1/*
2 * Copyright 2002-2021 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 *
5 * Licensed under the Apache License 2.0 (the "License").  You may not use
6 * this file except in compliance with the License.  You can obtain a copy
7 * in the file LICENSE in the source distribution or at
8 * https://www.openssl.org/source/license.html
9 */
10
11#include <assert.h>
12#include <limits.h>
13#include <stdio.h>
14#include "internal/cryptlib.h"
15#include "bn_local.h"
16
17#ifndef OPENSSL_NO_EC2M
18
19/*
20 * Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should
21 * fail.
22 */
23# define MAX_ITERATIONS 50
24
25# define SQR_nibble(w)   ((((w) & 8) << 3) \
26                       |  (((w) & 4) << 2) \
27                       |  (((w) & 2) << 1) \
28                       |   ((w) & 1))
29
30
31/* Platform-specific macros to accelerate squaring. */
32# if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
33#  define SQR1(w) \
34    SQR_nibble((w) >> 60) << 56 | SQR_nibble((w) >> 56) << 48 | \
35    SQR_nibble((w) >> 52) << 40 | SQR_nibble((w) >> 48) << 32 | \
36    SQR_nibble((w) >> 44) << 24 | SQR_nibble((w) >> 40) << 16 | \
37    SQR_nibble((w) >> 36) <<  8 | SQR_nibble((w) >> 32)
38#  define SQR0(w) \
39    SQR_nibble((w) >> 28) << 56 | SQR_nibble((w) >> 24) << 48 | \
40    SQR_nibble((w) >> 20) << 40 | SQR_nibble((w) >> 16) << 32 | \
41    SQR_nibble((w) >> 12) << 24 | SQR_nibble((w) >>  8) << 16 | \
42    SQR_nibble((w) >>  4) <<  8 | SQR_nibble((w)      )
43# endif
44# ifdef THIRTY_TWO_BIT
45#  define SQR1(w) \
46    SQR_nibble((w) >> 28) << 24 | SQR_nibble((w) >> 24) << 16 | \
47    SQR_nibble((w) >> 20) <<  8 | SQR_nibble((w) >> 16)
48#  define SQR0(w) \
49    SQR_nibble((w) >> 12) << 24 | SQR_nibble((w) >>  8) << 16 | \
50    SQR_nibble((w) >>  4) <<  8 | SQR_nibble((w)      )
51# endif
52
53# if !defined(OPENSSL_BN_ASM_GF2m)
54/*
55 * Product of two polynomials a, b each with degree < BN_BITS2 - 1, result is
56 * a polynomial r with degree < 2 * BN_BITS - 1 The caller MUST ensure that
57 * the variables have the right amount of space allocated.
58 */
59#  ifdef THIRTY_TWO_BIT
60static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
61                            const BN_ULONG b)
62{
63    register BN_ULONG h, l, s;
64    BN_ULONG tab[8], top2b = a >> 30;
65    register BN_ULONG a1, a2, a4;
66
67    a1 = a & (0x3FFFFFFF);
68    a2 = a1 << 1;
69    a4 = a2 << 1;
70
71    tab[0] = 0;
72    tab[1] = a1;
73    tab[2] = a2;
74    tab[3] = a1 ^ a2;
75    tab[4] = a4;
76    tab[5] = a1 ^ a4;
77    tab[6] = a2 ^ a4;
78    tab[7] = a1 ^ a2 ^ a4;
79
80    s = tab[b & 0x7];
81    l = s;
82    s = tab[b >> 3 & 0x7];
83    l ^= s << 3;
84    h = s >> 29;
85    s = tab[b >> 6 & 0x7];
86    l ^= s << 6;
87    h ^= s >> 26;
88    s = tab[b >> 9 & 0x7];
89    l ^= s << 9;
90    h ^= s >> 23;
91    s = tab[b >> 12 & 0x7];
92    l ^= s << 12;
93    h ^= s >> 20;
94    s = tab[b >> 15 & 0x7];
95    l ^= s << 15;
96    h ^= s >> 17;
97    s = tab[b >> 18 & 0x7];
98    l ^= s << 18;
99    h ^= s >> 14;
100    s = tab[b >> 21 & 0x7];
101    l ^= s << 21;
102    h ^= s >> 11;
103    s = tab[b >> 24 & 0x7];
104    l ^= s << 24;
105    h ^= s >> 8;
106    s = tab[b >> 27 & 0x7];
107    l ^= s << 27;
108    h ^= s >> 5;
109    s = tab[b >> 30];
110    l ^= s << 30;
111    h ^= s >> 2;
112
113    /* compensate for the top two bits of a */
114
115    if (top2b & 01) {
116        l ^= b << 30;
117        h ^= b >> 2;
118    }
