1// SPDX-License-Identifier: 0BSD
2
3///////////////////////////////////////////////////////////////////////////////
4//
5/// \file       range_decoder.h
6/// \brief      Range Decoder
7///
8//  Authors:    Igor Pavlov
9//              Lasse Collin
10//
11///////////////////////////////////////////////////////////////////////////////
12
13#ifndef LZMA_RANGE_DECODER_H
14#define LZMA_RANGE_DECODER_H
15
16#include "range_common.h"
17
18
19// Choose the range decoder variants to use using a bitmask.
20// If no bits are set, only the basic version is used.
21// If more than one version is selected for the same feature,
22// the last one on the list below is used.
23//
24// Bitwise-or of the following enable branchless C versions:
25//   0x01   normal bittrees
26//   0x02   fixed-sized reverse bittrees
27//   0x04   variable-sized reverse bittrees (not faster)
28//   0x08   matched literal (not faster)
29//
30// GCC & Clang compatible x86-64 inline assembly:
31//   0x010   normal bittrees
32//   0x020   fixed-sized reverse bittrees
33//   0x040   variable-sized reverse bittrees
34//   0x080   matched literal
35//   0x100   direct bits
36//
37// The default can be overridden at build time by defining
38// LZMA_RANGE_DECODER_CONFIG to the desired mask.
39//
40// 2024-02-22: Feedback from benchmarks:
41//   - Brancless C (0x003) can be better than basic on x86-64 but often it's
42//     slightly worse on other archs. Since asm is much better on x86-64,
43//     branchless C is not used at all.
44//   - With x86-64 asm, there are slight differences between GCC and Clang
45//     and different processors. Overall 0x1F0 seems to be the best choice.
46#ifndef LZMA_RANGE_DECODER_CONFIG
47#	if defined(__x86_64__) && !defined(__ILP32__) \
48			&& !defined(__NVCOMPILER) \
49			&& (defined(__GNUC__) || defined(__clang__))
50#		define LZMA_RANGE_DECODER_CONFIG 0x1F0
51#	else
52#		define LZMA_RANGE_DECODER_CONFIG 0
53#	endif
54#endif
55
56
57// Negative RC_BIT_MODEL_TOTAL but the lowest RC_MOVE_BITS are flipped.
58// This is useful for updating probability variables in branchless decoding:
59//
60//     uint32_t decoded_bit = ...;
61//     probability tmp = RC_BIT_MODEL_OFFSET;
62//     tmp &= decoded_bit - 1;
63//     prob -= (prob + tmp) >> RC_MOVE_BITS;
64#define RC_BIT_MODEL_OFFSET \
65	((UINT32_C(1) << RC_MOVE_BITS) - 1 - RC_BIT_MODEL_TOTAL)
66
67
68typedef struct {
69	uint32_t range;
70	uint32_t code;
71	uint32_t init_bytes_left;
72} lzma_range_decoder;
73
74
75/// Reads the first five bytes to initialize the range decoder.
76static inline lzma_ret
77rc_read_init(lzma_range_decoder *rc, const uint8_t *restrict in,
78		size_t *restrict in_pos, size_t in_size)
79{
80	while (rc->init_bytes_left > 0) {
81		if (*in_pos == in_size)
82			return LZMA_OK;
83
84		// The first byte is always 0x00. It could have been omitted
85		// in LZMA2 but it wasn't, so one byte is wasted in every
86		// LZMA2 chunk.
87		if (rc->init_bytes_left == 5 && in[*in_pos] != 0x00)
88			return LZMA_DATA_ERROR;
89
90		rc->code = (rc->code << 8) | in[*in_pos];
91		++*in_pos;
92		--rc->init_bytes_left;
93	}
94
95	return LZMA_STREAM_END;
96}
97
98
99/// Makes local copies of range decoder and *in_pos variables. Doing this
100/// improves speed significantly. The range decoder macros expect also
101/// variables 'in' and 'in_size' to be defined.
102#define rc_to_local(range_decoder, in_pos, fast_mode_in_required) \
103	lzma_range_decoder rc = range_decoder; \
104	const uint8_t *rc_in_ptr = in + (in_pos); \
105	const uint8_t *rc_in_end = in + in_size; \
106	const uint8_t *rc_in_fast_end \
107			= (rc_in_end - rc_in_ptr) <= (fast_mode_in_required) \
108			? rc_in_ptr \
109			: rc_in_end - (fast_mode_in_required); \
110	(void)rc_in_fast_end; /* Silence a warning with HAVE_SMALL. */ \
111	uint32_t rc_bound
112
113
114/// Evaluates to true if there is enough input remaining to use fast mode.
115#define rc_is_fast_allowed() (rc_in_ptr < rc_in_fast_end)
116
117
118/// Stores the local copes back to the range decoder structure.
119#define rc_from_local(range_decoder, in_pos) \
120do { \
121	range_decoder = rc; \
122	in_pos = (size_t)(rc_in_ptr - in); \
123} while (0)
124
125
126/// Resets the range decoder structure.
