_MAP,		/* UINT64 */
1166	/* zil: */
1167	DMU_OT_INTENT_LOG,		/* UINT64 */
1168	/* dmu: */
1169	DMU_OT_DNODE,			/* DNODE */
1170	DMU_OT_OBJSET,			/* OBJSET */
1171	/* dsl: */
1172	DMU_OT_DSL_DIR,			/* UINT64 */
1173	DMU_OT_DSL_DIR_CHILD_MAP,	/* ZAP */
1174	DMU_OT_DSL_DS_SNAP_MAP,		/* ZAP */
1175	DMU_OT_DSL_PROPS,		/* ZAP */
1176	DMU_OT_DSL_DATASET,		/* UINT64 */
1177	/* zpl: */
1178	DMU_OT_ZNODE,			/* ZNODE */
1179	DMU_OT_OLDACL,			/* Old ACL */
1180	DMU_OT_PLAIN_FILE_CONTENTS,	/* UINT8 */
1181	DMU_OT_DIRECTORY_CONTENTS,	/* ZAP */
1182	DMU_OT_MASTER_NODE,		/* ZAP */
1183	DMU_OT_UNLINKED_SET,		/* ZAP */
1184	/* zvol: */
1185	DMU_OT_ZVOL,			/* UINT8 */
1186	DMU_OT_ZVOL_PROP,		/* ZAP */
1187	/* other; for testing only! */
1188	DMU_OT_PLAIN_OTHER,		/* UINT8 */
1189	DMU_OT_UINT64_OTHER,		/* UINT64 */
1190	DMU_OT_ZAP_OTHER,		/* ZAP */
1191	/* new object types: */
1192	DMU_OT_ERROR_LOG,		/* ZAP */
1193	DMU_OT_SPA_HISTORY,		/* UINT8 */
1194	DMU_OT_SPA_HISTORY_OFFSETS,	/* spa_his_phys_t */
1195	DMU_OT_POOL_PROPS,		/* ZAP */
1196	DMU_OT_DSL_PERMS,		/* ZAP */
1197	DMU_OT_ACL,			/* ACL */
1198	DMU_OT_SYSACL,			/* SYSACL */
1199	DMU_OT_FUID,			/* FUID table (Packed NVLIST UINT8) */
1200	DMU_OT_FUID_SIZE,		/* FUID table size UINT64 */
1201	DMU_OT_NEXT_CLONES,		/* ZAP */
1202	DMU_OT_SCAN_QUEUE,		/* ZAP */
1203	DMU_OT_USERGROUP_USED,		/* ZAP */
1204	DMU_OT_USERGROUP_QUOTA,		/* ZAP */
1205	DMU_OT_USERREFS,		/* ZAP */
1206	DMU_OT_DDT_ZAP,			/* ZAP */
1207	DMU_OT_DDT_STATS,		/* ZAP */
1208	DMU_OT_SA,			/* System attr */
1209	DMU_OT_SA_MASTER_NODE,		/* ZAP */
1210	DMU_OT_SA_ATTR_REGISTRATION,	/* ZAP */
1211	DMU_OT_SA_ATTR_LAYOUTS,		/* ZAP */
1212	DMU_OT_SCAN_XLATE,		/* ZAP */
1213	DMU_OT_DEDUP,			/* fake dedup BP from ddt_bp_create() */
1214	DMU_OT_DEADLIST,		/* ZAP */
1215	DMU_OT_DEADLIST_HDR,		/* UINT64 */
1216	DMU_OT_DSL_CLONES,		/* ZAP */
1217	DMU_OT_BPOBJ_SUBOBJ,		/* UINT64 */
1218	DMU_OT_NUMTYPES,
1219
1220	/*
1221	 * Names for valid types declared with DMU_OT().
1222	 */
1223	DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE),
1224	DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE),
1225	DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE),
1226	DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE),
1227	DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE),
1228	DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE),
1229	DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE),
1230	DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE),
1231	DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE),
1232	DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE)
1233} dmu_object_type_t;
1234
1235typedef enum dmu_objset_type {
1236	DMU_OST_NONE,
1237	DMU_OST_META,
1238	DMU_OST_ZFS,
1239	DMU_OST_ZVOL,
1240	DMU_OST_OTHER,			/* For testing only! */
1241	DMU_OST_ANY,			/* Be careful! */
1242	DMU_OST_NUMTYPES
1243} dmu_objset_type_t;
1244
1245#define	ZAP_MAXVALUELEN	(1024 * 8)
1246
1247/*
1248 * header for all bonus and spill buffers.
1249 * The header has a fixed portion with a variable number
1250 * of "lengths" depending on the number of variable sized
1251 * attribues which are determined by the "layout number"
1252 */
1253
1254#define	SA_MAGIC	0x2F505A  /* ZFS SA */
1255typedef struct sa_hdr_phys {
1256	uint32_t sa_magic;
1257	uint16_t sa_layout_info;  /* Encoded with hdrsize and layout number */
1258	uint16_t sa_lengths[1];	/* optional sizes for variable length attrs */
1259	/* ... Data follows the lengths.  */
1260} sa_hdr_phys_t;
1261
1262/*
1263 * sa_hdr_phys -> sa_layout_info
1264 *
1265 * 16      10       0
1266 * +--------+-------+
1267 * | hdrsz  |layout |
1268 * +--------+-------+
1269 *
1270 * Bits 0-10 are the layout number
1271 * Bits 11-16 are the size of the header.
1272 * The hdrsize is the number * 8
1273 *
1274 * For example.