119    if (top2b & 02) {
120        l ^= b << 31;
121        h ^= b >> 1;
122    }
123
124    *r1 = h;
125    *r0 = l;
126}
127#  endif
128#  if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
129static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
130                            const BN_ULONG b)
131{
132    register BN_ULONG h, l, s;
133    BN_ULONG tab[16], top3b = a >> 61;
134    register BN_ULONG a1, a2, a4, a8;
135
136    a1 = a & (0x1FFFFFFFFFFFFFFFULL);
137    a2 = a1 << 1;
138    a4 = a2 << 1;
139    a8 = a4 << 1;
140
141    tab[0] = 0;
142    tab[1] = a1;
143    tab[2] = a2;
144    tab[3] = a1 ^ a2;
145    tab[4] = a4;
146    tab[5] = a1 ^ a4;
147    tab[6] = a2 ^ a4;
148    tab[7] = a1 ^ a2 ^ a4;
149    tab[8] = a8;
150    tab[9] = a1 ^ a8;
151    tab[10] = a2 ^ a8;
152    tab[11] = a1 ^ a2 ^ a8;
153    tab[12] = a4 ^ a8;
154    tab[13] = a1 ^ a4 ^ a8;
155    tab[14] = a2 ^ a4 ^ a8;
156    tab[15] = a1 ^ a2 ^ a4 ^ a8;
157
158    s = tab[b & 0xF];
159    l = s;
160    s = tab[b >> 4 & 0xF];
161    l ^= s << 4;
162    h = s >> 60;
163    s = tab[b >> 8 & 0xF];
164    l ^= s << 8;
165    h ^= s >> 56;
166    s = tab[b >> 12 & 0xF];
167    l ^= s << 12;
168    h ^= s >> 52;
169    s = tab[b >> 16 & 0xF];
170    l ^= s << 16;
171    h ^= s >> 48;
172    s = tab[b >> 20 & 0xF];
173    l ^= s << 20;
174    h ^= s >> 44;
175    s = tab[b >> 24 & 0xF];
176    l ^= s << 24;
177    h ^= s >> 40;
178    s = tab[b >> 28 & 0xF];
179    l ^= s << 28;
180    h ^= s >> 36;
181    s = tab[b >> 32 & 0xF];
182    l ^= s << 32;
183    h ^= s >> 32;
184    s = tab[b >> 36 & 0xF];
185    l ^= s << 36;
186    h ^= s >> 28;
187    s = tab[b >> 40 & 0xF];
188    l ^= s << 40;
189    h ^= s >> 24;
190    s = tab[b >> 44 & 0xF];
191    l ^= s << 44;
192    h ^= s >> 20;
193    s = tab[b >> 48 & 0xF];
194    l ^= s << 48;
195    h ^= s >> 16;
196    s = tab[b >> 52 & 0xF];
197    l ^= s << 52;
198    h ^= s >> 12;
199    s = tab[b >> 56 & 0xF];
200    l ^= s << 56;
201    h ^= s >> 8;
202    s = tab[b >> 60];
203    l ^= s << 60;
204    h ^= s >> 4;
205
206    /* compensate for the top three bits of a */
207
208    if (top3b & 01) {
209        l ^= b << 61;
210        h ^= b >> 3;
211    }
212    if (top3b & 02) {
213        l ^= b << 62;
214        h ^= b >> 2;
215    }
216    if (top3b & 04) {
217        l ^= b << 63;
218        h ^= b >> 1;
219    }
220
221    *r1 = h;
222    *r0 = l;
223}
224#  endif
225
226/*
227 * Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
228 * result is a polynomial r with degree < 4 * BN_BITS2 - 1 The caller MUST
229 * ensure that the variables have the right amount of space allocated.
230 */
231static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0,
232                            const BN_ULONG b1, const BN_ULONG b0)
233{
234    BN_ULONG m1, m0;
235    /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
236    bn_GF2m_mul_1x1(r + 3, r + 2, a1, b1);
237    bn_GF2m_mul_1x1(r + 1, r, a0, b0);
238    bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
239    /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
240    r[2] ^= m1 ^ r[1] ^ r[3];   /* h0 ^= m1 ^ l1 ^ h1; */
241    r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
242}
243# else
244void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1,
245                     BN_ULONG b0);
246# endif
247
248/*
249 * Add polynomials a and b and store result in r; r could be a or b, a and b
250 * could be equal; r is the bitwise XOR of a and b.