127#define rc_reset(range_decoder) \
128do { \
129	(range_decoder).range = UINT32_MAX; \
130	(range_decoder).code = 0; \
131	(range_decoder).init_bytes_left = 5; \
132} while (0)
133
134
135/// When decoding has been properly finished, rc.code is always zero unless
136/// the input stream is corrupt. So checking this can catch some corrupt
137/// files especially if they don't have any other integrity check.
138#define rc_is_finished(range_decoder) \
139	((range_decoder).code == 0)
140
141
142// Read the next input byte if needed.
143#define rc_normalize() \
144do { \
145	if (rc.range < RC_TOP_VALUE) { \
146		rc.range <<= RC_SHIFT_BITS; \
147		rc.code = (rc.code << RC_SHIFT_BITS) | *rc_in_ptr++; \
148	} \
149} while (0)
150
151
152/// If more input is needed but there is
153/// no more input available, "goto out" is used to jump out of the main
154/// decoder loop. The "_safe" macros are used in the Resumable decoder
155/// mode in order to save the sequence to continue decoding from that
156/// point later.
157#define rc_normalize_safe(seq) \
158do { \
159	if (rc.range < RC_TOP_VALUE) { \
160		if (rc_in_ptr == rc_in_end) { \
161			coder->sequence = seq; \
162			goto out; \
163		} \
164		rc.range <<= RC_SHIFT_BITS; \
165		rc.code = (rc.code << RC_SHIFT_BITS) | *rc_in_ptr++; \
166	} \
167} while (0)
168
169
170/// Start decoding a bit. This must be used together with rc_update_0()
171/// and rc_update_1():
172///
173///     rc_if_0(prob) {
174///         rc_update_0(prob);
175///         // Do something
176///     } else {
177///         rc_update_1(prob);
178///         // Do something else
179///     }
180///
181#define rc_if_0(prob) \
182	rc_normalize(); \
183	rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); \
184	if (rc.code < rc_bound)
185
186
187#define rc_if_0_safe(prob, seq) \
188	rc_normalize_safe(seq); \
189	rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); \
190	if (rc.code < rc_bound)
191
192
193/// Update the range decoder state and the used probability variable to
194/// match a decoded bit of 0.
195///
196/// The x86-64 assembly uses the commented method but it seems that,
197/// at least on x86-64, the first version is slightly faster as C code.
198#define rc_update_0(prob) \
199do { \
200	rc.range = rc_bound; \
201	prob += (RC_BIT_MODEL_TOTAL - (prob)) >> RC_MOVE_BITS; \
202	/* prob -= ((prob) + RC_BIT_MODEL_OFFSET) >> RC_MOVE_BITS; */ \
203} while (0)
204
205
206/// Update the range decoder state and the used probability variable to
207/// match a decoded bit of 1.
208#define rc_update_1(prob) \
209do { \
210	rc.range -= rc_bound; \
211	rc.code -= rc_bound; \
212	prob -= (prob) >> RC_MOVE_BITS; \
213} while (0)
214
215
216/// Decodes one bit and runs action0 or action1 depending on the decoded bit.
217/// This macro is used as the last step in bittree reverse decoders since
218/// those don't use "symbol" for anything else than indexing the probability
219/// arrays.
220#define rc_bit_last(prob, action0, action1) \
221do { \
222	rc_if_0(prob) { \
223		rc_update_0(prob); \
224		action0; \
225	} else { \
226		rc_update_1(prob); \
227		action1; \
228	} \
229} while (0)
230
231
232#define rc_bit_last_safe(prob, action0, action1, seq) \
233do { \
234	rc_if_0_safe(prob, seq) { \
235		rc_update_0(prob); \
236		action0; \
237	} else { \
238		rc_update_1(prob); \
239		action1; \
240	} \
241} while (0)
242
243
244/// Decodes one bit, updates "symbol", and runs action0 or action1 depending
245/// on the decoded bit.
246#define rc_bit(prob, action0, action1) \
247	rc_bit_last(prob, \
248		symbol <<= 1; action0, \
249		symbol = (symbol << 1) + 1; action1);
250
251
252#define rc_bit_safe(prob, action0, action1, seq) \
253	rc_bit_last_safe(prob, \
254		symbol <<= 1; action0, \
255		symbol = (symbol << 1) + 1; action1, \
256		seq);
257
258// Unroll fixed-sized bittree decoding.
259//
260// A compile-time constant in final_add can be used to get rid of the high bit
261// from symbol that is used for the array indexing (1U << bittree_bits).
262// final_add may also be used to add offset to the result (LZMA length
263// decoder does that).
264//
265// The reason to have final_add here is that in the asm code the addition
266// can be done for free: in x86-64 there is SBB instruction with -1 as
267// the immediate value, and final_add is combined with that value.