1275 * hdrsz of 1 ==> 8 byte header
1276 *          2 ==> 16 byte header
1277 *
1278 */
1279
1280#define	SA_HDR_LAYOUT_NUM(hdr) BF32_GET(hdr->sa_layout_info, 0, 10)
1281#define	SA_HDR_SIZE(hdr) BF32_GET_SB(hdr->sa_layout_info, 10, 16, 3, 0)
1282#define	SA_HDR_LAYOUT_INFO_ENCODE(x, num, size) \
1283{ \
1284	BF32_SET_SB(x, 10, 6, 3, 0, size); \
1285	BF32_SET(x, 0, 10, num); \
1286}
1287
1288#define	SA_ATTR_BSWAP(x)	BF32_GET(x, 16, 8)
1289#define	SA_ATTR_LENGTH(x)	BF32_GET(x, 24, 16)
1290#define	SA_ATTR_NUM(x)		BF32_GET(x, 0, 16)
1291#define	SA_ATTR_ENCODE(x, attr, length, bswap) \
1292{ \
1293	BF64_SET(x, 24, 16, length); \
1294	BF64_SET(x, 16, 8, bswap); \
1295	BF64_SET(x, 0, 16, attr); \
1296}
1297
1298#define	SA_MODE_OFFSET		0
1299#define	SA_SIZE_OFFSET		8
1300#define	SA_GEN_OFFSET		16
1301#define	SA_UID_OFFSET		24
1302#define	SA_GID_OFFSET		32
1303#define	SA_PARENT_OFFSET	40
1304#define	SA_SYMLINK_OFFSET	160
1305
1306#define	SA_REGISTRY	"REGISTRY"
1307#define	SA_LAYOUTS	"LAYOUTS"
1308
1309typedef enum sa_bswap_type {
1310	SA_UINT64_ARRAY,
1311	SA_UINT32_ARRAY,
1312	SA_UINT16_ARRAY,
1313	SA_UINT8_ARRAY,
1314	SA_ACL,
1315} sa_bswap_type_t;
1316
1317typedef uint16_t	sa_attr_type_t;
1318
1319#define	ZIO_OBJSET_MAC_LEN		32
1320
1321/*
1322 * Intent log header - this on disk structure holds fields to manage
1323 * the log.  All fields are 64 bit to easily handle cross architectures.
1324 */
1325typedef struct zil_header {
1326	uint64_t zh_claim_txg;	/* txg in which log blocks were claimed */
1327	uint64_t zh_replay_seq;	/* highest replayed sequence number */
1328	blkptr_t zh_log;	/* log chain */
1329	uint64_t zh_claim_seq;	/* highest claimed sequence number */
1330	uint64_t zh_pad[5];
1331} zil_header_t;
1332
1333#define	OBJSET_PHYS_SIZE_V2 2048
1334#define	OBJSET_PHYS_SIZE_V3 4096
1335
1336typedef struct objset_phys {
1337	dnode_phys_t os_meta_dnode;
1338	zil_header_t os_zil_header;
1339	uint64_t os_type;
1340	uint64_t os_flags;
1341	uint8_t os_portable_mac[ZIO_OBJSET_MAC_LEN];
1342	uint8_t os_local_mac[ZIO_OBJSET_MAC_LEN];
1343	char os_pad0[OBJSET_PHYS_SIZE_V2 - sizeof (dnode_phys_t)*3 -
1344		sizeof (zil_header_t) - sizeof (uint64_t)*2 -
1345		2*ZIO_OBJSET_MAC_LEN];
1346	dnode_phys_t os_userused_dnode;
1347	dnode_phys_t os_groupused_dnode;
1348	dnode_phys_t os_projectused_dnode;
1349	char os_pad1[OBJSET_PHYS_SIZE_V3 - OBJSET_PHYS_SIZE_V2 -
1350	    sizeof (dnode_phys_t)];
1351} objset_phys_t;
1352
1353typedef struct space_map_phys {
1354	/* object number: not needed but kept for backwards compatibility */
1355	uint64_t	smp_object;
1356
1357	/* length of the object in bytes */
1358	uint64_t	smp_length;
1359
1360	/* space allocated from the map */
1361	int64_t		smp_alloc;
1362} space_map_phys_t;
1363
1364typedef enum {
1365	SM_ALLOC,
1366	SM_FREE
1367} maptype_t;
1368
1369/* one-word entry constants */
1370#define	SM_DEBUG_PREFIX	2
1371#define	SM_OFFSET_BITS	47
1372#define	SM_RUN_BITS	15
1373
1374/* two-word entry constants */
1375#define	SM2_PREFIX	3
1376#define	SM2_OFFSET_BITS	63
1377#define	SM2_RUN_BITS	36
1378
1379#define	SM_PREFIX_DECODE(x)	BF64_DECODE(x, 62, 2)
1380#define	SM_PREFIX_ENCODE(x)	BF64_ENCODE(x, 62, 2)
1381
1382#define	SM_DEBUG_ACTION_DECODE(x)	BF64_DECODE(x, 60, 2)
1383#define	SM_DEBUG_ACTION_ENCODE(x)	BF64_ENCODE(x, 60, 2)
1384#define	SM_DEBUG_SYNCPASS_DECODE(x)	BF64_DECODE(x, 50, 10)
1385#define	SM_DEBUG_SYNCPASS_ENCODE(x)	BF64_ENCODE(x, 50, 10)
1386#define	SM_DEBUG_TXG_DECODE(x)		BF64_DECODE(x, 0, 50)
1387#define	SM_DEBUG_TXG_ENCODE(x)		BF64_ENCODE(x, 0, 50)
1388
1389#define	SM_OFFSET_DECODE(x)	BF64_DECODE(x, 16, SM_OFFSET_BITS)
1390#define	SM_OFFSET_ENCODE(x)	BF64_ENCODE(x, 16, SM_OFFSET_BITS)
1391#define	SM_TYPE_DECODE(x)	BF64_DECODE(x, 15, 1)
1392#define	SM_TYPE_ENCODE(x)	BF64_ENCODE(x, 15, 1)
1393#define	SM_RUN_DECODE(x)	(BF64_DECODE(x, 0, SM_RUN_BITS) + 1)
1394#define	SM_RUN_ENCODE(x)	BF64_ENCODE((x) - 1, 0, SM_RUN_BITS)
1395#define	SM_RUN_MAX		SM_RUN_DECODE(~0ULL)
