1// SPDX-License-Identifier: GPL-2.0 OR MIT
2/*
3 * Copyright (C) 2015-2016 The fiat-crypto Authors.
4 * Copyright (C) 2018-2020 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
5 *
6 * This is a machine-generated formally verified implementation of Curve25519
7 * ECDH from: <https://github.com/mit-plv/fiat-crypto>. Though originally
8 * machine generated, it has been tweaked to be suitable for use in the kernel.
9 * It is optimized for 32-bit machines and machines that cannot work efficiently
10 * with 128-bit integer types.
11 */
12
13/* fe means field element. Here the field is \Z/(2^255-19). An element t,
14 * entries t[0]...t[9], represents the integer t[0]+2^26 t[1]+2^51 t[2]+2^77
15 * t[3]+2^102 t[4]+...+2^230 t[9].
16 * fe limbs are bounded by 1.125*2^26,1.125*2^25,1.125*2^26,1.125*2^25,etc.
17 * Multiplication and carrying produce fe from fe_loose.
18 */
19typedef struct fe { u32 v[10]; } fe;
20
21/* fe_loose limbs are bounded by 3.375*2^26,3.375*2^25,3.375*2^26,3.375*2^25,etc
22 * Addition and subtraction produce fe_loose from (fe, fe).
23 */
24typedef struct fe_loose { u32 v[10]; } fe_loose;
25
26static __always_inline void fe_frombytes_impl(u32 h[10], const u8 *s)
27{
28	/* Ignores top bit of s. */
29	u32 a0 = get_unaligned_le32(s);
30	u32 a1 = get_unaligned_le32(s+4);
31	u32 a2 = get_unaligned_le32(s+8);
32	u32 a3 = get_unaligned_le32(s+12);
33	u32 a4 = get_unaligned_le32(s+16);
34	u32 a5 = get_unaligned_le32(s+20);
35	u32 a6 = get_unaligned_le32(s+24);
36	u32 a7 = get_unaligned_le32(s+28);
37	h[0] = a0&((1<<26)-1);                    /* 26 used, 32-26 left.   26 */
38	h[1] = (a0>>26) | ((a1&((1<<19)-1))<< 6); /* (32-26) + 19 =  6+19 = 25 */
39	h[2] = (a1>>19) | ((a2&((1<<13)-1))<<13); /* (32-19) + 13 = 13+13 = 26 */
40	h[3] = (a2>>13) | ((a3&((1<< 6)-1))<<19); /* (32-13) +  6 = 19+ 6 = 25 */
41	h[4] = (a3>> 6);                          /* (32- 6)              = 26 */
42	h[5] = a4&((1<<25)-1);                    /*                        25 */
43	h[6] = (a4>>25) | ((a5&((1<<19)-1))<< 7); /* (32-25) + 19 =  7+19 = 26 */
44	h[7] = (a5>>19) | ((a6&((1<<12)-1))<<13); /* (32-19) + 12 = 13+12 = 25 */
45	h[8] = (a6>>12) | ((a7&((1<< 6)-1))<<20); /* (32-12) +  6 = 20+ 6 = 26 */
46	h[9] = (a7>> 6)&((1<<25)-1); /*                                     25 */
47}
48
49static __always_inline void fe_frombytes(fe *h, const u8 *s)
50{
51	fe_frombytes_impl(h->v, s);
52}
53
54static __always_inline u8 /*bool*/
55addcarryx_u25(u8 /*bool*/ c, u32 a, u32 b, u32 *low)
56{
57	/* This function extracts 25 bits of result and 1 bit of carry
58	 * (26 total), so a 32-bit intermediate is sufficient.
59	 */
60	u32 x = a + b + c;
61	*low = x & ((1 << 25) - 1);
62	return (x >> 25) & 1;
63}
64
65static __always_inline u8 /*bool*/
66addcarryx_u26(u8 /*bool*/ c, u32 a, u32 b, u32 *low)
67{
68	/* This function extracts 26 bits of result and 1 bit of carry
69	 * (27 total), so a 32-bit intermediate is sufficient.
70	 */
71	u32 x = a + b + c;
72	*low = x & ((1 << 26) - 1);
73	return (x >> 26) & 1;
74}
75
76static __always_inline u8 /*bool*/
77subborrow_u25(u8 /*bool*/ c, u32 a, u32 b, u32 *low)
78{
79	/* This function extracts 25 bits of result and 1 bit of borrow
80	 * (26 total), so a 32-bit intermediate is sufficient.
81	 */
82	u32 x = a - b - c;
83	*low = x & ((1 << 25) - 1);
84	return x >> 31;
85}
86
87static __always_inline u8 /*bool*/
88subborrow_u26(u8 /*bool*/ c, u32 a, u32 b, u32 *low)
89{
90	/* This function extracts 26 bits of result and 1 bit of borrow
91	 *(27 total), so a 32-bit intermediate is sufficient.
