1/*-
2 * Copyright (c) 1998 Michael Smith <msmith@freebsd.org>
3 * Copyright (c) 1998 Peter Wemm <peter@freebsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/param.h>
29#include <sys/endian.h>
30#include <sys/exec.h>
31#include <sys/linker.h>
32#include <sys/module.h>
33#include <sys/stdint.h>
34#include <string.h>
35#include <machine/elf.h>
36#include <stand.h>
37#include <sys/link_elf.h>
38
39#include "bootstrap.h"
40
41#define COPYOUT(s,d,l)	archsw.arch_copyout((vm_offset_t)(s), d, l)
42
43#if defined(__i386__) && __ELF_WORD_SIZE == 64
44#undef ELF_TARG_CLASS
45#undef ELF_TARG_MACH
46#define ELF_TARG_CLASS  ELFCLASS64
47#define ELF_TARG_MACH   EM_X86_64
48#endif
49
50typedef struct elf_file {
51	Elf_Phdr	*ph;
52	Elf_Ehdr	*ehdr;
53	Elf_Sym		*symtab;
54	Elf_Hashelt	*hashtab;
55	Elf_Hashelt	nbuckets;
56	Elf_Hashelt	nchains;
57	Elf_Hashelt	*buckets;
58	Elf_Hashelt	*chains;
59	Elf_Rel	*rel;
60	size_t	relsz;
61	Elf_Rela	*rela;
62	size_t	relasz;
63	char	*strtab;
64	size_t	strsz;
65	int		fd;
66	caddr_t	firstpage;
67	size_t	firstlen;
68	int		kernel;
69	uint64_t	off;
70#ifdef LOADER_VERIEXEC_VECTX
71	struct vectx	*vctx;
72#endif
73} *elf_file_t;
74
75#ifdef LOADER_VERIEXEC_VECTX
76#define VECTX_HANDLE(ef) (ef)->vctx
77#else
78#define VECTX_HANDLE(ef) (ef)->fd
79#endif
80
81static int __elfN(loadimage)(struct preloaded_file *mp, elf_file_t ef,
82    uint64_t loadaddr);
83static int __elfN(lookup_symbol)(elf_file_t ef, const char* name,
84    Elf_Sym *sym, unsigned char type);
85static int __elfN(reloc_ptr)(struct preloaded_file *mp, elf_file_t ef,
86    Elf_Addr p, void *val, size_t len);
87static int __elfN(parse_modmetadata)(struct preloaded_file *mp, elf_file_t ef,
88    Elf_Addr p_start, Elf_Addr p_end);
89static symaddr_fn __elfN(symaddr);
90static char	*fake_modname(const char *name);
91
92const char	*__elfN(kerneltype) = "elf kernel";
93const char	*__elfN(moduletype) = "elf module";
94
95uint64_t	__elfN(relocation_offset) = 0;
96
97#ifdef __powerpc__
98extern void elf_wrong_field_size(void);
99#define CONVERT_FIELD(b, f, e)			\
100	switch (sizeof((b)->f)) {		\
101	case 2:					\
102		(b)->f = e ## 16toh((b)->f);	\
103		break;				\
104	case 4:					\
105		(b)->f = e ## 32toh((b)->f);	\
106		break;				\
107	case 8:					\
108		(b)->f = e ## 64toh((b)->f);	\
109		break;				\
110	default:				\
111		/* Force a link time error. */	\
112		elf_wrong_field_size();		\
113		break;				\
114	}
115
116#define CONVERT_SWITCH(h, d, f)			\
117	switch ((h)->e_ident[EI_DATA]) {	\
118	case ELFDATA2MSB:			\
119		f(d, be);			\
120		break;				\
121	case ELFDATA2LSB:			\
122		f(d, le);			\
123		break;				\
124	default:				\
125		return (EINVAL);		\
126	}
127
128
129static int elf_header_convert(Elf_Ehdr *ehdr)
130{
131	/*
132	 * Fixup ELF header endianness.
133	 *
134	 * The Xhdr structure was loaded using block read call to optimize file
135	 * accesses. It might happen, that the endianness of the system memory
136	 * is different that endianness of the ELF header.  Swap fields here to
137	 * guarantee that Xhdr always contain valid data regardless of
138	 * architecture.
139	 */
140#define HEADER_FIELDS(b, e)			\
141	CONVERT_FIELD(b, e_type, e);		\
142	CONVERT_FIELD(b, e_machine, e);		\
143	CONVERT_FIELD(b, e_version, e);		\
144	CONVERT_FIELD(b, e_entry, e);		\
145	CONVERT_FIELD(b, e_phoff, e);		\
146	CONVERT_FIELD(b, e_shoff, e);		\
147	CONVERT_FIELD(b, e_flags, e);		\
148	CONVERT_FIELD(b, e_ehsize, e);		\
149	CONVERT_FIELD(b, e_phentsize, e);	\
150	CONVERT_FIELD(b, e_phnum, e);		\
151	CONVERT_FIELD(b, e_shentsize, e);	\
152	CONVERT_FIELD(b, e_shnum, e);		\
153	CONVERT_FIELD(b, e_shstrndx, e)
154
155	CONVERT_SWITCH(ehdr, ehdr, HEADER_FIELDS);
156
157#undef HEADER_FIELDS
158
159	return (0);
160}
161
162static int elf_program_header_convert(const Elf_Ehdr *ehdr, Elf_Phdr *phdr)
163{
164#define PROGRAM_HEADER_FIELDS(b, e)		\
165	CONVERT_FIELD(b, p_type, e);		\
166	CONVERT_FIELD(b, p_flags, e);		\
167	CONVERT_FIELD(b, p_offset, e);		\
168	CONVERT_FIELD(b, p_vaddr, e);		\
169	CONVERT_FIELD(b, p_paddr, e);		\
170	CONVERT_FIELD(b, p_filesz, e);		\
171	CONVERT_FIELD(b, p_memsz, e);		\
172	CONVERT_FIELD(b, p_align, e)
173
174	CONVERT_SWITCH(ehdr, phdr, PROGRAM_HEADER_FIELDS);
175
176#undef PROGRAM_HEADER_FIELDS
177
178	return (0);
179}
180
181static int elf_section_header_convert(const Elf_Ehdr *ehdr, Elf_Shdr *shdr)
182{
183#define SECTION_HEADER_FIELDS(b, e)		\
184	CONVERT_FIELD(b, sh_name, e);		\