1396#define	SM_OFFSET_MAX		SM_OFFSET_DECODE(~0ULL)
1397
1398#define	SM2_RUN_DECODE(x)	(BF64_DECODE(x, 24, SM2_RUN_BITS) + 1)
1399#define	SM2_RUN_ENCODE(x)	BF64_ENCODE((x) - 1, 24, SM2_RUN_BITS)
1400#define	SM2_VDEV_DECODE(x)	BF64_DECODE(x, 0, 24)
1401#define	SM2_VDEV_ENCODE(x)	BF64_ENCODE(x, 0, 24)
1402#define	SM2_TYPE_DECODE(x)	BF64_DECODE(x, SM2_OFFSET_BITS, 1)
1403#define	SM2_TYPE_ENCODE(x)	BF64_ENCODE(x, SM2_OFFSET_BITS, 1)
1404#define	SM2_OFFSET_DECODE(x)	BF64_DECODE(x, 0, SM2_OFFSET_BITS)
1405#define	SM2_OFFSET_ENCODE(x)	BF64_ENCODE(x, 0, SM2_OFFSET_BITS)
1406#define	SM2_RUN_MAX		SM2_RUN_DECODE(~0ULL)
1407#define	SM2_OFFSET_MAX		SM2_OFFSET_DECODE(~0ULL)
1408
1409typedef enum dd_used {
1410	DD_USED_HEAD,
1411	DD_USED_SNAP,
1412	DD_USED_CHILD,
1413	DD_USED_CHILD_RSRV,
1414	DD_USED_REFRSRV,
1415	DD_USED_NUM
1416} dd_used_t;
1417
1418#define	DD_FLAG_USED_BREAKDOWN (1 << 0)
1419
1420typedef struct dsl_dir_phys {
1421	uint64_t dd_creation_time; /* not actually used */
1422	uint64_t dd_head_dataset_obj;
1423	uint64_t dd_parent_obj;
1424	uint64_t dd_clone_parent_obj;
1425	uint64_t dd_child_dir_zapobj;
1426	/*
1427	 * how much space our children are accounting for; for leaf
1428	 * datasets, == physical space used by fs + snaps
1429	 */
1430	uint64_t dd_used_bytes;
1431	uint64_t dd_compressed_bytes;
1432	uint64_t dd_uncompressed_bytes;
1433	/* Administrative quota setting */
1434	uint64_t dd_quota;
1435	/* Administrative reservation setting */
1436	uint64_t dd_reserved;
1437	uint64_t dd_props_zapobj;
1438	uint64_t dd_pad[1];
1439	uint64_t dd_flags;
1440	uint64_t dd_used_breakdown[DD_USED_NUM];
1441	uint64_t dd_clones;
1442	uint64_t dd_pad1[13]; /* pad out to 256 bytes for good measure */
1443} dsl_dir_phys_t;
1444
1445typedef struct dsl_dataset_phys {
1446	uint64_t ds_dir_obj;
1447	uint64_t ds_prev_snap_obj;
1448	uint64_t ds_prev_snap_txg;
1449	uint64_t ds_next_snap_obj;
1450	uint64_t ds_snapnames_zapobj;	/* zap obj of snaps; ==0 for snaps */
1451	uint64_t ds_num_children;	/* clone/snap children; ==0 for head */
1452	uint64_t ds_creation_time;	/* seconds since 1970 */
1453	uint64_t ds_creation_txg;
1454	uint64_t ds_deadlist_obj;
1455	uint64_t ds_used_bytes;
1456	uint64_t ds_compressed_bytes;
1457	uint64_t ds_uncompressed_bytes;
1458	uint64_t ds_unique_bytes;	/* only relevant to snapshots */
1459	/*
1460	 * The ds_fsid_guid is a 56-bit ID that can change to avoid
1461	 * collisions.  The ds_guid is a 64-bit ID that will never
1462	 * change, so there is a small probability that it will collide.
1463	 */
1464	uint64_t ds_fsid_guid;
1465	uint64_t ds_guid;
1466	uint64_t ds_flags;
1467	blkptr_t ds_bp;
1468	uint64_t ds_next_clones_obj;	/* DMU_OT_DSL_CLONES */
1469	uint64_t ds_props_obj;		/* DMU_OT_DSL_PROPS for snaps */
1470	uint64_t ds_userrefs_obj;	/* DMU_OT_USERREFS */
1471	uint64_t ds_pad[5]; /* pad out to 320 bytes for good measure */
1472} dsl_dataset_phys_t;
1473
1474typedef struct dsl_deadlist_phys {
1475	uint64_t dl_used;
1476	uint64_t dl_comp;
1477	uint64_t dl_uncomp;
1478	uint64_t dl_pad[37]; /* pad out to 320b for future expansion */
1479} dsl_deadlist_phys_t;
1480
1481#define	BPOBJ_SIZE_V2	(6 * sizeof (uint64_t))
1482
1483typedef struct bpobj_phys {
1484	uint64_t	bpo_num_blkptrs;
1485	uint64_t	bpo_bytes;
1486	uint64_t	bpo_comp;
1487	uint64_t	bpo_uncomp;
1488	uint64_t	bpo_subobjs;
1489	uint64_t	bpo_num_subobjs;
1490	uint64_t	bpo_num_freed;
1491} bpobj_phys_t;
1492
1493/*
1494 * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
1495 */
1496#define	DMU_POOL_DIRECTORY_OBJECT	1
1497#define	DMU_POOL_CONFIG			"config"
1498#define	DMU_POOL_FEATURES_FOR_READ	"features_for_read"
1499#define	DMU_POOL_FEATURES_FOR_WRITE	"features_for_write"
1500#define	DMU_POOL_FEATURE_DESCRIPTIONS	"feature_descriptions"
1501#define	DMU_POOL_ROOT_DATASET		"root_dataset"
1502#define	DMU_POOL_SYNC_BPLIST		"sync_bplist"
1503#define	DMU_POOL_ERRLOG_SCRUB		"errlog_scrub"
1504#define	DMU_POOL_ERRLOG_LAST		"errlog_last"