92	 */
93	u32 x = a - b - c;
94	*low = x & ((1 << 26) - 1);
95	return x >> 31;
96}
97
98static __always_inline u32 cmovznz32(u32 t, u32 z, u32 nz)
99{
100	t = -!!t; /* all set if nonzero, 0 if 0 */
101	return (t&nz) | ((~t)&z);
102}
103
104static __always_inline void fe_freeze(u32 out[10], const u32 in1[10])
105{
106	{ const u32 x17 = in1[9];
107	{ const u32 x18 = in1[8];
108	{ const u32 x16 = in1[7];
109	{ const u32 x14 = in1[6];
110	{ const u32 x12 = in1[5];
111	{ const u32 x10 = in1[4];
112	{ const u32 x8 = in1[3];
113	{ const u32 x6 = in1[2];
114	{ const u32 x4 = in1[1];
115	{ const u32 x2 = in1[0];
116	{ u32 x20; u8/*bool*/ x21 = subborrow_u26(0x0, x2, 0x3ffffed, &x20);
117	{ u32 x23; u8/*bool*/ x24 = subborrow_u25(x21, x4, 0x1ffffff, &x23);
118	{ u32 x26; u8/*bool*/ x27 = subborrow_u26(x24, x6, 0x3ffffff, &x26);
119	{ u32 x29; u8/*bool*/ x30 = subborrow_u25(x27, x8, 0x1ffffff, &x29);
120	{ u32 x32; u8/*bool*/ x33 = subborrow_u26(x30, x10, 0x3ffffff, &x32);
121	{ u32 x35; u8/*bool*/ x36 = subborrow_u25(x33, x12, 0x1ffffff, &x35);
122	{ u32 x38; u8/*bool*/ x39 = subborrow_u26(x36, x14, 0x3ffffff, &x38);
123	{ u32 x41; u8/*bool*/ x42 = subborrow_u25(x39, x16, 0x1ffffff, &x41);
124	{ u32 x44; u8/*bool*/ x45 = subborrow_u26(x42, x18, 0x3ffffff, &x44);
125	{ u32 x47; u8/*bool*/ x48 = subborrow_u25(x45, x17, 0x1ffffff, &x47);
126	{ u32 x49 = cmovznz32(x48, 0x0, 0xffffffff);
127	{ u32 x50 = (x49 & 0x3ffffed);
128	{ u32 x52; u8/*bool*/ x53 = addcarryx_u26(0x0, x20, x50, &x52);
129	{ u32 x54 = (x49 & 0x1ffffff);
130	{ u32 x56; u8/*bool*/ x57 = addcarryx_u25(x53, x23, x54, &x56);
131	{ u32 x58 = (x49 & 0x3ffffff);
132	{ u32 x60; u8/*bool*/ x61 = addcarryx_u26(x57, x26, x58, &x60);
133	{ u32 x62 = (x49 & 0x1ffffff);
134	{ u32 x64; u8/*bool*/ x65 = addcarryx_u25(x61, x29, x62, &x64);
135	{ u32 x66 = (x49 & 0x3ffffff);
136	{ u32 x68; u8/*bool*/ x69 = addcarryx_u26(x65, x32, x66, &x68);
137	{ u32 x70 = (x49 & 0x1ffffff);
138	{ u32 x72; u8/*bool*/ x73 = addcarryx_u25(x69, x35, x70, &x72);
139	{ u32 x74 = (x49 & 0x3ffffff);
140	{ u32 x76; u8/*bool*/ x77 = addcarryx_u26(x73, x38, x74, &x76);
141	{ u32 x78 = (x49 & 0x1ffffff);
142	{ u32 x80; u8/*bool*/ x81 = addcarryx_u25(x77, x41, x78, &x80);
143	{ u32 x82 = (x49 & 0x3ffffff);
144	{ u32 x84; u8/*bool*/ x85 = addcarryx_u26(x81, x44, x82, &x84);
145	{ u32 x86 = (x49 & 0x1ffffff);
146	{ u32 x88; addcarryx_u25(x85, x47, x86, &x88);
147	out[0] = x52;
148	out[1] = x56;
149	out[2] = x60;
150	out[3] = x64;
151	out[4] = x68;
152	out[5] = x72;
153	out[6] = x76;
154	out[7] = x80;
155	out[8] = x84;
156	out[9] = x88;
157	}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
158}
159
160static __always_inline void fe_tobytes(u8 s[32], const fe *f)
161{
162	u32 h[10];
163	fe_freeze(h, f->v);
164	s[0] = h[0] >> 0;
165	s[1] = h[0] >> 8;
166	s[2] = h[0] >> 16;
167	s[3] = (h[0] >> 24) | (h[1] << 2);
168	s[4] = h[1] >> 6;
169	s[5] = h[1] >> 14;
170	s[6] = (h[1] >> 22) | (h[2] << 3);
171	s[7] = h[2] >> 5;
172	s[8] = h[2] >> 13;
173	s[9] = (h[2] >> 21) | (h[3] << 5);
174	s[10] = h[3] >> 3;
175	s[11] = h[3] >> 11;
176	s[12] = (h[3] >> 19) | (h[4] << 6);
177	s[13] = h[4] >> 2;
178	s[14] = h[4] >> 10;
179	s[15] = h[4] >> 18;
180	s[16] = h[5] >> 0;
181	s[17] = h[5] >> 8;
182	s[18] = h[5] >> 16;
183	s[19] = (h[5] >> 24) | (h[6] << 1);
184	s[20] = h[6] >> 7;
185	s[21] = h[6] >> 15;
186	s[22] = (h[6] >> 23) | (h[7] << 3);
187	s[23] = h[7] >> 5;
188	s[24] = h[7] >> 13;
189	s[25] = (h[7] >> 21) | (h[8] << 4);
190	s[26] = h[8] >> 4;
191	s[27] = h[8] >> 12;
192	s[28] = (h[8] >> 20) | (h[9] << 6);
193	s[29] = h[9] >> 2;
194	s[30] = h[9] >> 10;
195	s[31] = h[9] >> 18;
196}
197
198/* h = f */
199static __always_inline void fe_copy(fe *h, const fe *f)
200{
201	memmove(h, f, sizeof(u32) * 10);
202}
203
204static __always_inline void fe_copy_lt(fe_loose *h, const fe *f)
205{
206	memmove(h, f, sizeof(u32) * 10);
207}
208
209/* h = 0 */
210static __always_inline void fe_0(fe *h)
211{
212	memset(h, 0, sizeof(u32) * 10);
213}
214
215/* h = 1 */
216static __always_inline void fe_1(fe *h)
217{
218	memset(h, 0, sizeof(u32) * 10);
219	h->v[0] = 1;
220}
221
222static void fe_add_impl(u32 out[10], const u32 in1[10], const u32 in2[10])
223{
224	{ const u32 x20 = in1[9];
225	{ const u32 x21 = in1[8];
226	{ const u32 x19 = in1[7];
227	{ const u32 x17 = in1[6];
228	{ const u32 x15 = in1[5];
229	{ const u32 x13 = in1[4];
230	{ const u32 x11 = in1[3];
231	{ const u32 x9 = in1[2];
232	{ const u32 x7 = in1[1];
233	{ const u32 x5 = in1[0];
234	{ const u32 x38 = in2[9];
235	{ const u32 x39 = in2[8];
236	{ const u32 x37 = in2[7];
237	{ const u32 x35 = in2[6];
238	{ const u32 x33 = in2[5];
239	{ const u32 x31 = in2[4];
240	{ const u32 x29 = in2[3];
241	{ const u32 x27 = in2[2];
242	{ const u32 x25 = in2[1];
243	{ const u32 x23 = in2[0];
244	out[0] = (x5 + x23);
245	out[1] = (x7 + x25);
246	out[2] = (x9 + x27);
247	out[3] = (x11 + x29);
248	out[4] = (x13 + x31);
249	out[5] = (x15 + x33);
250	out[6] = (x17 + x35);
251	out[7] = (x19 + x37);
252	out[8] = (x21 + x39);
253	out[9] = (x20 + x38);
254	}}}}}}}}}}}}}}}}}}}}
255}
256
257/* h = f + g
258 * Can overlap h with f or g.