185	CONVERT_FIELD(b, sh_type, e);		\
186	CONVERT_FIELD(b, sh_link, e);		\
187	CONVERT_FIELD(b, sh_info, e);		\
188	CONVERT_FIELD(b, sh_flags, e);		\
189	CONVERT_FIELD(b, sh_addr, e);		\
190	CONVERT_FIELD(b, sh_offset, e);		\
191	CONVERT_FIELD(b, sh_size, e);		\
192	CONVERT_FIELD(b, sh_addralign, e);	\
193	CONVERT_FIELD(b, sh_entsize, e)
194
195	CONVERT_SWITCH(ehdr, shdr, SECTION_HEADER_FIELDS);
196
197#undef SECTION_HEADER_FIELDS
198
199	return (0);
200}
201#undef CONVERT_SWITCH
202#undef CONVERT_FIELD
203#else
204static int elf_header_convert(Elf_Ehdr *ehdr)
205{
206	return (0);
207}
208
209static int elf_program_header_convert(const Elf_Ehdr *ehdr, Elf_Phdr *phdr)
210{
211	return (0);
212}
213
214static int elf_section_header_convert(const Elf_Ehdr *ehdr, Elf_Shdr *shdr)
215{
216	return (0);
217}
218#endif
219
220#ifdef __amd64__
221static bool
222is_kernphys_relocatable(elf_file_t ef)
223{
224	Elf_Sym sym;
225
226	return (__elfN(lookup_symbol)(ef, "kernphys", &sym, STT_OBJECT) == 0);
227}
228#endif
229
230#ifdef __i386__
231static bool
232is_tg_kernel_support(struct preloaded_file *fp, elf_file_t ef)
233{
234	Elf_Sym		sym;
235	Elf_Addr	p_start, p_end, v, p;
236	char		vd_name[16];
237	int		error;
238
239	if (__elfN(lookup_symbol)(ef, "__start_set_vt_drv_set", &sym, STT_NOTYPE) != 0)
240		return (false);
241	p_start = sym.st_value + ef->off;
242	if (__elfN(lookup_symbol)(ef, "__stop_set_vt_drv_set", &sym, STT_NOTYPE) != 0)
243		return (false);
244	p_end = sym.st_value + ef->off;
245
246	/*
247	 * Walk through vt_drv_set, each vt driver structure starts with
248	 * static 16 chars for driver name. If we have "vbefb", return true.
249	 */
250	for (p = p_start; p < p_end; p += sizeof(Elf_Addr)) {
251		COPYOUT(p, &v, sizeof(v));
252
253		error = __elfN(reloc_ptr)(fp, ef, p, &v, sizeof(v));
254		if (error == EOPNOTSUPP)
255			v += ef->off;
256		else if (error != 0)
257			return (false);
258		COPYOUT(v, &vd_name, sizeof(vd_name));
259		if (strncmp(vd_name, "vbefb", sizeof(vd_name)) == 0)
260			return (true);
261	}
262
263	return (false);
264}
265#endif
266
267static int
268__elfN(load_elf_header)(char *filename, elf_file_t ef)
269{
270	ssize_t			 bytes_read;
271	Elf_Ehdr		*ehdr;
272	int			 err;
273
274	/*
275	 * Open the image, read and validate the ELF header
276	 */
277	if (filename == NULL)	/* can't handle nameless */
278		return (EFTYPE);
279	if ((ef->fd = open(filename, O_RDONLY)) == -1)
280		return (errno);
281	ef->firstpage = malloc(PAGE_SIZE);
282	if (ef->firstpage == NULL) {
283		close(ef->fd);
284		return (ENOMEM);
285	}
286	preload(ef->fd);
287#ifdef LOADER_VERIEXEC_VECTX
288	{
289		int verror;
290
291		ef->vctx = vectx_open(ef->fd, filename, 0L, NULL, &verror, __func__);
292		if (verror) {
293			printf("Unverified %s: %s\n", filename, ve_error_get());
294			close(ef->fd);
295			free(ef->vctx);
296			return (EAUTH);
297		}
298	}
299#endif
300	bytes_read = VECTX_READ(VECTX_HANDLE(ef), ef->firstpage, PAGE_SIZE);
301	ef->firstlen = (size_t)bytes_read;
302	if (bytes_read < 0 || ef->firstlen <= sizeof(Elf_Ehdr)) {
303		err = EFTYPE; /* could be EIO, but may be small file */
304		goto error;
305	}
306	ehdr = ef->ehdr = (Elf_Ehdr *)ef->firstpage;
307
308	/* Is it ELF? */
309	if (!IS_ELF(*ehdr)) {
310		err = EFTYPE;
311		goto error;
312	}
313
314	if (ehdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || /* Layout ? */
315	    ehdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
316	    ehdr->e_ident[EI_VERSION] != EV_CURRENT) /* Version ? */ {
317		err = EFTYPE;
318		goto error;
319	}
320
321	err = elf_header_convert(ehdr);
322	if (err)
323		goto error;
324
325	if (ehdr->e_version != EV_CURRENT || ehdr->e_machine != ELF_TARG_MACH) {
326		/* Machine ? */
327		err = EFTYPE;
328		goto error;
329	}
330
331#if defined(LOADER_VERIEXEC) && !defined(LOADER_VERIEXEC_VECTX)
332	if (verify_file(ef->fd, filename, bytes_read, VE_MUST, __func__) < 0) {
333		err = EAUTH;
334		goto error;
335	}
336#endif
337	return (0);
338
339error:
340	if (ef->firstpage != NULL) {
341		free(ef->firstpage);
342		ef->firstpage = NULL;
343	}
344	if (ef->fd != -1) {
345#ifdef LOADER_VERIEXEC_VECTX
346		free(ef->vctx);
347#endif
348		close(ef->fd);
349		ef->fd = -1;
350	}
351	return (err);
352}
353
354/*
355 * Attempt to load the file (file) as an ELF module.  It will be stored at
356 * (dest), and a pointer to a module structure describing the loaded object
357 * will be saved in (result).