251 */
252int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
253{
254    int i;
255    const BIGNUM *at, *bt;
256
257    bn_check_top(a);
258    bn_check_top(b);
259
260    if (a->top < b->top) {
261        at = b;
262        bt = a;
263    } else {
264        at = a;
265        bt = b;
266    }
267
268    if (bn_wexpand(r, at->top) == NULL)
269        return 0;
270
271    for (i = 0; i < bt->top; i++) {
272        r->d[i] = at->d[i] ^ bt->d[i];
273    }
274    for (; i < at->top; i++) {
275        r->d[i] = at->d[i];
276    }
277
278    r->top = at->top;
279    bn_correct_top(r);
280
281    return 1;
282}
283
284/*-
285 * Some functions allow for representation of the irreducible polynomials
286 * as an int[], say p.  The irreducible f(t) is then of the form:
287 *     t^p[0] + t^p[1] + ... + t^p[k]
288 * where m = p[0] > p[1] > ... > p[k] = 0.
289 */
290
291/* Performs modular reduction of a and store result in r.  r could be a. */
292int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
293{
294    int j, k;
295    int n, dN, d0, d1;
296    BN_ULONG zz, *z;
297
298    bn_check_top(a);
299
300    if (p[0] == 0) {
301        /* reduction mod 1 => return 0 */
302        BN_zero(r);
303        return 1;
304    }
305
306    /*
307     * Since the algorithm does reduction in the r value, if a != r, copy the
308     * contents of a into r so we can do reduction in r.
309     */
310    if (a != r) {
311        if (!bn_wexpand(r, a->top))
312            return 0;
313        for (j = 0; j < a->top; j++) {
314            r->d[j] = a->d[j];
315        }
316        r->top = a->top;
317    }
318    z = r->d;
319
320    /* start reduction */
321    dN = p[0] / BN_BITS2;
322    for (j = r->top - 1; j > dN;) {
323        zz = z[j];
324        if (z[j] == 0) {
325            j--;
326            continue;
327        }
328        z[j] = 0;
329
330        for (k = 1; p[k] != 0; k++) {
331            /* reducing component t^p[k] */
332            n = p[0] - p[k];
333            d0 = n % BN_BITS2;
334            d1 = BN_BITS2 - d0;
335            n /= BN_BITS2;
336            z[j - n] ^= (zz >> d0);
337            if (d0)
338                z[j - n - 1] ^= (zz << d1);
339        }
340
341        /* reducing component t^0 */
342        n = dN;
343        d0 = p[0] % BN_BITS2;
344        d1 = BN_BITS2 - d0;
345        z[j - n] ^= (zz >> d0);
346        if (d0)
347            z[j - n - 1] ^= (zz << d1);
348    }
349
350    /* final round of reduction */
351    while (j == dN) {
352
353        d0 = p[0] % BN_BITS2;
354        zz = z[dN] >> d0;
355        if (zz == 0)
356            break;
357        d1 = BN_BITS2 - d0;
358
359        /* clear up the top d1 bits */
360        if (d0)
361            z[dN] = (z[dN] << d1) >> d1;
362        else
363            z[dN] = 0;
364        z[0] ^= zz;             /* reduction t^0 component */
365
366        for (k = 1; p[k] != 0; k++) {
367            BN_ULONG tmp_ulong;
368
369            /* reducing component t^p[k] */
370            n = p[k] / BN_BITS2;
371            d0 = p[k] % BN_BITS2;
372            d1 = BN_BITS2 - d0;
373            z[n] ^= (zz << d0);
374            if (d0 && (tmp_ulong = zz >> d1))
375                z[n + 1] ^= tmp_ulong;
376        }
377
378    }
379
380    bn_correct_top(r);
381    return 1;
382}
383
384/*
385 * Performs modular reduction of a by p and store result in r.  r could be a.
386 * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
387 * function is only provided for convenience; for best performance, use the
388 * BN_GF2m_mod_arr function.
389 */
390int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
391{
392    int ret = 0;
393    int arr[6];
394    bn_check_top(a);
395    bn_check_top(p);
396    ret = BN_GF2m_poly2arr(p, arr, OSSL_NELEM(arr));
397    if (!ret || ret > (int)OSSL_NELEM(arr)) {
398        ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
399        return 0;
400    }
401    ret = BN_GF2m_mod_arr(r, a, arr);
402    bn_check_top(r);
403    return ret;
404}
405
406/*
407 * Compute the product of two polynomials a and b, reduce modulo p, and store
408 * the result in r.  r could be a or b; a could be b.
