1/*
2 * Copyright 2018-2023 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2018-2019, Oracle and/or its affiliates.  All rights reserved.
4 *
5 * Licensed under the Apache License 2.0 (the "License").  You may not use
6 * this file except in compliance with the License.  You can obtain a copy
7 * in the file LICENSE in the source distribution or at
8 * https://www.openssl.org/source/license.html
9 */
10
11/*
12 * According to NIST SP800-131A "Transitioning the use of cryptographic
13 * algorithms and key lengths" Generation of 1024 bit RSA keys are no longer
14 * allowed for signatures (Table 2) or key transport (Table 5). In the code
15 * below any attempt to generate 1024 bit RSA keys will result in an error (Note
16 * that digital signature verification can still use deprecated 1024 bit keys).
17 *
18 * FIPS 186-4 relies on the use of the auxiliary primes p1, p2, q1 and q2 that
19 * must be generated before the module generates the RSA primes p and q.
20 * Table B.1 in FIPS 186-4 specifies RSA modulus lengths of 2048 and
21 * 3072 bits only, the min/max total length of the auxiliary primes.
22 * FIPS 186-5 Table A.1 includes an additional entry for 4096 which has been
23 * included here.
24 */
25#include <stdio.h>
26#include <openssl/bn.h>
27#include "bn_local.h"
28#include "crypto/bn.h"
29#include "internal/nelem.h"
30
31#if BN_BITS2 == 64
32# define BN_DEF(lo, hi) (BN_ULONG)hi<<32|lo
33#else
34# define BN_DEF(lo, hi) lo, hi
35#endif
36
37/* 1 / sqrt(2) * 2^256, rounded up */
38static const BN_ULONG inv_sqrt_2_val[] = {
39    BN_DEF(0x83339916UL, 0xED17AC85UL), BN_DEF(0x893BA84CUL, 0x1D6F60BAUL),
40    BN_DEF(0x754ABE9FUL, 0x597D89B3UL), BN_DEF(0xF9DE6484UL, 0xB504F333UL)
41};
42
43const BIGNUM ossl_bn_inv_sqrt_2 = {
44    (BN_ULONG *)inv_sqrt_2_val,
45    OSSL_NELEM(inv_sqrt_2_val),
46    OSSL_NELEM(inv_sqrt_2_val),
47    0,
48    BN_FLG_STATIC_DATA
49};
50
51/*
52 * FIPS 186-5 Table A.1. "Min length of auxiliary primes p1, p2, q1, q2".
53 * (FIPS 186-5 has an entry for >= 4096 bits).
54 *
55 * Params:
56 *     nbits The key size in bits.
57 * Returns:
58 *     The minimum size of the auxiliary primes or 0 if nbits is invalid.
59 */
60static int bn_rsa_fips186_5_aux_prime_min_size(int nbits)
61{
62    if (nbits >= 4096)
63        return 201;
64    if (nbits >= 3072)
65        return 171;
66    if (nbits >= 2048)
67        return 141;
68    return 0;
69}
70
71/*
72 * FIPS 186-5 Table A.1 "Max of len(p1) + len(p2) and
73 * len(q1) + len(q2) for p,q Probable Primes".
74 * (FIPS 186-5 has an entry for >= 4096 bits).
75 * Params:
76 *     nbits The key size in bits.
77 * Returns:
78 *     The maximum length or 0 if nbits is invalid.
79 */
80static int bn_rsa_fips186_5_aux_prime_max_sum_size_for_prob_primes(int nbits)
81{
82    if (nbits >= 4096)
83        return 2030;
84    if (nbits >= 3072)
85        return 1518;
86    if (nbits >= 2048)
87        return 1007;
88    return 0;
89}
90
91/*
92 * Find the first odd integer that is a probable prime.
93 *
94 * See section FIPS 186-4 B.3.6 (Steps 4.2/5.2).
95 *
96 * Params:
97 *     Xp1 The passed in starting point to find a probably prime.
