1/*
2 * ntp_control.c - respond to mode 6 control messages and send async
3 *		   traps.  Provides service to ntpq and others.
4 */
5
6#ifdef HAVE_CONFIG_H
7# include <config.h>
8#endif
9
10#include <stdio.h>
11#include <ctype.h>
12#include <signal.h>
13#include <sys/stat.h>
14#ifdef HAVE_NETINET_IN_H
15# include <netinet/in.h>
16#endif
17#include <arpa/inet.h>
18
19#include "ntpd.h"
20#include "ntp_io.h"
21#include "ntp_refclock.h"
22#include "ntp_control.h"
23#include "ntp_unixtime.h"
24#include "ntp_stdlib.h"
25#include "ntp_config.h"
26#include "ntp_crypto.h"
27#include "ntp_assert.h"
28#include "ntp_leapsec.h"
29#include "timexsup.h"
30
31#include <rc_cmdlength.h>
32#ifdef KERNEL_PLL
33# include "ntp_syscall.h"
34#endif
35
36/*
37 * Structure to hold request procedure information
38 */
39
40struct ctl_proc {
41	short control_code;		/* defined request code */
42#define NO_REQUEST	(-1)
43	u_short flags;			/* flags word */
44	/* Only one flag.  Authentication required or not. */
45#define NOAUTH	0
46#define AUTH	1
47	void (*handler) (struct recvbuf *, int); /* handle request */
48};
49
50
51/*
52 * Request processing routines
53 */
54static	void	ctl_error	(u_char);
55#ifdef REFCLOCK
56static	u_short ctlclkstatus	(struct refclockstat *);
57#endif
58static	void	ctl_flushpkt	(u_char);
59static	void	ctl_putdata	(const char *, unsigned int, int);
60static	void	ctl_putstr	(const char *, const char *, size_t);
61static	void	ctl_putdblf	(const char *, int, int, double);
62#define	ctl_putdbl(tag, d)	ctl_putdblf(tag, 1, 3, d)
63#define	ctl_putdbl6(tag, d)	ctl_putdblf(tag, 1, 6, d)
64#define	ctl_putsfp(tag, sfp)	ctl_putdblf(tag, 0, -1, \
65					    FPTOD(sfp))
66static	void	ctl_putuint	(const char *, u_long);
67static	void	ctl_puthex	(const char *, u_long);
68static	void	ctl_putint	(const char *, long);
69static	void	ctl_putts	(const char *, l_fp *);
70static	void	ctl_putadr	(const char *, u_int32,
71				 sockaddr_u *);
72static	void	ctl_putrefid	(const char *, u_int32);
73static	void	ctl_putarray	(const char *, double *, int);
74static	void	ctl_putsys	(int);
75static	void	ctl_putpeer	(int, struct peer *);
76static	void	ctl_putfs	(const char *, tstamp_t);
77static	void	ctl_printf	(const char *, ...) NTP_PRINTF(1, 2);
78#ifdef REFCLOCK
79static	void	ctl_putclock	(int, struct refclockstat *, int);
80#endif	/* REFCLOCK */
81static	const struct ctl_var *ctl_getitem(const struct ctl_var *,
82					  char **);
83static	u_short	count_var	(const struct ctl_var *);
84static	void	control_unspec	(struct recvbuf *, int);
85static	void	read_status	(struct recvbuf *, int);
86static	void	read_sysvars	(void);
87static	void	read_peervars	(void);
88static	void	read_variables	(struct recvbuf *, int);
89static	void	write_variables (struct recvbuf *, int);
90static	void	read_clockstatus(struct recvbuf *, int);
91static	void	write_clockstatus(struct recvbuf *, int);
92static	void	set_trap	(struct recvbuf *, int);
93static	void	save_config	(struct recvbuf *, int);
94static	void	configure	(struct recvbuf *, int);
95static	void	send_mru_entry	(mon_entry *, int);
96static	void	send_random_tag_value(int);
97static	void	read_mru_list	(struct recvbuf *, int);
98static	void	send_ifstats_entry(endpt *, u_int);
99static	void	read_ifstats	(struct recvbuf *);
100static	void	sockaddrs_from_restrict_u(sockaddr_u *,	sockaddr_u *,
101					  restrict_u *, int);
102static	void	send_restrict_entry(restrict_u *, int, u_int);
103static	void	send_restrict_list(restrict_u *, int, u_int *);
104static	void	read_addr_restrictions(struct recvbuf *);
105static	void	read_ordlist	(struct recvbuf *, int);
106static	u_int32	derive_nonce	(sockaddr_u *, u_int32, u_int32);
107static	void	generate_nonce	(struct recvbuf *, char *, size_t);
108static	int	validate_nonce	(const char *, struct recvbuf *);
109static	void	req_nonce	(struct recvbuf *, int);
110static	void	unset_trap	(struct recvbuf *, int);
111static	struct ctl_trap *ctlfindtrap(sockaddr_u *,
112				     endpt *);
113
114int/*BOOL*/ is_safe_filename(const char * name);
115
116static const struct ctl_proc control_codes[] = {
117	{ CTL_OP_UNSPEC,		NOAUTH,	control_unspec },
118	{ CTL_OP_READSTAT,		NOAUTH,	read_status },
119	{ CTL_OP_READVAR,		NOAUTH,	read_variables },
120	{ CTL_OP_WRITEVAR,		AUTH,	write_variables },
121	{ CTL_OP_READCLOCK,		NOAUTH,	read_clockstatus },
122	{ CTL_OP_WRITECLOCK,		AUTH,	write_clockstatus },
123	{ CTL_OP_SETTRAP,		AUTH,	set_trap },
124	{ CTL_OP_CONFIGURE,		AUTH,	configure },
125	{ CTL_OP_SAVECONFIG,		AUTH,	save_config },
126	{ CTL_OP_READ_MRU,		NOAUTH,	read_mru_list },
127	{ CTL_OP_READ_ORDLIST_A,	AUTH,	read_ordlist },
128	{ CTL_OP_REQ_NONCE,		NOAUTH,	req_nonce },
129	{ CTL_OP_UNSETTRAP,		AUTH,	unset_trap },
130	{ NO_REQUEST,			0,	NULL }
131};
132
133/*
134 * System variables we understand
135 */
136#define	CS_LEAP			1
137#define	CS_STRATUM		2
138#define	CS_PRECISION		3
139#define	CS_ROOTDELAY		4
140#define	CS_ROOTDISPERSION	5
141#define	CS_REFID		6
142#define	CS_REFTIME		7
143#define	CS_POLL			8
144#define	CS_PEERID		9
145#define	CS_OFFSET		10
146#define	CS_DRIFT		11
147#define	CS_JITTER		12
148#define	CS_ERROR		13
149#define	CS_CLOCK		14
150#define	CS_PROCESSOR		15
151#define	CS_SYSTEM		16
152#define	CS_VERSION		17
153#define	CS_STABIL		18
154#define	CS_VARLIST		19
155#define	CS_TAI			20
156#define	CS_LEAPTAB		21
157#define	CS_LEAPEND		22
158#define	CS_RATE			23
159#define	CS_MRU_ENABLED		24
160#define	CS_MRU_DEPTH		25
161#define	CS_MRU_DEEPEST		26
162#define	CS_MRU_MINDEPTH		27
163#define	CS_MRU_MAXAGE		28
164#define	CS_MRU_MAXDEPTH		29
165#define	CS_MRU_MEM		30
166#define	CS_MRU_MAXMEM		31
167#define	CS_SS_UPTIME		32
168#define	CS_SS_RESET		33
169#define	CS_SS_RECEIVED		34
170#define	CS_SS_THISVER		35
171#define	CS_SS_OLDVER		36
172#define	CS_SS_BADFORMAT		37
173#define	CS_SS_BADAUTH		38
174#define	CS_SS_DECLINED		39
175#define	CS_SS_RESTRICTED	40
176#define	CS_SS_LIMITED		41
177#define	CS_SS_KODSENT		42
178#define	CS_SS_PROCESSED		43
179#define	CS_SS_LAMPORT		44
180#define	CS_SS_TSROUNDING	45
181#define	CS_PEERADR		46
182#define	CS_PEERMODE		47
183#define	CS_BCASTDELAY		48
184#define	CS_AUTHDELAY		49
185#define	CS_AUTHKEYS		50
186#define	CS_AUTHFREEK		51
187#define	CS_AUTHKLOOKUPS		52
188#define	CS_AUTHKNOTFOUND	53
189#define	CS_AUTHKUNCACHED	54
190#define	CS_AUTHKEXPIRED		55
191#define	CS_AUTHENCRYPTS		56
192#define	CS_AUTHDECRYPTS		57
193#define	CS_AUTHRESET		58
194#define	CS_K_OFFSET		59
195#define	CS_K_FREQ		60
196#define	CS_K_MAXERR		61
197#define	CS_K_ESTERR		62
198#define	CS_K_STFLAGS		63
199#define	CS_K_TIMECONST		64
200#define	CS_K_PRECISION		65
201#define	CS_K_FREQTOL		66
202#define	CS_K_PPS_FREQ		67
203#define	CS_K_PPS_STABIL		68
204#define	CS_K_PPS_JITTER		69
205#define	CS_K_PPS_CALIBDUR	70
206#define	CS_K_PPS_CALIBS		71
207#define	CS_K_PPS_CALIBERRS	72
208#define	CS_K_PPS_JITEXC		73
209#define	CS_K_PPS_STBEXC		74
210#define	CS_KERN_FIRST		CS_K_OFFSET
211#define	CS_KERN_LAST		CS_K_PPS_STBEXC
212#define	CS_IOSTATS_RESET	75
213#define	CS_TOTAL_RBUF		76
214#define	CS_FREE_RBUF		77
215#define	CS_USED_RBUF		78
216#define	CS_RBUF_LOWATER		79
217#define	CS_IO_DROPPED		80
218#define	CS_IO_IGNORED		81
219#define	CS_IO_RECEIVED		82
220#define	CS_IO_SENT		83
221#define	CS_IO_SENDFAILED	84
222#define	CS_IO_WAKEUPS		85
223#define	CS_IO_GOODWAKEUPS	86
224#define	CS_TIMERSTATS_RESET	87
225#define	CS_TIMER_OVERRUNS	88
226#define	CS_TIMER_XMTS		89
227#define	CS_FUZZ			90
228#define	CS_WANDER_THRESH	91
229#define	CS_LEAPSMEARINTV	92
230#define	CS_LEAPSMEAROFFS	93
231#define	CS_MAX_NOAUTOKEY	CS_LEAPSMEAROFFS
232#ifdef AUTOKEY
233#define	CS_FLAGS		(1 + CS_MAX_NOAUTOKEY)
234#define	CS_HOST			(2 + CS_MAX_NOAUTOKEY)
235#define	CS_PUBLIC		(3 + CS_MAX_NOAUTOKEY)
236#define	CS_CERTIF		(4 + CS_MAX_NOAUTOKEY)
237#define	CS_SIGNATURE		(5 + CS_MAX_NOAUTOKEY)
238#define	CS_REVTIME		(6 + CS_MAX_NOAUTOKEY)
239#define	CS_IDENT		(7 + CS_MAX_NOAUTOKEY)
240#define	CS_DIGEST		(8 + CS_MAX_NOAUTOKEY)
241#define	CS_MAXCODE		CS_DIGEST
242#else	/* !AUTOKEY follows */
243#define	CS_MAXCODE		CS_MAX_NOAUTOKEY
244#endif	/* !AUTOKEY */
245
246/*
247 * Peer variables we understand
248 */
249#define	CP_CONFIG		1
250#define	CP_AUTHENABLE		2
251#define	CP_AUTHENTIC		3
252#define	CP_SRCADR		4
253#define	CP_SRCPORT		5
254#define	CP_DSTADR		6
255#define	CP_DSTPORT		7
256#define	CP_LEAP			8
257#define	CP_HMODE		9
258#define	CP_STRATUM		10
259#define	CP_PPOLL		11
260#define	CP_HPOLL		12
261#define	CP_PRECISION		13
262#define	CP_ROOTDELAY		14
263#define	CP_ROOTDISPERSION	15
264#define	CP_REFID		16
265#define	CP_REFTIME		17
266#define	CP_ORG			18
267#define	CP_REC			19
268#define	CP_XMT			20
269#define	CP_REACH		21
270#define	CP_UNREACH		22
271#define	CP_TIMER		23
272#define	CP_DELAY		24
273#define	CP_OFFSET		25
274#define	CP_JITTER		26
275#define	CP_DISPERSION		27
276#define	CP_KEYID		28
277#define	CP_FILTDELAY		29
278#define	CP_FILTOFFSET		30
279#define	CP_PMODE		31
280#define	CP_RECEIVED		32
281#define	CP_SENT			33
282#define	CP_FILTERROR		34
283#define	CP_FLASH		35
284#define	CP_TTL			36
285#define	CP_VARLIST		37
286#define	CP_IN			38
287#define	CP_OUT			39
288#define	CP_RATE			40
289#define	CP_BIAS			41
290#define	CP_SRCHOST		42
291#define	CP_TIMEREC		43
292#define	CP_TIMEREACH		44
293#define	CP_BADAUTH		45
294#define	CP_BOGUSORG		46
295#define	CP_OLDPKT		47
296#define	CP_SELDISP		48
297#define	CP_SELBROKEN		49
298#define	CP_CANDIDATE		50
299#define	CP_MAX_NOAUTOKEY	CP_CANDIDATE
300#ifdef AUTOKEY
301#define	CP_FLAGS		(1 + CP_MAX_NOAUTOKEY)
302#define	CP_HOST			(2 + CP_MAX_NOAUTOKEY)
303#define	CP_VALID		(3 + CP_MAX_NOAUTOKEY)
304#define	CP_INITSEQ		(4 + CP_MAX_NOAUTOKEY)
305#define	CP_INITKEY		(5 + CP_MAX_NOAUTOKEY)
306#define	CP_INITTSP		(6 + CP_MAX_NOAUTOKEY)
307#define	CP_SIGNATURE		(7 + CP_MAX_NOAUTOKEY)
308#define	CP_IDENT		(8 + CP_MAX_NOAUTOKEY)
309#define	CP_MAXCODE		CP_IDENT
310#else	/* !AUTOKEY follows */
311#define	CP_MAXCODE		CP_MAX_NOAUTOKEY
312#endif	/* !AUTOKEY */
313
314/*
315 * Clock variables we understand
316 */
317#define	CC_TYPE		1
318#define	CC_TIMECODE	2
319#define	CC_POLL		3
320#define	CC_NOREPLY	4
321#define	CC_BADFORMAT	5
322#define	CC_BADDATA	6
323#define	CC_FUDGETIME1	7
324#define	CC_FUDGETIME2	8
325#define	CC_FUDGEVAL1	9
326#define	CC_FUDGEVAL2	10
327#define	CC_FLAGS	11
328#define	CC_DEVICE	12
329#define	CC_VARLIST	13
330#define	CC_FUDGEMINJIT	14
331#define	CC_MAXCODE	CC_FUDGEMINJIT
332
333/*
334 * System variable values. The array can be indexed by the variable
335 * index to find the textual name.
336 */
337static const struct ctl_var sys_var[] = {
338	{ 0,		PADDING, "" },		/* 0 */
339	{ CS_LEAP,	RW, "leap" },		/* 1 */
340	{ CS_STRATUM,	RO, "stratum" },	/* 2 */
341	{ CS_PRECISION, RO, "precision" },	/* 3 */
342	{ CS_ROOTDELAY, RO, "rootdelay" },	/* 4 */
343	{ CS_ROOTDISPERSION, RO, "rootdisp" },	/* 5 */
344	{ CS_REFID,	RO, "refid" },		/* 6 */
345	{ CS_REFTIME,	RO, "reftime" },	/* 7 */
346	{ CS_POLL,	RO, "tc" },		/* 8 */
347	{ CS_PEERID,	RO, "peer" },		/* 9 */
348	{ CS_OFFSET,	RO, "offset" },		/* 10 */
349	{ CS_DRIFT,	RO, "frequency" },	/* 11 */
350	{ CS_JITTER,	RO, "sys_jitter" },	/* 12 */
351	{ CS_ERROR,	RO, "clk_jitter" },	/* 13 */
352	{ CS_CLOCK,	RO, "clock" },		/* 14 */
353	{ CS_PROCESSOR, RO, "processor" },	/* 15 */
354	{ CS_SYSTEM,	RO, "system" },		/* 16 */
355	{ CS_VERSION,	RO, "version" },	/* 17 */
356	{ CS_STABIL,	RO, "clk_wander" },	/* 18 */
357	{ CS_VARLIST,	RO, "sys_var_list" },	/* 19 */
358	{ CS_TAI,	RO, "tai" },		/* 20 */
359	{ CS_LEAPTAB,	RO, "leapsec" },	/* 21 */
360	{ CS_LEAPEND,	RO, "expire" },		/* 22 */
361	{ CS_RATE,	RO, "mintc" },		/* 23 */
362	{ CS_MRU_ENABLED,	RO, "mru_enabled" },	/* 24 */
363	{ CS_MRU_DEPTH,		RO, "mru_depth" },	/* 25 */
364	{ CS_MRU_DEEPEST,	RO, "mru_deepest" },	/* 26 */
365	{ CS_MRU_MINDEPTH,	RO, "mru_mindepth" },	/* 27 */
366	{ CS_MRU_MAXAGE,	RO, "mru_maxage" },	/* 28 */
367	{ CS_MRU_MAXDEPTH,	RO, "mru_maxdepth" },	/* 29 */
368	{ CS_MRU_MEM,		RO, "mru_mem" },	/* 30 */
369	{ CS_MRU_MAXMEM,	RO, "mru_maxmem" },	/* 31 */
370	{ CS_SS_UPTIME,		RO, "ss_uptime" },	/* 32 */
371	{ CS_SS_RESET,		RO, "ss_reset" },	/* 33 */
372	{ CS_SS_RECEIVED,	RO, "ss_received" },	/* 34 */
373	{ CS_SS_THISVER,	RO, "ss_thisver" },	/* 35 */
374	{ CS_SS_OLDVER,		RO, "ss_oldver" },	/* 36 */
375	{ CS_SS_BADFORMAT,	RO, "ss_badformat" },	/* 37 */
376	{ CS_SS_BADAUTH,	RO, "ss_badauth" },	/* 38 */
377	{ CS_SS_DECLINED,	RO, "ss_declined" },	/* 39 */
378	{ CS_SS_RESTRICTED,	RO, "ss_restricted" },	/* 40 */
379	{ CS_SS_LIMITED,	RO, "ss_limited" },	/* 41 */
380	{ CS_SS_KODSENT,	RO, "ss_kodsent" },	/* 42 */
381	{ CS_SS_PROCESSED,	RO, "ss_processed" },	/* 43 */
382	{ CS_SS_LAMPORT,	RO, "ss_lamport" },	/* 44 */
383	{ CS_SS_TSROUNDING,	RO, "ss_tsrounding" },	/* 45 */
384	{ CS_PEERADR,		RO, "peeradr" },	/* 46 */
385	{ CS_PEERMODE,		RO, "peermode" },	/* 47 */
386	{ CS_BCASTDELAY,	RO, "bcastdelay" },	/* 48 */
387	{ CS_AUTHDELAY,		RO, "authdelay" },	/* 49 */
388	{ CS_AUTHKEYS,		RO, "authkeys" },	/* 50 */
389	{ CS_AUTHFREEK,		RO, "authfreek" },	/* 51 */
390	{ CS_AUTHKLOOKUPS,	RO, "authklookups" },	/* 52 */
391	{ CS_AUTHKNOTFOUND,	RO, "authknotfound" },	/* 53 */
392	{ CS_AUTHKUNCACHED,	RO, "authkuncached" },	/* 54 */
393	{ CS_AUTHKEXPIRED,	RO, "authkexpired" },	/* 55 */
394	{ CS_AUTHENCRYPTS,	RO, "authencrypts" },	/* 56 */
395	{ CS_AUTHDECRYPTS,	RO, "authdecrypts" },	/* 57 */
396	{ CS_AUTHRESET,		RO, "authreset" },	/* 58 */
397	{ CS_K_OFFSET,		RO, "koffset" },	/* 59 */
398	{ CS_K_FREQ,		RO, "kfreq" },		/* 60 */
399	{ CS_K_MAXERR,		RO, "kmaxerr" },	/* 61 */
400	{ CS_K_ESTERR,		RO, "kesterr" },	/* 62 */
401	{ CS_K_STFLAGS,		RO, "kstflags" },	/* 63 */
402	{ CS_K_TIMECONST,	RO, "ktimeconst" },	/* 64 */
403	{ CS_K_PRECISION,	RO, "kprecis" },	/* 65 */
404	{ CS_K_FREQTOL,		RO, "kfreqtol" },	/* 66 */
405	{ CS_K_PPS_FREQ,	RO, "kppsfreq" },	/* 67 */
406	{ CS_K_PPS_STABIL,	RO, "kppsstab" },	/* 68 */
407	{ CS_K_PPS_JITTER,	RO, "kppsjitter" },	/* 69 */
408	{ CS_K_PPS_CALIBDUR,	RO, "kppscalibdur" },	/* 70 */
409	{ CS_K_PPS_CALIBS,	RO, "kppscalibs" },	/* 71 */
410	{ CS_K_PPS_CALIBERRS,	RO, "kppscaliberrs" },	/* 72 */
411	{ CS_K_PPS_JITEXC,	RO, "kppsjitexc" },	/* 73 */
412	{ CS_K_PPS_STBEXC,	RO, "kppsstbexc" },	/* 74 */
413	{ CS_IOSTATS_RESET,	RO, "iostats_reset" },	/* 75 */
414	{ CS_TOTAL_RBUF,	RO, "total_rbuf" },	/* 76 */
415	{ CS_FREE_RBUF,		RO, "free_rbuf" },	/* 77 */
416	{ CS_USED_RBUF,		RO, "used_rbuf" },	/* 78 */
417	{ CS_RBUF_LOWATER,	RO, "rbuf_lowater" },	/* 79 */
418	{ CS_IO_DROPPED,	RO, "io_dropped" },	/* 80 */
419	{ CS_IO_IGNORED,	RO, "io_ignored" },	/* 81 */
420	{ CS_IO_RECEIVED,	RO, "io_received" },	/* 82 */
421	{ CS_IO_SENT,		RO, "io_sent" },	/* 83 */
422	{ CS_IO_SENDFAILED,	RO, "io_sendfailed" },	/* 84 */
423	{ CS_IO_WAKEUPS,	RO, "io_wakeups" },	/* 85 */
424	{ CS_IO_GOODWAKEUPS,	RO, "io_goodwakeups" },	/* 86 */
425	{ CS_TIMERSTATS_RESET,	RO, "timerstats_reset" },/* 87 */
426	{ CS_TIMER_OVERRUNS,	RO, "timer_overruns" },	/* 88 */
427	{ CS_TIMER_XMTS,	RO, "timer_xmts" },	/* 89 */
428	{ CS_FUZZ,		RO, "fuzz" },		/* 90 */
429	{ CS_WANDER_THRESH,	RO, "clk_wander_threshold" }, /* 91 */
430
431	{ CS_LEAPSMEARINTV,	RO, "leapsmearinterval" },    /* 92 */
432	{ CS_LEAPSMEAROFFS,	RO, "leapsmearoffset" },      /* 93 */
433
434#ifdef AUTOKEY
435	{ CS_FLAGS,	RO, "flags" },		/* 1 + CS_MAX_NOAUTOKEY */
436	{ CS_HOST,	RO, "host" },		/* 2 + CS_MAX_NOAUTOKEY */
437	{ CS_PUBLIC,	RO, "update" },		/* 3 + CS_MAX_NOAUTOKEY */
438	{ CS_CERTIF,	RO, "cert" },		/* 4 + CS_MAX_NOAUTOKEY */
439	{ CS_SIGNATURE,	RO, "signature" },	/* 5 + CS_MAX_NOAUTOKEY */
440	{ CS_REVTIME,	RO, "until" },		/* 6 + CS_MAX_NOAUTOKEY */
441	{ CS_IDENT,	RO, "ident" },		/* 7 + CS_MAX_NOAUTOKEY */
442	{ CS_DIGEST,	RO, "digest" },		/* 8 + CS_MAX_NOAUTOKEY */
443#endif	/* AUTOKEY */
444	{ 0,		EOV, "" }		/* 94/102 */
445};
446
447static struct ctl_var *ext_sys_var = NULL;
448
449/*
450 * System variables we print by default (in fuzzball order,
451 * more-or-less)
452 */
453static const u_char def_sys_var[] = {
454	CS_VERSION,
455	CS_PROCESSOR,
456	CS_SYSTEM,
457	CS_LEAP,
458	CS_STRATUM,
459	CS_PRECISION,
460	CS_ROOTDELAY,
461	CS_ROOTDISPERSION,
462	CS_REFID,
463	CS_REFTIME,
464	CS_CLOCK,
465	CS_PEERID,