409 */
410int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
411                        const int p[], BN_CTX *ctx)
412{
413    int zlen, i, j, k, ret = 0;
414    BIGNUM *s;
415    BN_ULONG x1, x0, y1, y0, zz[4];
416
417    bn_check_top(a);
418    bn_check_top(b);
419
420    if (a == b) {
421        return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
422    }
423
424    BN_CTX_start(ctx);
425    if ((s = BN_CTX_get(ctx)) == NULL)
426        goto err;
427
428    zlen = a->top + b->top + 4;
429    if (!bn_wexpand(s, zlen))
430        goto err;
431    s->top = zlen;
432
433    for (i = 0; i < zlen; i++)
434        s->d[i] = 0;
435
436    for (j = 0; j < b->top; j += 2) {
437        y0 = b->d[j];
438        y1 = ((j + 1) == b->top) ? 0 : b->d[j + 1];
439        for (i = 0; i < a->top; i += 2) {
440            x0 = a->d[i];
441            x1 = ((i + 1) == a->top) ? 0 : a->d[i + 1];
442            bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
443            for (k = 0; k < 4; k++)
444                s->d[i + j + k] ^= zz[k];
445        }
446    }
447
448    bn_correct_top(s);
449    if (BN_GF2m_mod_arr(r, s, p))
450        ret = 1;
451    bn_check_top(r);
452
453 err:
454    BN_CTX_end(ctx);
455    return ret;
456}
457
458/*
459 * Compute the product of two polynomials a and b, reduce modulo p, and store
460 * the result in r.  r could be a or b; a could equal b. This function calls
461 * down to the BN_GF2m_mod_mul_arr implementation; this wrapper function is
462 * only provided for convenience; for best performance, use the
463 * BN_GF2m_mod_mul_arr function.
464 */
465int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
466                    const BIGNUM *p, BN_CTX *ctx)
467{
468    int ret = 0;
469    const int max = BN_num_bits(p) + 1;
470    int *arr;
471
472    bn_check_top(a);
473    bn_check_top(b);
474    bn_check_top(p);
475
476    arr = OPENSSL_malloc(sizeof(*arr) * max);
477    if (arr == NULL) {
478        ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
479        return 0;
480    }
481    ret = BN_GF2m_poly2arr(p, arr, max);
482    if (!ret || ret > max) {
483        ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
484        goto err;
485    }
486    ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
487    bn_check_top(r);
488 err:
489    OPENSSL_free(arr);
490    return ret;
491}
492
493/* Square a, reduce the result mod p, and store it in a.  r could be a. */
494int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[],
495                        BN_CTX *ctx)
496{
497    int i, ret = 0;
498    BIGNUM *s;
499
500    bn_check_top(a);
501    BN_CTX_start(ctx);
502    if ((s = BN_CTX_get(ctx)) == NULL)
503        goto err;
504    if (!bn_wexpand(s, 2 * a->top))
505        goto err;
506
507    for (i = a->top - 1; i >= 0; i--) {
508        s->d[2 * i + 1] = SQR1(a->d[i]);
509        s->d[2 * i] = SQR0(a->d[i]);
510    }
511
512    s->top = 2 * a->top;
513    bn_correct_top(s);
514    if (!BN_GF2m_mod_arr(r, s, p))
515        goto err;
516    bn_check_top(r);
517    ret = 1;
518 err:
519    BN_CTX_end(ctx);
520    return ret;
521}
522
523/*
524 * Square a, reduce the result mod p, and store it in a.  r could be a. This
525 * function calls down to the BN_GF2m_mod_sqr_arr implementation; this
526 * wrapper function is only provided for convenience; for best performance,
527 * use the BN_GF2m_mod_sqr_arr function.
528 */
529int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
530{
531    int ret = 0;
532    const int max = BN_num_bits(p) + 1;
533    int *arr;
534
535    bn_check_top(a);
536    bn_check_top(p);
537
538    arr = OPENSSL_malloc(sizeof(*arr) * max);
539    if (arr == NULL) {
540        ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
541        return 0;
542    }
543    ret = BN_GF2m_poly2arr(p, arr, max);
544    if (!ret || ret > max) {
545        ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
546        goto err;
547    }
548    ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
549    bn_check_top(r);
550 err:
551    OPENSSL_free(arr);
552    return ret;
553}
554
555/*
556 * Invert a, reduce modulo p, and store the result in r. r could be a. Uses
557 * Modified Almost Inverse Algorithm (Algorithm 10) from Hankerson, D.,
558 * Hernandez, J.L., and Menezes, A.  "Software Implementation of Elliptic
559 * Curve Cryptography Over Binary Fields".