358 */
359int
360__elfN(loadfile)(char *filename, uint64_t dest, struct preloaded_file **result)
361{
362	return (__elfN(loadfile_raw)(filename, dest, result, 0));
363}
364
365int
366__elfN(loadfile_raw)(char *filename, uint64_t dest,
367    struct preloaded_file **result, int multiboot)
368{
369	struct preloaded_file	*fp, *kfp;
370	struct elf_file		ef;
371	Elf_Ehdr		*ehdr;
372	int			err;
373
374	fp = NULL;
375	bzero(&ef, sizeof(struct elf_file));
376	ef.fd = -1;
377
378	err = __elfN(load_elf_header)(filename, &ef);
379	if (err != 0)
380		return (err);
381
382	ehdr = ef.ehdr;
383
384	/*
385	 * Check to see what sort of module we are.
386	 */
387	kfp = file_findfile(NULL, __elfN(kerneltype));
388#ifdef __powerpc__
389	/*
390	 * Kernels can be ET_DYN, so just assume the first loaded object is the
391	 * kernel. This assumption will be checked later.
392	 */
393	if (kfp == NULL)
394		ef.kernel = 1;
395#endif
396	if (ef.kernel || ehdr->e_type == ET_EXEC) {
397		/* Looks like a kernel */
398		if (kfp != NULL) {
399			printf("elf" __XSTRING(__ELF_WORD_SIZE)
400			    "_loadfile: kernel already loaded\n");
401			err = EPERM;
402			goto oerr;
403		}
404		/*
405		 * Calculate destination address based on kernel entrypoint.
406		 *
407		 * For ARM, the destination address is independent of any values
408		 * in the elf header (an ARM kernel can be loaded at any 2MB
409		 * boundary), so we leave dest set to the value calculated by
410		 * archsw.arch_loadaddr() and passed in to this function.
411		 */
412#ifndef __arm__
413		if (ehdr->e_type == ET_EXEC)
414			dest = (ehdr->e_entry & ~PAGE_MASK);
415#endif
416		if ((ehdr->e_entry & ~PAGE_MASK) == 0) {
417			printf("elf" __XSTRING(__ELF_WORD_SIZE)
418			    "_loadfile: not a kernel (maybe static binary?)\n");
419			err = EPERM;
420			goto oerr;
421		}
422		ef.kernel = 1;
423
424	} else if (ehdr->e_type == ET_DYN) {
425		/* Looks like a kld module */
426		if (multiboot != 0) {
427			printf("elf" __XSTRING(__ELF_WORD_SIZE)
428			    "_loadfile: can't load module as multiboot\n");
429			err = EPERM;
430			goto oerr;
431		}
432		if (kfp == NULL) {
433			printf("elf" __XSTRING(__ELF_WORD_SIZE)
434			    "_loadfile: can't load module before kernel\n");
435			err = EPERM;
436			goto oerr;
437		}
438		if (strcmp(__elfN(kerneltype), kfp->f_type)) {
439			printf("elf" __XSTRING(__ELF_WORD_SIZE)
440			 "_loadfile: can't load module with kernel type '%s'\n",
441			    kfp->f_type);
442			err = EPERM;
443			goto oerr;
444		}
445		/* Looks OK, got ahead */
446		ef.kernel = 0;
447
448	} else {
449		err = EFTYPE;
450		goto oerr;
451	}
452
453	if (archsw.arch_loadaddr != NULL)
454		dest = archsw.arch_loadaddr(LOAD_ELF, ehdr, dest);
455	else
456		dest = roundup(dest, PAGE_SIZE);
457
458	/*
459	 * Ok, we think we should handle this.
460	 */
461	fp = file_alloc();
462	if (fp == NULL) {
463		printf("elf" __XSTRING(__ELF_WORD_SIZE)
464		    "_loadfile: cannot allocate module info\n");
465		err = EPERM;
466		goto out;
467	}
468	if (ef.kernel == 1 && multiboot == 0)
469		setenv("kernelname", filename, 1);
470	fp->f_name = strdup(filename);
471	if (multiboot == 0)
472		fp->f_type = strdup(ef.kernel ?
473		    __elfN(kerneltype) : __elfN(moduletype));
474	else
475		fp->f_type = strdup("elf multiboot kernel");
476
477	if (module_verbose >= MODULE_VERBOSE_FULL) {
478		if (ef.kernel)
479			printf("%s entry at 0x%jx\n", filename,
480			    (uintmax_t)ehdr->e_entry);
481	} else if (module_verbose > MODULE_VERBOSE_SILENT)
482		printf("%s ", filename);
483
484	fp->f_size = __elfN(loadimage)(fp, &ef, dest);
485	if (fp->f_size == 0 || fp->f_addr == 0)
486		goto ioerr;
487
488	/* save exec header as metadata */
489	file_addmetadata(fp, MODINFOMD_ELFHDR, sizeof(*ehdr), ehdr);
490
491	/* Load OK, return module pointer */
492	*result = (struct preloaded_file *)fp;
493	err = 0;
494#ifdef __amd64__
495	fp->f_kernphys_relocatable = multiboot || is_kernphys_relocatable(&ef);
496#endif
497#ifdef __i386__
498	fp->f_tg_kernel_support = is_tg_kernel_support(fp, &ef);
499#endif
500	goto out;
501
502ioerr:
503	err = EIO;
504oerr:
505	file_discard(fp);
506out:
507	if (ef.firstpage)
508		free(ef.firstpage);
509	if (ef.fd != -1) {
510#ifdef LOADER_VERIEXEC_VECTX
511		if (!err && ef.vctx) {
512			int verror;
513
514			verror = vectx_close(ef.vctx, VE_MUST, __func__);
515			if (verror) {
516				err = EAUTH;
517				file_discard(fp);
518			}
519		}
520#endif
521		close(ef.fd);
522	}
523	return (err);
524}
525
526/*
527 * With the file (fd) open on the image, and (ehdr) containing
528 * the Elf header, load the image at (off)
529 */
530static int
531__elfN(loadimage)(struct preloaded_file *fp, elf_file_t ef, uint64_t off)
532{
533	int		i;
534	u_int		j;
535	Elf_Ehdr	*ehdr;
536	Elf_Phdr	*phdr, *php;
537	Elf_Shdr	*shdr;
538	char		*shstr;
539	int		ret;
540	vm_offset_t	firstaddr;
541	vm_offset_t	lastaddr;
542	size_t		chunk;
543	ssize_t		result;
544	Elf_Addr	ssym, esym;
545	Elf_Dyn		*dp;
546	Elf_Addr	adp;
547	Elf_Addr	ctors;
548	int		ndp;
549	int		symstrindex;
550	int		symtabindex;
551	Elf_Size	size;
552	u_int		fpcopy;
553	Elf_Sym		sym;
554	Elf_Addr	p_start, p_end;
555
556	dp = NULL;
557	shdr = NULL;
558	ret = 0;
559	firstaddr = lastaddr = 0;
560	ehdr = ef->ehdr;
561#ifdef __powerpc__
562	if (ef->kernel) {
563#else
564	if (ehdr->e_type == ET_EXEC) {
565#endif
566#if defined(__i386__) || defined(__amd64__)
567#if __ELF_WORD_SIZE == 64
568		/* x86_64 relocates after locore */
569		off = - (off & 0xffffffffff000000ull);
570#else
571		/* i386 relocates after locore */
572		off = - (off & 0xff000000u);
573#endif
574#elif defined(__powerpc__)
575		/*
576		 * On the purely virtual memory machines like e500, the kernel
577		 * is linked against its final VA range, which is most often
578		 * not available at the loader stage, but only after kernel
579		 * initializes and completes its VM settings. In such cases we
580		 * cannot use p_vaddr field directly to load ELF segments, but
581		 * put them at some 'load-time' locations.