466	CS_POLL,
467	CS_RATE,
468	CS_OFFSET,
469	CS_DRIFT,
470	CS_JITTER,
471	CS_ERROR,
472	CS_STABIL,
473	CS_TAI,
474	CS_LEAPTAB,
475	CS_LEAPEND,
476	CS_LEAPSMEARINTV,
477	CS_LEAPSMEAROFFS,
478#ifdef AUTOKEY
479	CS_HOST,
480	CS_IDENT,
481	CS_FLAGS,
482	CS_DIGEST,
483	CS_SIGNATURE,
484	CS_PUBLIC,
485	CS_CERTIF,
486#endif	/* AUTOKEY */
487	0
488};
489
490
491/*
492 * Peer variable list
493 */
494static const struct ctl_var peer_var[] = {
495	{ 0,		PADDING, "" },		/* 0 */
496	{ CP_CONFIG,	RO, "config" },		/* 1 */
497	{ CP_AUTHENABLE, RO,	"authenable" },	/* 2 */
498	{ CP_AUTHENTIC, RO, "authentic" },	/* 3 */
499	{ CP_SRCADR,	RO, "srcadr" },		/* 4 */
500	{ CP_SRCPORT,	RO, "srcport" },	/* 5 */
501	{ CP_DSTADR,	RO, "dstadr" },		/* 6 */
502	{ CP_DSTPORT,	RO, "dstport" },	/* 7 */
503	{ CP_LEAP,	RO, "leap" },		/* 8 */
504	{ CP_HMODE,	RO, "hmode" },		/* 9 */
505	{ CP_STRATUM,	RO, "stratum" },	/* 10 */
506	{ CP_PPOLL,	RO, "ppoll" },		/* 11 */
507	{ CP_HPOLL,	RO, "hpoll" },		/* 12 */
508	{ CP_PRECISION,	RO, "precision" },	/* 13 */
509	{ CP_ROOTDELAY,	RO, "rootdelay" },	/* 14 */
510	{ CP_ROOTDISPERSION, RO, "rootdisp" },	/* 15 */
511	{ CP_REFID,	RO, "refid" },		/* 16 */
512	{ CP_REFTIME,	RO, "reftime" },	/* 17 */
513	{ CP_ORG,	RO, "org" },		/* 18 */
514	{ CP_REC,	RO, "rec" },		/* 19 */
515	{ CP_XMT,	RO, "xleave" },		/* 20 */
516	{ CP_REACH,	RO, "reach" },		/* 21 */
517	{ CP_UNREACH,	RO, "unreach" },	/* 22 */
518	{ CP_TIMER,	RO, "timer" },		/* 23 */
519	{ CP_DELAY,	RO, "delay" },		/* 24 */
520	{ CP_OFFSET,	RO, "offset" },		/* 25 */
521	{ CP_JITTER,	RO, "jitter" },		/* 26 */
522	{ CP_DISPERSION, RO, "dispersion" },	/* 27 */
523	{ CP_KEYID,	RO, "keyid" },		/* 28 */
524	{ CP_FILTDELAY,	RO, "filtdelay" },	/* 29 */
525	{ CP_FILTOFFSET, RO, "filtoffset" },	/* 30 */
526	{ CP_PMODE,	RO, "pmode" },		/* 31 */
527	{ CP_RECEIVED,	RO, "received"},	/* 32 */
528	{ CP_SENT,	RO, "sent" },		/* 33 */
529	{ CP_FILTERROR,	RO, "filtdisp" },	/* 34 */
530	{ CP_FLASH,	RO, "flash" },		/* 35 */
531	{ CP_TTL,	RO, "ttl" },		/* 36 */
532	{ CP_VARLIST,	RO, "peer_var_list" },	/* 37 */
533	{ CP_IN,	RO, "in" },		/* 38 */
534	{ CP_OUT,	RO, "out" },		/* 39 */
535	{ CP_RATE,	RO, "headway" },	/* 40 */
536	{ CP_BIAS,	RO, "bias" },		/* 41 */
537	{ CP_SRCHOST,	RO, "srchost" },	/* 42 */
538	{ CP_TIMEREC,	RO, "timerec" },	/* 43 */
539	{ CP_TIMEREACH,	RO, "timereach" },	/* 44 */
540	{ CP_BADAUTH,	RO, "badauth" },	/* 45 */
541	{ CP_BOGUSORG,	RO, "bogusorg" },	/* 46 */
542	{ CP_OLDPKT,	RO, "oldpkt" },		/* 47 */
543	{ CP_SELDISP,	RO, "seldisp" },	/* 48 */
544	{ CP_SELBROKEN,	RO, "selbroken" },	/* 49 */
545	{ CP_CANDIDATE, RO, "candidate" },	/* 50 */
546#ifdef AUTOKEY
547	{ CP_FLAGS,	RO, "flags" },		/* 1 + CP_MAX_NOAUTOKEY */
548	{ CP_HOST,	RO, "host" },		/* 2 + CP_MAX_NOAUTOKEY */
549	{ CP_VALID,	RO, "valid" },		/* 3 + CP_MAX_NOAUTOKEY */
550	{ CP_INITSEQ,	RO, "initsequence" },	/* 4 + CP_MAX_NOAUTOKEY */
551	{ CP_INITKEY,	RO, "initkey" },	/* 5 + CP_MAX_NOAUTOKEY */
552	{ CP_INITTSP,	RO, "timestamp" },	/* 6 + CP_MAX_NOAUTOKEY */
553	{ CP_SIGNATURE,	RO, "signature" },	/* 7 + CP_MAX_NOAUTOKEY */
554	{ CP_IDENT,	RO, "ident" },		/* 8 + CP_MAX_NOAUTOKEY */
555#endif	/* AUTOKEY */
556	{ 0,		EOV, "" }		/* 50/58 */
557};
558
559
560/*
561 * Peer variables we print by default
562 */
563static const u_char def_peer_var[] = {
564	CP_SRCADR,
565	CP_SRCPORT,
566	CP_SRCHOST,
567	CP_DSTADR,
568	CP_DSTPORT,
569	CP_OUT,
570	CP_IN,
571	CP_LEAP,
572	CP_STRATUM,
573	CP_PRECISION,
574	CP_ROOTDELAY,
575	CP_ROOTDISPERSION,
576	CP_REFID,
577	CP_REFTIME,
578	CP_REC,
579	CP_REACH,
580	CP_UNREACH,
581	CP_HMODE,
582	CP_PMODE,
583	CP_HPOLL,
584	CP_PPOLL,
585	CP_RATE,
586	CP_FLASH,
587	CP_KEYID,
588	CP_TTL,
589	CP_OFFSET,
590	CP_DELAY,
591	CP_DISPERSION,
592	CP_JITTER,
593	CP_XMT,
594	CP_BIAS,
595	CP_FILTDELAY,
596	CP_FILTOFFSET,
597	CP_FILTERROR,
598#ifdef AUTOKEY
599	CP_HOST,
600	CP_FLAGS,
601	CP_SIGNATURE,
602	CP_VALID,
603	CP_INITSEQ,
604	CP_IDENT,
605#endif	/* AUTOKEY */
606	0
607};
608
609
610#ifdef REFCLOCK
611/*
612 * Clock variable list
613 */
614static const struct ctl_var clock_var[] = {
615	{ 0,		PADDING, "" },		/* 0 */
616	{ CC_TYPE,	RO, "type" },		/* 1 */
617	{ CC_TIMECODE,	RO, "timecode" },	/* 2 */
618	{ CC_POLL,	RO, "poll" },		/* 3 */
619	{ CC_NOREPLY,	RO, "noreply" },	/* 4 */
620	{ CC_BADFORMAT, RO, "badformat" },	/* 5 */
621	{ CC_BADDATA,	RO, "baddata" },	/* 6 */
622	{ CC_FUDGETIME1, RO, "fudgetime1" },	/* 7 */
623	{ CC_FUDGETIME2, RO, "fudgetime2" },	/* 8 */
624	{ CC_FUDGEVAL1, RO, "stratum" },	/* 9 */
625	{ CC_FUDGEVAL2, RO, "refid" },		/* 10 */
626	{ CC_FLAGS,	RO, "flags" },		/* 11 */
627	{ CC_DEVICE,	RO, "device" },		/* 12 */
628	{ CC_VARLIST,	RO, "clock_var_list" },	/* 13 */
629	{ CC_FUDGEMINJIT, RO, "minjitter" },	/* 14 */
630	{ 0,		EOV, ""  }		/* 15 */
631};
632
633
634/*
635 * Clock variables printed by default
636 */
637static const u_char def_clock_var[] = {
638	CC_DEVICE,
639	CC_TYPE,	/* won't be output if device = known */
640	CC_TIMECODE,
641	CC_POLL,
642	CC_NOREPLY,
643	CC_BADFORMAT,
644	CC_BADDATA,
645	CC_FUDGEMINJIT,
646	CC_FUDGETIME1,
647	CC_FUDGETIME2,
648	CC_FUDGEVAL1,
649	CC_FUDGEVAL2,
650	CC_FLAGS,
651	0
652};
653#endif
654
655/*
656 * MRU string constants shared by send_mru_entry() and read_mru_list().
657 */
658static const char addr_fmt[] =		"addr.%d";
659static const char last_fmt[] =		"last.%d";
660
661/*
662 * System and processor definitions.
663 */
664#ifndef HAVE_UNAME
665# ifndef STR_SYSTEM
666#  define		STR_SYSTEM	"UNIX"
667# endif
668# ifndef STR_PROCESSOR
669#  define		STR_PROCESSOR	"unknown"
670# endif
671
672static const char str_system[] = STR_SYSTEM;
673static const char str_processor[] = STR_PROCESSOR;
674#else
675# include <sys/utsname.h>
676static struct utsname utsnamebuf;
677#endif /* HAVE_UNAME */
678
679/*
680 * Trap structures. We only allow a few of these, and send a copy of
681 * each async message to each live one. Traps time out after an hour, it
682 * is up to the trap receipient to keep resetting it to avoid being
683 * timed out.
684 */
685/* ntp_request.c */
686struct ctl_trap ctl_traps[CTL_MAXTRAPS];
687int num_ctl_traps;
688
689/*
690 * Type bits, for ctlsettrap() call.
691 */
692#define TRAP_TYPE_CONFIG	0	/* used by configuration code */
693#define TRAP_TYPE_PRIO		1	/* priority trap */
694#define TRAP_TYPE_NONPRIO	2	/* nonpriority trap */
695
696
697/*
698 * List relating reference clock types to control message time sources.
699 * Index by the reference clock type. This list will only be used iff
700 * the reference clock driver doesn't set peer->sstclktype to something
701 * different than CTL_SST_TS_UNSPEC.
702 */
703#ifdef REFCLOCK
704static const u_char clocktypes[] = {
705	CTL_SST_TS_NTP,		/* REFCLK_NONE (0) */
706	CTL_SST_TS_LOCAL,	/* REFCLK_LOCALCLOCK (1) */
707	CTL_SST_TS_UHF,		/* deprecated REFCLK_GPS_TRAK (2) */
708	CTL_SST_TS_HF,		/* REFCLK_WWV_PST (3) */
709	CTL_SST_TS_LF,		/* REFCLK_WWVB_SPECTRACOM (4) */
710	CTL_SST_TS_UHF,		/* REFCLK_TRUETIME (5) */
711	CTL_SST_TS_UHF,		/* REFCLK_IRIG_AUDIO (6) */
712	CTL_SST_TS_HF,		/* REFCLK_CHU (7) */
713	CTL_SST_TS_LF,		/* REFCLOCK_PARSE (default) (8) */
714	CTL_SST_TS_LF,		/* REFCLK_GPS_MX4200 (9) */
715	CTL_SST_TS_UHF,		/* REFCLK_GPS_AS2201 (10) */
716	CTL_SST_TS_UHF,		/* REFCLK_GPS_ARBITER (11) */
717	CTL_SST_TS_UHF,		/* REFCLK_IRIG_TPRO (12) */
718	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_LEITCH (13) */
719	CTL_SST_TS_LF,		/* deprecated REFCLK_MSF_EES (14) */
720	CTL_SST_TS_NTP,		/* not used (15) */
721	CTL_SST_TS_UHF,		/* REFCLK_IRIG_BANCOMM (16) */
722	CTL_SST_TS_UHF,		/* REFCLK_GPS_DATU (17) */
723	CTL_SST_TS_TELEPHONE,	/* REFCLK_NIST_ACTS (18) */
724	CTL_SST_TS_HF,		/* REFCLK_WWV_HEATH (19) */
725	CTL_SST_TS_UHF,		/* REFCLK_GPS_NMEA (20) */
726	CTL_SST_TS_UHF,		/* REFCLK_GPS_VME (21) */
727	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_PPS (22) */
728	CTL_SST_TS_NTP,		/* not used (23) */
729	CTL_SST_TS_NTP,		/* not used (24) */
730	CTL_SST_TS_NTP,		/* not used (25) */
731	CTL_SST_TS_UHF,		/* REFCLK_GPS_HP (26) */
732	CTL_SST_TS_LF,		/* REFCLK_ARCRON_MSF (27) */
733	CTL_SST_TS_UHF,		/* REFCLK_SHM (28) */
734	CTL_SST_TS_UHF,		/* REFCLK_PALISADE (29) */
735	CTL_SST_TS_UHF,		/* REFCLK_ONCORE (30) */
736	CTL_SST_TS_UHF,		/* REFCLK_JUPITER (31) */
737	CTL_SST_TS_LF,		/* REFCLK_CHRONOLOG (32) */
738	CTL_SST_TS_LF,		/* REFCLK_DUMBCLOCK (33) */
739	CTL_SST_TS_LF,		/* REFCLK_ULINK (34) */
740	CTL_SST_TS_LF,		/* REFCLK_PCF (35) */
741	CTL_SST_TS_HF,		/* REFCLK_WWV (36) */
742	CTL_SST_TS_LF,		/* REFCLK_FG (37) */
743	CTL_SST_TS_UHF,		/* REFCLK_HOPF_SERIAL (38) */
744	CTL_SST_TS_UHF,		/* REFCLK_HOPF_PCI (39) */
745	CTL_SST_TS_LF,		/* REFCLK_JJY (40) */
746	CTL_SST_TS_UHF,		/* REFCLK_TT560 (41) */
747	CTL_SST_TS_UHF,		/* REFCLK_ZYFER (42) */
748	CTL_SST_TS_UHF,		/* REFCLK_RIPENCC (43) */
749	CTL_SST_TS_UHF,		/* REFCLK_NEOCLOCK4X (44) */
750	CTL_SST_TS_UHF,		/* REFCLK_TSYNCPCI (45) */
751	CTL_SST_TS_UHF		/* REFCLK_GPSDJSON (46) */
752};
753#endif  /* REFCLOCK */
754
755
756/*
757 * Keyid used for authenticating write requests.
758 */
759keyid_t ctl_auth_keyid;
760
761/*
762 * We keep track of the last error reported by the system internally
763 */
764static	u_char ctl_sys_last_event;
765static	u_char ctl_sys_num_events;
766
767
768/*
769 * Statistic counters to keep track of requests and responses.
770 */
771u_long ctltimereset;		/* time stats reset */
772u_long numctlreq;		/* number of requests we've received */
773u_long numctlbadpkts;		/* number of bad control packets */
774u_long numctlresponses;		/* number of resp packets sent with data */
775u_long numctlfrags;		/* number of fragments sent */
776u_long numctlerrors;		/* number of error responses sent */
777u_long numctltooshort;		/* number of too short input packets */
778u_long numctlinputresp;		/* number of responses on input */
779u_long numctlinputfrag;		/* number of fragments on input */
780u_long numctlinputerr;		/* number of input pkts with err bit set */
781u_long numctlbadoffset;		/* number of input pkts with nonzero offset */
782u_long numctlbadversion;	/* number of input pkts with unknown version */
783u_long numctldatatooshort;	/* data too short for count */
784u_long numctlbadop;		/* bad op code found in packet */
785u_long numasyncmsgs;		/* number of async messages we've sent */
786
787/*
788 * Response packet used by these routines. Also some state information
789 * so that we can handle packet formatting within a common set of
790 * subroutines.  Note we try to enter data in place whenever possible,
791 * but the need to set the more bit correctly means we occasionally
792 * use the extra buffer and copy.
793 */
794static struct ntp_control rpkt;
795static u_char	res_version;
796static u_char	res_opcode;
797static associd_t res_associd;
798static u_short	res_frags;	/* datagrams in this response */
799static int	res_offset;	/* offset of payload in response */
800static u_char * datapt;
801static u_char * dataend;
802static int	datalinelen;
803static int	datasent;	/* flag to avoid initial ", " */
804static int	datanotbinflag;
805static sockaddr_u *rmt_addr;
806static endpt *lcl_inter;
807
808static u_char	res_authenticate;
809static u_char	res_authokay;
810static keyid_t	res_keyid;
811
812#define MAXDATALINELEN	(72)
813
814static u_char	res_async;	/* sending async trap response? */
815
816/*
817 * Pointers for saving state when decoding request packets
818 */
819static	char *reqpt;
820static	char *reqend;
821
822/*
823 * init_control - initialize request data
824 */
825void
826init_control(void)
827{
828	size_t i;
829
830#ifdef HAVE_UNAME
831	uname(&utsnamebuf);
832#endif /* HAVE_UNAME */
833
834	ctl_clr_stats();
835
836	ctl_auth_keyid = 0;
837	ctl_sys_last_event = EVNT_UNSPEC;
838	ctl_sys_num_events = 0;
839
840	num_ctl_traps = 0;
841	for (i = 0; i < COUNTOF(ctl_traps); i++)
842		ctl_traps[i].tr_flags = 0;
843}
844
845
846/*
847 * ctl_error - send an error response for the current request
848 */
849static void
850ctl_error(
851	u_char errcode
852	)
853{
854	size_t		maclen;
855
856	numctlerrors++;
857	DPRINTF(3, ("sending control error %u\n", errcode));
858
859	/*
860	 * Fill in the fields. We assume rpkt.sequence and rpkt.associd
861	 * have already been filled in.
862	 */
863	rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR |
864			(res_opcode & CTL_OP_MASK);
865	rpkt.status = htons((u_short)(errcode << 8) & 0xff00);
866	rpkt.count = 0;
867
868	/*
869	 * send packet and bump counters
870	 */
871	if (res_authenticate && sys_authenticate) {
872		maclen = authencrypt(res_keyid, (u_int32 *)&rpkt,
873				     CTL_HEADER_LEN);
874		sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt,
875			CTL_HEADER_LEN + maclen);
876	} else
877		sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt,
878			CTL_HEADER_LEN);
879}
880
881int/*BOOL*/
882is_safe_filename(const char * name)
883{
884	/* We need a strict validation of filenames we should write: The
885	 * daemon might run with special permissions and is remote
886	 * controllable, so we better take care what we allow as file
887	 * name!
888	 *
889	 * The first character must be digit or a letter from the ASCII
890	 * base plane or a '_' ([_A-Za-z0-9]), the following characters
891	 * must be from [-._+A-Za-z0-9].
892	 *
893	 * We do not trust the character classification much here: Since
894	 * the NTP protocol makes no provisions for UTF-8 or local code
895	 * pages, we strictly require the 7bit ASCII code page.
896	 *
897	 * The following table is a packed bit field of 128 two-bit
898	 * groups. The LSB in each group tells us if a character is
899	 * acceptable at the first position, the MSB if the character is
900	 * accepted at any other position.
901	 *
902	 * This does not ensure that the file name is syntactically
903	 * correct (multiple dots will not work with VMS...) but it will
904	 * exclude potential globbing bombs and directory traversal. It
905	 * also rules out drive selection. (For systems that have this
906	 * notion, like Windows or VMS.)
907	 */
908	static const uint32_t chclass[8] = {
909		0x00000000, 0x00000000,
910		0x28800000, 0x000FFFFF,
911		0xFFFFFFFC, 0xC03FFFFF,
912		0xFFFFFFFC, 0x003FFFFF
913	};
914
915	u_int widx, bidx, mask;
916	if ( ! (name && *name))
917		return FALSE;
918
919	mask = 1u;
920	while (0 != (widx = (u_char)*name++)) {
921		bidx = (widx & 15) << 1;
922		widx = widx >> 4;
923		if (widx >= sizeof(chclass)/sizeof(chclass[0]))
924			return FALSE;
925		if (0 == ((chclass[widx] >> bidx) & mask))
926			return FALSE;
927		mask = 2u;
928	}
929	return TRUE;
930}
931
932
933/*
934 * save_config - Implements ntpq -c "saveconfig <filename>"
935 *		 Writes current configuration including any runtime
936 *		 changes by ntpq's :config or config-from-file
937 *
938 * Note: There should be no buffer overflow or truncation in the
939 * processing of file names -- both cause security problems. This is bit
940 * painful to code but essential here.
941 */
942void
943save_config(
944	struct recvbuf *rbufp,
945	int restrict_mask
946	)
947{
948	/* block directory traversal by searching for characters that
949	 * indicate directory components in a file path.
950	 *
951	 * Conceptually we should be searching for DIRSEP in filename,
952	 * however Windows actually recognizes both forward and
953	 * backslashes as equivalent directory separators at the API
954	 * level.  On POSIX systems we could allow '\\' but such
955	 * filenames are tricky to manipulate from a shell, so just
956	 * reject both types of slashes on all platforms.
957	 */
958	/* TALOS-CAN-0062: block directory traversal for VMS, too */
959	static const char * illegal_in_filename =
960#if defined(VMS)
961	    ":[]"	/* do not allow drive and path components here */
962#elif defined(SYS_WINNT)
963	    ":\\/"	/* path and drive separators */
964#else
965	    "\\/"	/* separator and critical char for POSIX */
966#endif
967	    ;
968	char reply[128];
969#ifdef SAVECONFIG
970	static const char savedconfig_eq[] = "savedconfig=";
971
972	/* Build a safe open mode from the available mode flags. We want
973	 * to create a new file and write it in text mode (when
974	 * applicable -- only Windows does this...)