259 */
260static __always_inline void fe_add(fe_loose *h, const fe *f, const fe *g)
261{
262	fe_add_impl(h->v, f->v, g->v);
263}
264
265static void fe_sub_impl(u32 out[10], const u32 in1[10], const u32 in2[10])
266{
267	{ const u32 x20 = in1[9];
268	{ const u32 x21 = in1[8];
269	{ const u32 x19 = in1[7];
270	{ const u32 x17 = in1[6];
271	{ const u32 x15 = in1[5];
272	{ const u32 x13 = in1[4];
273	{ const u32 x11 = in1[3];
274	{ const u32 x9 = in1[2];
275	{ const u32 x7 = in1[1];
276	{ const u32 x5 = in1[0];
277	{ const u32 x38 = in2[9];
278	{ const u32 x39 = in2[8];
279	{ const u32 x37 = in2[7];
280	{ const u32 x35 = in2[6];
281	{ const u32 x33 = in2[5];
282	{ const u32 x31 = in2[4];
283	{ const u32 x29 = in2[3];
284	{ const u32 x27 = in2[2];
285	{ const u32 x25 = in2[1];
286	{ const u32 x23 = in2[0];
287	out[0] = ((0x7ffffda + x5) - x23);
288	out[1] = ((0x3fffffe + x7) - x25);
289	out[2] = ((0x7fffffe + x9) - x27);
290	out[3] = ((0x3fffffe + x11) - x29);
291	out[4] = ((0x7fffffe + x13) - x31);
292	out[5] = ((0x3fffffe + x15) - x33);
293	out[6] = ((0x7fffffe + x17) - x35);
294	out[7] = ((0x3fffffe + x19) - x37);
295	out[8] = ((0x7fffffe + x21) - x39);
296	out[9] = ((0x3fffffe + x20) - x38);
297	}}}}}}}}}}}}}}}}}}}}
298}
299
300/* h = f - g
301 * Can overlap h with f or g.
302 */
303static __always_inline void fe_sub(fe_loose *h, const fe *f, const fe *g)
304{
305	fe_sub_impl(h->v, f->v, g->v);
306}
307
308static void fe_mul_impl(u32 out[10], const u32 in1[10], const u32 in2[10])
309{
310	{ const u32 x20 = in1[9];
311	{ const u32 x21 = in1[8];
312	{ const u32 x19 = in1[7];
313	{ const u32 x17 = in1[6];
314	{ const u32 x15 = in1[5];
315	{ const u32 x13 = in1[4];
316	{ const u32 x11 = in1[3];
317	{ const u32 x9 = in1[2];
318	{ const u32 x7 = in1[1];
319	{ const u32 x5 = in1[0];
320	{ const u32 x38 = in2[9];
321	{ const u32 x39 = in2[8];
322	{ const u32 x37 = in2[7];
323	{ const u32 x35 = in2[6];
324	{ const u32 x33 = in2[5];
325	{ const u32 x31 = in2[4];
326	{ const u32 x29 = in2[3];
327	{ const u32 x27 = in2[2];
328	{ const u32 x25 = in2[1];
329	{ const u32 x23 = in2[0];
330	{ u64 x40 = ((u64)x23 * x5);
331	{ u64 x41 = (((u64)x23 * x7) + ((u64)x25 * x5));
332	{ u64 x42 = ((((u64)(0x2 * x25) * x7) + ((u64)x23 * x9)) + ((u64)x27 * x5));
333	{ u64 x43 = (((((u64)x25 * x9) + ((u64)x27 * x7)) + ((u64)x23 * x11)) + ((u64)x29 * x5));
334	{ u64 x44 = (((((u64)x27 * x9) + (0x2 * (((u64)x25 * x11) + ((u64)x29 * x7)))) + ((u64)x23 * x13)) + ((u64)x31 * x5));
335	{ u64 x45 = (((((((u64)x27 * x11) + ((u64)x29 * x9)) + ((u64)x25 * x13)) + ((u64)x31 * x7)) + ((u64)x23 * x15)) + ((u64)x33 * x5));
336	{ u64 x46 = (((((0x2 * ((((u64)x29 * x11) + ((u64)x25 * x15)) + ((u64)x33 * x7))) + ((u64)x27 * x13)) + ((u64)x31 * x9)) + ((u64)x23 * x17)) + ((u64)x35 * x5));
337	{ u64 x47 = (((((((((u64)x29 * x13) + ((u64)x31 * x11)) + ((u64)x27 * x15)) + ((u64)x33 * x9)) + ((u64)x25 * x17)) + ((u64)x35 * x7)) + ((u64)x23 * x19)) + ((u64)x37 * x5));
338	{ u64 x48 = (((((((u64)x31 * x13) + (0x2 * (((((u64)x29 * x15) + ((u64)x33 * x11)) + ((u64)x25 * x19)) + ((u64)x37 * x7)))) + ((u64)x27 * x17)) + ((u64)x35 * x9)) + ((u64)x23 * x21)) + ((u64)x39 * x5));
339	{ u64 x49 = (((((((((((u64)x31 * x15) + ((u64)x33 * x13)) + ((u64)x29 * x17)) + ((u64)x35 * x11)) + ((u64)x27 * x19)) + ((u64)x37 * x9)) + ((u64)x25 * x21)) + ((u64)x39 * x7)) + ((u64)x23 * x20)) + ((u64)x38 * x5));
340	{ u64 x50 = (((((0x2 * ((((((u64)x33 * x15) + ((u64)x29 * x19)) + ((u64)x37 * x11)) + ((u64)x25 * x20)) + ((u64)x38 * x7))) + ((u64)x31 * x17)) + ((u64)x35 * x13)) + ((u64)x27 * x21)) + ((u64)x39 * x9));
341	{ u64 x51 = (((((((((u64)x33 * x17) + ((u64)x35 * x15)) + ((u64)x31 * x19)) + ((u64)x37 * x13)) + ((u64)x29 * x21)) + ((u64)x39 * x11)) + ((u64)x27 * x20)) + ((u64)x38 * x9));
342	{ u64 x52 = (((((u64)x35 * x17) + (0x2 * (((((u64)x33 * x19) + ((u64)x37 * x15)) + ((u64)x29 * x20)) + ((u64)x38 * x11)))) + ((u64)x31 * x21)) + ((u64)x39 * x13));
