1/*
2 * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License").  You may not use
5 * this file except in compliance with the License.  You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10#include <assert.h>
11#include <openssl/crypto.h>
12#include "internal/cryptlib.h"
13#include "bn_local.h"
14
15#if defined(BN_LLONG) || defined(BN_UMULT_HIGH)
16
17BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num,
18                          BN_ULONG w)
19{
20    BN_ULONG c1 = 0;
21
22    assert(num >= 0);
23    if (num <= 0)
24        return c1;
25
26# ifndef OPENSSL_SMALL_FOOTPRINT
27    while (num & ~3) {
28        mul_add(rp[0], ap[0], w, c1);
29        mul_add(rp[1], ap[1], w, c1);
30        mul_add(rp[2], ap[2], w, c1);
31        mul_add(rp[3], ap[3], w, c1);
32        ap += 4;
33        rp += 4;
34        num -= 4;
35    }
36# endif
37    while (num) {
38        mul_add(rp[0], ap[0], w, c1);
39        ap++;
40        rp++;
41        num--;
42    }
43
44    return c1;
45}
46
47BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
48{
49    BN_ULONG c1 = 0;
50
51    assert(num >= 0);
52    if (num <= 0)
53        return c1;
54
55# ifndef OPENSSL_SMALL_FOOTPRINT
56    while (num & ~3) {
57        mul(rp[0], ap[0], w, c1);
58        mul(rp[1], ap[1], w, c1);
59        mul(rp[2], ap[2], w, c1);
60        mul(rp[3], ap[3], w, c1);
61        ap += 4;
62        rp += 4;
63        num -= 4;
64    }
65# endif
66    while (num) {
67        mul(rp[0], ap[0], w, c1);
68        ap++;
69        rp++;
70        num--;
71    }
72    return c1;
73}
74
75void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
76{
77    assert(n >= 0);
78    if (n <= 0)
79        return;
80
81# ifndef OPENSSL_SMALL_FOOTPRINT
82    while (n & ~3) {
83        sqr(r[0], r[1], a[0]);
84        sqr(r[2], r[3], a[1]);
85        sqr(r[4], r[5], a[2]);
86        sqr(r[6], r[7], a[3]);
87        a += 4;
88        r += 8;
89        n -= 4;
90    }
91# endif
92    while (n) {
93        sqr(r[0], r[1], a[0]);
94        a++;
95        r += 2;
96        n--;
97    }
98}
99
100#else                           /* !(defined(BN_LLONG) ||
101                                 * defined(BN_UMULT_HIGH)) */
102
103BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num,
104                          BN_ULONG w)
105{
106    BN_ULONG c = 0;
107    BN_ULONG bl, bh;
108
109    assert(num >= 0);
110    if (num <= 0)
111        return (BN_ULONG)0;
112
113    bl = LBITS(w);
114    bh = HBITS(w);
115
116# ifndef OPENSSL_SMALL_FOOTPRINT
117    while (num & ~3) {
118        mul_add(rp[0], ap[0], bl, bh, c);
119        mul_add(rp[1], ap[1], bl, bh, c);
120        mul_add(rp[2], ap[2], bl, bh, c);
121        mul_add(rp[3], ap[3], bl, bh, c);
122        ap += 4;
123        rp += 4;
124        num -= 4;
125    }
126# endif
127    while (num) {
128        mul_add(rp[0], ap[0], bl, bh, c);
129        ap++;
130        rp++;
131        num--;
132    }
133    return c;
134}
135
136BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
137{
138    BN_ULONG carry = 0;
139    BN_ULONG bl, bh;
140
141    assert(num >= 0);
142    if (num <= 0)
143        return (BN_ULONG)0;
144
145    bl = LBITS(w);
146    bh = HBITS(w);
147
148# ifndef OPENSSL_SMALL_FOOTPRINT
149    while (num & ~3) {
150        mul(rp[0], ap[0], bl, bh, carry);
151        mul(rp[1], ap[1], bl, bh, carry);
152        mul(rp[2], ap[2], bl, bh, carry);
153        mul(rp[3], ap[3], bl, bh, carry);
154        ap += 4;
155        rp += 4;
156        num -= 4;
157    }
158# endif
159    while (num) {
160        mul(rp[0], ap[0], bl, bh, carry);
161        ap++;
162        rp++;
163        num--;
164    }
165    return carry;
166}
167
168void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
169{
170    assert(n >= 0);
171    if (n <= 0)
172        return;
173
174# ifndef OPENSSL_SMALL_FOOTPRINT
175    while (n & ~3) {
176        sqr64(r[0], r[1], a[0]);
177        sqr64(r[2], r[3], a[1]);
178        sqr64(r[4], r[5], a[2]);
179        sqr64(r[6], r[7], a[3]);
180        a += 4;
181        r += 8;
182        n -= 4;
183    }
184# endif
185    while (n) {
186        sqr64(r[0], r[1], a[0]);
187        a++;