975	 */
976	static const int openmode = O_CREAT | O_TRUNC | O_WRONLY
977#  if defined(O_EXCL)		/* posix, vms */
978	    | O_EXCL
979#  elif defined(_O_EXCL)	/* windows is alway very special... */
980	    | _O_EXCL
981#  endif
982#  if defined(_O_TEXT)		/* windows, again */
983	    | _O_TEXT
984#endif
985	    ;
986
987	char filespec[128];
988	char filename[128];
989	char fullpath[512];
990	char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)];
991	time_t now;
992	int fd;
993	FILE *fptr;
994	int prc;
995	size_t reqlen;
996#endif
997
998	if (RES_NOMODIFY & restrict_mask) {
999		ctl_printf("%s", "saveconfig prohibited by restrict ... nomodify");
1000		ctl_flushpkt(0);
1001		NLOG(NLOG_SYSINFO)
1002			msyslog(LOG_NOTICE,
1003				"saveconfig from %s rejected due to nomodify restriction",
1004				stoa(&rbufp->recv_srcadr));
1005		sys_restricted++;
1006		return;
1007	}
1008
1009#ifdef SAVECONFIG
1010	if (NULL == saveconfigdir) {
1011		ctl_printf("%s", "saveconfig prohibited, no saveconfigdir configured");
1012		ctl_flushpkt(0);
1013		NLOG(NLOG_SYSINFO)
1014			msyslog(LOG_NOTICE,
1015				"saveconfig from %s rejected, no saveconfigdir",
1016				stoa(&rbufp->recv_srcadr));
1017		return;
1018	}
1019
1020	/* The length checking stuff gets serious. Do not assume a NUL
1021	 * byte can be found, but if so, use it to calculate the needed
1022	 * buffer size. If the available buffer is too short, bail out;
1023	 * likewise if there is no file spec. (The latter will not
1024	 * happen when using NTPQ, but there are other ways to craft a
1025	 * network packet!)
1026	 */
1027	reqlen = (size_t)(reqend - reqpt);
1028	if (0 != reqlen) {
1029		char * nulpos = (char*)memchr(reqpt, 0, reqlen);
1030		if (NULL != nulpos)
1031			reqlen = (size_t)(nulpos - reqpt);
1032	}
1033	if (0 == reqlen)
1034		return;
1035	if (reqlen >= sizeof(filespec)) {
1036		ctl_printf("saveconfig exceeded maximum raw name length (%u)",
1037			   (u_int)sizeof(filespec));
1038		ctl_flushpkt(0);
1039		msyslog(LOG_NOTICE,
1040			"saveconfig exceeded maximum raw name length from %s",
1041			stoa(&rbufp->recv_srcadr));
1042		return;
1043	}
1044
1045	/* copy data directly as we exactly know the size */
1046	memcpy(filespec, reqpt, reqlen);
1047	filespec[reqlen] = '\0';
1048
1049	/*
1050	 * allow timestamping of the saved config filename with
1051	 * strftime() format such as:
1052	 *   ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf"
1053	 * XXX: Nice feature, but not too safe.
1054	 * YYY: The check for permitted characters in file names should
1055	 *      weed out the worst. Let's hope 'strftime()' does not
1056	 *      develop pathological problems.
1057	 */
1058	time(&now);
1059	if (0 == strftime(filename, sizeof(filename), filespec,
1060			  localtime(&now)))
1061	{
1062		/*
1063		 * If we arrive here, 'strftime()' balked; most likely
1064		 * the buffer was too short. (Or it encounterd an empty
1065		 * format, or just a format that expands to an empty
1066		 * string.) We try to use the original name, though this
1067		 * is very likely to fail later if there are format
1068		 * specs in the string. Note that truncation cannot
1069		 * happen here as long as both buffers have the same
1070		 * size!
1071		 */
1072		strlcpy(filename, filespec, sizeof(filename));
1073	}
1074
1075	/*
1076	 * Check the file name for sanity. This might/will rule out file
1077	 * names that would be legal but problematic, and it blocks
1078	 * directory traversal.
1079	 */
1080	if (!is_safe_filename(filename)) {
1081		ctl_printf("saveconfig rejects unsafe file name '%s'",
1082			   filename);
1083		ctl_flushpkt(0);
1084		msyslog(LOG_NOTICE,
1085			"saveconfig rejects unsafe file name from %s",
1086			stoa(&rbufp->recv_srcadr));
1087		return;
1088	}
1089
1090	/*
1091	 * XXX: This next test may not be needed with is_safe_filename()
1092	 */
1093
1094	/* block directory/drive traversal */
1095	/* TALOS-CAN-0062: block directory traversal for VMS, too */
1096	if (NULL != strpbrk(filename, illegal_in_filename)) {
1097		snprintf(reply, sizeof(reply),
1098			 "saveconfig does not allow directory in filename");
1099		ctl_putdata(reply, strlen(reply), 0);
1100		ctl_flushpkt(0);
1101		msyslog(LOG_NOTICE,
1102			"saveconfig rejects unsafe file name from %s",
1103			stoa(&rbufp->recv_srcadr));
1104		return;
1105	}
1106
1107	/* concatenation of directory and path can cause another
1108	 * truncation...
1109	 */
1110	prc = snprintf(fullpath, sizeof(fullpath), "%s%s",
1111		       saveconfigdir, filename);
1112	if (prc < 0 || (size_t)prc >= sizeof(fullpath)) {
1113		ctl_printf("saveconfig exceeded maximum path length (%u)",
1114			   (u_int)sizeof(fullpath));
1115		ctl_flushpkt(0);
1116		msyslog(LOG_NOTICE,
1117			"saveconfig exceeded maximum path length from %s",
1118			stoa(&rbufp->recv_srcadr));
1119		return;
1120	}
1121
1122	fd = open(fullpath, openmode, S_IRUSR | S_IWUSR);
1123	if (-1 == fd)
1124		fptr = NULL;
1125	else
1126		fptr = fdopen(fd, "w");
1127
1128	if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) {
1129		ctl_printf("Unable to save configuration to file '%s': %s",
1130			   filename, strerror(errno));
1131		msyslog(LOG_ERR,
1132			"saveconfig %s from %s failed", filename,
1133			stoa(&rbufp->recv_srcadr));
1134	} else {
1135		ctl_printf("Configuration saved to '%s'", filename);
1136		msyslog(LOG_NOTICE,
1137			"Configuration saved to '%s' (requested by %s)",
1138			fullpath, stoa(&rbufp->recv_srcadr));
1139		/*
1140		 * save the output filename in system variable
1141		 * savedconfig, retrieved with:
1142		 *   ntpq -c "rv 0 savedconfig"
1143		 * Note: the way 'savedconfig' is defined makes overflow
1144		 * checks unnecessary here.
1145		 */
1146		snprintf(savedconfig, sizeof(savedconfig), "%s%s",
1147			 savedconfig_eq, filename);
1148		set_sys_var(savedconfig, strlen(savedconfig) + 1, RO);
1149	}
1150
1151	if (NULL != fptr)
1152		fclose(fptr);
1153#else	/* !SAVECONFIG follows */
1154	ctl_printf("%s",
1155		   "saveconfig unavailable, configured with --disable-saveconfig");
1156#endif
1157	ctl_flushpkt(0);
1158}
1159
1160
1161/*
1162 * process_control - process an incoming control message
1163 */
1164void
1165process_control(
1166	struct recvbuf *rbufp,
1167	int restrict_mask
1168	)
1169{
1170	struct ntp_control *pkt;
1171	int req_count;
1172	int req_data;
1173	const struct ctl_proc *cc;
1174	keyid_t *pkid;
1175	int properlen;
1176	size_t maclen;
1177
1178	DPRINTF(3, ("in process_control()\n"));
1179
1180	/*
1181	 * Save the addresses for error responses
1182	 */
1183	numctlreq++;
1184	rmt_addr = &rbufp->recv_srcadr;
1185	lcl_inter = rbufp->dstadr;
1186	pkt = (struct ntp_control *)&rbufp->recv_pkt;
1187
1188	/*
1189	 * If the length is less than required for the header,
1190	 * ignore it.
1191	 */
1192	if (rbufp->recv_length < (int)CTL_HEADER_LEN) {
1193		DPRINTF(1, ("Short control packet\n"));
1194		numctltooshort++;
1195		return;
1196	}
1197
1198	/*
1199	 * If this packet is a response or a fragment, ignore it.
1200	 */
1201	if (   (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op
1202	    || pkt->offset != 0) {
1203		DPRINTF(1, ("invalid format in control packet\n"));
1204		if (CTL_RESPONSE & pkt->r_m_e_op)
1205			numctlinputresp++;
1206		if (CTL_MORE & pkt->r_m_e_op)
1207			numctlinputfrag++;
1208		if (CTL_ERROR & pkt->r_m_e_op)
1209			numctlinputerr++;
1210		if (pkt->offset != 0)
1211			numctlbadoffset++;
1212		return;
1213	}
1214
1215	res_version = PKT_VERSION(pkt->li_vn_mode);
1216	if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) {
1217		DPRINTF(1, ("unknown version %d in control packet\n",
1218			    res_version));
1219		numctlbadversion++;
1220		return;
1221	}
1222
1223	/*
1224	 * Pull enough data from the packet to make intelligent
1225	 * responses
1226	 */
1227	rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version,
1228					 MODE_CONTROL);
1229	res_opcode = pkt->r_m_e_op;
1230	rpkt.sequence = pkt->sequence;
1231	rpkt.associd = pkt->associd;
1232	rpkt.status = 0;
1233	res_frags = 1;
1234	res_offset = 0;
1235	res_associd = htons(pkt->associd);
1236	res_async = FALSE;
1237	res_authenticate = FALSE;
1238	res_keyid = 0;
1239	res_authokay = FALSE;
1240	req_count = (int)ntohs(pkt->count);
1241	datanotbinflag = FALSE;
1242	datalinelen = 0;
1243	datasent = 0;
1244	datapt = rpkt.u.data;
1245	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
1246
1247	if ((rbufp->recv_length & 0x3) != 0)
1248		DPRINTF(3, ("Control packet length %d unrounded\n",
1249			    rbufp->recv_length));
1250
1251	/*
1252	 * We're set up now. Make sure we've got at least enough
1253	 * incoming data space to match the count.
1254	 */
1255	req_data = rbufp->recv_length - CTL_HEADER_LEN;
1256	if (req_data < req_count || rbufp->recv_length & 0x3) {
1257		ctl_error(CERR_BADFMT);
1258		numctldatatooshort++;
1259		return;
1260	}
1261
1262	properlen = req_count + CTL_HEADER_LEN;
1263	/* round up proper len to a 8 octet boundary */
1264
1265	properlen = (properlen + 7) & ~7;
1266	maclen = rbufp->recv_length - properlen;
1267	if ((rbufp->recv_length & 3) == 0 &&
1268	    maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN &&
1269	    sys_authenticate) {
1270		res_authenticate = TRUE;
1271		pkid = (void *)((char *)pkt + properlen);
1272		res_keyid = ntohl(*pkid);
1273		DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n",
1274			    rbufp->recv_length, properlen, res_keyid,
1275			    maclen));
1276
1277		if (!authistrustedip(res_keyid, &rbufp->recv_srcadr))
1278			DPRINTF(3, ("invalid keyid %08x\n", res_keyid));
1279		else if (authdecrypt(res_keyid, (u_int32 *)pkt,
1280				     rbufp->recv_length - maclen,
1281				     maclen)) {
1282			res_authokay = TRUE;
1283			DPRINTF(3, ("authenticated okay\n"));
1284		} else {
1285			res_keyid = 0;
1286			DPRINTF(3, ("authentication failed\n"));
1287		}
1288	}
1289
1290	/*
1291	 * Set up translate pointers
1292	 */
1293	reqpt = (char *)pkt->u.data;
1294	reqend = reqpt + req_count;
1295
1296	/*
1297	 * Look for the opcode processor
1298	 */
1299	for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) {
1300		if (cc->control_code == res_opcode) {
1301			DPRINTF(3, ("opcode %d, found command handler\n",
1302				    res_opcode));
1303			if (cc->flags == AUTH
1304			    && (!res_authokay
1305				|| res_keyid != ctl_auth_keyid)) {
1306				ctl_error(CERR_PERMISSION);
1307				return;
1308			}
1309			(cc->handler)(rbufp, restrict_mask);
1310			return;
1311		}
1312	}
1313
1314	/*
1315	 * Can't find this one, return an error.
1316	 */
1317	numctlbadop++;
1318	ctl_error(CERR_BADOP);
1319	return;
1320}
1321
1322
1323/*
1324 * ctlpeerstatus - return a status word for this peer
1325 */
1326u_short
1327ctlpeerstatus(
1328	register struct peer *p
1329	)
1330{
1331	u_short status;
1332
1333	status = p->status;
1334	if (FLAG_CONFIG & p->flags)
1335		status |= CTL_PST_CONFIG;
1336	if (p->keyid)
1337		status |= CTL_PST_AUTHENABLE;
1338	if (FLAG_AUTHENTIC & p->flags)
1339		status |= CTL_PST_AUTHENTIC;
1340	if (p->reach)
1341		status |= CTL_PST_REACH;
1342	if (MDF_TXONLY_MASK & p->cast_flags)
1343		status |= CTL_PST_BCAST;
1344
1345	return CTL_PEER_STATUS(status, p->num_events, p->last_event);
1346}
1347
1348
1349/*
1350 * ctlclkstatus - return a status word for this clock
1351 */
1352#ifdef REFCLOCK
1353static u_short
1354ctlclkstatus(
1355	struct refclockstat *pcs
1356	)
1357{
1358	return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus);
1359}
1360#endif
1361
1362
1363/*
1364 * ctlsysstatus - return the system status word
1365 */
1366u_short
1367ctlsysstatus(void)
1368{
1369	register u_char this_clock;
1370
1371	this_clock = CTL_SST_TS_UNSPEC;
1372#ifdef REFCLOCK
1373	if (sys_peer != NULL) {
1374		if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype)
1375			this_clock = sys_peer->sstclktype;
1376		else if (sys_peer->refclktype < COUNTOF(clocktypes))
1377			this_clock = clocktypes[sys_peer->refclktype];
1378	}
1379#else /* REFCLOCK */
1380	if (sys_peer != 0)
1381		this_clock = CTL_SST_TS_NTP;
1382#endif /* REFCLOCK */
1383	return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events,
1384			      ctl_sys_last_event);
1385}
1386
1387
1388/*
1389 * ctl_flushpkt - write out the current packet and prepare
1390 *		  another if necessary.
1391 */
1392static void
1393ctl_flushpkt(
1394	u_char more
1395	)
1396{
1397	size_t i;
1398	size_t dlen;
1399	size_t sendlen;
1400	size_t maclen;
1401	size_t totlen;
1402	keyid_t keyid;
1403
1404	dlen = datapt - rpkt.u.data;
1405	if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) {
1406		/*
1407		 * Big hack, output a trailing \r\n
1408		 */
1409		*datapt++ = '\r';
1410		*datapt++ = '\n';
1411		dlen += 2;
1412	}
1413	sendlen = dlen + CTL_HEADER_LEN;
1414
1415	/*
1416	 * Pad to a multiple of 32 bits
1417	 */
1418	while (sendlen & 0x3) {
1419		*datapt++ = '\0';
1420		sendlen++;
1421	}
1422
1423	/*
1424	 * Fill in the packet with the current info
1425	 */
1426	rpkt.r_m_e_op = CTL_RESPONSE | more |
1427			(res_opcode & CTL_OP_MASK);
1428	rpkt.count = htons((u_short)dlen);
1429	rpkt.offset = htons((u_short)res_offset);
1430	if (res_async) {
1431		for (i = 0; i < COUNTOF(ctl_traps); i++) {
1432			if (TRAP_INUSE & ctl_traps[i].tr_flags) {
1433				rpkt.li_vn_mode =
1434				    PKT_LI_VN_MODE(
1435					sys_leap,
1436					ctl_traps[i].tr_version,
1437					MODE_CONTROL);
1438				rpkt.sequence =
1439				    htons(ctl_traps[i].tr_sequence);
1440				sendpkt(&ctl_traps[i].tr_addr,
1441					ctl_traps[i].tr_localaddr, -4,
1442					(struct pkt *)&rpkt, sendlen);
1443				if (!more)
1444					ctl_traps[i].tr_sequence++;
1445				numasyncmsgs++;
1446			}
1447		}
1448	} else {
1449		if (res_authenticate && sys_authenticate) {
1450			totlen = sendlen;
1451			/*
1452			 * If we are going to authenticate, then there
1453			 * is an additional requirement that the MAC
1454			 * begin on a 64 bit boundary.
1455			 */
1456			while (totlen & 7) {
1457				*datapt++ = '\0';
1458				totlen++;
1459			}
1460			keyid = htonl(res_keyid);
1461			memcpy(datapt, &keyid, sizeof(keyid));
1462			maclen = authencrypt(res_keyid,
1463					     (u_int32 *)&rpkt, totlen);
1464			sendpkt(rmt_addr, lcl_inter, -5,
1465				(struct pkt *)&rpkt, totlen + maclen);
1466		} else {
1467			sendpkt(rmt_addr, lcl_inter, -6,
1468				(struct pkt *)&rpkt, sendlen);
1469		}
1470		if (more)
1471			numctlfrags++;
1472		else
1473			numctlresponses++;
1474	}
1475
1476	/*
1477	 * Set us up for another go around.
1478	 */
1479	res_frags++;
1480	res_offset += dlen;
1481	datapt = rpkt.u.data;
1482}
1483
1484
1485/* --------------------------------------------------------------------
1486 * block transfer API -- stream string/data fragments into xmit buffer
1487 * without additional copying
1488 */
1489
1490/* buffer descriptor: address & size of fragment
1491 * 'buf' may only be NULL when 'len' is zero!
1492 */
1493typedef struct {
1494	const void  *buf;
1495	size_t       len;
1496} CtlMemBufT;
1497
1498/* put ctl data in a gather-style operation */
1499static void
1500ctl_putdata_ex(
1501	const CtlMemBufT * argv,
1502	size_t             argc,
1503	int/*BOOL*/        bin		/* set to 1 when data is binary */
1504	)
1505{
1506	const char * src_ptr;
1507	size_t       src_len, cur_len, add_len, argi;
1508
1509	/* text / binary preprocessing, possibly create new linefeed */
1510	if (bin) {
1511		add_len = 0;
1512	} else {
1513		datanotbinflag = TRUE;
1514		add_len = 3;
1515
1516		if (datasent) {
1517			*datapt++ = ',';
1518			datalinelen++;
1519
1520			/* sum up total length */
1521			for (argi = 0, src_len = 0; argi < argc; ++argi)
1522				src_len += argv[argi].len;
1523			/* possibly start a new line, assume no size_t overflow */
1524			if ((src_len + datalinelen + 1) >= MAXDATALINELEN) {
1525				*datapt++ = '\r';
1526				*datapt++ = '\n';
1527				datalinelen = 0;
1528			} else {
1529				*datapt++ = ' ';
1530				datalinelen++;
1531			}
1532		}
1533	}
1534
1535	/* now stream out all buffers */
1536	for (argi = 0; argi < argc; ++argi) {
1537		src_ptr = argv[argi].buf;
1538		src_len = argv[argi].len;
1539
1540		if ( ! (src_ptr && src_len))
1541			continue;
1542
1543		cur_len = (size_t)(dataend - datapt);
1544		while ((src_len + add_len) > cur_len) {
1545			/* Not enough room in this one, flush it out. */
1546			if (src_len < cur_len)
1547				cur_len = src_len;
1548
1549			memcpy(datapt, src_ptr, cur_len);
1550			datapt      += cur_len;
1551			datalinelen += cur_len;
1552
1553			src_ptr     += cur_len;
1554			src_len     -= cur_len;
1555
1556			ctl_flushpkt(CTL_MORE);
1557			cur_len = (size_t)(dataend - datapt);
1558		}
1559
1560		memcpy(datapt, src_ptr, src_len);
1561		datapt      += src_len;
1562		datalinelen += src_len;
1563
1564		datasent = TRUE;
1565	}
1566}
1567
1568/*
1569 * ctl_putdata - write data into the packet, fragmenting and starting
1570 * another if this one is full.
1571 */
1572static void
1573ctl_putdata(
1574	const char *dp,
1575	unsigned int dlen,
1576	int bin			/* set to 1 when data is binary */
1577	)
1578{
1579	CtlMemBufT args[1];
1580
1581	args[0].buf = dp;
1582	args[0].len = dlen;
1583	ctl_putdata_ex(args, 1, bin);
1584}
1585
1586/*
1587 * ctl_putstr - write a tagged string into the response packet
1588 *		in the form:
1589 *
1590 *		tag="data"
1591 *
1592 *		len is the data length excluding the NUL terminator,
1593 *		as in ctl_putstr("var", "value", strlen("value"));
1594 */
1595static void
1596ctl_putstr(
1597	const char *	tag,
1598	const char *	data,
1599	size_t		len
1600	)
1601{
1602	CtlMemBufT args[4];
1603
1604	args[0].buf = tag;
1605	args[0].len = strlen(tag);
1606	if (data && len) {
1607	    args[1].buf = "=\"";
1608	    args[1].len = 2;
1609	    args[2].buf = data;
1610	    args[2].len = len;
1611	    args[3].buf = "\"";
1612	    args[3].len = 1;
1613	    ctl_putdata_ex(args, 4, FALSE);
1614	} else {
1615	    args[1].buf = "=\"\"";
1616	    args[1].len = 3;
1617	    ctl_putdata_ex(args, 2, FALSE);
1618	}
1619}
1620
1621
1622/*
1623 * ctl_putunqstr - write a tagged string into the response packet
1624 *		   in the form:
1625 *
1626 *		   tag=data
1627 *
1628 *	len is the data length excluding the NUL terminator.
1629 *	data must not contain a comma or whitespace.
1630 */
1631static void
1632ctl_putunqstr(
1633	const char *	tag,
1634	const char *	data,
1635	size_t		len
1636	)
1637{
1638	CtlMemBufT args[3];
1639
1640	args[0].buf = tag;
1641	args[0].len = strlen(tag);
1642	args[1].buf = "=";
1643	args[1].len = 1;
1644	if (data && len) {
1645		args[2].buf = data;
1646		args[2].len = len;
1647		ctl_putdata_ex(args, 3, FALSE);
1648	} else {
1649		ctl_putdata_ex(args, 2, FALSE);
1650	}
1651}
1652
1653
1654/*
1655 * ctl_putdblf - write a tagged, signed double into the response packet
1656 */
1657static void
1658ctl_putdblf(
1659	const char *	tag,
1660	int		use_f,
1661	int		precision,
1662	double		d
1663	)
1664{
1665	char buffer[40];
1666	int  rc;
1667
1668	rc = snprintf(buffer, sizeof(buffer),
1669		      (use_f ? "%.*f" : "%.*g"),
1670		      precision, d);
1671	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1672	ctl_putunqstr(tag, buffer, rc);
1673}
1674
1675/*
1676 * ctl_putuint - write a tagged unsigned integer into the response
1677 */
1678static void
1679ctl_putuint(
1680	const char *tag,
1681	u_long uval
1682	)
1683{
1684	char buffer[24]; /* needs to fit for 64 bits! */
1685	int  rc;
1686
1687	rc = snprintf(buffer, sizeof(buffer), "%lu", uval);
1688	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1689	ctl_putunqstr(tag, buffer, rc);
1690}
1691
1692/*
1693 * ctl_putcal - write a decoded calendar data into the response.