343	{ u64 x53 = (((((((u64)x35 * x19) + ((u64)x37 * x17)) + ((u64)x33 * x21)) + ((u64)x39 * x15)) + ((u64)x31 * x20)) + ((u64)x38 * x13));
344	{ u64 x54 = (((0x2 * ((((u64)x37 * x19) + ((u64)x33 * x20)) + ((u64)x38 * x15))) + ((u64)x35 * x21)) + ((u64)x39 * x17));
345	{ u64 x55 = (((((u64)x37 * x21) + ((u64)x39 * x19)) + ((u64)x35 * x20)) + ((u64)x38 * x17));
346	{ u64 x56 = (((u64)x39 * x21) + (0x2 * (((u64)x37 * x20) + ((u64)x38 * x19))));
347	{ u64 x57 = (((u64)x39 * x20) + ((u64)x38 * x21));
348	{ u64 x58 = ((u64)(0x2 * x38) * x20);
349	{ u64 x59 = (x48 + (x58 << 0x4));
350	{ u64 x60 = (x59 + (x58 << 0x1));
351	{ u64 x61 = (x60 + x58);
352	{ u64 x62 = (x47 + (x57 << 0x4));
353	{ u64 x63 = (x62 + (x57 << 0x1));
354	{ u64 x64 = (x63 + x57);
355	{ u64 x65 = (x46 + (x56 << 0x4));
356	{ u64 x66 = (x65 + (x56 << 0x1));
357	{ u64 x67 = (x66 + x56);
358	{ u64 x68 = (x45 + (x55 << 0x4));
359	{ u64 x69 = (x68 + (x55 << 0x1));
360	{ u64 x70 = (x69 + x55);
361	{ u64 x71 = (x44 + (x54 << 0x4));
362	{ u64 x72 = (x71 + (x54 << 0x1));
363	{ u64 x73 = (x72 + x54);
364	{ u64 x74 = (x43 + (x53 << 0x4));
365	{ u64 x75 = (x74 + (x53 << 0x1));
366	{ u64 x76 = (x75 + x53);
367	{ u64 x77 = (x42 + (x52 << 0x4));
368	{ u64 x78 = (x77 + (x52 << 0x1));
369	{ u64 x79 = (x78 + x52);
370	{ u64 x80 = (x41 + (x51 << 0x4));
371	{ u64 x81 = (x80 + (x51 << 0x1));
372	{ u64 x82 = (x81 + x51);
373	{ u64 x83 = (x40 + (x50 << 0x4));
374	{ u64 x84 = (x83 + (x50 << 0x1));
375	{ u64 x85 = (x84 + x50);
376	{ u64 x86 = (x85 >> 0x1a);
377	{ u32 x87 = ((u32)x85 & 0x3ffffff);
378	{ u64 x88 = (x86 + x82);
379	{ u64 x89 = (x88 >> 0x19);
380	{ u32 x90 = ((u32)x88 & 0x1ffffff);
381	{ u64 x91 = (x89 + x79);
382	{ u64 x92 = (x91 >> 0x1a);
383	{ u32 x93 = ((u32)x91 & 0x3ffffff);
384	{ u64 x94 = (x92 + x76);
385	{ u64 x95 = (x94 >> 0x19);
386	{ u32 x96 = ((u32)x94 & 0x1ffffff);
387	{ u64 x97 = (x95 + x73);
388	{ u64 x98 = (x97 >> 0x1a);
389	{ u32 x99 = ((u32)x97 & 0x3ffffff);
390	{ u64 x100 = (x98 + x70);
391	{ u64 x101 = (x100 >> 0x19);
392	{ u32 x102 = ((u32)x100 & 0x1ffffff);
393	{ u64 x103 = (x101 + x67);
394	{ u64 x104 = (x103 >> 0x1a);
395	{ u32 x105 = ((u32)x103 & 0x3ffffff);
396	{ u64 x106 = (x104 + x64);
397	{ u64 x107 = (x106 >> 0x19);
398	{ u32 x108 = ((u32)x106 & 0x1ffffff);
399	{ u64 x109 = (x107 + x61);
400	{ u64 x110 = (x109 >> 0x1a);
401	{ u32 x111 = ((u32)x109 & 0x3ffffff);
402	{ u64 x112 = (x110 + x49);
403	{ u64 x113 = (x112 >> 0x19);
404	{ u32 x114 = ((u32)x112 & 0x1ffffff);
405	{ u64 x115 = (x87 + (0x13 * x113));
406	{ u32 x116 = (u32) (x115 >> 0x1a);
407	{ u32 x117 = ((u32)x115 & 0x3ffffff);
408	{ u32 x118 = (x116 + x90);
409	{ u32 x119 = (x118 >> 0x19);
410	{ u32 x120 = (x118 & 0x1ffffff);
411	out[0] = x117;
412	out[1] = x120;
413	out[2] = (x119 + x93);
414	out[3] = x96;
415	out[4] = x99;
416	out[5] = x102;
417	out[6] = x105;
418	out[7] = x108;
419	out[8] = x111;
420	out[9] = x114;
421	}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
422}
423
424static __always_inline void fe_mul_ttt(fe *h, const fe *f, const fe *g)
425{
426	fe_mul_impl(h->v, f->v, g->v);
427}
428
429static __always_inline void fe_mul_tlt(fe *h, const fe_loose *f, const fe *g)
430{
431	fe_mul_impl(h->v, f->v, g->v);
432}
433
434static __always_inline void
435fe_mul_tll(fe *h, const fe_loose *f, const fe_loose *g)
436{
437	fe_mul_impl(h->v, f->v, g->v);
438}
439
440static void fe_sqr_impl(u32 out[10], const u32 in1[10])
441{
442	{ const u32 x17 = in1[9];
443	{ const u32 x18 = in1[8];
444	{ const u32 x16 = in1[7];
445	{ const u32 x14 = in1[6];
446	{ const u32 x12 = in1[5];
447	{ const u32 x10 = in1[4];
448	{ const u32 x8 = in1[3];
449	{ const u32 x6 = in1[2];
450	{ const u32 x4 = in1[1];
451	{ const u32 x2 = in1[0];
452	{ u64 x19 = ((u64)x2 * x2);
453	{ u64 x20 = ((u64)(0x2 * x2) * x4);