188        r += 2;
189        n--;
190    }
191}
192
193#endif                          /* !(defined(BN_LLONG) ||
194                                 * defined(BN_UMULT_HIGH)) */
195
196#if defined(BN_LLONG) && defined(BN_DIV2W)
197
198BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
199{
200    return ((BN_ULONG)(((((BN_ULLONG) h) << BN_BITS2) | l) / (BN_ULLONG) d));
201}
202
203#else
204
205/* Divide h,l by d and return the result. */
206/* I need to test this some more :-( */
207BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
208{
209    BN_ULONG dh, dl, q, ret = 0, th, tl, t;
210    int i, count = 2;
211
212    if (d == 0)
213        return BN_MASK2;
214
215    i = BN_num_bits_word(d);
216    assert((i == BN_BITS2) || (h <= (BN_ULONG)1 << i));
217
218    i = BN_BITS2 - i;
219    if (h >= d)
220        h -= d;
221
222    if (i) {
223        d <<= i;
224        h = (h << i) | (l >> (BN_BITS2 - i));
225        l <<= i;
226    }
227    dh = (d & BN_MASK2h) >> BN_BITS4;
228    dl = (d & BN_MASK2l);
229    for (;;) {
230        if ((h >> BN_BITS4) == dh)
231            q = BN_MASK2l;
232        else
233            q = h / dh;
234
235        th = q * dh;
236        tl = dl * q;
237        for (;;) {
238            t = h - th;
239            if ((t & BN_MASK2h) ||
240                ((tl) <= ((t << BN_BITS4) | ((l & BN_MASK2h) >> BN_BITS4))))
241                break;
242            q--;
243            th -= dh;
244            tl -= dl;
245        }
246        t = (tl >> BN_BITS4);
247        tl = (tl << BN_BITS4) & BN_MASK2h;
248        th += t;
249
250        if (l < tl)
251            th++;
252        l -= tl;
253        if (h < th) {
254            h += d;
255            q--;
256        }
257        h -= th;
258
259        if (--count == 0)
260            break;
261
262        ret = q << BN_BITS4;
263        h = ((h << BN_BITS4) | (l >> BN_BITS4)) & BN_MASK2;
264        l = (l & BN_MASK2l) << BN_BITS4;
265    }
266    ret |= q;
267    return ret;
268}
269#endif                          /* !defined(BN_LLONG) && defined(BN_DIV2W) */
270
271#ifdef BN_LLONG
272BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
273                      int n)
274{
275    BN_ULLONG ll = 0;
276
277    assert(n >= 0);
278    if (n <= 0)
279        return (BN_ULONG)0;
280
281# ifndef OPENSSL_SMALL_FOOTPRINT
282    while (n & ~3) {
283        ll += (BN_ULLONG) a[0] + b[0];
284        r[0] = (BN_ULONG)ll & BN_MASK2;
285        ll >>= BN_BITS2;
286        ll += (BN_ULLONG) a[1] + b[1];
287        r[1] = (BN_ULONG)ll & BN_MASK2;
288        ll >>= BN_BITS2;
289        ll += (BN_ULLONG) a[2] + b[2];
290        r[2] = (BN_ULONG)ll & BN_MASK2;
291        ll >>= BN_BITS2;
292        ll += (BN_ULLONG) a[3] + b[3];
293        r[3] = (BN_ULONG)ll & BN_MASK2;
294        ll >>= BN_BITS2;
295        a += 4;
296        b += 4;
297        r += 4;
298        n -= 4;
299    }
300# endif
301    while (n) {
302        ll += (BN_ULLONG) a[0] + b[0];
303        r[0] = (BN_ULONG)ll & BN_MASK2;
304        ll >>= BN_BITS2;
305        a++;
306        b++;
307        r++;
308        n--;
309    }
310    return (BN_ULONG)ll;
311}
312#else                           /* !BN_LLONG */
313BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
314                      int n)
315{
316    BN_ULONG c, l, t;
317
318    assert(n >= 0);
319    if (n <= 0)
320        return (BN_ULONG)0;
321
322    c = 0;
323# ifndef OPENSSL_SMALL_FOOTPRINT
324    while (n & ~3) {
325        t = a[0];
326        t = (t + c) & BN_MASK2;
327        c = (t < c);
328        l = (t + b[0]) & BN_MASK2;
329        c += (l < t);
330        r[0] = l;
331        t = a[1];
332        t = (t + c) & BN_MASK2;
333        c = (t < c);
334        l = (t + b[1]) & BN_MASK2;
335        c += (l < t);
336        r[1] = l;
337        t = a[2];
338        t = (t + c) & BN_MASK2;
339        c = (t < c);
340        l = (t + b[2]) & BN_MASK2;
341        c += (l < t);
342        r[2] = l;
343        t = a[3];
344        t = (t + c) & BN_MASK2;
345        c = (t < c);
346        l = (t + b[3]) & BN_MASK2;
347        c += (l < t);
348        r[3] = l;
349        a += 4;
350        b += 4;
351        r += 4;