560 */
561static int BN_GF2m_mod_inv_vartime(BIGNUM *r, const BIGNUM *a,
562                                   const BIGNUM *p, BN_CTX *ctx)
563{
564    BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp;
565    int ret = 0;
566
567    bn_check_top(a);
568    bn_check_top(p);
569
570    BN_CTX_start(ctx);
571
572    b = BN_CTX_get(ctx);
573    c = BN_CTX_get(ctx);
574    u = BN_CTX_get(ctx);
575    v = BN_CTX_get(ctx);
576    if (v == NULL)
577        goto err;
578
579    if (!BN_GF2m_mod(u, a, p))
580        goto err;
581    if (BN_is_zero(u))
582        goto err;
583
584    if (!BN_copy(v, p))
585        goto err;
586# if 0
587    if (!BN_one(b))
588        goto err;
589
590    while (1) {
591        while (!BN_is_odd(u)) {
592            if (BN_is_zero(u))
593                goto err;
594            if (!BN_rshift1(u, u))
595                goto err;
596            if (BN_is_odd(b)) {
597                if (!BN_GF2m_add(b, b, p))
598                    goto err;
599            }
600            if (!BN_rshift1(b, b))
601                goto err;
602        }
603
604        if (BN_abs_is_word(u, 1))
605            break;
606
607        if (BN_num_bits(u) < BN_num_bits(v)) {
608            tmp = u;
609            u = v;
610            v = tmp;
611            tmp = b;
612            b = c;
613            c = tmp;
614        }
615
616        if (!BN_GF2m_add(u, u, v))
617            goto err;
618        if (!BN_GF2m_add(b, b, c))
619            goto err;
620    }
621# else
622    {
623        int i;
624        int ubits = BN_num_bits(u);
625        int vbits = BN_num_bits(v); /* v is copy of p */
626        int top = p->top;
627        BN_ULONG *udp, *bdp, *vdp, *cdp;
628
629        if (!bn_wexpand(u, top))
630            goto err;
631        udp = u->d;
632        for (i = u->top; i < top; i++)
633            udp[i] = 0;
634        u->top = top;
635        if (!bn_wexpand(b, top))
636          goto err;
637        bdp = b->d;
638        bdp[0] = 1;
639        for (i = 1; i < top; i++)
640            bdp[i] = 0;
641        b->top = top;
642        if (!bn_wexpand(c, top))
643          goto err;
644        cdp = c->d;
645        for (i = 0; i < top; i++)
646            cdp[i] = 0;
647        c->top = top;
648        vdp = v->d;             /* It pays off to "cache" *->d pointers,
649                                 * because it allows optimizer to be more
650                                 * aggressive. But we don't have to "cache"
651                                 * p->d, because *p is declared 'const'... */
652        while (1) {
653            while (ubits && !(udp[0] & 1)) {
654                BN_ULONG u0, u1, b0, b1, mask;
655
656                u0 = udp[0];
657                b0 = bdp[0];
658                mask = (BN_ULONG)0 - (b0 & 1);
659                b0 ^= p->d[0] & mask;
660                for (i = 0; i < top - 1; i++) {
661                    u1 = udp[i + 1];
662                    udp[i] = ((u0 >> 1) | (u1 << (BN_BITS2 - 1))) & BN_MASK2;
663                    u0 = u1;
664                    b1 = bdp[i + 1] ^ (p->d[i + 1] & mask);
665                    bdp[i] = ((b0 >> 1) | (b1 << (BN_BITS2 - 1))) & BN_MASK2;
666                    b0 = b1;
667                }
668                udp[i] = u0 >> 1;
669                bdp[i] = b0 >> 1;
670                ubits--;
671            }
672
673            if (ubits <= BN_BITS2) {
674                if (udp[0] == 0) /* poly was reducible */
675                    goto err;
676                if (udp[0] == 1)
677                    break;
678            }
679
680            if (ubits < vbits) {
681                i = ubits;
682                ubits = vbits;
683                vbits = i;
684                tmp = u;
685                u = v;
686                v = tmp;
687                tmp = b;
688                b = c;
689                c = tmp;
690                udp = vdp;
691                vdp = v->d;
692                bdp = cdp;
693                cdp = c->d;
694            }
695            for (i = 0; i < top; i++) {
696                udp[i] ^= vdp[i];
697                bdp[i] ^= cdp[i];
698            }
699            if (ubits == vbits) {
700                BN_ULONG ul;
701                int utop = (ubits - 1) / BN_BITS2;
702
703                while ((ul = udp[utop]) == 0 && utop)
704                    utop--;
705                ubits = utop * BN_BITS2 + BN_num_bits_word(ul);
706            }
707        }
708        bn_correct_top(b);
709    }
710# endif
711
712    if (!BN_copy(r, b))
713        goto err;
714    bn_check_top(r);
715    ret = 1;
716
717 err:
718# ifdef BN_DEBUG
719    /* BN_CTX_end would complain about the expanded form */
720    bn_correct_top(c);
721    bn_correct_top(u);
722    bn_correct_top(v);
723# endif
724    BN_CTX_end(ctx);
725    return ret;
726}
727
728/*-
729 * Wrapper for BN_GF2m_mod_inv_vartime that blinds the input before calling.