454	{ u64 x21 = (0x2 * (((u64)x4 * x4) + ((u64)x2 * x6)));
455	{ u64 x22 = (0x2 * (((u64)x4 * x6) + ((u64)x2 * x8)));
456	{ u64 x23 = ((((u64)x6 * x6) + ((u64)(0x4 * x4) * x8)) + ((u64)(0x2 * x2) * x10));
457	{ u64 x24 = (0x2 * ((((u64)x6 * x8) + ((u64)x4 * x10)) + ((u64)x2 * x12)));
458	{ u64 x25 = (0x2 * (((((u64)x8 * x8) + ((u64)x6 * x10)) + ((u64)x2 * x14)) + ((u64)(0x2 * x4) * x12)));
459	{ u64 x26 = (0x2 * (((((u64)x8 * x10) + ((u64)x6 * x12)) + ((u64)x4 * x14)) + ((u64)x2 * x16)));
460	{ u64 x27 = (((u64)x10 * x10) + (0x2 * ((((u64)x6 * x14) + ((u64)x2 * x18)) + (0x2 * (((u64)x4 * x16) + ((u64)x8 * x12))))));
461	{ u64 x28 = (0x2 * ((((((u64)x10 * x12) + ((u64)x8 * x14)) + ((u64)x6 * x16)) + ((u64)x4 * x18)) + ((u64)x2 * x17)));
462	{ u64 x29 = (0x2 * (((((u64)x12 * x12) + ((u64)x10 * x14)) + ((u64)x6 * x18)) + (0x2 * (((u64)x8 * x16) + ((u64)x4 * x17)))));
463	{ u64 x30 = (0x2 * (((((u64)x12 * x14) + ((u64)x10 * x16)) + ((u64)x8 * x18)) + ((u64)x6 * x17)));
464	{ u64 x31 = (((u64)x14 * x14) + (0x2 * (((u64)x10 * x18) + (0x2 * (((u64)x12 * x16) + ((u64)x8 * x17))))));
465	{ u64 x32 = (0x2 * ((((u64)x14 * x16) + ((u64)x12 * x18)) + ((u64)x10 * x17)));
466	{ u64 x33 = (0x2 * ((((u64)x16 * x16) + ((u64)x14 * x18)) + ((u64)(0x2 * x12) * x17)));
467	{ u64 x34 = (0x2 * (((u64)x16 * x18) + ((u64)x14 * x17)));
468	{ u64 x35 = (((u64)x18 * x18) + ((u64)(0x4 * x16) * x17));
469	{ u64 x36 = ((u64)(0x2 * x18) * x17);
470	{ u64 x37 = ((u64)(0x2 * x17) * x17);
471	{ u64 x38 = (x27 + (x37 << 0x4));
472	{ u64 x39 = (x38 + (x37 << 0x1));
473	{ u64 x40 = (x39 + x37);
474	{ u64 x41 = (x26 + (x36 << 0x4));
475	{ u64 x42 = (x41 + (x36 << 0x1));
476	{ u64 x43 = (x42 + x36);
477	{ u64 x44 = (x25 + (x35 << 0x4));
478	{ u64 x45 = (x44 + (x35 << 0x1));
479	{ u64 x46 = (x45 + x35);
480	{ u64 x47 = (x24 + (x34 << 0x4));
481	{ u64 x48 = (x47 + (x34 << 0x1));
482	{ u64 x49 = (x48 + x34);
483	{ u64 x50 = (x23 + (x33 << 0x4));
484	{ u64 x51 = (x50 + (x33 << 0x1));
485	{ u64 x52 = (x51 + x33);
486	{ u64 x53 = (x22 + (x32 << 0x4));
487	{ u64 x54 = (x53 + (x32 << 0x1));
488	{ u64 x55 = (x54 + x32);
489	{ u64 x56 = (x21 + (x31 << 0x4));
490	{ u64 x57 = (x56 + (x31 << 0x1));
491	{ u64 x58 = (x57 + x31);
492	{ u64 x59 = (x20 + (x30 << 0x4));
493	{ u64 x60 = (x59 + (x30 << 0x1));
494	{ u64 x61 = (x60 + x30);
495	{ u64 x62 = (x19 + (x29 << 0x4));
496	{ u64 x63 = (x62 + (x29 << 0x1));
497	{ u64 x64 = (x63 + x29);
498	{ u64 x65 = (x64 >> 0x1a);
499	{ u32 x66 = ((u32)x64 & 0x3ffffff);
500	{ u64 x67 = (x65 + x61);
501	{ u64 x68 = (x67 >> 0x19);
502	{ u32 x69 = ((u32)x67 & 0x1ffffff);
503	{ u64 x70 = (x68 + x58);
504	{ u64 x71 = (x70 >> 0x1a);
505	{ u32 x72 = ((u32)x70 & 0x3ffffff);
506	{ u64 x73 = (x71 + x55);
507	{ u64 x74 = (x73 >> 0x19);
508	{ u32 x75 = ((u32)x73 & 0x1ffffff);
509	{ u64 x76 = (x74 + x52);
510	{ u64 x77 = (x76 >> 0x1a);
511	{ u32 x78 = ((u32)x76 & 0x3ffffff);
512	{ u64 x79 = (x77 + x49);
513	{ u64 x80 = (x79 >> 0x19);
514	{ u32 x81 = ((u32)x79 & 0x1ffffff);
515	{ u64 x82 = (x80 + x46);
516	{ u64 x83 = (x82 >> 0x1a);
517	{ u32 x84 = ((u32)x82 & 0x3ffffff);
518	{ u64 x85 = (x83 + x43);
519	{ u64 x86 = (x85 >> 0x19);
520	{ u32 x87 = ((u32)x85 & 0x1ffffff);
521	{ u64 x88 = (x86 + x40);
522	{ u64 x89 = (x88 >> 0x1a);
523	{ u32 x90 = ((u32)x88 & 0x3ffffff);
524	{ u64 x91 = (x89 + x28);
525	{ u64 x92 = (x91 >> 0x19);
526	{ u32 x93 = ((u32)x91 & 0x1ffffff);
527	{ u64 x94 = (x66 + (0x13 * x92));
528	{ u32 x95 = (u32) (x94 >> 0x1a);
529	{ u32 x96 = ((u32)x94 & 0x3ffffff);
530	{ u32 x97 = (x95 + x69);
531	{ u32 x98 = (x97 >> 0x19);
532	{ u32 x99 = (x97 & 0x1ffffff);
533	out[0] = x96;
534	out[1] = x99;
535	out[2] = (x98 + x72);
536	out[3] = x75;
537	out[4] = x78;
538	out[5] = x81;
539	out[6] = x84;
540	out[7] = x87;
541	out[8] = x90;
542	out[9] = x93;
543	}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
544}
545
546static __always_inline void fe_sq_tl(fe *h, const fe_loose *f)