1505#define	DMU_POOL_SPARES			"spares"
1506#define	DMU_POOL_DEFLATE		"deflate"
1507#define	DMU_POOL_HISTORY		"history"
1508#define	DMU_POOL_PROPS			"pool_props"
1509#define	DMU_POOL_FREE_BPOBJ		"free_bpobj"
1510#define	DMU_POOL_BPTREE_OBJ		"bptree_obj"
1511#define	DMU_POOL_EMPTY_BPOBJ		"empty_bpobj"
1512#define	DMU_POOL_TMP_USERREFS		"tmp_userrefs"
1513#define	DMU_POOL_CHECKSUM_SALT		"org.illumos:checksum_salt"
1514#define	DMU_POOL_REMOVING		"com.delphix:removing"
1515#define	DMU_POOL_OBSOLETE_BPOBJ		"com.delphix:obsolete_bpobj"
1516#define	DMU_POOL_CONDENSING_INDIRECT	"com.delphix:condensing_indirect"
1517#define	DMU_POOL_ZPOOL_CHECKPOINT       "com.delphix:zpool_checkpoint"
1518
1519#define	ZAP_MAGIC 0x2F52AB2ABULL
1520
1521#define	FZAP_BLOCK_SHIFT(zap)	((zap)->zap_block_shift)
1522
1523#define	ZAP_MAXCD		(uint32_t)(-1)
1524#define	ZAP_HASHBITS		28
1525#define	MZAP_ENT_LEN		64
1526#define	MZAP_ENT_MAX		\
1527	((MZAP_MAX_BLKSZ - sizeof(mzap_phys_t)) / sizeof(mzap_ent_phys_t) + 1)
1528#define	MZAP_NAME_LEN		(MZAP_ENT_LEN - 8 - 4 - 2)
1529#define	MZAP_MAX_BLKSZ		SPA_OLDMAXBLOCKSIZE
1530
1531typedef struct mzap_ent_phys {
1532	uint64_t mze_value;
1533	uint32_t mze_cd;
1534	uint16_t mze_pad;	/* in case we want to chain them someday */
1535	char mze_name[MZAP_NAME_LEN];
1536} mzap_ent_phys_t;
1537
1538typedef struct mzap_phys {
1539	uint64_t mz_block_type;	/* ZBT_MICRO */
1540	uint64_t mz_salt;
1541	uint64_t mz_normflags;
1542	uint64_t mz_pad[5];
1543	mzap_ent_phys_t mz_chunk[1];
1544	/* actually variable size depending on block size */
1545} mzap_phys_t;
1546
1547/*
1548 * The (fat) zap is stored in one object. It is an array of
1549 * 1<<FZAP_BLOCK_SHIFT byte blocks. The layout looks like one of:
1550 *
1551 * ptrtbl fits in first block:
1552 * 	[zap_phys_t zap_ptrtbl_shift < 6] [zap_leaf_t] ...
1553 *
1554 * ptrtbl too big for first block:
1555 * 	[zap_phys_t zap_ptrtbl_shift >= 6] [zap_leaf_t] [ptrtbl] ...
1556 *
1557 */
1558
1559#define	ZBT_LEAF		((1ULL << 63) + 0)
1560#define	ZBT_HEADER		((1ULL << 63) + 1)
1561#define	ZBT_MICRO		((1ULL << 63) + 3)
1562/* any other values are ptrtbl blocks */
1563
1564/*
1565 * the embedded pointer table takes up half a block:
1566 * block size / entry size (2^3) / 2
1567 */
1568#define	ZAP_EMBEDDED_PTRTBL_SHIFT(zap) (FZAP_BLOCK_SHIFT(zap) - 3 - 1)
1569
1570/*
1571 * The embedded pointer table starts half-way through the block.  Since
1572 * the pointer table itself is half the block, it starts at (64-bit)
1573 * word number (1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)).
1574 */
1575#define	ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) \
1576	((uint64_t *)(zap)->zap_phys) \
1577	[(idx) + (1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap))]
1578
1579#define	ZAP_HASH_IDX(hash, n)	(((n) == 0) ? 0 : ((hash) >> (64 - (n))))
1580
1581/*
1582 * TAKE NOTE:
1583 * If zap_phys_t is modified, zap_byteswap() must be modified.
1584 */
1585typedef struct zap_phys {
1586	uint64_t zap_block_type;	/* ZBT_HEADER */
1587	uint64_t zap_magic;		/* ZAP_MAGIC */
1588
1589	struct zap_table_phys {
1590		uint64_t zt_blk;	/* starting block number */
1591		uint64_t zt_numblks;	/* number of blocks */
1592		uint64_t zt_shift;	/* bits to index it */
1593		uint64_t zt_nextblk;	/* next (larger) copy start block */
1594		uint64_t zt_blks_copied; /* number source blocks copied */
1595	} zap_ptrtbl;
1596
1597	uint64_t zap_freeblk;		/* the next free block */
1598	uint64_t zap_num_leafs;		/* number of leafs */
1599	uint64_t zap_num_entries;	/* number of entries */
1600	uint64_t zap_salt;		/* salt to stir into hash function */
1601	uint64_t zap_normflags;		/* flags for u8_textprep_str() */
1602	uint64_t zap_flags;		/* zap_flags_t */
1603	/*
1604	 * This structure is followed by padding, and then the embedded
1605	 * pointer table.  The embedded pointer table takes up second
1606	 * half of the block.  It is accessed using the
1607	 * ZAP_EMBEDDED_PTRTBL_ENT() macro.