1694 * only used with AUTOKEY currently, so compiled conditional
1695 */
1696#ifdef AUTOKEY
1697static void
1698ctl_putcal(
1699	const char *tag,
1700	const struct calendar *pcal
1701	)
1702{
1703	char buffer[16];
1704	int  rc;
1705
1706	rc = snprintf(buffer, sizeof(buffer),
1707		      "%04d%02d%02d%02d%02d",
1708		      pcal->year, pcal->month, pcal->monthday,
1709		      pcal->hour, pcal->minute
1710		);
1711	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1712	ctl_putunqstr(tag, buffer, rc);
1713}
1714#endif
1715
1716/*
1717 * ctl_putfs - write a decoded filestamp into the response
1718 */
1719static void
1720ctl_putfs(
1721	const char *tag,
1722	tstamp_t uval
1723	)
1724{
1725	char buffer[16];
1726	int  rc;
1727
1728	time_t fstamp = (time_t)uval - JAN_1970;
1729	struct tm *tm = gmtime(&fstamp);
1730
1731	if (NULL == tm)
1732		return;
1733
1734	rc = snprintf(buffer, sizeof(buffer),
1735		      "%04d%02d%02d%02d%02d",
1736		      tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
1737		      tm->tm_hour, tm->tm_min);
1738	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1739	ctl_putunqstr(tag, buffer, rc);
1740}
1741
1742
1743/*
1744 * ctl_puthex - write a tagged unsigned integer, in hex, into the
1745 * response
1746 */
1747static void
1748ctl_puthex(
1749	const char *tag,
1750	u_long uval
1751	)
1752{
1753	char buffer[24];	/* must fit 64bit int! */
1754	int  rc;
1755
1756	rc = snprintf(buffer, sizeof(buffer), "0x%lx", uval);
1757	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1758	ctl_putunqstr(tag, buffer, rc);
1759}
1760
1761
1762/*
1763 * ctl_putint - write a tagged signed integer into the response
1764 */
1765static void
1766ctl_putint(
1767	const char *tag,
1768	long ival
1769	)
1770{
1771	char buffer[24];	/*must fit 64bit int */
1772	int  rc;
1773
1774	rc = snprintf(buffer, sizeof(buffer), "%ld", ival);
1775	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1776	ctl_putunqstr(tag, buffer, rc);
1777}
1778
1779
1780/*
1781 * ctl_putts - write a tagged timestamp, in hex, into the response
1782 */
1783static void
1784ctl_putts(
1785	const char *tag,
1786	l_fp *ts
1787	)
1788{
1789	char buffer[24];
1790	int  rc;
1791
1792	rc = snprintf(buffer, sizeof(buffer),
1793		      "0x%08lx.%08lx",
1794		      (u_long)ts->l_ui, (u_long)ts->l_uf);
1795	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1796	ctl_putunqstr(tag, buffer, rc);
1797}
1798
1799
1800/*
1801 * ctl_putadr - write an IP address into the response
1802 */
1803static void
1804ctl_putadr(
1805	const char *tag,
1806	u_int32 addr32,
1807	sockaddr_u *addr
1808	)
1809{
1810	const char *cq;
1811
1812	if (NULL == addr)
1813		cq = numtoa(addr32);
1814	else
1815		cq = stoa(addr);
1816	ctl_putunqstr(tag, cq, strlen(cq));
1817}
1818
1819
1820/*
1821 * ctl_putrefid - send a u_int32 refid as printable text
1822 */
1823static void
1824ctl_putrefid(
1825	const char *	tag,
1826	u_int32		refid
1827	)
1828{
1829	size_t nc;
1830
1831	union {
1832		uint32_t w;
1833		uint8_t  b[sizeof(uint32_t)];
1834	} bytes;
1835
1836	bytes.w = refid;
1837	for (nc = 0; nc < sizeof(bytes.b) && bytes.b[nc]; ++nc)
1838		if (  !isprint(bytes.b[nc])
1839		    || isspace(bytes.b[nc])
1840		    || bytes.b[nc] == ','  )
1841			bytes.b[nc] = '.';
1842	ctl_putunqstr(tag, (const char*)bytes.b, nc);
1843}
1844
1845
1846/*
1847 * ctl_putarray - write a tagged eight element double array into the response
1848 */
1849static void
1850ctl_putarray(
1851	const char *tag,
1852	double *arr,
1853	int start
1854	)
1855{
1856	char *cp, *ep;
1857	char buffer[200];
1858	int  i, rc;
1859
1860	cp = buffer;
1861	ep = buffer + sizeof(buffer);
1862	i  = start;
1863	do {
1864		if (i == 0)
1865			i = NTP_SHIFT;
1866		i--;
1867		rc = snprintf(cp, (size_t)(ep - cp), " %.2f", arr[i] * 1e3);
1868		INSIST(rc >= 0 && (size_t)rc < (size_t)(ep - cp));
1869		cp += rc;
1870	} while (i != start);
1871	ctl_putunqstr(tag, buffer, (size_t)(cp - buffer));
1872}
1873
1874/*
1875 * ctl_printf - put a formatted string into the data buffer
1876 */
1877static void
1878ctl_printf(
1879	const char * fmt,
1880	...
1881	)
1882{
1883	static const char * ellipsis = "[...]";
1884	va_list va;
1885	char    fmtbuf[128];
1886	int     rc;
1887
1888	va_start(va, fmt);
1889	rc = vsnprintf(fmtbuf, sizeof(fmtbuf), fmt, va);
1890	va_end(va);
1891	if (rc < 0 || (size_t)rc >= sizeof(fmtbuf))
1892		strcpy(fmtbuf + sizeof(fmtbuf) - strlen(ellipsis) - 1,
1893		       ellipsis);
1894	ctl_putdata(fmtbuf, strlen(fmtbuf), 0);
1895}
1896
1897
1898/*
1899 * ctl_putsys - output a system variable
1900 */
1901static void
1902ctl_putsys(
1903	int varid
1904	)
1905{
1906	l_fp tmp;
1907	char str[256];
1908	u_int u;
1909	double kb;
1910	double dtemp;
1911	const char *ss;
1912#ifdef AUTOKEY
1913	struct cert_info *cp;
1914#endif	/* AUTOKEY */
1915#ifdef KERNEL_PLL
1916	static struct timex ntx;
1917	static u_long ntp_adjtime_time;
1918
1919	/*
1920	 * CS_K_* variables depend on up-to-date output of ntp_adjtime()
1921	 */
1922	if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST &&
1923	    current_time != ntp_adjtime_time) {
1924		ZERO(ntx);
1925		if (ntp_adjtime(&ntx) < 0)
1926			msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m");
1927		else
1928			ntp_adjtime_time = current_time;
1929	}
1930#endif	/* KERNEL_PLL */
1931
1932	switch (varid) {
1933
1934	case CS_LEAP:
1935		ctl_putuint(sys_var[CS_LEAP].text, sys_leap);
1936		break;
1937
1938	case CS_STRATUM:
1939		ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum);
1940		break;
1941
1942	case CS_PRECISION:
1943		ctl_putint(sys_var[CS_PRECISION].text, sys_precision);
1944		break;
1945
1946	case CS_ROOTDELAY:
1947		ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay *
1948			   1e3);
1949		break;
1950
1951	case CS_ROOTDISPERSION:
1952		ctl_putdbl(sys_var[CS_ROOTDISPERSION].text,
1953			   sys_rootdisp * 1e3);
1954		break;
1955
1956	case CS_REFID:
1957		if (REFID_ISTEXT(sys_stratum))
1958			ctl_putrefid(sys_var[varid].text, sys_refid);
1959		else
1960			ctl_putadr(sys_var[varid].text, sys_refid, NULL);
1961		break;
1962
1963	case CS_REFTIME:
1964		ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime);
1965		break;
1966
1967	case CS_POLL:
1968		ctl_putuint(sys_var[CS_POLL].text, sys_poll);
1969		break;
1970
1971	case CS_PEERID:
1972		if (sys_peer == NULL)
1973			ctl_putuint(sys_var[CS_PEERID].text, 0);
1974		else
1975			ctl_putuint(sys_var[CS_PEERID].text,
1976				    sys_peer->associd);
1977		break;
1978
1979	case CS_PEERADR:
1980		if (sys_peer != NULL && sys_peer->dstadr != NULL)
1981			ss = sptoa(&sys_peer->srcadr);
1982		else
1983			ss = "0.0.0.0:0";
1984		ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss));
1985		break;
1986
1987	case CS_PEERMODE:
1988		u = (sys_peer != NULL)
1989			? sys_peer->hmode
1990			: MODE_UNSPEC;
1991		ctl_putuint(sys_var[CS_PEERMODE].text, u);
1992		break;
1993
1994	case CS_OFFSET:
1995		ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3);
1996		break;
1997
1998	case CS_DRIFT:
1999		ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6);
2000		break;
2001
2002	case CS_JITTER:
2003		ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3);
2004		break;
2005
2006	case CS_ERROR:
2007		ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3);
2008		break;
2009
2010	case CS_CLOCK:
2011		get_systime(&tmp);
2012		ctl_putts(sys_var[CS_CLOCK].text, &tmp);
2013		break;
2014
2015	case CS_PROCESSOR:
2016#ifndef HAVE_UNAME
2017		ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor,
2018			   sizeof(str_processor) - 1);
2019#else
2020		ctl_putstr(sys_var[CS_PROCESSOR].text,
2021			   utsnamebuf.machine, strlen(utsnamebuf.machine));
2022#endif /* HAVE_UNAME */
2023		break;
2024
2025	case CS_SYSTEM:
2026#ifndef HAVE_UNAME
2027		ctl_putstr(sys_var[CS_SYSTEM].text, str_system,
2028			   sizeof(str_system) - 1);
2029#else
2030		snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname,
2031			 utsnamebuf.release);
2032		ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str));
2033#endif /* HAVE_UNAME */
2034		break;
2035
2036	case CS_VERSION:
2037		ctl_putstr(sys_var[CS_VERSION].text, Version,
2038			   strlen(Version));
2039		break;
2040
2041	case CS_STABIL:
2042		ctl_putdbl(sys_var[CS_STABIL].text, clock_stability *
2043			   1e6);
2044		break;
2045
2046	case CS_VARLIST:
2047	{
2048		char buf[CTL_MAX_DATA_LEN];
2049		//buffPointer, firstElementPointer, buffEndPointer
2050		char *buffp, *buffend;
2051		int firstVarName;
2052		const char *ss1;
2053		int len;
2054		const struct ctl_var *k;
2055
2056		buffp = buf;
2057		buffend = buf + sizeof(buf);
2058		if (strlen(sys_var[CS_VARLIST].text) > (sizeof(buf) - 4))
2059			break;	/* really long var name */
2060
2061		snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text);
2062		buffp += strlen(buffp);
2063		firstVarName = TRUE;
2064		for (k = sys_var; !(k->flags & EOV); k++) {
2065			if (k->flags & PADDING)
2066				continue;
2067			len = strlen(k->text);
2068			if (len + 1 >= buffend - buffp)
2069				break;
2070			if (!firstVarName)
2071				*buffp++ = ',';
2072			else
2073				firstVarName = FALSE;
2074			memcpy(buffp, k->text, len);
2075			buffp += len;
2076		}
2077
2078		for (k = ext_sys_var; k && !(k->flags & EOV); k++) {
2079			if (k->flags & PADDING)
2080				continue;
2081			if (NULL == k->text)
2082				continue;
2083			ss1 = strchr(k->text, '=');
2084			if (NULL == ss1)
2085				len = strlen(k->text);
2086			else
2087				len = ss1 - k->text;
2088			if (len + 1 >= buffend - buffp)
2089				break;
2090			if (firstVarName) {
2091				*buffp++ = ',';
2092				firstVarName = FALSE;
2093			}
2094			memcpy(buffp, k->text,(unsigned)len);
2095			buffp += len;
2096		}
2097		if (2 >= buffend - buffp)
2098			break;
2099
2100		*buffp++ = '"';
2101		*buffp = '\0';
2102
2103		ctl_putdata(buf, (unsigned)( buffp - buf ), 0);
2104		break;
2105	}
2106
2107	case CS_TAI:
2108		if (sys_tai > 0)
2109			ctl_putuint(sys_var[CS_TAI].text, sys_tai);
2110		break;
2111
2112	case CS_LEAPTAB:
2113	{
2114		leap_signature_t lsig;
2115		leapsec_getsig(&lsig);
2116		if (lsig.ttime > 0)
2117			ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime);
2118		break;
2119	}
2120
2121	case CS_LEAPEND:
2122	{
2123		leap_signature_t lsig;
2124		leapsec_getsig(&lsig);
2125		if (lsig.etime > 0)
2126			ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime);
2127		break;
2128	}
2129
2130#ifdef LEAP_SMEAR
2131	case CS_LEAPSMEARINTV:
2132		if (leap_smear_intv > 0)
2133			ctl_putuint(sys_var[CS_LEAPSMEARINTV].text, leap_smear_intv);
2134		break;
2135
2136	case CS_LEAPSMEAROFFS:
2137		if (leap_smear_intv > 0)
2138			ctl_putdbl(sys_var[CS_LEAPSMEAROFFS].text,
2139				   leap_smear.doffset * 1e3);
2140		break;
2141#endif	/* LEAP_SMEAR */
2142
2143	case CS_RATE:
2144		ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll);
2145		break;
2146
2147	case CS_MRU_ENABLED:
2148		ctl_puthex(sys_var[varid].text, mon_enabled);
2149		break;
2150
2151	case CS_MRU_DEPTH:
2152		ctl_putuint(sys_var[varid].text, mru_entries);
2153		break;
2154
2155	case CS_MRU_MEM:
2156		kb = mru_entries * (sizeof(mon_entry) / 1024.);
2157		u = (u_int)kb;
2158		if (kb - u >= 0.5)
2159			u++;
2160		ctl_putuint(sys_var[varid].text, u);
2161		break;
2162
2163	case CS_MRU_DEEPEST:
2164		ctl_putuint(sys_var[varid].text, mru_peakentries);
2165		break;
2166
2167	case CS_MRU_MINDEPTH:
2168		ctl_putuint(sys_var[varid].text, mru_mindepth);
2169		break;
2170
2171	case CS_MRU_MAXAGE:
2172		ctl_putint(sys_var[varid].text, mru_maxage);
2173		break;
2174
2175	case CS_MRU_MAXDEPTH:
2176		ctl_putuint(sys_var[varid].text, mru_maxdepth);
2177		break;
2178
2179	case CS_MRU_MAXMEM:
2180		kb = mru_maxdepth * (sizeof(mon_entry) / 1024.);
2181		u = (u_int)kb;
2182		if (kb - u >= 0.5)
2183			u++;
2184		ctl_putuint(sys_var[varid].text, u);
2185		break;
2186
2187	case CS_SS_UPTIME:
2188		ctl_putuint(sys_var[varid].text, current_time);
2189		break;
2190
2191	case CS_SS_RESET:
2192		ctl_putuint(sys_var[varid].text,
2193			    current_time - sys_stattime);
2194		break;
2195
2196	case CS_SS_RECEIVED:
2197		ctl_putuint(sys_var[varid].text, sys_received);
2198		break;
2199
2200	case CS_SS_THISVER:
2201		ctl_putuint(sys_var[varid].text, sys_newversion);
2202		break;
2203
2204	case CS_SS_OLDVER:
2205		ctl_putuint(sys_var[varid].text, sys_oldversion);
2206		break;
2207
2208	case CS_SS_BADFORMAT:
2209		ctl_putuint(sys_var[varid].text, sys_badlength);
2210		break;
2211
2212	case CS_SS_BADAUTH:
2213		ctl_putuint(sys_var[varid].text, sys_badauth);
2214		break;
2215
2216	case CS_SS_DECLINED:
2217		ctl_putuint(sys_var[varid].text, sys_declined);
2218		break;
2219
2220	case CS_SS_RESTRICTED:
2221		ctl_putuint(sys_var[varid].text, sys_restricted);
2222		break;
2223
2224	case CS_SS_LIMITED:
2225		ctl_putuint(sys_var[varid].text, sys_limitrejected);
2226		break;
2227
2228	case CS_SS_LAMPORT:
2229		ctl_putuint(sys_var[varid].text, sys_lamport);
2230		break;
2231
2232	case CS_SS_TSROUNDING:
2233		ctl_putuint(sys_var[varid].text, sys_tsrounding);
2234		break;
2235
2236	case CS_SS_KODSENT:
2237		ctl_putuint(sys_var[varid].text, sys_kodsent);
2238		break;
2239
2240	case CS_SS_PROCESSED:
2241		ctl_putuint(sys_var[varid].text, sys_processed);
2242		break;
2243
2244	case CS_BCASTDELAY:
2245		ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3);
2246		break;
2247
2248	case CS_AUTHDELAY:
2249		LFPTOD(&sys_authdelay, dtemp);
2250		ctl_putdbl(sys_var[varid].text, dtemp * 1e3);
2251		break;
2252
2253	case CS_AUTHKEYS:
2254		ctl_putuint(sys_var[varid].text, authnumkeys);
2255		break;
2256
2257	case CS_AUTHFREEK:
2258		ctl_putuint(sys_var[varid].text, authnumfreekeys);
2259		break;
2260
2261	case CS_AUTHKLOOKUPS:
2262		ctl_putuint(sys_var[varid].text, authkeylookups);
2263		break;
2264
2265	case CS_AUTHKNOTFOUND:
2266		ctl_putuint(sys_var[varid].text, authkeynotfound);
2267		break;
2268
2269	case CS_AUTHKUNCACHED:
2270		ctl_putuint(sys_var[varid].text, authkeyuncached);
2271		break;
2272
2273	case CS_AUTHKEXPIRED:
2274		ctl_putuint(sys_var[varid].text, authkeyexpired);
2275		break;
2276
2277	case CS_AUTHENCRYPTS:
2278		ctl_putuint(sys_var[varid].text, authencryptions);
2279		break;
2280
2281	case CS_AUTHDECRYPTS:
2282		ctl_putuint(sys_var[varid].text, authdecryptions);
2283		break;
2284
2285	case CS_AUTHRESET:
2286		ctl_putuint(sys_var[varid].text,
2287			    current_time - auth_timereset);
2288		break;
2289
2290		/*
2291		 * CTL_IF_KERNLOOP() puts a zero if the kernel loop is
2292		 * unavailable, otherwise calls putfunc with args.
2293		 */
2294#ifndef KERNEL_PLL
2295# define	CTL_IF_KERNLOOP(putfunc, args)	\
2296		ctl_putint(sys_var[varid].text, 0)
2297#else
2298# define	CTL_IF_KERNLOOP(putfunc, args)	\
2299		putfunc args
2300#endif
2301
2302		/*
2303		 * CTL_IF_KERNPPS() puts a zero if either the kernel
2304		 * loop is unavailable, or kernel hard PPS is not
2305		 * active, otherwise calls putfunc with args.