352        n -= 4;
353    }
354# endif
355    while (n) {
356        t = a[0];
357        t = (t + c) & BN_MASK2;
358        c = (t < c);
359        l = (t + b[0]) & BN_MASK2;
360        c += (l < t);
361        r[0] = l;
362        a++;
363        b++;
364        r++;
365        n--;
366    }
367    return (BN_ULONG)c;
368}
369#endif                          /* !BN_LLONG */
370
371BN_ULONG bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
372                      int n)
373{
374    BN_ULONG t1, t2;
375    int c = 0;
376
377    assert(n >= 0);
378    if (n <= 0)
379        return (BN_ULONG)0;
380
381#ifndef OPENSSL_SMALL_FOOTPRINT
382    while (n & ~3) {
383        t1 = a[0];
384        t2 = (t1 - c) & BN_MASK2;
385        c  = (t2 > t1);
386        t1 = b[0];
387        t1 = (t2 - t1) & BN_MASK2;
388        r[0] = t1;
389        c += (t1 > t2);
390        t1 = a[1];
391        t2 = (t1 - c) & BN_MASK2;
392        c  = (t2 > t1);
393        t1 = b[1];
394        t1 = (t2 - t1) & BN_MASK2;
395        r[1] = t1;
396        c += (t1 > t2);
397        t1 = a[2];
398        t2 = (t1 - c) & BN_MASK2;
399        c  = (t2 > t1);
400        t1 = b[2];
401        t1 = (t2 - t1) & BN_MASK2;
402        r[2] = t1;
403        c += (t1 > t2);
404        t1 = a[3];
405        t2 = (t1 - c) & BN_MASK2;
406        c  = (t2 > t1);
407        t1 = b[3];
408        t1 = (t2 - t1) & BN_MASK2;
409        r[3] = t1;
410        c += (t1 > t2);
411        a += 4;
412        b += 4;
413        r += 4;
414        n -= 4;
415    }
416#endif
417    while (n) {
418        t1 = a[0];
419        t2 = (t1 - c) & BN_MASK2;
420        c  = (t2 > t1);
421        t1 = b[0];
422        t1 = (t2 - t1) & BN_MASK2;
423        r[0] = t1;
424        c += (t1 > t2);
425        a++;
426        b++;
427        r++;
428        n--;
429    }
430    return c;
431}
432
433#if defined(BN_MUL_COMBA) && !defined(OPENSSL_SMALL_FOOTPRINT)
434
435# undef bn_mul_comba8
436# undef bn_mul_comba4
437# undef bn_sqr_comba8
438# undef bn_sqr_comba4
439
440/* mul_add_c(a,b,c0,c1,c2)  -- c+=a*b for three word number c=(c2,c1,c0) */
441/* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */
442/* sqr_add_c(a,i,c0,c1,c2)  -- c+=a[i]^2 for three word number c=(c2,c1,c0) */
443/*
444 * sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number
445 * c=(c2,c1,c0)
446 */
447
448# ifdef BN_LLONG
449/*
450 * Keep in mind that additions to multiplication result can not
451 * overflow, because its high half cannot be all-ones.
452 */
453#  define mul_add_c(a,b,c0,c1,c2)       do {    \
454        BN_ULONG hi;                            \
455        BN_ULLONG t = (BN_ULLONG)(a)*(b);       \
456        t += c0;                /* no carry */  \
457        c0 = (BN_ULONG)Lw(t);                   \
458        hi = (BN_ULONG)Hw(t);                   \
459        c1 = (c1+hi)&BN_MASK2; c2 += (c1<hi);   \
460        } while(0)
461
462#  define mul_add_c2(a,b,c0,c1,c2)      do {    \
463        BN_ULONG hi;                            \
464        BN_ULLONG t = (BN_ULLONG)(a)*(b);       \
465        BN_ULLONG tt = t+c0;    /* no carry */  \
466        c0 = (BN_ULONG)Lw(tt);                  \
467        hi = (BN_ULONG)Hw(tt);                  \
468        c1 = (c1+hi)&BN_MASK2; c2 += (c1<hi);   \
469        t += c0;                /* no carry */  \
470        c0 = (BN_ULONG)Lw(t);                   \
471        hi = (BN_ULONG)Hw(t);                   \
472        c1 = (c1+hi)&BN_MASK2; c2 += (c1<hi);   \
473        } while(0)
474
475#  define sqr_add_c(a,i,c0,c1,c2)       do {    \
476        BN_ULONG hi;                            \
477        BN_ULLONG t = (BN_ULLONG)a[i]*a[i];     \
478        t += c0;                /* no carry */  \
479        c0 = (BN_ULONG)Lw(t);                   \
480        hi = (BN_ULONG)Hw(t);                   \
481        c1 = (c1+hi)&BN_MASK2; c2 += (c1<hi);   \
482        } while(0)
483
484#  define sqr_add_c2(a,i,j,c0,c1,c2) \
485        mul_add_c2((a)[i],(a)[j],c0,c1,c2)
486
487# elif defined(BN_UMULT_LOHI)
488/*
489 * Keep in mind that additions to hi can not overflow, because
490 * the high word of a multiplication result cannot be all-ones.