98 *     p1 The returned probable prime (first odd integer >= Xp1)
99 *     ctx A BN_CTX object.
100 *     cb An optional BIGNUM callback.
101 * Returns: 1 on success otherwise it returns 0.
102 */
103static int bn_rsa_fips186_4_find_aux_prob_prime(const BIGNUM *Xp1,
104                                                BIGNUM *p1, BN_CTX *ctx,
105                                                BN_GENCB *cb)
106{
107    int ret = 0;
108    int i = 0;
109    int tmp = 0;
110
111    if (BN_copy(p1, Xp1) == NULL)
112        return 0;
113    BN_set_flags(p1, BN_FLG_CONSTTIME);
114
115    /* Find the first odd number >= Xp1 that is probably prime */
116    for(;;) {
117        i++;
118        BN_GENCB_call(cb, 0, i);
119        /* MR test with trial division */
120        tmp = BN_check_prime(p1, ctx, cb);
121        if (tmp > 0)
122            break;
123        if (tmp < 0)
124            goto err;
125        /* Get next odd number */
126        if (!BN_add_word(p1, 2))
127            goto err;
128    }
129    BN_GENCB_call(cb, 2, i);
130    ret = 1;
131err:
132    return ret;
133}
134
135/*
136 * Generate a probable prime (p or q).
137 *
138 * See FIPS 186-4 B.3.6 (Steps 4 & 5)
139 *
140 * Params:
141 *     p The returned probable prime.
142 *     Xpout An optionally returned random number used during generation of p.
143 *     p1, p2 The returned auxiliary primes. If NULL they are not returned.
144 *     Xp An optional passed in value (that is random number used during
145 *        generation of p).
146 *     Xp1, Xp2 Optional passed in values that are normally generated
147 *              internally. Used to find p1, p2.
148 *     nlen The bit length of the modulus (the key size).
149 *     e The public exponent.
150 *     ctx A BN_CTX object.
151 *     cb An optional BIGNUM callback.
152 * Returns: 1 on success otherwise it returns 0.
153 */
154int ossl_bn_rsa_fips186_4_gen_prob_primes(BIGNUM *p, BIGNUM *Xpout,
155                                          BIGNUM *p1, BIGNUM *p2,
156                                          const BIGNUM *Xp, const BIGNUM *Xp1,
157                                          const BIGNUM *Xp2, int nlen,
158                                          const BIGNUM *e, BN_CTX *ctx,
159                                          BN_GENCB *cb)
160{
161    int ret = 0;
162    BIGNUM *p1i = NULL, *p2i = NULL, *Xp1i = NULL, *Xp2i = NULL;
163    int bitlen;
164
165    if (p == NULL || Xpout == NULL)
166        return 0;
167
168    BN_CTX_start(ctx);
169
170    p1i = (p1 != NULL) ? p1 : BN_CTX_get(ctx);
171    p2i = (p2 != NULL) ? p2 : BN_CTX_get(ctx);
172    Xp1i = (Xp1 != NULL) ? (BIGNUM *)Xp1 : BN_CTX_get(ctx);
173    Xp2i = (Xp2 != NULL) ? (BIGNUM *)Xp2 : BN_CTX_get(ctx);
174    if (p1i == NULL || p2i == NULL || Xp1i == NULL || Xp2i == NULL)
175        goto err;
176
177    bitlen = bn_rsa_fips186_5_aux_prime_min_size(nlen);
178    if (bitlen == 0)
179        goto err;
180
181    /* (Steps 4.1/5.1): Randomly generate Xp1 if it is not passed in */
182    if (Xp1 == NULL) {
183        /* Set the top and bottom bits to make it odd and the correct size */
184        if (!BN_priv_rand_ex(Xp1i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD,
185                             0, ctx))
