1/*
2 * kmp_tasking.cpp -- OpenMP 3.0 tasking support.
3 */
4
5//===----------------------------------------------------------------------===//
6//
7// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8// See https://llvm.org/LICENSE.txt for license information.
9// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10//
11//===----------------------------------------------------------------------===//
12
13#include "kmp.h"
14#include "kmp_i18n.h"
15#include "kmp_itt.h"
16#include "kmp_stats.h"
17#include "kmp_wait_release.h"
18#include "kmp_taskdeps.h"
19
20#if OMPT_SUPPORT
21#include "ompt-specific.h"
22#endif
23
24#if ENABLE_LIBOMPTARGET
25static void (*tgt_target_nowait_query)(void **);
26
27void __kmp_init_target_task() {
28  *(void **)(&tgt_target_nowait_query) = KMP_DLSYM("__tgt_target_nowait_query");
29}
30#endif
31
32/* forward declaration */
33static void __kmp_enable_tasking(kmp_task_team_t *task_team,
34                                 kmp_info_t *this_thr);
35static void __kmp_alloc_task_deque(kmp_info_t *thread,
36                                   kmp_thread_data_t *thread_data);
37static int __kmp_realloc_task_threads_data(kmp_info_t *thread,
38                                           kmp_task_team_t *task_team);
39static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask);
40#if OMPX_TASKGRAPH
41static kmp_tdg_info_t *__kmp_find_tdg(kmp_int32 tdg_id);
42int __kmp_taskloop_task(int gtid, void *ptask);
43#endif
44
45#ifdef BUILD_TIED_TASK_STACK
46
47//  __kmp_trace_task_stack: print the tied tasks from the task stack in order
48//  from top do bottom
49//
50//  gtid: global thread identifier for thread containing stack
51//  thread_data: thread data for task team thread containing stack
52//  threshold: value above which the trace statement triggers
53//  location: string identifying call site of this function (for trace)
54static void __kmp_trace_task_stack(kmp_int32 gtid,
55                                   kmp_thread_data_t *thread_data,
56                                   int threshold, char *location) {
57  kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
58  kmp_taskdata_t **stack_top = task_stack->ts_top;
59  kmp_int32 entries = task_stack->ts_entries;
60  kmp_taskdata_t *tied_task;
61
62  KA_TRACE(
63      threshold,
64      ("__kmp_trace_task_stack(start): location = %s, gtid = %d, entries = %d, "
65       "first_block = %p, stack_top = %p \n",
66       location, gtid, entries, task_stack->ts_first_block, stack_top));
67
68  KMP_DEBUG_ASSERT(stack_top != NULL);
69  KMP_DEBUG_ASSERT(entries > 0);
70
71  while (entries != 0) {
72    KMP_DEBUG_ASSERT(stack_top != &task_stack->ts_first_block.sb_block[0]);
73    // fix up ts_top if we need to pop from previous block
74    if (entries & TASK_STACK_INDEX_MASK == 0) {
75      kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(stack_top);
76
77      stack_block = stack_block->sb_prev;
78      stack_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE];
79    }
80
81    // finish bookkeeping
82    stack_top--;
83    entries--;
84
85    tied_task = *stack_top;
86
87    KMP_DEBUG_ASSERT(tied_task != NULL);
88    KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);
89
90    KA_TRACE(threshold,
91             ("__kmp_trace_task_stack(%s):             gtid=%d, entry=%d, "
92              "stack_top=%p, tied_task=%p\n",
93              location, gtid, entries, stack_top, tied_task));
94  }
95  KMP_DEBUG_ASSERT(stack_top == &task_stack->ts_first_block.sb_block[0]);
96
97  KA_TRACE(threshold,
98           ("__kmp_trace_task_stack(exit): location = %s, gtid = %d\n",
99            location, gtid));
100}
101
102//  __kmp_init_task_stack: initialize the task stack for the first time
103//  after a thread_data structure is created.
104//  It should not be necessary to do this again (assuming the stack works).
105//
106//  gtid: global thread identifier of calling thread
107//  thread_data: thread data for task team thread containing stack
108static void __kmp_init_task_stack(kmp_int32 gtid,
109                                  kmp_thread_data_t *thread_data) {
110  kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
111  kmp_stack_block_t *first_block;
112
113  // set up the first block of the stack
114  first_block = &task_stack->ts_first_block;
115  task_stack->ts_top = (kmp_taskdata_t **)first_block;
116  memset((void *)first_block, '\0',
117         TASK_STACK_BLOCK_SIZE * sizeof(kmp_taskdata_t *));
118
119  // initialize the stack to be empty
120  task_stack->ts_entries = TASK_STACK_EMPTY;
121  first_block->sb_next = NULL;
122  first_block->sb_prev = NULL;
123}
124
125//  __kmp_free_task_stack: free the task stack when thread_data is destroyed.
126//
127//  gtid: global thread identifier for calling thread
128//  thread_data: thread info for thread containing stack
129static void __kmp_free_task_stack(kmp_int32 gtid,
130                                  kmp_thread_data_t *thread_data) {
131  kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
132  kmp_stack_block_t *stack_block = &task_stack->ts_first_block;
133
134  KMP_DEBUG_ASSERT(task_stack->ts_entries == TASK_STACK_EMPTY);
135  // free from the second block of the stack
136  while (stack_block != NULL) {
137    kmp_stack_block_t *next_block = (stack_block) ? stack_block->sb_next : NULL;
138
139    stack_block->sb_next = NULL;
140    stack_block->sb_prev = NULL;
141    if (stack_block != &task_stack->ts_first_block) {
142      __kmp_thread_free(thread,
143                        stack_block); // free the block, if not the first
144    }
145    stack_block = next_block;
146  }
147  // initialize the stack to be empty
148  task_stack->ts_entries = 0;
149  task_stack->ts_top = NULL;
150}
151
152//  __kmp_push_task_stack: Push the tied task onto the task stack.
153//     Grow the stack if necessary by allocating another block.
154//
155//  gtid: global thread identifier for calling thread
156//  thread: thread info for thread containing stack
157//  tied_task: the task to push on the stack
158static void __kmp_push_task_stack(kmp_int32 gtid, kmp_info_t *thread,
159                                  kmp_taskdata_t *tied_task) {
160  // GEH - need to consider what to do if tt_threads_data not allocated yet
161  kmp_thread_data_t *thread_data =
162      &thread->th.th_task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)];
163  kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
164
165  if (tied_task->td_flags.team_serial || tied_task->td_flags.tasking_ser) {
166    return; // Don't push anything on stack if team or team tasks are serialized
167  }
168
169  KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);
170  KMP_DEBUG_ASSERT(task_stack->ts_top != NULL);
171
172  KA_TRACE(20,
173           ("__kmp_push_task_stack(enter): GTID: %d; THREAD: %p; TASK: %p\n",
174            gtid, thread, tied_task));
175  // Store entry
176  *(task_stack->ts_top) = tied_task;
177
178  // Do bookkeeping for next push
179  task_stack->ts_top++;
180  task_stack->ts_entries++;
181
182  if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) {
183    // Find beginning of this task block
184    kmp_stack_block_t *stack_block =
185        (kmp_stack_block_t *)(task_stack->ts_top - TASK_STACK_BLOCK_SIZE);
186
187    // Check if we already have a block
188    if (stack_block->sb_next !=
189        NULL) { // reset ts_top to beginning of next block
190      task_stack->ts_top = &stack_block->sb_next->sb_block[0];
191    } else { // Alloc new block and link it up
192      kmp_stack_block_t *new_block = (kmp_stack_block_t *)__kmp_thread_calloc(
193          thread, sizeof(kmp_stack_block_t));
194
195      task_stack->ts_top = &new_block->sb_block[0];
196      stack_block->sb_next = new_block;
197      new_block->sb_prev = stack_block;
198      new_block->sb_next = NULL;
199
200      KA_TRACE(
201          30,
202          ("__kmp_push_task_stack(): GTID: %d; TASK: %p; Alloc new block: %p\n",
203           gtid, tied_task, new_block));
204    }
205  }
206  KA_TRACE(20, ("__kmp_push_task_stack(exit): GTID: %d; TASK: %p\n", gtid,
207                tied_task));
208}
209
210//  __kmp_pop_task_stack: Pop the tied task from the task stack.  Don't return
211//  the task, just check to make sure it matches the ending task passed in.
212//
213//  gtid: global thread identifier for the calling thread
214//  thread: thread info structure containing stack
215//  tied_task: the task popped off the stack
216//  ending_task: the task that is ending (should match popped task)
217static void __kmp_pop_task_stack(kmp_int32 gtid, kmp_info_t *thread,
218                                 kmp_taskdata_t *ending_task) {
219  // GEH - need to consider what to do if tt_threads_data not allocated yet
220  kmp_thread_data_t *thread_data =
221      &thread->th.th_task_team->tt_threads_data[__kmp_tid_from_gtid(gtid)];
222  kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
223  kmp_taskdata_t *tied_task;
224
225  if (ending_task->td_flags.team_serial || ending_task->td_flags.tasking_ser) {
226    // Don't pop anything from stack if team or team tasks are serialized
227    return;
228  }
229
230  KMP_DEBUG_ASSERT(task_stack->ts_top != NULL);
231  KMP_DEBUG_ASSERT(task_stack->ts_entries > 0);
232
233  KA_TRACE(20, ("__kmp_pop_task_stack(enter): GTID: %d; THREAD: %p\n", gtid,
234                thread));
235
236  // fix up ts_top if we need to pop from previous block
237  if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) {
238    kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(task_stack->ts_top);
239
240    stack_block = stack_block->sb_prev;
241    task_stack->ts_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE];
242  }
243
244  // finish bookkeeping
245  task_stack->ts_top--;
246  task_stack->ts_entries--;
247
248  tied_task = *(task_stack->ts_top);
249
250  KMP_DEBUG_ASSERT(tied_task != NULL);
251  KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);
252  KMP_DEBUG_ASSERT(tied_task == ending_task); // If we built the stack correctly
253
254  KA_TRACE(20, ("__kmp_pop_task_stack(exit): GTID: %d; TASK: %p\n", gtid,
255                tied_task));
256  return;
257}
258#endif /* BUILD_TIED_TASK_STACK */
259
260// returns 1 if new task is allowed to execute, 0 otherwise
261// checks Task Scheduling constraint (if requested) and
262// mutexinoutset dependencies if any
263static bool __kmp_task_is_allowed(int gtid, const kmp_int32 is_constrained,
264                                  const kmp_taskdata_t *tasknew,
265                                  const kmp_taskdata_t *taskcurr) {
266  if (is_constrained && (tasknew->td_flags.tiedness == TASK_TIED)) {
267    // Check if the candidate obeys the Task Scheduling Constraints (TSC)
268    // only descendant of all deferred tied tasks can be scheduled, checking
269    // the last one is enough, as it in turn is the descendant of all others
270    kmp_taskdata_t *current = taskcurr->td_last_tied;
271    KMP_DEBUG_ASSERT(current != NULL);
272    // check if the task is not suspended on barrier
273    if (current->td_flags.tasktype == TASK_EXPLICIT ||
274        current->td_taskwait_thread > 0) { // <= 0 on barrier
275      kmp_int32 level = current->td_level;
276      kmp_taskdata_t *parent = tasknew->td_parent;
277      while (parent != current && parent->td_level > level) {
278        // check generation up to the level of the current task
279        parent = parent->td_parent;
280        KMP_DEBUG_ASSERT(parent != NULL);
281      }
282      if (parent != current)
283        return false;
284    }
285  }
286  // Check mutexinoutset dependencies, acquire locks
287  kmp_depnode_t *node = tasknew->td_depnode;
288#if OMPX_TASKGRAPH
289  if (!tasknew->is_taskgraph && UNLIKELY(node && (node->dn.mtx_num_locks > 0))) {
290#else
291  if (UNLIKELY(node && (node->dn.mtx_num_locks > 0))) {
292#endif
293    for (int i = 0; i < node->dn.mtx_num_locks; ++i) {
294      KMP_DEBUG_ASSERT(node->dn.mtx_locks[i] != NULL);
295      if (__kmp_test_lock(node->dn.mtx_locks[i], gtid))
296        continue;
297      // could not get the lock, release previous locks
298      for (int j = i - 1; j >= 0; --j)
299        __kmp_release_lock(node->dn.mtx_locks[j], gtid);
300      return false;
301    }
302    // negative num_locks means all locks acquired successfully
303    node->dn.mtx_num_locks = -node->dn.mtx_num_locks;
304  }
305  return true;
306}
307
308// __kmp_realloc_task_deque:
309// Re-allocates a task deque for a particular thread, copies the content from
310// the old deque and adjusts the necessary data structures relating to the
311// deque. This operation must be done with the deque_lock being held
312static void __kmp_realloc_task_deque(kmp_info_t *thread,
313                                     kmp_thread_data_t *thread_data) {
314  kmp_int32 size = TASK_DEQUE_SIZE(thread_data->td);
315  KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == size);
316  kmp_int32 new_size = 2 * size;
317
318  KE_TRACE(10, ("__kmp_realloc_task_deque: T#%d reallocating deque[from %d to "
319                "%d] for thread_data %p\n",
320                __kmp_gtid_from_thread(thread), size, new_size, thread_data));
321
322  kmp_taskdata_t **new_deque =
323      (kmp_taskdata_t **)__kmp_allocate(new_size * sizeof(kmp_taskdata_t *));
324
325  int i, j;
326  for (i = thread_data->td.td_deque_head, j = 0; j < size;
327       i = (i + 1) & TASK_DEQUE_MASK(thread_data->td), j++)
328    new_deque[j] = thread_data->td.td_deque[i];
329
330  __kmp_free(thread_data->td.td_deque);
331
332  thread_data->td.td_deque_head = 0;
333  thread_data->td.td_deque_tail = size;
334  thread_data->td.td_deque = new_deque;
335  thread_data->td.td_deque_size = new_size;
336}
337
338static kmp_task_pri_t *__kmp_alloc_task_pri_list() {
339  kmp_task_pri_t *l = (kmp_task_pri_t *)__kmp_allocate(sizeof(kmp_task_pri_t));
340  kmp_thread_data_t *thread_data = &l->td;
341  __kmp_init_bootstrap_lock(&thread_data->td.td_deque_lock);
342  thread_data->td.td_deque_last_stolen = -1;
343  KE_TRACE(20, ("__kmp_alloc_task_pri_list: T#%d allocating deque[%d] "
344                "for thread_data %p\n",
345                __kmp_get_gtid(), INITIAL_TASK_DEQUE_SIZE, thread_data));
346  thread_data->td.td_deque = (kmp_taskdata_t **)__kmp_allocate(
347      INITIAL_TASK_DEQUE_SIZE * sizeof(kmp_taskdata_t *));
348  thread_data->td.td_deque_size = INITIAL_TASK_DEQUE_SIZE;
349  return l;
350}
351
352// The function finds the deque of priority tasks with given priority, or
353// allocates a new deque and put it into sorted (high -> low) list of deques.
354// Deques of non-default priority tasks are shared between all threads in team,
355// as opposed to per-thread deques of tasks with default priority.
356// The function is called under the lock task_team->tt.tt_task_pri_lock.
357static kmp_thread_data_t *
358__kmp_get_priority_deque_data(kmp_task_team_t *task_team, kmp_int32 pri) {
359  kmp_thread_data_t *thread_data;
360  kmp_task_pri_t *lst = task_team->tt.tt_task_pri_list;
361  if (lst->priority == pri) {
362    // Found queue of tasks with given priority.
363    thread_data = &lst->td;
364  } else if (lst->priority < pri) {
365    // All current priority queues contain tasks with lower priority.
366    // Allocate new one for given priority tasks.
367    kmp_task_pri_t *list = __kmp_alloc_task_pri_list();
368    thread_data = &list->td;
369    list->priority = pri;
370    list->next = lst;
371    task_team->tt.tt_task_pri_list = list;
372  } else { // task_team->tt.tt_task_pri_list->priority > pri
373    kmp_task_pri_t *next_queue = lst->next;
374    while (next_queue && next_queue->priority > pri) {
375      lst = next_queue;
376      next_queue = lst->next;
377    }
378    // lst->priority > pri && (next == NULL || pri >= next->priority)
379    if (next_queue == NULL) {
380      // No queue with pri priority, need to allocate new one.
381      kmp_task_pri_t *list = __kmp_alloc_task_pri_list();
382      thread_data = &list->td;
383      list->priority = pri;
384      list->next = NULL;
385      lst->next = list;
386    } else if (next_queue->priority == pri) {
387      // Found queue of tasks with given priority.
388      thread_data = &next_queue->td;
389    } else { // lst->priority > pri > next->priority
390      // insert newly allocated between existed queues
391      kmp_task_pri_t *list = __kmp_alloc_task_pri_list();
392      thread_data = &list->td;
393      list->priority = pri;
394      list->next = next_queue;
395      lst->next = list;
396    }
397  }
398  return thread_data;
399}
400
401//  __kmp_push_priority_task: Add a task to the team's priority task deque
402static kmp_int32 __kmp_push_priority_task(kmp_int32 gtid, kmp_info_t *thread,
403                                          kmp_taskdata_t *taskdata,
404                                          kmp_task_team_t *task_team,
405                                          kmp_int32 pri) {
406  kmp_thread_data_t *thread_data = NULL;
407  KA_TRACE(20,
408           ("__kmp_push_priority_task: T#%d trying to push task %p, pri %d.\n",
409            gtid, taskdata, pri));
410
411  // Find task queue specific to priority value
412  kmp_task_pri_t *lst = task_team->tt.tt_task_pri_list;
413  if (UNLIKELY(lst == NULL)) {
414    __kmp_acquire_bootstrap_lock(&task_team->tt.tt_task_pri_lock);
415    if (task_team->tt.tt_task_pri_list == NULL) {
416      // List of queues is still empty, allocate one.
417      kmp_task_pri_t *list = __kmp_alloc_task_pri_list();
418      thread_data = &list->td;
419      list->priority = pri;
420      list->next = NULL;
421      task_team->tt.tt_task_pri_list = list;
422    } else {
423      // Other thread initialized a queue. Check if it fits and get thread_data.
424      thread_data = __kmp_get_priority_deque_data(task_team, pri);
425    }
426    __kmp_release_bootstrap_lock(&task_team->tt.tt_task_pri_lock);
427  } else {
428    if (lst->priority == pri) {
429      // Found queue of tasks with given priority.
430      thread_data = &lst->td;
431    } else {
432      __kmp_acquire_bootstrap_lock(&task_team->tt.tt_task_pri_lock);
433      thread_data = __kmp_get_priority_deque_data(task_team, pri);
434      __kmp_release_bootstrap_lock(&task_team->tt.tt_task_pri_lock);
435    }
436  }
437  KMP_DEBUG_ASSERT(thread_data);
438
439  __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
440  // Check if deque is full
441  if (TCR_4(thread_data->td.td_deque_ntasks) >=
442      TASK_DEQUE_SIZE(thread_data->td)) {
443    if (__kmp_enable_task_throttling &&
444        __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata,
445                              thread->th.th_current_task)) {
446      __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
447      KA_TRACE(20, ("__kmp_push_priority_task: T#%d deque is full; returning "
448                    "TASK_NOT_PUSHED for task %p\n",
449                    gtid, taskdata));
450      return TASK_NOT_PUSHED;
451    } else {
452      // expand deque to push the task which is not allowed to execute
453      __kmp_realloc_task_deque(thread, thread_data);
454    }
455  }
456  KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) <
457                   TASK_DEQUE_SIZE(thread_data->td));
458  // Push taskdata.
459  thread_data->td.td_deque[thread_data->td.td_deque_tail] = taskdata;
460  // Wrap index.
461  thread_data->td.td_deque_tail =
462      (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td);
463  TCW_4(thread_data->td.td_deque_ntasks,
464        TCR_4(thread_data->td.td_deque_ntasks) + 1); // Adjust task count
465  KMP_FSYNC_RELEASING(thread->th.th_current_task); // releasing self
466  KMP_FSYNC_RELEASING(taskdata); // releasing child
467  KA_TRACE(20, ("__kmp_push_priority_task: T#%d returning "
468                "TASK_SUCCESSFULLY_PUSHED: task=%p ntasks=%d head=%u tail=%u\n",
469                gtid, taskdata, thread_data->td.td_deque_ntasks,
470                thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
471  __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
472  task_team->tt.tt_num_task_pri++; // atomic inc
473  return TASK_SUCCESSFULLY_PUSHED;
474}
475
476//  __kmp_push_task: Add a task to the thread's deque
477static kmp_int32 __kmp_push_task(kmp_int32 gtid, kmp_task_t *task) {
478  kmp_info_t *thread = __kmp_threads[gtid];
479  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
480
481  // If we encounter a hidden helper task, and the current thread is not a
482  // hidden helper thread, we have to give the task to any hidden helper thread
483  // starting from its shadow one.
484  if (UNLIKELY(taskdata->td_flags.hidden_helper &&
485               !KMP_HIDDEN_HELPER_THREAD(gtid))) {
486    kmp_int32 shadow_gtid = KMP_GTID_TO_SHADOW_GTID(gtid);
487    __kmpc_give_task(task, __kmp_tid_from_gtid(shadow_gtid));
488    // Signal the hidden helper threads.
489    __kmp_hidden_helper_worker_thread_signal();
490    return TASK_SUCCESSFULLY_PUSHED;
491  }
492
493  kmp_task_team_t *task_team = thread->th.th_task_team;
494  kmp_int32 tid = __kmp_tid_from_gtid(gtid);
495  kmp_thread_data_t *thread_data;
496
497  KA_TRACE(20,
498           ("__kmp_push_task: T#%d trying to push task %p.\n", gtid, taskdata));
499
500  if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) {
501    // untied task needs to increment counter so that the task structure is not
502    // freed prematurely
503    kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count);
504    KMP_DEBUG_USE_VAR(counter);
505    KA_TRACE(
506        20,
507        ("__kmp_push_task: T#%d untied_count (%d) incremented for task %p\n",
508         gtid, counter, taskdata));
509  }
510
511  // The first check avoids building task_team thread data if serialized
512  if (UNLIKELY(taskdata->td_flags.task_serial)) {
513    KA_TRACE(20, ("__kmp_push_task: T#%d team serialized; returning "
514                  "TASK_NOT_PUSHED for task %p\n",
515                  gtid, taskdata));
516    return TASK_NOT_PUSHED;
517  }
518
519  // Now that serialized tasks have returned, we can assume that we are not in
520  // immediate exec mode
521  KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
522  if (UNLIKELY(!KMP_TASKING_ENABLED(task_team))) {
523    __kmp_enable_tasking(task_team, thread);
524  }
525  KMP_DEBUG_ASSERT(TCR_4(task_team->tt.tt_found_tasks) == TRUE);
526  KMP_DEBUG_ASSERT(TCR_PTR(task_team->tt.tt_threads_data) != NULL);
527
528  if (taskdata->td_flags.priority_specified && task->data2.priority > 0 &&
529      __kmp_max_task_priority > 0) {
530    int pri = KMP_MIN(task->data2.priority, __kmp_max_task_priority);
531    return __kmp_push_priority_task(gtid, thread, taskdata, task_team, pri);
532  }
533
534  // Find tasking deque specific to encountering thread
535  thread_data = &task_team->tt.tt_threads_data[tid];
536
537  // No lock needed since only owner can allocate. If the task is hidden_helper,
538  // we don't need it either because we have initialized the dequeue for hidden
539  // helper thread data.
540  if (UNLIKELY(thread_data->td.td_deque == NULL)) {
541    __kmp_alloc_task_deque(thread, thread_data);
542  }
543
544  int locked = 0;
545  // Check if deque is full
546  if (TCR_4(thread_data->td.td_deque_ntasks) >=
547      TASK_DEQUE_SIZE(thread_data->td)) {
548    if (__kmp_enable_task_throttling &&
549        __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata,
550                              thread->th.th_current_task)) {
551      KA_TRACE(20, ("__kmp_push_task: T#%d deque is full; returning "
552                    "TASK_NOT_PUSHED for task %p\n",
553                    gtid, taskdata));
554      return TASK_NOT_PUSHED;
555    } else {
556      __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
557      locked = 1;
558      if (TCR_4(thread_data->td.td_deque_ntasks) >=
559          TASK_DEQUE_SIZE(thread_data->td)) {
560        // expand deque to push the task which is not allowed to execute
561        __kmp_realloc_task_deque(thread, thread_data);
562      }
563    }
564  }
565  // Lock the deque for the task push operation
566  if (!locked) {
567    __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
568    // Need to recheck as we can get a proxy task from thread outside of OpenMP
569    if (TCR_4(thread_data->td.td_deque_ntasks) >=
570        TASK_DEQUE_SIZE(thread_data->td)) {
571      if (__kmp_enable_task_throttling &&
572          __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata,
573                                thread->th.th_current_task)) {
574        __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
575        KA_TRACE(20, ("__kmp_push_task: T#%d deque is full on 2nd check; "
576                      "returning TASK_NOT_PUSHED for task %p\n",
577                      gtid, taskdata));
578        return TASK_NOT_PUSHED;
579      } else {
580        // expand deque to push the task which is not allowed to execute
581        __kmp_realloc_task_deque(thread, thread_data);
582      }
583    }
584  }
585  // Must have room since no thread can add tasks but calling thread
586  KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) <
587                   TASK_DEQUE_SIZE(thread_data->td));
588
589  thread_data->td.td_deque[thread_data->td.td_deque_tail] =
590      taskdata; // Push taskdata
591  // Wrap index.
592  thread_data->td.td_deque_tail =
593      (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td);
594  TCW_4(thread_data->td.td_deque_ntasks,
595        TCR_4(thread_data->td.td_deque_ntasks) + 1); // Adjust task count
596  KMP_FSYNC_RELEASING(thread->th.th_current_task); // releasing self
597  KMP_FSYNC_RELEASING(taskdata); // releasing child
598  KA_TRACE(20, ("__kmp_push_task: T#%d returning TASK_SUCCESSFULLY_PUSHED: "
599                "task=%p ntasks=%d head=%u tail=%u\n",
600                gtid, taskdata, thread_data->td.td_deque_ntasks,
601                thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
602
603  __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
604
605  return TASK_SUCCESSFULLY_PUSHED;
606}
607
608// __kmp_pop_current_task_from_thread: set up current task from called thread
609// when team ends
610//
611// this_thr: thread structure to set current_task in.
612void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr) {
613  KF_TRACE(10, ("__kmp_pop_current_task_from_thread(enter): T#%d "
614                "this_thread=%p, curtask=%p, "
615                "curtask_parent=%p\n",
616                0, this_thr, this_thr->th.th_current_task,
617                this_thr->th.th_current_task->td_parent));
618
619  this_thr->th.th_current_task = this_thr->th.th_current_task->td_parent;
620
621  KF_TRACE(10, ("__kmp_pop_current_task_from_thread(exit): T#%d "
622                "this_thread=%p, curtask=%p, "
623                "curtask_parent=%p\n",
624                0, this_thr, this_thr->th.th_current_task,
625                this_thr->th.th_current_task->td_parent));
626}
627
628// __kmp_push_current_task_to_thread: set up current task in called thread for a
629// new team
630//
631// this_thr: thread structure to set up
632// team: team for implicit task data
633// tid: thread within team to set up
634void __kmp_push_current_task_to_thread(kmp_info_t *this_thr, kmp_team_t *team,
635                                       int tid) {
636  // current task of the thread is a parent of the new just created implicit
637  // tasks of new team
638  KF_TRACE(10, ("__kmp_push_current_task_to_thread(enter): T#%d this_thread=%p "
639                "curtask=%p "
640                "parent_task=%p\n",
641                tid, this_thr, this_thr->th.th_current_task,
642                team->t.t_implicit_task_taskdata[tid].td_parent));
643
644  KMP_DEBUG_ASSERT(this_thr != NULL);
645
646  if (tid == 0) {
647    if (this_thr->th.th_current_task != &team->t.t_implicit_task_taskdata[0]) {
648      team->t.t_implicit_task_taskdata[0].td_parent =
649          this_thr->th.th_current_task;
650      this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[0];
651    }
652  } else {
653    team->t.t_implicit_task_taskdata[tid].td_parent =
654        team->t.t_implicit_task_taskdata[0].td_parent;
655    this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[tid];
656  }
657
658  KF_TRACE(10, ("__kmp_push_current_task_to_thread(exit): T#%d this_thread=%p "
659                "curtask=%p "
660                "parent_task=%p\n",
661                tid, this_thr, this_thr->th.th_current_task,
662                team->t.t_implicit_task_taskdata[tid].td_parent));
663}
664
665// __kmp_task_start: bookkeeping for a task starting execution
666//
667// GTID: global thread id of calling thread
668// task: task starting execution
669// current_task: task suspending
670static void __kmp_task_start(kmp_int32 gtid, kmp_task_t *task,
671                             kmp_taskdata_t *current_task) {
672  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
673  kmp_info_t *thread = __kmp_threads[gtid];
674
675  KA_TRACE(10,
676           ("__kmp_task_start(enter): T#%d starting task %p: current_task=%p\n",
677            gtid, taskdata, current_task));
678
679  KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
680
681  // mark currently executing task as suspended
682  // TODO: GEH - make sure root team implicit task is initialized properly.
683  // KMP_DEBUG_ASSERT( current_task -> td_flags.executing == 1 );
684  current_task->td_flags.executing = 0;
685
686// Add task to stack if tied
687#ifdef BUILD_TIED_TASK_STACK
688  if (taskdata->td_flags.tiedness == TASK_TIED) {
689    __kmp_push_task_stack(gtid, thread, taskdata);
690  }
691#endif /* BUILD_TIED_TASK_STACK */
692
693  // mark starting task as executing and as current task
694  thread->th.th_current_task = taskdata;
695
696  KMP_DEBUG_ASSERT(taskdata->td_flags.started == 0 ||
697                   taskdata->td_flags.tiedness == TASK_UNTIED);
698  KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0 ||
699                   taskdata->td_flags.tiedness == TASK_UNTIED);
700  taskdata->td_flags.started = 1;
701  taskdata->td_flags.executing = 1;
702  KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
703  KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
704
705  // GEH TODO: shouldn't we pass some sort of location identifier here?
706  // APT: yes, we will pass location here.
707  // need to store current thread state (in a thread or taskdata structure)
708  // before setting work_state, otherwise wrong state is set after end of task
709
710  KA_TRACE(10, ("__kmp_task_start(exit): T#%d task=%p\n", gtid, taskdata));
711
712  return;
713}
714
715#if OMPT_SUPPORT
716//------------------------------------------------------------------------------
717// __ompt_task_init:
718//   Initialize OMPT fields maintained by a task. This will only be called after
719//   ompt_start_tool, so we already know whether ompt is enabled or not.
720
721static inline void __ompt_task_init(kmp_taskdata_t *task, int tid) {
722  // The calls to __ompt_task_init already have the ompt_enabled condition.