2306		 */
2307#ifndef KERNEL_PLL
2308# define	CTL_IF_KERNPPS(putfunc, args)	\
2309		ctl_putint(sys_var[varid].text, 0)
2310#else
2311# define	CTL_IF_KERNPPS(putfunc, args)			\
2312		if (0 == ntx.shift)				\
2313			ctl_putint(sys_var[varid].text, 0);	\
2314		else						\
2315			putfunc args	/* no trailing ; */
2316#endif
2317
2318	case CS_K_OFFSET:
2319		CTL_IF_KERNLOOP(
2320			ctl_putdblf,
2321			(sys_var[varid].text, 0, -1,
2322			 1000 * dbl_from_var_long(ntx.offset, ntx.status))
2323		);
2324		break;
2325
2326	case CS_K_FREQ:
2327		CTL_IF_KERNLOOP(
2328			ctl_putsfp,
2329			(sys_var[varid].text, ntx.freq)
2330		);
2331		break;
2332
2333	case CS_K_MAXERR:
2334		CTL_IF_KERNLOOP(
2335			ctl_putdblf,
2336			(sys_var[varid].text, 0, 6,
2337			 1000 * dbl_from_usec_long(ntx.maxerror))
2338		);
2339		break;
2340
2341	case CS_K_ESTERR:
2342		CTL_IF_KERNLOOP(
2343			ctl_putdblf,
2344			(sys_var[varid].text, 0, 6,
2345			 1000 * dbl_from_usec_long(ntx.esterror))
2346		);
2347		break;
2348
2349	case CS_K_STFLAGS:
2350#ifndef KERNEL_PLL
2351		ss = "";
2352#else
2353		ss = k_st_flags(ntx.status);
2354#endif
2355		ctl_putstr(sys_var[varid].text, ss, strlen(ss));
2356		break;
2357
2358	case CS_K_TIMECONST:
2359		CTL_IF_KERNLOOP(
2360			ctl_putint,
2361			(sys_var[varid].text, ntx.constant)
2362		);
2363		break;
2364
2365	case CS_K_PRECISION:
2366		CTL_IF_KERNLOOP(
2367			ctl_putdblf,
2368			(sys_var[varid].text, 0, 6,
2369			 1000 * dbl_from_var_long(ntx.precision, ntx.status))
2370		);
2371		break;
2372
2373	case CS_K_FREQTOL:
2374		CTL_IF_KERNLOOP(
2375			ctl_putsfp,
2376			(sys_var[varid].text, ntx.tolerance)
2377		);
2378		break;
2379
2380	case CS_K_PPS_FREQ:
2381		CTL_IF_KERNPPS(
2382			ctl_putsfp,
2383			(sys_var[varid].text, ntx.ppsfreq)
2384		);
2385		break;
2386
2387	case CS_K_PPS_STABIL:
2388		CTL_IF_KERNPPS(
2389			ctl_putsfp,
2390			(sys_var[varid].text, ntx.stabil)
2391		);
2392		break;
2393
2394	case CS_K_PPS_JITTER:
2395		CTL_IF_KERNPPS(
2396			ctl_putdbl,
2397			(sys_var[varid].text,
2398			 1000 * dbl_from_var_long(ntx.jitter, ntx.status))
2399		);
2400		break;
2401
2402	case CS_K_PPS_CALIBDUR:
2403		CTL_IF_KERNPPS(
2404			ctl_putint,
2405			(sys_var[varid].text, 1 << ntx.shift)
2406		);
2407		break;
2408
2409	case CS_K_PPS_CALIBS:
2410		CTL_IF_KERNPPS(
2411			ctl_putint,
2412			(sys_var[varid].text, ntx.calcnt)
2413		);
2414		break;
2415
2416	case CS_K_PPS_CALIBERRS:
2417		CTL_IF_KERNPPS(
2418			ctl_putint,
2419			(sys_var[varid].text, ntx.errcnt)
2420		);
2421		break;
2422
2423	case CS_K_PPS_JITEXC:
2424		CTL_IF_KERNPPS(
2425			ctl_putint,
2426			(sys_var[varid].text, ntx.jitcnt)
2427		);
2428		break;
2429
2430	case CS_K_PPS_STBEXC:
2431		CTL_IF_KERNPPS(
2432			ctl_putint,
2433			(sys_var[varid].text, ntx.stbcnt)
2434		);
2435		break;
2436
2437	case CS_IOSTATS_RESET:
2438		ctl_putuint(sys_var[varid].text,
2439			    current_time - io_timereset);
2440		break;
2441
2442	case CS_TOTAL_RBUF:
2443		ctl_putuint(sys_var[varid].text, total_recvbuffs());
2444		break;
2445
2446	case CS_FREE_RBUF:
2447		ctl_putuint(sys_var[varid].text, free_recvbuffs());
2448		break;
2449
2450	case CS_USED_RBUF:
2451		ctl_putuint(sys_var[varid].text, full_recvbuffs());
2452		break;
2453
2454	case CS_RBUF_LOWATER:
2455		ctl_putuint(sys_var[varid].text, lowater_additions());
2456		break;
2457
2458	case CS_IO_DROPPED:
2459		ctl_putuint(sys_var[varid].text, packets_dropped);
2460		break;
2461
2462	case CS_IO_IGNORED:
2463		ctl_putuint(sys_var[varid].text, packets_ignored);
2464		break;
2465
2466	case CS_IO_RECEIVED:
2467		ctl_putuint(sys_var[varid].text, packets_received);
2468		break;
2469
2470	case CS_IO_SENT:
2471		ctl_putuint(sys_var[varid].text, packets_sent);
2472		break;
2473
2474	case CS_IO_SENDFAILED:
2475		ctl_putuint(sys_var[varid].text, packets_notsent);
2476		break;
2477
2478	case CS_IO_WAKEUPS:
2479		ctl_putuint(sys_var[varid].text, handler_calls);
2480		break;
2481
2482	case CS_IO_GOODWAKEUPS:
2483		ctl_putuint(sys_var[varid].text, handler_pkts);
2484		break;
2485
2486	case CS_TIMERSTATS_RESET:
2487		ctl_putuint(sys_var[varid].text,
2488			    current_time - timer_timereset);
2489		break;
2490
2491	case CS_TIMER_OVERRUNS:
2492		ctl_putuint(sys_var[varid].text, alarm_overflow);
2493		break;
2494
2495	case CS_TIMER_XMTS:
2496		ctl_putuint(sys_var[varid].text, timer_xmtcalls);
2497		break;
2498
2499	case CS_FUZZ:
2500		ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3);
2501		break;
2502	case CS_WANDER_THRESH:
2503		ctl_putdbl(sys_var[varid].text, wander_threshold * 1e6);
2504		break;
2505#ifdef AUTOKEY
2506	case CS_FLAGS:
2507		if (crypto_flags)
2508			ctl_puthex(sys_var[CS_FLAGS].text,
2509			    crypto_flags);
2510		break;
2511
2512	case CS_DIGEST:
2513		if (crypto_flags) {
2514			strlcpy(str, OBJ_nid2ln(crypto_nid),
2515			    COUNTOF(str));
2516			ctl_putstr(sys_var[CS_DIGEST].text, str,
2517			    strlen(str));
2518		}
2519		break;
2520
2521	case CS_SIGNATURE:
2522		if (crypto_flags) {
2523			const EVP_MD *dp;
2524
2525			dp = EVP_get_digestbynid(crypto_flags >> 16);
2526			strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)),
2527			    COUNTOF(str));
2528			ctl_putstr(sys_var[CS_SIGNATURE].text, str,
2529			    strlen(str));
2530		}
2531		break;
2532
2533	case CS_HOST:
2534		if (hostval.ptr != NULL)
2535			ctl_putstr(sys_var[CS_HOST].text, hostval.ptr,
2536			    strlen(hostval.ptr));
2537		break;
2538
2539	case CS_IDENT:
2540		if (sys_ident != NULL)
2541			ctl_putstr(sys_var[CS_IDENT].text, sys_ident,
2542			    strlen(sys_ident));
2543		break;
2544
2545	case CS_CERTIF:
2546		for (cp = cinfo; cp != NULL; cp = cp->link) {
2547			snprintf(str, sizeof(str), "%s %s 0x%x",
2548			    cp->subject, cp->issuer, cp->flags);
2549			ctl_putstr(sys_var[CS_CERTIF].text, str,
2550			    strlen(str));
2551			ctl_putcal(sys_var[CS_REVTIME].text, &(cp->last));
2552		}
2553		break;
2554
2555	case CS_PUBLIC:
2556		if (hostval.tstamp != 0)
2557			ctl_putfs(sys_var[CS_PUBLIC].text,
2558			    ntohl(hostval.tstamp));
2559		break;
2560#endif	/* AUTOKEY */
2561
2562	default:
2563		break;
2564	}
2565}
2566
2567
2568/*
2569 * ctl_putpeer - output a peer variable
2570 */
2571static void
2572ctl_putpeer(
2573	int id,
2574	struct peer *p
2575	)
2576{
2577	char buf[CTL_MAX_DATA_LEN];
2578	char *s;
2579	char *t;
2580	char *be;
2581	int i;
2582	const struct ctl_var *k;
2583#ifdef AUTOKEY
2584	struct autokey *ap;
2585	const EVP_MD *dp;
2586	const char *str;
2587#endif	/* AUTOKEY */
2588
2589	switch (id) {
2590
2591	case CP_CONFIG:
2592		ctl_putuint(peer_var[id].text,
2593			    !(FLAG_PREEMPT & p->flags));
2594		break;
2595
2596	case CP_AUTHENABLE:
2597		ctl_putuint(peer_var[id].text, !(p->keyid));
2598		break;
2599
2600	case CP_AUTHENTIC:
2601		ctl_putuint(peer_var[id].text,
2602			    !!(FLAG_AUTHENTIC & p->flags));
2603		break;
2604
2605	case CP_SRCADR:
2606		ctl_putadr(peer_var[id].text, 0, &p->srcadr);
2607		break;
2608
2609	case CP_SRCPORT:
2610		ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr));
2611		break;
2612
2613	case CP_SRCHOST:
2614		if (p->hostname != NULL)
2615			ctl_putstr(peer_var[id].text, p->hostname,
2616				   strlen(p->hostname));
2617		break;
2618
2619	case CP_DSTADR:
2620		ctl_putadr(peer_var[id].text, 0,
2621			   (p->dstadr != NULL)
2622				? &p->dstadr->sin
2623				: NULL);
2624		break;
2625
2626	case CP_DSTPORT:
2627		ctl_putuint(peer_var[id].text,
2628			    (p->dstadr != NULL)
2629				? SRCPORT(&p->dstadr->sin)
2630				: 0);
2631		break;
2632
2633	case CP_IN:
2634		if (p->r21 > 0.)
2635			ctl_putdbl(peer_var[id].text, p->r21 / 1e3);
2636		break;
2637
2638	case CP_OUT:
2639		if (p->r34 > 0.)
2640			ctl_putdbl(peer_var[id].text, p->r34 / 1e3);
2641		break;
2642
2643	case CP_RATE:
2644		ctl_putuint(peer_var[id].text, p->throttle);
2645		break;
2646
2647	case CP_LEAP:
2648		ctl_putuint(peer_var[id].text, p->leap);
2649		break;
2650
2651	case CP_HMODE:
2652		ctl_putuint(peer_var[id].text, p->hmode);
2653		break;
2654
2655	case CP_STRATUM:
2656		ctl_putuint(peer_var[id].text, p->stratum);
2657		break;
2658
2659	case CP_PPOLL:
2660		ctl_putuint(peer_var[id].text, p->ppoll);
2661		break;
2662
2663	case CP_HPOLL:
2664		ctl_putuint(peer_var[id].text, p->hpoll);
2665		break;
2666
2667	case CP_PRECISION:
2668		ctl_putint(peer_var[id].text, p->precision);
2669		break;
2670
2671	case CP_ROOTDELAY:
2672		ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3);
2673		break;
2674
2675	case CP_ROOTDISPERSION:
2676		ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3);
2677		break;
2678
2679	case CP_REFID:
2680#ifdef REFCLOCK
2681		if (p->flags & FLAG_REFCLOCK) {
2682			ctl_putrefid(peer_var[id].text, p->refid);
2683			break;
2684		}
2685#endif
2686		if (REFID_ISTEXT(p->stratum))
2687			ctl_putrefid(peer_var[id].text, p->refid);
2688		else
2689			ctl_putadr(peer_var[id].text, p->refid, NULL);
2690		break;
2691
2692	case CP_REFTIME:
2693		ctl_putts(peer_var[id].text, &p->reftime);
2694		break;
2695
2696	case CP_ORG:
2697		ctl_putts(peer_var[id].text, &p->aorg);
2698		break;
2699
2700	case CP_REC:
2701		ctl_putts(peer_var[id].text, &p->dst);
2702		break;
2703
2704	case CP_XMT:
2705		if (p->xleave)
2706			ctl_putdbl(peer_var[id].text, p->xleave * 1e3);
2707		break;
2708
2709	case CP_BIAS:
2710		if (p->bias != 0.)
2711			ctl_putdbl(peer_var[id].text, p->bias * 1e3);
2712		break;
2713
2714	case CP_REACH:
2715		ctl_puthex(peer_var[id].text, p->reach);
2716		break;
2717
2718	case CP_FLASH:
2719		ctl_puthex(peer_var[id].text, p->flash);
2720		break;
2721
2722	case CP_TTL:
2723#ifdef REFCLOCK
2724		if (p->flags & FLAG_REFCLOCK) {
2725			ctl_putuint(peer_var[id].text, p->ttl);
2726			break;
2727		}
2728#endif
2729		if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl))
2730			ctl_putint(peer_var[id].text,
2731				   sys_ttl[p->ttl]);
2732		break;
2733
2734	case CP_UNREACH:
2735		ctl_putuint(peer_var[id].text, p->unreach);
2736		break;
2737
2738	case CP_TIMER:
2739		ctl_putuint(peer_var[id].text,
2740			    p->nextdate - current_time);
2741		break;
2742
2743	case CP_DELAY:
2744		ctl_putdbl(peer_var[id].text, p->delay * 1e3);
2745		break;
2746
2747	case CP_OFFSET:
2748		ctl_putdbl(peer_var[id].text, p->offset * 1e3);
2749		break;
2750
2751	case CP_JITTER:
2752		ctl_putdbl(peer_var[id].text, p->jitter * 1e3);
2753		break;
2754
2755	case CP_DISPERSION:
2756		ctl_putdbl(peer_var[id].text, p->disp * 1e3);
2757		break;
2758
2759	case CP_KEYID:
2760		if (p->keyid > NTP_MAXKEY)
2761			ctl_puthex(peer_var[id].text, p->keyid);
2762		else
2763			ctl_putuint(peer_var[id].text, p->keyid);
2764		break;
2765
2766	case CP_FILTDELAY:
2767		ctl_putarray(peer_var[id].text, p->filter_delay,
2768			     p->filter_nextpt);
2769		break;
2770
2771	case CP_FILTOFFSET:
2772		ctl_putarray(peer_var[id].text, p->filter_offset,
2773			     p->filter_nextpt);
2774		break;
2775
2776	case CP_FILTERROR:
2777		ctl_putarray(peer_var[id].text, p->filter_disp,
2778			     p->filter_nextpt);
2779		break;
2780
2781	case CP_PMODE:
2782		ctl_putuint(peer_var[id].text, p->pmode);
2783		break;
2784
2785	case CP_RECEIVED:
2786		ctl_putuint(peer_var[id].text, p->received);
2787		break;
2788
2789	case CP_SENT:
2790		ctl_putuint(peer_var[id].text, p->sent);
2791		break;
2792
2793	case CP_VARLIST:
2794		s = buf;
2795		be = buf + sizeof(buf);
2796		if (strlen(peer_var[id].text) + 4 > sizeof(buf))
2797			break;	/* really long var name */
2798
2799		snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text);
2800		s += strlen(s);
2801		t = s;
2802		for (k = peer_var; !(EOV & k->flags); k++) {
2803			if (PADDING & k->flags)
2804				continue;
2805			i = strlen(k->text);
2806			if (s + i + 1 >= be)
2807				break;
2808			if (s != t)
2809				*s++ = ',';
2810			memcpy(s, k->text, i);
2811			s += i;
2812		}
2813		if (s + 2 < be) {
2814			*s++ = '"';
2815			*s = '\0';
2816			ctl_putdata(buf, (u_int)(s - buf), 0);
2817		}
2818		break;
2819
2820	case CP_TIMEREC:
2821		ctl_putuint(peer_var[id].text,
2822			    current_time - p->timereceived);
2823		break;
2824
2825	case CP_TIMEREACH:
2826		ctl_putuint(peer_var[id].text,
2827			    current_time - p->timereachable);
2828		break;
2829
2830	case CP_BADAUTH:
2831		ctl_putuint(peer_var[id].text, p->badauth);
2832		break;
2833
2834	case CP_BOGUSORG:
2835		ctl_putuint(peer_var[id].text, p->bogusorg);
2836		break;
2837
2838	case CP_OLDPKT:
2839		ctl_putuint(peer_var[id].text, p->oldpkt);
2840		break;
2841
2842	case CP_SELDISP:
2843		ctl_putuint(peer_var[id].text, p->seldisptoolarge);
2844		break;
2845
2846	case CP_SELBROKEN:
2847		ctl_putuint(peer_var[id].text, p->selbroken);
2848		break;
2849
2850	case CP_CANDIDATE:
2851		ctl_putuint(peer_var[id].text, p->status);
2852		break;
2853#ifdef AUTOKEY
2854	case CP_FLAGS:
2855		if (p->crypto)
2856			ctl_puthex(peer_var[id].text, p->crypto);
2857		break;
2858
2859	case CP_SIGNATURE:
2860		if (p->crypto) {
2861			dp = EVP_get_digestbynid(p->crypto >> 16);
2862			str = OBJ_nid2ln(EVP_MD_pkey_type(dp));
2863			ctl_putstr(peer_var[id].text, str, strlen(str));
2864		}
2865		break;
2866
2867	case CP_HOST:
2868		if (p->subject != NULL)
2869			ctl_putstr(peer_var[id].text, p->subject,
2870			    strlen(p->subject));
2871		break;
2872
2873	case CP_VALID:		/* not used */
2874		break;
2875
2876	case CP_INITSEQ:
2877		if (NULL == (ap = p->recval.ptr))
2878			break;
2879
2880		ctl_putint(peer_var[CP_INITSEQ].text, ap->seq);
2881		ctl_puthex(peer_var[CP_INITKEY].text, ap->key);
2882		ctl_putfs(peer_var[CP_INITTSP].text,
2883			  ntohl(p->recval.tstamp));
2884		break;
2885
2886	case CP_IDENT:
2887		if (p->ident != NULL)
2888			ctl_putstr(peer_var[id].text, p->ident,
2889			    strlen(p->ident));
2890		break;
2891
2892
2893#endif	/* AUTOKEY */
2894	}
2895}
2896
2897
2898#ifdef REFCLOCK
2899/*
2900 * ctl_putclock - output clock variables
2901 */
2902static void
2903ctl_putclock(
2904	int id,
2905	struct refclockstat *pcs,
2906	int mustput
2907	)
2908{
2909	char buf[CTL_MAX_DATA_LEN];
2910	char *s, *t, *be;
2911	const char *ss;
2912	int i;
2913	const struct ctl_var *k;
2914
2915	switch (id) {
2916
2917	case CC_TYPE:
2918		if (mustput || pcs->clockdesc == NULL
2919		    || *(pcs->clockdesc) == '\0') {
2920			ctl_putuint(clock_var[id].text, pcs->type);
2921		}
2922		break;
2923	case CC_TIMECODE:
2924		ctl_putstr(clock_var[id].text,
2925			   pcs->p_lastcode,
2926			   (unsigned)pcs->lencode);
2927		break;
2928
2929	case CC_POLL:
2930		ctl_putuint(clock_var[id].text, pcs->polls);
2931		break;
2932
2933	case CC_NOREPLY:
2934		ctl_putuint(clock_var[id].text,
2935			    pcs->noresponse);
2936		break;
2937
2938	case CC_BADFORMAT:
2939		ctl_putuint(clock_var[id].text,
2940			    pcs->badformat);
2941		break;
2942
2943	case CC_BADDATA:
2944		ctl_putuint(clock_var[id].text,
2945			    pcs->baddata);
2946		break;
2947
2948	case CC_FUDGETIME1:
2949		if (mustput || (pcs->haveflags & CLK_HAVETIME1))
2950			ctl_putdbl(clock_var[id].text,
2951				   pcs->fudgetime1 * 1e3);
2952		break;
2953
2954	case CC_FUDGETIME2:
2955		if (mustput || (pcs->haveflags & CLK_HAVETIME2))
2956			ctl_putdbl(clock_var[id].text,
2957				   pcs->fudgetime2 * 1e3);
2958		break;
2959
2960	case CC_FUDGEVAL1:
2961		if (mustput || (pcs->haveflags & CLK_HAVEVAL1))
2962			ctl_putint(clock_var[id].text,
2963				   pcs->fudgeval1);
2964		break;
2965
2966	case CC_FUDGEVAL2:
2967		/* RefID of clocks are always text even if stratum is fudged */
2968		if (mustput || (pcs->haveflags & CLK_HAVEVAL2))
2969			ctl_putrefid(clock_var[id].text, pcs->fudgeval2);
2970		break;
2971
2972	case CC_FLAGS:
2973		ctl_putuint(clock_var[id].text, pcs->flags);
2974		break;
2975
2976	case CC_DEVICE:
2977		if (pcs->clockdesc == NULL ||
2978		    *(pcs->clockdesc) == '\0') {
2979			if (mustput)
2980				ctl_putstr(clock_var[id].text,
2981					   "", 0);
2982		} else {
2983			ctl_putstr(clock_var[id].text,
2984				   pcs->clockdesc,
2985				   strlen(pcs->clockdesc));
2986		}
2987		break;
2988
2989	case CC_VARLIST:
2990		s = buf;
2991		be = buf + sizeof(buf);
2992		if (strlen(clock_var[CC_VARLIST].text) + 4 >
2993		    sizeof(buf))
2994			break;	/* really long var name */
2995
2996		snprintf(s, sizeof(buf), "%s=\"",
2997			 clock_var[CC_VARLIST].text);
2998		s += strlen(s);
2999		t = s;
3000
3001		for (k = clock_var; !(EOV & k->flags); k++) {
3002			if (PADDING & k->flags)
3003				continue;
3004
3005			i = strlen(k->text);
3006			if (s + i + 1 >= be)
3007				break;
3008
3009			if (s != t)
3010				*s++ = ',';
3011			memcpy(s, k->text, i);
3012			s += i;
3013		}
3014
3015		for (k = pcs->kv_list; k && !(EOV & k->flags); k++) {
3016			if (PADDING & k->flags)
3017				continue;
3018
3019			ss = k->text;
3020			if (NULL == ss)
3021				continue;
3022
3023			while (*ss && *ss != '=')
3024				ss++;
3025			i = ss - k->text;
3026			if (s + i + 1 >= be)
3027				break;
3028
3029			if (s != t)
3030				*s++ = ',';
3031			memcpy(s, k->text, (unsigned)i);
3032			s += i;
3033			*s = '\0';
3034		}
3035		if (s + 2 >= be)
3036			break;
3037
3038		*s++ = '"';
3039		*s = '\0';
3040		ctl_putdata(buf, (unsigned)(s - buf), 0);
3041		break;
3042
3043	case CC_FUDGEMINJIT:
3044		if (mustput || (pcs->haveflags & CLK_HAVEMINJIT))
3045			ctl_putdbl(clock_var[id].text,
3046				   pcs->fudgeminjitter * 1e3);
3047		break;
3048
3049	default:
3050		break;
3051
3052	}
3053}
3054#endif
3055
3056
3057
3058/*
3059 * ctl_getitem - get the next data item from the incoming packet
3060 */
3061static const struct ctl_var *
3062ctl_getitem(
3063	const struct ctl_var *var_list,
3064	char **data
3065	)
3066{
3067	/* [Bug 3008] First check the packet data sanity, then search
3068	 * the key. This improves the consistency of result values: If
3069	 * the result is NULL once, it will never be EOV again for this
3070	 * packet; If it's EOV, it will never be NULL again until the
3071	 * variable is found and processed in a given 'var_list'. (That
3072	 * is, a result is returned that is neither NULL nor EOV).
3073	 */
3074	static const struct ctl_var eol = { 0, EOV, NULL };
3075	static char buf[128];
3076	static u_long quiet_until;
3077	const struct ctl_var *v;
3078	char *cp;
3079	char *tp;
3080
3081	/*
3082	 * Part One: Validate the packet state
3083	 */
3084
3085	/* Delete leading commas and white space */
3086	while (reqpt < reqend && (*reqpt == ',' ||
3087				  isspace((unsigned char)*reqpt)))
3088		reqpt++;
3089	if (reqpt >= reqend)
3090		return NULL;
3091
3092	/* Scan the string in the packet until we hit comma or
3093	 * EoB. Register position of first '=' on the fly. */
3094	for (tp = NULL, cp = reqpt; cp != reqend; ++cp) {
3095		if (*cp == '=' && tp == NULL)
3096			tp = cp;
3097		if (*cp == ',')
3098			break;
3099	}
3100
3101	/* Process payload, if any. */
3102	*data = NULL;
3103	if (NULL != tp) {
3104		/* eventually strip white space from argument. */
3105		const char *plhead = tp + 1; /* skip the '=' */
3106		const char *pltail = cp;
3107		size_t      plsize;
3108
3109		while (plhead != pltail && isspace((u_char)plhead[0]))
3110			++plhead;
3111		while (plhead != pltail && isspace((u_char)pltail[-1]))
3112			--pltail;
3113
3114		/* check payload size, terminate packet on overflow */
3115		plsize = (size_t)(pltail - plhead);
3116		if (plsize >= sizeof(buf))
3117			goto badpacket;
3118
3119		/* copy data, NUL terminate, and set result data ptr */
3120		memcpy(buf, plhead, plsize);
3121		buf[plsize] = '\0';
3122		*data = buf;
3123	} else {
3124		/* no payload, current end --> current name termination */
3125		tp = cp;
3126	}
3127
3128	/* Part Two
3129	 *
3130	 * Now we're sure that the packet data itself is sane. Scan the
3131	 * list now. Make sure a NULL list is properly treated by
3132	 * returning a synthetic End-Of-Values record. We must not
3133	 * return NULL pointers after this point, or the behaviour would
3134	 * become inconsistent if called several times with different
3135	 * variable lists after an EoV was returned.  (Such a behavior
3136	 * actually caused Bug 3008.)
3137	 */
3138
3139	if (NULL == var_list)
3140		return &eol;
3141
3142	for (v = var_list; !(EOV & v->flags); ++v)
3143		if (!(PADDING & v->flags)) {
3144			/* Check if the var name matches the buffer. The
3145			 * name is bracketed by [reqpt..tp] and not NUL
3146			 * terminated, and it contains no '=' char. The
3147			 * lookup value IS NUL-terminated but might
3148			 * include a '='... We have to look out for
3149			 * that!
3150			 */
3151			const char *sp1 = reqpt;
3152			const char *sp2 = v->text;
3153
3154			/* [Bug 3412] do not compare past NUL byte in name */
3155			while (   (sp1 != tp)
3156			       && ('\0' != *sp2) && (*sp1 == *sp2)) {
3157				++sp1;
3158				++sp2;
3159			}
3160			if (sp1 == tp && (*sp2 == '\0' || *sp2 == '='))
3161				break;
3162		}
3163
3164	/* See if we have found a valid entry or not. If found, advance
3165	 * the request pointer for the next round; if not, clear the
3166	 * data pointer so we have no dangling garbage here.
3167	 */
3168	if (EOV & v->flags)
3169		*data = NULL;
3170	else
3171		reqpt = cp + (cp != reqend);
3172	return v;
3173
3174  badpacket:
3175	/*TODO? somehow indicate this packet was bad, apart from syslog? */
3176	numctlbadpkts++;
3177	NLOG(NLOG_SYSEVENT)
3178	    if (quiet_until <= current_time) {
3179		    quiet_until = current_time + 300;
3180		    msyslog(LOG_WARNING,
3181			    "Possible 'ntpdx' exploit from %s (possibly spoofed)",
3182			    sptoa(rmt_addr));
3183	    }
3184	reqpt = reqend; /* never again for this packet! */
3185	return NULL;
3186}
3187
3188
3189/*
3190 * control_unspec - response to an unspecified op-code
3191 */
3192/*ARGSUSED*/
3193static void
3194control_unspec(
3195	struct recvbuf *rbufp,
3196	int restrict_mask
3197	)
3198{
3199	struct peer *peer;
3200
3201	/*
3202	 * What is an appropriate response to an unspecified op-code?