582		 */
583		if (off & 0xf0000000u) {
584			off = -(off & 0xf0000000u);
585			/*
586			 * XXX the physical load address should not be
587			 * hardcoded. Note that the Book-E kernel assumes that
588			 * it's loaded at a 16MB boundary for now...
589			 */
590			off += 0x01000000;
591		}
592		ehdr->e_entry += off;
593		if (module_verbose >= MODULE_VERBOSE_FULL)
594			printf("Converted entry 0x%jx\n",
595			    (uintmax_t)ehdr->e_entry);
596
597#elif defined(__arm__) && !defined(EFI)
598		/*
599		 * The elf headers in arm kernels specify virtual addresses in
600		 * all header fields, even the ones that should be physical
601		 * addresses.  We assume the entry point is in the first page,
602		 * and masking the page offset will leave us with the virtual
603		 * address the kernel was linked at.  We subtract that from the
604		 * load offset, making 'off' into the value which, when added
605		 * to a virtual address in an elf header, translates it to a
606		 * physical address.  We do the va->pa conversion on the entry
607		 * point address in the header now, so that later we can launch
608		 * the kernel by just jumping to that address.
609		 *
610		 * When booting from UEFI the copyin and copyout functions
611		 * handle adjusting the location relative to the first virtual
612		 * address.  Because of this there is no need to adjust the
613		 * offset or entry point address as these will both be handled
614		 * by the efi code.
615		 */
616		off -= ehdr->e_entry & ~PAGE_MASK;
617		ehdr->e_entry += off;
618		if (module_verbose >= MODULE_VERBOSE_FULL)
619			printf("ehdr->e_entry 0x%jx, va<->pa off %llx\n",
620			    (uintmax_t)ehdr->e_entry, off);
621#else
622		off = 0;	/* other archs use direct mapped kernels */
623#endif
624	}
625	ef->off = off;
626
627	if (ef->kernel)
628		__elfN(relocation_offset) = off;
629
630	if ((ehdr->e_phoff + ehdr->e_phnum * sizeof(*phdr)) > ef->firstlen) {
631		printf("elf" __XSTRING(__ELF_WORD_SIZE)
632		    "_loadimage: program header not within first page\n");
633		goto out;
634	}
635	phdr = (Elf_Phdr *)(ef->firstpage + ehdr->e_phoff);
636
637	for (i = 0; i < ehdr->e_phnum; i++) {
638		if (elf_program_header_convert(ehdr, phdr))
639			continue;
640
641		/* We want to load PT_LOAD segments only.. */
642		if (phdr[i].p_type != PT_LOAD)
643			continue;
644
645		if (module_verbose >= MODULE_VERBOSE_FULL) {
646			printf("Segment: 0x%lx@0x%lx -> 0x%lx-0x%lx",
647			    (long)phdr[i].p_filesz, (long)phdr[i].p_offset,
648			    (long)(phdr[i].p_vaddr + off),
649			    (long)(phdr[i].p_vaddr + off + phdr[i].p_memsz - 1));
650		} else if (module_verbose > MODULE_VERBOSE_SILENT) {
651			if ((phdr[i].p_flags & PF_W) == 0) {
652				printf("text=0x%lx ", (long)phdr[i].p_filesz);
653			} else {
654				printf("data=0x%lx", (long)phdr[i].p_filesz);
655				if (phdr[i].p_filesz < phdr[i].p_memsz)
656					printf("+0x%lx", (long)(phdr[i].p_memsz -
657						phdr[i].p_filesz));
658				printf(" ");
659			}
660		}
661		fpcopy = 0;
662		if (ef->firstlen > phdr[i].p_offset) {
663			fpcopy = ef->firstlen - phdr[i].p_offset;
664			archsw.arch_copyin(ef->firstpage + phdr[i].p_offset,
665			    phdr[i].p_vaddr + off, fpcopy);
666		}
667		if (phdr[i].p_filesz > fpcopy) {
668			if (kern_pread(VECTX_HANDLE(ef),
669			    phdr[i].p_vaddr + off + fpcopy,
670			    phdr[i].p_filesz - fpcopy,
671			    phdr[i].p_offset + fpcopy) != 0) {
672				printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
673				    "_loadimage: read failed\n");
674				goto out;
675			}
676		}
677		/* clear space from oversized segments; eg: bss */
678		if (phdr[i].p_filesz < phdr[i].p_memsz) {
679			if (module_verbose >= MODULE_VERBOSE_FULL) {
680				printf(" (bss: 0x%lx-0x%lx)",
681				    (long)(phdr[i].p_vaddr + off + phdr[i].p_filesz),
682				    (long)(phdr[i].p_vaddr + off + phdr[i].p_memsz -1));
683			}
684			kern_bzero(phdr[i].p_vaddr + off + phdr[i].p_filesz,
685			    phdr[i].p_memsz - phdr[i].p_filesz);
686		}
687		if (module_verbose >= MODULE_VERBOSE_FULL)
688			printf("\n");
689
690		if (archsw.arch_loadseg != NULL)
691			archsw.arch_loadseg(ehdr, phdr + i, off);
692
693		if (firstaddr == 0 || firstaddr > (phdr[i].p_vaddr + off))
694			firstaddr = phdr[i].p_vaddr + off;
695		if (lastaddr == 0 || lastaddr <
696		    (phdr[i].p_vaddr + off + phdr[i].p_memsz))
697			lastaddr = phdr[i].p_vaddr + off + phdr[i].p_memsz;
698	}
699	lastaddr = roundup(lastaddr, sizeof(long));
700
701	/*
702	 * Get the section headers.  We need this for finding the .ctors
703	 * section as well as for loading any symbols.  Both may be hard
704	 * to do if reading from a .gz file as it involves seeking.  I
705	 * think the rule is going to have to be that you must strip a
706	 * file to remove symbols before gzipping it.