547{
548	fe_sqr_impl(h->v, f->v);
549}
550
551static __always_inline void fe_sq_tt(fe *h, const fe *f)
552{
553	fe_sqr_impl(h->v, f->v);
554}
555
556static __always_inline void fe_loose_invert(fe *out, const fe_loose *z)
557{
558	fe t0;
559	fe t1;
560	fe t2;
561	fe t3;
562	int i;
563
564	fe_sq_tl(&t0, z);
565	fe_sq_tt(&t1, &t0);
566	for (i = 1; i < 2; ++i)
567		fe_sq_tt(&t1, &t1);
568	fe_mul_tlt(&t1, z, &t1);
569	fe_mul_ttt(&t0, &t0, &t1);
570	fe_sq_tt(&t2, &t0);
571	fe_mul_ttt(&t1, &t1, &t2);
572	fe_sq_tt(&t2, &t1);
573	for (i = 1; i < 5; ++i)
574		fe_sq_tt(&t2, &t2);
575	fe_mul_ttt(&t1, &t2, &t1);
576	fe_sq_tt(&t2, &t1);
577	for (i = 1; i < 10; ++i)
578		fe_sq_tt(&t2, &t2);
579	fe_mul_ttt(&t2, &t2, &t1);
580	fe_sq_tt(&t3, &t2);
581	for (i = 1; i < 20; ++i)
582		fe_sq_tt(&t3, &t3);
583	fe_mul_ttt(&t2, &t3, &t2);
584	fe_sq_tt(&t2, &t2);
585	for (i = 1; i < 10; ++i)
586		fe_sq_tt(&t2, &t2);
587	fe_mul_ttt(&t1, &t2, &t1);
588	fe_sq_tt(&t2, &t1);
589	for (i = 1; i < 50; ++i)
590		fe_sq_tt(&t2, &t2);
591	fe_mul_ttt(&t2, &t2, &t1);
592	fe_sq_tt(&t3, &t2);
593	for (i = 1; i < 100; ++i)
594		fe_sq_tt(&t3, &t3);
595	fe_mul_ttt(&t2, &t3, &t2);
596	fe_sq_tt(&t2, &t2);
597	for (i = 1; i < 50; ++i)
598		fe_sq_tt(&t2, &t2);
599	fe_mul_ttt(&t1, &t2, &t1);
600	fe_sq_tt(&t1, &t1);
601	for (i = 1; i < 5; ++i)
602		fe_sq_tt(&t1, &t1);
603	fe_mul_ttt(out, &t1, &t0);
604}
605
606static __always_inline void fe_invert(fe *out, const fe *z)
607{
608	fe_loose l;
609	fe_copy_lt(&l, z);
610	fe_loose_invert(out, &l);
611}
612
613/* Replace (f,g) with (g,f) if b == 1;
614 * replace (f,g) with (f,g) if b == 0.
615 *
616 * Preconditions: b in {0,1}
617 */
618static __always_inline void fe_cswap(fe *f, fe *g, unsigned int b)
619{
620	unsigned i;
621	b = 0 - b;
622	for (i = 0; i < 10; i++) {
623		u32 x = f->v[i] ^ g->v[i];
624		x &= b;
625		f->v[i] ^= x;
626		g->v[i] ^= x;
627	}
628}
629
630/* NOTE: based on fiat-crypto fe_mul, edited for in2=121666, 0, 0.*/
631static __always_inline void fe_mul_121666_impl(u32 out[10], const u32 in1[10])
632{
633	{ const u32 x20 = in1[9];
634	{ const u32 x21 = in1[8];
635	{ const u32 x19 = in1[7];
636	{ const u32 x17 = in1[6];
637	{ const u32 x15 = in1[5];
638	{ const u32 x13 = in1[4];
639	{ const u32 x11 = in1[3];
640	{ const u32 x9 = in1[2];
641	{ const u32 x7 = in1[1];
642	{ const u32 x5 = in1[0];
643	{ const u32 x38 = 0;
644	{ const u32 x39 = 0;
645	{ const u32 x37 = 0;
646	{ const u32 x35 = 0;
647	{ const u32 x33 = 0;
648	{ const u32 x31 = 0;
649	{ const u32 x29 = 0;
650	{ const u32 x27 = 0;
651	{ const u32 x25 = 0;
652	{ const u32 x23 = 121666;
653	{ u64 x40 = ((u64)x23 * x5);
654	{ u64 x41 = (((u64)x23 * x7) + ((u64)x25 * x5));
655	{ u64 x42 = ((((u64)(0x2 * x25) * x7) + ((u64)x23 * x9)) + ((u64)x27 * x5));
656	{ u64 x43 = (((((u64)x25 * x9) + ((u64)x27 * x7)) + ((u64)x23 * x11)) + ((u64)x29 * x5));
657	{ u64 x44 = (((((u64)x27 * x9) + (0x2 * (((u64)x25 * x11) + ((u64)x29 * x7)))) + ((u64)x23 * x13)) + ((u64)x31 * x5));
658	{ u64 x45 = (((((((u64)x27 * x11) + ((u64)x29 * x9)) + ((u64)x25 * x13)) + ((u64)x31 * x7)) + ((u64)x23 * x15)) + ((u64)x33 * x5));
659	{ u64 x46 = (((((0x2 * ((((u64)x29 * x11) + ((u64)x25 * x15)) + ((u64)x33 * x7))) + ((u64)x27 * x13)) + ((u64)x31 * x9)) + ((u64)x23 * x17)) + ((u64)x35 * x5));
660	{ u64 x47 = (((((((((u64)x29 * x13) + ((u64)x31 * x11)) + ((u64)x27 * x15)) + ((u64)x33 * x9)) + ((u64)x25 * x17)) + ((u64)x35 * x7)) + ((u64)x23 * x19)) + ((u64)x37 * x5));
661	{ u64 x48 = (((((((u64)x31 * x13) + (0x2 * (((((u64)x29 * x15) + ((u64)x33 * x11)) + ((u64)x25 * x19)) + ((u64)x37 * x7)))) + ((u64)x27 * x17)) + ((u64)x35 * x9)) + ((u64)x23 * x21)) + ((u64)x39 * x5));
662	{ u64 x49 = (((((((((((u64)x31 * x15) + ((u64)x33 * x13)) + ((u64)x29 * x17)) + ((u64)x35 * x11)) + ((u64)x27 * x19)) + ((u64)x37 * x9)) + ((u64)x25 * x21)) + ((u64)x39 * x7)) + ((u64)x23 * x20)) + ((u64)x38 * x5));