3203	 * I return no errors and no data, unless a specified assocation
3204	 * doesn't exist.
3205	 */
3206	if (res_associd) {
3207		peer = findpeerbyassoc(res_associd);
3208		if (NULL == peer) {
3209			ctl_error(CERR_BADASSOC);
3210			return;
3211		}
3212		rpkt.status = htons(ctlpeerstatus(peer));
3213	} else
3214		rpkt.status = htons(ctlsysstatus());
3215	ctl_flushpkt(0);
3216}
3217
3218
3219/*
3220 * read_status - return either a list of associd's, or a particular
3221 * peer's status.
3222 */
3223/*ARGSUSED*/
3224static void
3225read_status(
3226	struct recvbuf *rbufp,
3227	int restrict_mask
3228	)
3229{
3230	struct peer *peer;
3231	const u_char *cp;
3232	size_t n;
3233	/* a_st holds association ID, status pairs alternating */
3234	u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)];
3235
3236#ifdef DEBUG
3237	if (debug > 2)
3238		printf("read_status: ID %d\n", res_associd);
3239#endif
3240	/*
3241	 * Two choices here. If the specified association ID is
3242	 * zero we return all known assocation ID's.  Otherwise
3243	 * we return a bunch of stuff about the particular peer.
3244	 */
3245	if (res_associd) {
3246		peer = findpeerbyassoc(res_associd);
3247		if (NULL == peer) {
3248			ctl_error(CERR_BADASSOC);
3249			return;
3250		}
3251		rpkt.status = htons(ctlpeerstatus(peer));
3252		if (res_authokay)
3253			peer->num_events = 0;
3254		/*
3255		 * For now, output everything we know about the
3256		 * peer. May be more selective later.
3257		 */
3258		for (cp = def_peer_var; *cp != 0; cp++)
3259			ctl_putpeer((int)*cp, peer);
3260		ctl_flushpkt(0);
3261		return;
3262	}
3263	n = 0;
3264	rpkt.status = htons(ctlsysstatus());
3265	for (peer = peer_list; peer != NULL; peer = peer->p_link) {
3266		a_st[n++] = htons(peer->associd);
3267		a_st[n++] = htons(ctlpeerstatus(peer));
3268		/* two entries each loop iteration, so n + 1 */
3269		if (n + 1 >= COUNTOF(a_st)) {
3270			ctl_putdata((void *)a_st, n * sizeof(a_st[0]),
3271				    1);
3272			n = 0;
3273		}
3274	}
3275	if (n)
3276		ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1);
3277	ctl_flushpkt(0);
3278}
3279
3280
3281/*
3282 * read_peervars - half of read_variables() implementation
3283 */
3284static void
3285read_peervars(void)
3286{
3287	const struct ctl_var *v;
3288	struct peer *peer;
3289	const u_char *cp;
3290	size_t i;
3291	char *	valuep;
3292	u_char	wants[CP_MAXCODE + 1];
3293	u_int	gotvar;
3294
3295	/*
3296	 * Wants info for a particular peer. See if we know
3297	 * the guy.
3298	 */
3299	peer = findpeerbyassoc(res_associd);
3300	if (NULL == peer) {
3301		ctl_error(CERR_BADASSOC);
3302		return;
3303	}
3304	rpkt.status = htons(ctlpeerstatus(peer));
3305	if (res_authokay)
3306		peer->num_events = 0;
3307	ZERO(wants);
3308	gotvar = 0;
3309	while (NULL != (v = ctl_getitem(peer_var, &valuep))) {
3310		if (v->flags & EOV) {
3311			ctl_error(CERR_UNKNOWNVAR);
3312			return;
3313		}
3314		INSIST(v->code < COUNTOF(wants));
3315		wants[v->code] = 1;
3316		gotvar = 1;
3317	}
3318	if (gotvar) {
3319		for (i = 1; i < COUNTOF(wants); i++)
3320			if (wants[i])
3321				ctl_putpeer(i, peer);
3322	} else
3323		for (cp = def_peer_var; *cp != 0; cp++)
3324			ctl_putpeer((int)*cp, peer);
3325	ctl_flushpkt(0);
3326}
3327
3328
3329/*
3330 * read_sysvars - half of read_variables() implementation
3331 */
3332static void
3333read_sysvars(void)
3334{
3335	const struct ctl_var *v;
3336	struct ctl_var *kv;
3337	u_int	n;
3338	u_int	gotvar;
3339	const u_char *cs;
3340	char *	valuep;
3341	const char * pch;
3342	u_char *wants;
3343	size_t	wants_count;
3344
3345	/*
3346	 * Wants system variables. Figure out which he wants
3347	 * and give them to him.
3348	 */
3349	rpkt.status = htons(ctlsysstatus());
3350	if (res_authokay)
3351		ctl_sys_num_events = 0;
3352	wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var);
3353	wants = emalloc_zero(wants_count);
3354	gotvar = 0;
3355	while (NULL != (v = ctl_getitem(sys_var, &valuep))) {
3356		if (!(EOV & v->flags)) {
3357			INSIST(v->code < wants_count);
3358			wants[v->code] = 1;
3359			gotvar = 1;
3360		} else {
3361			v = ctl_getitem(ext_sys_var, &valuep);
3362			if (NULL == v) {
3363				ctl_error(CERR_BADVALUE);
3364				free(wants);
3365				return;
3366			}
3367			if (EOV & v->flags) {
3368				ctl_error(CERR_UNKNOWNVAR);
3369				free(wants);
3370				return;
3371			}
3372			n = v->code + CS_MAXCODE + 1;
3373			INSIST(n < wants_count);
3374			wants[n] = 1;
3375			gotvar = 1;
3376		}
3377	}
3378	if (gotvar) {
3379		for (n = 1; n <= CS_MAXCODE; n++)
3380			if (wants[n])
3381				ctl_putsys(n);
3382		for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++)
3383			if (wants[n + CS_MAXCODE + 1]) {
3384				pch = ext_sys_var[n].text;
3385				ctl_putdata(pch, strlen(pch), 0);
3386			}
3387	} else {
3388		for (cs = def_sys_var; *cs != 0; cs++)
3389			ctl_putsys((int)*cs);
3390		for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++)
3391			if (DEF & kv->flags)
3392				ctl_putdata(kv->text, strlen(kv->text),
3393					    0);
3394	}
3395	free(wants);
3396	ctl_flushpkt(0);
3397}
3398
3399
3400/*
3401 * read_variables - return the variables the caller asks for
3402 */
3403/*ARGSUSED*/
3404static void
3405read_variables(
3406	struct recvbuf *rbufp,
3407	int restrict_mask
3408	)
3409{
3410	if (res_associd)
3411		read_peervars();
3412	else
3413		read_sysvars();
3414}
3415
3416
3417/*
3418 * write_variables - write into variables. We only allow leap bit
3419 * writing this way.
3420 */
3421/*ARGSUSED*/
3422static void
3423write_variables(
3424	struct recvbuf *rbufp,
3425	int restrict_mask
3426	)
3427{
3428	const struct ctl_var *v;
3429	int ext_var;
3430	char *valuep;
3431	long val;
3432	size_t octets;
3433	char *vareqv;
3434	const char *t;
3435	char *tt;
3436
3437	val = 0;
3438	/*
3439	 * If he's trying to write into a peer tell him no way
3440	 */
3441	if (res_associd != 0) {
3442		ctl_error(CERR_PERMISSION);
3443		return;
3444	}
3445
3446	/*
3447	 * Set status
3448	 */
3449	rpkt.status = htons(ctlsysstatus());
3450
3451	/*
3452	 * Look through the variables. Dump out at the first sign of
3453	 * trouble.
3454	 */
3455	while ((v = ctl_getitem(sys_var, &valuep)) != NULL) {
3456		ext_var = 0;
3457		if (v->flags & EOV) {
3458			v = ctl_getitem(ext_sys_var, &valuep);
3459			if (v != NULL) {
3460				if (v->flags & EOV) {
3461					ctl_error(CERR_UNKNOWNVAR);
3462					return;
3463				}
3464				ext_var = 1;
3465			} else {
3466				break;
3467			}
3468		}
3469		if (!(v->flags & CAN_WRITE)) {
3470			ctl_error(CERR_PERMISSION);
3471			return;
3472		}
3473		/* [bug 3565] writing makes sense only if we *have* a
3474		 * value in the packet!
3475		 */
3476		if (valuep == NULL) {
3477			ctl_error(CERR_BADFMT);
3478			return;
3479		}
3480		if (!ext_var) {
3481			if ( !(*valuep && atoint(valuep, &val))) {
3482				ctl_error(CERR_BADFMT);
3483				return;
3484			}
3485			if ((val & ~LEAP_NOTINSYNC) != 0) {
3486				ctl_error(CERR_BADVALUE);
3487				return;
3488			}
3489		}
3490
3491		if (ext_var) {
3492			octets = strlen(v->text) + strlen(valuep) + 2;
3493			vareqv = emalloc(octets);
3494			tt = vareqv;
3495			t = v->text;
3496			while (*t && *t != '=')
3497				*tt++ = *t++;
3498			*tt++ = '=';
3499			memcpy(tt, valuep, 1 + strlen(valuep));
3500			set_sys_var(vareqv, 1 + strlen(vareqv), v->flags);
3501			free(vareqv);
3502		} else {
3503			ctl_error(CERR_UNSPEC); /* really */
3504			return;
3505		}
3506	}
3507
3508	/*
3509	 * If we got anything, do it. xxx nothing to do ***
3510	 */
3511	/*
3512	  if (leapind != ~0 || leapwarn != ~0) {
3513	  if (!leap_setleap((int)leapind, (int)leapwarn)) {
3514	  ctl_error(CERR_PERMISSION);
3515	  return;
3516	  }
3517	  }
3518	*/
3519	ctl_flushpkt(0);
3520}
3521
3522
3523/*
3524 * configure() processes ntpq :config/config-from-file, allowing
3525 *		generic runtime reconfiguration.
3526 */
3527static void configure(
3528	struct recvbuf *rbufp,
3529	int restrict_mask
3530	)
3531{
3532	size_t data_count;
3533	int retval;
3534
3535	/* I haven't yet implemented changes to an existing association.
3536	 * Hence check if the association id is 0
3537	 */
3538	if (res_associd != 0) {
3539		ctl_error(CERR_BADVALUE);
3540		return;
3541	}
3542
3543	if (RES_NOMODIFY & restrict_mask) {
3544		snprintf(remote_config.err_msg,
3545			 sizeof(remote_config.err_msg),
3546			 "runtime configuration prohibited by restrict ... nomodify");
3547		ctl_putdata(remote_config.err_msg,
3548			    strlen(remote_config.err_msg), 0);
3549		ctl_flushpkt(0);
3550		NLOG(NLOG_SYSINFO)
3551			msyslog(LOG_NOTICE,
3552				"runtime config from %s rejected due to nomodify restriction",
3553				stoa(&rbufp->recv_srcadr));
3554		sys_restricted++;
3555		return;
3556	}
3557
3558	/* Initialize the remote config buffer */
3559	data_count = remoteconfig_cmdlength(reqpt, reqend);
3560
3561	if (data_count > sizeof(remote_config.buffer) - 2) {
3562		snprintf(remote_config.err_msg,
3563			 sizeof(remote_config.err_msg),
3564			 "runtime configuration failed: request too long");
3565		ctl_putdata(remote_config.err_msg,
3566			    strlen(remote_config.err_msg), 0);
3567		ctl_flushpkt(0);
3568		msyslog(LOG_NOTICE,
3569			"runtime config from %s rejected: request too long",
3570			stoa(&rbufp->recv_srcadr));
3571		return;
3572	}
3573	/* Bug 2853 -- check if all characters were acceptable */
3574	if (data_count != (size_t)(reqend - reqpt)) {
3575		snprintf(remote_config.err_msg,
3576			 sizeof(remote_config.err_msg),
3577			 "runtime configuration failed: request contains an unprintable character");
3578		ctl_putdata(remote_config.err_msg,
3579			    strlen(remote_config.err_msg), 0);
3580		ctl_flushpkt(0);
3581		msyslog(LOG_NOTICE,
3582			"runtime config from %s rejected: request contains an unprintable character: %0x",
3583			stoa(&rbufp->recv_srcadr),
3584			reqpt[data_count]);
3585		return;
3586	}
3587
3588	memcpy(remote_config.buffer, reqpt, data_count);
3589	/* The buffer has no trailing linefeed or NUL right now. For
3590	 * logging, we do not want a newline, so we do that first after
3591	 * adding the necessary NUL byte.
3592	 */
3593	remote_config.buffer[data_count] = '\0';
3594	DPRINTF(1, ("Got Remote Configuration Command: %s\n",
3595		remote_config.buffer));
3596	msyslog(LOG_NOTICE, "%s config: %s",
3597		stoa(&rbufp->recv_srcadr),
3598		remote_config.buffer);
3599
3600	/* Now we have to make sure there is a NL/NUL sequence at the
3601	 * end of the buffer before we parse it.
3602	 */
3603	remote_config.buffer[data_count++] = '\n';
3604	remote_config.buffer[data_count] = '\0';
3605	remote_config.pos = 0;
3606	remote_config.err_pos = 0;
3607	remote_config.no_errors = 0;
3608	config_remotely(&rbufp->recv_srcadr);
3609
3610	/*
3611	 * Check if errors were reported. If not, output 'Config
3612	 * Succeeded'.  Else output the error count.  It would be nice
3613	 * to output any parser error messages.
3614	 */
3615	if (0 == remote_config.no_errors) {
3616		retval = snprintf(remote_config.err_msg,
3617				  sizeof(remote_config.err_msg),
3618				  "Config Succeeded");
3619		if (retval > 0)
3620			remote_config.err_pos += retval;
3621	}
3622
3623	ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0);
3624	ctl_flushpkt(0);
3625
3626	DPRINTF(1, ("Reply: %s\n", remote_config.err_msg));
3627
3628	if (remote_config.no_errors > 0)
3629		msyslog(LOG_NOTICE, "%d error in %s config",
3630			remote_config.no_errors,
3631			stoa(&rbufp->recv_srcadr));
3632}
3633
3634
3635/*
3636 * derive_nonce - generate 32-bit nonce value derived from the client
3637 *		  address and a request-specific timestamp.
3638 *
3639 * This uses MD5 for a non-authentication purpose -- the nonce is used
3640 * analogous to the TCP 3-way handshake to confirm the UDP client can
3641 * receive traffic from which it claims to originate, that is, to
3642 * prevent spoofed requests leading to reflected amplification.
3643 */
3644static u_int32 derive_nonce(
3645	sockaddr_u *	addr,
3646	u_int32		ts_i,
3647	u_int32		ts_f
3648	)
3649{
3650	static u_int32	salt[4];
3651	static u_long	last_salt_update;
3652	MD5_CTX		ctx;
3653	union d_tag {
3654		u_char	digest[MD5_DIGEST_LENGTH];
3655		u_int32 extract;
3656	}		d;
3657
3658	while (!salt[0] || current_time - last_salt_update >= 3600) {
3659		salt[0] = ntp_random();
3660		salt[1] = ntp_random();
3661		salt[2] = ntp_random();
3662		salt[3] = ntp_random();
3663		last_salt_update = current_time;
3664	}
3665
3666	MD5Init(&ctx);
3667	MD5Update(&ctx, salt, sizeof(salt));
3668	MD5Update(&ctx, &ts_i, sizeof(ts_i));
3669	MD5Update(&ctx, &ts_f, sizeof(ts_f));
3670	if (IS_IPV4(addr)) {
3671		MD5Update(&ctx, &SOCK_ADDR4(addr), sizeof(SOCK_ADDR4(addr)));
3672	} else {
3673		MD5Update(&ctx, &SOCK_ADDR6(addr), sizeof(SOCK_ADDR6(addr)));
3674	}
3675	MD5Update(&ctx, &NSRCPORT(addr), sizeof(NSRCPORT(addr)));
3676	MD5Update(&ctx, salt, sizeof(salt));
3677	MD5Final(d.digest, &ctx);
3678
3679	return d.extract;
3680}
3681
3682
3683/*
3684 * generate_nonce - generate client-address-specific nonce string.
3685 */
3686static void generate_nonce(
3687	struct recvbuf *	rbufp,
3688	char *			nonce,
3689	size_t			nonce_octets
3690	)
3691{
3692	u_int32 derived;
3693
3694	derived = derive_nonce(&rbufp->recv_srcadr,
3695			       rbufp->recv_time.l_ui,
3696			       rbufp->recv_time.l_uf);
3697	snprintf(nonce, nonce_octets, "%08x%08x%08x",
3698		 rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived);
3699}
3700
3701
3702/*
3703 * validate_nonce - validate client-address-specific nonce string.
3704 *
3705 * Returns TRUE if the local calculation of the nonce matches the
3706 * client-provided value and the timestamp is recent enough.
3707 */
3708static int validate_nonce(
3709	const char *		pnonce,
3710	struct recvbuf *	rbufp
3711	)
3712{
3713	u_int	ts_i;
3714	u_int	ts_f;
3715	l_fp	ts;
3716	l_fp	now_delta;
3717	u_int	supposed;
3718	u_int	derived;
3719
3720	if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed))
3721		return FALSE;
3722
3723	ts.l_ui = (u_int32)ts_i;
3724	ts.l_uf = (u_int32)ts_f;
3725	derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf);
3726	get_systime(&now_delta);
3727	L_SUB(&now_delta, &ts);
3728
3729	return (supposed == derived && now_delta.l_ui < 16);
3730}
3731
3732
3733/*
3734 * send_random_tag_value - send a randomly-generated three character
3735 *			   tag prefix, a '.', an index, a '=' and a
3736 *			   random integer value.
3737 *
3738 * To try to force clients to ignore unrecognized tags in mrulist,
3739 * reslist, and ifstats responses, the first and last rows are spiced
3740 * with randomly-generated tag names with correct .# index.  Make it
3741 * three characters knowing that none of the currently-used subscripted
3742 * tags have that length, avoiding the need to test for
3743 * tag collision.
3744 */
3745static void
3746send_random_tag_value(
3747	int	indx
3748	)
3749{
3750	int	noise;
3751	char	buf[32];
3752
3753	noise = rand() ^ (rand() << 16);
3754	buf[0] = 'a' + noise % 26;
3755	noise >>= 5;
3756	buf[1] = 'a' + noise % 26;
3757	noise >>= 5;
3758	buf[2] = 'a' + noise % 26;
3759	noise >>= 5;
3760	buf[3] = '.';
3761	snprintf(&buf[4], sizeof(buf) - 4, "%d", indx);
3762	ctl_putuint(buf, noise);
3763}
3764
3765
3766/*
3767 * Send a MRU list entry in response to a "ntpq -c mrulist" operation.
3768 *
3769 * To keep clients honest about not depending on the order of values,
3770 * and thereby avoid being locked into ugly workarounds to maintain
3771 * backward compatibility later as new fields are added to the response,
3772 * the order is random.
3773 */
3774static void
3775send_mru_entry(
3776	mon_entry *	mon,
3777	int		count
3778	)
3779{
3780	const char first_fmt[] =	"first.%d";
3781	const char ct_fmt[] =		"ct.%d";
3782	const char mv_fmt[] =		"mv.%d";
3783	const char rs_fmt[] =		"rs.%d";
3784	char	tag[32];
3785	u_char	sent[6]; /* 6 tag=value pairs */
3786	u_int32 noise;
3787	u_int	which;
3788	u_int	remaining;
3789	const char * pch;
3790
3791	remaining = COUNTOF(sent);
3792	ZERO(sent);
3793	noise = (u_int32)(rand() ^ (rand() << 16));
3794	while (remaining > 0) {
3795		which = (noise & 7) % COUNTOF(sent);
3796		noise >>= 3;
3797		while (sent[which])
3798			which = (which + 1) % COUNTOF(sent);
3799
3800		switch (which) {
3801
3802		case 0:
3803			snprintf(tag, sizeof(tag), addr_fmt, count);
3804			pch = sptoa(&mon->rmtadr);
3805			ctl_putunqstr(tag, pch, strlen(pch));
3806			break;
3807
3808		case 1:
3809			snprintf(tag, sizeof(tag), last_fmt, count);
3810			ctl_putts(tag, &mon->last);
3811			break;
3812
3813		case 2:
3814			snprintf(tag, sizeof(tag), first_fmt, count);
3815			ctl_putts(tag, &mon->first);
3816			break;
3817
3818		case 3:
3819			snprintf(tag, sizeof(tag), ct_fmt, count);
3820			ctl_putint(tag, mon->count);
3821			break;
3822
3823		case 4:
3824			snprintf(tag, sizeof(tag), mv_fmt, count);
3825			ctl_putuint(tag, mon->vn_mode);
3826			break;
3827
3828		case 5:
3829			snprintf(tag, sizeof(tag), rs_fmt, count);
3830			ctl_puthex(tag, mon->flags);
3831			break;
3832		}
3833		sent[which] = TRUE;
3834		remaining--;
3835	}
3836}
3837
3838
3839/*
3840 * read_mru_list - supports ntpq's mrulist command.
3841 *
3842 * The challenge here is to match ntpdc's monlist functionality without
3843 * being limited to hundreds of entries returned total, and without
3844 * requiring state on the server.  If state were required, ntpq's
3845 * mrulist command would require authentication.
3846 *
3847 * The approach was suggested by Ry Jones.  A finite and variable number
3848 * of entries are retrieved per request, to avoid having responses with
3849 * such large numbers of packets that socket buffers are overflowed and
3850 * packets lost.  The entries are retrieved oldest-first, taking into
3851 * account that the MRU list will be changing between each request.  We
3852 * can expect to see duplicate entries for addresses updated in the MRU
3853 * list during the fetch operation.  In the end, the client can assemble
3854 * a close approximation of the MRU list at the point in time the last
3855 * response was sent by ntpd.  The only difference is it may be longer,
3856 * containing some number of oldest entries which have since been
3857 * reclaimed.  If necessary, the protocol could be extended to zap those
3858 * from the client snapshot at the end, but so far that doesn't seem
3859 * useful.
3860 *
3861 * To accomodate the changing MRU list, the starting point for requests
3862 * after the first request is supplied as a series of last seen
3863 * timestamps and associated addresses, the newest ones the client has
3864 * received.  As long as at least one of those entries hasn't been
3865 * bumped to the head of the MRU list, ntpd can pick up at that point.
3866 * Otherwise, the request is failed and it is up to ntpq to back up and
3867 * provide the next newest entry's timestamps and addresses, conceivably
3868 * backing up all the way to the starting point.
3869 *
3870 * input parameters:
3871 *	nonce=		Regurgitated nonce retrieved by the client
3872 *			previously using CTL_OP_REQ_NONCE, demonstrating
3873 *			ability to receive traffic sent to its address.
3874 *	frags=		Limit on datagrams (fragments) in response.  Used
3875 *			by newer ntpq versions instead of limit= when
3876 *			retrieving multiple entries.
3877 *	limit=		Limit on MRU entries returned.  One of frags= or
3878 *			limit= must be provided.
3879 *			limit=1 is a special case:  Instead of fetching
3880 *			beginning with the supplied starting point's
3881 *			newer neighbor, fetch the supplied entry, and
3882 *			in that case the #.last timestamp can be zero.