491 */
492#  define mul_add_c(a,b,c0,c1,c2)       do {    \
493        BN_ULONG ta = (a), tb = (b);            \
494        BN_ULONG lo, hi;                        \
495        BN_UMULT_LOHI(lo,hi,ta,tb);             \
496        c0 += lo; hi += (c0<lo);                \
497        c1 += hi; c2 += (c1<hi);                \
498        } while(0)
499
500#  define mul_add_c2(a,b,c0,c1,c2)      do {    \
501        BN_ULONG ta = (a), tb = (b);            \
502        BN_ULONG lo, hi, tt;                    \
503        BN_UMULT_LOHI(lo,hi,ta,tb);             \
504        c0 += lo; tt = hi + (c0<lo);            \
505        c1 += tt; c2 += (c1<tt);                \
506        c0 += lo; hi += (c0<lo);                \
507        c1 += hi; c2 += (c1<hi);                \
508        } while(0)
509
510#  define sqr_add_c(a,i,c0,c1,c2)       do {    \
511        BN_ULONG ta = (a)[i];                   \
512        BN_ULONG lo, hi;                        \
513        BN_UMULT_LOHI(lo,hi,ta,ta);             \
514        c0 += lo; hi += (c0<lo);                \
515        c1 += hi; c2 += (c1<hi);                \
516        } while(0)
517
518#  define sqr_add_c2(a,i,j,c0,c1,c2)    \
519        mul_add_c2((a)[i],(a)[j],c0,c1,c2)
520
521# elif defined(BN_UMULT_HIGH)
522/*
523 * Keep in mind that additions to hi can not overflow, because
524 * the high word of a multiplication result cannot be all-ones.
525 */
526#  define mul_add_c(a,b,c0,c1,c2)       do {    \
527        BN_ULONG ta = (a), tb = (b);            \
528        BN_ULONG lo = ta * tb;                  \
529        BN_ULONG hi = BN_UMULT_HIGH(ta,tb);     \
530        c0 += lo; hi += (c0<lo);                \
531        c1 += hi; c2 += (c1<hi);                \
532        } while(0)
533
534#  define mul_add_c2(a,b,c0,c1,c2)      do {    \
535        BN_ULONG ta = (a), tb = (b), tt;        \
536        BN_ULONG lo = ta * tb;                  \
537        BN_ULONG hi = BN_UMULT_HIGH(ta,tb);     \
538        c0 += lo; tt = hi + (c0<lo);            \
539        c1 += tt; c2 += (c1<tt);                \
540        c0 += lo; hi += (c0<lo);                \
541        c1 += hi; c2 += (c1<hi);                \
542        } while(0)
543
544#  define sqr_add_c(a,i,c0,c1,c2)       do {    \
545        BN_ULONG ta = (a)[i];                   \
546        BN_ULONG lo = ta * ta;                  \
547        BN_ULONG hi = BN_UMULT_HIGH(ta,ta);     \
548        c0 += lo; hi += (c0<lo);                \
549        c1 += hi; c2 += (c1<hi);                \
550        } while(0)
551
552#  define sqr_add_c2(a,i,j,c0,c1,c2)      \
553        mul_add_c2((a)[i],(a)[j],c0,c1,c2)
554
555# else                          /* !BN_LLONG */
556/*
557 * Keep in mind that additions to hi can not overflow, because
558 * the high word of a multiplication result cannot be all-ones.