268#define rc_bittree_bit(prob) \
269	rc_bit(prob, , )
270
271#define rc_bittree3(probs, final_add) \
272do { \
273	symbol = 1; \
274	rc_bittree_bit(probs[symbol]); \
275	rc_bittree_bit(probs[symbol]); \
276	rc_bittree_bit(probs[symbol]); \
277	symbol += (uint32_t)(final_add); \
278} while (0)
279
280#define rc_bittree6(probs, final_add) \
281do { \
282	symbol = 1; \
283	rc_bittree_bit(probs[symbol]); \
284	rc_bittree_bit(probs[symbol]); \
285	rc_bittree_bit(probs[symbol]); \
286	rc_bittree_bit(probs[symbol]); \
287	rc_bittree_bit(probs[symbol]); \
288	rc_bittree_bit(probs[symbol]); \
289	symbol += (uint32_t)(final_add); \
290} while (0)
291
292#define rc_bittree8(probs, final_add) \
293do { \
294	symbol = 1; \
295	rc_bittree_bit(probs[symbol]); \
296	rc_bittree_bit(probs[symbol]); \
297	rc_bittree_bit(probs[symbol]); \
298	rc_bittree_bit(probs[symbol]); \
299	rc_bittree_bit(probs[symbol]); \
300	rc_bittree_bit(probs[symbol]); \
301	rc_bittree_bit(probs[symbol]); \
302	rc_bittree_bit(probs[symbol]); \
303	symbol += (uint32_t)(final_add); \
304} while (0)
305
306
307// Fixed-sized reverse bittree
308#define rc_bittree_rev4(probs) \
309do { \
310	symbol = 0; \
311	rc_bit_last(probs[symbol + 1], , symbol += 1); \
312	rc_bit_last(probs[symbol + 2], , symbol += 2); \
313	rc_bit_last(probs[symbol + 4], , symbol += 4); \
314	rc_bit_last(probs[symbol + 8], , symbol += 8); \
315} while (0)
316
317
318// Decode one bit from variable-sized reverse bittree. The loop is done
319// in the code that uses this macro. This could be changed if the assembly
320// version benefited from having the loop done in assembly but it didn't
321// seem so in early 2024.
322//
323// Also, if the loop was done here, the loop counter would likely be local
324// to the macro so that it wouldn't modify yet another input variable.
325// If a _safe version of a macro with a loop was done then a modifiable
326// input variable couldn't be avoided though.
327#define rc_bit_add_if_1(probs, dest, value_to_add_if_1) \
328	rc_bit(probs[symbol], \
329		, \
330		dest += value_to_add_if_1);
331
332
333// Matched literal
334#define decode_with_match_bit \
335		t_match_byte <<= 1; \
336		t_match_bit = t_match_byte & t_offset; \
337		t_subcoder_index = t_offset + t_match_bit + symbol; \
338		rc_bit(probs[t_subcoder_index], \
339				t_offset &= ~t_match_bit, \
340				t_offset &= t_match_bit)
341
342#define rc_matched_literal(probs_base_var, match_byte) \
343do { \
344	uint32_t t_match_byte = (match_byte); \
345	uint32_t t_match_bit; \
346	uint32_t t_subcoder_index; \
347	uint32_t t_offset = 0x100; \
348	symbol = 1; \
349	decode_with_match_bit; \
350	decode_with_match_bit; \
351	decode_with_match_bit; \
352	decode_with_match_bit; \
353	decode_with_match_bit; \
354	decode_with_match_bit; \
355	decode_with_match_bit; \
356	decode_with_match_bit; \
357} while (0)
358
359
360/// Decode a bit without using a probability.
361//
362// NOTE: GCC 13 and Clang/LLVM 16 can, at least on x86-64, optimize the bound
363// calculation to use an arithmetic right shift so there's no need to provide
364// the alternative code which, according to C99/C11/C23 6.3.1.3-p3 isn't
365// perfectly portable: rc_bound = (uint32_t)((int32_t)rc.code >> 31);
366#define rc_direct(dest, count_var) \
367do { \
368	dest = (dest << 1) + 1; \
369	rc_normalize(); \
370	rc.range >>= 1; \
371	rc.code -= rc.range; \
372	rc_bound = UINT32_C(0) - (rc.code >> 31); \
373	dest += rc_bound; \
374	rc.code += rc.range & rc_bound; \
375} while (--count_var > 0)
376
377
378
379#define rc_direct_safe(dest, count_var, seq) \
380do { \
381	rc_normalize_safe(seq); \
382	rc.range >>= 1; \
383	rc.code -= rc.range; \
384	rc_bound = UINT32_C(0) - (rc.code >> 31); \
385	rc.code += rc.range & rc_bound; \
386	dest = (dest << 1) + (rc_bound + 1); \
387} while (--count_var > 0)
388
389
390//////////////////
391// Branchless C //
392//////////////////
393
394/// Decode a bit using a branchless method. This reduces the number of
395/// mispredicted branches and thus can improve speed.