723  task->ompt_task_info.task_data.value = 0;
724  task->ompt_task_info.frame.exit_frame = ompt_data_none;
725  task->ompt_task_info.frame.enter_frame = ompt_data_none;
726  task->ompt_task_info.frame.exit_frame_flags =
727      ompt_frame_runtime | ompt_frame_framepointer;
728  task->ompt_task_info.frame.enter_frame_flags =
729      ompt_frame_runtime | ompt_frame_framepointer;
730  task->ompt_task_info.dispatch_chunk.start = 0;
731  task->ompt_task_info.dispatch_chunk.iterations = 0;
732}
733
734// __ompt_task_start:
735//   Build and trigger task-begin event
736static inline void __ompt_task_start(kmp_task_t *task,
737                                     kmp_taskdata_t *current_task,
738                                     kmp_int32 gtid) {
739  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
740  ompt_task_status_t status = ompt_task_switch;
741  if (__kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded) {
742    status = ompt_task_yield;
743    __kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded = 0;
744  }
745  /* let OMPT know that we're about to run this task */
746  if (ompt_enabled.ompt_callback_task_schedule) {
747    ompt_callbacks.ompt_callback(ompt_callback_task_schedule)(
748        &(current_task->ompt_task_info.task_data), status,
749        &(taskdata->ompt_task_info.task_data));
750  }
751  taskdata->ompt_task_info.scheduling_parent = current_task;
752}
753
754// __ompt_task_finish:
755//   Build and trigger final task-schedule event
756static inline void __ompt_task_finish(kmp_task_t *task,
757                                      kmp_taskdata_t *resumed_task,
758                                      ompt_task_status_t status) {
759  if (ompt_enabled.ompt_callback_task_schedule) {
760    kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
761    if (__kmp_omp_cancellation && taskdata->td_taskgroup &&
762        taskdata->td_taskgroup->cancel_request == cancel_taskgroup) {
763      status = ompt_task_cancel;
764    }
765
766    /* let OMPT know that we're returning to the callee task */
767    ompt_callbacks.ompt_callback(ompt_callback_task_schedule)(
768        &(taskdata->ompt_task_info.task_data), status,
769        (resumed_task ? &(resumed_task->ompt_task_info.task_data) : NULL));
770  }
771}
772#endif
773
774template <bool ompt>
775static void __kmpc_omp_task_begin_if0_template(ident_t *loc_ref, kmp_int32 gtid,
776                                               kmp_task_t *task,
777                                               void *frame_address,
778                                               void *return_address) {
779  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
780  kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
781
782  KA_TRACE(10, ("__kmpc_omp_task_begin_if0(enter): T#%d loc=%p task=%p "
783                "current_task=%p\n",
784                gtid, loc_ref, taskdata, current_task));
785
786  if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) {
787    // untied task needs to increment counter so that the task structure is not
788    // freed prematurely
789    kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count);
790    KMP_DEBUG_USE_VAR(counter);
791    KA_TRACE(20, ("__kmpc_omp_task_begin_if0: T#%d untied_count (%d) "
792                  "incremented for task %p\n",
793                  gtid, counter, taskdata));
794  }
795
796  taskdata->td_flags.task_serial =
797      1; // Execute this task immediately, not deferred.
798  __kmp_task_start(gtid, task, current_task);
799
800#if OMPT_SUPPORT
801  if (ompt) {
802    if (current_task->ompt_task_info.frame.enter_frame.ptr == NULL) {
803      current_task->ompt_task_info.frame.enter_frame.ptr =
804          taskdata->ompt_task_info.frame.exit_frame.ptr = frame_address;
805      current_task->ompt_task_info.frame.enter_frame_flags =
806          taskdata->ompt_task_info.frame.exit_frame_flags =
807              ompt_frame_application | ompt_frame_framepointer;
808    }
809    if (ompt_enabled.ompt_callback_task_create) {
810      ompt_task_info_t *parent_info = &(current_task->ompt_task_info);
811      ompt_callbacks.ompt_callback(ompt_callback_task_create)(
812          &(parent_info->task_data), &(parent_info->frame),
813          &(taskdata->ompt_task_info.task_data),
814          ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(taskdata), 0,
815          return_address);
816    }
817    __ompt_task_start(task, current_task, gtid);
818  }
819#endif // OMPT_SUPPORT
820
821  KA_TRACE(10, ("__kmpc_omp_task_begin_if0(exit): T#%d loc=%p task=%p,\n", gtid,
822                loc_ref, taskdata));
823}
824
825#if OMPT_SUPPORT
826OMPT_NOINLINE
827static void __kmpc_omp_task_begin_if0_ompt(ident_t *loc_ref, kmp_int32 gtid,
828                                           kmp_task_t *task,
829                                           void *frame_address,
830                                           void *return_address) {
831  __kmpc_omp_task_begin_if0_template<true>(loc_ref, gtid, task, frame_address,
832                                           return_address);
833}
834#endif // OMPT_SUPPORT
835
836// __kmpc_omp_task_begin_if0: report that a given serialized task has started
837// execution
838//
839// loc_ref: source location information; points to beginning of task block.
840// gtid: global thread number.
841// task: task thunk for the started task.
842#ifdef __s390x__
843// This is required for OMPT_GET_FRAME_ADDRESS(1) to compile on s390x.
844// In order for it to work correctly, the caller also needs to be compiled with
845// backchain. If a caller is compiled without backchain,
846// OMPT_GET_FRAME_ADDRESS(1) will produce an incorrect value, but will not
847// crash.
848__attribute__((target("backchain")))
849#endif
850void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid,
851                               kmp_task_t *task) {
852#if OMPT_SUPPORT
853  if (UNLIKELY(ompt_enabled.enabled)) {
854    OMPT_STORE_RETURN_ADDRESS(gtid);
855    __kmpc_omp_task_begin_if0_ompt(loc_ref, gtid, task,
856                                   OMPT_GET_FRAME_ADDRESS(1),
857                                   OMPT_LOAD_RETURN_ADDRESS(gtid));
858    return;
859  }
860#endif
861  __kmpc_omp_task_begin_if0_template<false>(loc_ref, gtid, task, NULL, NULL);
862}
863
864#ifdef TASK_UNUSED
865// __kmpc_omp_task_begin: report that a given task has started execution
866// NEVER GENERATED BY COMPILER, DEPRECATED!!!
867void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task) {
868  kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
869
870  KA_TRACE(
871      10,
872      ("__kmpc_omp_task_begin(enter): T#%d loc=%p task=%p current_task=%p\n",
873       gtid, loc_ref, KMP_TASK_TO_TASKDATA(task), current_task));
874
875  __kmp_task_start(gtid, task, current_task);
876
877  KA_TRACE(10, ("__kmpc_omp_task_begin(exit): T#%d loc=%p task=%p,\n", gtid,
878                loc_ref, KMP_TASK_TO_TASKDATA(task)));
879  return;
880}
881#endif // TASK_UNUSED
882
883// __kmp_free_task: free the current task space and the space for shareds
884//
885// gtid: Global thread ID of calling thread
886// taskdata: task to free
887// thread: thread data structure of caller
888static void __kmp_free_task(kmp_int32 gtid, kmp_taskdata_t *taskdata,
889                            kmp_info_t *thread) {
890  KA_TRACE(30, ("__kmp_free_task: T#%d freeing data from task %p\n", gtid,
891                taskdata));
892
893  // Check to make sure all flags and counters have the correct values
894  KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
895  KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0);
896  KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 1);
897  KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
898  KMP_DEBUG_ASSERT(taskdata->td_allocated_child_tasks == 0 ||
899                   taskdata->td_flags.task_serial == 1);
900  KMP_DEBUG_ASSERT(taskdata->td_incomplete_child_tasks == 0);
901  kmp_task_t *task = KMP_TASKDATA_TO_TASK(taskdata);
902  // Clear data to not be re-used later by mistake.
903  task->data1.destructors = NULL;
904  task->data2.priority = 0;
905
906  taskdata->td_flags.freed = 1;
907#if OMPX_TASKGRAPH
908  // do not free tasks in taskgraph
909  if (!taskdata->is_taskgraph) {
910#endif
911// deallocate the taskdata and shared variable blocks associated with this task
912#if USE_FAST_MEMORY
913  __kmp_fast_free(thread, taskdata);
914#else /* ! USE_FAST_MEMORY */
915  __kmp_thread_free(thread, taskdata);
916#endif
917#if OMPX_TASKGRAPH
918  } else {
919    taskdata->td_flags.complete = 0;
920    taskdata->td_flags.started = 0;
921    taskdata->td_flags.freed = 0;
922    taskdata->td_flags.executing = 0;
923    taskdata->td_flags.task_serial =
924        (taskdata->td_parent->td_flags.final ||
925          taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser);
926
927    // taskdata->td_allow_completion_event.pending_events_count = 1;
928    KMP_ATOMIC_ST_RLX(&taskdata->td_untied_count, 0);
929    KMP_ATOMIC_ST_RLX(&taskdata->td_incomplete_child_tasks, 0);
930    // start at one because counts current task and children
931    KMP_ATOMIC_ST_RLX(&taskdata->td_allocated_child_tasks, 1);
932  }
933#endif
934
935  KA_TRACE(20, ("__kmp_free_task: T#%d freed task %p\n", gtid, taskdata));
936}
937
938// __kmp_free_task_and_ancestors: free the current task and ancestors without
939// children
940//
941// gtid: Global thread ID of calling thread
942// taskdata: task to free
943// thread: thread data structure of caller
944static void __kmp_free_task_and_ancestors(kmp_int32 gtid,
945                                          kmp_taskdata_t *taskdata,
946                                          kmp_info_t *thread) {
947  // Proxy tasks must always be allowed to free their parents
948  // because they can be run in background even in serial mode.
949  kmp_int32 team_serial =
950      (taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser) &&
951      !taskdata->td_flags.proxy;
952  KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
953
954  kmp_int32 children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1;
955  KMP_DEBUG_ASSERT(children >= 0);
956
957  // Now, go up the ancestor tree to see if any ancestors can now be freed.
958  while (children == 0) {
959    kmp_taskdata_t *parent_taskdata = taskdata->td_parent;
960
961    KA_TRACE(20, ("__kmp_free_task_and_ancestors(enter): T#%d task %p complete "
962                  "and freeing itself\n",
963                  gtid, taskdata));
964
965    // --- Deallocate my ancestor task ---
966    __kmp_free_task(gtid, taskdata, thread);
967
968    taskdata = parent_taskdata;
969
970    if (team_serial)
971      return;
972    // Stop checking ancestors at implicit task instead of walking up ancestor
973    // tree to avoid premature deallocation of ancestors.
974    if (taskdata->td_flags.tasktype == TASK_IMPLICIT) {
975      if (taskdata->td_dephash) { // do we need to cleanup dephash?
976        int children = KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks);
977        kmp_tasking_flags_t flags_old = taskdata->td_flags;
978        if (children == 0 && flags_old.complete == 1) {
979          kmp_tasking_flags_t flags_new = flags_old;
980          flags_new.complete = 0;
981          if (KMP_COMPARE_AND_STORE_ACQ32(
982                  RCAST(kmp_int32 *, &taskdata->td_flags),
983                  *RCAST(kmp_int32 *, &flags_old),
984                  *RCAST(kmp_int32 *, &flags_new))) {
985            KA_TRACE(100, ("__kmp_free_task_and_ancestors: T#%d cleans "
986                           "dephash of implicit task %p\n",
987                           gtid, taskdata));
988            // cleanup dephash of finished implicit task
989            __kmp_dephash_free_entries(thread, taskdata->td_dephash);
990          }
991        }
992      }
993      return;
994    }
995    // Predecrement simulated by "- 1" calculation
996    children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1;
997    KMP_DEBUG_ASSERT(children >= 0);
998  }
999
1000  KA_TRACE(
1001      20, ("__kmp_free_task_and_ancestors(exit): T#%d task %p has %d children; "
1002           "not freeing it yet\n",
1003           gtid, taskdata, children));
1004}
1005
1006// Only need to keep track of child task counts if any of the following:
1007// 1. team parallel and tasking not serialized;
1008// 2. it is a proxy or detachable or hidden helper task
1009// 3. the children counter of its parent task is greater than 0.
1010// The reason for the 3rd one is for serialized team that found detached task,
1011// hidden helper task, T. In this case, the execution of T is still deferred,
1012// and it is also possible that a regular task depends on T. In this case, if we
1013// don't track the children, task synchronization will be broken.
1014static bool __kmp_track_children_task(kmp_taskdata_t *taskdata) {
1015  kmp_tasking_flags_t flags = taskdata->td_flags;
1016  bool ret = !(flags.team_serial || flags.tasking_ser);
1017  ret = ret || flags.proxy == TASK_PROXY ||
1018        flags.detachable == TASK_DETACHABLE || flags.hidden_helper;
1019  ret = ret ||
1020        KMP_ATOMIC_LD_ACQ(&taskdata->td_parent->td_incomplete_child_tasks) > 0;
1021#if OMPX_TASKGRAPH
1022  if (taskdata->td_taskgroup && taskdata->is_taskgraph)
1023    ret = ret || KMP_ATOMIC_LD_ACQ(&taskdata->td_taskgroup->count) > 0;
1024#endif
1025  return ret;
1026}
1027
1028// __kmp_task_finish: bookkeeping to do when a task finishes execution
1029//
1030// gtid: global thread ID for calling thread
1031// task: task to be finished
1032// resumed_task: task to be resumed.  (may be NULL if task is serialized)
1033//
1034// template<ompt>: effectively ompt_enabled.enabled!=0
1035// the version with ompt=false is inlined, allowing to optimize away all ompt
1036// code in this case
1037template <bool ompt>
1038static void __kmp_task_finish(kmp_int32 gtid, kmp_task_t *task,
1039                              kmp_taskdata_t *resumed_task) {
1040  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
1041  kmp_info_t *thread = __kmp_threads[gtid];
1042  kmp_task_team_t *task_team =
1043      thread->th.th_task_team; // might be NULL for serial teams...
1044#if OMPX_TASKGRAPH
1045  // to avoid seg fault when we need to access taskdata->td_flags after free when using vanilla taskloop
1046  bool is_taskgraph;
1047#endif
1048#if KMP_DEBUG
1049  kmp_int32 children = 0;
1050#endif
1051  KA_TRACE(10, ("__kmp_task_finish(enter): T#%d finishing task %p and resuming "
1052                "task %p\n",
1053                gtid, taskdata, resumed_task));
1054
1055  KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
1056
1057#if OMPX_TASKGRAPH
1058  is_taskgraph = taskdata->is_taskgraph;
1059#endif
1060
1061// Pop task from stack if tied
1062#ifdef BUILD_TIED_TASK_STACK
1063  if (taskdata->td_flags.tiedness == TASK_TIED) {
1064    __kmp_pop_task_stack(gtid, thread, taskdata);
1065  }
1066#endif /* BUILD_TIED_TASK_STACK */
1067
1068  if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) {
1069    // untied task needs to check the counter so that the task structure is not
1070    // freed prematurely
1071    kmp_int32 counter = KMP_ATOMIC_DEC(&taskdata->td_untied_count) - 1;
1072    KA_TRACE(
1073        20,
1074        ("__kmp_task_finish: T#%d untied_count (%d) decremented for task %p\n",
1075         gtid, counter, taskdata));
1076    if (counter > 0) {
1077      // untied task is not done, to be continued possibly by other thread, do
1078      // not free it now
1079      if (resumed_task == NULL) {
1080        KMP_DEBUG_ASSERT(taskdata->td_flags.task_serial);
1081        resumed_task = taskdata->td_parent; // In a serialized task, the resumed
1082        // task is the parent
1083      }
1084      thread->th.th_current_task = resumed_task; // restore current_task
1085      resumed_task->td_flags.executing = 1; // resume previous task
1086      KA_TRACE(10, ("__kmp_task_finish(exit): T#%d partially done task %p, "
1087                    "resuming task %p\n",
1088                    gtid, taskdata, resumed_task));
1089      return;
1090    }
1091  }
1092
1093  // bookkeeping for resuming task:
1094  // GEH - note tasking_ser => task_serial
1095  KMP_DEBUG_ASSERT(
1096      (taskdata->td_flags.tasking_ser || taskdata->td_flags.task_serial) ==
1097      taskdata->td_flags.task_serial);
1098  if (taskdata->td_flags.task_serial) {
1099    if (resumed_task == NULL) {
1100      resumed_task = taskdata->td_parent; // In a serialized task, the resumed
1101      // task is the parent
1102    }
1103  } else {
1104    KMP_DEBUG_ASSERT(resumed_task !=
1105                     NULL); // verify that resumed task is passed as argument
1106  }
1107
1108  /* If the tasks' destructor thunk flag has been set, we need to invoke the
1109     destructor thunk that has been generated by the compiler. The code is
1110     placed here, since at this point other tasks might have been released
1111     hence overlapping the destructor invocations with some other work in the
1112     released tasks.  The OpenMP spec is not specific on when the destructors
1113     are invoked, so we should be free to choose. */
1114  if (UNLIKELY(taskdata->td_flags.destructors_thunk)) {
1115    kmp_routine_entry_t destr_thunk = task->data1.destructors;
1116    KMP_ASSERT(destr_thunk);
1117    destr_thunk(gtid, task);
1118  }
1119
1120  KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
1121  KMP_DEBUG_ASSERT(taskdata->td_flags.started == 1);
1122  KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
1123
1124  bool completed = true;
1125  if (UNLIKELY(taskdata->td_flags.detachable == TASK_DETACHABLE)) {
1126    if (taskdata->td_allow_completion_event.type ==
1127        KMP_EVENT_ALLOW_COMPLETION) {
1128      // event hasn't been fulfilled yet. Try to detach task.
1129      __kmp_acquire_tas_lock(&taskdata->td_allow_completion_event.lock, gtid);
1130      if (taskdata->td_allow_completion_event.type ==
1131          KMP_EVENT_ALLOW_COMPLETION) {
1132        // task finished execution
1133        KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1);
1134        taskdata->td_flags.executing = 0; // suspend the finishing task
1135
1136#if OMPT_SUPPORT
1137        // For a detached task, which is not completed, we switch back
1138        // the omp_fulfill_event signals completion
1139        // locking is necessary to avoid a race with ompt_task_late_fulfill
1140        if (ompt)
1141          __ompt_task_finish(task, resumed_task, ompt_task_detach);
1142#endif
1143
1144        // no access to taskdata after this point!
1145        // __kmp_fulfill_event might free taskdata at any time from now
1146
1147        taskdata->td_flags.proxy = TASK_PROXY; // proxify!
1148        completed = false;
1149      }
1150      __kmp_release_tas_lock(&taskdata->td_allow_completion_event.lock, gtid);
1151    }
1152  }
1153
1154  // Tasks with valid target async handles must be re-enqueued.
1155  if (taskdata->td_target_data.async_handle != NULL) {
1156    // Note: no need to translate gtid to its shadow. If the current thread is a
1157    // hidden helper one, then the gtid is already correct. Otherwise, hidden
1158    // helper threads are disabled, and gtid refers to a OpenMP thread.
1159    __kmpc_give_task(task, __kmp_tid_from_gtid(gtid));
1160    if (KMP_HIDDEN_HELPER_THREAD(gtid))
1161      __kmp_hidden_helper_worker_thread_signal();
1162    completed = false;
1163  }
1164
1165  if (completed) {
1166    taskdata->td_flags.complete = 1; // mark the task as completed
1167#if OMPX_TASKGRAPH
1168    taskdata->td_flags.onced = 1; // mark the task as ran once already
1169#endif
1170
1171#if OMPT_SUPPORT
1172    // This is not a detached task, we are done here
1173    if (ompt)
1174      __ompt_task_finish(task, resumed_task, ompt_task_complete);
1175#endif
1176    // TODO: What would be the balance between the conditions in the function
1177    // and an atomic operation?
1178    if (__kmp_track_children_task(taskdata)) {
1179      __kmp_release_deps(gtid, taskdata);
1180      // Predecrement simulated by "- 1" calculation
1181#if KMP_DEBUG
1182      children = -1 +
1183#endif
1184          KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks);
1185      KMP_DEBUG_ASSERT(children >= 0);
1186#if OMPX_TASKGRAPH
1187      if (taskdata->td_taskgroup && !taskdata->is_taskgraph)
1188#else
1189      if (taskdata->td_taskgroup)
1190#endif
1191        KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count);
1192    } else if (task_team && (task_team->tt.tt_found_proxy_tasks ||
1193                             task_team->tt.tt_hidden_helper_task_encountered)) {
1194      // if we found proxy or hidden helper tasks there could exist a dependency
1195      // chain with the proxy task as origin
1196      __kmp_release_deps(gtid, taskdata);
1197    }
1198    // td_flags.executing must be marked as 0 after __kmp_release_deps has been
1199    // called. Othertwise, if a task is executed immediately from the
1200    // release_deps code, the flag will be reset to 1 again by this same
1201    // function
1202    KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1);
1203    taskdata->td_flags.executing = 0; // suspend the finishing task
1204
1205    // Decrement the counter of hidden helper tasks to be executed.
1206    if (taskdata->td_flags.hidden_helper) {
1207      // Hidden helper tasks can only be executed by hidden helper threads.
1208      KMP_ASSERT(KMP_HIDDEN_HELPER_THREAD(gtid));
1209      KMP_ATOMIC_DEC(&__kmp_unexecuted_hidden_helper_tasks);
1210    }
1211  }
1212
1213  KA_TRACE(
1214      20, ("__kmp_task_finish: T#%d finished task %p, %d incomplete children\n",
1215           gtid, taskdata, children));
1216
1217  // Free this task and then ancestor tasks if they have no children.
1218  // Restore th_current_task first as suggested by John:
1219  // johnmc: if an asynchronous inquiry peers into the runtime system
1220  // it doesn't see the freed task as the current task.
1221  thread->th.th_current_task = resumed_task;
1222  if (completed)
1223    __kmp_free_task_and_ancestors(gtid, taskdata, thread);
1224
1225  // TODO: GEH - make sure root team implicit task is initialized properly.
1226  // KMP_DEBUG_ASSERT( resumed_task->td_flags.executing == 0 );
1227  resumed_task->td_flags.executing = 1; // resume previous task
1228
1229#if OMPX_TASKGRAPH
1230  if (is_taskgraph && __kmp_track_children_task(taskdata) &&
1231      taskdata->td_taskgroup) {
1232    // TDG: we only release taskgroup barrier here because
1233    // free_task_and_ancestors will call
1234    // __kmp_free_task, which resets all task parameters such as
1235    // taskdata->started, etc. If we release the barrier earlier, these
1236    // parameters could be read before being reset. This is not an issue for
1237    // non-TDG implementation because we never reuse a task(data) structure
1238    KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count);
1239  }
1240#endif
1241
1242  KA_TRACE(
1243      10, ("__kmp_task_finish(exit): T#%d finished task %p, resuming task %p\n",
1244           gtid, taskdata, resumed_task));
1245
1246  return;
1247}
1248
1249template <bool ompt>
1250static void __kmpc_omp_task_complete_if0_template(ident_t *loc_ref,
1251                                                  kmp_int32 gtid,
1252                                                  kmp_task_t *task) {
1253  KA_TRACE(10, ("__kmpc_omp_task_complete_if0(enter): T#%d loc=%p task=%p\n",
1254                gtid, loc_ref, KMP_TASK_TO_TASKDATA(task)));
1255  KMP_DEBUG_ASSERT(gtid >= 0);
1256  // this routine will provide task to resume
1257  __kmp_task_finish<ompt>(gtid, task, NULL);
1258
1259  KA_TRACE(10, ("__kmpc_omp_task_complete_if0(exit): T#%d loc=%p task=%p\n",
1260                gtid, loc_ref, KMP_TASK_TO_TASKDATA(task)));
1261
1262#if OMPT_SUPPORT
1263  if (ompt) {
1264    ompt_frame_t *ompt_frame;
1265    __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL);
1266    ompt_frame->enter_frame = ompt_data_none;
1267    ompt_frame->enter_frame_flags =
1268        ompt_frame_runtime | ompt_frame_framepointer;
1269  }
1270#endif
1271
1272  return;
1273}
1274
1275#if OMPT_SUPPORT
1276OMPT_NOINLINE
1277void __kmpc_omp_task_complete_if0_ompt(ident_t *loc_ref, kmp_int32 gtid,
1278                                       kmp_task_t *task) {
1279  __kmpc_omp_task_complete_if0_template<true>(loc_ref, gtid, task);
1280}
1281#endif // OMPT_SUPPORT
1282
1283// __kmpc_omp_task_complete_if0: report that a task has completed execution
1284//
1285// loc_ref: source location information; points to end of task block.
1286// gtid: global thread number.
1287// task: task thunk for the completed task.
1288void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid,
1289                                  kmp_task_t *task) {
1290#if OMPT_SUPPORT
1291  if (UNLIKELY(ompt_enabled.enabled)) {
1292    __kmpc_omp_task_complete_if0_ompt(loc_ref, gtid, task);
1293    return;
1294  }
1295#endif
1296  __kmpc_omp_task_complete_if0_template<false>(loc_ref, gtid, task);
1297}
1298
1299#ifdef TASK_UNUSED
1300// __kmpc_omp_task_complete: report that a task has completed execution
1301// NEVER GENERATED BY COMPILER, DEPRECATED!!!
1302void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid,
1303                              kmp_task_t *task) {
1304  KA_TRACE(10, ("__kmpc_omp_task_complete(enter): T#%d loc=%p task=%p\n", gtid,
1305                loc_ref, KMP_TASK_TO_TASKDATA(task)));
1306
1307  __kmp_task_finish<false>(gtid, task,
1308                           NULL); // Not sure how to find task to resume
1309
1310  KA_TRACE(10, ("__kmpc_omp_task_complete(exit): T#%d loc=%p task=%p\n", gtid,
1311                loc_ref, KMP_TASK_TO_TASKDATA(task)));
1312  return;
1313}
1314#endif // TASK_UNUSED
1315
1316// __kmp_init_implicit_task: Initialize the appropriate fields in the implicit
1317// task for a given thread
1318//
1319// loc_ref:  reference to source location of parallel region
1320// this_thr:  thread data structure corresponding to implicit task
1321// team: team for this_thr
1322// tid: thread id of given thread within team
1323// set_curr_task: TRUE if need to push current task to thread
1324// NOTE: Routine does not set up the implicit task ICVS.  This is assumed to
1325// have already been done elsewhere.
1326// TODO: Get better loc_ref.  Value passed in may be NULL
1327void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr,
1328                              kmp_team_t *team, int tid, int set_curr_task) {
1329  kmp_taskdata_t *task = &team->t.t_implicit_task_taskdata[tid];
1330
1331  KF_TRACE(
1332      10,
1333      ("__kmp_init_implicit_task(enter): T#:%d team=%p task=%p, reinit=%s\n",
1334       tid, team, task, set_curr_task ? "TRUE" : "FALSE"));
1335
1336  task->td_task_id = KMP_GEN_TASK_ID();
1337  task->td_team = team;
1338  //    task->td_parent   = NULL;  // fix for CQ230101 (broken parent task info
1339  //    in debugger)
1340  task->td_ident = loc_ref;
1341  task->td_taskwait_ident = NULL;
1342  task->td_taskwait_counter = 0;
1343  task->td_taskwait_thread = 0;
1344
1345  task->td_flags.tiedness = TASK_TIED;
1346  task->td_flags.tasktype = TASK_IMPLICIT;
1347  task->td_flags.proxy = TASK_FULL;
1348
1349  // All implicit tasks are executed immediately, not deferred
1350  task->td_flags.task_serial = 1;
1351  task->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec);
1352  task->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0;
1353
1354  task->td_flags.started = 1;
1355  task->td_flags.executing = 1;
1356  task->td_flags.complete = 0;
1357  task->td_flags.freed = 0;
1358#if OMPX_TASKGRAPH
1359  task->td_flags.onced = 0;
1360#endif
1361
1362  task->td_depnode = NULL;
1363  task->td_last_tied = task;
1364  task->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED;
1365
1366  if (set_curr_task) { // only do this init first time thread is created
1367    KMP_ATOMIC_ST_REL(&task->td_incomplete_child_tasks, 0);
1368    // Not used: don't need to deallocate implicit task
1369    KMP_ATOMIC_ST_REL(&task->td_allocated_child_tasks, 0);
1370    task->td_taskgroup = NULL; // An implicit task does not have taskgroup
1371    task->td_dephash = NULL;
1372    __kmp_push_current_task_to_thread(this_thr, team, tid);
1373  } else {
1374    KMP_DEBUG_ASSERT(task->td_incomplete_child_tasks == 0);
1375    KMP_DEBUG_ASSERT(task->td_allocated_child_tasks == 0);
1376  }
1377
1378#if OMPT_SUPPORT
1379  if (UNLIKELY(ompt_enabled.enabled))
1380    __ompt_task_init(task, tid);
1381#endif
1382
1383  KF_TRACE(10, ("__kmp_init_implicit_task(exit): T#:%d team=%p task=%p\n", tid,
1384                team, task));
1385}
1386
1387// __kmp_finish_implicit_task: Release resources associated to implicit tasks
1388// at the end of parallel regions. Some resources are kept for reuse in the next
1389// parallel region.
1390//
1391// thread:  thread data structure corresponding to implicit task
1392void __kmp_finish_implicit_task(kmp_info_t *thread) {
1393  kmp_taskdata_t *task = thread->th.th_current_task;
1394  if (task->td_dephash) {
1395    int children;
1396    task->td_flags.complete = 1;
1397#if OMPX_TASKGRAPH
1398    task->td_flags.onced = 1;
1399#endif
1400    children = KMP_ATOMIC_LD_ACQ(&task->td_incomplete_child_tasks);
1401    kmp_tasking_flags_t flags_old = task->td_flags;
1402    if (children == 0 && flags_old.complete == 1) {
1403      kmp_tasking_flags_t flags_new = flags_old;
1404      flags_new.complete = 0;
1405      if (KMP_COMPARE_AND_STORE_ACQ32(RCAST(kmp_int32 *, &task->td_flags),
1406                                      *RCAST(kmp_int32 *, &flags_old),
1407                                      *RCAST(kmp_int32 *, &flags_new))) {
1408        KA_TRACE(100, ("__kmp_finish_implicit_task: T#%d cleans "
1409                       "dephash of implicit task %p\n",
1410                       thread->th.th_info.ds.ds_gtid, task));
1411        __kmp_dephash_free_entries(thread, task->td_dephash);
1412      }
1413    }
1414  }
1415}
1416
1417// __kmp_free_implicit_task: Release resources associated to implicit tasks
1418// when these are destroyed regions
1419//
1420// thread:  thread data structure corresponding to implicit task
1421void __kmp_free_implicit_task(kmp_info_t *thread) {
1422  kmp_taskdata_t *task = thread->th.th_current_task;
1423  if (task && task->td_dephash) {
1424    __kmp_dephash_free(thread, task->td_dephash);
1425    task->td_dephash = NULL;
1426  }
1427}
1428
1429// Round up a size to a power of two specified by val: Used to insert padding
1430// between structures co-allocated using a single malloc() call
1431static size_t __kmp_round_up_to_val(size_t size, size_t val) {
1432  if (size & (val - 1)) {
1433    size &= ~(val - 1);
1434    if (size <= KMP_SIZE_T_MAX - val) {
1435      size += val; // Round up if there is no overflow.
1436    }
1437  }
1438  return size;
1439} // __kmp_round_up_to_va
1440
1441// __kmp_task_alloc: Allocate the taskdata and task data structures for a task
1442//
1443// loc_ref: source location information
1444// gtid: global thread number.
1445// flags: include tiedness & task type (explicit vs. implicit) of the ''new''
1446// task encountered. Converted from kmp_int32 to kmp_tasking_flags_t in routine.
1447// sizeof_kmp_task_t:  Size in bytes of kmp_task_t data structure including
1448// private vars accessed in task.
1449// sizeof_shareds:  Size in bytes of array of pointers to shared vars accessed
1450// in task.
1451// task_entry: Pointer to task code entry point generated by compiler.
1452// returns: a pointer to the allocated kmp_task_t structure (task).
1453kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
1454                             kmp_tasking_flags_t *flags,
1455                             size_t sizeof_kmp_task_t, size_t sizeof_shareds,
1456                             kmp_routine_entry_t task_entry) {
1457  kmp_task_t *task;
1458  kmp_taskdata_t *taskdata;
1459  kmp_info_t *thread = __kmp_threads[gtid];
1460  kmp_team_t *team = thread->th.th_team;
1461  kmp_taskdata_t *parent_task = thread->th.th_current_task;
1462  size_t shareds_offset;
1463
1464  if (UNLIKELY(!TCR_4(__kmp_init_middle)))
1465    __kmp_middle_initialize();
1466
1467  if (flags->hidden_helper) {
1468    if (__kmp_enable_hidden_helper) {
1469      if (!TCR_4(__kmp_init_hidden_helper))
1470        __kmp_hidden_helper_initialize();
1471    } else {
1472      // If the hidden helper task is not enabled, reset the flag to FALSE.