1608	 */
1609} zap_phys_t;
1610
1611typedef struct zap_table_phys zap_table_phys_t;
1612
1613struct spa;
1614typedef struct fat_zap {
1615	int zap_block_shift;			/* block size shift */
1616	zap_phys_t *zap_phys;
1617	const struct spa *zap_spa;
1618	const dnode_phys_t *zap_dnode;
1619} fat_zap_t;
1620
1621#define	ZAP_LEAF_MAGIC 0x2AB1EAF
1622
1623/* chunk size = 24 bytes */
1624#define	ZAP_LEAF_CHUNKSIZE 24
1625
1626/*
1627 * The amount of space available for chunks is:
1628 * block size (1<<l->l_bs) - hash entry size (2) * number of hash
1629 * entries - header space (2*chunksize)
1630 */
1631#define	ZAP_LEAF_NUMCHUNKS(l) \
1632	(((1<<(l)->l_bs) - 2*ZAP_LEAF_HASH_NUMENTRIES(l)) / \
1633	ZAP_LEAF_CHUNKSIZE - 2)
1634
1635/*
1636 * The amount of space within the chunk available for the array is:
1637 * chunk size - space for type (1) - space for next pointer (2)
1638 */
1639#define	ZAP_LEAF_ARRAY_BYTES (ZAP_LEAF_CHUNKSIZE - 3)
1640
1641#define	ZAP_LEAF_ARRAY_NCHUNKS(bytes) \
1642	(((bytes)+ZAP_LEAF_ARRAY_BYTES-1)/ZAP_LEAF_ARRAY_BYTES)
1643
1644/*
1645 * Low water mark:  when there are only this many chunks free, start
1646 * growing the ptrtbl.  Ideally, this should be larger than a
1647 * "reasonably-sized" entry.  20 chunks is more than enough for the
1648 * largest directory entry (MAXNAMELEN (256) byte name, 8-byte value),
1649 * while still being only around 3% for 16k blocks.
1650 */
1651#define	ZAP_LEAF_LOW_WATER (20)
1652
1653/*
1654 * The leaf hash table has block size / 2^5 (32) number of entries,
1655 * which should be more than enough for the maximum number of entries,
1656 * which is less than block size / CHUNKSIZE (24) / minimum number of
1657 * chunks per entry (3).
1658 */
1659#define	ZAP_LEAF_HASH_SHIFT(l) ((l)->l_bs - 5)
1660#define	ZAP_LEAF_HASH_NUMENTRIES(l) (1 << ZAP_LEAF_HASH_SHIFT(l))
1661
1662/*
1663 * The chunks start immediately after the hash table.  The end of the
1664 * hash table is at l_hash + HASH_NUMENTRIES, which we simply cast to a
1665 * chunk_t.
1666 */
1667#define	ZAP_LEAF_CHUNK(l, idx) \
1668	((zap_leaf_chunk_t *)(void *) \
1669	((l)->l_phys->l_hash + ZAP_LEAF_HASH_NUMENTRIES(l)))[idx]
1670#define	ZAP_LEAF_ENTRY(l, idx) (&ZAP_LEAF_CHUNK(l, idx).l_entry)
1671
1672#define	ZAP_LEAF_HASH(l, h) \
1673	((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \
1674	((h) >> \
1675	(64 - ZAP_LEAF_HASH_SHIFT(l) - (l)->l_phys->l_hdr.lh_prefix_len)))
1676#define	ZAP_LEAF_HASH_ENTPTR(l, h) (&(l)->l_phys->l_hash[ZAP_LEAF_HASH(l, h)])
1677
1678typedef enum zap_chunk_type {
1679	ZAP_CHUNK_FREE = 253,
1680	ZAP_CHUNK_ENTRY = 252,
1681	ZAP_CHUNK_ARRAY = 251,
1682	ZAP_CHUNK_TYPE_MAX = 250
1683} zap_chunk_type_t;
1684
1685/*
1686 * TAKE NOTE:
1687 * If zap_leaf_phys_t is modified, zap_leaf_byteswap() must be modified.
1688 */
1689typedef struct zap_leaf_phys {
1690	struct zap_leaf_header {
1691		uint64_t lh_block_type;		/* ZBT_LEAF */
1692		uint64_t lh_pad1;
1693		uint64_t lh_prefix;		/* hash prefix of this leaf */
1694		uint32_t lh_magic;		/* ZAP_LEAF_MAGIC */
1695		uint16_t lh_nfree;		/* number free chunks */
1696		uint16_t lh_nentries;		/* number of entries */
1697		uint16_t lh_prefix_len;		/* num bits used to id this */
1698
1699/* above is accessable to zap, below is zap_leaf private */
1700
1701		uint16_t lh_freelist;		/* chunk head of free list */
1702		uint8_t lh_pad2[12];
1703	} l_hdr; /* 2 24-byte chunks */
1704
1705	/*
1706	 * The header is followed by a hash table with
1707	 * ZAP_LEAF_HASH_NUMENTRIES(zap) entries.  The hash table is
1708	 * followed by an array of ZAP_LEAF_NUMCHUNKS(zap)
1709	 * zap_leaf_chunk structures.  These structures are accessed
1710	 * with the ZAP_LEAF_CHUNK() macro.