707	 */
708	chunk = (size_t)ehdr->e_shnum * (size_t)ehdr->e_shentsize;
709	if (chunk == 0 || ehdr->e_shoff == 0)
710		goto nosyms;
711	shdr = alloc_pread(VECTX_HANDLE(ef), ehdr->e_shoff, chunk);
712	if (shdr == NULL) {
713		printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
714		    "_loadimage: failed to read section headers");
715		goto nosyms;
716	}
717
718	for (i = 0; i < ehdr->e_shnum; i++)
719		elf_section_header_convert(ehdr, &shdr[i]);
720
721	file_addmetadata(fp, MODINFOMD_SHDR, chunk, shdr);
722
723	/*
724	 * Read the section string table and look for the .ctors section.
725	 * We need to tell the kernel where it is so that it can call the
726	 * ctors.
727	 */
728	chunk = shdr[ehdr->e_shstrndx].sh_size;
729	if (chunk) {
730		shstr = alloc_pread(VECTX_HANDLE(ef),
731		    shdr[ehdr->e_shstrndx].sh_offset, chunk);
732		if (shstr) {
733			for (i = 0; i < ehdr->e_shnum; i++) {
734				if (strcmp(shstr + shdr[i].sh_name,
735				    ".ctors") != 0)
736					continue;
737				ctors = shdr[i].sh_addr;
738				file_addmetadata(fp, MODINFOMD_CTORS_ADDR,
739				    sizeof(ctors), &ctors);
740				size = shdr[i].sh_size;
741				file_addmetadata(fp, MODINFOMD_CTORS_SIZE,
742				    sizeof(size), &size);
743				break;
744			}
745			free(shstr);
746		}
747	}
748
749	/*
750	 * Now load any symbols.
751	 */
752	symtabindex = -1;
753	symstrindex = -1;
754	for (i = 0; i < ehdr->e_shnum; i++) {
755		if (shdr[i].sh_type != SHT_SYMTAB)
756			continue;
757		for (j = 0; j < ehdr->e_phnum; j++) {
758			if (phdr[j].p_type != PT_LOAD)
759				continue;
760			if (shdr[i].sh_offset >= phdr[j].p_offset &&
761			    (shdr[i].sh_offset + shdr[i].sh_size <=
762			    phdr[j].p_offset + phdr[j].p_filesz)) {
763				shdr[i].sh_offset = 0;
764				shdr[i].sh_size = 0;
765				break;
766			}
767		}
768		if (shdr[i].sh_offset == 0 || shdr[i].sh_size == 0)
769			continue;	/* alread loaded in a PT_LOAD above */
770		/* Save it for loading below */
771		symtabindex = i;
772		symstrindex = shdr[i].sh_link;
773	}
774	if (symtabindex < 0 || symstrindex < 0)
775		goto nosyms;
776
777	/* Ok, committed to a load. */
778	if (module_verbose >= MODULE_VERBOSE_FULL)
779		printf("syms=[");
780	ssym = lastaddr;
781	for (i = symtabindex; i >= 0; i = symstrindex) {
782		char	*secname;
783
784		switch(shdr[i].sh_type) {
785		case SHT_SYMTAB:		/* Symbol table */
786			secname = "symtab";
787			break;
788		case SHT_STRTAB:		/* String table */
789			secname = "strtab";
790			break;
791		default:
792			secname = "WHOA!!";
793			break;
794		}
795		size = shdr[i].sh_size;
796
797		archsw.arch_copyin(&size, lastaddr, sizeof(size));
798		lastaddr += sizeof(size);
799
800		if (module_verbose >= MODULE_VERBOSE_FULL) {
801			printf("\n%s: 0x%jx@0x%jx -> 0x%jx-0x%jx", secname,
802			    (uintmax_t)shdr[i].sh_size, (uintmax_t)shdr[i].sh_offset,
803			    (uintmax_t)lastaddr,
804			    (uintmax_t)(lastaddr + shdr[i].sh_size));
805		} else if (module_verbose > MODULE_VERBOSE_SILENT) {
806			if (i == symstrindex)
807				printf("+");
808			printf("0x%lx+0x%lx", (long)sizeof(size), (long)size);
809		}
810		if (VECTX_LSEEK(VECTX_HANDLE(ef), (off_t)shdr[i].sh_offset, SEEK_SET) == -1) {
811			printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
812			   "_loadimage: could not seek for symbols - skipped!");
813			lastaddr = ssym;
814			ssym = 0;
815			goto nosyms;
816		}
817		result = archsw.arch_readin(VECTX_HANDLE(ef), lastaddr, shdr[i].sh_size);
818		if (result < 0 || (size_t)result != shdr[i].sh_size) {
819			printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
820			    "_loadimage: could not read symbols - skipped! "
821			    "(%ju != %ju)", (uintmax_t)result,
822			    (uintmax_t)shdr[i].sh_size);
823			lastaddr = ssym;
824			ssym = 0;
825			goto nosyms;
826		}
827		/* Reset offsets relative to ssym */
828		lastaddr += shdr[i].sh_size;
829		lastaddr = roundup(lastaddr, sizeof(size));
830		if (i == symtabindex)
831			symtabindex = -1;
832		else if (i == symstrindex)
833			symstrindex = -1;
834	}
835	esym = lastaddr;
836	if (module_verbose >= MODULE_VERBOSE_FULL)
837		printf("]");
838
839	file_addmetadata(fp, MODINFOMD_SSYM, sizeof(ssym), &ssym);
840	file_addmetadata(fp, MODINFOMD_ESYM, sizeof(esym), &esym);
841
842nosyms:
843	if (module_verbose > MODULE_VERBOSE_SILENT)
844		printf("\n");
845
846	ret = lastaddr - firstaddr;
847	fp->f_addr = firstaddr;
848
849	php = NULL;
850	for (i = 0; i < ehdr->e_phnum; i++) {