3883 *			This enables fetching a single entry by IP
3884 *			address.  When limit is not one and frags= is
3885 *			provided, the fragment limit controls.
3886 *	mincount=	(decimal) Return entries with count >= mincount.
3887 *	laddr=		Return entries associated with the server's IP
3888 *			address given.  No port specification is needed,
3889 *			and any supplied is ignored.
3890 *	resall=		0x-prefixed hex restrict bits which must all be
3891 *			lit for an MRU entry to be included.
3892 *			Has precedence over any resany=.
3893 *	resany=		0x-prefixed hex restrict bits, at least one of
3894 *			which must be list for an MRU entry to be
3895 *			included.
3896 *	last.0=		0x-prefixed hex l_fp timestamp of newest entry
3897 *			which client previously received.
3898 *	addr.0=		text of newest entry's IP address and port,
3899 *			IPv6 addresses in bracketed form: [::]:123
3900 *	last.1=		timestamp of 2nd newest entry client has.
3901 *	addr.1=		address of 2nd newest entry.
3902 *	[...]
3903 *
3904 * ntpq provides as many last/addr pairs as will fit in a single request
3905 * packet, except for the first request in a MRU fetch operation.
3906 *
3907 * The response begins with a new nonce value to be used for any
3908 * followup request.  Following the nonce is the next newer entry than
3909 * referred to by last.0 and addr.0, if the "0" entry has not been
3910 * bumped to the front.  If it has, the first entry returned will be the
3911 * next entry newer than referred to by last.1 and addr.1, and so on.
3912 * If none of the referenced entries remain unchanged, the request fails
3913 * and ntpq backs up to the next earlier set of entries to resync.
3914 *
3915 * Except for the first response, the response begins with confirmation
3916 * of the entry that precedes the first additional entry provided:
3917 *
3918 *	last.older=	hex l_fp timestamp matching one of the input
3919 *			.last timestamps, which entry now precedes the
3920 *			response 0. entry in the MRU list.
3921 *	addr.older=	text of address corresponding to older.last.
3922 *
3923 * And in any case, a successful response contains sets of values
3924 * comprising entries, with the oldest numbered 0 and incrementing from
3925 * there:
3926 *
3927 *	addr.#		text of IPv4 or IPv6 address and port
3928 *	last.#		hex l_fp timestamp of last receipt
3929 *	first.#		hex l_fp timestamp of first receipt
3930 *	ct.#		count of packets received
3931 *	mv.#		mode and version
3932 *	rs.#		restriction mask (RES_* bits)
3933 *
3934 * Note the code currently assumes there are no valid three letter
3935 * tags sent with each row, and needs to be adjusted if that changes.
3936 *
3937 * The client should accept the values in any order, and ignore .#
3938 * values which it does not understand, to allow a smooth path to
3939 * future changes without requiring a new opcode.  Clients can rely
3940 * on all *.0 values preceding any *.1 values, that is all values for
3941 * a given index number are together in the response.
3942 *
3943 * The end of the response list is noted with one or two tag=value
3944 * pairs.  Unconditionally:
3945 *
3946 *	now=		0x-prefixed l_fp timestamp at the server marking
3947 *			the end of the operation.
3948 *
3949 * If any entries were returned, now= is followed by:
3950 *
3951 *	last.newest=	hex l_fp identical to last.# of the prior
3952 *			entry.
3953 */
3954static void read_mru_list(
3955	struct recvbuf *rbufp,
3956	int restrict_mask
3957	)
3958{
3959	static const char	nulltxt[1] = 		{ '\0' };
3960	static const char	nonce_text[] =		"nonce";
3961	static const char	frags_text[] =		"frags";
3962	static const char	limit_text[] =		"limit";
3963	static const char	mincount_text[] =	"mincount";
3964	static const char	resall_text[] =		"resall";
3965	static const char	resany_text[] =		"resany";
3966	static const char	maxlstint_text[] =	"maxlstint";
3967	static const char	laddr_text[] =		"laddr";
3968	static const char	resaxx_fmt[] =		"0x%hx";
3969
3970	u_int			limit;
3971	u_short			frags;
3972	u_short			resall;
3973	u_short			resany;
3974	int			mincount;
3975	u_int			maxlstint;
3976	sockaddr_u		laddr;
3977	endpt *			lcladr;
3978	u_int			count;
3979	u_int			ui;
3980	u_int			uf;
3981	l_fp			last[16];
3982	sockaddr_u		addr[COUNTOF(last)];
3983	char			buf[128];
3984	struct ctl_var *	in_parms;
3985	const struct ctl_var *	v;
3986	const char *		val;
3987	const char *		pch;
3988	char *			pnonce;
3989	int			nonce_valid;
3990	size_t			i;
3991	int			priors;
3992	u_short			hash;
3993	mon_entry *		mon;
3994	mon_entry *		prior_mon;
3995	l_fp			now;
3996
3997	if (RES_NOMRULIST & restrict_mask) {
3998		ctl_error(CERR_PERMISSION);
3999		NLOG(NLOG_SYSINFO)
4000			msyslog(LOG_NOTICE,
4001				"mrulist from %s rejected due to nomrulist restriction",
4002				stoa(&rbufp->recv_srcadr));
4003		sys_restricted++;
4004		return;
4005	}
4006	/*
4007	 * fill in_parms var list with all possible input parameters.
4008	 */
4009	in_parms = NULL;
4010	set_var(&in_parms, nonce_text, sizeof(nonce_text), 0);
4011	set_var(&in_parms, frags_text, sizeof(frags_text), 0);
4012	set_var(&in_parms, limit_text, sizeof(limit_text), 0);
4013	set_var(&in_parms, mincount_text, sizeof(mincount_text), 0);
4014	set_var(&in_parms, resall_text, sizeof(resall_text), 0);
4015	set_var(&in_parms, resany_text, sizeof(resany_text), 0);
4016	set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0);
4017	set_var(&in_parms, laddr_text, sizeof(laddr_text), 0);
4018	for (i = 0; i < COUNTOF(last); i++) {
4019		snprintf(buf, sizeof(buf), last_fmt, (int)i);
4020		set_var(&in_parms, buf, strlen(buf) + 1, 0);
4021		snprintf(buf, sizeof(buf), addr_fmt, (int)i);
4022		set_var(&in_parms, buf, strlen(buf) + 1, 0);
4023	}
4024
4025	/* decode input parms */
4026	pnonce = NULL;
4027	frags = 0;
4028	limit = 0;
4029	mincount = 0;
4030	resall = 0;
4031	resany = 0;
4032	maxlstint = 0;
4033	lcladr = NULL;
4034	priors = 0;
4035	ZERO(last);
4036	ZERO(addr);
4037
4038	/* have to go through '(void*)' to drop 'const' property from pointer.
4039	 * ctl_getitem()' needs some cleanup, too.... perlinger@ntp.org
4040	 */
4041	while (NULL != (v = ctl_getitem(in_parms, (void*)&val)) &&
4042	       !(EOV & v->flags)) {
4043		int si;
4044
4045		if (NULL == val)
4046			val = nulltxt;
4047
4048		if (!strcmp(nonce_text, v->text)) {
4049			free(pnonce);
4050			pnonce = (*val) ? estrdup(val) : NULL;
4051		} else if (!strcmp(frags_text, v->text)) {
4052			if (1 != sscanf(val, "%hu", &frags))
4053				goto blooper;
4054		} else if (!strcmp(limit_text, v->text)) {
4055			if (1 != sscanf(val, "%u", &limit))
4056				goto blooper;
4057		} else if (!strcmp(mincount_text, v->text)) {
4058			if (1 != sscanf(val, "%d", &mincount))
4059				goto blooper;
4060			if (mincount < 0)
4061				mincount = 0;
4062		} else if (!strcmp(resall_text, v->text)) {
4063			if (1 != sscanf(val, resaxx_fmt, &resall))
4064				goto blooper;
4065		} else if (!strcmp(resany_text, v->text)) {
4066			if (1 != sscanf(val, resaxx_fmt, &resany))
4067				goto blooper;
4068		} else if (!strcmp(maxlstint_text, v->text)) {
4069			if (1 != sscanf(val, "%u", &maxlstint))
4070				goto blooper;
4071		} else if (!strcmp(laddr_text, v->text)) {
4072			if (!decodenetnum(val, &laddr))
4073				goto blooper;
4074			lcladr = getinterface(&laddr, 0);
4075		} else if (1 == sscanf(v->text, last_fmt, &si) &&
4076			   (size_t)si < COUNTOF(last)) {
4077			if (2 != sscanf(val, "0x%08x.%08x", &ui, &uf))
4078				goto blooper;
4079			last[si].l_ui = ui;
4080			last[si].l_uf = uf;
4081			if (!SOCK_UNSPEC(&addr[si]) && si == priors)
4082				priors++;
4083		} else if (1 == sscanf(v->text, addr_fmt, &si) &&
4084			   (size_t)si < COUNTOF(addr)) {
4085			if (!decodenetnum(val, &addr[si]))
4086				goto blooper;
4087			if (last[si].l_ui && last[si].l_uf && si == priors)
4088				priors++;
4089		} else {
4090			DPRINTF(1, ("read_mru_list: invalid key item: '%s' (ignored)\n",
4091				    v->text));
4092			continue;
4093
4094		blooper:
4095			DPRINTF(1, ("read_mru_list: invalid param for '%s': '%s' (bailing)\n",
4096				    v->text, val));
4097			free(pnonce);
4098			pnonce = NULL;
4099			break;
4100		}
4101	}
4102	free_varlist(in_parms);
4103	in_parms = NULL;
4104
4105	/* return no responses until the nonce is validated */
4106	if (NULL == pnonce)
4107		return;
4108
4109	nonce_valid = validate_nonce(pnonce, rbufp);
4110	free(pnonce);
4111	if (!nonce_valid)
4112		return;
4113
4114	if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) ||
4115	    frags > MRU_FRAGS_LIMIT) {
4116		ctl_error(CERR_BADVALUE);
4117		return;
4118	}
4119
4120	/*
4121	 * If either frags or limit is not given, use the max.
4122	 */
4123	if (0 != frags && 0 == limit)
4124		limit = UINT_MAX;
4125	else if (0 != limit && 0 == frags)
4126		frags = MRU_FRAGS_LIMIT;
4127
4128	/*
4129	 * Find the starting point if one was provided.
4130	 */
4131	mon = NULL;
4132	for (i = 0; i < (size_t)priors; i++) {
4133		hash = MON_HASH(&addr[i]);
4134		for (mon = mon_hash[hash];
4135		     mon != NULL;
4136		     mon = mon->hash_next)
4137			if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i]))
4138				break;
4139		if (mon != NULL) {
4140			if (L_ISEQU(&mon->last, &last[i]))
4141				break;
4142			mon = NULL;
4143		}
4144	}
4145
4146	/* If a starting point was provided... */
4147	if (priors) {
4148		/* and none could be found unmodified... */
4149		if (NULL == mon) {
4150			/* tell ntpq to try again with older entries */
4151			ctl_error(CERR_UNKNOWNVAR);
4152			return;
4153		}
4154		/* confirm the prior entry used as starting point */
4155		ctl_putts("last.older", &mon->last);
4156		pch = sptoa(&mon->rmtadr);
4157		ctl_putunqstr("addr.older", pch, strlen(pch));
4158
4159		/*
4160		 * Move on to the first entry the client doesn't have,
4161		 * except in the special case of a limit of one.  In
4162		 * that case return the starting point entry.
4163		 */
4164		if (limit > 1)
4165			mon = PREV_DLIST(mon_mru_list, mon, mru);
4166	} else {	/* start with the oldest */
4167		mon = TAIL_DLIST(mon_mru_list, mru);
4168	}
4169
4170	/*
4171	 * send up to limit= entries in up to frags= datagrams
4172	 */
4173	get_systime(&now);
4174	generate_nonce(rbufp, buf, sizeof(buf));
4175	ctl_putunqstr("nonce", buf, strlen(buf));
4176	prior_mon = NULL;
4177	for (count = 0;
4178	     mon != NULL && res_frags < frags && count < limit;
4179	     mon = PREV_DLIST(mon_mru_list, mon, mru)) {
4180
4181		if (mon->count < mincount)
4182			continue;
4183		if (resall && resall != (resall & mon->flags))
4184			continue;
4185		if (resany && !(resany & mon->flags))
4186			continue;
4187		if (maxlstint > 0 && now.l_ui - mon->last.l_ui >
4188		    maxlstint)
4189			continue;
4190		if (lcladr != NULL && mon->lcladr != lcladr)
4191			continue;
4192
4193		send_mru_entry(mon, count);
4194		if (!count)
4195			send_random_tag_value(0);
4196		count++;
4197		prior_mon = mon;
4198	}
4199
4200	/*
4201	 * If this batch completes the MRU list, say so explicitly with
4202	 * a now= l_fp timestamp.
4203	 */
4204	if (NULL == mon) {
4205		if (count > 1)
4206			send_random_tag_value(count - 1);
4207		ctl_putts("now", &now);
4208		/* if any entries were returned confirm the last */
4209		if (prior_mon != NULL)
4210			ctl_putts("last.newest", &prior_mon->last);
4211	}
4212	ctl_flushpkt(0);
4213}
4214
4215
4216/*
4217 * Send a ifstats entry in response to a "ntpq -c ifstats" request.
4218 *
4219 * To keep clients honest about not depending on the order of values,
4220 * and thereby avoid being locked into ugly workarounds to maintain
4221 * backward compatibility later as new fields are added to the response,
4222 * the order is random.
4223 */
4224static void
4225send_ifstats_entry(
4226	endpt *	la,
4227	u_int	ifnum
4228	)
4229{
4230	const char addr_fmtu[] =	"addr.%u";
4231	const char bcast_fmt[] =	"bcast.%u";
4232	const char en_fmt[] =		"en.%u";	/* enabled */
4233	const char name_fmt[] =		"name.%u";
4234	const char flags_fmt[] =	"flags.%u";
4235	const char tl_fmt[] =		"tl.%u";	/* ttl */
4236	const char mc_fmt[] =		"mc.%u";	/* mcast count */
4237	const char rx_fmt[] =		"rx.%u";
4238	const char tx_fmt[] =		"tx.%u";
4239	const char txerr_fmt[] =	"txerr.%u";
4240	const char pc_fmt[] =		"pc.%u";	/* peer count */
4241	const char up_fmt[] =		"up.%u";	/* uptime */
4242	char	tag[32];
4243	u_char	sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */
4244	int	noisebits;
4245	u_int32 noise;
4246	u_int	which;
4247	u_int	remaining;
4248	const char *pch;
4249
4250	remaining = COUNTOF(sent);
4251	ZERO(sent);
4252	noise = 0;
4253	noisebits = 0;
4254	while (remaining > 0) {
4255		if (noisebits < 4) {
4256			noise = rand() ^ (rand() << 16);
4257			noisebits = 31;
4258		}
4259		which = (noise & 0xf) % COUNTOF(sent);
4260		noise >>= 4;
4261		noisebits -= 4;
4262
4263		while (sent[which])
4264			which = (which + 1) % COUNTOF(sent);
4265
4266		switch (which) {
4267
4268		case 0:
4269			snprintf(tag, sizeof(tag), addr_fmtu, ifnum);
4270			pch = sptoa(&la->sin);
4271			ctl_putunqstr(tag, pch, strlen(pch));
4272			break;
4273
4274		case 1:
4275			snprintf(tag, sizeof(tag), bcast_fmt, ifnum);
4276			if (INT_BCASTOPEN & la->flags)
4277				pch = sptoa(&la->bcast);
4278			else
4279				pch = "";
4280			ctl_putunqstr(tag, pch, strlen(pch));
4281			break;
4282
4283		case 2:
4284			snprintf(tag, sizeof(tag), en_fmt, ifnum);
4285			ctl_putint(tag, !la->ignore_packets);
4286			break;
4287
4288		case 3:
4289			snprintf(tag, sizeof(tag), name_fmt, ifnum);
4290			ctl_putstr(tag, la->name, strlen(la->name));
4291			break;
4292
4293		case 4:
4294			snprintf(tag, sizeof(tag), flags_fmt, ifnum);
4295			ctl_puthex(tag, (u_int)la->flags);
4296			break;
4297
4298		case 5:
4299			snprintf(tag, sizeof(tag), tl_fmt, ifnum);
4300			ctl_putint(tag, la->last_ttl);
4301			break;
4302
4303		case 6:
4304			snprintf(tag, sizeof(tag), mc_fmt, ifnum);
4305			ctl_putint(tag, la->num_mcast);
4306			break;
4307
4308		case 7:
4309			snprintf(tag, sizeof(tag), rx_fmt, ifnum);
4310			ctl_putint(tag, la->received);
4311			break;
4312
4313		case 8:
4314			snprintf(tag, sizeof(tag), tx_fmt, ifnum);
4315			ctl_putint(tag, la->sent);
4316			break;
4317
4318		case 9:
4319			snprintf(tag, sizeof(tag), txerr_fmt, ifnum);
4320			ctl_putint(tag, la->notsent);
4321			break;
4322
4323		case 10:
4324			snprintf(tag, sizeof(tag), pc_fmt, ifnum);
4325			ctl_putuint(tag, la->peercnt);
4326			break;
4327
4328		case 11:
4329			snprintf(tag, sizeof(tag), up_fmt, ifnum);
4330			ctl_putuint(tag, current_time - la->starttime);
4331			break;
4332		}
4333		sent[which] = TRUE;
4334		remaining--;
4335	}
4336	send_random_tag_value((int)ifnum);
4337}
4338
4339
4340/*
4341 * read_ifstats - send statistics for each local address, exposed by
4342 *		  ntpq -c ifstats
4343 */
4344static void
4345read_ifstats(
4346	struct recvbuf *	rbufp
4347	)
4348{
4349	u_int	ifidx;
4350	endpt *	la;
4351
4352	/*
4353	 * loop over [0..sys_ifnum] searching ep_list for each
4354	 * ifnum in turn.
4355	 */
4356	for (ifidx = 0; ifidx < sys_ifnum; ifidx++) {
4357		for (la = ep_list; la != NULL; la = la->elink)
4358			if (ifidx == la->ifnum)
4359				break;
4360		if (NULL == la)
4361			continue;
4362		/* return stats for one local address */
4363		send_ifstats_entry(la, ifidx);
4364	}
4365	ctl_flushpkt(0);
4366}
4367
4368static void
4369sockaddrs_from_restrict_u(
4370	sockaddr_u *	psaA,
4371	sockaddr_u *	psaM,
4372	restrict_u *	pres,
4373	int		ipv6
4374	)
4375{
4376	ZERO(*psaA);
4377	ZERO(*psaM);
4378	if (!ipv6) {
4379		psaA->sa.sa_family = AF_INET;
4380		psaA->sa4.sin_addr.s_addr = htonl(pres->u.v4.addr);
4381		psaM->sa.sa_family = AF_INET;
4382		psaM->sa4.sin_addr.s_addr = htonl(pres->u.v4.mask);
4383	} else {
4384		psaA->sa.sa_family = AF_INET6;
4385		memcpy(&psaA->sa6.sin6_addr, &pres->u.v6.addr,
4386		       sizeof(psaA->sa6.sin6_addr));
4387		psaM->sa.sa_family = AF_INET6;
4388		memcpy(&psaM->sa6.sin6_addr, &pres->u.v6.mask,
4389		       sizeof(psaA->sa6.sin6_addr));
4390	}
4391}
4392
4393
4394/*
4395 * Send a restrict entry in response to a "ntpq -c reslist" request.
4396 *
4397 * To keep clients honest about not depending on the order of values,
4398 * and thereby avoid being locked into ugly workarounds to maintain
4399 * backward compatibility later as new fields are added to the response,
4400 * the order is random.
4401 */
4402static void
4403send_restrict_entry(
4404	restrict_u *	pres,
4405	int		ipv6,
4406	u_int		idx
4407	)
4408{
4409	const char addr_fmtu[] =	"addr.%u";
4410	const char mask_fmtu[] =	"mask.%u";
4411	const char hits_fmt[] =		"hits.%u";
4412	const char flags_fmt[] =	"flags.%u";
4413	char		tag[32];
4414	u_char		sent[RESLIST_FIELDS]; /* 4 tag=value pairs */
4415	int		noisebits;
4416	u_int32		noise;
4417	u_int		which;
4418	u_int		remaining;
4419	sockaddr_u	addr;
4420	sockaddr_u	mask;
4421	const char *	pch;
4422	char *		buf;
4423	const char *	match_str;
4424	const char *	access_str;
4425
4426	sockaddrs_from_restrict_u(&addr, &mask, pres, ipv6);
4427	remaining = COUNTOF(sent);
4428	ZERO(sent);
4429	noise = 0;
4430	noisebits = 0;
4431	while (remaining > 0) {
4432		if (noisebits < 2) {
4433			noise = rand() ^ (rand() << 16);
4434			noisebits = 31;
4435		}
4436		which = (noise & 0x3) % COUNTOF(sent);
4437		noise >>= 2;
4438		noisebits -= 2;
4439
4440		while (sent[which])
4441			which = (which + 1) % COUNTOF(sent);
4442
4443		/* XXX: Numbers?  Really? */
4444		switch (which) {
4445
4446		case 0:
4447			snprintf(tag, sizeof(tag), addr_fmtu, idx);
4448			pch = stoa(&addr);
4449			ctl_putunqstr(tag, pch, strlen(pch));
4450			break;
4451
4452		case 1:
4453			snprintf(tag, sizeof(tag), mask_fmtu, idx);
4454			pch = stoa(&mask);
4455			ctl_putunqstr(tag, pch, strlen(pch));
4456			break;
4457
4458		case 2:
4459			snprintf(tag, sizeof(tag), hits_fmt, idx);
4460			ctl_putuint(tag, pres->count);
4461			break;
4462
4463		case 3:
4464			snprintf(tag, sizeof(tag), flags_fmt, idx);
4465			match_str = res_match_flags(pres->mflags);
4466			access_str = res_access_flags(pres->rflags);
4467			if ('\0' == match_str[0]) {
4468				pch = access_str;
4469			} else {
4470				LIB_GETBUF(buf);
4471				snprintf(buf, LIB_BUFLENGTH, "%s %s",
4472					 match_str, access_str);
4473				pch = buf;
4474			}
4475			ctl_putunqstr(tag, pch, strlen(pch));
4476			break;
4477		}
4478		sent[which] = TRUE;
4479		remaining--;
4480	}
4481	send_random_tag_value((int)idx);
4482}
4483
4484
4485static void
4486send_restrict_list(
4487	restrict_u *	pres,
4488	int		ipv6,
4489	u_int *		pidx
4490	)
4491{
4492	for ( ; pres != NULL; pres = pres->link) {
4493		send_restrict_entry(pres, ipv6, *pidx);
4494		(*pidx)++;
4495	}
4496}
4497
4498
4499/*
4500 * read_addr_restrictions - returns IPv4 and IPv6 access control lists
4501 */
4502static void
4503read_addr_restrictions(
4504	struct recvbuf *	rbufp
4505)
4506{
4507	u_int idx;
4508
4509	idx = 0;
4510	send_restrict_list(restrictlist4, FALSE, &idx);
4511	send_restrict_list(restrictlist6, TRUE, &idx);
4512	ctl_flushpkt(0);
4513}
4514
4515
4516/*
4517 * read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist
4518 */
4519static void
4520read_ordlist(
4521	struct recvbuf *	rbufp,
4522	int			restrict_mask
4523	)
4524{
4525	const char ifstats_s[] = "ifstats";
4526	const size_t ifstats_chars = COUNTOF(ifstats_s) - 1;
4527	const char addr_rst_s[] = "addr_restrictions";
4528	const size_t a_r_chars = COUNTOF(addr_rst_s) - 1;
4529	struct ntp_control *	cpkt;
4530	u_short			qdata_octets;
4531
4532	/*
4533	 * CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and
4534	 * used only for ntpq -c ifstats.  With the addition of reslist
4535	 * the same opcode was generalized to retrieve ordered lists
4536	 * which require authentication.  The request data is empty or
4537	 * contains "ifstats" (not null terminated) to retrieve local
4538	 * addresses and associated stats.  It is "addr_restrictions"
4539	 * to retrieve the IPv4 then IPv6 remote address restrictions,
4540	 * which are access control lists.  Other request data return
4541	 * CERR_UNKNOWNVAR.