396#define rc_c_bit(prob, action_bit, action_neg) \
397do { \
398	probability *p = &(prob); \
399	rc_normalize(); \
400	rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * *p; \
401	uint32_t rc_mask = rc.code >= rc_bound; /* rc_mask = decoded bit */ \
402	action_bit; /* action when rc_mask is 0 or 1 */ \
403	/* rc_mask becomes 0 if bit is 0 and 0xFFFFFFFF if bit is 1: */ \
404	rc_mask = 0U - rc_mask; \
405	rc.range &= rc_mask; /* If bit 0: set rc.range = 0 */ \
406	rc_bound ^= rc_mask; \
407	rc_bound -= rc_mask; /* If bit 1: rc_bound = 0U - rc_bound */ \
408	rc.range += rc_bound; \
409	rc_bound &= rc_mask; \
410	rc.code += rc_bound; \
411	action_neg; /* action when rc_mask is 0 or 0xFFFFFFFF */ \
412	rc_mask = ~rc_mask; /* If bit 0: all bits are set in rc_mask */ \
413	rc_mask &= RC_BIT_MODEL_OFFSET; \
414	*p -= (*p + rc_mask) >> RC_MOVE_BITS; \
415} while (0)
416
417
418// Testing on x86-64 give an impression that only the normal bittrees and
419// the fixed-sized reverse bittrees are worth the branchless C code.
420// It should be tested on other archs for which there isn't assembly code
421// in this file.
422
423// Using addition in "(symbol << 1) + rc_mask" allows use of x86 LEA
424// or RISC-V SH1ADD instructions. Compilers might infer it from
425// "(symbol << 1) | rc_mask" too if they see that mask is 0 or 1 but
426// the use of addition doesn't require such analysis from compilers.
427#if LZMA_RANGE_DECODER_CONFIG & 0x01
428#undef rc_bittree_bit
429#define rc_bittree_bit(prob) \
430	rc_c_bit(prob, \
431		symbol = (symbol << 1) + rc_mask, \
432		)
433#endif // LZMA_RANGE_DECODER_CONFIG & 0x01
434
435#if LZMA_RANGE_DECODER_CONFIG & 0x02
436#undef rc_bittree_rev4
437#define rc_bittree_rev4(probs) \
438do { \
439	symbol = 0; \
440	rc_c_bit(probs[symbol + 1], symbol += rc_mask, ); \
441	rc_c_bit(probs[symbol + 2], symbol += rc_mask << 1, ); \
442	rc_c_bit(probs[symbol + 4], symbol += rc_mask << 2, ); \
443	rc_c_bit(probs[symbol + 8], symbol += rc_mask << 3, ); \
444} while (0)
445#endif // LZMA_RANGE_DECODER_CONFIG & 0x02
446
447#if LZMA_RANGE_DECODER_CONFIG & 0x04
448#undef rc_bit_add_if_1
449#define rc_bit_add_if_1(probs, dest, value_to_add_if_1) \
450	rc_c_bit(probs[symbol], \
451		symbol = (symbol << 1) + rc_mask, \
452		dest += (value_to_add_if_1) & rc_mask)
453#endif // LZMA_RANGE_DECODER_CONFIG & 0x04
454
455
456#if LZMA_RANGE_DECODER_CONFIG & 0x08
457#undef decode_with_match_bit
458#define decode_with_match_bit \
459		t_match_byte <<= 1; \
460		t_match_bit = t_match_byte & t_offset; \
461		t_subcoder_index = t_offset + t_match_bit + symbol; \
462		rc_c_bit(probs[t_subcoder_index], \
463			symbol = (symbol << 1) + rc_mask, \
464			t_offset &= ~t_match_bit ^ rc_mask)
465#endif // LZMA_RANGE_DECODER_CONFIG & 0x08
466
467
468////////////
469// x86-64 //
470////////////
471
472#if LZMA_RANGE_DECODER_CONFIG & 0x1F0
473
474// rc_asm_y and rc_asm_n are used as arguments to macros to control which
475// strings to include or omit.
476#define rc_asm_y(str) str
477#define rc_asm_n(str)
478
479// There are a few possible variations for normalization.
480// This is the smallest variant which is also used by LZMA SDK.
481//
482//   - This has partial register write (the MOV from (%[in_ptr])).
483//
484//   - INC saves one byte in code size over ADD. False dependency on
485//     partial flags from INC shouldn't become a problem on any processor
486//     because the instructions after normalization don't read the flags
487//     until SUB which sets all flags.
488//
489#define rc_asm_normalize \
490	"cmp	%[top_value], %[range]\n\t" \
491	"jae	1f\n\t" \
492	"shl	%[shift_bits], %[code]\n\t" \
493	"mov	(%[in_ptr]), %b[code]\n\t" \
494	"shl	%[shift_bits], %[range]\n\t" \
495	"inc	%[in_ptr]\n" \
496	"1:\n"
497
498// rc_asm_calc(prob) is roughly equivalent to the C version of rc_if_0(prob)...
499//
500//     rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob);
501//     if (rc.code < rc_bound)
502//
503// ...but the bound is stored in "range":
504//
505//     t0 = range;
506//     range = (range >> RC_BIT_MODEL_TOTAL_BITS) * (prob);
507//     t0 -= range;
508//     t1 = code;
509//     code -= range;
510//
511// The carry flag (CF) from the last subtraction holds the negation of
512// the decoded bit (if CF==0 then the decoded bit is 1).