186            goto err;
187    }
188    /* (Steps 4.1/5.1): Randomly generate Xp2 if it is not passed in */
189    if (Xp2 == NULL) {
190        /* Set the top and bottom bits to make it odd and the correct size */
191        if (!BN_priv_rand_ex(Xp2i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD,
192                             0, ctx))
193            goto err;
194    }
195
196    /* (Steps 4.2/5.2) - find first auxiliary probable primes */
197    if (!bn_rsa_fips186_4_find_aux_prob_prime(Xp1i, p1i, ctx, cb)
198            || !bn_rsa_fips186_4_find_aux_prob_prime(Xp2i, p2i, ctx, cb))
199        goto err;
200    /* (Table B.1) auxiliary prime Max length check */
201    if ((BN_num_bits(p1i) + BN_num_bits(p2i)) >=
202            bn_rsa_fips186_5_aux_prime_max_sum_size_for_prob_primes(nlen))
203        goto err;
204    /* (Steps 4.3/5.3) - generate prime */
205    if (!ossl_bn_rsa_fips186_4_derive_prime(p, Xpout, Xp, p1i, p2i, nlen, e,
206                                            ctx, cb))
207        goto err;
208    ret = 1;
209err:
210    /* Zeroize any internally generated values that are not returned */
211    if (p1 == NULL)
212        BN_clear(p1i);
213    if (p2 == NULL)
214        BN_clear(p2i);
215    if (Xp1 == NULL)
216        BN_clear(Xp1i);
217    if (Xp2 == NULL)
218        BN_clear(Xp2i);
219    BN_CTX_end(ctx);
220    return ret;
221}
222
223/*
224 * Constructs a probable prime (a candidate for p or q) using 2 auxiliary
225 * prime numbers and the Chinese Remainder Theorem.
226 *
227 * See FIPS 186-4 C.9 "Compute a Probable Prime Factor Based on Auxiliary
228 * Primes". Used by FIPS 186-4 B.3.6 Section (4.3) for p and Section (5.3) for q.
229 *
230 * Params:
231 *     Y The returned prime factor (private_prime_factor) of the modulus n.
232 *     X The returned random number used during generation of the prime factor.
233 *     Xin An optional passed in value for X used for testing purposes.
234 *     r1 An auxiliary prime.
235 *     r2 An auxiliary prime.
236 *     nlen The desired length of n (the RSA modulus).
237 *     e The public exponent.
238 *     ctx A BN_CTX object.
239 *     cb An optional BIGNUM callback object.
240 * Returns: 1 on success otherwise it returns 0.
241 * Assumptions:
242 *     Y, X, r1, r2, e are not NULL.
243 */
244int ossl_bn_rsa_fips186_4_derive_prime(BIGNUM *Y, BIGNUM *X, const BIGNUM *Xin,
245                                       const BIGNUM *r1, const BIGNUM *r2,
246                                       int nlen, const BIGNUM *e, BN_CTX *ctx,
247                                       BN_GENCB *cb)
248{
249    int ret = 0;
250    int i, imax;
251    int bits = nlen >> 1;
252    BIGNUM *tmp, *R, *r1r2x2, *y1, *r1x2;
253    BIGNUM *base, *range;
254
255    BN_CTX_start(ctx);
256
257    base = BN_CTX_get(ctx);
258    range = BN_CTX_get(ctx);
259    R = BN_CTX_get(ctx);
260    tmp = BN_CTX_get(ctx);
261    r1r2x2 = BN_CTX_get(ctx);
262    y1 = BN_CTX_get(ctx);
263    r1x2 = BN_CTX_get(ctx);
264    if (r1x2 == NULL)
265        goto err;
266
267    if (Xin != NULL && BN_copy(X, Xin) == NULL)
268        goto err;
269
270    /*
271     * We need to generate a random number X in the range
272     * 1/sqrt(2) * 2^(nlen/2) <= X < 2^(nlen/2).