851		if (phdr[i].p_type == PT_DYNAMIC) {
852			php = phdr + i;
853			adp = php->p_vaddr;
854			file_addmetadata(fp, MODINFOMD_DYNAMIC, sizeof(adp),
855			    &adp);
856			break;
857		}
858	}
859
860	if (php == NULL) /* this is bad, we cannot get to symbols or _DYNAMIC */
861		goto out;
862
863	ndp = php->p_filesz / sizeof(Elf_Dyn);
864	if (ndp == 0)
865		goto out;
866	dp = malloc(php->p_filesz);
867	if (dp == NULL)
868		goto out;
869	archsw.arch_copyout(php->p_vaddr + off, dp, php->p_filesz);
870
871	ef->strsz = 0;
872	for (i = 0; i < ndp; i++) {
873		if (dp[i].d_tag == 0)
874			break;
875		switch (dp[i].d_tag) {
876		case DT_HASH:
877			ef->hashtab =
878			    (Elf_Hashelt*)(uintptr_t)(dp[i].d_un.d_ptr + off);
879			break;
880		case DT_STRTAB:
881			ef->strtab =
882			    (char *)(uintptr_t)(dp[i].d_un.d_ptr + off);
883			break;
884		case DT_STRSZ:
885			ef->strsz = dp[i].d_un.d_val;
886			break;
887		case DT_SYMTAB:
888			ef->symtab =
889			    (Elf_Sym *)(uintptr_t)(dp[i].d_un.d_ptr + off);
890			break;
891		case DT_REL:
892			ef->rel =
893			    (Elf_Rel *)(uintptr_t)(dp[i].d_un.d_ptr + off);
894			break;
895		case DT_RELSZ:
896			ef->relsz = dp[i].d_un.d_val;
897			break;
898		case DT_RELA:
899			ef->rela =
900			    (Elf_Rela *)(uintptr_t)(dp[i].d_un.d_ptr + off);
901			break;
902		case DT_RELASZ:
903			ef->relasz = dp[i].d_un.d_val;
904			break;
905		default:
906			break;
907		}
908	}
909	if (ef->hashtab == NULL || ef->symtab == NULL ||
910	    ef->strtab == NULL || ef->strsz == 0)
911		goto out;
912	COPYOUT(ef->hashtab, &ef->nbuckets, sizeof(ef->nbuckets));
913	COPYOUT(ef->hashtab + 1, &ef->nchains, sizeof(ef->nchains));
914	ef->buckets = ef->hashtab + 2;
915	ef->chains = ef->buckets + ef->nbuckets;
916
917	if (__elfN(lookup_symbol)(ef, "__start_set_modmetadata_set", &sym,
918	    STT_NOTYPE) != 0)
919		return 0;
920	p_start = sym.st_value + ef->off;
921	if (__elfN(lookup_symbol)(ef, "__stop_set_modmetadata_set", &sym,
922	    STT_NOTYPE) != 0)
923		return 0;
924	p_end = sym.st_value + ef->off;
925
926	if (__elfN(parse_modmetadata)(fp, ef, p_start, p_end) == 0)
927		goto out;
928
929	if (ef->kernel)		/* kernel must not depend on anything */
930		goto out;
931
932out:
933	if (dp)
934		free(dp);
935	if (shdr)
936		free(shdr);
937	return ret;
938}
939
940static char invalid_name[] = "bad";
941
942char *
943fake_modname(const char *name)
944{
945	const char *sp, *ep;
946	char *fp;
947	size_t len;
948
949	sp = strrchr(name, '/');
950	if (sp)
951		sp++;
952	else
953		sp = name;
954
955	ep = strrchr(sp, '.');
956	if (ep == NULL) {
957		ep = sp + strlen(sp);
958	}
959	if (ep == sp) {
960		sp = invalid_name;
961		ep = invalid_name + sizeof(invalid_name) - 1;
962	}
963
964	len = ep - sp;
965	fp = malloc(len + 1);
966	if (fp == NULL)
967		return NULL;
968	memcpy(fp, sp, len);
969	fp[len] = '\0';
970	return fp;
971}
972
973#if (defined(__i386__) || defined(__powerpc__)) && __ELF_WORD_SIZE == 64
974struct mod_metadata64 {
975	int		md_version;	/* structure version MDTV_* */
976	int		md_type;	/* type of entry MDT_* */
977	uint64_t	md_data;	/* specific data */
978	uint64_t	md_cval;	/* common string label */
979};
980#endif
981#if defined(__amd64__) && __ELF_WORD_SIZE == 32
982struct mod_metadata32 {
983	int		md_version;	/* structure version MDTV_* */
984	int		md_type;	/* type of entry MDT_* */
985	uint32_t	md_data;	/* specific data */
986	uint32_t	md_cval;	/* common string label */
987};
988#endif
989
990int
991__elfN(load_modmetadata)(struct preloaded_file *fp, uint64_t dest)
992{
993	struct elf_file		 ef;
994	int			 err, i, j;
995	Elf_Shdr		*sh_meta, *shdr = NULL;
996	Elf_Shdr		*sh_data[2];
997	char			*shstrtab = NULL;
998	size_t			 size;
999	Elf_Addr		 p_start, p_end;
1000
1001	bzero(&ef, sizeof(struct elf_file));
1002	ef.fd = -1;
1003
1004	err = __elfN(load_elf_header)(fp->f_name, &ef);
1005	if (err != 0)
1006		goto out;
1007
1008	if (ef.kernel == 1 || ef.ehdr->e_type == ET_EXEC) {
1009		ef.kernel = 1;
1010	} else if (ef.ehdr->e_type != ET_DYN) {
1011		err = EFTYPE;
1012		goto out;
1013	}
1014
1015	size = (size_t)ef.ehdr->e_shnum * (size_t)ef.ehdr->e_shentsize;
1016	shdr = alloc_pread(VECTX_HANDLE(&ef), ef.ehdr->e_shoff, size);
1017	if (shdr == NULL) {
1018		err = ENOMEM;
1019		goto out;
1020	}
1021
1022	/* Load shstrtab. */
1023	shstrtab = alloc_pread(VECTX_HANDLE(&ef), shdr[ef.ehdr->e_shstrndx].sh_offset,
1024	    shdr[ef.ehdr->e_shstrndx].sh_size);
1025	if (shstrtab == NULL) {