513// The values in t0 and t1 are needed for rc_update_0(prob) and
514// rc_update_1(prob). If the bit is 0, rc_update_0(prob)...
515//
516//     rc.range = rc_bound;
517//
518// ...has already been done but the "code -= range" has to be reverted using
519// the old value stored in t1. (Also, prob needs to be updated.)
520//
521// If the bit is 1, rc_update_1(prob)...
522//
523//     rc.range -= rc_bound;
524//     rc.code -= rc_bound;
525//
526// ...is already done for "code" but the value for "range" needs to be taken
527// from t0. (Also, prob needs to be updated here as well.)
528//
529// The assignments from t0 and t1 can be done in a branchless manner with CMOV
530// after the instructions from this macro. The CF from SUB tells which moves
531// are needed.
532#define rc_asm_calc(prob) \
533		"mov	%[range], %[t0]\n\t" \
534		"shr	%[bit_model_total_bits], %[range]\n\t" \
535		"imul	%[" prob "], %[range]\n\t" \
536		"sub	%[range], %[t0]\n\t" \
537		"mov	%[code], %[t1]\n\t" \
538		"sub	%[range], %[code]\n\t"
539
540// Also, prob needs to be updated: The update math depends on the decoded bit.
541// It can be expressed in a few slightly different ways but this is fairly
542// convenient here:
543//
544//     prob -= (prob + (bit ? 0 : RC_BIT_MODEL_OFFSET)) >> RC_MOVE_BITS;
545//
546// To do it in branchless way when the negation of the decoded bit is in CF,
547// both "prob" and "prob + RC_BIT_MODEL_OFFSET" are needed. Then the desired
548// value can be picked with CMOV. The addition can be done using LEA without
549// affecting CF.
550//
551// (This prob update method is a tiny bit different from LZMA SDK 23.01.
552// In the LZMA SDK a single register is reserved solely for a constant to
553// be used with CMOV when updating prob. That is fine since there are enough
554// free registers to do so. The method used here uses one fewer register,
555// which is valuable with inline assembly.)
556//
557// * * *
558//
559// In bittree decoding, each (unrolled) loop iteration decodes one bit
560// and needs one prob variable. To make it faster, the prob variable of
561// the iteration N+1 is loaded during iteration N. There are two possible
562// prob variables to choose from for N+1. Both are loaded from memory and
563// the correct one is chosen with CMOV using the same CF as is used for
564// other things described above.
565//
566// This preloading/prefetching requires an extra register. To avoid
567// useless moves from "preloaded prob register" to "current prob register",
568// the macros swap between the two registers for odd and even iterations.
569//
570// * * *
571//
572// Finally, the decoded bit has to be stored in "symbol". Since the negation
573// of the bit is in CF, this can be done with SBB: symbol -= CF - 1. That is,
574// if the decoded bit is 0 (CF==1) the operation is a no-op "symbol -= 0"
575// and when bit is 1 (CF==0) the operation is "symbol -= 0 - 1" which is
576// the same as "symbol += 1".
577//
578// The instructions for all things are intertwined for a few reasons:
579//   - freeing temporary registers for new use
580//   - not modifying CF too early
581//   - instruction scheduling
582//
583// The first and last iterations can cheat a little. For example,
584// on the first iteration "symbol" is known to start from 1 so it
585// doesn't need to be read; it can even be immediately initialized
586// to 2 to prepare for the second iteration of the loop.
587//
588// * * *
589//
590// a = number of the current prob variable (0 or 1)
591// b = number of the next prob variable (1 or 0)
592// *_only = rc_asm_y or _n to include or exclude code marked with them
593#define rc_asm_bittree(a, b, first_only, middle_only, last_only) \
594	first_only( \
595		"movzw	2(%[probs_base]), %[prob" #a "]\n\t" \
596		"mov	$2, %[symbol]\n\t" \
597		"movzw	4(%[probs_base]), %[prob" #b "]\n\t" \
598	) \
599	middle_only( \
600		/* Note the scaling of 4 instead of 2: */ \
601		"movzw	(%[probs_base], %q[symbol], 4), %[prob" #b "]\n\t" \
602	) \
603	last_only( \
604		"add	%[symbol], %[symbol]\n\t" \
605	) \
606		\
607		rc_asm_normalize \
608		rc_asm_calc("prob" #a) \
609		\
610		"cmovae	%[t0], %[range]\n\t" \
611		\
612	first_only( \
613		"movzw	6(%[probs_base]), %[t0]\n\t" \
614		"cmovae	%[t0], %[prob" #b "]\n\t" \
615	) \
616	middle_only( \
617		"movzw	2(%[probs_base], %q[symbol], 4), %[t0]\n\t" \
618		"lea	(%q[symbol], %q[symbol]), %[symbol]\n\t" \
619		"cmovae	%[t0], %[prob" #b "]\n\t" \
620	) \
621		\
622		"lea	%c[bit_model_offset](%q[prob" #a "]), %[t0]\n\t" \
623		"cmovb	%[t1], %[code]\n\t" \
624		"mov	%[symbol], %[t1]\n\t" \
625		"cmovae	%[prob" #a "], %[t0]\n\t" \
626		\
627	first_only( \
628		"sbb	$-1, %[symbol]\n\t" \
629	) \
630	middle_only( \
631		"sbb	$-1, %[symbol]\n\t" \
632	) \
633	last_only( \
634		"sbb	%[last_sbb], %[symbol]\n\t" \
635	) \
636		\
637		"shr	%[move_bits], %[t0]\n\t" \
638		"sub	%[t0], %[prob" #a "]\n\t" \
639		/* Scaling of 1 instead of 2 because symbol <<= 1. */ \
640		"mov	%w[prob" #a "], (%[probs_base], %q[t1], 1)\n\t"
641
642// NOTE: The order of variables in __asm__ can affect speed and code size.