1711	 */
1712
1713	uint16_t l_hash[1];
1714} zap_leaf_phys_t;
1715
1716typedef union zap_leaf_chunk {
1717	struct zap_leaf_entry {
1718		uint8_t le_type; 		/* always ZAP_CHUNK_ENTRY */
1719		uint8_t le_value_intlen;	/* size of ints */
1720		uint16_t le_next;		/* next entry in hash chain */
1721		uint16_t le_name_chunk;		/* first chunk of the name */
1722		uint16_t le_name_numints;	/* bytes in name, incl null */
1723		uint16_t le_value_chunk;	/* first chunk of the value */
1724		uint16_t le_value_numints;	/* value length in ints */
1725		uint32_t le_cd;			/* collision differentiator */
1726		uint64_t le_hash;		/* hash value of the name */
1727	} l_entry;
1728	struct zap_leaf_array {
1729		uint8_t la_type;		/* always ZAP_CHUNK_ARRAY */
1730		uint8_t la_array[ZAP_LEAF_ARRAY_BYTES];
1731		uint16_t la_next;		/* next blk or CHAIN_END */
1732	} l_array;
1733	struct zap_leaf_free {
1734		uint8_t lf_type;		/* always ZAP_CHUNK_FREE */
1735		uint8_t lf_pad[ZAP_LEAF_ARRAY_BYTES];
1736		uint16_t lf_next;	/* next in free list, or CHAIN_END */
1737	} l_free;
1738} zap_leaf_chunk_t;
1739
1740typedef struct zap_leaf {
1741	int l_bs;			/* block size shift */
1742	zap_leaf_phys_t *l_phys;
1743} zap_leaf_t;
1744
1745#define	ZAP_MAXNAMELEN 256
1746#define	ZAP_MAXVALUELEN (1024 * 8)
1747
1748#define	ACE_READ_DATA		0x00000001	/* file: read data */
1749#define	ACE_LIST_DIRECTORY	0x00000001	/* dir: list files */
1750#define	ACE_WRITE_DATA		0x00000002	/* file: write data */
1751#define	ACE_ADD_FILE		0x00000002	/* dir: create file */
1752#define	ACE_APPEND_DATA		0x00000004	/* file: append data */
1753#define	ACE_ADD_SUBDIRECTORY	0x00000004	/* dir: create subdir */
1754#define	ACE_READ_NAMED_ATTRS	0x00000008	/* FILE_READ_EA */
1755#define	ACE_WRITE_NAMED_ATTRS	0x00000010	/* FILE_WRITE_EA */
1756#define	ACE_EXECUTE		0x00000020	/* file: execute */
1757#define	ACE_TRAVERSE		0x00000020	/* dir: lookup name */
1758#define	ACE_DELETE_CHILD	0x00000040	/* dir: unlink child */
1759#define	ACE_READ_ATTRIBUTES	0x00000080	/* (all) stat, etc. */
1760#define	ACE_WRITE_ATTRIBUTES	0x00000100	/* (all) utimes, etc. */
1761#define	ACE_DELETE		0x00010000	/* (all) unlink self */
1762#define	ACE_READ_ACL		0x00020000	/* (all) getsecattr */
1763#define	ACE_WRITE_ACL		0x00040000	/* (all) setsecattr */
1764#define	ACE_WRITE_OWNER		0x00080000	/* (all) chown */
1765#define	ACE_SYNCHRONIZE		0x00100000	/* (all) */
1766
1767#define	ACE_FILE_INHERIT_ACE		0x0001
1768#define	ACE_DIRECTORY_INHERIT_ACE	0x0002
1769#define	ACE_NO_PROPAGATE_INHERIT_ACE	0x0004
1770#define	ACE_INHERIT_ONLY_ACE		0x0008
1771#define	ACE_SUCCESSFUL_ACCESS_ACE_FLAG	0x0010
1772#define	ACE_FAILED_ACCESS_ACE_FLAG	0x0020
1773#define	ACE_IDENTIFIER_GROUP		0x0040
1774#define	ACE_INHERITED_ACE		0x0080
1775#define	ACE_OWNER			0x1000
1776#define	ACE_GROUP			0x2000
1777#define	ACE_EVERYONE			0x4000
1778
1779#define	ACE_ACCESS_ALLOWED_ACE_TYPE	0x0000
1780#define	ACE_ACCESS_DENIED_ACE_TYPE	0x0001
1781#define	ACE_SYSTEM_AUDIT_ACE_TYPE	0x0002
1782#define	ACE_SYSTEM_ALARM_ACE_TYPE	0x0003
1783
1784typedef struct zfs_ace_hdr {
1785	uint16_t z_type;
1786	uint16_t z_flags;
1787	uint32_t z_access_mask;
1788} zfs_ace_hdr_t;
1789
1790/*
1791 * Define special zfs pflags
1792 */
1793#define	ZFS_XATTR		0x1		/* is an extended attribute */
1794#define	ZFS_INHERIT_ACE		0x2		/* ace has inheritable ACEs */
1795#define	ZFS_ACL_TRIVIAL		0x4		/* files ACL is trivial */
1796#define	ZFS_ACL_OBJ_ACE		0x8		/* ACL has CMPLX Object ACE */
1797#define	ZFS_ACL_PROTECTED	0x10		/* ACL protected */
1798#define	ZFS_ACL_DEFAULTED	0x20		/* ACL should be defaulted */
1799#define	ZFS_ACL_AUTO_INHERIT	0x40		/* ACL should be inherited */
1800#define	ZFS_BONUS_SCANSTAMP	0x80		/* Scanstamp in bonus area */
1801#define	ZFS_NO_EXECS_DENIED	0x100		/* exec was given to everyone */
1802
1803#define	ZFS_READONLY		0x0000000100000000ull
1804#define	ZFS_HIDDEN		0x0000000200000000ull
1805#define	ZFS_SYSTEM		0x0000000400000000ull
1806#define	ZFS_ARCHIVE		0x0000000800000000ull
1807#define	ZFS_IMMUTABLE		0x0000001000000000ull
1808#define	ZFS_NOUNLINK		0x0000002000000000ull
1809#define	ZFS_APPENDONLY		0x0000004000000000ull
1810#define	ZFS_NODUMP		0x0000008000000000ull
1811#define	ZFS_OPAQUE		0x0000010000000000ull
1812#define	ZFS_AV_QUARANTINED	0x0000020000000000ull
1813#define	ZFS_AV_MODIFIED		0x0000040000000000ull
1814#define	ZFS_REPARSE		0x0000080000000000ull
1815#define	ZFS_OFFLINE		0x0000100000000000ull
1816#define	ZFS_SPARSE		0x0000200000000000ull
1817
1818#define	MASTER_NODE_OBJ	1
1819
1820/*
1821 * special attributes for master node.
1822 */
1823
1824#define	ZFS_FSID		"FSID"
1825#define	ZFS_UNLINKED_SET	"DELETE_QUEUE"
1826#define	ZFS_ROOT_OBJ		"ROOT"
1827#define	ZPL_VERSION_OBJ		"VERSION"
1828#define	ZFS_PROP_BLOCKPERPAGE	"BLOCKPERPAGE"
1829#define	ZFS_PROP_NOGROWBLOCKS	"NOGROWBLOCKS"
1830#define	ZFS_SA_ATTRS		"SA_ATTRS"
1831
1832#define	ZFS_FLAG_BLOCKPERPAGE	0x1
1833#define	ZFS_FLAG_NOGROWBLOCKS	0x2
1834
1835/*
1836 * ZPL version - rev'd whenever an incompatible on-disk format change
1837 * occurs.  Independent of SPA/DMU/ZAP versioning.