1473      flags->hidden_helper = FALSE;
1474    }
1475  }
1476
1477  KA_TRACE(10, ("__kmp_task_alloc(enter): T#%d loc=%p, flags=(0x%x) "
1478                "sizeof_task=%ld sizeof_shared=%ld entry=%p\n",
1479                gtid, loc_ref, *((kmp_int32 *)flags), sizeof_kmp_task_t,
1480                sizeof_shareds, task_entry));
1481
1482  KMP_DEBUG_ASSERT(parent_task);
1483  if (parent_task->td_flags.final) {
1484    if (flags->merged_if0) {
1485    }
1486    flags->final = 1;
1487  }
1488
1489  if (flags->tiedness == TASK_UNTIED && !team->t.t_serialized) {
1490    // Untied task encountered causes the TSC algorithm to check entire deque of
1491    // the victim thread. If no untied task encountered, then checking the head
1492    // of the deque should be enough.
1493    KMP_CHECK_UPDATE(thread->th.th_task_team->tt.tt_untied_task_encountered, 1);
1494  }
1495
1496  // Detachable tasks are not proxy tasks yet but could be in the future. Doing
1497  // the tasking setup
1498  // when that happens is too late.
1499  if (UNLIKELY(flags->proxy == TASK_PROXY ||
1500               flags->detachable == TASK_DETACHABLE || flags->hidden_helper)) {
1501    if (flags->proxy == TASK_PROXY) {
1502      flags->tiedness = TASK_UNTIED;
1503      flags->merged_if0 = 1;
1504    }
1505    /* are we running in a sequential parallel or tskm_immediate_exec... we need
1506       tasking support enabled */
1507    if ((thread->th.th_task_team) == NULL) {
1508      /* This should only happen if the team is serialized
1509          setup a task team and propagate it to the thread */
1510      KMP_DEBUG_ASSERT(team->t.t_serialized);
1511      KA_TRACE(30,
1512               ("T#%d creating task team in __kmp_task_alloc for proxy task\n",
1513                gtid));
1514      // 1 indicates setup the current team regardless of nthreads
1515      __kmp_task_team_setup(thread, team, 1);
1516      thread->th.th_task_team = team->t.t_task_team[thread->th.th_task_state];
1517    }
1518    kmp_task_team_t *task_team = thread->th.th_task_team;
1519
1520    /* tasking must be enabled now as the task might not be pushed */
1521    if (!KMP_TASKING_ENABLED(task_team)) {
1522      KA_TRACE(
1523          30,
1524          ("T#%d enabling tasking in __kmp_task_alloc for proxy task\n", gtid));
1525      __kmp_enable_tasking(task_team, thread);
1526      kmp_int32 tid = thread->th.th_info.ds.ds_tid;
1527      kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid];
1528      // No lock needed since only owner can allocate
1529      if (thread_data->td.td_deque == NULL) {
1530        __kmp_alloc_task_deque(thread, thread_data);
1531      }
1532    }
1533
1534    if ((flags->proxy == TASK_PROXY || flags->detachable == TASK_DETACHABLE) &&
1535        task_team->tt.tt_found_proxy_tasks == FALSE)
1536      TCW_4(task_team->tt.tt_found_proxy_tasks, TRUE);
1537    if (flags->hidden_helper &&
1538        task_team->tt.tt_hidden_helper_task_encountered == FALSE)
1539      TCW_4(task_team->tt.tt_hidden_helper_task_encountered, TRUE);
1540  }
1541
1542  // Calculate shared structure offset including padding after kmp_task_t struct
1543  // to align pointers in shared struct
1544  shareds_offset = sizeof(kmp_taskdata_t) + sizeof_kmp_task_t;
1545  shareds_offset = __kmp_round_up_to_val(shareds_offset, sizeof(void *));
1546
1547  // Allocate a kmp_taskdata_t block and a kmp_task_t block.
1548  KA_TRACE(30, ("__kmp_task_alloc: T#%d First malloc size: %ld\n", gtid,
1549                shareds_offset));
1550  KA_TRACE(30, ("__kmp_task_alloc: T#%d Second malloc size: %ld\n", gtid,
1551                sizeof_shareds));
1552
1553  // Avoid double allocation here by combining shareds with taskdata
1554#if USE_FAST_MEMORY
1555  taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, shareds_offset +
1556                                                               sizeof_shareds);
1557#else /* ! USE_FAST_MEMORY */
1558  taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, shareds_offset +
1559                                                               sizeof_shareds);
1560#endif /* USE_FAST_MEMORY */
1561
1562  task = KMP_TASKDATA_TO_TASK(taskdata);
1563
1564// Make sure task & taskdata are aligned appropriately
1565#if KMP_ARCH_X86 || KMP_ARCH_PPC64 || KMP_ARCH_S390X || !KMP_HAVE_QUAD
1566  KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(double) - 1)) == 0);
1567  KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(double) - 1)) == 0);
1568#else
1569  KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(_Quad) - 1)) == 0);
1570  KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(_Quad) - 1)) == 0);
1571#endif
1572  if (sizeof_shareds > 0) {
1573    // Avoid double allocation here by combining shareds with taskdata
1574    task->shareds = &((char *)taskdata)[shareds_offset];
1575    // Make sure shareds struct is aligned to pointer size
1576    KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) ==
1577                     0);
1578  } else {
1579    task->shareds = NULL;
1580  }
1581  task->routine = task_entry;
1582  task->part_id = 0; // AC: Always start with 0 part id
1583
1584  taskdata->td_task_id = KMP_GEN_TASK_ID();
1585  taskdata->td_team = thread->th.th_team;
1586  taskdata->td_alloc_thread = thread;
1587  taskdata->td_parent = parent_task;
1588  taskdata->td_level = parent_task->td_level + 1; // increment nesting level
1589  KMP_ATOMIC_ST_RLX(&taskdata->td_untied_count, 0);
1590  taskdata->td_ident = loc_ref;
1591  taskdata->td_taskwait_ident = NULL;
1592  taskdata->td_taskwait_counter = 0;
1593  taskdata->td_taskwait_thread = 0;
1594  KMP_DEBUG_ASSERT(taskdata->td_parent != NULL);
1595  // avoid copying icvs for proxy tasks
1596  if (flags->proxy == TASK_FULL)
1597    copy_icvs(&taskdata->td_icvs, &taskdata->td_parent->td_icvs);
1598
1599  taskdata->td_flags = *flags;
1600  taskdata->td_task_team = thread->th.th_task_team;
1601  taskdata->td_size_alloc = shareds_offset + sizeof_shareds;
1602  taskdata->td_flags.tasktype = TASK_EXPLICIT;
1603  // If it is hidden helper task, we need to set the team and task team
1604  // correspondingly.
1605  if (flags->hidden_helper) {
1606    kmp_info_t *shadow_thread = __kmp_threads[KMP_GTID_TO_SHADOW_GTID(gtid)];
1607    taskdata->td_team = shadow_thread->th.th_team;
1608    taskdata->td_task_team = shadow_thread->th.th_task_team;
1609  }
1610
1611  // GEH - TODO: fix this to copy parent task's value of tasking_ser flag
1612  taskdata->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec);
1613
1614  // GEH - TODO: fix this to copy parent task's value of team_serial flag
1615  taskdata->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0;
1616
1617  // GEH - Note we serialize the task if the team is serialized to make sure
1618  // implicit parallel region tasks are not left until program termination to
1619  // execute. Also, it helps locality to execute immediately.
1620
1621  taskdata->td_flags.task_serial =
1622      (parent_task->td_flags.final || taskdata->td_flags.team_serial ||
1623       taskdata->td_flags.tasking_ser || flags->merged_if0);
1624
1625  taskdata->td_flags.started = 0;
1626  taskdata->td_flags.executing = 0;
1627  taskdata->td_flags.complete = 0;
1628  taskdata->td_flags.freed = 0;
1629#if OMPX_TASKGRAPH
1630  taskdata->td_flags.onced = 0;
1631#endif
1632  KMP_ATOMIC_ST_RLX(&taskdata->td_incomplete_child_tasks, 0);
1633  // start at one because counts current task and children
1634  KMP_ATOMIC_ST_RLX(&taskdata->td_allocated_child_tasks, 1);
1635  taskdata->td_taskgroup =
1636      parent_task->td_taskgroup; // task inherits taskgroup from the parent task
1637  taskdata->td_dephash = NULL;
1638  taskdata->td_depnode = NULL;
1639  taskdata->td_target_data.async_handle = NULL;
1640  if (flags->tiedness == TASK_UNTIED)
1641    taskdata->td_last_tied = NULL; // will be set when the task is scheduled
1642  else
1643    taskdata->td_last_tied = taskdata;
1644  taskdata->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED;
1645#if OMPT_SUPPORT
1646  if (UNLIKELY(ompt_enabled.enabled))
1647    __ompt_task_init(taskdata, gtid);
1648#endif
1649  // TODO: What would be the balance between the conditions in the function and
1650  // an atomic operation?
1651  if (__kmp_track_children_task(taskdata)) {
1652    KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks);
1653    if (parent_task->td_taskgroup)
1654      KMP_ATOMIC_INC(&parent_task->td_taskgroup->count);
1655    // Only need to keep track of allocated child tasks for explicit tasks since
1656    // implicit not deallocated
1657    if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT) {
1658      KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks);
1659    }
1660    if (flags->hidden_helper) {
1661      taskdata->td_flags.task_serial = FALSE;
1662      // Increment the number of hidden helper tasks to be executed
1663      KMP_ATOMIC_INC(&__kmp_unexecuted_hidden_helper_tasks);
1664    }
1665  }
1666
1667#if OMPX_TASKGRAPH
1668  kmp_tdg_info_t *tdg = __kmp_find_tdg(__kmp_curr_tdg_idx);
1669  if (tdg && __kmp_tdg_is_recording(tdg->tdg_status) &&
1670      (task_entry != (kmp_routine_entry_t)__kmp_taskloop_task)) {
1671    taskdata->is_taskgraph = 1;
1672    taskdata->tdg = __kmp_global_tdgs[__kmp_curr_tdg_idx];
1673    taskdata->td_task_id = KMP_ATOMIC_INC(&__kmp_tdg_task_id);
1674  }
1675#endif
1676  KA_TRACE(20, ("__kmp_task_alloc(exit): T#%d created task %p parent=%p\n",
1677                gtid, taskdata, taskdata->td_parent));
1678
1679  return task;
1680}
1681
1682kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
1683                                  kmp_int32 flags, size_t sizeof_kmp_task_t,
1684                                  size_t sizeof_shareds,
1685                                  kmp_routine_entry_t task_entry) {
1686  kmp_task_t *retval;
1687  kmp_tasking_flags_t *input_flags = (kmp_tasking_flags_t *)&flags;
1688  __kmp_assert_valid_gtid(gtid);
1689  input_flags->native = FALSE;
1690  // __kmp_task_alloc() sets up all other runtime flags
1691  KA_TRACE(10, ("__kmpc_omp_task_alloc(enter): T#%d loc=%p, flags=(%s %s %s) "
1692                "sizeof_task=%ld sizeof_shared=%ld entry=%p\n",
1693                gtid, loc_ref, input_flags->tiedness ? "tied  " : "untied",
1694                input_flags->proxy ? "proxy" : "",
1695                input_flags->detachable ? "detachable" : "", sizeof_kmp_task_t,
1696                sizeof_shareds, task_entry));
1697
1698  retval = __kmp_task_alloc(loc_ref, gtid, input_flags, sizeof_kmp_task_t,
1699                            sizeof_shareds, task_entry);
1700
1701  KA_TRACE(20, ("__kmpc_omp_task_alloc(exit): T#%d retval %p\n", gtid, retval));
1702
1703  return retval;
1704}
1705
1706kmp_task_t *__kmpc_omp_target_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
1707                                         kmp_int32 flags,
1708                                         size_t sizeof_kmp_task_t,
1709                                         size_t sizeof_shareds,
1710                                         kmp_routine_entry_t task_entry,
1711                                         kmp_int64 device_id) {
1712  auto &input_flags = reinterpret_cast<kmp_tasking_flags_t &>(flags);
1713  // target task is untied defined in the specification
1714  input_flags.tiedness = TASK_UNTIED;
1715
1716  if (__kmp_enable_hidden_helper)
1717    input_flags.hidden_helper = TRUE;
1718
1719  return __kmpc_omp_task_alloc(loc_ref, gtid, flags, sizeof_kmp_task_t,
1720                               sizeof_shareds, task_entry);
1721}
1722
1723/*!
1724@ingroup TASKING
1725@param loc_ref location of the original task directive
1726@param gtid Global Thread ID of encountering thread
1727@param new_task task thunk allocated by __kmpc_omp_task_alloc() for the ''new
1728task''
1729@param naffins Number of affinity items
1730@param affin_list List of affinity items
1731@return Returns non-zero if registering affinity information was not successful.
1732 Returns 0 if registration was successful
1733This entry registers the affinity information attached to a task with the task
1734thunk structure kmp_taskdata_t.
1735*/
1736kmp_int32
1737__kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid,
1738                                  kmp_task_t *new_task, kmp_int32 naffins,
1739                                  kmp_task_affinity_info_t *affin_list) {
1740  return 0;
1741}
1742
1743//  __kmp_invoke_task: invoke the specified task
1744//
1745// gtid: global thread ID of caller
1746// task: the task to invoke
1747// current_task: the task to resume after task invocation
1748#ifdef __s390x__
1749__attribute__((target("backchain")))
1750#endif
1751static void
1752__kmp_invoke_task(kmp_int32 gtid, kmp_task_t *task,
1753                  kmp_taskdata_t *current_task) {
1754  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
1755  kmp_info_t *thread;
1756  int discard = 0 /* false */;
1757  KA_TRACE(
1758      30, ("__kmp_invoke_task(enter): T#%d invoking task %p, current_task=%p\n",
1759           gtid, taskdata, current_task));
1760  KMP_DEBUG_ASSERT(task);
1761  if (UNLIKELY(taskdata->td_flags.proxy == TASK_PROXY &&
1762               taskdata->td_flags.complete == 1)) {
1763    // This is a proxy task that was already completed but it needs to run
1764    // its bottom-half finish
1765    KA_TRACE(
1766        30,
1767        ("__kmp_invoke_task: T#%d running bottom finish for proxy task %p\n",
1768         gtid, taskdata));
1769
1770    __kmp_bottom_half_finish_proxy(gtid, task);
1771
1772    KA_TRACE(30, ("__kmp_invoke_task(exit): T#%d completed bottom finish for "
1773                  "proxy task %p, resuming task %p\n",
1774                  gtid, taskdata, current_task));
1775
1776    return;
1777  }
1778
1779#if OMPT_SUPPORT
1780  // For untied tasks, the first task executed only calls __kmpc_omp_task and
1781  // does not execute code.
1782  ompt_thread_info_t oldInfo;
1783  if (UNLIKELY(ompt_enabled.enabled)) {
1784    // Store the threads states and restore them after the task
1785    thread = __kmp_threads[gtid];
1786    oldInfo = thread->th.ompt_thread_info;
1787    thread->th.ompt_thread_info.wait_id = 0;
1788    thread->th.ompt_thread_info.state = (thread->th.th_team_serialized)
1789                                            ? ompt_state_work_serial
1790                                            : ompt_state_work_parallel;
1791    taskdata->ompt_task_info.frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
1792  }
1793#endif
1794
1795  // Proxy tasks are not handled by the runtime
1796  if (taskdata->td_flags.proxy != TASK_PROXY) {
1797    __kmp_task_start(gtid, task, current_task); // OMPT only if not discarded
1798  }
1799
1800  // TODO: cancel tasks if the parallel region has also been cancelled
1801  // TODO: check if this sequence can be hoisted above __kmp_task_start
1802  // if cancellation has been enabled for this run ...
1803  if (UNLIKELY(__kmp_omp_cancellation)) {
1804    thread = __kmp_threads[gtid];
1805    kmp_team_t *this_team = thread->th.th_team;
1806    kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup;
1807    if ((taskgroup && taskgroup->cancel_request) ||
1808        (this_team->t.t_cancel_request == cancel_parallel)) {
1809#if OMPT_SUPPORT && OMPT_OPTIONAL
1810      ompt_data_t *task_data;
1811      if (UNLIKELY(ompt_enabled.ompt_callback_cancel)) {
1812        __ompt_get_task_info_internal(0, NULL, &task_data, NULL, NULL, NULL);
1813        ompt_callbacks.ompt_callback(ompt_callback_cancel)(
1814            task_data,
1815            ((taskgroup && taskgroup->cancel_request) ? ompt_cancel_taskgroup
1816                                                      : ompt_cancel_parallel) |
1817                ompt_cancel_discarded_task,
1818            NULL);
1819      }
1820#endif
1821      KMP_COUNT_BLOCK(TASK_cancelled);
1822      // this task belongs to a task group and we need to cancel it
1823      discard = 1 /* true */;
1824    }
1825  }
1826
1827  // Invoke the task routine and pass in relevant data.
1828  // Thunks generated by gcc take a different argument list.
1829  if (!discard) {
1830    if (taskdata->td_flags.tiedness == TASK_UNTIED) {
1831      taskdata->td_last_tied = current_task->td_last_tied;
1832      KMP_DEBUG_ASSERT(taskdata->td_last_tied);
1833    }
1834#if KMP_STATS_ENABLED
1835    KMP_COUNT_BLOCK(TASK_executed);
1836    switch (KMP_GET_THREAD_STATE()) {
1837    case FORK_JOIN_BARRIER:
1838      KMP_PUSH_PARTITIONED_TIMER(OMP_task_join_bar);
1839      break;
1840    case PLAIN_BARRIER:
1841      KMP_PUSH_PARTITIONED_TIMER(OMP_task_plain_bar);
1842      break;
1843    case TASKYIELD:
1844      KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskyield);
1845      break;
1846    case TASKWAIT:
1847      KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskwait);
1848      break;
1849    case TASKGROUP:
1850      KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskgroup);
1851      break;
1852    default:
1853      KMP_PUSH_PARTITIONED_TIMER(OMP_task_immediate);
1854      break;
1855    }
1856#endif // KMP_STATS_ENABLED
1857
1858// OMPT task begin
1859#if OMPT_SUPPORT
1860    if (UNLIKELY(ompt_enabled.enabled))
1861      __ompt_task_start(task, current_task, gtid);
1862#endif
1863#if OMPT_SUPPORT && OMPT_OPTIONAL
1864    if (UNLIKELY(ompt_enabled.ompt_callback_dispatch &&
1865                 taskdata->ompt_task_info.dispatch_chunk.iterations > 0)) {
1866      ompt_data_t instance = ompt_data_none;
1867      instance.ptr = &(taskdata->ompt_task_info.dispatch_chunk);
1868      ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL);
1869      ompt_callbacks.ompt_callback(ompt_callback_dispatch)(
1870          &(team_info->parallel_data), &(taskdata->ompt_task_info.task_data),
1871          ompt_dispatch_taskloop_chunk, instance);
1872      taskdata->ompt_task_info.dispatch_chunk = {0, 0};
1873    }
1874#endif // OMPT_SUPPORT && OMPT_OPTIONAL
1875
1876#if OMPD_SUPPORT
1877    if (ompd_state & OMPD_ENABLE_BP)
1878      ompd_bp_task_begin();
1879#endif
1880
1881#if USE_ITT_BUILD && USE_ITT_NOTIFY
1882    kmp_uint64 cur_time;
1883    kmp_int32 kmp_itt_count_task =
1884        __kmp_forkjoin_frames_mode == 3 && !taskdata->td_flags.task_serial &&
1885        current_task->td_flags.tasktype == TASK_IMPLICIT;
1886    if (kmp_itt_count_task) {
1887      thread = __kmp_threads[gtid];
1888      // Time outer level explicit task on barrier for adjusting imbalance time
1889      if (thread->th.th_bar_arrive_time)
1890        cur_time = __itt_get_timestamp();
1891      else
1892        kmp_itt_count_task = 0; // thread is not on a barrier - skip timing
1893    }
1894    KMP_FSYNC_ACQUIRED(taskdata); // acquired self (new task)
1895#endif
1896
1897#if ENABLE_LIBOMPTARGET
1898    if (taskdata->td_target_data.async_handle != NULL) {
1899      // If we have a valid target async handle, that means that we have already
1900      // executed the task routine once. We must query for the handle completion
1901      // instead of re-executing the routine.
1902      KMP_ASSERT(tgt_target_nowait_query);
1903      tgt_target_nowait_query(&taskdata->td_target_data.async_handle);
1904    } else
1905#endif
1906    if (task->routine != NULL) {
1907#ifdef KMP_GOMP_COMPAT
1908      if (taskdata->td_flags.native) {
1909        ((void (*)(void *))(*(task->routine)))(task->shareds);
1910      } else
1911#endif /* KMP_GOMP_COMPAT */
1912      {
1913        (*(task->routine))(gtid, task);
1914      }
1915    }
1916    KMP_POP_PARTITIONED_TIMER();
1917
1918#if USE_ITT_BUILD && USE_ITT_NOTIFY
1919    if (kmp_itt_count_task) {
1920      // Barrier imbalance - adjust arrive time with the task duration
1921      thread->th.th_bar_arrive_time += (__itt_get_timestamp() - cur_time);
1922    }
1923    KMP_FSYNC_CANCEL(taskdata); // destroy self (just executed)
1924    KMP_FSYNC_RELEASING(taskdata->td_parent); // releasing parent
1925#endif
1926  }
1927
1928#if OMPD_SUPPORT
1929  if (ompd_state & OMPD_ENABLE_BP)
1930    ompd_bp_task_end();
1931#endif
1932
1933  // Proxy tasks are not handled by the runtime
1934  if (taskdata->td_flags.proxy != TASK_PROXY) {
1935#if OMPT_SUPPORT
1936    if (UNLIKELY(ompt_enabled.enabled)) {
1937      thread->th.ompt_thread_info = oldInfo;
1938      if (taskdata->td_flags.tiedness == TASK_TIED) {
1939        taskdata->ompt_task_info.frame.exit_frame = ompt_data_none;
1940      }
1941      __kmp_task_finish<true>(gtid, task, current_task);
1942    } else
1943#endif
1944      __kmp_task_finish<false>(gtid, task, current_task);
1945  }
1946
1947  KA_TRACE(
1948      30,
1949      ("__kmp_invoke_task(exit): T#%d completed task %p, resuming task %p\n",
1950       gtid, taskdata, current_task));
1951  return;
1952}
1953
1954// __kmpc_omp_task_parts: Schedule a thread-switchable task for execution
1955//
1956// loc_ref: location of original task pragma (ignored)
1957// gtid: Global Thread ID of encountering thread
1958// new_task: task thunk allocated by __kmp_omp_task_alloc() for the ''new task''
1959// Returns:
1960//    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
1961//    be resumed later.
1962//    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
1963//    resumed later.
1964kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid,
1965                                kmp_task_t *new_task) {
1966  kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
1967
1968  KA_TRACE(10, ("__kmpc_omp_task_parts(enter): T#%d loc=%p task=%p\n", gtid,
1969                loc_ref, new_taskdata));
1970
1971#if OMPT_SUPPORT
1972  kmp_taskdata_t *parent;
1973  if (UNLIKELY(ompt_enabled.enabled)) {
1974    parent = new_taskdata->td_parent;
1975    if (ompt_enabled.ompt_callback_task_create) {
1976      ompt_callbacks.ompt_callback(ompt_callback_task_create)(
1977          &(parent->ompt_task_info.task_data), &(parent->ompt_task_info.frame),
1978          &(new_taskdata->ompt_task_info.task_data), ompt_task_explicit, 0,
1979          OMPT_GET_RETURN_ADDRESS(0));
1980    }
1981  }
1982#endif
1983
1984  /* Should we execute the new task or queue it? For now, let's just always try
1985     to queue it.  If the queue fills up, then we'll execute it.  */
1986
1987  if (__kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer
1988  { // Execute this task immediately
1989    kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
1990    new_taskdata->td_flags.task_serial = 1;
1991    __kmp_invoke_task(gtid, new_task, current_task);
1992  }
1993
1994  KA_TRACE(
1995      10,
1996      ("__kmpc_omp_task_parts(exit): T#%d returning TASK_CURRENT_NOT_QUEUED: "
1997       "loc=%p task=%p, return: TASK_CURRENT_NOT_QUEUED\n",
1998       gtid, loc_ref, new_taskdata));
1999
2000#if OMPT_SUPPORT
2001  if (UNLIKELY(ompt_enabled.enabled)) {
2002    parent->ompt_task_info.frame.enter_frame = ompt_data_none;
2003  }
2004#endif
2005  return TASK_CURRENT_NOT_QUEUED;
2006}
2007
2008// __kmp_omp_task: Schedule a non-thread-switchable task for execution
2009//
2010// gtid: Global Thread ID of encountering thread
2011// new_task:non-thread-switchable task thunk allocated by __kmp_omp_task_alloc()
2012// serialize_immediate: if TRUE then if the task is executed immediately its
2013// execution will be serialized
2014// Returns:
2015//    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
2016//    be resumed later.
2017//    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
2018//    resumed later.
2019kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task,
2020                         bool serialize_immediate) {
2021  kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
2022
2023#if OMPX_TASKGRAPH
2024  if (new_taskdata->is_taskgraph &&
2025      __kmp_tdg_is_recording(new_taskdata->tdg->tdg_status)) {
2026    kmp_tdg_info_t *tdg = new_taskdata->tdg;
2027    // extend the record_map if needed
2028    if (new_taskdata->td_task_id >= new_taskdata->tdg->map_size) {
2029      __kmp_acquire_bootstrap_lock(&tdg->graph_lock);
2030      // map_size could have been updated by another thread if recursive
2031      // taskloop
2032      if (new_taskdata->td_task_id >= tdg->map_size) {
2033        kmp_uint old_size = tdg->map_size;
2034        kmp_uint new_size = old_size * 2;
2035        kmp_node_info_t *old_record = tdg->record_map;
2036        kmp_node_info_t *new_record = (kmp_node_info_t *)__kmp_allocate(
2037            new_size * sizeof(kmp_node_info_t));
2038
2039        KMP_MEMCPY(new_record, old_record, old_size * sizeof(kmp_node_info_t));
2040        tdg->record_map = new_record;
2041
2042        __kmp_free(old_record);
2043
2044        for (kmp_int i = old_size; i < new_size; i++) {
2045          kmp_int32 *successorsList = (kmp_int32 *)__kmp_allocate(
2046              __kmp_successors_size * sizeof(kmp_int32));
2047          new_record[i].task = nullptr;
2048          new_record[i].successors = successorsList;
2049          new_record[i].nsuccessors = 0;
2050          new_record[i].npredecessors = 0;
2051          new_record[i].successors_size = __kmp_successors_size;
2052          KMP_ATOMIC_ST_REL(&new_record[i].npredecessors_counter, 0);
2053        }
2054        // update the size at the end, so that we avoid other
2055        // threads use old_record while map_size is already updated
2056        tdg->map_size = new_size;
2057      }
2058      __kmp_release_bootstrap_lock(&tdg->graph_lock);
2059    }
2060    // record a task
2061    if (tdg->record_map[new_taskdata->td_task_id].task == nullptr) {
2062      tdg->record_map[new_taskdata->td_task_id].task = new_task;
2063      tdg->record_map[new_taskdata->td_task_id].parent_task =
2064          new_taskdata->td_parent;
2065      KMP_ATOMIC_INC(&tdg->num_tasks);
2066    }
2067  }
2068#endif
2069
2070  /* Should we execute the new task or queue it? For now, let's just always try
2071     to queue it.  If the queue fills up, then we'll execute it.  */
2072  if (new_taskdata->td_flags.proxy == TASK_PROXY ||
2073      __kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer
2074  { // Execute this task immediately
2075    kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
2076    if (serialize_immediate)
2077      new_taskdata->td_flags.task_serial = 1;
2078    __kmp_invoke_task(gtid, new_task, current_task);
2079  } else if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME &&
2080             __kmp_wpolicy_passive) {
2081    kmp_info_t *this_thr = __kmp_threads[gtid];
2082    kmp_team_t *team = this_thr->th.th_team;
2083    kmp_int32 nthreads = this_thr->th.th_team_nproc;
2084    for (int i = 0; i < nthreads; ++i) {
2085      kmp_info_t *thread = team->t.t_threads[i];
2086      if (thread == this_thr)
2087        continue;
2088      if (thread->th.th_sleep_loc != NULL) {
2089        __kmp_null_resume_wrapper(thread);
2090        break; // awake one thread at a time
2091      }
2092    }
2093  }
2094  return TASK_CURRENT_NOT_QUEUED;
2095}
2096
2097// __kmpc_omp_task: Wrapper around __kmp_omp_task to schedule a
2098// non-thread-switchable task from the parent thread only!
2099//
2100// loc_ref: location of original task pragma (ignored)
2101// gtid: Global Thread ID of encountering thread
2102// new_task: non-thread-switchable task thunk allocated by
2103// __kmp_omp_task_alloc()
2104// Returns:
2105//    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
2106//    be resumed later.
2107//    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
2108//    resumed later.
2109kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid,
2110                          kmp_task_t *new_task) {
2111  kmp_int32 res;
2112  KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK);
2113
2114#if KMP_DEBUG || OMPT_SUPPORT
2115  kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
2116#endif
2117  KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref,
2118                new_taskdata));
2119  __kmp_assert_valid_gtid(gtid);
2120
2121#if OMPT_SUPPORT
2122  kmp_taskdata_t *parent = NULL;
2123  if (UNLIKELY(ompt_enabled.enabled)) {
2124    if (!new_taskdata->td_flags.started) {
2125      OMPT_STORE_RETURN_ADDRESS(gtid);
2126      parent = new_taskdata->td_parent;
2127      if (!parent->ompt_task_info.frame.enter_frame.ptr) {
2128        parent->ompt_task_info.frame.enter_frame.ptr =
2129            OMPT_GET_FRAME_ADDRESS(0);
2130      }
2131      if (ompt_enabled.ompt_callback_task_create) {
2132        ompt_callbacks.ompt_callback(ompt_callback_task_create)(
2133            &(parent->ompt_task_info.task_data),
2134            &(parent->ompt_task_info.frame),
2135            &(new_taskdata->ompt_task_info.task_data),
2136            ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0,
2137            OMPT_LOAD_RETURN_ADDRESS(gtid));
2138      }
2139    } else {
2140      // We are scheduling the continuation of an UNTIED task.
2141      // Scheduling back to the parent task.
2142      __ompt_task_finish(new_task,
2143                         new_taskdata->ompt_task_info.scheduling_parent,
2144                         ompt_task_switch);
2145      new_taskdata->ompt_task_info.frame.exit_frame = ompt_data_none;
2146    }
2147  }
2148#endif
2149
2150  res = __kmp_omp_task(gtid, new_task, true);
2151
2152  KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning "
2153                "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n",
2154                gtid, loc_ref, new_taskdata));
2155#if OMPT_SUPPORT
2156  if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) {
2157    parent->ompt_task_info.frame.enter_frame = ompt_data_none;
2158  }
2159#endif
2160  return res;
2161}
2162
2163// __kmp_omp_taskloop_task: Wrapper around __kmp_omp_task to schedule
2164// a taskloop task with the correct OMPT return address
2165//
2166// loc_ref: location of original task pragma (ignored)
2167// gtid: Global Thread ID of encountering thread
2168// new_task: non-thread-switchable task thunk allocated by
2169// __kmp_omp_task_alloc()
2170// codeptr_ra: return address for OMPT callback
2171// Returns:
2172//    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
2173//    be resumed later.
2174//    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
2175//    resumed later.