643#define rc_asm_bittree_n(probs_base_var, final_add, asm_str) \
644do { \
645	uint32_t t0; \
646	uint32_t t1; \
647	uint32_t t_prob0; \
648	uint32_t t_prob1; \
649	\
650	__asm__( \
651		asm_str \
652		: \
653		[range]     "+&r"(rc.range), \
654		[code]      "+&r"(rc.code), \
655		[t0]        "=&r"(t0), \
656		[t1]        "=&r"(t1), \
657		[prob0]     "=&r"(t_prob0), \
658		[prob1]     "=&r"(t_prob1), \
659		[symbol]    "=&r"(symbol), \
660		[in_ptr]    "+&r"(rc_in_ptr) \
661		: \
662		[probs_base]           "r"(probs_base_var), \
663		[last_sbb]             "n"(-1 - (final_add)), \
664		[top_value]            "n"(RC_TOP_VALUE), \
665		[shift_bits]           "n"(RC_SHIFT_BITS), \
666		[bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \
667		[bit_model_offset]     "n"(RC_BIT_MODEL_OFFSET), \
668		[move_bits]            "n"(RC_MOVE_BITS) \
669		: \
670		"cc", "memory"); \
671} while (0)
672
673
674#if LZMA_RANGE_DECODER_CONFIG & 0x010
675#undef rc_bittree3
676#define rc_bittree3(probs_base_var, final_add) \
677	rc_asm_bittree_n(probs_base_var, final_add, \
678		rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \
679		rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
680		rc_asm_bittree(0, 1, rc_asm_n, rc_asm_n, rc_asm_y) \
681	)
682
683#undef rc_bittree6
684#define rc_bittree6(probs_base_var, final_add) \
685	rc_asm_bittree_n(probs_base_var, final_add, \
686		rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \
687		rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
688		rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \
689		rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
690		rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \
691		rc_asm_bittree(1, 0, rc_asm_n, rc_asm_n, rc_asm_y) \
692	)
693
694#undef rc_bittree8
695#define rc_bittree8(probs_base_var, final_add) \
696	rc_asm_bittree_n(probs_base_var, final_add, \
697		rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \
698		rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
699		rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \
700		rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
701		rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \
702		rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
703		rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \
704		rc_asm_bittree(1, 0, rc_asm_n, rc_asm_n, rc_asm_y) \
705	)
706#endif // LZMA_RANGE_DECODER_CONFIG & 0x010
707
708
709// Fixed-sized reverse bittree
710//
711// This uses the indexing that constructs the final value in symbol directly.
712// add    = 1,  2,   4,  8
713// dcur   = -,  4,   8, 16
714// dnext0 = 4,   8, 16,  -
715// dnext0 = 6,  12, 24,  -
716#define rc_asm_bittree_rev(a, b, add, dcur, dnext0, dnext1, \
717		first_only, middle_only, last_only) \
718	first_only( \
719		"movzw	2(%[probs_base]), %[prob" #a "]\n\t" \
720		"xor	%[symbol], %[symbol]\n\t" \
721		"movzw	4(%[probs_base]), %[prob" #b "]\n\t" \
722	) \
723	middle_only( \
724		"movzw	" #dnext0 "(%[probs_base], %q[symbol], 2), " \
725			"%[prob" #b "]\n\t" \
726	) \
727		\
728		rc_asm_normalize \
729		rc_asm_calc("prob" #a) \
730		\
731		"cmovae	%[t0], %[range]\n\t" \
732		\
733	first_only( \
734		"movzw	6(%[probs_base]), %[t0]\n\t" \
735		"cmovae	%[t0], %[prob" #b "]\n\t" \
736	) \
737	middle_only( \
738		"movzw	" #dnext1 "(%[probs_base], %q[symbol], 2), %[t0]\n\t" \