1026		printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
1027		    "load_modmetadata: unable to load shstrtab\n");
1028		err = EFTYPE;
1029		goto out;
1030	}
1031
1032	/* Find set_modmetadata_set and data sections. */
1033	sh_data[0] = sh_data[1] = sh_meta = NULL;
1034	for (i = 0, j = 0; i < ef.ehdr->e_shnum; i++) {
1035		if (strcmp(&shstrtab[shdr[i].sh_name],
1036		    "set_modmetadata_set") == 0) {
1037			sh_meta = &shdr[i];
1038		}
1039		if ((strcmp(&shstrtab[shdr[i].sh_name], ".data") == 0) ||
1040		    (strcmp(&shstrtab[shdr[i].sh_name], ".rodata") == 0)) {
1041			sh_data[j++] = &shdr[i];
1042		}
1043	}
1044	if (sh_meta == NULL || sh_data[0] == NULL || sh_data[1] == NULL) {
1045		printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
1046    "load_modmetadata: unable to find set_modmetadata_set or data sections\n");
1047		err = EFTYPE;
1048		goto out;
1049	}
1050
1051	/* Load set_modmetadata_set into memory */
1052	err = kern_pread(VECTX_HANDLE(&ef), dest, sh_meta->sh_size, sh_meta->sh_offset);
1053	if (err != 0) {
1054		printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
1055    "load_modmetadata: unable to load set_modmetadata_set: %d\n", err);
1056		goto out;
1057	}
1058	p_start = dest;
1059	p_end = dest + sh_meta->sh_size;
1060	dest += sh_meta->sh_size;
1061
1062	/* Load data sections into memory. */
1063	err = kern_pread(VECTX_HANDLE(&ef), dest, sh_data[0]->sh_size,
1064	    sh_data[0]->sh_offset);
1065	if (err != 0) {
1066		printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
1067		    "load_modmetadata: unable to load data: %d\n", err);
1068		goto out;
1069	}
1070
1071	/*
1072	 * We have to increment the dest, so that the offset is the same into
1073	 * both the .rodata and .data sections.
1074	 */
1075	ef.off = -(sh_data[0]->sh_addr - dest);
1076	dest +=	(sh_data[1]->sh_addr - sh_data[0]->sh_addr);
1077
1078	err = kern_pread(VECTX_HANDLE(&ef), dest, sh_data[1]->sh_size,
1079	    sh_data[1]->sh_offset);
1080	if (err != 0) {
1081		printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
1082		    "load_modmetadata: unable to load data: %d\n", err);
1083		goto out;
1084	}
1085
1086	err = __elfN(parse_modmetadata)(fp, &ef, p_start, p_end);
1087	if (err != 0) {
1088		printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
1089		    "load_modmetadata: unable to parse metadata: %d\n", err);
1090		goto out;
1091	}
1092
1093out:
1094	if (shstrtab != NULL)
1095		free(shstrtab);
1096	if (shdr != NULL)
1097		free(shdr);
1098	if (ef.firstpage != NULL)
1099		free(ef.firstpage);
1100	if (ef.fd != -1) {
1101#ifdef LOADER_VERIEXEC_VECTX
1102		if (!err && ef.vctx) {
1103			int verror;
1104
1105			verror = vectx_close(ef.vctx, VE_MUST, __func__);
1106			if (verror) {
1107				err = EAUTH;
1108				file_discard(fp);
1109			}
1110		}
1111#endif
1112		close(ef.fd);
1113	}
1114	return (err);
1115}
1116
1117int
1118__elfN(parse_modmetadata)(struct preloaded_file *fp, elf_file_t ef,
1119    Elf_Addr p_start, Elf_Addr p_end)
1120{
1121	struct mod_metadata md;
1122#if (defined(__i386__) || defined(__powerpc__)) && __ELF_WORD_SIZE == 64
1123	struct mod_metadata64 md64;
1124#elif defined(__amd64__) && __ELF_WORD_SIZE == 32
1125	struct mod_metadata32 md32;
1126#endif
1127	struct mod_depend *mdepend;
1128	struct mod_version mver;
1129	char *s;
1130	int error, modcnt, minfolen;
1131	Elf_Addr v, p;
1132
1133	modcnt = 0;
1134	p = p_start;
1135	while (p < p_end) {
1136		COPYOUT(p, &v, sizeof(v));
1137		error = __elfN(reloc_ptr)(fp, ef, p, &v, sizeof(v));
1138		if (error == EOPNOTSUPP)
1139			v += ef->off;
1140		else if (error != 0)
1141			return (error);
1142#if (defined(__i386__) || defined(__powerpc__)) && __ELF_WORD_SIZE == 64
1143		COPYOUT(v, &md64, sizeof(md64));
1144		error = __elfN(reloc_ptr)(fp, ef, v, &md64, sizeof(md64));
1145		if (error == EOPNOTSUPP) {
1146			md64.md_cval += ef->off;
1147			md64.md_data += ef->off;
1148		} else if (error != 0)
1149			return (error);
1150		md.md_version = md64.md_version;
1151		md.md_type = md64.md_type;
1152		md.md_cval = (const char *)(uintptr_t)md64.md_cval;
1153		md.md_data = (void *)(uintptr_t)md64.md_data;
1154#elif defined(__amd64__) && __ELF_WORD_SIZE == 32
1155		COPYOUT(v, &md32, sizeof(md32));
1156		error = __elfN(reloc_ptr)(fp, ef, v, &md32, sizeof(md32));
1157		if (error == EOPNOTSUPP) {
1158			md32.md_cval += ef->off;
1159			md32.md_data += ef->off;
1160		} else if (error != 0)
1161			return (error);