730 * This is not constant time.
731 * But it does eliminate first order deduction on the input.
732 */
733int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
734{
735    BIGNUM *b = NULL;
736    int ret = 0;
737    int numbits;
738
739    BN_CTX_start(ctx);
740    if ((b = BN_CTX_get(ctx)) == NULL)
741        goto err;
742
743    /* Fail on a non-sensical input p value */
744    numbits = BN_num_bits(p);
745    if (numbits <= 1)
746        goto err;
747
748    /* generate blinding value */
749    do {
750        if (!BN_priv_rand_ex(b, numbits - 1,
751                             BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY, 0, ctx))
752            goto err;
753    } while (BN_is_zero(b));
754
755    /* r := a * b */
756    if (!BN_GF2m_mod_mul(r, a, b, p, ctx))
757        goto err;
758
759    /* r := 1/(a * b) */
760    if (!BN_GF2m_mod_inv_vartime(r, r, p, ctx))
761        goto err;
762
763    /* r := b/(a * b) = 1/a */
764    if (!BN_GF2m_mod_mul(r, r, b, p, ctx))
765        goto err;
766
767    ret = 1;
768
769 err:
770    BN_CTX_end(ctx);
771    return ret;
772}
773
774/*
775 * Invert xx, reduce modulo p, and store the result in r. r could be xx.
776 * This function calls down to the BN_GF2m_mod_inv implementation; this
777 * wrapper function is only provided for convenience; for best performance,
778 * use the BN_GF2m_mod_inv function.
779 */
780int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[],
781                        BN_CTX *ctx)
782{
783    BIGNUM *field;
784    int ret = 0;
785
786    bn_check_top(xx);
787    BN_CTX_start(ctx);
788    if ((field = BN_CTX_get(ctx)) == NULL)
789        goto err;
790    if (!BN_GF2m_arr2poly(p, field))
791        goto err;
792
793    ret = BN_GF2m_mod_inv(r, xx, field, ctx);
794    bn_check_top(r);
795
796 err:
797    BN_CTX_end(ctx);
798    return ret;
799}
800
801/*
802 * Divide y by x, reduce modulo p, and store the result in r. r could be x
803 * or y, x could equal y.
804 */
805int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x,
806                    const BIGNUM *p, BN_CTX *ctx)
807{
808    BIGNUM *xinv = NULL;
809    int ret = 0;
810
811    bn_check_top(y);
812    bn_check_top(x);
813    bn_check_top(p);
814
815    BN_CTX_start(ctx);
816    xinv = BN_CTX_get(ctx);
817    if (xinv == NULL)
818        goto err;
819
820    if (!BN_GF2m_mod_inv(xinv, x, p, ctx))
821        goto err;
822    if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx))
823        goto err;
824    bn_check_top(r);
825    ret = 1;
826
827 err:
828    BN_CTX_end(ctx);
829    return ret;
830}
831
832/*
833 * Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
834 * * or yy, xx could equal yy. This function calls down to the
835 * BN_GF2m_mod_div implementation; this wrapper function is only provided for
836 * convenience; for best performance, use the BN_GF2m_mod_div function.
837 */
838int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx,
839                        const int p[], BN_CTX *ctx)
840{
841    BIGNUM *field;
842    int ret = 0;
843
844    bn_check_top(yy);
845    bn_check_top(xx);
846
847    BN_CTX_start(ctx);
848    if ((field = BN_CTX_get(ctx)) == NULL)
849        goto err;
850    if (!BN_GF2m_arr2poly(p, field))
851        goto err;
852
853    ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
854    bn_check_top(r);
855
856 err:
857    BN_CTX_end(ctx);
858    return ret;
859}
860
861/*
862 * Compute the bth power of a, reduce modulo p, and store the result in r.  r
863 * could be a. Uses simple square-and-multiply algorithm A.5.1 from IEEE
864 * P1363.