2176kmp_int32 __kmp_omp_taskloop_task(ident_t *loc_ref, kmp_int32 gtid,
2177                                  kmp_task_t *new_task, void *codeptr_ra) {
2178  kmp_int32 res;
2179  KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK);
2180
2181#if KMP_DEBUG || OMPT_SUPPORT
2182  kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
2183#endif
2184  KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref,
2185                new_taskdata));
2186
2187#if OMPT_SUPPORT
2188  kmp_taskdata_t *parent = NULL;
2189  if (UNLIKELY(ompt_enabled.enabled && !new_taskdata->td_flags.started)) {
2190    parent = new_taskdata->td_parent;
2191    if (!parent->ompt_task_info.frame.enter_frame.ptr)
2192      parent->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
2193    if (ompt_enabled.ompt_callback_task_create) {
2194      ompt_callbacks.ompt_callback(ompt_callback_task_create)(
2195          &(parent->ompt_task_info.task_data), &(parent->ompt_task_info.frame),
2196          &(new_taskdata->ompt_task_info.task_data),
2197          ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0,
2198          codeptr_ra);
2199    }
2200  }
2201#endif
2202
2203  res = __kmp_omp_task(gtid, new_task, true);
2204
2205  KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning "
2206                "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n",
2207                gtid, loc_ref, new_taskdata));
2208#if OMPT_SUPPORT
2209  if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) {
2210    parent->ompt_task_info.frame.enter_frame = ompt_data_none;
2211  }
2212#endif
2213  return res;
2214}
2215
2216template <bool ompt>
2217static kmp_int32 __kmpc_omp_taskwait_template(ident_t *loc_ref, kmp_int32 gtid,
2218                                              void *frame_address,
2219                                              void *return_address) {
2220  kmp_taskdata_t *taskdata = nullptr;
2221  kmp_info_t *thread;
2222  int thread_finished = FALSE;
2223  KMP_SET_THREAD_STATE_BLOCK(TASKWAIT);
2224
2225  KA_TRACE(10, ("__kmpc_omp_taskwait(enter): T#%d loc=%p\n", gtid, loc_ref));
2226  KMP_DEBUG_ASSERT(gtid >= 0);
2227
2228  if (__kmp_tasking_mode != tskm_immediate_exec) {
2229    thread = __kmp_threads[gtid];
2230    taskdata = thread->th.th_current_task;
2231
2232#if OMPT_SUPPORT && OMPT_OPTIONAL
2233    ompt_data_t *my_task_data;
2234    ompt_data_t *my_parallel_data;
2235
2236    if (ompt) {
2237      my_task_data = &(taskdata->ompt_task_info.task_data);
2238      my_parallel_data = OMPT_CUR_TEAM_DATA(thread);
2239
2240      taskdata->ompt_task_info.frame.enter_frame.ptr = frame_address;
2241
2242      if (ompt_enabled.ompt_callback_sync_region) {
2243        ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
2244            ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data,
2245            my_task_data, return_address);
2246      }
2247
2248      if (ompt_enabled.ompt_callback_sync_region_wait) {
2249        ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
2250            ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data,
2251            my_task_data, return_address);
2252      }
2253    }
2254#endif // OMPT_SUPPORT && OMPT_OPTIONAL
2255
2256// Debugger: The taskwait is active. Store location and thread encountered the
2257// taskwait.
2258#if USE_ITT_BUILD
2259// Note: These values are used by ITT events as well.
2260#endif /* USE_ITT_BUILD */
2261    taskdata->td_taskwait_counter += 1;
2262    taskdata->td_taskwait_ident = loc_ref;
2263    taskdata->td_taskwait_thread = gtid + 1;
2264
2265#if USE_ITT_BUILD
2266    void *itt_sync_obj = NULL;
2267#if USE_ITT_NOTIFY
2268    KMP_ITT_TASKWAIT_STARTING(itt_sync_obj);
2269#endif /* USE_ITT_NOTIFY */
2270#endif /* USE_ITT_BUILD */
2271
2272    bool must_wait =
2273        !taskdata->td_flags.team_serial && !taskdata->td_flags.final;
2274
2275    must_wait = must_wait || (thread->th.th_task_team != NULL &&
2276                              thread->th.th_task_team->tt.tt_found_proxy_tasks);
2277    // If hidden helper thread is encountered, we must enable wait here.
2278    must_wait =
2279        must_wait ||
2280        (__kmp_enable_hidden_helper && thread->th.th_task_team != NULL &&
2281         thread->th.th_task_team->tt.tt_hidden_helper_task_encountered);
2282
2283    if (must_wait) {
2284      kmp_flag_32<false, false> flag(
2285          RCAST(std::atomic<kmp_uint32> *,
2286                &(taskdata->td_incomplete_child_tasks)),
2287          0U);
2288      while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) != 0) {
2289        flag.execute_tasks(thread, gtid, FALSE,
2290                           &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
2291                           __kmp_task_stealing_constraint);
2292      }
2293    }
2294#if USE_ITT_BUILD
2295    KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj);
2296    KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with children
2297#endif /* USE_ITT_BUILD */
2298
2299    // Debugger:  The taskwait is completed. Location remains, but thread is
2300    // negated.
2301    taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread;
2302
2303#if OMPT_SUPPORT && OMPT_OPTIONAL
2304    if (ompt) {
2305      if (ompt_enabled.ompt_callback_sync_region_wait) {
2306        ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
2307            ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data,
2308            my_task_data, return_address);
2309      }
2310      if (ompt_enabled.ompt_callback_sync_region) {
2311        ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
2312            ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data,
2313            my_task_data, return_address);
2314      }
2315      taskdata->ompt_task_info.frame.enter_frame = ompt_data_none;
2316    }
2317#endif // OMPT_SUPPORT && OMPT_OPTIONAL
2318  }
2319
2320  KA_TRACE(10, ("__kmpc_omp_taskwait(exit): T#%d task %p finished waiting, "
2321                "returning TASK_CURRENT_NOT_QUEUED\n",
2322                gtid, taskdata));
2323
2324  return TASK_CURRENT_NOT_QUEUED;
2325}
2326
2327#if OMPT_SUPPORT && OMPT_OPTIONAL
2328OMPT_NOINLINE
2329static kmp_int32 __kmpc_omp_taskwait_ompt(ident_t *loc_ref, kmp_int32 gtid,
2330                                          void *frame_address,
2331                                          void *return_address) {
2332  return __kmpc_omp_taskwait_template<true>(loc_ref, gtid, frame_address,
2333                                            return_address);
2334}
2335#endif // OMPT_SUPPORT && OMPT_OPTIONAL
2336
2337// __kmpc_omp_taskwait: Wait until all tasks generated by the current task are
2338// complete
2339kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid) {
2340#if OMPT_SUPPORT && OMPT_OPTIONAL
2341  if (UNLIKELY(ompt_enabled.enabled)) {
2342    OMPT_STORE_RETURN_ADDRESS(gtid);
2343    return __kmpc_omp_taskwait_ompt(loc_ref, gtid, OMPT_GET_FRAME_ADDRESS(0),
2344                                    OMPT_LOAD_RETURN_ADDRESS(gtid));
2345  }
2346#endif
2347  return __kmpc_omp_taskwait_template<false>(loc_ref, gtid, NULL, NULL);
2348}
2349
2350// __kmpc_omp_taskyield: switch to a different task
2351kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid, int end_part) {
2352  kmp_taskdata_t *taskdata = NULL;
2353  kmp_info_t *thread;
2354  int thread_finished = FALSE;
2355
2356  KMP_COUNT_BLOCK(OMP_TASKYIELD);
2357  KMP_SET_THREAD_STATE_BLOCK(TASKYIELD);
2358
2359  KA_TRACE(10, ("__kmpc_omp_taskyield(enter): T#%d loc=%p end_part = %d\n",
2360                gtid, loc_ref, end_part));
2361  __kmp_assert_valid_gtid(gtid);
2362
2363  if (__kmp_tasking_mode != tskm_immediate_exec && __kmp_init_parallel) {
2364    thread = __kmp_threads[gtid];
2365    taskdata = thread->th.th_current_task;
2366// Should we model this as a task wait or not?
2367// Debugger: The taskwait is active. Store location and thread encountered the
2368// taskwait.
2369#if USE_ITT_BUILD
2370// Note: These values are used by ITT events as well.
2371#endif /* USE_ITT_BUILD */
2372    taskdata->td_taskwait_counter += 1;
2373    taskdata->td_taskwait_ident = loc_ref;
2374    taskdata->td_taskwait_thread = gtid + 1;
2375
2376#if USE_ITT_BUILD
2377    void *itt_sync_obj = NULL;
2378#if USE_ITT_NOTIFY
2379    KMP_ITT_TASKWAIT_STARTING(itt_sync_obj);
2380#endif /* USE_ITT_NOTIFY */
2381#endif /* USE_ITT_BUILD */
2382    if (!taskdata->td_flags.team_serial) {
2383      kmp_task_team_t *task_team = thread->th.th_task_team;
2384      if (task_team != NULL) {
2385        if (KMP_TASKING_ENABLED(task_team)) {
2386#if OMPT_SUPPORT
2387          if (UNLIKELY(ompt_enabled.enabled))
2388            thread->th.ompt_thread_info.ompt_task_yielded = 1;
2389#endif
2390          __kmp_execute_tasks_32(
2391              thread, gtid, (kmp_flag_32<> *)NULL, FALSE,
2392              &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
2393              __kmp_task_stealing_constraint);
2394#if OMPT_SUPPORT
2395          if (UNLIKELY(ompt_enabled.enabled))
2396            thread->th.ompt_thread_info.ompt_task_yielded = 0;
2397#endif
2398        }
2399      }
2400    }
2401#if USE_ITT_BUILD
2402    KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj);
2403#endif /* USE_ITT_BUILD */
2404
2405    // Debugger:  The taskwait is completed. Location remains, but thread is
2406    // negated.
2407    taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread;
2408  }
2409
2410  KA_TRACE(10, ("__kmpc_omp_taskyield(exit): T#%d task %p resuming, "
2411                "returning TASK_CURRENT_NOT_QUEUED\n",
2412                gtid, taskdata));
2413
2414  return TASK_CURRENT_NOT_QUEUED;
2415}
2416
2417// Task Reduction implementation
2418//
2419// Note: initial implementation didn't take into account the possibility
2420// to specify omp_orig for initializer of the UDR (user defined reduction).
2421// Corrected implementation takes into account the omp_orig object.
2422// Compiler is free to use old implementation if omp_orig is not specified.
2423
2424/*!
2425@ingroup BASIC_TYPES
2426@{
2427*/
2428
2429/*!
2430Flags for special info per task reduction item.
2431*/
2432typedef struct kmp_taskred_flags {
2433  /*! 1 - use lazy alloc/init (e.g. big objects, num tasks < num threads) */
2434  unsigned lazy_priv : 1;
2435  unsigned reserved31 : 31;
2436} kmp_taskred_flags_t;
2437
2438/*!
2439Internal struct for reduction data item related info set up by compiler.
2440*/
2441typedef struct kmp_task_red_input {
2442  void *reduce_shar; /**< shared between tasks item to reduce into */
2443  size_t reduce_size; /**< size of data item in bytes */
2444  // three compiler-generated routines (init, fini are optional):
2445  void *reduce_init; /**< data initialization routine (single parameter) */
2446  void *reduce_fini; /**< data finalization routine */
2447  void *reduce_comb; /**< data combiner routine */
2448  kmp_taskred_flags_t flags; /**< flags for additional info from compiler */
2449} kmp_task_red_input_t;
2450
2451/*!
2452Internal struct for reduction data item related info saved by the library.
2453*/
2454typedef struct kmp_taskred_data {
2455  void *reduce_shar; /**< shared between tasks item to reduce into */
2456  size_t reduce_size; /**< size of data item */
2457  kmp_taskred_flags_t flags; /**< flags for additional info from compiler */
2458  void *reduce_priv; /**< array of thread specific items */
2459  void *reduce_pend; /**< end of private data for faster comparison op */
2460  // three compiler-generated routines (init, fini are optional):
2461  void *reduce_comb; /**< data combiner routine */
2462  void *reduce_init; /**< data initialization routine (two parameters) */
2463  void *reduce_fini; /**< data finalization routine */
2464  void *reduce_orig; /**< original item (can be used in UDR initializer) */
2465} kmp_taskred_data_t;
2466
2467/*!
2468Internal struct for reduction data item related info set up by compiler.
2469
2470New interface: added reduce_orig field to provide omp_orig for UDR initializer.
2471*/
2472typedef struct kmp_taskred_input {
2473  void *reduce_shar; /**< shared between tasks item to reduce into */
2474  void *reduce_orig; /**< original reduction item used for initialization */
2475  size_t reduce_size; /**< size of data item */
2476  // three compiler-generated routines (init, fini are optional):
2477  void *reduce_init; /**< data initialization routine (two parameters) */
2478  void *reduce_fini; /**< data finalization routine */
2479  void *reduce_comb; /**< data combiner routine */
2480  kmp_taskred_flags_t flags; /**< flags for additional info from compiler */
2481} kmp_taskred_input_t;
2482/*!
2483@}
2484*/
2485
2486template <typename T> void __kmp_assign_orig(kmp_taskred_data_t &item, T &src);
2487template <>
2488void __kmp_assign_orig<kmp_task_red_input_t>(kmp_taskred_data_t &item,
2489                                             kmp_task_red_input_t &src) {
2490  item.reduce_orig = NULL;
2491}
2492template <>
2493void __kmp_assign_orig<kmp_taskred_input_t>(kmp_taskred_data_t &item,
2494                                            kmp_taskred_input_t &src) {
2495  if (src.reduce_orig != NULL) {
2496    item.reduce_orig = src.reduce_orig;
2497  } else {
2498    item.reduce_orig = src.reduce_shar;
2499  } // non-NULL reduce_orig means new interface used
2500}
2501
2502template <typename T> void __kmp_call_init(kmp_taskred_data_t &item, size_t j);
2503template <>
2504void __kmp_call_init<kmp_task_red_input_t>(kmp_taskred_data_t &item,
2505                                           size_t offset) {
2506  ((void (*)(void *))item.reduce_init)((char *)(item.reduce_priv) + offset);
2507}
2508template <>
2509void __kmp_call_init<kmp_taskred_input_t>(kmp_taskred_data_t &item,
2510                                          size_t offset) {
2511  ((void (*)(void *, void *))item.reduce_init)(
2512      (char *)(item.reduce_priv) + offset, item.reduce_orig);
2513}
2514
2515template <typename T>
2516void *__kmp_task_reduction_init(int gtid, int num, T *data) {
2517  __kmp_assert_valid_gtid(gtid);
2518  kmp_info_t *thread = __kmp_threads[gtid];
2519  kmp_taskgroup_t *tg = thread->th.th_current_task->td_taskgroup;
2520  kmp_uint32 nth = thread->th.th_team_nproc;
2521  kmp_taskred_data_t *arr;
2522
2523  // check input data just in case
2524  KMP_ASSERT(tg != NULL);
2525  KMP_ASSERT(data != NULL);
2526  KMP_ASSERT(num > 0);
2527  if (nth == 1 && !__kmp_enable_hidden_helper) {
2528    KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, tg %p, exiting nth=1\n",
2529                  gtid, tg));
2530    return (void *)tg;
2531  }
2532  KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, taskgroup %p, #items %d\n",
2533                gtid, tg, num));
2534  arr = (kmp_taskred_data_t *)__kmp_thread_malloc(
2535      thread, num * sizeof(kmp_taskred_data_t));
2536  for (int i = 0; i < num; ++i) {
2537    size_t size = data[i].reduce_size - 1;
2538    // round the size up to cache line per thread-specific item
2539    size += CACHE_LINE - size % CACHE_LINE;
2540    KMP_ASSERT(data[i].reduce_comb != NULL); // combiner is mandatory
2541    arr[i].reduce_shar = data[i].reduce_shar;
2542    arr[i].reduce_size = size;
2543    arr[i].flags = data[i].flags;
2544    arr[i].reduce_comb = data[i].reduce_comb;
2545    arr[i].reduce_init = data[i].reduce_init;
2546    arr[i].reduce_fini = data[i].reduce_fini;
2547    __kmp_assign_orig<T>(arr[i], data[i]);
2548    if (!arr[i].flags.lazy_priv) {
2549      // allocate cache-line aligned block and fill it with zeros
2550      arr[i].reduce_priv = __kmp_allocate(nth * size);
2551      arr[i].reduce_pend = (char *)(arr[i].reduce_priv) + nth * size;
2552      if (arr[i].reduce_init != NULL) {
2553        // initialize all thread-specific items
2554        for (size_t j = 0; j < nth; ++j) {
2555          __kmp_call_init<T>(arr[i], j * size);
2556        }
2557      }
2558    } else {
2559      // only allocate space for pointers now,
2560      // objects will be lazily allocated/initialized if/when requested
2561      // note that __kmp_allocate zeroes the allocated memory
2562      arr[i].reduce_priv = __kmp_allocate(nth * sizeof(void *));
2563    }
2564  }
2565  tg->reduce_data = (void *)arr;
2566  tg->reduce_num_data = num;
2567  return (void *)tg;
2568}
2569
2570/*!
2571@ingroup TASKING
2572@param gtid      Global thread ID
2573@param num       Number of data items to reduce
2574@param data      Array of data for reduction
2575@return The taskgroup identifier
2576
2577Initialize task reduction for the taskgroup.
2578
2579Note: this entry supposes the optional compiler-generated initializer routine
2580has single parameter - pointer to object to be initialized. That means
2581the reduction either does not use omp_orig object, or the omp_orig is accessible
2582without help of the runtime library.
2583*/
2584void *__kmpc_task_reduction_init(int gtid, int num, void *data) {
2585#if OMPX_TASKGRAPH
2586  kmp_tdg_info_t *tdg = __kmp_find_tdg(__kmp_curr_tdg_idx);
2587  if (tdg && __kmp_tdg_is_recording(tdg->tdg_status)) {
2588    kmp_tdg_info_t *this_tdg = __kmp_global_tdgs[__kmp_curr_tdg_idx];
2589    this_tdg->rec_taskred_data =
2590        __kmp_allocate(sizeof(kmp_task_red_input_t) * num);
2591    this_tdg->rec_num_taskred = num;
2592    KMP_MEMCPY(this_tdg->rec_taskred_data, data,
2593               sizeof(kmp_task_red_input_t) * num);
2594  }
2595#endif
2596  return __kmp_task_reduction_init(gtid, num, (kmp_task_red_input_t *)data);
2597}
2598
2599/*!
2600@ingroup TASKING
2601@param gtid      Global thread ID
2602@param num       Number of data items to reduce
2603@param data      Array of data for reduction
2604@return The taskgroup identifier
2605
2606Initialize task reduction for the taskgroup.
2607
2608Note: this entry supposes the optional compiler-generated initializer routine
2609has two parameters, pointer to object to be initialized and pointer to omp_orig
2610*/
2611void *__kmpc_taskred_init(int gtid, int num, void *data) {
2612#if OMPX_TASKGRAPH
2613  kmp_tdg_info_t *tdg = __kmp_find_tdg(__kmp_curr_tdg_idx);
2614  if (tdg && __kmp_tdg_is_recording(tdg->tdg_status)) {
2615    kmp_tdg_info_t *this_tdg = __kmp_global_tdgs[__kmp_curr_tdg_idx];
2616    this_tdg->rec_taskred_data =
2617        __kmp_allocate(sizeof(kmp_task_red_input_t) * num);
2618    this_tdg->rec_num_taskred = num;
2619    KMP_MEMCPY(this_tdg->rec_taskred_data, data,
2620               sizeof(kmp_task_red_input_t) * num);
2621  }
2622#endif
2623  return __kmp_task_reduction_init(gtid, num, (kmp_taskred_input_t *)data);
2624}
2625
2626// Copy task reduction data (except for shared pointers).
2627template <typename T>
2628void __kmp_task_reduction_init_copy(kmp_info_t *thr, int num, T *data,
2629                                    kmp_taskgroup_t *tg, void *reduce_data) {
2630  kmp_taskred_data_t *arr;
2631  KA_TRACE(20, ("__kmp_task_reduction_init_copy: Th %p, init taskgroup %p,"
2632                " from data %p\n",
2633                thr, tg, reduce_data));
2634  arr = (kmp_taskred_data_t *)__kmp_thread_malloc(
2635      thr, num * sizeof(kmp_taskred_data_t));
2636  // threads will share private copies, thunk routines, sizes, flags, etc.:
2637  KMP_MEMCPY(arr, reduce_data, num * sizeof(kmp_taskred_data_t));
2638  for (int i = 0; i < num; ++i) {
2639    arr[i].reduce_shar = data[i].reduce_shar; // init unique shared pointers
2640  }
2641  tg->reduce_data = (void *)arr;
2642  tg->reduce_num_data = num;
2643}
2644
2645/*!
2646@ingroup TASKING
2647@param gtid    Global thread ID
2648@param tskgrp  The taskgroup ID (optional)
2649@param data    Shared location of the item
2650@return The pointer to per-thread data
2651
2652Get thread-specific location of data item
2653*/
2654void *__kmpc_task_reduction_get_th_data(int gtid, void *tskgrp, void *data) {
2655  __kmp_assert_valid_gtid(gtid);
2656  kmp_info_t *thread = __kmp_threads[gtid];
2657  kmp_int32 nth = thread->th.th_team_nproc;
2658  if (nth == 1)
2659    return data; // nothing to do
2660
2661  kmp_taskgroup_t *tg = (kmp_taskgroup_t *)tskgrp;
2662  if (tg == NULL)
2663    tg = thread->th.th_current_task->td_taskgroup;
2664  KMP_ASSERT(tg != NULL);
2665  kmp_taskred_data_t *arr = (kmp_taskred_data_t *)(tg->reduce_data);
2666  kmp_int32 num = tg->reduce_num_data;
2667  kmp_int32 tid = thread->th.th_info.ds.ds_tid;
2668
2669#if OMPX_TASKGRAPH
2670  if ((thread->th.th_current_task->is_taskgraph) &&
2671      (!__kmp_tdg_is_recording(
2672          __kmp_global_tdgs[__kmp_curr_tdg_idx]->tdg_status))) {
2673    tg = thread->th.th_current_task->td_taskgroup;
2674    KMP_ASSERT(tg != NULL);
2675    KMP_ASSERT(tg->reduce_data != NULL);
2676    arr = (kmp_taskred_data_t *)(tg->reduce_data);
2677    num = tg->reduce_num_data;
2678  }
2679#endif
2680
2681  KMP_ASSERT(data != NULL);
2682  while (tg != NULL) {
2683    for (int i = 0; i < num; ++i) {
2684      if (!arr[i].flags.lazy_priv) {
2685        if (data == arr[i].reduce_shar ||
2686            (data >= arr[i].reduce_priv && data < arr[i].reduce_pend))
2687          return (char *)(arr[i].reduce_priv) + tid * arr[i].reduce_size;
2688      } else {
2689        // check shared location first
2690        void **p_priv = (void **)(arr[i].reduce_priv);
2691        if (data == arr[i].reduce_shar)
2692          goto found;
2693        // check if we get some thread specific location as parameter
2694        for (int j = 0; j < nth; ++j)
2695          if (data == p_priv[j])
2696            goto found;
2697        continue; // not found, continue search
2698      found:
2699        if (p_priv[tid] == NULL) {
2700          // allocate thread specific object lazily
2701          p_priv[tid] = __kmp_allocate(arr[i].reduce_size);
2702          if (arr[i].reduce_init != NULL) {
2703            if (arr[i].reduce_orig != NULL) { // new interface
2704              ((void (*)(void *, void *))arr[i].reduce_init)(
2705                  p_priv[tid], arr[i].reduce_orig);
2706            } else { // old interface (single parameter)
2707              ((void (*)(void *))arr[i].reduce_init)(p_priv[tid]);
2708            }
2709          }
2710        }
2711        return p_priv[tid];
2712      }
2713    }
2714    KMP_ASSERT(tg->parent);
2715    tg = tg->parent;
2716    arr = (kmp_taskred_data_t *)(tg->reduce_data);
2717    num = tg->reduce_num_data;
2718  }
2719  KMP_ASSERT2(0, "Unknown task reduction item");
2720  return NULL; // ERROR, this line never executed
2721}
2722
2723// Finalize task reduction.
2724// Called from __kmpc_end_taskgroup()
2725static void __kmp_task_reduction_fini(kmp_info_t *th, kmp_taskgroup_t *tg) {
2726  kmp_int32 nth = th->th.th_team_nproc;
2727  KMP_DEBUG_ASSERT(
2728      nth > 1 ||
2729      __kmp_enable_hidden_helper); // should not be called if nth == 1 unless we
2730                                   // are using hidden helper threads
2731  kmp_taskred_data_t *arr = (kmp_taskred_data_t *)tg->reduce_data;
2732  kmp_int32 num = tg->reduce_num_data;
2733  for (int i = 0; i < num; ++i) {
2734    void *sh_data = arr[i].reduce_shar;
2735    void (*f_fini)(void *) = (void (*)(void *))(arr[i].reduce_fini);
2736    void (*f_comb)(void *, void *) =
2737        (void (*)(void *, void *))(arr[i].reduce_comb);
2738    if (!arr[i].flags.lazy_priv) {
2739      void *pr_data = arr[i].reduce_priv;
2740      size_t size = arr[i].reduce_size;
2741      for (int j = 0; j < nth; ++j) {
2742        void *priv_data = (char *)pr_data + j * size;
2743        f_comb(sh_data, priv_data); // combine results
2744        if (f_fini)
2745          f_fini(priv_data); // finalize if needed
2746      }
2747    } else {
2748      void **pr_data = (void **)(arr[i].reduce_priv);
2749      for (int j = 0; j < nth; ++j) {
2750        if (pr_data[j] != NULL) {
2751          f_comb(sh_data, pr_data[j]); // combine results
2752          if (f_fini)
2753            f_fini(pr_data[j]); // finalize if needed
2754          __kmp_free(pr_data[j]);
2755        }
2756      }
2757    }
2758    __kmp_free(arr[i].reduce_priv);
2759  }
2760  __kmp_thread_free(th, arr);
2761  tg->reduce_data = NULL;
2762  tg->reduce_num_data = 0;
2763}
2764
2765// Cleanup task reduction data for parallel or worksharing,
2766// do not touch task private data other threads still working with.
2767// Called from __kmpc_end_taskgroup()
2768static void __kmp_task_reduction_clean(kmp_info_t *th, kmp_taskgroup_t *tg) {
2769  __kmp_thread_free(th, tg->reduce_data);
2770  tg->reduce_data = NULL;
2771  tg->reduce_num_data = 0;
2772}
2773
2774template <typename T>
2775void *__kmp_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws,
2776                                         int num, T *data) {
2777  __kmp_assert_valid_gtid(gtid);
2778  kmp_info_t *thr = __kmp_threads[gtid];
2779  kmp_int32 nth = thr->th.th_team_nproc;
2780  __kmpc_taskgroup(loc, gtid); // form new taskgroup first
2781  if (nth == 1) {
2782    KA_TRACE(10,
2783             ("__kmpc_reduction_modifier_init: T#%d, tg %p, exiting nth=1\n",
2784              gtid, thr->th.th_current_task->td_taskgroup));
2785    return (void *)thr->th.th_current_task->td_taskgroup;
2786  }
2787  kmp_team_t *team = thr->th.th_team;
2788  void *reduce_data;
2789  kmp_taskgroup_t *tg;
2790  reduce_data = KMP_ATOMIC_LD_RLX(&team->t.t_tg_reduce_data[is_ws]);
2791  if (reduce_data == NULL &&
2792      __kmp_atomic_compare_store(&team->t.t_tg_reduce_data[is_ws], reduce_data,
2793                                 (void *)1)) {
2794    // single thread enters this block to initialize common reduction data
2795    KMP_DEBUG_ASSERT(reduce_data == NULL);
2796    // first initialize own data, then make a copy other threads can use
2797    tg = (kmp_taskgroup_t *)__kmp_task_reduction_init<T>(gtid, num, data);
2798    reduce_data = __kmp_thread_malloc(thr, num * sizeof(kmp_taskred_data_t));
2799    KMP_MEMCPY(reduce_data, tg->reduce_data, num * sizeof(kmp_taskred_data_t));
2800    // fini counters should be 0 at this point
2801    KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[0]) == 0);
2802    KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[1]) == 0);
2803    KMP_ATOMIC_ST_REL(&team->t.t_tg_reduce_data[is_ws], reduce_data);
2804  } else {
2805    while (
2806        (reduce_data = KMP_ATOMIC_LD_ACQ(&team->t.t_tg_reduce_data[is_ws])) ==
2807        (void *)1) { // wait for task reduction initialization
2808      KMP_CPU_PAUSE();
2809    }
2810    KMP_DEBUG_ASSERT(reduce_data > (void *)1); // should be valid pointer here
2811    tg = thr->th.th_current_task->td_taskgroup;
2812    __kmp_task_reduction_init_copy<T>(thr, num, data, tg, reduce_data);
2813  }
2814  return tg;
2815}
2816
2817/*!
2818@ingroup TASKING
2819@param loc       Source location info
2820@param gtid      Global thread ID
2821@param is_ws     Is 1 if the reduction is for worksharing, 0 otherwise
2822@param num       Number of data items to reduce
2823@param data      Array of data for reduction
2824@return The taskgroup identifier
2825
2826Initialize task reduction for a parallel or worksharing.
2827
2828Note: this entry supposes the optional compiler-generated initializer routine
2829has single parameter - pointer to object to be initialized. That means
2830the reduction either does not use omp_orig object, or the omp_orig is accessible
2831without help of the runtime library.
2832*/
2833void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws,
2834                                          int num, void *data) {
2835  return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num,
2836                                            (kmp_task_red_input_t *)data);
2837}
2838
2839/*!
2840@ingroup TASKING
2841@param loc       Source location info
2842@param gtid      Global thread ID
2843@param is_ws     Is 1 if the reduction is for worksharing, 0 otherwise
2844@param num       Number of data items to reduce
2845@param data      Array of data for reduction
2846@return The taskgroup identifier
2847
2848Initialize task reduction for a parallel or worksharing.
2849
2850Note: this entry supposes the optional compiler-generated initializer routine
2851has two parameters, pointer to object to be initialized and pointer to omp_orig
2852*/
2853void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num,
2854                                   void *data) {
2855  return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num,
2856                                            (kmp_taskred_input_t *)data);
2857}
2858
2859/*!
2860@ingroup TASKING
2861@param loc       Source location info
2862@param gtid      Global thread ID
2863@param is_ws     Is 1 if the reduction is for worksharing, 0 otherwise
2864
2865Finalize task reduction for a parallel or worksharing.
2866*/
2867void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws) {
2868  __kmpc_end_taskgroup(loc, gtid);
2869}
2870
2871// __kmpc_taskgroup: Start a new taskgroup
2872void __kmpc_taskgroup(ident_t *loc, int gtid) {
2873  __kmp_assert_valid_gtid(gtid);
2874  kmp_info_t *thread = __kmp_threads[gtid];
2875  kmp_taskdata_t *taskdata = thread->th.th_current_task;
2876  kmp_taskgroup_t *tg_new =
2877      (kmp_taskgroup_t *)__kmp_thread_malloc(thread, sizeof(kmp_taskgroup_t));
2878  KA_TRACE(10, ("__kmpc_taskgroup: T#%d loc=%p group=%p\n", gtid, loc, tg_new));
2879  KMP_ATOMIC_ST_RLX(&tg_new->count, 0);
2880  KMP_ATOMIC_ST_RLX(&tg_new->cancel_request, cancel_noreq);
2881  tg_new->parent = taskdata->td_taskgroup;
2882  tg_new->reduce_data = NULL;
2883  tg_new->reduce_num_data = 0;
2884  tg_new->gomp_data = NULL;
2885  taskdata->td_taskgroup = tg_new;
2886
2887#if OMPT_SUPPORT && OMPT_OPTIONAL
2888  if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) {
2889    void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
2890    if (!codeptr)
2891      codeptr = OMPT_GET_RETURN_ADDRESS(0);
2892    kmp_team_t *team = thread->th.th_team;
2893    ompt_data_t my_task_data = taskdata->ompt_task_info.task_data;
2894    // FIXME: I think this is wrong for lwt!