1162		md.md_version = md32.md_version;
1163		md.md_type = md32.md_type;
1164		md.md_cval = (const char *)(uintptr_t)md32.md_cval;
1165		md.md_data = (void *)(uintptr_t)md32.md_data;
1166#else
1167		COPYOUT(v, &md, sizeof(md));
1168		error = __elfN(reloc_ptr)(fp, ef, v, &md, sizeof(md));
1169		if (error == EOPNOTSUPP) {
1170			md.md_cval += ef->off;
1171			md.md_data = (void *)((uintptr_t)md.md_data +
1172			    (uintptr_t)ef->off);
1173		} else if (error != 0)
1174			return (error);
1175#endif
1176		p += sizeof(Elf_Addr);
1177		switch(md.md_type) {
1178		case MDT_DEPEND:
1179			if (ef->kernel) /* kernel must not depend on anything */
1180				break;
1181			s = strdupout((vm_offset_t)md.md_cval);
1182			minfolen = sizeof(*mdepend) + strlen(s) + 1;
1183			mdepend = malloc(minfolen);
1184			if (mdepend == NULL)
1185				return ENOMEM;
1186			COPYOUT((vm_offset_t)md.md_data, mdepend,
1187			    sizeof(*mdepend));
1188			strcpy((char*)(mdepend + 1), s);
1189			free(s);
1190			file_addmetadata(fp, MODINFOMD_DEPLIST, minfolen,
1191			    mdepend);
1192			free(mdepend);
1193			break;
1194		case MDT_VERSION:
1195			s = strdupout((vm_offset_t)md.md_cval);
1196			COPYOUT((vm_offset_t)md.md_data, &mver, sizeof(mver));
1197			file_addmodule(fp, s, mver.mv_version, NULL);
1198			free(s);
1199			modcnt++;
1200			break;
1201		}
1202	}
1203	if (modcnt == 0) {
1204		s = fake_modname(fp->f_name);
1205		file_addmodule(fp, s, 1, NULL);
1206		free(s);
1207	}
1208	return 0;
1209}
1210
1211static unsigned long
1212elf_hash(const char *name)
1213{
1214	const unsigned char *p = (const unsigned char *) name;
1215	unsigned long h = 0;
1216	unsigned long g;
1217
1218	while (*p != '\0') {
1219		h = (h << 4) + *p++;
1220		if ((g = h & 0xf0000000) != 0)
1221			h ^= g >> 24;
1222		h &= ~g;
1223	}
1224	return h;
1225}
1226
1227static const char __elfN(bad_symtable)[] = "elf" __XSTRING(__ELF_WORD_SIZE)
1228    "_lookup_symbol: corrupt symbol table\n";
1229int
1230__elfN(lookup_symbol)(elf_file_t ef, const char* name, Elf_Sym *symp,
1231    unsigned char type)
1232{
1233	Elf_Hashelt symnum;
1234	Elf_Sym sym;
1235	char *strp;
1236	unsigned long hash;
1237
1238	if (ef->nbuckets == 0) {
1239		printf(__elfN(bad_symtable));
1240		return ENOENT;
1241	}
1242
1243	hash = elf_hash(name);
1244	COPYOUT(&ef->buckets[hash % ef->nbuckets], &symnum, sizeof(symnum));
1245
1246	while (symnum != STN_UNDEF) {
1247		if (symnum >= ef->nchains) {
1248			printf(__elfN(bad_symtable));
1249			return ENOENT;
1250		}
1251
1252		COPYOUT(ef->symtab + symnum, &sym, sizeof(sym));
1253		if (sym.st_name == 0) {
1254			printf(__elfN(bad_symtable));
1255			return ENOENT;
1256		}
1257
1258		strp = strdupout((vm_offset_t)(ef->strtab + sym.st_name));
1259		if (strcmp(name, strp) == 0) {
1260			free(strp);
1261			if (sym.st_shndx != SHN_UNDEF && sym.st_value != 0 &&
1262			    ELF_ST_TYPE(sym.st_info) == type) {
1263				*symp = sym;
1264				return 0;
1265			}
1266			return ENOENT;
1267		}
1268		free(strp);
1269		COPYOUT(&ef->chains[symnum], &symnum, sizeof(symnum));
1270	}
1271	return ENOENT;
1272}
1273
1274/*
1275 * Apply any intra-module relocations to the value. p is the load address
1276 * of the value and val/len is the value to be modified. This does NOT modify
1277 * the image in-place, because this is done by kern_linker later on.
1278 *
1279 * Returns EOPNOTSUPP if no relocation method is supplied.
1280 */
1281static int
1282__elfN(reloc_ptr)(struct preloaded_file *mp, elf_file_t ef,
1283    Elf_Addr p, void *val, size_t len)
1284{
1285	size_t n;
1286	Elf_Rela a;
1287	Elf_Rel r;
1288	int error;
1289
1290	/*
1291	 * The kernel is already relocated, but we still want to apply
1292	 * offset adjustments.
1293	 */
1294	if (ef->kernel)
1295		return (EOPNOTSUPP);
1296
1297	for (n = 0; n < ef->relsz / sizeof(r); n++) {
1298		COPYOUT(ef->rel + n, &r, sizeof(r));
1299
1300		error = __elfN(reloc)(ef, __elfN(symaddr), &r, ELF_RELOC_REL,
1301		    ef->off, p, val, len);
1302		if (error != 0)
1303			return (error);
1304	}
1305	for (n = 0; n < ef->relasz / sizeof(a); n++) {
1306		COPYOUT(ef->rela + n, &a, sizeof(a));
1307
1308		error = __elfN(reloc)(ef, __elfN(symaddr), &a, ELF_RELOC_RELA,
1309		    ef->off, p, val, len);
1310		if (error != 0)
1311			return (error);
1312	}
1313
1314	return (0);
1315}
1316
1317static Elf_Addr
1318__elfN(symaddr)(struct elf_file *ef, Elf_Size symidx)
1319{
1320
1321	/* Symbol lookup by index not required here. */
1322	return (0);
1323}
1324