663	{ u64 x50 = (((((0x2 * ((((((u64)x33 * x15) + ((u64)x29 * x19)) + ((u64)x37 * x11)) + ((u64)x25 * x20)) + ((u64)x38 * x7))) + ((u64)x31 * x17)) + ((u64)x35 * x13)) + ((u64)x27 * x21)) + ((u64)x39 * x9));
664	{ u64 x51 = (((((((((u64)x33 * x17) + ((u64)x35 * x15)) + ((u64)x31 * x19)) + ((u64)x37 * x13)) + ((u64)x29 * x21)) + ((u64)x39 * x11)) + ((u64)x27 * x20)) + ((u64)x38 * x9));
665	{ u64 x52 = (((((u64)x35 * x17) + (0x2 * (((((u64)x33 * x19) + ((u64)x37 * x15)) + ((u64)x29 * x20)) + ((u64)x38 * x11)))) + ((u64)x31 * x21)) + ((u64)x39 * x13));
666	{ u64 x53 = (((((((u64)x35 * x19) + ((u64)x37 * x17)) + ((u64)x33 * x21)) + ((u64)x39 * x15)) + ((u64)x31 * x20)) + ((u64)x38 * x13));
667	{ u64 x54 = (((0x2 * ((((u64)x37 * x19) + ((u64)x33 * x20)) + ((u64)x38 * x15))) + ((u64)x35 * x21)) + ((u64)x39 * x17));
668	{ u64 x55 = (((((u64)x37 * x21) + ((u64)x39 * x19)) + ((u64)x35 * x20)) + ((u64)x38 * x17));
669	{ u64 x56 = (((u64)x39 * x21) + (0x2 * (((u64)x37 * x20) + ((u64)x38 * x19))));
670	{ u64 x57 = (((u64)x39 * x20) + ((u64)x38 * x21));
671	{ u64 x58 = ((u64)(0x2 * x38) * x20);
672	{ u64 x59 = (x48 + (x58 << 0x4));
673	{ u64 x60 = (x59 + (x58 << 0x1));
674	{ u64 x61 = (x60 + x58);
675	{ u64 x62 = (x47 + (x57 << 0x4));
676	{ u64 x63 = (x62 + (x57 << 0x1));
677	{ u64 x64 = (x63 + x57);
678	{ u64 x65 = (x46 + (x56 << 0x4));
679	{ u64 x66 = (x65 + (x56 << 0x1));
680	{ u64 x67 = (x66 + x56);
681	{ u64 x68 = (x45 + (x55 << 0x4));
682	{ u64 x69 = (x68 + (x55 << 0x1));
683	{ u64 x70 = (x69 + x55);
684	{ u64 x71 = (x44 + (x54 << 0x4));
685	{ u64 x72 = (x71 + (x54 << 0x1));
686	{ u64 x73 = (x72 + x54);
687	{ u64 x74 = (x43 + (x53 << 0x4));
688	{ u64 x75 = (x74 + (x53 << 0x1));
689	{ u64 x76 = (x75 + x53);
690	{ u64 x77 = (x42 + (x52 << 0x4));
691	{ u64 x78 = (x77 + (x52 << 0x1));
692	{ u64 x79 = (x78 + x52);
693	{ u64 x80 = (x41 + (x51 << 0x4));
694	{ u64 x81 = (x80 + (x51 << 0x1));
695	{ u64 x82 = (x81 + x51);
696	{ u64 x83 = (x40 + (x50 << 0x4));
697	{ u64 x84 = (x83 + (x50 << 0x1));
698	{ u64 x85 = (x84 + x50);
699	{ u64 x86 = (x85 >> 0x1a);
700	{ u32 x87 = ((u32)x85 & 0x3ffffff);
701	{ u64 x88 = (x86 + x82);
702	{ u64 x89 = (x88 >> 0x19);
703	{ u32 x90 = ((u32)x88 & 0x1ffffff);
704	{ u64 x91 = (x89 + x79);
705	{ u64 x92 = (x91 >> 0x1a);
706	{ u32 x93 = ((u32)x91 & 0x3ffffff);
707	{ u64 x94 = (x92 + x76);
708	{ u64 x95 = (x94 >> 0x19);
709	{ u32 x96 = ((u32)x94 & 0x1ffffff);
710	{ u64 x97 = (x95 + x73);
711	{ u64 x98 = (x97 >> 0x1a);
712	{ u32 x99 = ((u32)x97 & 0x3ffffff);
713	{ u64 x100 = (x98 + x70);
714	{ u64 x101 = (x100 >> 0x19);
715	{ u32 x102 = ((u32)x100 & 0x1ffffff);
716	{ u64 x103 = (x101 + x67);
717	{ u64 x104 = (x103 >> 0x1a);
718	{ u32 x105 = ((u32)x103 & 0x3ffffff);
719	{ u64 x106 = (x104 + x64);
720	{ u64 x107 = (x106 >> 0x19);
721	{ u32 x108 = ((u32)x106 & 0x1ffffff);
722	{ u64 x109 = (x107 + x61);
723	{ u64 x110 = (x109 >> 0x1a);
724	{ u32 x111 = ((u32)x109 & 0x3ffffff);
725	{ u64 x112 = (x110 + x49);
726	{ u64 x113 = (x112 >> 0x19);
727	{ u32 x114 = ((u32)x112 & 0x1ffffff);
728	{ u64 x115 = (x87 + (0x13 * x113));
729	{ u32 x116 = (u32) (x115 >> 0x1a);
730	{ u32 x117 = ((u32)x115 & 0x3ffffff);
731	{ u32 x118 = (x116 + x90);
732	{ u32 x119 = (x118 >> 0x19);
733	{ u32 x120 = (x118 & 0x1ffffff);
734	out[0] = x117;
735	out[1] = x120;
736	out[2] = (x119 + x93);
737	out[3] = x96;
738	out[4] = x99;
739	out[5] = x102;
740	out[6] = x105;
741	out[7] = x108;
742	out[8] = x111;
743	out[9] = x114;
744	}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
745}
746
747static __always_inline void fe_mul121666(fe *h, const fe_loose *f)
748{
749	fe_mul_121666_impl(h->v, f->v);
750}
751
752static void curve25519_generic(u8 out[CURVE25519_KEY_SIZE],
753			       const u8 scalar[CURVE25519_KEY_SIZE],
754			       const u8 point[CURVE25519_KEY_SIZE])
755{
756	fe x1, x2, z2, x3, z3;
757	fe_loose x2l, z2l, x3l;