2895    ompt_data_t my_parallel_data = team->t.ompt_team_info.parallel_data;
2896
2897    ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
2898        ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data),
2899        &(my_task_data), codeptr);
2900  }
2901#endif
2902}
2903
2904// __kmpc_end_taskgroup: Wait until all tasks generated by the current task
2905//                       and its descendants are complete
2906void __kmpc_end_taskgroup(ident_t *loc, int gtid) {
2907  __kmp_assert_valid_gtid(gtid);
2908  kmp_info_t *thread = __kmp_threads[gtid];
2909  kmp_taskdata_t *taskdata = thread->th.th_current_task;
2910  kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup;
2911  int thread_finished = FALSE;
2912
2913#if OMPT_SUPPORT && OMPT_OPTIONAL
2914  kmp_team_t *team;
2915  ompt_data_t my_task_data;
2916  ompt_data_t my_parallel_data;
2917  void *codeptr = nullptr;
2918  if (UNLIKELY(ompt_enabled.enabled)) {
2919    team = thread->th.th_team;
2920    my_task_data = taskdata->ompt_task_info.task_data;
2921    // FIXME: I think this is wrong for lwt!
2922    my_parallel_data = team->t.ompt_team_info.parallel_data;
2923    codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
2924    if (!codeptr)
2925      codeptr = OMPT_GET_RETURN_ADDRESS(0);
2926  }
2927#endif
2928
2929  KA_TRACE(10, ("__kmpc_end_taskgroup(enter): T#%d loc=%p\n", gtid, loc));
2930  KMP_DEBUG_ASSERT(taskgroup != NULL);
2931  KMP_SET_THREAD_STATE_BLOCK(TASKGROUP);
2932
2933  if (__kmp_tasking_mode != tskm_immediate_exec) {
2934    // mark task as waiting not on a barrier
2935    taskdata->td_taskwait_counter += 1;
2936    taskdata->td_taskwait_ident = loc;
2937    taskdata->td_taskwait_thread = gtid + 1;
2938#if USE_ITT_BUILD
2939    // For ITT the taskgroup wait is similar to taskwait until we need to
2940    // distinguish them
2941    void *itt_sync_obj = NULL;
2942#if USE_ITT_NOTIFY
2943    KMP_ITT_TASKWAIT_STARTING(itt_sync_obj);
2944#endif /* USE_ITT_NOTIFY */
2945#endif /* USE_ITT_BUILD */
2946
2947#if OMPT_SUPPORT && OMPT_OPTIONAL
2948    if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) {
2949      ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
2950          ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data),
2951          &(my_task_data), codeptr);
2952    }
2953#endif
2954
2955    if (!taskdata->td_flags.team_serial ||
2956        (thread->th.th_task_team != NULL &&
2957         (thread->th.th_task_team->tt.tt_found_proxy_tasks ||
2958          thread->th.th_task_team->tt.tt_hidden_helper_task_encountered))) {
2959      kmp_flag_32<false, false> flag(
2960          RCAST(std::atomic<kmp_uint32> *, &(taskgroup->count)), 0U);
2961      while (KMP_ATOMIC_LD_ACQ(&taskgroup->count) != 0) {
2962        flag.execute_tasks(thread, gtid, FALSE,
2963                           &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
2964                           __kmp_task_stealing_constraint);
2965      }
2966    }
2967    taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; // end waiting
2968
2969#if OMPT_SUPPORT && OMPT_OPTIONAL
2970    if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) {
2971      ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
2972          ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data),
2973          &(my_task_data), codeptr);
2974    }
2975#endif
2976
2977#if USE_ITT_BUILD
2978    KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj);
2979    KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with descendants
2980#endif /* USE_ITT_BUILD */
2981  }
2982  KMP_DEBUG_ASSERT(taskgroup->count == 0);
2983
2984  if (taskgroup->reduce_data != NULL &&
2985      !taskgroup->gomp_data) { // need to reduce?
2986    int cnt;
2987    void *reduce_data;
2988    kmp_team_t *t = thread->th.th_team;
2989    kmp_taskred_data_t *arr = (kmp_taskred_data_t *)taskgroup->reduce_data;
2990    // check if <priv> data of the first reduction variable shared for the team
2991    void *priv0 = arr[0].reduce_priv;
2992    if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[0])) != NULL &&
2993        ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) {
2994      // finishing task reduction on parallel
2995      cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[0]);
2996      if (cnt == thread->th.th_team_nproc - 1) {
2997        // we are the last thread passing __kmpc_reduction_modifier_fini()
2998        // finalize task reduction:
2999        __kmp_task_reduction_fini(thread, taskgroup);
3000        // cleanup fields in the team structure:
3001        // TODO: is relaxed store enough here (whole barrier should follow)?
3002        __kmp_thread_free(thread, reduce_data);
3003        KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[0], NULL);
3004        KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[0], 0);
3005      } else {
3006        // we are not the last thread passing __kmpc_reduction_modifier_fini(),
3007        // so do not finalize reduction, just clean own copy of the data
3008        __kmp_task_reduction_clean(thread, taskgroup);
3009      }
3010    } else if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[1])) !=
3011                   NULL &&
3012               ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) {
3013      // finishing task reduction on worksharing
3014      cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[1]);
3015      if (cnt == thread->th.th_team_nproc - 1) {
3016        // we are the last thread passing __kmpc_reduction_modifier_fini()
3017        __kmp_task_reduction_fini(thread, taskgroup);
3018        // cleanup fields in team structure:
3019        // TODO: is relaxed store enough here (whole barrier should follow)?
3020        __kmp_thread_free(thread, reduce_data);
3021        KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[1], NULL);
3022        KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[1], 0);
3023      } else {
3024        // we are not the last thread passing __kmpc_reduction_modifier_fini(),
3025        // so do not finalize reduction, just clean own copy of the data
3026        __kmp_task_reduction_clean(thread, taskgroup);
3027      }
3028    } else {
3029      // finishing task reduction on taskgroup
3030      __kmp_task_reduction_fini(thread, taskgroup);
3031    }
3032  }
3033  // Restore parent taskgroup for the current task
3034  taskdata->td_taskgroup = taskgroup->parent;
3035  __kmp_thread_free(thread, taskgroup);
3036
3037  KA_TRACE(10, ("__kmpc_end_taskgroup(exit): T#%d task %p finished waiting\n",
3038                gtid, taskdata));
3039
3040#if OMPT_SUPPORT && OMPT_OPTIONAL
3041  if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) {
3042    ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
3043        ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data),
3044        &(my_task_data), codeptr);
3045  }
3046#endif
3047}
3048
3049static kmp_task_t *__kmp_get_priority_task(kmp_int32 gtid,
3050                                           kmp_task_team_t *task_team,
3051                                           kmp_int32 is_constrained) {
3052  kmp_task_t *task = NULL;
3053  kmp_taskdata_t *taskdata;
3054  kmp_taskdata_t *current;
3055  kmp_thread_data_t *thread_data;
3056  int ntasks = task_team->tt.tt_num_task_pri;
3057  if (ntasks == 0) {
3058    KA_TRACE(
3059        20, ("__kmp_get_priority_task(exit #1): T#%d No tasks to get\n", gtid));
3060    return NULL;
3061  }
3062  do {
3063    // decrement num_tasks to "reserve" one task to get for execution
3064    if (__kmp_atomic_compare_store(&task_team->tt.tt_num_task_pri, ntasks,
3065                                   ntasks - 1))
3066      break;
3067    ntasks = task_team->tt.tt_num_task_pri;
3068  } while (ntasks > 0);
3069  if (ntasks == 0) {
3070    KA_TRACE(20, ("__kmp_get_priority_task(exit #2): T#%d No tasks to get\n",
3071                  __kmp_get_gtid()));
3072    return NULL;
3073  }
3074  // We got a "ticket" to get a "reserved" priority task
3075  int deque_ntasks;
3076  kmp_task_pri_t *list = task_team->tt.tt_task_pri_list;
3077  do {
3078    KMP_ASSERT(list != NULL);
3079    thread_data = &list->td;
3080    __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
3081    deque_ntasks = thread_data->td.td_deque_ntasks;
3082    if (deque_ntasks == 0) {
3083      __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
3084      KA_TRACE(20, ("__kmp_get_priority_task: T#%d No tasks to get from %p\n",
3085                    __kmp_get_gtid(), thread_data));
3086      list = list->next;
3087    }
3088  } while (deque_ntasks == 0);
3089  KMP_DEBUG_ASSERT(deque_ntasks);
3090  int target = thread_data->td.td_deque_head;
3091  current = __kmp_threads[gtid]->th.th_current_task;
3092  taskdata = thread_data->td.td_deque[target];
3093  if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) {
3094    // Bump head pointer and Wrap.
3095    thread_data->td.td_deque_head =
3096        (target + 1) & TASK_DEQUE_MASK(thread_data->td);
3097  } else {
3098    if (!task_team->tt.tt_untied_task_encountered) {
3099      // The TSC does not allow to steal victim task
3100      __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
3101      KA_TRACE(20, ("__kmp_get_priority_task(exit #3): T#%d could not get task "
3102                    "from %p: task_team=%p ntasks=%d head=%u tail=%u\n",
3103                    gtid, thread_data, task_team, deque_ntasks, target,
3104                    thread_data->td.td_deque_tail));
3105      task_team->tt.tt_num_task_pri++; // atomic inc, restore value
3106      return NULL;
3107    }
3108    int i;
3109    // walk through the deque trying to steal any task
3110    taskdata = NULL;
3111    for (i = 1; i < deque_ntasks; ++i) {
3112      target = (target + 1) & TASK_DEQUE_MASK(thread_data->td);
3113      taskdata = thread_data->td.td_deque[target];
3114      if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) {
3115        break; // found task to execute
3116      } else {
3117        taskdata = NULL;
3118      }
3119    }
3120    if (taskdata == NULL) {
3121      // No appropriate candidate found to execute
3122      __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
3123      KA_TRACE(
3124          10, ("__kmp_get_priority_task(exit #4): T#%d could not get task from "
3125               "%p: task_team=%p ntasks=%d head=%u tail=%u\n",
3126               gtid, thread_data, task_team, deque_ntasks,
3127               thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
3128      task_team->tt.tt_num_task_pri++; // atomic inc, restore value
3129      return NULL;
3130    }
3131    int prev = target;
3132    for (i = i + 1; i < deque_ntasks; ++i) {
3133      // shift remaining tasks in the deque left by 1
3134      target = (target + 1) & TASK_DEQUE_MASK(thread_data->td);
3135      thread_data->td.td_deque[prev] = thread_data->td.td_deque[target];
3136      prev = target;
3137    }
3138    KMP_DEBUG_ASSERT(
3139        thread_data->td.td_deque_tail ==
3140        (kmp_uint32)((target + 1) & TASK_DEQUE_MASK(thread_data->td)));
3141    thread_data->td.td_deque_tail = target; // tail -= 1 (wrapped))
3142  }
3143  thread_data->td.td_deque_ntasks = deque_ntasks - 1;
3144  __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
3145  task = KMP_TASKDATA_TO_TASK(taskdata);
3146  return task;
3147}
3148
3149// __kmp_remove_my_task: remove a task from my own deque
3150static kmp_task_t *__kmp_remove_my_task(kmp_info_t *thread, kmp_int32 gtid,
3151                                        kmp_task_team_t *task_team,
3152                                        kmp_int32 is_constrained) {
3153  kmp_task_t *task;
3154  kmp_taskdata_t *taskdata;
3155  kmp_thread_data_t *thread_data;
3156  kmp_uint32 tail;
3157
3158  KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
3159  KMP_DEBUG_ASSERT(task_team->tt.tt_threads_data !=
3160                   NULL); // Caller should check this condition
3161
3162  thread_data = &task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)];
3163
3164  KA_TRACE(10, ("__kmp_remove_my_task(enter): T#%d ntasks=%d head=%u tail=%u\n",
3165                gtid, thread_data->td.td_deque_ntasks,
3166                thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
3167
3168  if (TCR_4(thread_data->td.td_deque_ntasks) == 0) {
3169    KA_TRACE(10,
3170             ("__kmp_remove_my_task(exit #1): T#%d No tasks to remove: "
3171              "ntasks=%d head=%u tail=%u\n",
3172              gtid, thread_data->td.td_deque_ntasks,
3173              thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
3174    return NULL;
3175  }
3176
3177  __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
3178
3179  if (TCR_4(thread_data->td.td_deque_ntasks) == 0) {
3180    __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
3181    KA_TRACE(10,
3182             ("__kmp_remove_my_task(exit #2): T#%d No tasks to remove: "
3183              "ntasks=%d head=%u tail=%u\n",
3184              gtid, thread_data->td.td_deque_ntasks,
3185              thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
3186    return NULL;
3187  }
3188
3189  tail = (thread_data->td.td_deque_tail - 1) &
3190         TASK_DEQUE_MASK(thread_data->td); // Wrap index.
3191  taskdata = thread_data->td.td_deque[tail];
3192
3193  if (!__kmp_task_is_allowed(gtid, is_constrained, taskdata,
3194                             thread->th.th_current_task)) {
3195    // The TSC does not allow to steal victim task
3196    __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
3197    KA_TRACE(10,
3198             ("__kmp_remove_my_task(exit #3): T#%d TSC blocks tail task: "
3199              "ntasks=%d head=%u tail=%u\n",
3200              gtid, thread_data->td.td_deque_ntasks,
3201              thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
3202    return NULL;
3203  }
3204
3205  thread_data->td.td_deque_tail = tail;
3206  TCW_4(thread_data->td.td_deque_ntasks, thread_data->td.td_deque_ntasks - 1);
3207
3208  __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
3209
3210  KA_TRACE(10, ("__kmp_remove_my_task(exit #4): T#%d task %p removed: "
3211                "ntasks=%d head=%u tail=%u\n",
3212                gtid, taskdata, thread_data->td.td_deque_ntasks,
3213                thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
3214
3215  task = KMP_TASKDATA_TO_TASK(taskdata);
3216  return task;
3217}
3218
3219// __kmp_steal_task: remove a task from another thread's deque
3220// Assume that calling thread has already checked existence of
3221// task_team thread_data before calling this routine.
3222static kmp_task_t *__kmp_steal_task(kmp_info_t *victim_thr, kmp_int32 gtid,
3223                                    kmp_task_team_t *task_team,
3224                                    std::atomic<kmp_int32> *unfinished_threads,
3225                                    int *thread_finished,
3226                                    kmp_int32 is_constrained) {
3227  kmp_task_t *task;
3228  kmp_taskdata_t *taskdata;
3229  kmp_taskdata_t *current;
3230  kmp_thread_data_t *victim_td, *threads_data;
3231  kmp_int32 target;
3232  kmp_int32 victim_tid;
3233
3234  KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
3235
3236  threads_data = task_team->tt.tt_threads_data;
3237  KMP_DEBUG_ASSERT(threads_data != NULL); // Caller should check this condition
3238
3239  victim_tid = victim_thr->th.th_info.ds.ds_tid;
3240  victim_td = &threads_data[victim_tid];
3241
3242  KA_TRACE(10, ("__kmp_steal_task(enter): T#%d try to steal from T#%d: "
3243                "task_team=%p ntasks=%d head=%u tail=%u\n",
3244                gtid, __kmp_gtid_from_thread(victim_thr), task_team,
3245                victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head,
3246                victim_td->td.td_deque_tail));
3247
3248  if (TCR_4(victim_td->td.td_deque_ntasks) == 0) {
3249    KA_TRACE(10, ("__kmp_steal_task(exit #1): T#%d could not steal from T#%d: "
3250                  "task_team=%p ntasks=%d head=%u tail=%u\n",
3251                  gtid, __kmp_gtid_from_thread(victim_thr), task_team,
3252                  victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head,
3253                  victim_td->td.td_deque_tail));
3254    return NULL;
3255  }
3256
3257  __kmp_acquire_bootstrap_lock(&victim_td->td.td_deque_lock);
3258
3259  int ntasks = TCR_4(victim_td->td.td_deque_ntasks);
3260  // Check again after we acquire the lock
3261  if (ntasks == 0) {
3262    __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
3263    KA_TRACE(10, ("__kmp_steal_task(exit #2): T#%d could not steal from T#%d: "
3264                  "task_team=%p ntasks=%d head=%u tail=%u\n",
3265                  gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
3266                  victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
3267    return NULL;
3268  }
3269
3270  KMP_DEBUG_ASSERT(victim_td->td.td_deque != NULL);
3271  current = __kmp_threads[gtid]->th.th_current_task;
3272  taskdata = victim_td->td.td_deque[victim_td->td.td_deque_head];
3273  if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) {
3274    // Bump head pointer and Wrap.
3275    victim_td->td.td_deque_head =
3276        (victim_td->td.td_deque_head + 1) & TASK_DEQUE_MASK(victim_td->td);
3277  } else {
3278    if (!task_team->tt.tt_untied_task_encountered) {
3279      // The TSC does not allow to steal victim task
3280      __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
3281      KA_TRACE(10, ("__kmp_steal_task(exit #3): T#%d could not steal from "
3282                    "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n",
3283                    gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
3284                    victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
3285      return NULL;
3286    }
3287    int i;
3288    // walk through victim's deque trying to steal any task
3289    target = victim_td->td.td_deque_head;
3290    taskdata = NULL;
3291    for (i = 1; i < ntasks; ++i) {
3292      target = (target + 1) & TASK_DEQUE_MASK(victim_td->td);
3293      taskdata = victim_td->td.td_deque[target];
3294      if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) {
3295        break; // found victim task
3296      } else {
3297        taskdata = NULL;
3298      }
3299    }
3300    if (taskdata == NULL) {
3301      // No appropriate candidate to steal found
3302      __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
3303      KA_TRACE(10, ("__kmp_steal_task(exit #4): T#%d could not steal from "
3304                    "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n",
3305                    gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
3306                    victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
3307      return NULL;
3308    }
3309    int prev = target;
3310    for (i = i + 1; i < ntasks; ++i) {
3311      // shift remaining tasks in the deque left by 1
3312      target = (target + 1) & TASK_DEQUE_MASK(victim_td->td);
3313      victim_td->td.td_deque[prev] = victim_td->td.td_deque[target];
3314      prev = target;
3315    }
3316    KMP_DEBUG_ASSERT(
3317        victim_td->td.td_deque_tail ==
3318        (kmp_uint32)((target + 1) & TASK_DEQUE_MASK(victim_td->td)));
3319    victim_td->td.td_deque_tail = target; // tail -= 1 (wrapped))
3320  }
3321  if (*thread_finished) {
3322    // We need to un-mark this victim as a finished victim.  This must be done
3323    // before releasing the lock, or else other threads (starting with the
3324    // primary thread victim) might be prematurely released from the barrier!!!
3325#if KMP_DEBUG
3326    kmp_int32 count =
3327#endif
3328        KMP_ATOMIC_INC(unfinished_threads);
3329    KA_TRACE(
3330        20,
3331        ("__kmp_steal_task: T#%d inc unfinished_threads to %d: task_team=%p\n",
3332         gtid, count + 1, task_team));
3333    *thread_finished = FALSE;
3334  }
3335  TCW_4(victim_td->td.td_deque_ntasks, ntasks - 1);
3336
3337  __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
3338
3339  KMP_COUNT_BLOCK(TASK_stolen);
3340  KA_TRACE(10,
3341           ("__kmp_steal_task(exit #5): T#%d stole task %p from T#%d: "
3342            "task_team=%p ntasks=%d head=%u tail=%u\n",
3343            gtid, taskdata, __kmp_gtid_from_thread(victim_thr), task_team,
3344            ntasks, victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
3345
3346  task = KMP_TASKDATA_TO_TASK(taskdata);
3347  return task;
3348}
3349
3350// __kmp_execute_tasks_template: Choose and execute tasks until either the
3351// condition is statisfied (return true) or there are none left (return false).
3352//
3353// final_spin is TRUE if this is the spin at the release barrier.
3354// thread_finished indicates whether the thread is finished executing all
3355// the tasks it has on its deque, and is at the release barrier.
3356// spinner is the location on which to spin.
3357// spinner == NULL means only execute a single task and return.
3358// checker is the value to check to terminate the spin.
3359template <class C>
3360static inline int __kmp_execute_tasks_template(
3361    kmp_info_t *thread, kmp_int32 gtid, C *flag, int final_spin,
3362    int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
3363    kmp_int32 is_constrained) {
3364  kmp_task_team_t *task_team = thread->th.th_task_team;
3365  kmp_thread_data_t *threads_data;
3366  kmp_task_t *task;
3367  kmp_info_t *other_thread;
3368  kmp_taskdata_t *current_task = thread->th.th_current_task;
3369  std::atomic<kmp_int32> *unfinished_threads;
3370  kmp_int32 nthreads, victim_tid = -2, use_own_tasks = 1, new_victim = 0,
3371                      tid = thread->th.th_info.ds.ds_tid;
3372
3373  KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
3374  KMP_DEBUG_ASSERT(thread == __kmp_threads[gtid]);
3375
3376  if (task_team == NULL || current_task == NULL)
3377    return FALSE;
3378
3379  KA_TRACE(15, ("__kmp_execute_tasks_template(enter): T#%d final_spin=%d "
3380                "*thread_finished=%d\n",
3381                gtid, final_spin, *thread_finished));
3382
3383  thread->th.th_reap_state = KMP_NOT_SAFE_TO_REAP;
3384  threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data);
3385
3386  KMP_DEBUG_ASSERT(threads_data != NULL);
3387
3388  nthreads = task_team->tt.tt_nproc;
3389  unfinished_threads = &(task_team->tt.tt_unfinished_threads);
3390  KMP_DEBUG_ASSERT(nthreads > 1 || task_team->tt.tt_found_proxy_tasks ||
3391                   task_team->tt.tt_hidden_helper_task_encountered);
3392  KMP_DEBUG_ASSERT(*unfinished_threads >= 0);
3393
3394  while (1) { // Outer loop keeps trying to find tasks in case of single thread
3395    // getting tasks from target constructs
3396    while (1) { // Inner loop to find a task and execute it
3397      task = NULL;
3398      if (task_team->tt.tt_num_task_pri) { // get priority task first
3399        task = __kmp_get_priority_task(gtid, task_team, is_constrained);
3400      }
3401      if (task == NULL && use_own_tasks) { // check own queue next
3402        task = __kmp_remove_my_task(thread, gtid, task_team, is_constrained);
3403      }
3404      if ((task == NULL) && (nthreads > 1)) { // Steal a task finally
3405        int asleep = 1;
3406        use_own_tasks = 0;
3407        // Try to steal from the last place I stole from successfully.
3408        if (victim_tid == -2) { // haven't stolen anything yet
3409          victim_tid = threads_data[tid].td.td_deque_last_stolen;
3410          if (victim_tid !=
3411              -1) // if we have a last stolen from victim, get the thread
3412            other_thread = threads_data[victim_tid].td.td_thr;
3413        }
3414        if (victim_tid != -1) { // found last victim
3415          asleep = 0;
3416        } else if (!new_victim) { // no recent steals and we haven't already
3417          // used a new victim; select a random thread
3418          do { // Find a different thread to steal work from.
3419            // Pick a random thread. Initial plan was to cycle through all the
3420            // threads, and only return if we tried to steal from every thread,
3421            // and failed.  Arch says that's not such a great idea.
3422            victim_tid = __kmp_get_random(thread) % (nthreads - 1);
3423            if (victim_tid >= tid) {
3424              ++victim_tid; // Adjusts random distribution to exclude self
3425            }
3426            // Found a potential victim
3427            other_thread = threads_data[victim_tid].td.td_thr;
3428            // There is a slight chance that __kmp_enable_tasking() did not wake
3429            // up all threads waiting at the barrier.  If victim is sleeping,
3430            // then wake it up. Since we were going to pay the cache miss
3431            // penalty for referencing another thread's kmp_info_t struct
3432            // anyway,
3433            // the check shouldn't cost too much performance at this point. In
3434            // extra barrier mode, tasks do not sleep at the separate tasking
3435            // barrier, so this isn't a problem.
3436            asleep = 0;
3437            if ((__kmp_tasking_mode == tskm_task_teams) &&
3438                (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) &&
3439                (TCR_PTR(CCAST(void *, other_thread->th.th_sleep_loc)) !=
3440                 NULL)) {
3441              asleep = 1;
3442              __kmp_null_resume_wrapper(other_thread);
3443              // A sleeping thread should not have any tasks on it's queue.
3444              // There is a slight possibility that it resumes, steals a task
3445              // from another thread, which spawns more tasks, all in the time
3446              // that it takes this thread to check => don't write an assertion
3447              // that the victim's queue is empty.  Try stealing from a
3448              // different thread.
3449            }
3450          } while (asleep);
3451        }
3452
3453        if (!asleep) {
3454          // We have a victim to try to steal from
3455          task = __kmp_steal_task(other_thread, gtid, task_team,
3456                                  unfinished_threads, thread_finished,
3457                                  is_constrained);
3458        }
3459        if (task != NULL) { // set last stolen to victim
3460          if (threads_data[tid].td.td_deque_last_stolen != victim_tid) {
3461            threads_data[tid].td.td_deque_last_stolen = victim_tid;
3462            // The pre-refactored code did not try more than 1 successful new
3463            // vicitm, unless the last one generated more local tasks;
3464            // new_victim keeps track of this
3465            new_victim = 1;
3466          }
3467        } else { // No tasks found; unset last_stolen
3468          KMP_CHECK_UPDATE(threads_data[tid].td.td_deque_last_stolen, -1);
3469          victim_tid = -2; // no successful victim found
3470        }
3471      }
3472
3473      if (task == NULL)
3474        break; // break out of tasking loop
3475
3476// Found a task; execute it
3477#if USE_ITT_BUILD && USE_ITT_NOTIFY
3478      if (__itt_sync_create_ptr || KMP_ITT_DEBUG) {
3479        if (itt_sync_obj == NULL) { // we are at fork barrier where we could not
3480          // get the object reliably
3481          itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier);
3482        }
3483        __kmp_itt_task_starting(itt_sync_obj);
3484      }
3485#endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */
3486      __kmp_invoke_task(gtid, task, current_task);
3487#if USE_ITT_BUILD
3488      if (itt_sync_obj != NULL)
3489        __kmp_itt_task_finished(itt_sync_obj);
3490#endif /* USE_ITT_BUILD */
3491      // If this thread is only partway through the barrier and the condition is
3492      // met, then return now, so that the barrier gather/release pattern can
3493      // proceed. If this thread is in the last spin loop in the barrier,
3494      // waiting to be released, we know that the termination condition will not
3495      // be satisfied, so don't waste any cycles checking it.
3496      if (flag == NULL || (!final_spin && flag->done_check())) {
3497        KA_TRACE(
3498            15,
3499            ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n",
3500             gtid));
3501        return TRUE;
3502      }
3503      if (thread->th.th_task_team == NULL) {
3504        break;
3505      }
3506      KMP_YIELD(__kmp_library == library_throughput); // Yield before next task
3507      // If execution of a stolen task results in more tasks being placed on our
3508      // run queue, reset use_own_tasks
3509      if (!use_own_tasks && TCR_4(threads_data[tid].td.td_deque_ntasks) != 0) {
3510        KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d stolen task spawned "
3511                      "other tasks, restart\n",
3512                      gtid));
3513        use_own_tasks = 1;
3514        new_victim = 0;
3515      }
3516    }
3517
3518    // The task source has been exhausted. If in final spin loop of barrier,
3519    // check if termination condition is satisfied. The work queue may be empty
3520    // but there might be proxy tasks still executing.
3521    if (final_spin &&
3522        KMP_ATOMIC_LD_ACQ(&current_task->td_incomplete_child_tasks) == 0) {
3523      // First, decrement the #unfinished threads, if that has not already been
3524      // done.  This decrement might be to the spin location, and result in the
3525      // termination condition being satisfied.
3526      if (!*thread_finished) {
3527#if KMP_DEBUG
3528        kmp_int32 count = -1 +
3529#endif
3530            KMP_ATOMIC_DEC(unfinished_threads);
3531        KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d dec "
3532                      "unfinished_threads to %d task_team=%p\n",
3533                      gtid, count, task_team));
3534        *thread_finished = TRUE;
3535      }
3536
3537      // It is now unsafe to reference thread->th.th_team !!!
3538      // Decrementing task_team->tt.tt_unfinished_threads can allow the primary
3539      // thread to pass through the barrier, where it might reset each thread's
3540      // th.th_team field for the next parallel region. If we can steal more
3541      // work, we know that this has not happened yet.
3542      if (flag != NULL && flag->done_check()) {
3543        KA_TRACE(
3544            15,
3545            ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n",
3546             gtid));
3547        return TRUE;
3548      }
3549    }
3550
3551    // If this thread's task team is NULL, primary thread has recognized that
3552    // there are no more tasks; bail out
3553    if (thread->th.th_task_team == NULL) {
3554      KA_TRACE(15,
3555               ("__kmp_execute_tasks_template: T#%d no more tasks\n", gtid));
3556      return FALSE;
3557    }
3558
3559    // Check the flag again to see if it has already done in case to be trapped
3560    // into infinite loop when a if0 task depends on a hidden helper task
3561    // outside any parallel region. Detached tasks are not impacted in this case
3562    // because the only thread executing this function has to execute the proxy
3563    // task so it is in another code path that has the same check.
3564    if (flag == NULL || (!final_spin && flag->done_check())) {
3565      KA_TRACE(15,
3566               ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n",
3567                gtid));
3568      return TRUE;
3569    }
3570
3571    // We could be getting tasks from target constructs; if this is the only
3572    // thread, keep trying to execute tasks from own queue
3573    if (nthreads == 1 &&
3574        KMP_ATOMIC_LD_ACQ(&current_task->td_incomplete_child_tasks))
3575      use_own_tasks = 1;
3576    else {
3577      KA_TRACE(15,
3578               ("__kmp_execute_tasks_template: T#%d can't find work\n", gtid));
3579      return FALSE;
3580    }
3581  }
3582}
3583
3584template <bool C, bool S>
3585int __kmp_execute_tasks_32(
3586    kmp_info_t *thread, kmp_int32 gtid, kmp_flag_32<C, S> *flag, int final_spin,
3587    int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
3588    kmp_int32 is_constrained) {
3589  return __kmp_execute_tasks_template(
3590      thread, gtid, flag, final_spin,
3591      thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
3592}
3593
3594template <bool C, bool S>
3595int __kmp_execute_tasks_64(
3596    kmp_info_t *thread, kmp_int32 gtid, kmp_flag_64<C, S> *flag, int final_spin,
3597    int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
3598    kmp_int32 is_constrained) {
3599  return __kmp_execute_tasks_template(
3600      thread, gtid, flag, final_spin,
3601      thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
3602}
3603
3604template <bool C, bool S>
3605int __kmp_atomic_execute_tasks_64(
3606    kmp_info_t *thread, kmp_int32 gtid, kmp_atomic_flag_64<C, S> *flag,
3607    int final_spin, int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
3608    kmp_int32 is_constrained) {
3609  return __kmp_execute_tasks_template(
3610      thread, gtid, flag, final_spin,
3611      thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
3612}
3613
3614int __kmp_execute_tasks_oncore(
3615    kmp_info_t *thread, kmp_int32 gtid, kmp_flag_oncore *flag, int final_spin,
3616    int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
3617    kmp_int32 is_constrained) {
3618  return __kmp_execute_tasks_template(
3619      thread, gtid, flag, final_spin,
3620      thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
3621}
3622
3623template int
3624__kmp_execute_tasks_32<false, false>(kmp_info_t *, kmp_int32,
3625                                     kmp_flag_32<false, false> *, int,
3626                                     int *USE_ITT_BUILD_ARG(void *), kmp_int32);
3627
3628template int __kmp_execute_tasks_64<false, true>(kmp_info_t *, kmp_int32,
3629                                                 kmp_flag_64<false, true> *,
3630                                                 int,
3631                                                 int *USE_ITT_BUILD_ARG(void *),
3632                                                 kmp_int32);
3633
3634template int __kmp_execute_tasks_64<true, false>(kmp_info_t *, kmp_int32,
3635                                                 kmp_flag_64<true, false> *,
3636                                                 int,
3637                                                 int *USE_ITT_BUILD_ARG(void *),
3638                                                 kmp_int32);
3639
3640template int __kmp_atomic_execute_tasks_64<false, true>(
3641    kmp_info_t *, kmp_int32, kmp_atomic_flag_64<false, true> *, int,
3642    int *USE_ITT_BUILD_ARG(void *), kmp_int32);
3643
3644template int __kmp_atomic_execute_tasks_64<true, false>(
3645    kmp_info_t *, kmp_int32, kmp_atomic_flag_64<true, false> *, int,
3646    int *USE_ITT_BUILD_ARG(void *), kmp_int32);
3647
3648// __kmp_enable_tasking: Allocate task team and resume threads sleeping at the
3649// next barrier so they can assist in executing enqueued tasks.