4542	 */
4543	cpkt = (struct ntp_control *)&rbufp->recv_pkt;
4544	qdata_octets = ntohs(cpkt->count);
4545	if (0 == qdata_octets || (ifstats_chars == qdata_octets &&
4546	    !memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) {
4547		read_ifstats(rbufp);
4548		return;
4549	}
4550	if (a_r_chars == qdata_octets &&
4551	    !memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) {
4552		read_addr_restrictions(rbufp);
4553		return;
4554	}
4555	ctl_error(CERR_UNKNOWNVAR);
4556}
4557
4558
4559/*
4560 * req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite.
4561 */
4562static void req_nonce(
4563	struct recvbuf *	rbufp,
4564	int			restrict_mask
4565	)
4566{
4567	char	buf[64];
4568
4569	generate_nonce(rbufp, buf, sizeof(buf));
4570	ctl_putunqstr("nonce", buf, strlen(buf));
4571	ctl_flushpkt(0);
4572}
4573
4574
4575/*
4576 * read_clockstatus - return clock radio status
4577 */
4578/*ARGSUSED*/
4579static void
4580read_clockstatus(
4581	struct recvbuf *rbufp,
4582	int restrict_mask
4583	)
4584{
4585#ifndef REFCLOCK
4586	/*
4587	 * If no refclock support, no data to return
4588	 */
4589	ctl_error(CERR_BADASSOC);
4590#else
4591	const struct ctl_var *	v;
4592	int			i;
4593	struct peer *		peer;
4594	char *			valuep;
4595	u_char *		wants;
4596	size_t			wants_alloc;
4597	int			gotvar;
4598	const u_char *		cc;
4599	struct ctl_var *	kv;
4600	struct refclockstat	cs;
4601
4602	if (res_associd != 0) {
4603		peer = findpeerbyassoc(res_associd);
4604	} else {
4605		/*
4606		 * Find a clock for this jerk.	If the system peer
4607		 * is a clock use it, else search peer_list for one.
4608		 */
4609		if (sys_peer != NULL && (FLAG_REFCLOCK &
4610		    sys_peer->flags))
4611			peer = sys_peer;
4612		else
4613			for (peer = peer_list;
4614			     peer != NULL;
4615			     peer = peer->p_link)
4616				if (FLAG_REFCLOCK & peer->flags)
4617					break;
4618	}
4619	if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) {
4620		ctl_error(CERR_BADASSOC);
4621		return;
4622	}
4623	/*
4624	 * If we got here we have a peer which is a clock. Get his
4625	 * status.
4626	 */
4627	cs.kv_list = NULL;
4628	refclock_control(&peer->srcadr, NULL, &cs);
4629	kv = cs.kv_list;
4630	/*
4631	 * Look for variables in the packet.
4632	 */
4633	rpkt.status = htons(ctlclkstatus(&cs));
4634	wants_alloc = CC_MAXCODE + 1 + count_var(kv);
4635	wants = emalloc_zero(wants_alloc);
4636	gotvar = FALSE;
4637	while (NULL != (v = ctl_getitem(clock_var, &valuep))) {
4638		if (!(EOV & v->flags)) {
4639			wants[v->code] = TRUE;
4640			gotvar = TRUE;
4641		} else {
4642			v = ctl_getitem(kv, &valuep);
4643			if (NULL == v) {
4644				ctl_error(CERR_BADVALUE);
4645				free(wants);
4646				free_varlist(cs.kv_list);
4647				return;
4648			}
4649			if (EOV & v->flags) {
4650				ctl_error(CERR_UNKNOWNVAR);
4651				free(wants);
4652				free_varlist(cs.kv_list);
4653				return;
4654			}
4655			wants[CC_MAXCODE + 1 + v->code] = TRUE;
4656			gotvar = TRUE;
4657		}
4658	}
4659
4660	if (gotvar) {
4661		for (i = 1; i <= CC_MAXCODE; i++)
4662			if (wants[i])
4663				ctl_putclock(i, &cs, TRUE);
4664		if (kv != NULL)
4665			for (i = 0; !(EOV & kv[i].flags); i++)
4666				if (wants[i + CC_MAXCODE + 1])
4667					ctl_putdata(kv[i].text,
4668						    strlen(kv[i].text),
4669						    FALSE);
4670	} else {
4671		for (cc = def_clock_var; *cc != 0; cc++)
4672			ctl_putclock((int)*cc, &cs, FALSE);
4673		for ( ; kv != NULL && !(EOV & kv->flags); kv++)
4674			if (DEF & kv->flags)
4675				ctl_putdata(kv->text, strlen(kv->text),
4676					    FALSE);
4677	}
4678
4679	free(wants);
4680	free_varlist(cs.kv_list);
4681
4682	ctl_flushpkt(0);
4683#endif
4684}
4685
4686
4687/*
4688 * write_clockstatus - we don't do this
4689 */
4690/*ARGSUSED*/
4691static void
4692write_clockstatus(
4693	struct recvbuf *rbufp,
4694	int restrict_mask
4695	)
4696{
4697	ctl_error(CERR_PERMISSION);
4698}
4699
4700/*
4701 * Trap support from here on down. We send async trap messages when the
4702 * upper levels report trouble. Traps can by set either by control
4703 * messages or by configuration.
4704 */
4705/*
4706 * set_trap - set a trap in response to a control message
4707 */
4708static void
4709set_trap(
4710	struct recvbuf *rbufp,
4711	int restrict_mask
4712	)
4713{
4714	int traptype;
4715
4716	/*
4717	 * See if this guy is allowed
4718	 */
4719	if (restrict_mask & RES_NOTRAP) {
4720		ctl_error(CERR_PERMISSION);
4721		return;
4722	}
4723
4724	/*
4725	 * Determine his allowed trap type.
4726	 */
4727	traptype = TRAP_TYPE_PRIO;
4728	if (restrict_mask & RES_LPTRAP)
4729		traptype = TRAP_TYPE_NONPRIO;
4730
4731	/*
4732	 * Call ctlsettrap() to do the work.  Return
4733	 * an error if it can't assign the trap.
4734	 */
4735	if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype,
4736			(int)res_version))
4737		ctl_error(CERR_NORESOURCE);
4738	ctl_flushpkt(0);
4739}
4740
4741
4742/*
4743 * unset_trap - unset a trap in response to a control message
4744 */
4745static void
4746unset_trap(
4747	struct recvbuf *rbufp,
4748	int restrict_mask
4749	)
4750{
4751	int traptype;
4752
4753	/*
4754	 * We don't prevent anyone from removing his own trap unless the
4755	 * trap is configured. Note we also must be aware of the
4756	 * possibility that restriction flags were changed since this
4757	 * guy last set his trap. Set the trap type based on this.
4758	 */
4759	traptype = TRAP_TYPE_PRIO;
4760	if (restrict_mask & RES_LPTRAP)
4761		traptype = TRAP_TYPE_NONPRIO;
4762
4763	/*
4764	 * Call ctlclrtrap() to clear this out.
4765	 */
4766	if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype))
4767		ctl_error(CERR_BADASSOC);
4768	ctl_flushpkt(0);
4769}
4770
4771
4772/*
4773 * ctlsettrap - called to set a trap
4774 */
4775int
4776ctlsettrap(
4777	sockaddr_u *raddr,
4778	endpt *linter,
4779	int traptype,
4780	int version
4781	)
4782{
4783	size_t n;
4784	struct ctl_trap *tp;
4785	struct ctl_trap *tptouse;
4786
4787	/*
4788	 * See if we can find this trap.  If so, we only need update
4789	 * the flags and the time.
4790	 */
4791	if ((tp = ctlfindtrap(raddr, linter)) != NULL) {
4792		switch (traptype) {
4793
4794		case TRAP_TYPE_CONFIG:
4795			tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED;
4796			break;
4797
4798		case TRAP_TYPE_PRIO:
4799			if (tp->tr_flags & TRAP_CONFIGURED)
4800				return (1); /* don't change anything */
4801			tp->tr_flags = TRAP_INUSE;
4802			break;
4803
4804		case TRAP_TYPE_NONPRIO:
4805			if (tp->tr_flags & TRAP_CONFIGURED)
4806				return (1); /* don't change anything */
4807			tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO;
4808			break;
4809		}
4810		tp->tr_settime = current_time;
4811		tp->tr_resets++;
4812		return (1);
4813	}
4814
4815	/*
4816	 * First we heard of this guy.	Try to find a trap structure
4817	 * for him to use, clearing out lesser priority guys if we
4818	 * have to. Clear out anyone who's expired while we're at it.
4819	 */
4820	tptouse = NULL;
4821	for (n = 0; n < COUNTOF(ctl_traps); n++) {
4822		tp = &ctl_traps[n];
4823		if ((TRAP_INUSE & tp->tr_flags) &&
4824		    !(TRAP_CONFIGURED & tp->tr_flags) &&
4825		    ((tp->tr_settime + CTL_TRAPTIME) > current_time)) {
4826			tp->tr_flags = 0;
4827			num_ctl_traps--;
4828		}
4829		if (!(TRAP_INUSE & tp->tr_flags)) {
4830			tptouse = tp;
4831		} else if (!(TRAP_CONFIGURED & tp->tr_flags)) {
4832			switch (traptype) {
4833
4834			case TRAP_TYPE_CONFIG:
4835				if (tptouse == NULL) {
4836					tptouse = tp;
4837					break;
4838				}
4839				if ((TRAP_NONPRIO & tptouse->tr_flags) &&
4840				    !(TRAP_NONPRIO & tp->tr_flags))
4841					break;
4842
4843				if (!(TRAP_NONPRIO & tptouse->tr_flags)
4844				    && (TRAP_NONPRIO & tp->tr_flags)) {
4845					tptouse = tp;
4846					break;
4847				}
4848				if (tptouse->tr_origtime <
4849				    tp->tr_origtime)
4850					tptouse = tp;
4851				break;
4852
4853			case TRAP_TYPE_PRIO:
4854				if ( TRAP_NONPRIO & tp->tr_flags) {
4855					if (tptouse == NULL ||
4856					    ((TRAP_INUSE &
4857					      tptouse->tr_flags) &&
4858					     tptouse->tr_origtime <
4859					     tp->tr_origtime))
4860						tptouse = tp;
4861				}
4862				break;
4863
4864			case TRAP_TYPE_NONPRIO:
4865				break;
4866			}
4867		}
4868	}
4869
4870	/*
4871	 * If we don't have room for him return an error.
4872	 */
4873	if (tptouse == NULL)
4874		return (0);
4875
4876	/*
4877	 * Set up this structure for him.
4878	 */
4879	tptouse->tr_settime = tptouse->tr_origtime = current_time;
4880	tptouse->tr_count = tptouse->tr_resets = 0;
4881	tptouse->tr_sequence = 1;
4882	tptouse->tr_addr = *raddr;
4883	tptouse->tr_localaddr = linter;
4884	tptouse->tr_version = (u_char) version;
4885	tptouse->tr_flags = TRAP_INUSE;
4886	if (traptype == TRAP_TYPE_CONFIG)
4887		tptouse->tr_flags |= TRAP_CONFIGURED;
4888	else if (traptype == TRAP_TYPE_NONPRIO)
4889		tptouse->tr_flags |= TRAP_NONPRIO;
4890	num_ctl_traps++;
4891	return (1);
4892}
4893
4894
4895/*
4896 * ctlclrtrap - called to clear a trap
4897 */
4898int
4899ctlclrtrap(
4900	sockaddr_u *raddr,
4901	endpt *linter,
4902	int traptype
4903	)
4904{
4905	register struct ctl_trap *tp;
4906
4907	if ((tp = ctlfindtrap(raddr, linter)) == NULL)
4908		return (0);
4909
4910	if (tp->tr_flags & TRAP_CONFIGURED
4911	    && traptype != TRAP_TYPE_CONFIG)
4912		return (0);
4913
4914	tp->tr_flags = 0;
4915	num_ctl_traps--;
4916	return (1);
4917}
4918
4919
4920/*
4921 * ctlfindtrap - find a trap given the remote and local addresses
4922 */
4923static struct ctl_trap *
4924ctlfindtrap(
4925	sockaddr_u *raddr,
4926	endpt *linter
4927	)
4928{
4929	size_t	n;
4930
4931	for (n = 0; n < COUNTOF(ctl_traps); n++)
4932		if ((ctl_traps[n].tr_flags & TRAP_INUSE)
4933		    && ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr)
4934		    && (linter == ctl_traps[n].tr_localaddr))
4935			return &ctl_traps[n];
4936
4937	return NULL;
4938}
4939
4940
4941/*
4942 * report_event - report an event to the trappers
4943 */
4944void
4945report_event(
4946	int	err,		/* error code */
4947	struct peer *peer,	/* peer structure pointer */
4948	const char *str		/* protostats string */
4949	)
4950{
4951	char	statstr[NTP_MAXSTRLEN];
4952	int	i;
4953	size_t	len;
4954
4955	/*
4956	 * Report the error to the protostats file, system log and
4957	 * trappers.
4958	 */
4959	if (peer == NULL) {
4960
4961		/*
4962		 * Discard a system report if the number of reports of
4963		 * the same type exceeds the maximum.
4964		 */
4965		if (ctl_sys_last_event != (u_char)err)
4966			ctl_sys_num_events= 0;
4967		if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS)
4968			return;
4969
4970		ctl_sys_last_event = (u_char)err;
4971		ctl_sys_num_events++;
4972		snprintf(statstr, sizeof(statstr),
4973		    "0.0.0.0 %04x %02x %s",
4974		    ctlsysstatus(), err, eventstr(err));
4975		if (str != NULL) {
4976			len = strlen(statstr);
4977			snprintf(statstr + len, sizeof(statstr) - len,
4978			    " %s", str);
4979		}
4980		NLOG(NLOG_SYSEVENT)
4981			msyslog(LOG_INFO, "%s", statstr);
4982	} else {
4983
4984		/*
4985		 * Discard a peer report if the number of reports of
4986		 * the same type exceeds the maximum for that peer.
4987		 */
4988		const char *	src;
4989		u_char		errlast;
4990
4991		errlast = (u_char)err & ~PEER_EVENT;
4992		if (peer->last_event != errlast)
4993			peer->num_events = 0;
4994		if (peer->num_events >= CTL_PEER_MAXEVENTS)
4995			return;
4996
4997		peer->last_event = errlast;
4998		peer->num_events++;
4999		if (ISREFCLOCKADR(&peer->srcadr))
5000			src = refnumtoa(&peer->srcadr);
5001		else
5002			src = stoa(&peer->srcadr);
5003
5004		snprintf(statstr, sizeof(statstr),
5005		    "%s %04x %02x %s", src,
5006		    ctlpeerstatus(peer), err, eventstr(err));
5007		if (str != NULL) {
5008			len = strlen(statstr);
5009			snprintf(statstr + len, sizeof(statstr) - len,
5010			    " %s", str);
5011		}
5012		NLOG(NLOG_PEEREVENT)
5013			msyslog(LOG_INFO, "%s", statstr);
5014	}
5015	record_proto_stats(statstr);
5016#if DEBUG
5017	if (debug)
5018		printf("event at %lu %s\n", current_time, statstr);
5019#endif
5020
5021	/*
5022	 * If no trappers, return.
5023	 */
5024	if (num_ctl_traps <= 0)
5025		return;
5026
5027	/* [Bug 3119]
5028	 * Peer Events should be associated with a peer -- hence the
5029	 * name. But there are instances where this function is called
5030	 * *without* a valid peer. This happens e.g. with an unsolicited
5031	 * CryptoNAK, or when a leap second alarm is going off while
5032	 * currently without a system peer.
5033	 *
5034	 * The most sensible approach to this seems to bail out here if
5035	 * this happens. Avoiding to call this function would also
5036	 * bypass the log reporting in the first part of this function,
5037	 * and this is probably not the best of all options.
5038	 *   -*-perlinger@ntp.org-*-
5039	 */
5040	if ((err & PEER_EVENT) && !peer)
5041		return;
5042
5043	/*
5044	 * Set up the outgoing packet variables
5045	 */
5046	res_opcode = CTL_OP_ASYNCMSG;
5047	res_offset = 0;
5048	res_async = TRUE;
5049	res_authenticate = FALSE;
5050	datapt = rpkt.u.data;
5051	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
5052	if (!(err & PEER_EVENT)) {
5053		rpkt.associd = 0;
5054		rpkt.status = htons(ctlsysstatus());
5055
5056		/* Include the core system variables and the list. */
5057		for (i = 1; i <= CS_VARLIST; i++)
5058			ctl_putsys(i);
5059	} else if (NULL != peer) { /* paranoia -- skip output */
5060		rpkt.associd = htons(peer->associd);
5061		rpkt.status = htons(ctlpeerstatus(peer));
5062
5063		/* Dump it all. Later, maybe less. */
5064		for (i = 1; i <= CP_MAX_NOAUTOKEY; i++)
5065			ctl_putpeer(i, peer);
5066#	    ifdef REFCLOCK
5067		/*
5068		 * for clock exception events: add clock variables to
5069		 * reflect info on exception
5070		 */
5071		if (err == PEVNT_CLOCK) {
5072			struct refclockstat cs;
5073			struct ctl_var *kv;
5074
5075			cs.kv_list = NULL;
5076			refclock_control(&peer->srcadr, NULL, &cs);
5077
5078			ctl_puthex("refclockstatus",
5079				   ctlclkstatus(&cs));
5080
5081			for (i = 1; i <= CC_MAXCODE; i++)
5082				ctl_putclock(i, &cs, FALSE);
5083			for (kv = cs.kv_list;
5084			     kv != NULL && !(EOV & kv->flags);
5085			     kv++)
5086				if (DEF & kv->flags)
5087					ctl_putdata(kv->text,
5088						    strlen(kv->text),
5089						    FALSE);
5090			free_varlist(cs.kv_list);
5091		}
5092#	    endif /* REFCLOCK */
5093	}
5094
5095	/*
5096	 * We're done, return.
5097	 */
5098	ctl_flushpkt(0);
5099}
5100
5101
5102/*
5103 * mprintf_event - printf-style varargs variant of report_event()
5104 */
5105int
5106mprintf_event(
5107	int		evcode,		/* event code */
5108	struct peer *	p,		/* may be NULL */
5109	const char *	fmt,		/* msnprintf format */
5110	...
5111	)
5112{
5113	va_list	ap;
5114	int	rc;
5115	char	msg[512];
5116
5117	va_start(ap, fmt);
5118	rc = mvsnprintf(msg, sizeof(msg), fmt, ap);
5119	va_end(ap);
5120	report_event(evcode, p, msg);
5121
5122	return rc;
5123}
5124
5125
5126/*
5127 * ctl_clr_stats - clear stat counters
5128 */
5129void
5130ctl_clr_stats(void)
5131{
5132	ctltimereset = current_time;
5133	numctlreq = 0;
5134	numctlbadpkts = 0;
5135	numctlresponses = 0;
5136	numctlfrags = 0;
5137	numctlerrors = 0;
5138	numctlfrags = 0;
5139	numctltooshort = 0;
5140	numctlinputresp = 0;
5141	numctlinputfrag = 0;
5142	numctlinputerr = 0;
5143	numctlbadoffset = 0;
5144	numctlbadversion = 0;
5145	numctldatatooshort = 0;
5146	numctlbadop = 0;
5147	numasyncmsgs = 0;
5148}
5149
5150static u_short
5151count_var(
5152	const struct ctl_var *k
5153	)
5154{
5155	u_int c;
5156
5157	if (NULL == k)
5158		return 0;
5159
5160	c = 0;
5161	while (!(EOV & (k++)->flags))
5162		c++;
5163
5164	ENSURE(c <= USHRT_MAX);
5165	return (u_short)c;
5166}
5167
5168
5169char *
5170add_var(
5171	struct ctl_var **kv,
5172	u_long size,
5173	u_short def
5174	)
5175{
5176	u_short		c;
5177	struct ctl_var *k;
5178	char *		buf;
5179
5180	c = count_var(*kv);
5181	*kv  = erealloc(*kv, (c + 2) * sizeof(**kv));
5182	k = *kv;
5183	buf = emalloc(size);
5184	k[c].code  = c;
5185	k[c].text  = buf;
5186	k[c].flags = def;
5187	k[c + 1].code  = 0;
5188	k[c + 1].text  = NULL;
5189	k[c + 1].flags = EOV;
5190
5191	return buf;
5192}
5193
5194
5195void
5196set_var(
5197	struct ctl_var **kv,
5198	const char *data,
5199	u_long size,
5200	u_short def
5201	)
5202{
5203	struct ctl_var *k;
5204	const char *s;
5205	const char *t;
5206	char *td;
5207
5208	if (NULL == data || !size)
5209		return;
5210
5211	k = *kv;
5212	if (k != NULL) {
5213		while (!(EOV & k->flags)) {
5214			if (NULL == k->text)	{
5215				td = emalloc(size);
5216				memcpy(td, data, size);
5217				k->text = td;
5218				k->flags = def;
5219				return;
5220			} else {
5221				s = data;
5222				t = k->text;
5223				while (*t != '=' && *s == *t) {
5224					s++;
5225					t++;
5226				}
5227				if (*s == *t && ((*t == '=') || !*t)) {
5228					td = erealloc((void *)(intptr_t)k->text, size);
5229					memcpy(td, data, size);
5230					k->text = td;
5231					k->flags = def;
5232					return;
5233				}
5234			}
5235			k++;
5236		}
5237	}
5238	td = add_var(kv, size, def);
5239	memcpy(td, data, size);
5240}
5241
5242
5243void
5244set_sys_var(
5245	const char *data,
5246	u_long size,
5247	u_short def
5248	)
5249{
5250	set_var(&ext_sys_var, data, size, def);
5251}
5252
5253
5254/*
5255 * get_ext_sys_var() retrieves the value of a user-defined variable or
5256 * NULL if the variable has not been setvar'd.
5257 */
5258const char *
5259get_ext_sys_var(const char *tag)
5260{
5261	struct ctl_var *	v;
5262	size_t			c;
5263	const char *		val;
5264
5265	val = NULL;
5266	c = strlen(tag);
5267	for (v = ext_sys_var; !(EOV & v->flags); v++) {
5268		if (NULL != v->text && !memcmp(tag, v->text, c)) {
5269			if ('=' == v->text[c]) {
5270				val = v->text + c + 1;
5271				break;
5272			} else if ('\0' == v->text[c]) {
5273				val = "";
5274				break;
5275			}
5276		}
5277	}
5278
5279	return val;
5280}
5281
5282
5283void
5284free_varlist(
5285	struct ctl_var *kv
5286	)
5287{
5288	struct ctl_var *k;
5289	if (kv) {
5290		for (k = kv; !(k->flags & EOV); k++)
5291			free((void *)(intptr_t)k->text);
5292		free((void *)kv);
5293	}
5294}
5295