1838 */
1839
1840#define	ZPL_VERSION		1ULL
1841
1842/*
1843 * The directory entry has the type (currently unused on Solaris) in the
1844 * top 4 bits, and the object number in the low 48 bits.  The "middle"
1845 * 12 bits are unused.
1846 */
1847#define	ZFS_DIRENT_TYPE(de) BF64_GET(de, 60, 4)
1848#define	ZFS_DIRENT_OBJ(de) BF64_GET(de, 0, 48)
1849#define	ZFS_DIRENT_MAKE(type, obj) (((uint64_t)type << 60) | obj)
1850
1851typedef struct ace {
1852	uid_t		a_who;		/* uid or gid */
1853	uint32_t	a_access_mask;	/* read,write,... */
1854	uint16_t	a_flags;	/* see below */
1855	uint16_t	a_type;		/* allow or deny */
1856} ace_t;
1857
1858#define ACE_SLOT_CNT	6
1859
1860typedef struct zfs_znode_acl {
1861	uint64_t	z_acl_extern_obj;	  /* ext acl pieces */
1862	uint32_t	z_acl_count;		  /* Number of ACEs */
1863	uint16_t	z_acl_version;		  /* acl version */
1864	uint16_t	z_acl_pad;		  /* pad */
1865	ace_t		z_ace_data[ACE_SLOT_CNT]; /* 6 standard ACEs */
1866} zfs_znode_acl_t;
1867
1868/*
1869 * This is the persistent portion of the znode.  It is stored
1870 * in the "bonus buffer" of the file.  Short symbolic links
1871 * are also stored in the bonus buffer.
1872 */
1873typedef struct znode_phys {
1874	uint64_t zp_atime[2];		/*  0 - last file access time */
1875	uint64_t zp_mtime[2];		/* 16 - last file modification time */
1876	uint64_t zp_ctime[2];		/* 32 - last file change time */
1877	uint64_t zp_crtime[2];		/* 48 - creation time */
1878	uint64_t zp_gen;		/* 64 - generation (txg of creation) */
1879	uint64_t zp_mode;		/* 72 - file mode bits */
1880	uint64_t zp_size;		/* 80 - size of file */
1881	uint64_t zp_parent;		/* 88 - directory parent (`..') */
1882	uint64_t zp_links;		/* 96 - number of links to file */
1883	uint64_t zp_xattr;		/* 104 - DMU object for xattrs */
1884	uint64_t zp_rdev;		/* 112 - dev_t for VBLK & VCHR files */
1885	uint64_t zp_flags;		/* 120 - persistent flags */
1886	uint64_t zp_uid;		/* 128 - file owner */
1887	uint64_t zp_gid;		/* 136 - owning group */
1888	uint64_t zp_pad[4];		/* 144 - future */
1889	zfs_znode_acl_t zp_acl;		/* 176 - 263 ACL */
1890	/*
1891	 * Data may pad out any remaining bytes in the znode buffer, eg:
1892	 *
1893	 * |<---------------------- dnode_phys (512) ------------------------>|
1894	 * |<-- dnode (192) --->|<----------- "bonus" buffer (320) ---------->|
1895	 *			|<---- znode (264) ---->|<---- data (56) ---->|
1896	 *
1897	 * At present, we only use this space to store symbolic links.
1898	 */
1899} znode_phys_t;
1900
1901/*
1902 * In-core vdev representation.
1903 */
1904struct vdev;
1905struct spa;
1906typedef int vdev_phys_read_t(struct vdev *, void *, off_t, void *, size_t);
1907typedef int vdev_phys_write_t(struct vdev *, off_t, void *, size_t);
1908typedef int vdev_read_t(struct vdev *, const blkptr_t *, void *, off_t, size_t);
1909
1910typedef STAILQ_HEAD(vdev_list, vdev) vdev_list_t;
1911
1912typedef struct vdev_indirect_mapping_entry_phys {
1913	/*
1914	 * Decode with DVA_MAPPING_* macros.
1915	 * Contains:
1916	 *   the source offset (low 63 bits)
1917	 *   the one-bit "mark", used for garbage collection (by zdb)
1918	 */
1919	uint64_t vimep_src;
1920
1921	/*
1922	 * Note: the DVA's asize is 24 bits, and can thus store ranges
1923	 * up to 8GB.
1924	 */
1925	dva_t	vimep_dst;
1926} vdev_indirect_mapping_entry_phys_t;
1927
1928#define	DVA_MAPPING_GET_SRC_OFFSET(vimep)	\
1929	BF64_GET_SB((vimep)->vimep_src, 0, 63, SPA_MINBLOCKSHIFT, 0)
1930#define	DVA_MAPPING_SET_SRC_OFFSET(vimep, x)	\
1931	BF64_SET_SB((vimep)->vimep_src, 0, 63, SPA_MINBLOCKSHIFT, 0, x)
1932
1933/*
1934 * This is stored in the bonus buffer of the mapping object, see comment of
1935 * vdev_indirect_config for more details.
1936 */
1937typedef struct vdev_indirect_mapping_phys {
1938	uint64_t	vimp_max_offset;
1939	uint64_t	vimp_bytes_mapped;
1940	uint64_t	vimp_num_entries; /* number of v_i_m_entry_phys_t's */
1941
1942	/*
1943	 * For each entry in the mapping object, this object contains an
1944	 * entry representing the number of bytes of that mapping entry
1945	 * that were no longer in use by the pool at the time this indirect
1946	 * vdev was last condensed.