3650// First thread in allocates the task team atomically.
3651static void __kmp_enable_tasking(kmp_task_team_t *task_team,
3652                                 kmp_info_t *this_thr) {
3653  kmp_thread_data_t *threads_data;
3654  int nthreads, i, is_init_thread;
3655
3656  KA_TRACE(10, ("__kmp_enable_tasking(enter): T#%d\n",
3657                __kmp_gtid_from_thread(this_thr)));
3658
3659  KMP_DEBUG_ASSERT(task_team != NULL);
3660  KMP_DEBUG_ASSERT(this_thr->th.th_team != NULL);
3661
3662  nthreads = task_team->tt.tt_nproc;
3663  KMP_DEBUG_ASSERT(nthreads > 0);
3664  KMP_DEBUG_ASSERT(nthreads == this_thr->th.th_team->t.t_nproc);
3665
3666  // Allocate or increase the size of threads_data if necessary
3667  is_init_thread = __kmp_realloc_task_threads_data(this_thr, task_team);
3668
3669  if (!is_init_thread) {
3670    // Some other thread already set up the array.
3671    KA_TRACE(
3672        20,
3673        ("__kmp_enable_tasking(exit): T#%d: threads array already set up.\n",
3674         __kmp_gtid_from_thread(this_thr)));
3675    return;
3676  }
3677  threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data);
3678  KMP_DEBUG_ASSERT(threads_data != NULL);
3679
3680  if (__kmp_tasking_mode == tskm_task_teams &&
3681      (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME)) {
3682    // Release any threads sleeping at the barrier, so that they can steal
3683    // tasks and execute them.  In extra barrier mode, tasks do not sleep
3684    // at the separate tasking barrier, so this isn't a problem.
3685    for (i = 0; i < nthreads; i++) {
3686      void *sleep_loc;
3687      kmp_info_t *thread = threads_data[i].td.td_thr;
3688
3689      if (i == this_thr->th.th_info.ds.ds_tid) {
3690        continue;
3691      }
3692      // Since we haven't locked the thread's suspend mutex lock at this
3693      // point, there is a small window where a thread might be putting
3694      // itself to sleep, but hasn't set the th_sleep_loc field yet.
3695      // To work around this, __kmp_execute_tasks_template() periodically checks
3696      // see if other threads are sleeping (using the same random mechanism that
3697      // is used for task stealing) and awakens them if they are.
3698      if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) !=
3699          NULL) {
3700        KF_TRACE(50, ("__kmp_enable_tasking: T#%d waking up thread T#%d\n",
3701                      __kmp_gtid_from_thread(this_thr),
3702                      __kmp_gtid_from_thread(thread)));
3703        __kmp_null_resume_wrapper(thread);
3704      } else {
3705        KF_TRACE(50, ("__kmp_enable_tasking: T#%d don't wake up thread T#%d\n",
3706                      __kmp_gtid_from_thread(this_thr),
3707                      __kmp_gtid_from_thread(thread)));
3708      }
3709    }
3710  }
3711
3712  KA_TRACE(10, ("__kmp_enable_tasking(exit): T#%d\n",
3713                __kmp_gtid_from_thread(this_thr)));
3714}
3715
3716/* // TODO: Check the comment consistency
3717 * Utility routines for "task teams".  A task team (kmp_task_t) is kind of
3718 * like a shadow of the kmp_team_t data struct, with a different lifetime.
3719 * After a child * thread checks into a barrier and calls __kmp_release() from
3720 * the particular variant of __kmp_<barrier_kind>_barrier_gather(), it can no
3721 * longer assume that the kmp_team_t structure is intact (at any moment, the
3722 * primary thread may exit the barrier code and free the team data structure,
3723 * and return the threads to the thread pool).
3724 *
3725 * This does not work with the tasking code, as the thread is still
3726 * expected to participate in the execution of any tasks that may have been
3727 * spawned my a member of the team, and the thread still needs access to all
3728 * to each thread in the team, so that it can steal work from it.
3729 *
3730 * Enter the existence of the kmp_task_team_t struct.  It employs a reference
3731 * counting mechanism, and is allocated by the primary thread before calling
3732 * __kmp_<barrier_kind>_release, and then is release by the last thread to
3733 * exit __kmp_<barrier_kind>_release at the next barrier.  I.e. the lifetimes
3734 * of the kmp_task_team_t structs for consecutive barriers can overlap
3735 * (and will, unless the primary thread is the last thread to exit the barrier
3736 * release phase, which is not typical). The existence of such a struct is
3737 * useful outside the context of tasking.
3738 *
3739 * We currently use the existence of the threads array as an indicator that
3740 * tasks were spawned since the last barrier.  If the structure is to be
3741 * useful outside the context of tasking, then this will have to change, but
3742 * not setting the field minimizes the performance impact of tasking on
3743 * barriers, when no explicit tasks were spawned (pushed, actually).
3744 */
3745
3746static kmp_task_team_t *__kmp_free_task_teams =
3747    NULL; // Free list for task_team data structures
3748// Lock for task team data structures
3749kmp_bootstrap_lock_t __kmp_task_team_lock =
3750    KMP_BOOTSTRAP_LOCK_INITIALIZER(__kmp_task_team_lock);
3751
3752// __kmp_alloc_task_deque:
3753// Allocates a task deque for a particular thread, and initialize the necessary
3754// data structures relating to the deque.  This only happens once per thread
3755// per task team since task teams are recycled. No lock is needed during
3756// allocation since each thread allocates its own deque.
3757static void __kmp_alloc_task_deque(kmp_info_t *thread,
3758                                   kmp_thread_data_t *thread_data) {
3759  __kmp_init_bootstrap_lock(&thread_data->td.td_deque_lock);
3760  KMP_DEBUG_ASSERT(thread_data->td.td_deque == NULL);
3761
3762  // Initialize last stolen task field to "none"
3763  thread_data->td.td_deque_last_stolen = -1;
3764
3765  KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == 0);
3766  KMP_DEBUG_ASSERT(thread_data->td.td_deque_head == 0);
3767  KMP_DEBUG_ASSERT(thread_data->td.td_deque_tail == 0);
3768
3769  KE_TRACE(
3770      10,
3771      ("__kmp_alloc_task_deque: T#%d allocating deque[%d] for thread_data %p\n",
3772       __kmp_gtid_from_thread(thread), INITIAL_TASK_DEQUE_SIZE, thread_data));
3773  // Allocate space for task deque, and zero the deque
3774  // Cannot use __kmp_thread_calloc() because threads not around for
3775  // kmp_reap_task_team( ).
3776  thread_data->td.td_deque = (kmp_taskdata_t **)__kmp_allocate(
3777      INITIAL_TASK_DEQUE_SIZE * sizeof(kmp_taskdata_t *));
3778  thread_data->td.td_deque_size = INITIAL_TASK_DEQUE_SIZE;
3779}
3780
3781// __kmp_free_task_deque:
3782// Deallocates a task deque for a particular thread. Happens at library
3783// deallocation so don't need to reset all thread data fields.
3784static void __kmp_free_task_deque(kmp_thread_data_t *thread_data) {
3785  if (thread_data->td.td_deque != NULL) {
3786    __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
3787    TCW_4(thread_data->td.td_deque_ntasks, 0);
3788    __kmp_free(thread_data->td.td_deque);
3789    thread_data->td.td_deque = NULL;
3790    __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
3791  }
3792
3793#ifdef BUILD_TIED_TASK_STACK
3794  // GEH: Figure out what to do here for td_susp_tied_tasks
3795  if (thread_data->td.td_susp_tied_tasks.ts_entries != TASK_STACK_EMPTY) {
3796    __kmp_free_task_stack(__kmp_thread_from_gtid(gtid), thread_data);
3797  }
3798#endif // BUILD_TIED_TASK_STACK
3799}
3800
3801// __kmp_realloc_task_threads_data:
3802// Allocates a threads_data array for a task team, either by allocating an
3803// initial array or enlarging an existing array.  Only the first thread to get
3804// the lock allocs or enlarges the array and re-initializes the array elements.
3805// That thread returns "TRUE", the rest return "FALSE".
3806// Assumes that the new array size is given by task_team -> tt.tt_nproc.
3807// The current size is given by task_team -> tt.tt_max_threads.
3808static int __kmp_realloc_task_threads_data(kmp_info_t *thread,
3809                                           kmp_task_team_t *task_team) {
3810  kmp_thread_data_t **threads_data_p;
3811  kmp_int32 nthreads, maxthreads;
3812  int is_init_thread = FALSE;
3813
3814  if (TCR_4(task_team->tt.tt_found_tasks)) {
3815    // Already reallocated and initialized.
3816    return FALSE;
3817  }
3818
3819  threads_data_p = &task_team->tt.tt_threads_data;
3820  nthreads = task_team->tt.tt_nproc;
3821  maxthreads = task_team->tt.tt_max_threads;
3822
3823  // All threads must lock when they encounter the first task of the implicit
3824  // task region to make sure threads_data fields are (re)initialized before
3825  // used.
3826  __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock);
3827
3828  if (!TCR_4(task_team->tt.tt_found_tasks)) {
3829    // first thread to enable tasking
3830    kmp_team_t *team = thread->th.th_team;
3831    int i;
3832
3833    is_init_thread = TRUE;
3834    if (maxthreads < nthreads) {
3835
3836      if (*threads_data_p != NULL) {
3837        kmp_thread_data_t *old_data = *threads_data_p;
3838        kmp_thread_data_t *new_data = NULL;
3839
3840        KE_TRACE(
3841            10,
3842            ("__kmp_realloc_task_threads_data: T#%d reallocating "
3843             "threads data for task_team %p, new_size = %d, old_size = %d\n",
3844             __kmp_gtid_from_thread(thread), task_team, nthreads, maxthreads));
3845        // Reallocate threads_data to have more elements than current array
3846        // Cannot use __kmp_thread_realloc() because threads not around for
3847        // kmp_reap_task_team( ).  Note all new array entries are initialized
3848        // to zero by __kmp_allocate().
3849        new_data = (kmp_thread_data_t *)__kmp_allocate(
3850            nthreads * sizeof(kmp_thread_data_t));
3851        // copy old data to new data
3852        KMP_MEMCPY_S((void *)new_data, nthreads * sizeof(kmp_thread_data_t),
3853                     (void *)old_data, maxthreads * sizeof(kmp_thread_data_t));
3854
3855#ifdef BUILD_TIED_TASK_STACK
3856        // GEH: Figure out if this is the right thing to do
3857        for (i = maxthreads; i < nthreads; i++) {
3858          kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
3859          __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data);
3860        }
3861#endif // BUILD_TIED_TASK_STACK
3862       // Install the new data and free the old data
3863        (*threads_data_p) = new_data;
3864        __kmp_free(old_data);
3865      } else {
3866        KE_TRACE(10, ("__kmp_realloc_task_threads_data: T#%d allocating "
3867                      "threads data for task_team %p, size = %d\n",
3868                      __kmp_gtid_from_thread(thread), task_team, nthreads));
3869        // Make the initial allocate for threads_data array, and zero entries
3870        // Cannot use __kmp_thread_calloc() because threads not around for
3871        // kmp_reap_task_team( ).
3872        *threads_data_p = (kmp_thread_data_t *)__kmp_allocate(
3873            nthreads * sizeof(kmp_thread_data_t));
3874#ifdef BUILD_TIED_TASK_STACK
3875        // GEH: Figure out if this is the right thing to do
3876        for (i = 0; i < nthreads; i++) {
3877          kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
3878          __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data);
3879        }
3880#endif // BUILD_TIED_TASK_STACK
3881      }
3882      task_team->tt.tt_max_threads = nthreads;
3883    } else {
3884      // If array has (more than) enough elements, go ahead and use it
3885      KMP_DEBUG_ASSERT(*threads_data_p != NULL);
3886    }
3887
3888    // initialize threads_data pointers back to thread_info structures
3889    for (i = 0; i < nthreads; i++) {
3890      kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
3891      thread_data->td.td_thr = team->t.t_threads[i];
3892
3893      if (thread_data->td.td_deque_last_stolen >= nthreads) {
3894        // The last stolen field survives across teams / barrier, and the number
3895        // of threads may have changed.  It's possible (likely?) that a new
3896        // parallel region will exhibit the same behavior as previous region.
3897        thread_data->td.td_deque_last_stolen = -1;
3898      }
3899    }
3900
3901    KMP_MB();
3902    TCW_SYNC_4(task_team->tt.tt_found_tasks, TRUE);
3903  }
3904
3905  __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock);
3906  return is_init_thread;
3907}
3908
3909// __kmp_free_task_threads_data:
3910// Deallocates a threads_data array for a task team, including any attached
3911// tasking deques.  Only occurs at library shutdown.
3912static void __kmp_free_task_threads_data(kmp_task_team_t *task_team) {
3913  __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock);
3914  if (task_team->tt.tt_threads_data != NULL) {
3915    int i;
3916    for (i = 0; i < task_team->tt.tt_max_threads; i++) {
3917      __kmp_free_task_deque(&task_team->tt.tt_threads_data[i]);
3918    }
3919    __kmp_free(task_team->tt.tt_threads_data);
3920    task_team->tt.tt_threads_data = NULL;
3921  }
3922  __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock);
3923}
3924
3925// __kmp_free_task_pri_list:
3926// Deallocates tasking deques used for priority tasks.
3927// Only occurs at library shutdown.
3928static void __kmp_free_task_pri_list(kmp_task_team_t *task_team) {
3929  __kmp_acquire_bootstrap_lock(&task_team->tt.tt_task_pri_lock);
3930  if (task_team->tt.tt_task_pri_list != NULL) {
3931    kmp_task_pri_t *list = task_team->tt.tt_task_pri_list;
3932    while (list != NULL) {
3933      kmp_task_pri_t *next = list->next;
3934      __kmp_free_task_deque(&list->td);
3935      __kmp_free(list);
3936      list = next;
3937    }
3938    task_team->tt.tt_task_pri_list = NULL;
3939  }
3940  __kmp_release_bootstrap_lock(&task_team->tt.tt_task_pri_lock);
3941}
3942
3943// __kmp_allocate_task_team:
3944// Allocates a task team associated with a specific team, taking it from
3945// the global task team free list if possible.  Also initializes data
3946// structures.
3947static kmp_task_team_t *__kmp_allocate_task_team(kmp_info_t *thread,
3948                                                 kmp_team_t *team) {
3949  kmp_task_team_t *task_team = NULL;
3950  int nthreads;
3951
3952  KA_TRACE(20, ("__kmp_allocate_task_team: T#%d entering; team = %p\n",
3953                (thread ? __kmp_gtid_from_thread(thread) : -1), team));
3954
3955  if (TCR_PTR(__kmp_free_task_teams) != NULL) {
3956    // Take a task team from the task team pool
3957    __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);
3958    if (__kmp_free_task_teams != NULL) {
3959      task_team = __kmp_free_task_teams;
3960      TCW_PTR(__kmp_free_task_teams, task_team->tt.tt_next);
3961      task_team->tt.tt_next = NULL;
3962    }
3963    __kmp_release_bootstrap_lock(&__kmp_task_team_lock);
3964  }
3965
3966  if (task_team == NULL) {
3967    KE_TRACE(10, ("__kmp_allocate_task_team: T#%d allocating "
3968                  "task team for team %p\n",
3969                  __kmp_gtid_from_thread(thread), team));
3970    // Allocate a new task team if one is not available. Cannot use
3971    // __kmp_thread_malloc because threads not around for kmp_reap_task_team.
3972    task_team = (kmp_task_team_t *)__kmp_allocate(sizeof(kmp_task_team_t));
3973    __kmp_init_bootstrap_lock(&task_team->tt.tt_threads_lock);
3974    __kmp_init_bootstrap_lock(&task_team->tt.tt_task_pri_lock);
3975#if USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG
3976    // suppress race conditions detection on synchronization flags in debug mode
3977    // this helps to analyze library internals eliminating false positives
3978    __itt_suppress_mark_range(
3979        __itt_suppress_range, __itt_suppress_threading_errors,
3980        &task_team->tt.tt_found_tasks, sizeof(task_team->tt.tt_found_tasks));
3981    __itt_suppress_mark_range(__itt_suppress_range,
3982                              __itt_suppress_threading_errors,
3983                              CCAST(kmp_uint32 *, &task_team->tt.tt_active),
3984                              sizeof(task_team->tt.tt_active));
3985#endif /* USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG */
3986    // Note: __kmp_allocate zeroes returned memory, othewise we would need:
3987    // task_team->tt.tt_threads_data = NULL;
3988    // task_team->tt.tt_max_threads = 0;
3989    // task_team->tt.tt_next = NULL;
3990  }
3991
3992  TCW_4(task_team->tt.tt_found_tasks, FALSE);
3993  TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE);
3994  TCW_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE);
3995  task_team->tt.tt_nproc = nthreads = team->t.t_nproc;
3996
3997  KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads, nthreads);
3998  TCW_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE);
3999  TCW_4(task_team->tt.tt_active, TRUE);
4000
4001  KA_TRACE(20, ("__kmp_allocate_task_team: T#%d exiting; task_team = %p "
4002                "unfinished_threads init'd to %d\n",
4003                (thread ? __kmp_gtid_from_thread(thread) : -1), task_team,
4004                KMP_ATOMIC_LD_RLX(&task_team->tt.tt_unfinished_threads)));
4005  return task_team;
4006}
4007
4008// __kmp_free_task_team:
4009// Frees the task team associated with a specific thread, and adds it
4010// to the global task team free list.
4011void __kmp_free_task_team(kmp_info_t *thread, kmp_task_team_t *task_team) {
4012  KA_TRACE(20, ("__kmp_free_task_team: T#%d task_team = %p\n",
4013                thread ? __kmp_gtid_from_thread(thread) : -1, task_team));
4014
4015  // Put task team back on free list
4016  __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);
4017
4018  KMP_DEBUG_ASSERT(task_team->tt.tt_next == NULL);
4019  task_team->tt.tt_next = __kmp_free_task_teams;
4020  TCW_PTR(__kmp_free_task_teams, task_team);
4021
4022  __kmp_release_bootstrap_lock(&__kmp_task_team_lock);
4023}
4024
4025// __kmp_reap_task_teams:
4026// Free all the task teams on the task team free list.
4027// Should only be done during library shutdown.
4028// Cannot do anything that needs a thread structure or gtid since they are
4029// already gone.
4030void __kmp_reap_task_teams(void) {
4031  kmp_task_team_t *task_team;
4032
4033  if (TCR_PTR(__kmp_free_task_teams) != NULL) {
4034    // Free all task_teams on the free list
4035    __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);
4036    while ((task_team = __kmp_free_task_teams) != NULL) {
4037      __kmp_free_task_teams = task_team->tt.tt_next;
4038      task_team->tt.tt_next = NULL;
4039
4040      // Free threads_data if necessary
4041      if (task_team->tt.tt_threads_data != NULL) {
4042        __kmp_free_task_threads_data(task_team);
4043      }
4044      if (task_team->tt.tt_task_pri_list != NULL) {
4045        __kmp_free_task_pri_list(task_team);
4046      }
4047      __kmp_free(task_team);
4048    }
4049    __kmp_release_bootstrap_lock(&__kmp_task_team_lock);
4050  }
4051}
4052
4053// __kmp_wait_to_unref_task_teams:
4054// Some threads could still be in the fork barrier release code, possibly
4055// trying to steal tasks.  Wait for each thread to unreference its task team.
4056void __kmp_wait_to_unref_task_teams(void) {
4057  kmp_info_t *thread;
4058  kmp_uint32 spins;
4059  kmp_uint64 time;
4060  int done;
4061
4062  KMP_INIT_YIELD(spins);
4063  KMP_INIT_BACKOFF(time);
4064
4065  for (;;) {
4066    done = TRUE;
4067
4068    // TODO: GEH - this may be is wrong because some sync would be necessary
4069    // in case threads are added to the pool during the traversal. Need to
4070    // verify that lock for thread pool is held when calling this routine.
4071    for (thread = CCAST(kmp_info_t *, __kmp_thread_pool); thread != NULL;
4072         thread = thread->th.th_next_pool) {
4073#if KMP_OS_WINDOWS
4074      DWORD exit_val;
4075#endif
4076      if (TCR_PTR(thread->th.th_task_team) == NULL) {
4077        KA_TRACE(10, ("__kmp_wait_to_unref_task_team: T#%d task_team == NULL\n",
4078                      __kmp_gtid_from_thread(thread)));
4079        continue;
4080      }
4081#if KMP_OS_WINDOWS
4082      // TODO: GEH - add this check for Linux* OS / OS X* as well?
4083      if (!__kmp_is_thread_alive(thread, &exit_val)) {
4084        thread->th.th_task_team = NULL;
4085        continue;
4086      }
4087#endif
4088
4089      done = FALSE; // Because th_task_team pointer is not NULL for this thread
4090
4091      KA_TRACE(10, ("__kmp_wait_to_unref_task_team: Waiting for T#%d to "
4092                    "unreference task_team\n",
4093                    __kmp_gtid_from_thread(thread)));
4094
4095      if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) {
4096        void *sleep_loc;
4097        // If the thread is sleeping, awaken it.
4098        if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) !=
4099            NULL) {
4100          KA_TRACE(
4101              10,
4102              ("__kmp_wait_to_unref_task_team: T#%d waking up thread T#%d\n",
4103               __kmp_gtid_from_thread(thread), __kmp_gtid_from_thread(thread)));
4104          __kmp_null_resume_wrapper(thread);
4105        }
4106      }
4107    }
4108    if (done) {
4109      break;
4110    }
4111
4112    // If oversubscribed or have waited a bit, yield.
4113    KMP_YIELD_OVERSUB_ELSE_SPIN(spins, time);
4114  }
4115}
4116
4117void __kmp_shift_task_state_stack(kmp_info_t *this_thr, kmp_uint8 value) {
4118  // Shift values from th_task_state_top+1 to task_state_stack_sz
4119  if (this_thr->th.th_task_state_top + 1 >=
4120      this_thr->th.th_task_state_stack_sz) { // increase size
4121    kmp_uint32 new_size = 2 * this_thr->th.th_task_state_stack_sz;
4122    kmp_uint8 *old_stack, *new_stack;
4123    kmp_uint32 i;
4124    new_stack = (kmp_uint8 *)__kmp_allocate(new_size);
4125    for (i = 0; i <= this_thr->th.th_task_state_top; ++i) {
4126      new_stack[i] = this_thr->th.th_task_state_memo_stack[i];
4127    }
4128    // If we need to reallocate do the shift at the same time.
4129    for (; i < this_thr->th.th_task_state_stack_sz; ++i) {
4130      new_stack[i + 1] = this_thr->th.th_task_state_memo_stack[i];
4131    }
4132    for (i = this_thr->th.th_task_state_stack_sz; i < new_size;
4133         ++i) { // zero-init rest of stack
4134      new_stack[i] = 0;
4135    }
4136    old_stack = this_thr->th.th_task_state_memo_stack;
4137    this_thr->th.th_task_state_memo_stack = new_stack;
4138    this_thr->th.th_task_state_stack_sz = new_size;
4139    __kmp_free(old_stack);
4140  } else {
4141    kmp_uint8 *end;
4142    kmp_uint32 i;
4143
4144    end = &this_thr->th
4145               .th_task_state_memo_stack[this_thr->th.th_task_state_stack_sz];
4146
4147    for (i = this_thr->th.th_task_state_stack_sz - 1;
4148         i > this_thr->th.th_task_state_top; i--, end--)
4149      end[0] = end[-1];
4150  }
4151  this_thr->th.th_task_state_memo_stack[this_thr->th.th_task_state_top + 1] =
4152      value;
4153}
4154
4155// __kmp_task_team_setup:  Create a task_team for the current team, but use
4156// an already created, unused one if it already exists.
4157void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team, int always) {
4158  KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
4159
4160  // If this task_team hasn't been created yet, allocate it. It will be used in
4161  // the region after the next.
4162  // If it exists, it is the current task team and shouldn't be touched yet as
4163  // it may still be in use.
4164  if (team->t.t_task_team[this_thr->th.th_task_state] == NULL &&
4165      (always || team->t.t_nproc > 1)) {
4166    team->t.t_task_team[this_thr->th.th_task_state] =
4167        __kmp_allocate_task_team(this_thr, team);
4168    KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d created new task_team %p"
4169                  " for team %d at parity=%d\n",
4170                  __kmp_gtid_from_thread(this_thr),
4171                  team->t.t_task_team[this_thr->th.th_task_state], team->t.t_id,
4172                  this_thr->th.th_task_state));
4173  }
4174  if (this_thr->th.th_task_state == 1 && always && team->t.t_nproc == 1) {
4175    // fix task state stack to adjust for proxy and helper tasks
4176    KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d needs to shift stack"
4177                  " for team %d at parity=%d\n",
4178                  __kmp_gtid_from_thread(this_thr), team->t.t_id,
4179                  this_thr->th.th_task_state));
4180    __kmp_shift_task_state_stack(this_thr, this_thr->th.th_task_state);
4181  }
4182
4183  // After threads exit the release, they will call sync, and then point to this
4184  // other task_team; make sure it is allocated and properly initialized. As
4185  // threads spin in the barrier release phase, they will continue to use the
4186  // previous task_team struct(above), until they receive the signal to stop
4187  // checking for tasks (they can't safely reference the kmp_team_t struct,
4188  // which could be reallocated by the primary thread). No task teams are formed
4189  // for serialized teams.
4190  if (team->t.t_nproc > 1) {
4191    int other_team = 1 - this_thr->th.th_task_state;
4192    KMP_DEBUG_ASSERT(other_team >= 0 && other_team < 2);
4193    if (team->t.t_task_team[other_team] == NULL) { // setup other team as well
4194      team->t.t_task_team[other_team] =
4195          __kmp_allocate_task_team(this_thr, team);
4196      KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d created second new "
4197                    "task_team %p for team %d at parity=%d\n",
4198                    __kmp_gtid_from_thread(this_thr),
4199                    team->t.t_task_team[other_team], team->t.t_id, other_team));
4200    } else { // Leave the old task team struct in place for the upcoming region;
4201      // adjust as needed
4202      kmp_task_team_t *task_team = team->t.t_task_team[other_team];
4203      if (!task_team->tt.tt_active ||
4204          team->t.t_nproc != task_team->tt.tt_nproc) {
4205        TCW_4(task_team->tt.tt_nproc, team->t.t_nproc);
4206        TCW_4(task_team->tt.tt_found_tasks, FALSE);
4207        TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE);
4208        TCW_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE);
4209        KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads,
4210                          team->t.t_nproc);
4211        TCW_4(task_team->tt.tt_active, TRUE);
4212      }
4213      // if team size has changed, the first thread to enable tasking will
4214      // realloc threads_data if necessary
4215      KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d reset next task_team "
4216                    "%p for team %d at parity=%d\n",
4217                    __kmp_gtid_from_thread(this_thr),
4218                    team->t.t_task_team[other_team], team->t.t_id, other_team));
4219    }
4220  }
4221
4222  // For regular thread, task enabling should be called when the task is going
4223  // to be pushed to a dequeue. However, for the hidden helper thread, we need
4224  // it ahead of time so that some operations can be performed without race
4225  // condition.
4226  if (this_thr == __kmp_hidden_helper_main_thread) {
4227    for (int i = 0; i < 2; ++i) {
4228      kmp_task_team_t *task_team = team->t.t_task_team[i];
4229      if (KMP_TASKING_ENABLED(task_team)) {
4230        continue;
4231      }
4232      __kmp_enable_tasking(task_team, this_thr);
4233      for (int j = 0; j < task_team->tt.tt_nproc; ++j) {
4234        kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[j];
4235        if (thread_data->td.td_deque == NULL) {
4236          __kmp_alloc_task_deque(__kmp_hidden_helper_threads[j], thread_data);
4237        }
4238      }
4239    }
4240  }
4241}
4242
4243// __kmp_task_team_sync: Propagation of task team data from team to threads
4244// which happens just after the release phase of a team barrier.  This may be
4245// called by any thread, but only for teams with # threads > 1.
4246void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team) {
4247  KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
4248
4249  // Toggle the th_task_state field, to switch which task_team this thread
4250  // refers to
4251  this_thr->th.th_task_state = (kmp_uint8)(1 - this_thr->th.th_task_state);
4252
4253  // It is now safe to propagate the task team pointer from the team struct to
4254  // the current thread.
4255  TCW_PTR(this_thr->th.th_task_team,
4256          team->t.t_task_team[this_thr->th.th_task_state]);
4257  KA_TRACE(20,
4258           ("__kmp_task_team_sync: Thread T#%d task team switched to task_team "
4259            "%p from Team #%d (parity=%d)\n",
4260            __kmp_gtid_from_thread(this_thr), this_thr->th.th_task_team,
4261            team->t.t_id, this_thr->th.th_task_state));
4262}
4263
4264// __kmp_task_team_wait: Primary thread waits for outstanding tasks after the
4265// barrier gather phase. Only called by primary thread if #threads in team > 1
4266// or if proxy tasks were created.
4267//
4268// wait is a flag that defaults to 1 (see kmp.h), but waiting can be turned off
4269// by passing in 0 optionally as the last argument. When wait is zero, primary
4270// thread does not wait for unfinished_threads to reach 0.
4271void __kmp_task_team_wait(
4272    kmp_info_t *this_thr,
4273    kmp_team_t *team USE_ITT_BUILD_ARG(void *itt_sync_obj), int wait) {
4274  kmp_task_team_t *task_team = team->t.t_task_team[this_thr->th.th_task_state];
4275
4276  KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
4277  KMP_DEBUG_ASSERT(task_team == this_thr->th.th_task_team);
4278
4279  if ((task_team != NULL) && KMP_TASKING_ENABLED(task_team)) {
4280    if (wait) {
4281      KA_TRACE(20, ("__kmp_task_team_wait: Primary T#%d waiting for all tasks "
4282                    "(for unfinished_threads to reach 0) on task_team = %p\n",
4283                    __kmp_gtid_from_thread(this_thr), task_team));
4284      // Worker threads may have dropped through to release phase, but could
4285      // still be executing tasks. Wait here for tasks to complete. To avoid
4286      // memory contention, only primary thread checks termination condition.
4287      kmp_flag_32<false, false> flag(
4288          RCAST(std::atomic<kmp_uint32> *,
4289                &task_team->tt.tt_unfinished_threads),
4290          0U);
4291      flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj));
4292    }
4293    // Deactivate the old task team, so that the worker threads will stop
4294    // referencing it while spinning.
4295    KA_TRACE(
4296        20,
4297        ("__kmp_task_team_wait: Primary T#%d deactivating task_team %p: "
4298         "setting active to false, setting local and team's pointer to NULL\n",
4299         __kmp_gtid_from_thread(this_thr), task_team));
4300    KMP_DEBUG_ASSERT(task_team->tt.tt_nproc > 1 ||
4301                     task_team->tt.tt_found_proxy_tasks == TRUE ||
4302                     task_team->tt.tt_hidden_helper_task_encountered == TRUE);
4303    TCW_SYNC_4(task_team->tt.tt_found_proxy_tasks, FALSE);
4304    TCW_SYNC_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE);
4305    KMP_CHECK_UPDATE(task_team->tt.tt_untied_task_encountered, 0);
4306    TCW_SYNC_4(task_team->tt.tt_active, FALSE);
4307    KMP_MB();
4308
4309    TCW_PTR(this_thr->th.th_task_team, NULL);
4310  }
4311}
4312
4313// __kmp_tasking_barrier:
4314// This routine is called only when __kmp_tasking_mode == tskm_extra_barrier.