865 */
866int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
867                        const int p[], BN_CTX *ctx)
868{
869    int ret = 0, i, n;
870    BIGNUM *u;
871
872    bn_check_top(a);
873    bn_check_top(b);
874
875    if (BN_is_zero(b))
876        return BN_one(r);
877
878    if (BN_abs_is_word(b, 1))
879        return (BN_copy(r, a) != NULL);
880
881    BN_CTX_start(ctx);
882    if ((u = BN_CTX_get(ctx)) == NULL)
883        goto err;
884
885    if (!BN_GF2m_mod_arr(u, a, p))
886        goto err;
887
888    n = BN_num_bits(b) - 1;
889    for (i = n - 1; i >= 0; i--) {
890        if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx))
891            goto err;
892        if (BN_is_bit_set(b, i)) {
893            if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx))
894                goto err;
895        }
896    }
897    if (!BN_copy(r, u))
898        goto err;
899    bn_check_top(r);
900    ret = 1;
901 err:
902    BN_CTX_end(ctx);
903    return ret;
904}
905
906/*
907 * Compute the bth power of a, reduce modulo p, and store the result in r.  r
908 * could be a. This function calls down to the BN_GF2m_mod_exp_arr
909 * implementation; this wrapper function is only provided for convenience;
910 * for best performance, use the BN_GF2m_mod_exp_arr function.
911 */
912int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
913                    const BIGNUM *p, BN_CTX *ctx)
914{
915    int ret = 0;
916    const int max = BN_num_bits(p) + 1;
917    int *arr;
918
919    bn_check_top(a);
920    bn_check_top(b);
921    bn_check_top(p);
922
923    arr = OPENSSL_malloc(sizeof(*arr) * max);
924    if (arr == NULL) {
925        ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
926        return 0;
927    }
928    ret = BN_GF2m_poly2arr(p, arr, max);
929    if (!ret || ret > max) {
930        ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
931        goto err;
932    }
933    ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
934    bn_check_top(r);
935 err:
936    OPENSSL_free(arr);
937    return ret;
938}
939
940/*
941 * Compute the square root of a, reduce modulo p, and store the result in r.
942 * r could be a. Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
943 */
944int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[],
945                         BN_CTX *ctx)
946{
947    int ret = 0;
948    BIGNUM *u;
949
950    bn_check_top(a);
951
952    if (p[0] == 0) {
953        /* reduction mod 1 => return 0 */
954        BN_zero(r);
955        return 1;
956    }
957
958    BN_CTX_start(ctx);
959    if ((u = BN_CTX_get(ctx)) == NULL)
960        goto err;
961
962    if (!BN_set_bit(u, p[0] - 1))
963        goto err;
964    ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
965    bn_check_top(r);
966
967 err:
968    BN_CTX_end(ctx);
969    return ret;
970}
971
972/*
973 * Compute the square root of a, reduce modulo p, and store the result in r.
974 * r could be a. This function calls down to the BN_GF2m_mod_sqrt_arr
975 * implementation; this wrapper function is only provided for convenience;
976 * for best performance, use the BN_GF2m_mod_sqrt_arr function.
977 */
978int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
979{
980    int ret = 0;
981    const int max = BN_num_bits(p) + 1;
982    int *arr;
983
984    bn_check_top(a);
985    bn_check_top(p);
986
987    arr = OPENSSL_malloc(sizeof(*arr) * max);
988    if (arr == NULL) {
989        ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
990        return 0;
991    }
992    ret = BN_GF2m_poly2arr(p, arr, max);
993    if (!ret || ret > max) {
994        ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
995        goto err;
996    }
997    ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
998    bn_check_top(r);
999 err:
1000    OPENSSL_free(arr);
1001    return ret;
1002}
1003
1004/*
1005 * Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns
1006 * 0. Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
1007 */
1008int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[],
1009                               BN_CTX *ctx)
1010{
1011    int ret = 0, count = 0, j;
1012    BIGNUM *a, *z, *rho, *w, *w2, *tmp;
1013
1014    bn_check_top(a_);
1015
1016    if (p[0] == 0) {
1017        /* reduction mod 1 => return 0 */
1018        BN_zero(r);
1019        return 1;
1020    }
1021
1022    BN_CTX_start(ctx);
1023    a = BN_CTX_get(ctx);
1024    z = BN_CTX_get(ctx);
1025    w = BN_CTX_get(ctx);
1026    if (w == NULL)
1027        goto err;
1028
1029    if (!BN_GF2m_mod_arr(a, a_, p))
1030        goto err;
1031
1032    if (BN_is_zero(a)) {
1033        BN_zero(r);
1034        ret = 1;
1035        goto err;
1036    }
1037
1038    if (p[0] & 0x1) {           /* m is odd */
1039        /* compute half-trace of a */
1040        if (!BN_copy(z, a))