739		"cmovae	%[t0], %[prob" #b "]\n\t" \
740	) \
741		\
742		"lea	" #add "(%q[symbol]), %[t0]\n\t" \
743		"cmovb	%[t1], %[code]\n\t" \
744	middle_only( \
745		"mov	%[symbol], %[t1]\n\t" \
746	) \
747	last_only( \
748		"mov	%[symbol], %[t1]\n\t" \
749	) \
750		"cmovae	%[t0], %[symbol]\n\t" \
751		"lea	%c[bit_model_offset](%q[prob" #a "]), %[t0]\n\t" \
752		"cmovae	%[prob" #a "], %[t0]\n\t" \
753		\
754		"shr	%[move_bits], %[t0]\n\t" \
755		"sub	%[t0], %[prob" #a "]\n\t" \
756	first_only( \
757		"mov	%w[prob" #a "], 2(%[probs_base])\n\t" \
758	) \
759	middle_only( \
760		"mov	%w[prob" #a "], " \
761			#dcur "(%[probs_base], %q[t1], 2)\n\t" \
762	) \
763	last_only( \
764		"mov	%w[prob" #a "], " \
765			#dcur "(%[probs_base], %q[t1], 2)\n\t" \
766	)
767
768#if LZMA_RANGE_DECODER_CONFIG & 0x020
769#undef rc_bittree_rev4
770#define rc_bittree_rev4(probs_base_var) \
771rc_asm_bittree_n(probs_base_var, 4, \
772	rc_asm_bittree_rev(0, 1, 1,  -,  4,  6, rc_asm_y, rc_asm_n, rc_asm_n) \
773	rc_asm_bittree_rev(1, 0, 2,  4,  8, 12, rc_asm_n, rc_asm_y, rc_asm_n) \
774	rc_asm_bittree_rev(0, 1, 4,  8, 16, 24, rc_asm_n, rc_asm_y, rc_asm_n) \
775	rc_asm_bittree_rev(1, 0, 8, 16,  -,  -, rc_asm_n, rc_asm_n, rc_asm_y) \
776)
777#endif // LZMA_RANGE_DECODER_CONFIG & 0x020
778
779
780#if LZMA_RANGE_DECODER_CONFIG & 0x040
781#undef rc_bit_add_if_1
782#define rc_bit_add_if_1(probs_base_var, dest_var, value_to_add_if_1) \
783do { \
784	uint32_t t0; \
785	uint32_t t1; \
786	uint32_t t2 = (value_to_add_if_1); \
787	uint32_t t_prob; \
788	uint32_t t_index; \
789	\
790	__asm__( \
791		"movzw	(%[probs_base], %q[symbol], 2), %[prob]\n\t" \
792		"mov	%[symbol], %[index]\n\t" \
793		\
794		"add	%[dest], %[t2]\n\t" \
795		"add	%[symbol], %[symbol]\n\t" \
796		\
797		rc_asm_normalize \
798		rc_asm_calc("prob") \
799		\
800		"cmovae	%[t0], %[range]\n\t" \
801		"lea	%c[bit_model_offset](%q[prob]), %[t0]\n\t" \
802		"cmovb	%[t1], %[code]\n\t" \
803		"cmovae	%[prob], %[t0]\n\t" \
804		\
805		"cmovae	%[t2], %[dest]\n\t" \
806		"sbb	$-1, %[symbol]\n\t" \
807		\
808		"sar	%[move_bits], %[t0]\n\t" \
809		"sub	%[t0], %[prob]\n\t" \
810		"mov	%w[prob], (%[probs_base], %q[index], 2)" \
811		: \
812		[range]     "+&r"(rc.range), \
813		[code]      "+&r"(rc.code), \
814		[t0]        "=&r"(t0), \
815		[t1]        "=&r"(t1), \
816		[prob]      "=&r"(t_prob), \
817		[index]     "=&r"(t_index), \
818		[symbol]    "+&r"(symbol), \
819		[t2]        "+&r"(t2), \
820		[dest]      "+&r"(dest_var), \
821		[in_ptr]    "+&r"(rc_in_ptr) \
822		: \
823		[probs_base]           "r"(probs_base_var), \
824		[top_value]            "n"(RC_TOP_VALUE), \
825		[shift_bits]           "n"(RC_SHIFT_BITS), \
826		[bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \
827		[bit_model_offset]     "n"(RC_BIT_MODEL_OFFSET), \
828		[move_bits]            "n"(RC_MOVE_BITS) \
829		: \
830		"cc", "memory"); \
831} while (0)
832#endif // LZMA_RANGE_DECODER_CONFIG & 0x040
833
834
835// Literal decoding uses a normal 8-bit bittree but literal with match byte
836// is more complex in picking the probability variable from the correct
837// subtree. This doesn't use preloading/prefetching of the next prob because
838// there are four choices instead of two.
839//
840// FIXME? The first iteration starts with symbol = 1 so it could be optimized
841// by a tiny amount.