4315// Internal function to execute all tasks prior to a regular barrier or a join
4316// barrier. It is a full barrier itself, which unfortunately turns regular
4317// barriers into double barriers and join barriers into 1 1/2 barriers.
4318void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread, int gtid) {
4319  std::atomic<kmp_uint32> *spin = RCAST(
4320      std::atomic<kmp_uint32> *,
4321      &team->t.t_task_team[thread->th.th_task_state]->tt.tt_unfinished_threads);
4322  int flag = FALSE;
4323  KMP_DEBUG_ASSERT(__kmp_tasking_mode == tskm_extra_barrier);
4324
4325#if USE_ITT_BUILD
4326  KMP_FSYNC_SPIN_INIT(spin, NULL);
4327#endif /* USE_ITT_BUILD */
4328  kmp_flag_32<false, false> spin_flag(spin, 0U);
4329  while (!spin_flag.execute_tasks(thread, gtid, TRUE,
4330                                  &flag USE_ITT_BUILD_ARG(NULL), 0)) {
4331#if USE_ITT_BUILD
4332    // TODO: What about itt_sync_obj??
4333    KMP_FSYNC_SPIN_PREPARE(RCAST(void *, spin));
4334#endif /* USE_ITT_BUILD */
4335
4336    if (TCR_4(__kmp_global.g.g_done)) {
4337      if (__kmp_global.g.g_abort)
4338        __kmp_abort_thread();
4339      break;
4340    }
4341    KMP_YIELD(TRUE);
4342  }
4343#if USE_ITT_BUILD
4344  KMP_FSYNC_SPIN_ACQUIRED(RCAST(void *, spin));
4345#endif /* USE_ITT_BUILD */
4346}
4347
4348// __kmp_give_task puts a task into a given thread queue if:
4349//  - the queue for that thread was created
4350//  - there's space in that queue
4351// Because of this, __kmp_push_task needs to check if there's space after
4352// getting the lock
4353static bool __kmp_give_task(kmp_info_t *thread, kmp_int32 tid, kmp_task_t *task,
4354                            kmp_int32 pass) {
4355  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
4356  kmp_task_team_t *task_team = taskdata->td_task_team;
4357
4358  KA_TRACE(20, ("__kmp_give_task: trying to give task %p to thread %d.\n",
4359                taskdata, tid));
4360
4361  // If task_team is NULL something went really bad...
4362  KMP_DEBUG_ASSERT(task_team != NULL);
4363
4364  bool result = false;
4365  kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid];
4366
4367  if (thread_data->td.td_deque == NULL) {
4368    // There's no queue in this thread, go find another one
4369    // We're guaranteed that at least one thread has a queue
4370    KA_TRACE(30,
4371             ("__kmp_give_task: thread %d has no queue while giving task %p.\n",
4372              tid, taskdata));
4373    return result;
4374  }
4375
4376  if (TCR_4(thread_data->td.td_deque_ntasks) >=
4377      TASK_DEQUE_SIZE(thread_data->td)) {
4378    KA_TRACE(
4379        30,
4380        ("__kmp_give_task: queue is full while giving task %p to thread %d.\n",
4381         taskdata, tid));
4382
4383    // if this deque is bigger than the pass ratio give a chance to another
4384    // thread
4385    if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass)
4386      return result;
4387
4388    __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
4389    if (TCR_4(thread_data->td.td_deque_ntasks) >=
4390        TASK_DEQUE_SIZE(thread_data->td)) {
4391      // expand deque to push the task which is not allowed to execute
4392      __kmp_realloc_task_deque(thread, thread_data);
4393    }
4394
4395  } else {
4396
4397    __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
4398
4399    if (TCR_4(thread_data->td.td_deque_ntasks) >=
4400        TASK_DEQUE_SIZE(thread_data->td)) {
4401      KA_TRACE(30, ("__kmp_give_task: queue is full while giving task %p to "
4402                    "thread %d.\n",
4403                    taskdata, tid));
4404
4405      // if this deque is bigger than the pass ratio give a chance to another
4406      // thread
4407      if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass)
4408        goto release_and_exit;
4409
4410      __kmp_realloc_task_deque(thread, thread_data);
4411    }
4412  }
4413
4414  // lock is held here, and there is space in the deque
4415
4416  thread_data->td.td_deque[thread_data->td.td_deque_tail] = taskdata;
4417  // Wrap index.
4418  thread_data->td.td_deque_tail =
4419      (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td);
4420  TCW_4(thread_data->td.td_deque_ntasks,
4421        TCR_4(thread_data->td.td_deque_ntasks) + 1);
4422
4423  result = true;
4424  KA_TRACE(30, ("__kmp_give_task: successfully gave task %p to thread %d.\n",
4425                taskdata, tid));
4426
4427release_and_exit:
4428  __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
4429
4430  return result;
4431}
4432
4433#define PROXY_TASK_FLAG 0x40000000
4434/* The finish of the proxy tasks is divided in two pieces:
4435    - the top half is the one that can be done from a thread outside the team
4436    - the bottom half must be run from a thread within the team
4437
4438   In order to run the bottom half the task gets queued back into one of the
4439   threads of the team. Once the td_incomplete_child_task counter of the parent
4440   is decremented the threads can leave the barriers. So, the bottom half needs
4441   to be queued before the counter is decremented. The top half is therefore
4442   divided in two parts:
4443    - things that can be run before queuing the bottom half
4444    - things that must be run after queuing the bottom half
4445
4446   This creates a second race as the bottom half can free the task before the
4447   second top half is executed. To avoid this we use the
4448   td_incomplete_child_task of the proxy task to synchronize the top and bottom
4449   half. */
4450static void __kmp_first_top_half_finish_proxy(kmp_taskdata_t *taskdata) {
4451  KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
4452  KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
4453  KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
4454  KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
4455
4456  taskdata->td_flags.complete = 1; // mark the task as completed
4457#if OMPX_TASKGRAPH
4458  taskdata->td_flags.onced = 1;
4459#endif
4460
4461  if (taskdata->td_taskgroup)
4462    KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count);
4463
4464  // Create an imaginary children for this task so the bottom half cannot
4465  // release the task before we have completed the second top half
4466  KMP_ATOMIC_OR(&taskdata->td_incomplete_child_tasks, PROXY_TASK_FLAG);
4467}
4468
4469static void __kmp_second_top_half_finish_proxy(kmp_taskdata_t *taskdata) {
4470#if KMP_DEBUG
4471  kmp_int32 children = 0;
4472  // Predecrement simulated by "- 1" calculation
4473  children = -1 +
4474#endif
4475      KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks);
4476  KMP_DEBUG_ASSERT(children >= 0);
4477
4478  // Remove the imaginary children
4479  KMP_ATOMIC_AND(&taskdata->td_incomplete_child_tasks, ~PROXY_TASK_FLAG);
4480}
4481
4482static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask) {
4483  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
4484  kmp_info_t *thread = __kmp_threads[gtid];
4485
4486  KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
4487  KMP_DEBUG_ASSERT(taskdata->td_flags.complete ==
4488                   1); // top half must run before bottom half
4489
4490  // We need to wait to make sure the top half is finished
4491  // Spinning here should be ok as this should happen quickly
4492  while ((KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) &
4493          PROXY_TASK_FLAG) > 0)
4494    ;
4495
4496  __kmp_release_deps(gtid, taskdata);
4497  __kmp_free_task_and_ancestors(gtid, taskdata, thread);
4498}
4499
4500/*!
4501@ingroup TASKING
4502@param gtid Global Thread ID of encountering thread
4503@param ptask Task which execution is completed
4504
4505Execute the completion of a proxy task from a thread of that is part of the
4506team. Run first and bottom halves directly.
4507*/
4508void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask) {
4509  KMP_DEBUG_ASSERT(ptask != NULL);
4510  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
4511  KA_TRACE(
4512      10, ("__kmp_proxy_task_completed(enter): T#%d proxy task %p completing\n",
4513           gtid, taskdata));
4514  __kmp_assert_valid_gtid(gtid);
4515  KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
4516
4517  __kmp_first_top_half_finish_proxy(taskdata);
4518  __kmp_second_top_half_finish_proxy(taskdata);
4519  __kmp_bottom_half_finish_proxy(gtid, ptask);
4520
4521  KA_TRACE(10,
4522           ("__kmp_proxy_task_completed(exit): T#%d proxy task %p completing\n",
4523            gtid, taskdata));
4524}
4525
4526void __kmpc_give_task(kmp_task_t *ptask, kmp_int32 start = 0) {
4527  KMP_DEBUG_ASSERT(ptask != NULL);
4528  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
4529
4530  // Enqueue task to complete bottom half completion from a thread within the
4531  // corresponding team
4532  kmp_team_t *team = taskdata->td_team;
4533  kmp_int32 nthreads = team->t.t_nproc;
4534  kmp_info_t *thread;
4535
4536  // This should be similar to start_k = __kmp_get_random( thread ) % nthreads
4537  // but we cannot use __kmp_get_random here
4538  kmp_int32 start_k = start % nthreads;
4539  kmp_int32 pass = 1;
4540  kmp_int32 k = start_k;
4541
4542  do {
4543    // For now we're just linearly trying to find a thread
4544    thread = team->t.t_threads[k];
4545    k = (k + 1) % nthreads;
4546
4547    // we did a full pass through all the threads
4548    if (k == start_k)
4549      pass = pass << 1;
4550
4551  } while (!__kmp_give_task(thread, k, ptask, pass));
4552
4553  if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME && __kmp_wpolicy_passive) {
4554    // awake at least one thread to execute given task
4555    for (int i = 0; i < nthreads; ++i) {
4556      thread = team->t.t_threads[i];
4557      if (thread->th.th_sleep_loc != NULL) {
4558        __kmp_null_resume_wrapper(thread);
4559        break;
4560      }
4561    }
4562  }
4563}
4564
4565/*!
4566@ingroup TASKING
4567@param ptask Task which execution is completed
4568
4569Execute the completion of a proxy task from a thread that could not belong to
4570the team.
4571*/
4572void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask) {
4573  KMP_DEBUG_ASSERT(ptask != NULL);
4574  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
4575
4576  KA_TRACE(
4577      10,
4578      ("__kmp_proxy_task_completed_ooo(enter): proxy task completing ooo %p\n",
4579       taskdata));
4580
4581  KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
4582
4583  __kmp_first_top_half_finish_proxy(taskdata);
4584
4585  __kmpc_give_task(ptask);
4586
4587  __kmp_second_top_half_finish_proxy(taskdata);
4588
4589  KA_TRACE(
4590      10,
4591      ("__kmp_proxy_task_completed_ooo(exit): proxy task completing ooo %p\n",
4592       taskdata));
4593}
4594
4595kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref, int gtid,
4596                                                kmp_task_t *task) {
4597  kmp_taskdata_t *td = KMP_TASK_TO_TASKDATA(task);
4598  if (td->td_allow_completion_event.type == KMP_EVENT_UNINITIALIZED) {
4599    td->td_allow_completion_event.type = KMP_EVENT_ALLOW_COMPLETION;
4600    td->td_allow_completion_event.ed.task = task;
4601    __kmp_init_tas_lock(&td->td_allow_completion_event.lock);
4602  }
4603  return &td->td_allow_completion_event;
4604}
4605
4606void __kmp_fulfill_event(kmp_event_t *event) {
4607  if (event->type == KMP_EVENT_ALLOW_COMPLETION) {
4608    kmp_task_t *ptask = event->ed.task;
4609    kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
4610    bool detached = false;
4611    int gtid = __kmp_get_gtid();
4612
4613    // The associated task might have completed or could be completing at this
4614    // point.
4615    // We need to take the lock to avoid races
4616    __kmp_acquire_tas_lock(&event->lock, gtid);
4617    if (taskdata->td_flags.proxy == TASK_PROXY) {
4618      detached = true;
4619    } else {
4620#if OMPT_SUPPORT
4621      // The OMPT event must occur under mutual exclusion,
4622      // otherwise the tool might access ptask after free
4623      if (UNLIKELY(ompt_enabled.enabled))
4624        __ompt_task_finish(ptask, NULL, ompt_task_early_fulfill);
4625#endif
4626    }
4627    event->type = KMP_EVENT_UNINITIALIZED;
4628    __kmp_release_tas_lock(&event->lock, gtid);
4629
4630    if (detached) {
4631#if OMPT_SUPPORT
4632      // We free ptask afterwards and know the task is finished,
4633      // so locking is not necessary
4634      if (UNLIKELY(ompt_enabled.enabled))
4635        __ompt_task_finish(ptask, NULL, ompt_task_late_fulfill);
4636#endif
4637      // If the task detached complete the proxy task
4638      if (gtid >= 0) {
4639        kmp_team_t *team = taskdata->td_team;
4640        kmp_info_t *thread = __kmp_get_thread();
4641        if (thread->th.th_team == team) {
4642          __kmpc_proxy_task_completed(gtid, ptask);
4643          return;
4644        }
4645      }
4646
4647      // fallback
4648      __kmpc_proxy_task_completed_ooo(ptask);
4649    }
4650  }
4651}
4652
4653// __kmp_task_dup_alloc: Allocate the taskdata and make a copy of source task
4654// for taskloop
4655//
4656// thread:   allocating thread
4657// task_src: pointer to source task to be duplicated
4658// taskloop_recur: used only when dealing with taskgraph,
4659//      indicating whether we need to update task->td_task_id
4660// returns:  a pointer to the allocated kmp_task_t structure (task).
4661kmp_task_t *__kmp_task_dup_alloc(kmp_info_t *thread, kmp_task_t *task_src
4662#if OMPX_TASKGRAPH
4663                                 , int taskloop_recur
4664#endif
4665) {
4666  kmp_task_t *task;
4667  kmp_taskdata_t *taskdata;
4668  kmp_taskdata_t *taskdata_src = KMP_TASK_TO_TASKDATA(task_src);
4669  kmp_taskdata_t *parent_task = taskdata_src->td_parent; // same parent task
4670  size_t shareds_offset;
4671  size_t task_size;
4672
4673  KA_TRACE(10, ("__kmp_task_dup_alloc(enter): Th %p, source task %p\n", thread,
4674                task_src));
4675  KMP_DEBUG_ASSERT(taskdata_src->td_flags.proxy ==
4676                   TASK_FULL); // it should not be proxy task
4677  KMP_DEBUG_ASSERT(taskdata_src->td_flags.tasktype == TASK_EXPLICIT);
4678  task_size = taskdata_src->td_size_alloc;
4679
4680  // Allocate a kmp_taskdata_t block and a kmp_task_t block.
4681  KA_TRACE(30, ("__kmp_task_dup_alloc: Th %p, malloc size %ld\n", thread,
4682                task_size));
4683#if USE_FAST_MEMORY
4684  taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, task_size);
4685#else
4686  taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, task_size);
4687#endif /* USE_FAST_MEMORY */
4688  KMP_MEMCPY(taskdata, taskdata_src, task_size);
4689
4690  task = KMP_TASKDATA_TO_TASK(taskdata);
4691
4692  // Initialize new task (only specific fields not affected by memcpy)
4693#if OMPX_TASKGRAPH
4694  if (!taskdata->is_taskgraph || taskloop_recur)
4695    taskdata->td_task_id = KMP_GEN_TASK_ID();
4696  else if (taskdata->is_taskgraph &&
4697           __kmp_tdg_is_recording(taskdata_src->tdg->tdg_status))
4698    taskdata->td_task_id = KMP_ATOMIC_INC(&__kmp_tdg_task_id);
4699#else
4700  taskdata->td_task_id = KMP_GEN_TASK_ID();
4701#endif
4702  if (task->shareds != NULL) { // need setup shareds pointer
4703    shareds_offset = (char *)task_src->shareds - (char *)taskdata_src;
4704    task->shareds = &((char *)taskdata)[shareds_offset];
4705    KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) ==
4706                     0);
4707  }
4708  taskdata->td_alloc_thread = thread;
4709  taskdata->td_parent = parent_task;
4710  // task inherits the taskgroup from the parent task
4711  taskdata->td_taskgroup = parent_task->td_taskgroup;
4712  // tied task needs to initialize the td_last_tied at creation,
4713  // untied one does this when it is scheduled for execution
4714  if (taskdata->td_flags.tiedness == TASK_TIED)
4715    taskdata->td_last_tied = taskdata;
4716
4717  // Only need to keep track of child task counts if team parallel and tasking
4718  // not serialized
4719  if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) {
4720    KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks);
4721    if (parent_task->td_taskgroup)
4722      KMP_ATOMIC_INC(&parent_task->td_taskgroup->count);
4723    // Only need to keep track of allocated child tasks for explicit tasks since
4724    // implicit not deallocated
4725    if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT)
4726      KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks);
4727  }
4728
4729  KA_TRACE(20,
4730           ("__kmp_task_dup_alloc(exit): Th %p, created task %p, parent=%p\n",
4731            thread, taskdata, taskdata->td_parent));
4732#if OMPT_SUPPORT
4733  if (UNLIKELY(ompt_enabled.enabled))
4734    __ompt_task_init(taskdata, thread->th.th_info.ds.ds_gtid);
4735#endif
4736  return task;
4737}
4738
4739// Routine optionally generated by the compiler for setting the lastprivate flag
4740// and calling needed constructors for private/firstprivate objects
4741// (used to form taskloop tasks from pattern task)
4742// Parameters: dest task, src task, lastprivate flag.
4743typedef void (*p_task_dup_t)(kmp_task_t *, kmp_task_t *, kmp_int32);
4744
4745KMP_BUILD_ASSERT(sizeof(long) == 4 || sizeof(long) == 8);
4746
4747// class to encapsulate manipulating loop bounds in a taskloop task.
4748// this abstracts away the Intel vs GOMP taskloop interface for setting/getting
4749// the loop bound variables.
4750class kmp_taskloop_bounds_t {
4751  kmp_task_t *task;
4752  const kmp_taskdata_t *taskdata;
4753  size_t lower_offset;
4754  size_t upper_offset;
4755
4756public:
4757  kmp_taskloop_bounds_t(kmp_task_t *_task, kmp_uint64 *lb, kmp_uint64 *ub)
4758      : task(_task), taskdata(KMP_TASK_TO_TASKDATA(task)),
4759        lower_offset((char *)lb - (char *)task),
4760        upper_offset((char *)ub - (char *)task) {
4761    KMP_DEBUG_ASSERT((char *)lb > (char *)_task);
4762    KMP_DEBUG_ASSERT((char *)ub > (char *)_task);
4763  }
4764  kmp_taskloop_bounds_t(kmp_task_t *_task, const kmp_taskloop_bounds_t &bounds)
4765      : task(_task), taskdata(KMP_TASK_TO_TASKDATA(_task)),
4766        lower_offset(bounds.lower_offset), upper_offset(bounds.upper_offset) {}
4767  size_t get_lower_offset() const { return lower_offset; }
4768  size_t get_upper_offset() const { return upper_offset; }
4769  kmp_uint64 get_lb() const {
4770    kmp_int64 retval;
4771#if defined(KMP_GOMP_COMPAT)
4772    // Intel task just returns the lower bound normally
4773    if (!taskdata->td_flags.native) {
4774      retval = *(kmp_int64 *)((char *)task + lower_offset);
4775    } else {
4776      // GOMP task has to take into account the sizeof(long)
4777      if (taskdata->td_size_loop_bounds == 4) {
4778        kmp_int32 *lb = RCAST(kmp_int32 *, task->shareds);
4779        retval = (kmp_int64)*lb;
4780      } else {
4781        kmp_int64 *lb = RCAST(kmp_int64 *, task->shareds);
4782        retval = (kmp_int64)*lb;
4783      }
4784    }
4785#else
4786    (void)taskdata;
4787    retval = *(kmp_int64 *)((char *)task + lower_offset);
4788#endif // defined(KMP_GOMP_COMPAT)
4789    return retval;
4790  }
4791  kmp_uint64 get_ub() const {
4792    kmp_int64 retval;
4793#if defined(KMP_GOMP_COMPAT)
4794    // Intel task just returns the upper bound normally
4795    if (!taskdata->td_flags.native) {
4796      retval = *(kmp_int64 *)((char *)task + upper_offset);
4797    } else {
4798      // GOMP task has to take into account the sizeof(long)
4799      if (taskdata->td_size_loop_bounds == 4) {
4800        kmp_int32 *ub = RCAST(kmp_int32 *, task->shareds) + 1;
4801        retval = (kmp_int64)*ub;
4802      } else {
4803        kmp_int64 *ub = RCAST(kmp_int64 *, task->shareds) + 1;
4804        retval = (kmp_int64)*ub;
4805      }
4806    }
4807#else
4808    retval = *(kmp_int64 *)((char *)task + upper_offset);
4809#endif // defined(KMP_GOMP_COMPAT)
4810    return retval;
4811  }
4812  void set_lb(kmp_uint64 lb) {
4813#if defined(KMP_GOMP_COMPAT)
4814    // Intel task just sets the lower bound normally
4815    if (!taskdata->td_flags.native) {
4816      *(kmp_uint64 *)((char *)task + lower_offset) = lb;
4817    } else {
4818      // GOMP task has to take into account the sizeof(long)
4819      if (taskdata->td_size_loop_bounds == 4) {
4820        kmp_uint32 *lower = RCAST(kmp_uint32 *, task->shareds);
4821        *lower = (kmp_uint32)lb;
4822      } else {
4823        kmp_uint64 *lower = RCAST(kmp_uint64 *, task->shareds);
4824        *lower = (kmp_uint64)lb;
4825      }
4826    }
4827#else
4828    *(kmp_uint64 *)((char *)task + lower_offset) = lb;
4829#endif // defined(KMP_GOMP_COMPAT)
4830  }
4831  void set_ub(kmp_uint64 ub) {
4832#if defined(KMP_GOMP_COMPAT)
4833    // Intel task just sets the upper bound normally
4834    if (!taskdata->td_flags.native) {
4835      *(kmp_uint64 *)((char *)task + upper_offset) = ub;
4836    } else {
4837      // GOMP task has to take into account the sizeof(long)
4838      if (taskdata->td_size_loop_bounds == 4) {
4839        kmp_uint32 *upper = RCAST(kmp_uint32 *, task->shareds) + 1;
4840        *upper = (kmp_uint32)ub;
4841      } else {
4842        kmp_uint64 *upper = RCAST(kmp_uint64 *, task->shareds) + 1;
4843        *upper = (kmp_uint64)ub;
4844      }
4845    }
4846#else
4847    *(kmp_uint64 *)((char *)task + upper_offset) = ub;
4848#endif // defined(KMP_GOMP_COMPAT)
4849  }
4850};
4851
4852// __kmp_taskloop_linear: Start tasks of the taskloop linearly
4853//
4854// loc        Source location information
4855// gtid       Global thread ID
4856// task       Pattern task, exposes the loop iteration range
4857// lb         Pointer to loop lower bound in task structure
4858// ub         Pointer to loop upper bound in task structure
4859// st         Loop stride
4860// ub_glob    Global upper bound (used for lastprivate check)
4861// num_tasks  Number of tasks to execute
4862// grainsize  Number of loop iterations per task
4863// extras     Number of chunks with grainsize+1 iterations
4864// last_chunk Reduction of grainsize for last task
4865// tc         Iterations count
4866// task_dup   Tasks duplication routine
4867// codeptr_ra Return address for OMPT events
4868void __kmp_taskloop_linear(ident_t *loc, int gtid, kmp_task_t *task,
4869                           kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4870                           kmp_uint64 ub_glob, kmp_uint64 num_tasks,
4871                           kmp_uint64 grainsize, kmp_uint64 extras,
4872                           kmp_int64 last_chunk, kmp_uint64 tc,
4873#if OMPT_SUPPORT
4874                           void *codeptr_ra,
4875#endif
4876                           void *task_dup) {
4877  KMP_COUNT_BLOCK(OMP_TASKLOOP);
4878  KMP_TIME_PARTITIONED_BLOCK(OMP_taskloop_scheduling);
4879  p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
4880  // compiler provides global bounds here
4881  kmp_taskloop_bounds_t task_bounds(task, lb, ub);
4882  kmp_uint64 lower = task_bounds.get_lb();
4883  kmp_uint64 upper = task_bounds.get_ub();
4884  kmp_uint64 i;
4885  kmp_info_t *thread = __kmp_threads[gtid];
4886  kmp_taskdata_t *current_task = thread->th.th_current_task;
4887  kmp_task_t *next_task;
4888  kmp_int32 lastpriv = 0;
4889
4890  KMP_DEBUG_ASSERT(tc == num_tasks * grainsize +
4891                             (last_chunk < 0 ? last_chunk : extras));
4892  KMP_DEBUG_ASSERT(num_tasks > extras);
4893  KMP_DEBUG_ASSERT(num_tasks > 0);
4894  KA_TRACE(20, ("__kmp_taskloop_linear: T#%d: %lld tasks, grainsize %lld, "
4895                "extras %lld, last_chunk %lld, i=%lld,%lld(%d)%lld, dup %p\n",
4896                gtid, num_tasks, grainsize, extras, last_chunk, lower, upper,
4897                ub_glob, st, task_dup));
4898
4899  // Launch num_tasks tasks, assign grainsize iterations each task
4900  for (i = 0; i < num_tasks; ++i) {
4901    kmp_uint64 chunk_minus_1;
4902    if (extras == 0) {
4903      chunk_minus_1 = grainsize - 1;
4904    } else {
4905      chunk_minus_1 = grainsize;
4906      --extras; // first extras iterations get bigger chunk (grainsize+1)
4907    }
4908    upper = lower + st * chunk_minus_1;
4909    if (upper > *ub) {
4910      upper = *ub;
4911    }
4912    if (i == num_tasks - 1) {
4913      // schedule the last task, set lastprivate flag if needed
4914      if (st == 1) { // most common case
4915        KMP_DEBUG_ASSERT(upper == *ub);
4916        if (upper == ub_glob)
4917          lastpriv = 1;
4918      } else if (st > 0) { // positive loop stride
4919        KMP_DEBUG_ASSERT((kmp_uint64)st > *ub - upper);
4920        if ((kmp_uint64)st > ub_glob - upper)
4921          lastpriv = 1;
4922      } else { // negative loop stride
4923        KMP_DEBUG_ASSERT(upper + st < *ub);
4924        if (upper - ub_glob < (kmp_uint64)(-st))
4925          lastpriv = 1;
4926      }
4927    }
4928
4929#if OMPX_TASKGRAPH
4930    next_task = __kmp_task_dup_alloc(thread, task, /* taskloop_recur */ 0);
4931#else
4932    next_task = __kmp_task_dup_alloc(thread, task); // allocate new task
4933#endif
4934
4935    kmp_taskdata_t *next_taskdata = KMP_TASK_TO_TASKDATA(next_task);
4936    kmp_taskloop_bounds_t next_task_bounds =
4937        kmp_taskloop_bounds_t(next_task, task_bounds);
4938
4939    // adjust task-specific bounds
4940    next_task_bounds.set_lb(lower);
4941    if (next_taskdata->td_flags.native) {
4942      next_task_bounds.set_ub(upper + (st > 0 ? 1 : -1));
4943    } else {
4944      next_task_bounds.set_ub(upper);
4945    }
4946    if (ptask_dup != NULL) // set lastprivate flag, construct firstprivates,
4947                           // etc.
4948      ptask_dup(next_task, task, lastpriv);
4949    KA_TRACE(40,
4950             ("__kmp_taskloop_linear: T#%d; task #%llu: task %p: lower %lld, "
4951              "upper %lld stride %lld, (offsets %p %p)\n",
4952              gtid, i, next_task, lower, upper, st,
4953              next_task_bounds.get_lower_offset(),
4954              next_task_bounds.get_upper_offset()));
4955#if OMPT_SUPPORT
4956    __kmp_omp_taskloop_task(NULL, gtid, next_task,
4957                            codeptr_ra); // schedule new task
4958#if OMPT_OPTIONAL
4959    if (ompt_enabled.ompt_callback_dispatch) {
4960      OMPT_GET_DISPATCH_CHUNK(next_taskdata->ompt_task_info.dispatch_chunk,
4961                              lower, upper, st);
4962    }
4963#endif // OMPT_OPTIONAL
4964#else
4965    __kmp_omp_task(gtid, next_task, true); // schedule new task
4966#endif
4967    lower = upper + st; // adjust lower bound for the next iteration
4968  }
4969  // free the pattern task and exit
4970  __kmp_task_start(gtid, task, current_task); // make internal bookkeeping
4971  // do not execute the pattern task, just do internal bookkeeping
4972  __kmp_task_finish<false>(gtid, task, current_task);
4973}
4974
4975// Structure to keep taskloop parameters for auxiliary task
4976// kept in the shareds of the task structure.
4977typedef struct __taskloop_params {
4978  kmp_task_t *task;
4979  kmp_uint64 *lb;
4980  kmp_uint64 *ub;
4981  void *task_dup;
4982  kmp_int64 st;
4983  kmp_uint64 ub_glob;
4984  kmp_uint64 num_tasks;
4985  kmp_uint64 grainsize;
4986  kmp_uint64 extras;
4987  kmp_int64 last_chunk;
4988  kmp_uint64 tc;
4989  kmp_uint64 num_t_min;
4990#if OMPT_SUPPORT
4991  void *codeptr_ra;
4992#endif
4993} __taskloop_params_t;
4994
4995void __kmp_taskloop_recur(ident_t *, int, kmp_task_t *, kmp_uint64 *,
4996                          kmp_uint64 *, kmp_int64, kmp_uint64, kmp_uint64,
4997                          kmp_uint64, kmp_uint64, kmp_int64, kmp_uint64,
4998                          kmp_uint64,
4999#if OMPT_SUPPORT
5000                          void *,
5001#endif
5002                          void *);
5003
5004// Execute part of the taskloop submitted as a task.
5005int __kmp_taskloop_task(int gtid, void *ptask) {
5006  __taskloop_params_t *p =
5007      (__taskloop_params_t *)((kmp_task_t *)ptask)->shareds;
5008  kmp_task_t *task = p->task;
5009  kmp_uint64 *lb = p->lb;
5010  kmp_uint64 *ub = p->ub;
5011  void *task_dup = p->task_dup;
5012  //  p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
5013  kmp_int64 st = p->st;
5014  kmp_uint64 ub_glob = p->ub_glob;
5015  kmp_uint64 num_tasks = p->num_tasks;
5016  kmp_uint64 grainsize = p->grainsize;
5017  kmp_uint64 extras = p->extras;
5018  kmp_int64 last_chunk = p->last_chunk;
5019  kmp_uint64 tc = p->tc;
5020  kmp_uint64 num_t_min = p->num_t_min;
5021#if OMPT_SUPPORT
5022  void *codeptr_ra = p->codeptr_ra;
5023#endif
5024#if KMP_DEBUG
5025  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
5026  KMP_DEBUG_ASSERT(task != NULL);
5027  KA_TRACE(20,
5028           ("__kmp_taskloop_task: T#%d, task %p: %lld tasks, grainsize"
5029            " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n",
5030            gtid, taskdata, num_tasks, grainsize, extras, last_chunk, *lb, *ub,
5031            st, task_dup));
5032#endif
5033  KMP_DEBUG_ASSERT(num_tasks * 2 + 1 > num_t_min);
5034  if (num_tasks > num_t_min)
5035    __kmp_taskloop_recur(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks,
5036                         grainsize, extras, last_chunk, tc, num_t_min,
5037#if OMPT_SUPPORT
5038                         codeptr_ra,
5039#endif
5040                         task_dup);
5041  else
5042    __kmp_taskloop_linear(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks,
5043                          grainsize, extras, last_chunk, tc,
5044#if OMPT_SUPPORT
5045                          codeptr_ra,
5046#endif
5047                          task_dup);
5048
5049  KA_TRACE(40, ("__kmp_taskloop_task(exit): T#%d\n", gtid));
5050  return 0;
5051}
5052
5053// Schedule part of the taskloop as a task,
5054// execute the rest of the taskloop.