1041            goto err;
1042        for (j = 1; j <= (p[0] - 1) / 2; j++) {
1043            if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1044                goto err;
1045            if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1046                goto err;
1047            if (!BN_GF2m_add(z, z, a))
1048                goto err;
1049        }
1050
1051    } else {                    /* m is even */
1052
1053        rho = BN_CTX_get(ctx);
1054        w2 = BN_CTX_get(ctx);
1055        tmp = BN_CTX_get(ctx);
1056        if (tmp == NULL)
1057            goto err;
1058        do {
1059            if (!BN_priv_rand_ex(rho, p[0], BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY,
1060                                 0, ctx))
1061                goto err;
1062            if (!BN_GF2m_mod_arr(rho, rho, p))
1063                goto err;
1064            BN_zero(z);
1065            if (!BN_copy(w, rho))
1066                goto err;
1067            for (j = 1; j <= p[0] - 1; j++) {
1068                if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1069                    goto err;
1070                if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx))
1071                    goto err;
1072                if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx))
1073                    goto err;
1074                if (!BN_GF2m_add(z, z, tmp))
1075                    goto err;
1076                if (!BN_GF2m_add(w, w2, rho))
1077                    goto err;
1078            }
1079            count++;
1080        } while (BN_is_zero(w) && (count < MAX_ITERATIONS));
1081        if (BN_is_zero(w)) {
1082            ERR_raise(ERR_LIB_BN, BN_R_TOO_MANY_ITERATIONS);
1083            goto err;
1084        }
1085    }
1086
1087    if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx))
1088        goto err;
1089    if (!BN_GF2m_add(w, z, w))
1090        goto err;
1091    if (BN_GF2m_cmp(w, a)) {
1092        ERR_raise(ERR_LIB_BN, BN_R_NO_SOLUTION);
1093        goto err;
1094    }
1095
1096    if (!BN_copy(r, z))
1097        goto err;
1098    bn_check_top(r);
1099
1100    ret = 1;
1101
1102 err:
1103    BN_CTX_end(ctx);
1104    return ret;
1105}
1106
1107/*
1108 * Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns
1109 * 0. This function calls down to the BN_GF2m_mod_solve_quad_arr
1110 * implementation; this wrapper function is only provided for convenience;
1111 * for best performance, use the BN_GF2m_mod_solve_quad_arr function.
1112 */
1113int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
1114                           BN_CTX *ctx)
1115{
1116    int ret = 0;
1117    const int max = BN_num_bits(p) + 1;
1118    int *arr;
1119
1120    bn_check_top(a);
1121    bn_check_top(p);
1122
1123    arr = OPENSSL_malloc(sizeof(*arr) * max);
1124    if (arr == NULL) {
1125        ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
1126        goto err;
1127    }
1128    ret = BN_GF2m_poly2arr(p, arr, max);
1129    if (!ret || ret > max) {
1130        ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
1131        goto err;
1132    }
1133    ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
1134    bn_check_top(r);
1135 err:
1136    OPENSSL_free(arr);
1137    return ret;
1138}
1139
1140/*
1141 * Convert the bit-string representation of a polynomial ( \sum_{i=0}^n a_i *
1142 * x^i) into an array of integers corresponding to the bits with non-zero
1143 * coefficient.  Array is terminated with -1. Up to max elements of the array
1144 * will be filled.  Return value is total number of array elements that would
1145 * be filled if array was large enough.
1146 */
1147int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
1148{
1149    int i, j, k = 0;
1150    BN_ULONG mask;
1151
1152    if (BN_is_zero(a))
1153        return 0;
1154
1155    for (i = a->top - 1; i >= 0; i--) {
1156        if (!a->d[i])
1157            /* skip word if a->d[i] == 0 */
1158            continue;
1159        mask = BN_TBIT;
1160        for (j = BN_BITS2 - 1; j >= 0; j--) {
1161            if (a->d[i] & mask) {
1162                if (k < max)
1163                    p[k] = BN_BITS2 * i + j;
1164                k++;
1165            }
1166            mask >>= 1;
1167        }
1168    }
1169
1170    if (k < max) {
1171        p[k] = -1;
1172        k++;
1173    }
1174
1175    return k;
1176}
1177
1178/*
1179 * Convert the coefficient array representation of a polynomial to a
1180 * bit-string.  The array must be terminated by -1.
1181 */
1182int BN_GF2m_arr2poly(const int p[], BIGNUM *a)
1183{
1184    int i;
1185
1186    bn_check_top(a);
1187    BN_zero(a);
1188    for (i = 0; p[i] != -1; i++) {
1189        if (BN_set_bit(a, p[i]) == 0)
1190            return 0;
1191    }
1192    bn_check_top(a);
1193
1194    return 1;
1195}
1196
1197#endif
1198