1947	 */
1948	uint64_t	vimp_counts_object;
1949} vdev_indirect_mapping_phys_t;
1950
1951#define	VDEV_INDIRECT_MAPPING_SIZE_V0	(3 * sizeof (uint64_t))
1952
1953typedef struct vdev_indirect_mapping {
1954	uint64_t	vim_object;
1955	boolean_t	vim_havecounts;
1956
1957	/* vim_entries segment offset currently in memory. */
1958	uint64_t	vim_entry_offset;
1959	/* vim_entries segment size. */
1960	size_t		vim_num_entries;
1961
1962	/* Needed by dnode_read() */
1963	const void	*vim_spa;
1964	dnode_phys_t	*vim_dn;
1965
1966	/*
1967	 * An ordered array of mapping entries, sorted by source offset.
1968	 * Note that vim_entries is needed during a removal (and contains
1969	 * mappings that have been synced to disk so far) to handle frees
1970	 * from the removing device.
1971	 */
1972	vdev_indirect_mapping_entry_phys_t *vim_entries;
1973	objset_phys_t	*vim_objset;
1974	vdev_indirect_mapping_phys_t	*vim_phys;
1975} vdev_indirect_mapping_t;
1976
1977/*
1978 * On-disk indirect vdev state.
1979 *
1980 * An indirect vdev is described exclusively in the MOS config of a pool.
1981 * The config for an indirect vdev includes several fields, which are
1982 * accessed in memory by a vdev_indirect_config_t.
1983 */
1984typedef struct vdev_indirect_config {
1985	/*
1986	 * Object (in MOS) which contains the indirect mapping. This object
1987	 * contains an array of vdev_indirect_mapping_entry_phys_t ordered by
1988	 * vimep_src. The bonus buffer for this object is a
1989	 * vdev_indirect_mapping_phys_t. This object is allocated when a vdev
1990	 * removal is initiated.
1991	 *
1992	 * Note that this object can be empty if none of the data on the vdev
1993	 * has been copied yet.
1994	 */
1995	uint64_t	vic_mapping_object;
1996
1997	/*
1998	 * Object (in MOS) which contains the birth times for the mapping
1999	 * entries. This object contains an array of
2000	 * vdev_indirect_birth_entry_phys_t sorted by vibe_offset. The bonus
2001	 * buffer for this object is a vdev_indirect_birth_phys_t. This object
2002	 * is allocated when a vdev removal is initiated.
2003	 *
2004	 * Note that this object can be empty if none of the vdev has yet been
2005	 * copied.
2006	 */
2007	uint64_t	vic_births_object;
2008
2009/*
2010 * This is the vdev ID which was removed previous to this vdev, or
2011 * UINT64_MAX if there are no previously removed vdevs.
2012 */
2013	uint64_t	vic_prev_indirect_vdev;
2014} vdev_indirect_config_t;
2015
2016typedef struct vdev {
2017	STAILQ_ENTRY(vdev) v_childlink;	/* link in parent's child list */
2018	STAILQ_ENTRY(vdev) v_alllink;	/* link in global vdev list */
2019	vdev_list_t	v_children;	/* children of this vdev */
2020	const char	*v_name;	/* vdev name */
2021	uint64_t	v_guid;		/* vdev guid */
2022	uint64_t	v_id;		/* index in parent */
2023	uint64_t	v_psize;	/* physical device capacity */
2024	int		v_ashift;	/* offset to block shift */
2025	int		v_nparity;	/* # parity for raidz */
2026	struct vdev	*v_top;		/* parent vdev */
2027	size_t		v_nchildren;	/* # children */
2028	vdev_state_t	v_state;	/* current state */
2029	vdev_phys_read_t *v_phys_read;	/* read from raw leaf vdev */
2030	vdev_phys_write_t *v_phys_write; /* write to raw leaf vdev */
2031	vdev_read_t	*v_read;	/* read from vdev */
2032	void		*v_priv;	/* data for read/write function */
2033	boolean_t	v_islog;
2034	struct spa	*v_spa;		/* link to spa */
2035	/*
2036	 * Values stored in the config for an indirect or removing vdev.
2037	 */
2038	vdev_indirect_config_t vdev_indirect_config;
2039	vdev_indirect_mapping_t *v_mapping;
2040} vdev_t;
2041
2042/*
2043 * In-core pool representation.
2044 */
2045typedef STAILQ_HEAD(spa_list, spa) spa_list_t;
2046
2047typedef struct spa {
2048	STAILQ_ENTRY(spa) spa_link;	/* link in global pool list */
2049	char		*spa_name;	/* pool name */
2050	uint64_t	spa_guid;	/* pool guid */
2051	uint64_t	spa_txg;	/* most recent transaction */
2052	struct uberblock *spa_uberblock;	/* best uberblock so far */
2053	vdev_t		*spa_root_vdev;	/* toplevel vdev container */
2054	objset_phys_t	*spa_mos;	/* MOS for this pool */
2055	zio_cksum_salt_t spa_cksum_salt;	/* secret salt for cksum */
2056	void		*spa_cksum_tmpls[ZIO_CHECKSUM_FUNCTIONS];
2057	boolean_t	spa_with_log;	/* this pool has log */
2058
2059	struct uberblock spa_uberblock_master;	/* best uberblock so far */
2060	objset_phys_t	spa_mos_master;		/* MOS for this pool */
2061	struct uberblock spa_uberblock_checkpoint; /* checkpoint uberblock */
2062	objset_phys_t	spa_mos_checkpoint;	/* Checkpoint MOS */
2063	void		*spa_bootenv;		/* bootenv from pool label */
2064} spa_t;
2065
2066/* IO related arguments. */
2067typedef struct zio {
2068	spa_t		*io_spa;
2069	blkptr_t	*io_bp;
2070	void		*io_data;
2071	uint64_t	io_size;
2072	uint64_t	io_offset;
2073
2074	/* Stuff for the vdev stack */
2075	vdev_t		*io_vd;
2076	void		*io_vsd;
2077
2078	int		io_error;
2079} zio_t;
2080
2081extern void decode_embedded_bp_compressed(const blkptr_t *, void *);
2082
2083#endif /* _ZFSIMPL_H_ */
2084