5055//
5056// loc        Source location information
5057// gtid       Global thread ID
5058// task       Pattern task, exposes the loop iteration range
5059// lb         Pointer to loop lower bound in task structure
5060// ub         Pointer to loop upper bound in task structure
5061// st         Loop stride
5062// ub_glob    Global upper bound (used for lastprivate check)
5063// num_tasks  Number of tasks to execute
5064// grainsize  Number of loop iterations per task
5065// extras     Number of chunks with grainsize+1 iterations
5066// last_chunk Reduction of grainsize for last task
5067// tc         Iterations count
5068// num_t_min  Threshold to launch tasks recursively
5069// task_dup   Tasks duplication routine
5070// codeptr_ra Return address for OMPT events
5071void __kmp_taskloop_recur(ident_t *loc, int gtid, kmp_task_t *task,
5072                          kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
5073                          kmp_uint64 ub_glob, kmp_uint64 num_tasks,
5074                          kmp_uint64 grainsize, kmp_uint64 extras,
5075                          kmp_int64 last_chunk, kmp_uint64 tc,
5076                          kmp_uint64 num_t_min,
5077#if OMPT_SUPPORT
5078                          void *codeptr_ra,
5079#endif
5080                          void *task_dup) {
5081  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
5082  KMP_DEBUG_ASSERT(task != NULL);
5083  KMP_DEBUG_ASSERT(num_tasks > num_t_min);
5084  KA_TRACE(20,
5085           ("__kmp_taskloop_recur: T#%d, task %p: %lld tasks, grainsize"
5086            " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n",
5087            gtid, taskdata, num_tasks, grainsize, extras, last_chunk, *lb, *ub,
5088            st, task_dup));
5089  p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
5090  kmp_uint64 lower = *lb;
5091  kmp_info_t *thread = __kmp_threads[gtid];
5092  //  kmp_taskdata_t *current_task = thread->th.th_current_task;
5093  kmp_task_t *next_task;
5094  size_t lower_offset =
5095      (char *)lb - (char *)task; // remember offset of lb in the task structure
5096  size_t upper_offset =
5097      (char *)ub - (char *)task; // remember offset of ub in the task structure
5098
5099  KMP_DEBUG_ASSERT(tc == num_tasks * grainsize +
5100                             (last_chunk < 0 ? last_chunk : extras));
5101  KMP_DEBUG_ASSERT(num_tasks > extras);
5102  KMP_DEBUG_ASSERT(num_tasks > 0);
5103
5104  // split the loop in two halves
5105  kmp_uint64 lb1, ub0, tc0, tc1, ext0, ext1;
5106  kmp_int64 last_chunk0 = 0, last_chunk1 = 0;
5107  kmp_uint64 gr_size0 = grainsize;
5108  kmp_uint64 n_tsk0 = num_tasks >> 1; // num_tasks/2 to execute
5109  kmp_uint64 n_tsk1 = num_tasks - n_tsk0; // to schedule as a task
5110  if (last_chunk < 0) {
5111    ext0 = ext1 = 0;
5112    last_chunk1 = last_chunk;
5113    tc0 = grainsize * n_tsk0;
5114    tc1 = tc - tc0;
5115  } else if (n_tsk0 <= extras) {
5116    gr_size0++; // integrate extras into grainsize
5117    ext0 = 0; // no extra iters in 1st half
5118    ext1 = extras - n_tsk0; // remaining extras
5119    tc0 = gr_size0 * n_tsk0;
5120    tc1 = tc - tc0;
5121  } else { // n_tsk0 > extras
5122    ext1 = 0; // no extra iters in 2nd half
5123    ext0 = extras;
5124    tc1 = grainsize * n_tsk1;
5125    tc0 = tc - tc1;
5126  }
5127  ub0 = lower + st * (tc0 - 1);
5128  lb1 = ub0 + st;
5129
5130  // create pattern task for 2nd half of the loop
5131#if OMPX_TASKGRAPH
5132  next_task = __kmp_task_dup_alloc(thread, task,
5133                                   /* taskloop_recur */ 1);
5134#else
5135  next_task = __kmp_task_dup_alloc(thread, task); // duplicate the task
5136#endif
5137  // adjust lower bound (upper bound is not changed) for the 2nd half
5138  *(kmp_uint64 *)((char *)next_task + lower_offset) = lb1;
5139  if (ptask_dup != NULL) // construct firstprivates, etc.
5140    ptask_dup(next_task, task, 0);
5141  *ub = ub0; // adjust upper bound for the 1st half
5142
5143  // create auxiliary task for 2nd half of the loop
5144  // make sure new task has same parent task as the pattern task
5145  kmp_taskdata_t *current_task = thread->th.th_current_task;
5146  thread->th.th_current_task = taskdata->td_parent;
5147  kmp_task_t *new_task =
5148      __kmpc_omp_task_alloc(loc, gtid, 1, 3 * sizeof(void *),
5149                            sizeof(__taskloop_params_t), &__kmp_taskloop_task);
5150  // restore current task
5151  thread->th.th_current_task = current_task;
5152  __taskloop_params_t *p = (__taskloop_params_t *)new_task->shareds;
5153  p->task = next_task;
5154  p->lb = (kmp_uint64 *)((char *)next_task + lower_offset);
5155  p->ub = (kmp_uint64 *)((char *)next_task + upper_offset);
5156  p->task_dup = task_dup;
5157  p->st = st;
5158  p->ub_glob = ub_glob;
5159  p->num_tasks = n_tsk1;
5160  p->grainsize = grainsize;
5161  p->extras = ext1;
5162  p->last_chunk = last_chunk1;
5163  p->tc = tc1;
5164  p->num_t_min = num_t_min;
5165#if OMPT_SUPPORT
5166  p->codeptr_ra = codeptr_ra;
5167#endif
5168
5169#if OMPX_TASKGRAPH
5170  kmp_taskdata_t *new_task_data = KMP_TASK_TO_TASKDATA(new_task);
5171  new_task_data->tdg = taskdata->tdg;
5172  new_task_data->is_taskgraph = 0;
5173#endif
5174
5175#if OMPT_SUPPORT
5176  // schedule new task with correct return address for OMPT events
5177  __kmp_omp_taskloop_task(NULL, gtid, new_task, codeptr_ra);
5178#else
5179  __kmp_omp_task(gtid, new_task, true); // schedule new task
5180#endif
5181
5182  // execute the 1st half of current subrange
5183  if (n_tsk0 > num_t_min)
5184    __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0, gr_size0,
5185                         ext0, last_chunk0, tc0, num_t_min,
5186#if OMPT_SUPPORT
5187                         codeptr_ra,
5188#endif
5189                         task_dup);
5190  else
5191    __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0,
5192                          gr_size0, ext0, last_chunk0, tc0,
5193#if OMPT_SUPPORT
5194                          codeptr_ra,
5195#endif
5196                          task_dup);
5197
5198  KA_TRACE(40, ("__kmp_taskloop_recur(exit): T#%d\n", gtid));
5199}
5200
5201static void __kmp_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val,
5202                           kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
5203                           int nogroup, int sched, kmp_uint64 grainsize,
5204                           int modifier, void *task_dup) {
5205  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
5206  KMP_DEBUG_ASSERT(task != NULL);
5207  if (nogroup == 0) {
5208#if OMPT_SUPPORT && OMPT_OPTIONAL
5209    OMPT_STORE_RETURN_ADDRESS(gtid);
5210#endif
5211    __kmpc_taskgroup(loc, gtid);
5212  }
5213
5214#if OMPX_TASKGRAPH
5215  KMP_ATOMIC_DEC(&__kmp_tdg_task_id);
5216#endif
5217  // =========================================================================
5218  // calculate loop parameters
5219  kmp_taskloop_bounds_t task_bounds(task, lb, ub);
5220  kmp_uint64 tc;
5221  // compiler provides global bounds here
5222  kmp_uint64 lower = task_bounds.get_lb();
5223  kmp_uint64 upper = task_bounds.get_ub();
5224  kmp_uint64 ub_glob = upper; // global upper used to calc lastprivate flag
5225  kmp_uint64 num_tasks = 0, extras = 0;
5226  kmp_int64 last_chunk =
5227      0; // reduce grainsize of last task by last_chunk in strict mode
5228  kmp_uint64 num_tasks_min = __kmp_taskloop_min_tasks;
5229  kmp_info_t *thread = __kmp_threads[gtid];
5230  kmp_taskdata_t *current_task = thread->th.th_current_task;
5231
5232  KA_TRACE(20, ("__kmp_taskloop: T#%d, task %p, lb %lld, ub %lld, st %lld, "
5233                "grain %llu(%d, %d), dup %p\n",
5234                gtid, taskdata, lower, upper, st, grainsize, sched, modifier,
5235                task_dup));
5236
5237  // compute trip count
5238  if (st == 1) { // most common case
5239    tc = upper - lower + 1;
5240  } else if (st < 0) {
5241    tc = (lower - upper) / (-st) + 1;
5242  } else { // st > 0
5243    tc = (upper - lower) / st + 1;
5244  }
5245  if (tc == 0) {
5246    KA_TRACE(20, ("__kmp_taskloop(exit): T#%d zero-trip loop\n", gtid));
5247    // free the pattern task and exit
5248    __kmp_task_start(gtid, task, current_task);
5249    // do not execute anything for zero-trip loop
5250    __kmp_task_finish<false>(gtid, task, current_task);
5251    return;
5252  }
5253
5254#if OMPT_SUPPORT && OMPT_OPTIONAL
5255  ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL);
5256  ompt_task_info_t *task_info = __ompt_get_task_info_object(0);
5257  if (ompt_enabled.ompt_callback_work) {
5258    ompt_callbacks.ompt_callback(ompt_callback_work)(
5259        ompt_work_taskloop, ompt_scope_begin, &(team_info->parallel_data),
5260        &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0));
5261  }
5262#endif
5263
5264  if (num_tasks_min == 0)
5265    // TODO: can we choose better default heuristic?
5266    num_tasks_min =
5267        KMP_MIN(thread->th.th_team_nproc * 10, INITIAL_TASK_DEQUE_SIZE);
5268
5269  // compute num_tasks/grainsize based on the input provided
5270  switch (sched) {
5271  case 0: // no schedule clause specified, we can choose the default
5272    // let's try to schedule (team_size*10) tasks
5273    grainsize = thread->th.th_team_nproc * 10;
5274    KMP_FALLTHROUGH();
5275  case 2: // num_tasks provided
5276    if (grainsize > tc) {
5277      num_tasks = tc; // too big num_tasks requested, adjust values
5278      grainsize = 1;
5279      extras = 0;
5280    } else {
5281      num_tasks = grainsize;
5282      grainsize = tc / num_tasks;
5283      extras = tc % num_tasks;
5284    }
5285    break;
5286  case 1: // grainsize provided
5287    if (grainsize > tc) {
5288      num_tasks = 1;
5289      grainsize = tc; // too big grainsize requested, adjust values
5290      extras = 0;
5291    } else {
5292      if (modifier) {
5293        num_tasks = (tc + grainsize - 1) / grainsize;
5294        last_chunk = tc - (num_tasks * grainsize);
5295        extras = 0;
5296      } else {
5297        num_tasks = tc / grainsize;
5298        // adjust grainsize for balanced distribution of iterations
5299        grainsize = tc / num_tasks;
5300        extras = tc % num_tasks;
5301      }
5302    }
5303    break;
5304  default:
5305    KMP_ASSERT2(0, "unknown scheduling of taskloop");
5306  }
5307
5308  KMP_DEBUG_ASSERT(tc == num_tasks * grainsize +
5309                             (last_chunk < 0 ? last_chunk : extras));
5310  KMP_DEBUG_ASSERT(num_tasks > extras);
5311  KMP_DEBUG_ASSERT(num_tasks > 0);
5312  // =========================================================================
5313
5314  // check if clause value first
5315  // Also require GOMP_taskloop to reduce to linear (taskdata->td_flags.native)
5316  if (if_val == 0) { // if(0) specified, mark task as serial
5317    taskdata->td_flags.task_serial = 1;
5318    taskdata->td_flags.tiedness = TASK_TIED; // AC: serial task cannot be untied
5319    // always start serial tasks linearly
5320    __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
5321                          grainsize, extras, last_chunk, tc,
5322#if OMPT_SUPPORT
5323                          OMPT_GET_RETURN_ADDRESS(0),
5324#endif
5325                          task_dup);
5326    // !taskdata->td_flags.native => currently force linear spawning of tasks
5327    // for GOMP_taskloop
5328  } else if (num_tasks > num_tasks_min && !taskdata->td_flags.native) {
5329    KA_TRACE(20, ("__kmp_taskloop: T#%d, go recursive: tc %llu, #tasks %llu"
5330                  "(%lld), grain %llu, extras %llu, last_chunk %lld\n",
5331                  gtid, tc, num_tasks, num_tasks_min, grainsize, extras,
5332                  last_chunk));
5333    __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
5334                         grainsize, extras, last_chunk, tc, num_tasks_min,
5335#if OMPT_SUPPORT
5336                         OMPT_GET_RETURN_ADDRESS(0),
5337#endif
5338                         task_dup);
5339  } else {
5340    KA_TRACE(20, ("__kmp_taskloop: T#%d, go linear: tc %llu, #tasks %llu"
5341                  "(%lld), grain %llu, extras %llu, last_chunk %lld\n",
5342                  gtid, tc, num_tasks, num_tasks_min, grainsize, extras,
5343                  last_chunk));
5344    __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
5345                          grainsize, extras, last_chunk, tc,
5346#if OMPT_SUPPORT
5347                          OMPT_GET_RETURN_ADDRESS(0),
5348#endif
5349                          task_dup);
5350  }
5351
5352#if OMPT_SUPPORT && OMPT_OPTIONAL
5353  if (ompt_enabled.ompt_callback_work) {
5354    ompt_callbacks.ompt_callback(ompt_callback_work)(
5355        ompt_work_taskloop, ompt_scope_end, &(team_info->parallel_data),
5356        &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0));
5357  }
5358#endif
5359
5360  if (nogroup == 0) {
5361#if OMPT_SUPPORT && OMPT_OPTIONAL
5362    OMPT_STORE_RETURN_ADDRESS(gtid);
5363#endif
5364    __kmpc_end_taskgroup(loc, gtid);
5365  }
5366  KA_TRACE(20, ("__kmp_taskloop(exit): T#%d\n", gtid));
5367}
5368
5369/*!
5370@ingroup TASKING
5371@param loc       Source location information
5372@param gtid      Global thread ID
5373@param task      Task structure
5374@param if_val    Value of the if clause
5375@param lb        Pointer to loop lower bound in task structure
5376@param ub        Pointer to loop upper bound in task structure
5377@param st        Loop stride
5378@param nogroup   Flag, 1 if nogroup clause specified, 0 otherwise
5379@param sched     Schedule specified 0/1/2 for none/grainsize/num_tasks
5380@param grainsize Schedule value if specified
5381@param task_dup  Tasks duplication routine
5382
5383Execute the taskloop construct.
5384*/
5385void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val,
5386                     kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup,
5387                     int sched, kmp_uint64 grainsize, void *task_dup) {
5388  __kmp_assert_valid_gtid(gtid);
5389  KA_TRACE(20, ("__kmpc_taskloop(enter): T#%d\n", gtid));
5390  __kmp_taskloop(loc, gtid, task, if_val, lb, ub, st, nogroup, sched, grainsize,
5391                 0, task_dup);
5392  KA_TRACE(20, ("__kmpc_taskloop(exit): T#%d\n", gtid));
5393}
5394
5395/*!
5396@ingroup TASKING
5397@param loc       Source location information
5398@param gtid      Global thread ID
5399@param task      Task structure
5400@param if_val    Value of the if clause
5401@param lb        Pointer to loop lower bound in task structure
5402@param ub        Pointer to loop upper bound in task structure
5403@param st        Loop stride
5404@param nogroup   Flag, 1 if nogroup clause specified, 0 otherwise
5405@param sched     Schedule specified 0/1/2 for none/grainsize/num_tasks
5406@param grainsize Schedule value if specified
5407@param modifier  Modifier 'strict' for sched, 1 if present, 0 otherwise
5408@param task_dup  Tasks duplication routine
5409
5410Execute the taskloop construct.
5411*/
5412void __kmpc_taskloop_5(ident_t *loc, int gtid, kmp_task_t *task, int if_val,
5413                       kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
5414                       int nogroup, int sched, kmp_uint64 grainsize,
5415                       int modifier, void *task_dup) {
5416  __kmp_assert_valid_gtid(gtid);
5417  KA_TRACE(20, ("__kmpc_taskloop_5(enter): T#%d\n", gtid));
5418  __kmp_taskloop(loc, gtid, task, if_val, lb, ub, st, nogroup, sched, grainsize,
5419                 modifier, task_dup);
5420  KA_TRACE(20, ("__kmpc_taskloop_5(exit): T#%d\n", gtid));
5421}
5422
5423/*!
5424@ingroup TASKING
5425@param gtid Global Thread ID of current thread
5426@return Returns a pointer to the thread's current task async handle. If no task
5427is present or gtid is invalid, returns NULL.
5428
5429Acqurires a pointer to the target async handle from the current task.
5430*/
5431void **__kmpc_omp_get_target_async_handle_ptr(kmp_int32 gtid) {
5432  if (gtid == KMP_GTID_DNE)
5433    return NULL;
5434
5435  kmp_info_t *thread = __kmp_thread_from_gtid(gtid);
5436  kmp_taskdata_t *taskdata = thread->th.th_current_task;
5437
5438  if (!taskdata)
5439    return NULL;
5440
5441  return &taskdata->td_target_data.async_handle;
5442}
5443
5444/*!
5445@ingroup TASKING
5446@param gtid Global Thread ID of current thread
5447@return Returns TRUE if the current task being executed of the given thread has
5448a task team allocated to it. Otherwise, returns FALSE.
5449
5450Checks if the current thread has a task team.
5451*/
5452bool __kmpc_omp_has_task_team(kmp_int32 gtid) {
5453  if (gtid == KMP_GTID_DNE)
5454    return FALSE;
5455
5456  kmp_info_t *thread = __kmp_thread_from_gtid(gtid);
5457  kmp_taskdata_t *taskdata = thread->th.th_current_task;
5458
5459  if (!taskdata)
5460    return FALSE;
5461
5462  return taskdata->td_task_team != NULL;
5463}
5464
5465#if OMPX_TASKGRAPH
5466// __kmp_find_tdg: identify a TDG through its ID
5467// gtid:   Global Thread ID
5468// tdg_id: ID of the TDG
5469// returns: If a TDG corresponding to this ID is found and not
5470// its initial state, return the pointer to it, otherwise nullptr
5471static kmp_tdg_info_t *__kmp_find_tdg(kmp_int32 tdg_id) {
5472  kmp_tdg_info_t *res = nullptr;
5473  if (__kmp_max_tdgs == 0)
5474    return res;
5475
5476  if (__kmp_global_tdgs == NULL)
5477    __kmp_global_tdgs = (kmp_tdg_info_t **)__kmp_allocate(
5478        sizeof(kmp_tdg_info_t *) * __kmp_max_tdgs);
5479
5480  if ((__kmp_global_tdgs[tdg_id]) &&
5481      (__kmp_global_tdgs[tdg_id]->tdg_status != KMP_TDG_NONE))
5482    res = __kmp_global_tdgs[tdg_id];
5483  return res;
5484}
5485
5486// __kmp_print_tdg_dot: prints the TDG to a dot file
5487// tdg:    ID of the TDG
5488void __kmp_print_tdg_dot(kmp_tdg_info_t *tdg) {
5489  kmp_int32 tdg_id = tdg->tdg_id;
5490  KA_TRACE(10, ("__kmp_print_tdg_dot(enter): T#%d tdg_id=%d \n", gtid, tdg_id));
5491
5492  char file_name[20];
5493  sprintf(file_name, "tdg_%d.dot", tdg_id);
5494  kmp_safe_raii_file_t tdg_file(file_name, "w");
5495
5496  kmp_int32 num_tasks = KMP_ATOMIC_LD_RLX(&tdg->num_tasks);
5497  fprintf(tdg_file,
5498          "digraph TDG {\n"
5499          "   compound=true\n"
5500          "   subgraph cluster {\n"
5501          "      label=TDG_%d\n",
5502          tdg_id);
5503  for (kmp_int32 i = 0; i < num_tasks; i++) {
5504    fprintf(tdg_file, "      %d[style=bold]\n", i);
5505  }
5506  fprintf(tdg_file, "   }\n");
5507  for (kmp_int32 i = 0; i < num_tasks; i++) {
5508    kmp_int32 nsuccessors = tdg->record_map[i].nsuccessors;
5509    kmp_int32 *successors = tdg->record_map[i].successors;
5510    if (nsuccessors > 0) {
5511      for (kmp_int32 j = 0; j < nsuccessors; j++)
5512        fprintf(tdg_file, "   %d -> %d \n", i, successors[j]);
5513    }
5514  }
5515  fprintf(tdg_file, "}");
5516  KA_TRACE(10, ("__kmp_print_tdg_dot(exit): T#%d tdg_id=%d \n", gtid, tdg_id));
5517}
5518
5519// __kmp_start_record: launch the execution of a previous
5520// recorded TDG
5521// gtid:   Global Thread ID
5522// tdg:    ID of the TDG
5523void __kmp_exec_tdg(kmp_int32 gtid, kmp_tdg_info_t *tdg) {
5524  KMP_DEBUG_ASSERT(tdg->tdg_status == KMP_TDG_READY);
5525  KA_TRACE(10, ("__kmp_exec_tdg(enter): T#%d tdg_id=%d num_roots=%d\n", gtid,
5526                tdg->tdg_id, tdg->num_roots));
5527  kmp_node_info_t *this_record_map = tdg->record_map;
5528  kmp_int32 *this_root_tasks = tdg->root_tasks;
5529  kmp_int32 this_num_roots = tdg->num_roots;
5530  kmp_int32 this_num_tasks = KMP_ATOMIC_LD_RLX(&tdg->num_tasks);
5531
5532  kmp_info_t *thread = __kmp_threads[gtid];
5533  kmp_taskdata_t *parent_task = thread->th.th_current_task;
5534
5535  if (tdg->rec_taskred_data) {
5536    __kmpc_taskred_init(gtid, tdg->rec_num_taskred, tdg->rec_taskred_data);
5537  }
5538
5539  for (kmp_int32 j = 0; j < this_num_tasks; j++) {
5540    kmp_taskdata_t *td = KMP_TASK_TO_TASKDATA(this_record_map[j].task);
5541
5542    td->td_parent = parent_task;
5543    this_record_map[j].parent_task = parent_task;
5544
5545    kmp_taskgroup_t *parent_taskgroup =
5546        this_record_map[j].parent_task->td_taskgroup;
5547
5548    KMP_ATOMIC_ST_RLX(&this_record_map[j].npredecessors_counter,
5549                      this_record_map[j].npredecessors);
5550    KMP_ATOMIC_INC(&this_record_map[j].parent_task->td_incomplete_child_tasks);
5551
5552    if (parent_taskgroup) {
5553      KMP_ATOMIC_INC(&parent_taskgroup->count);
5554      // The taskgroup is different so we must update it
5555      td->td_taskgroup = parent_taskgroup;
5556    } else if (td->td_taskgroup != nullptr) {
5557      // If the parent doesnt have a taskgroup, remove it from the task
5558      td->td_taskgroup = nullptr;
5559    }
5560    if (this_record_map[j].parent_task->td_flags.tasktype == TASK_EXPLICIT)
5561      KMP_ATOMIC_INC(&this_record_map[j].parent_task->td_allocated_child_tasks);
5562  }
5563
5564  for (kmp_int32 j = 0; j < this_num_roots; ++j) {
5565    __kmp_omp_task(gtid, this_record_map[this_root_tasks[j]].task, true);
5566  }
5567  KA_TRACE(10, ("__kmp_exec_tdg(exit): T#%d tdg_id=%d num_roots=%d\n", gtid,
5568                tdg->tdg_id, tdg->num_roots));
5569}
5570
5571// __kmp_start_record: set up a TDG structure and turn the
5572// recording flag to true
5573// gtid:        Global Thread ID of the encountering thread
5574// input_flags: Flags associated with the TDG
5575// tdg_id:      ID of the TDG to record
5576static inline void __kmp_start_record(kmp_int32 gtid,
5577                                      kmp_taskgraph_flags_t *flags,
5578                                      kmp_int32 tdg_id) {
5579  kmp_tdg_info_t *tdg =
5580      (kmp_tdg_info_t *)__kmp_allocate(sizeof(kmp_tdg_info_t));
5581  __kmp_global_tdgs[__kmp_curr_tdg_idx] = tdg;
5582  // Initializing the TDG structure
5583  tdg->tdg_id = tdg_id;
5584  tdg->map_size = INIT_MAPSIZE;
5585  tdg->num_roots = -1;
5586  tdg->root_tasks = nullptr;
5587  tdg->tdg_status = KMP_TDG_RECORDING;
5588  tdg->rec_num_taskred = 0;
5589  tdg->rec_taskred_data = nullptr;
5590  KMP_ATOMIC_ST_RLX(&tdg->num_tasks, 0);
5591
5592  // Initializing the list of nodes in this TDG
5593  kmp_node_info_t *this_record_map =
5594      (kmp_node_info_t *)__kmp_allocate(INIT_MAPSIZE * sizeof(kmp_node_info_t));
5595  for (kmp_int32 i = 0; i < INIT_MAPSIZE; i++) {
5596    kmp_int32 *successorsList =
5597        (kmp_int32 *)__kmp_allocate(__kmp_successors_size * sizeof(kmp_int32));
5598    this_record_map[i].task = nullptr;
5599    this_record_map[i].successors = successorsList;
5600    this_record_map[i].nsuccessors = 0;
5601    this_record_map[i].npredecessors = 0;
5602    this_record_map[i].successors_size = __kmp_successors_size;
5603    KMP_ATOMIC_ST_RLX(&this_record_map[i].npredecessors_counter, 0);
5604  }
5605
5606  __kmp_global_tdgs[__kmp_curr_tdg_idx]->record_map = this_record_map;
5607}
5608
5609// __kmpc_start_record_task: Wrapper around __kmp_start_record to mark
5610// the beginning of the record process of a task region
5611// loc_ref:     Location of TDG, not used yet
5612// gtid:        Global Thread ID of the encountering thread
5613// input_flags: Flags associated with the TDG
5614// tdg_id:      ID of the TDG to record, for now, incremental integer
5615// returns:     1 if we record, otherwise, 0
5616kmp_int32 __kmpc_start_record_task(ident_t *loc_ref, kmp_int32 gtid,
5617                                   kmp_int32 input_flags, kmp_int32 tdg_id) {
5618
5619  kmp_int32 res;
5620  kmp_taskgraph_flags_t *flags = (kmp_taskgraph_flags_t *)&input_flags;
5621  KA_TRACE(10,
5622           ("__kmpc_start_record_task(enter): T#%d loc=%p flags=%d tdg_id=%d\n",
5623            gtid, loc_ref, input_flags, tdg_id));
5624
5625  if (__kmp_max_tdgs == 0) {
5626    KA_TRACE(
5627        10,
5628        ("__kmpc_start_record_task(abandon): T#%d loc=%p flags=%d tdg_id = %d, "
5629         "__kmp_max_tdgs = 0\n",
5630         gtid, loc_ref, input_flags, tdg_id));
5631    return 1;
5632  }
5633
5634  __kmpc_taskgroup(loc_ref, gtid);
5635  if (kmp_tdg_info_t *tdg = __kmp_find_tdg(tdg_id)) {
5636    // TODO: use re_record flag
5637    __kmp_exec_tdg(gtid, tdg);
5638    res = 0;
5639  } else {
5640    __kmp_curr_tdg_idx = tdg_id;
5641    KMP_DEBUG_ASSERT(__kmp_curr_tdg_idx < __kmp_max_tdgs);
5642    __kmp_start_record(gtid, flags, tdg_id);
5643    __kmp_num_tdg++;
5644    res = 1;
5645  }
5646  KA_TRACE(10, ("__kmpc_start_record_task(exit): T#%d TDG %d starts to %s\n",
5647                gtid, tdg_id, res ? "record" : "execute"));
5648  return res;
5649}
5650
5651// __kmp_end_record: set up a TDG after recording it
5652// gtid:   Global thread ID
5653// tdg:    Pointer to the TDG
5654void __kmp_end_record(kmp_int32 gtid, kmp_tdg_info_t *tdg) {
5655  // Store roots
5656  kmp_node_info_t *this_record_map = tdg->record_map;
5657  kmp_int32 this_num_tasks = KMP_ATOMIC_LD_RLX(&tdg->num_tasks);
5658  kmp_int32 *this_root_tasks =
5659      (kmp_int32 *)__kmp_allocate(this_num_tasks * sizeof(kmp_int32));
5660  kmp_int32 this_map_size = tdg->map_size;
5661  kmp_int32 this_num_roots = 0;
5662  kmp_info_t *thread = __kmp_threads[gtid];
5663
5664  for (kmp_int32 i = 0; i < this_num_tasks; i++) {
5665    if (this_record_map[i].npredecessors == 0) {
5666      this_root_tasks[this_num_roots++] = i;
5667    }
5668  }
5669
5670  // Update with roots info and mapsize
5671  tdg->map_size = this_map_size;
5672  tdg->num_roots = this_num_roots;
5673  tdg->root_tasks = this_root_tasks;
5674  KMP_DEBUG_ASSERT(tdg->tdg_status == KMP_TDG_RECORDING);
5675  tdg->tdg_status = KMP_TDG_READY;
5676
5677  if (thread->th.th_current_task->td_dephash) {
5678    __kmp_dephash_free(thread, thread->th.th_current_task->td_dephash);
5679    thread->th.th_current_task->td_dephash = NULL;
5680  }
5681
5682  // Reset predecessor counter
5683  for (kmp_int32 i = 0; i < this_num_tasks; i++) {
5684    KMP_ATOMIC_ST_RLX(&this_record_map[i].npredecessors_counter,
5685                      this_record_map[i].npredecessors);
5686  }
5687  KMP_ATOMIC_ST_RLX(&__kmp_tdg_task_id, 0);
5688
5689  if (__kmp_tdg_dot)
5690    __kmp_print_tdg_dot(tdg);
5691}
5692
5693// __kmpc_end_record_task: wrapper around __kmp_end_record to mark
5694// the end of recording phase
5695//
5696// loc_ref:      Source location information
5697// gtid:         Global thread ID
5698// input_flags:  Flags attached to the graph
5699// tdg_id:       ID of the TDG just finished recording
5700void __kmpc_end_record_task(ident_t *loc_ref, kmp_int32 gtid,
5701                            kmp_int32 input_flags, kmp_int32 tdg_id) {
5702  kmp_tdg_info_t *tdg = __kmp_find_tdg(tdg_id);
5703
5704  KA_TRACE(10, ("__kmpc_end_record_task(enter): T#%d loc=%p finishes recording"
5705                " tdg=%d with flags=%d\n",
5706                gtid, loc_ref, tdg_id, input_flags));
5707  if (__kmp_max_tdgs) {
5708    // TODO: use input_flags->nowait
5709    __kmpc_end_taskgroup(loc_ref, gtid);
5710    if (__kmp_tdg_is_recording(tdg->tdg_status))
5711      __kmp_end_record(gtid, tdg);
5712  }
5713  KA_TRACE(10, ("__kmpc_end_record_task(exit): T#%d loc=%p finished recording"
5714                " tdg=%d, its status is now READY\n",
5715                gtid, loc_ref, tdg_id));
5716}
5717#endif
5718