559 */
560#  define mul_add_c(a,b,c0,c1,c2)       do {    \
561        BN_ULONG lo = LBITS(a), hi = HBITS(a);  \
562        BN_ULONG bl = LBITS(b), bh = HBITS(b);  \
563        mul64(lo,hi,bl,bh);                     \
564        c0 = (c0+lo)&BN_MASK2; hi += (c0<lo);   \
565        c1 = (c1+hi)&BN_MASK2; c2 += (c1<hi);   \
566        } while(0)
567
568#  define mul_add_c2(a,b,c0,c1,c2)      do {    \
569        BN_ULONG tt;                            \
570        BN_ULONG lo = LBITS(a), hi = HBITS(a);  \
571        BN_ULONG bl = LBITS(b), bh = HBITS(b);  \
572        mul64(lo,hi,bl,bh);                     \
573        tt = hi;                                \
574        c0 = (c0+lo)&BN_MASK2; tt += (c0<lo);   \
575        c1 = (c1+tt)&BN_MASK2; c2 += (c1<tt);   \
576        c0 = (c0+lo)&BN_MASK2; hi += (c0<lo);   \
577        c1 = (c1+hi)&BN_MASK2; c2 += (c1<hi);   \
578        } while(0)
579
580#  define sqr_add_c(a,i,c0,c1,c2)       do {    \
581        BN_ULONG lo, hi;                        \
582        sqr64(lo,hi,(a)[i]);                    \
583        c0 = (c0+lo)&BN_MASK2; hi += (c0<lo);   \
584        c1 = (c1+hi)&BN_MASK2; c2 += (c1<hi);   \
585        } while(0)
586
587#  define sqr_add_c2(a,i,j,c0,c1,c2) \
588        mul_add_c2((a)[i],(a)[j],c0,c1,c2)
589# endif                         /* !BN_LLONG */
590
591void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
592{
593    BN_ULONG c1, c2, c3;
594
595    c1 = 0;
596    c2 = 0;
597    c3 = 0;
598    mul_add_c(a[0], b[0], c1, c2, c3);
599    r[0] = c1;
600    c1 = 0;
601    mul_add_c(a[0], b[1], c2, c3, c1);
602    mul_add_c(a[1], b[0], c2, c3, c1);
603    r[1] = c2;
604    c2 = 0;
605    mul_add_c(a[2], b[0], c3, c1, c2);
606    mul_add_c(a[1], b[1], c3, c1, c2);
607    mul_add_c(a[0], b[2], c3, c1, c2);
608    r[2] = c3;
609    c3 = 0;
610    mul_add_c(a[0], b[3], c1, c2, c3);
611    mul_add_c(a[1], b[2], c1, c2, c3);
612    mul_add_c(a[2], b[1], c1, c2, c3);
613    mul_add_c(a[3], b[0], c1, c2, c3);
614    r[3] = c1;
615    c1 = 0;
616    mul_add_c(a[4], b[0], c2, c3, c1);
617    mul_add_c(a[3], b[1], c2, c3, c1);
618    mul_add_c(a[2], b[2], c2, c3, c1);
619    mul_add_c(a[1], b[3], c2, c3, c1);
620    mul_add_c(a[0], b[4], c2, c3, c1);
621    r[4] = c2;
622    c2 = 0;
623    mul_add_c(a[0], b[5], c3, c1, c2);
624    mul_add_c(a[1], b[4], c3, c1, c2);
625    mul_add_c(a[2], b[3], c3, c1, c2);
626    mul_add_c(a[3], b[2], c3, c1, c2);
627    mul_add_c(a[4], b[1], c3, c1, c2);
628    mul_add_c(a[5], b[0], c3, c1, c2);
629    r[5] = c3;
630    c3 = 0;
631    mul_add_c(a[6], b[0], c1, c2, c3);
632    mul_add_c(a[5], b[1], c1, c2, c3);
633    mul_add_c(a[4], b[2], c1, c2, c3);
634    mul_add_c(a[3], b[3], c1, c2, c3);
635    mul_add_c(a[2], b[4], c1, c2, c3);
636    mul_add_c(a[1], b[5], c1, c2, c3);
637    mul_add_c(a[0], b[6], c1, c2, c3);
638    r[6] = c1;
639    c1 = 0;
640    mul_add_c(a[0], b[7], c2, c3, c1);
641    mul_add_c(a[1], b[6], c2, c3, c1);
642    mul_add_c(a[2], b[5], c2, c3, c1);
643    mul_add_c(a[3], b[4], c2, c3, c1);
644    mul_add_c(a[4], b[3], c2, c3, c1);
645    mul_add_c(a[5], b[2], c2, c3, c1);
646    mul_add_c(a[6], b[1], c2, c3, c1);
647    mul_add_c(a[7], b[0], c2, c3, c1);
648    r[7] = c2;
649    c2 = 0;
650    mul_add_c(a[7], b[1], c3, c1, c2);
651    mul_add_c(a[6], b[2], c3, c1, c2);
652    mul_add_c(a[5], b[3], c3, c1, c2);
653    mul_add_c(a[4], b[4], c3, c1, c2);
654    mul_add_c(a[3], b[5], c3, c1, c2);
655    mul_add_c(a[2], b[6], c3, c1, c2);
656    mul_add_c(a[1], b[7], c3, c1, c2);
657    r[8] = c3;
658    c3 = 0;
659    mul_add_c(a[2], b[7], c1, c2, c3);
660    mul_add_c(a[3], b[6], c1, c2, c3);
661    mul_add_c(a[4], b[5], c1, c2, c3);
662    mul_add_c(a[5], b[4], c1, c2, c3);
663    mul_add_c(a[6], b[3], c1, c2, c3);
664    mul_add_c(a[7], b[2], c1, c2, c3);
665    r[9] = c1;
666    c1 = 0;
667    mul_add_c(a[7], b[3], c2, c3, c1);
668    mul_add_c(a[6], b[4], c2, c3, c1);
669    mul_add_c(a[5], b[5], c2, c3, c1);
670    mul_add_c(a[4], b[6], c2, c3, c1);