758	unsigned swap = 0;
759	int pos;
760	u8 e[32];
761
762	memcpy(e, scalar, 32);
763	curve25519_clamp_secret(e);
764
765	/* The following implementation was transcribed to Coq and proven to
766	 * correspond to unary scalar multiplication in affine coordinates given
767	 * that x1 != 0 is the x coordinate of some point on the curve. It was
768	 * also checked in Coq that doing a ladderstep with x1 = x3 = 0 gives
769	 * z2' = z3' = 0, and z2 = z3 = 0 gives z2' = z3' = 0. The statement was
770	 * quantified over the underlying field, so it applies to Curve25519
771	 * itself and the quadratic twist of Curve25519. It was not proven in
772	 * Coq that prime-field arithmetic correctly simulates extension-field
773	 * arithmetic on prime-field values. The decoding of the byte array
774	 * representation of e was not considered.
775	 *
776	 * Specification of Montgomery curves in affine coordinates:
777	 * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Spec/MontgomeryCurve.v#L27>
778	 *
779	 * Proof that these form a group that is isomorphic to a Weierstrass
780	 * curve:
781	 * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/AffineProofs.v#L35>
782	 *
783	 * Coq transcription and correctness proof of the loop
784	 * (where scalarbits=255):
785	 * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZ.v#L118>
786	 * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L278>
787	 * preconditions: 0 <= e < 2^255 (not necessarily e < order),
788	 * fe_invert(0) = 0
789	 */
790	fe_frombytes(&x1, point);
791	fe_1(&x2);
792	fe_0(&z2);
793	fe_copy(&x3, &x1);
794	fe_1(&z3);
795
796	for (pos = 254; pos >= 0; --pos) {
797		fe tmp0, tmp1;
798		fe_loose tmp0l, tmp1l;
799		/* loop invariant as of right before the test, for the case
800		 * where x1 != 0:
801		 *   pos >= -1; if z2 = 0 then x2 is nonzero; if z3 = 0 then x3
802		 *   is nonzero
803		 *   let r := e >> (pos+1) in the following equalities of
804		 *   projective points:
805		 *   to_xz (r*P)     === if swap then (x3, z3) else (x2, z2)
806		 *   to_xz ((r+1)*P) === if swap then (x2, z2) else (x3, z3)
807		 *   x1 is the nonzero x coordinate of the nonzero
808		 *   point (r*P-(r+1)*P)
809		 */
810		unsigned b = 1 & (e[pos / 8] >> (pos & 7));
811		swap ^= b;
812		fe_cswap(&x2, &x3, swap);
813		fe_cswap(&z2, &z3, swap);
814		swap = b;
815		/* Coq transcription of ladderstep formula (called from
816		 * transcribed loop):
817		 * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZ.v#L89>
818		 * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L131>
819		 * x1 != 0 <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L217>
820		 * x1  = 0 <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L147>
821		 */
822		fe_sub(&tmp0l, &x3, &z3);
823		fe_sub(&tmp1l, &x2, &z2);
824		fe_add(&x2l, &x2, &z2);
825		fe_add(&z2l, &x3, &z3);
826		fe_mul_tll(&z3, &tmp0l, &x2l);
827		fe_mul_tll(&z2, &z2l, &tmp1l);
828		fe_sq_tl(&tmp0, &tmp1l);
829		fe_sq_tl(&tmp1, &x2l);
830		fe_add(&x3l, &z3, &z2);
831		fe_sub(&z2l, &z3, &z2);
832		fe_mul_ttt(&x2, &tmp1, &tmp0);
833		fe_sub(&tmp1l, &tmp1, &tmp0);
834		fe_sq_tl(&z2, &z2l);
835		fe_mul121666(&z3, &tmp1l);
836		fe_sq_tl(&x3, &x3l);
837		fe_add(&tmp0l, &tmp0, &z3);
838		fe_mul_ttt(&z3, &x1, &z2);
839		fe_mul_tll(&z2, &tmp1l, &tmp0l);
840	}
841	/* here pos=-1, so r=e, so to_xz (e*P) === if swap then (x3, z3)
842	 * else (x2, z2)
843	 */
844	fe_cswap(&x2, &x3, swap);
845	fe_cswap(&z2, &z3, swap);
846
847	fe_invert(&z2, &z2);
848	fe_mul_ttt(&x2, &x2, &z2);
849	fe_tobytes(out, &x2);
850
851	memzero_explicit(&x1, sizeof(x1));
852	memzero_explicit(&x2, sizeof(x2));
853	memzero_explicit(&z2, sizeof(z2));
854	memzero_explicit(&x3, sizeof(x3));
855	memzero_explicit(&z3, sizeof(z3));
856	memzero_explicit(&x2l, sizeof(x2l));
857	memzero_explicit(&z2l, sizeof(z2l));
858	memzero_explicit(&x3l, sizeof(x3l));
859	memzero_explicit(&e, sizeof(e));
860}
861