273     * We can rewrite that as:
274     * base = 1/sqrt(2) * 2^(nlen/2)
275     * range = ((2^(nlen/2))) - (1/sqrt(2) * 2^(nlen/2))
276     * X = base + random(range)
277     * We only have the first 256 bit of 1/sqrt(2)
278     */
279    if (Xin == NULL) {
280        if (bits < BN_num_bits(&ossl_bn_inv_sqrt_2))
281            goto err;
282        if (!BN_lshift(base, &ossl_bn_inv_sqrt_2,
283                       bits - BN_num_bits(&ossl_bn_inv_sqrt_2))
284            || !BN_lshift(range, BN_value_one(), bits)
285            || !BN_sub(range, range, base))
286            goto err;
287    }
288
289    if (!(BN_lshift1(r1x2, r1)
290            /* (Step 1) GCD(2r1, r2) = 1 */
291            && BN_gcd(tmp, r1x2, r2, ctx)
292            && BN_is_one(tmp)
293            /* (Step 2) R = ((r2^-1 mod 2r1) * r2) - ((2r1^-1 mod r2)*2r1) */
294            && BN_mod_inverse(R, r2, r1x2, ctx)
295            && BN_mul(R, R, r2, ctx) /* R = (r2^-1 mod 2r1) * r2 */
296            && BN_mod_inverse(tmp, r1x2, r2, ctx)
297            && BN_mul(tmp, tmp, r1x2, ctx) /* tmp = (2r1^-1 mod r2)*2r1 */
298            && BN_sub(R, R, tmp)
299            /* Calculate 2r1r2 */
300            && BN_mul(r1r2x2, r1x2, r2, ctx)))
301        goto err;
302    /* Make positive by adding the modulus */
303    if (BN_is_negative(R) && !BN_add(R, R, r1r2x2))
304        goto err;
305
306    /*
307     * In FIPS 186-4 imax was set to 5 * nlen/2.
308     * Analysis by Allen Roginsky (See https://csrc.nist.gov/CSRC/media/Publications/fips/186/4/final/documents/comments-received-fips186-4-december-2015.pdf
309     * page 68) indicates this has a 1 in 2 million chance of failure.
310     * The number has been updated to 20 * nlen/2 as used in
311     * FIPS186-5 Appendix B.9 Step 9.
312     */
313    imax = 20 * bits; /* max = 20/2 * nbits */
314    for (;;) {
315        if (Xin == NULL) {
316            /*
317             * (Step 3) Choose Random X such that
318             *    sqrt(2) * 2^(nlen/2-1) <= Random X <= (2^(nlen/2)) - 1.
319             */
320            if (!BN_priv_rand_range_ex(X, range, 0, ctx) || !BN_add(X, X, base))
321                goto err;
322        }
323        /* (Step 4) Y = X + ((R - X) mod 2r1r2) */
324        if (!BN_mod_sub(Y, R, X, r1r2x2, ctx) || !BN_add(Y, Y, X))
325            goto err;
326        /* (Step 5) */
327        i = 0;
328        for (;;) {
329            /* (Step 6) */
330            if (BN_num_bits(Y) > bits) {
331                if (Xin == NULL)
332                    break; /* Randomly Generated X so Go back to Step 3 */
333                else
334                    goto err; /* X is not random so it will always fail */
335            }
336            BN_GENCB_call(cb, 0, 2);
337
338            /* (Step 7) If GCD(Y-1) == 1 & Y is probably prime then return Y */
339            if (BN_copy(y1, Y) == NULL
340                    || !BN_sub_word(y1, 1)
341                    || !BN_gcd(tmp, y1, e, ctx))
342                goto err;
343            if (BN_is_one(tmp)) {
344                int rv = BN_check_prime(Y, ctx, cb);
345
346                if (rv > 0)
347                    goto end;
348                if (rv < 0)
349                    goto err;
350            }
351            /* (Step 8-10) */
352            if (++i >= imax) {
353                ERR_raise(ERR_LIB_BN, BN_R_NO_PRIME_CANDIDATE);
354                goto err;
355            }
356            if (!BN_add(Y, Y, r1r2x2))
357                goto err;
358        }
359    }
360end:
361    ret = 1;
362    BN_GENCB_call(cb, 3, 0);
363err:
364    BN_clear(y1);
365    BN_CTX_end(ctx);
366    return ret;
367}
368