671    mul_add_c(a[3], b[7], c2, c3, c1);
672    r[10] = c2;
673    c2 = 0;
674    mul_add_c(a[4], b[7], c3, c1, c2);
675    mul_add_c(a[5], b[6], c3, c1, c2);
676    mul_add_c(a[6], b[5], c3, c1, c2);
677    mul_add_c(a[7], b[4], c3, c1, c2);
678    r[11] = c3;
679    c3 = 0;
680    mul_add_c(a[7], b[5], c1, c2, c3);
681    mul_add_c(a[6], b[6], c1, c2, c3);
682    mul_add_c(a[5], b[7], c1, c2, c3);
683    r[12] = c1;
684    c1 = 0;
685    mul_add_c(a[6], b[7], c2, c3, c1);
686    mul_add_c(a[7], b[6], c2, c3, c1);
687    r[13] = c2;
688    c2 = 0;
689    mul_add_c(a[7], b[7], c3, c1, c2);
690    r[14] = c3;
691    r[15] = c1;
692}
693
694void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
695{
696    BN_ULONG c1, c2, c3;
697
698    c1 = 0;
699    c2 = 0;
700    c3 = 0;
701    mul_add_c(a[0], b[0], c1, c2, c3);
702    r[0] = c1;
703    c1 = 0;
704    mul_add_c(a[0], b[1], c2, c3, c1);
705    mul_add_c(a[1], b[0], c2, c3, c1);
706    r[1] = c2;
707    c2 = 0;
708    mul_add_c(a[2], b[0], c3, c1, c2);
709    mul_add_c(a[1], b[1], c3, c1, c2);
710    mul_add_c(a[0], b[2], c3, c1, c2);
711    r[2] = c3;
712    c3 = 0;
713    mul_add_c(a[0], b[3], c1, c2, c3);
714    mul_add_c(a[1], b[2], c1, c2, c3);
715    mul_add_c(a[2], b[1], c1, c2, c3);
716    mul_add_c(a[3], b[0], c1, c2, c3);
717    r[3] = c1;
718    c1 = 0;
719    mul_add_c(a[3], b[1], c2, c3, c1);
720    mul_add_c(a[2], b[2], c2, c3, c1);
721    mul_add_c(a[1], b[3], c2, c3, c1);
722    r[4] = c2;
723    c2 = 0;
724    mul_add_c(a[2], b[3], c3, c1, c2);
725    mul_add_c(a[3], b[2], c3, c1, c2);
726    r[5] = c3;
727    c3 = 0;
728    mul_add_c(a[3], b[3], c1, c2, c3);
729    r[6] = c1;
730    r[7] = c2;
731}
732
733void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
734{
735    BN_ULONG c1, c2, c3;
736
737    c1 = 0;
738    c2 = 0;
739    c3 = 0;
740    sqr_add_c(a, 0, c1, c2, c3);
741    r[0] = c1;
742    c1 = 0;
743    sqr_add_c2(a, 1, 0, c2, c3, c1);
744    r[1] = c2;
745    c2 = 0;
746    sqr_add_c(a, 1, c3, c1, c2);
747    sqr_add_c2(a, 2, 0, c3, c1, c2);
748    r[2] = c3;
749    c3 = 0;
750    sqr_add_c2(a, 3, 0, c1, c2, c3);
751    sqr_add_c2(a, 2, 1, c1, c2, c3);
752    r[3] = c1;
753    c1 = 0;
754    sqr_add_c(a, 2, c2, c3, c1);
755    sqr_add_c2(a, 3, 1, c2, c3, c1);
756    sqr_add_c2(a, 4, 0, c2, c3, c1);
757    r[4] = c2;
758    c2 = 0;
759    sqr_add_c2(a, 5, 0, c3, c1, c2);
760    sqr_add_c2(a, 4, 1, c3, c1, c2);
761    sqr_add_c2(a, 3, 2, c3, c1, c2);
762    r[5] = c3;
763    c3 = 0;
764    sqr_add_c(a, 3, c1, c2, c3);
765    sqr_add_c2(a, 4, 2, c1, c2, c3);
766    sqr_add_c2(a, 5, 1, c1, c2, c3);
767    sqr_add_c2(a, 6, 0, c1, c2, c3);
768    r[6] = c1;
769    c1 = 0;
770    sqr_add_c2(a, 7, 0, c2, c3, c1);
771    sqr_add_c2(a, 6, 1, c2, c3, c1);
772    sqr_add_c2(a, 5, 2, c2, c3, c1);
773    sqr_add_c2(a, 4, 3, c2, c3, c1);
774    r[7] = c2;
775    c2 = 0;
776    sqr_add_c(a, 4, c3, c1, c2);
777    sqr_add_c2(a, 5, 3, c3, c1, c2);
778    sqr_add_c2(a, 6, 2, c3, c1, c2);
779    sqr_add_c2(a, 7, 1, c3, c1, c2);
780    r[8] = c3;
781    c3 = 0;
782    sqr_add_c2(a, 7, 2, c1, c2, c3);
783    sqr_add_c2(a, 6, 3, c1, c2, c3);
784    sqr_add_c2(a, 5, 4, c1, c2, c3);
785    r[9] = c1;
786    c1 = 0;
787    sqr_add_c(a, 5, c2, c3, c1);
788    sqr_add_c2(a, 6, 4, c2, c3, c1);
789    sqr_add_c2(a, 7, 3, c2, c3, c1);
790    r[10] = c2;
791    c2 = 0;
792    sqr_add_c2(a, 7, 4, c3, c1, c2);
793    sqr_add_c2(a, 6, 5, c3, c1, c2);
794    r[11] = c3;
795    c3 = 0;
796    sqr_add_c(a, 6, c1, c2, c3);
797    sqr_add_c2(a, 7, 5, c1, c2, c3);
798    r[12] = c1;
799    c1 = 0;
800    sqr_add_c2(a, 7, 6, c2, c3, c1);
801    r[13] = c2;
802    c2 = 0;
803    sqr_add_c(a, 7, c3, c1, c2);
804    r[14] = c3;
805    r[15] = c1;
806}
807
808void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
809{
810    BN_ULONG c1, c2, c3;
811
812    c1 = 0;
813    c2 = 0;
814    c3 = 0;
815    sqr_add_c(a, 0, c1, c2, c3);
816    r[0] = c1;
817    c1 = 0;
818    sqr_add_c2(a, 1, 0, c2, c3, c1);