842#define rc_asm_matched_literal(nonlast_only) \
843		"add	%[offset], %[symbol]\n\t" \
844		"and	%[offset], %[match_bit]\n\t" \
845		"add	%[match_bit], %[symbol]\n\t" \
846		\
847		"movzw	(%[probs_base], %q[symbol], 2), %[prob]\n\t" \
848		\
849		"add	%[symbol], %[symbol]\n\t" \
850		\
851	nonlast_only( \
852		"xor	%[match_bit], %[offset]\n\t" \
853		"add	%[match_byte], %[match_byte]\n\t" \
854	) \
855		\
856		rc_asm_normalize \
857		rc_asm_calc("prob") \
858		\
859		"cmovae	%[t0], %[range]\n\t" \
860		"lea	%c[bit_model_offset](%q[prob]), %[t0]\n\t" \
861		"cmovb	%[t1], %[code]\n\t" \
862		"mov	%[symbol], %[t1]\n\t" \
863		"cmovae	%[prob], %[t0]\n\t" \
864		\
865	nonlast_only( \
866		"cmovae	%[match_bit], %[offset]\n\t" \
867		"mov	%[match_byte], %[match_bit]\n\t" \
868	) \
869		\
870		"sbb	$-1, %[symbol]\n\t" \
871		\
872		"shr	%[move_bits], %[t0]\n\t" \
873		/* Undo symbol += match_bit + offset: */ \
874		"and	$0x1FF, %[symbol]\n\t" \
875		"sub	%[t0], %[prob]\n\t" \
876		\
877		/* Scaling of 1 instead of 2 because symbol <<= 1. */ \
878		"mov	%w[prob], (%[probs_base], %q[t1], 1)\n\t"
879
880
881#if LZMA_RANGE_DECODER_CONFIG & 0x080
882#undef rc_matched_literal
883#define rc_matched_literal(probs_base_var, match_byte_value) \
884do { \
885	uint32_t t0; \
886	uint32_t t1; \
887	uint32_t t_prob; \
888	uint32_t t_match_byte = (uint32_t)(match_byte_value) << 1; \
889	uint32_t t_match_bit = t_match_byte; \
890	uint32_t t_offset = 0x100; \
891	symbol = 1; \
892	\
893	__asm__( \
894		rc_asm_matched_literal(rc_asm_y) \
895		rc_asm_matched_literal(rc_asm_y) \
896		rc_asm_matched_literal(rc_asm_y) \
897		rc_asm_matched_literal(rc_asm_y) \
898		rc_asm_matched_literal(rc_asm_y) \
899		rc_asm_matched_literal(rc_asm_y) \
900		rc_asm_matched_literal(rc_asm_y) \
901		rc_asm_matched_literal(rc_asm_n) \
902		: \
903		[range]       "+&r"(rc.range), \
904		[code]        "+&r"(rc.code), \
905		[t0]          "=&r"(t0), \
906		[t1]          "=&r"(t1), \
907		[prob]        "=&r"(t_prob), \
908		[match_bit]   "+&r"(t_match_bit), \
909		[symbol]      "+&r"(symbol), \
910		[match_byte]  "+&r"(t_match_byte), \
911		[offset]      "+&r"(t_offset), \
912		[in_ptr]      "+&r"(rc_in_ptr) \
913		: \
914		[probs_base]           "r"(probs_base_var), \
915		[top_value]            "n"(RC_TOP_VALUE), \
916		[shift_bits]           "n"(RC_SHIFT_BITS), \
917		[bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \
918		[bit_model_offset]     "n"(RC_BIT_MODEL_OFFSET), \
919		[move_bits]            "n"(RC_MOVE_BITS) \
920		: \
921		"cc", "memory"); \
922} while (0)
923#endif // LZMA_RANGE_DECODER_CONFIG & 0x080
924
925
926// Doing the loop in asm instead of C seems to help a little.
927#if LZMA_RANGE_DECODER_CONFIG & 0x100
928#undef rc_direct
929#define rc_direct(dest_var, count_var) \
930do { \
931	uint32_t t0; \
932	uint32_t t1; \
933	\
934	__asm__( \
935		"2:\n\t" \
936		"add	%[dest], %[dest]\n\t" \
937		"lea	1(%q[dest]), %[t1]\n\t" \
938		\
939		rc_asm_normalize \
940		\
941		"shr	$1, %[range]\n\t" \
942		"mov	%[code], %[t0]\n\t" \
943		"sub	%[range], %[code]\n\t" \
944		"cmovns	%[t1], %[dest]\n\t" \
945		"cmovs	%[t0], %[code]\n\t" \
946		"dec	%[count]\n\t" \
947		"jnz	2b\n\t" \
948		: \
949		[range]       "+&r"(rc.range), \
950		[code]        "+&r"(rc.code), \
951		[t0]          "=&r"(t0), \
952		[t1]          "=&r"(t1), \
953		[dest]        "+&r"(dest_var), \
954		[count]       "+&r"(count_var), \
955		[in_ptr]      "+&r"(rc_in_ptr) \
956		: \
957		[top_value]   "n"(RC_TOP_VALUE), \
958		[shift_bits]  "n"(RC_SHIFT_BITS) \
959		: \
960		"cc", "memory"); \
961} while (0)
962#endif // LZMA_RANGE_DECODER_CONFIG & 0x100
963
964#endif // x86_64
965
966#endif
967