819    r[1] = c2;
820    c2 = 0;
821    sqr_add_c(a, 1, c3, c1, c2);
822    sqr_add_c2(a, 2, 0, c3, c1, c2);
823    r[2] = c3;
824    c3 = 0;
825    sqr_add_c2(a, 3, 0, c1, c2, c3);
826    sqr_add_c2(a, 2, 1, c1, c2, c3);
827    r[3] = c1;
828    c1 = 0;
829    sqr_add_c(a, 2, c2, c3, c1);
830    sqr_add_c2(a, 3, 1, c2, c3, c1);
831    r[4] = c2;
832    c2 = 0;
833    sqr_add_c2(a, 3, 2, c3, c1, c2);
834    r[5] = c3;
835    c3 = 0;
836    sqr_add_c(a, 3, c1, c2, c3);
837    r[6] = c1;
838    r[7] = c2;
839}
840
841# ifdef OPENSSL_NO_ASM
842#  ifdef OPENSSL_BN_ASM_MONT
843#   include <alloca.h>
844/*
845 * This is essentially reference implementation, which may or may not
846 * result in performance improvement. E.g. on IA-32 this routine was
847 * observed to give 40% faster rsa1024 private key operations and 10%
848 * faster rsa4096 ones, while on AMD64 it improves rsa1024 sign only
849 * by 10% and *worsens* rsa4096 sign by 15%. Once again, it's a
850 * reference implementation, one to be used as starting point for
851 * platform-specific assembler. Mentioned numbers apply to compiler
852 * generated code compiled with and without -DOPENSSL_BN_ASM_MONT and
853 * can vary not only from platform to platform, but even for compiler
854 * versions. Assembler vs. assembler improvement coefficients can
855 * [and are known to] differ and are to be documented elsewhere.
856 */
857int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
858                const BN_ULONG *np, const BN_ULONG *n0p, int num)
859{
860    BN_ULONG c0, c1, ml, *tp, n0;
861#   ifdef mul64
862    BN_ULONG mh;
863#   endif
864    volatile BN_ULONG *vp;
865    int i = 0, j;
866
867#   if 0                        /* template for platform-specific
868                                 * implementation */
869    if (ap == bp)
870        return bn_sqr_mont(rp, ap, np, n0p, num);
871#   endif
872    vp = tp = alloca((num + 2) * sizeof(BN_ULONG));
873
874    n0 = *n0p;
875
876    c0 = 0;
877    ml = bp[0];
878#   ifdef mul64
879    mh = HBITS(ml);
880    ml = LBITS(ml);
881    for (j = 0; j < num; ++j)
882        mul(tp[j], ap[j], ml, mh, c0);
883#   else
884    for (j = 0; j < num; ++j)
885        mul(tp[j], ap[j], ml, c0);
886#   endif
887
888    tp[num] = c0;
889    tp[num + 1] = 0;
890    goto enter;
891
892    for (i = 0; i < num; i++) {
893        c0 = 0;
894        ml = bp[i];
895#   ifdef mul64
896        mh = HBITS(ml);
897        ml = LBITS(ml);
898        for (j = 0; j < num; ++j)
899            mul_add(tp[j], ap[j], ml, mh, c0);
900#   else
901        for (j = 0; j < num; ++j)
902            mul_add(tp[j], ap[j], ml, c0);
903#   endif
904        c1 = (tp[num] + c0) & BN_MASK2;
905        tp[num] = c1;
906        tp[num + 1] = (c1 < c0 ? 1 : 0);
907 enter:
908        c1 = tp[0];
909        ml = (c1 * n0) & BN_MASK2;
910        c0 = 0;
911#   ifdef mul64
912        mh = HBITS(ml);
913        ml = LBITS(ml);
914        mul_add(c1, np[0], ml, mh, c0);
915#   else
916        mul_add(c1, ml, np[0], c0);
917#   endif
918        for (j = 1; j < num; j++) {
919            c1 = tp[j];
920#   ifdef mul64
921            mul_add(c1, np[j], ml, mh, c0);
922#   else
923            mul_add(c1, ml, np[j], c0);
924#   endif
925            tp[j - 1] = c1 & BN_MASK2;
926        }
927        c1 = (tp[num] + c0) & BN_MASK2;
928        tp[num - 1] = c1;
929        tp[num] = tp[num + 1] + (c1 < c0 ? 1 : 0);
930    }
931
932    if (tp[num] != 0 || tp[num - 1] >= np[num - 1]) {
933        c0 = bn_sub_words(rp, tp, np, num);
934        if (tp[num] != 0 || c0 == 0) {
935            for (i = 0; i < num + 2; i++)
936                vp[i] = 0;
937            return 1;
938        }
939    }
940    for (i = 0; i < num; i++)
941        rp[i] = tp[i], vp[i] = 0;
942    vp[num] = 0;
943    vp[num + 1] = 0;
944    return 1;
945}
946#  else
947/*
948 * Return value of 0 indicates that multiplication/convolution was not
949 * performed to signal the caller to fall down to alternative/original
950 * code-path.
951 */
952int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
953                const BN_ULONG *np, const BN_ULONG *n0, int num)
954{
955    return 0;
956}
957#  endif                        /* OPENSSL_BN_ASM_MONT */
958# endif
959
960#else                           /* !BN_MUL_COMBA */
961
962/* hmm... is it faster just to do a multiply? */
963# undef bn_sqr_comba4
964# undef bn_sqr_comba8
965void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
966{
967    BN_ULONG t[8];
968    bn_sqr_normal(r, a, 4, t);
969}
970
971void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
972{
973    BN_ULONG t[16];
974    bn_sqr_normal(r, a, 8, t);
975}
976
977void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
978{
979    r[4] = bn_mul_words(&(r[0]), a, 4, b[0]);
980    r[5] = bn_mul_add_words(&(r[1]), a, 4, b[1]);
981    r[6] = bn_mul_add_words(&(r[2]), a, 4, b[2]);
982    r[7] = bn_mul_add_words(&(r[3]), a, 4, b[3]);
983}
984
985void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
986{
987    r[8] = bn_mul_words(&(r[0]), a, 8, b[0]);
988    r[9] = bn_mul_add_words(&(r[1]), a, 8, b[1]);
989    r[10] = bn_mul_add_words(&(r[2]), a, 8, b[2]);
990    r[11] = bn_mul_add_words(&(r[3]), a, 8, b[3]);
991    r[12] = bn_mul_add_words(&(r[4]), a, 8, b[4]);
992    r[13] = bn_mul_add_words(&(r[5]), a, 8, b[5]);
993    r[14] = bn_mul_add_words(&(r[6]), a, 8, b[6]);
994    r[15] = bn_mul_add_words(&(r[7]), a, 8, b[7]);
995}
996
997# ifdef OPENSSL_NO_ASM
998#  ifdef OPENSSL_BN_ASM_MONT
999#   include <alloca.h>
1000int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
1001                const BN_ULONG *np, const BN_ULONG *n0p, int num)
1002{
1003    BN_ULONG c0, c1, *tp, n0 = *n0p;
1004    volatile BN_ULONG *vp;
1005    int i = 0, j;
1006
1007    vp = tp = alloca((num + 2) * sizeof(BN_ULONG));
1008
1009    for (i = 0; i <= num; i++)
1010        tp[i] = 0;
1011
1012    for (i = 0; i < num; i++) {
1013        c0 = bn_mul_add_words(tp, ap, num, bp[i]);
1014        c1 = (tp[num] + c0) & BN_MASK2;
1015        tp[num] = c1;
1016        tp[num + 1] = (c1 < c0 ? 1 : 0);
1017
1018        c0 = bn_mul_add_words(tp, np, num, tp[0] * n0);
1019        c1 = (tp[num] + c0) & BN_MASK2;
1020        tp[num] = c1;
1021        tp[num + 1] += (c1 < c0 ? 1 : 0);
1022        for (j = 0; j <= num; j++)
1023            tp[j] = tp[j + 1];
1024    }
1025
1026    if (tp[num] != 0 || tp[num - 1] >= np[num - 1]) {
1027        c0 = bn_sub_words(rp, tp, np, num);
1028        if (tp[num] != 0 || c0 == 0) {
1029            for (i = 0; i < num + 2; i++)
1030                vp[i] = 0;
1031            return 1;
1032        }
1033    }
1034    for (i = 0; i < num; i++)
1035        rp[i] = tp[i], vp[i] = 0;
1036    vp[num] = 0;
1037    vp[num + 1] = 0;
1038    return 1;
1039}
1040#  else
1041int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
1042                const BN_ULONG *np, const BN_ULONG *n0, int num)
1043{
1044    return 0;
1045}
1046#  endif                        /* OPENSSL_BN_ASM_MONT */
1047# endif
1048
1049#endif                          /* !BN_MUL_COMBA */
1050