1//===- LoopPeel.cpp -------------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Loop Peeling Utilities.
10//===----------------------------------------------------------------------===//
11
12#include "llvm/Transforms/Utils/LoopPeel.h"
13#include "llvm/ADT/DenseMap.h"
14#include "llvm/ADT/SmallVector.h"
15#include "llvm/ADT/Statistic.h"
16#include "llvm/Analysis/Loads.h"
17#include "llvm/Analysis/LoopInfo.h"
18#include "llvm/Analysis/LoopIterator.h"
19#include "llvm/Analysis/ScalarEvolution.h"
20#include "llvm/Analysis/ScalarEvolutionExpressions.h"
21#include "llvm/Analysis/TargetTransformInfo.h"
22#include "llvm/IR/BasicBlock.h"
23#include "llvm/IR/Dominators.h"
24#include "llvm/IR/Function.h"
25#include "llvm/IR/InstrTypes.h"
26#include "llvm/IR/Instruction.h"
27#include "llvm/IR/Instructions.h"
28#include "llvm/IR/LLVMContext.h"
29#include "llvm/IR/MDBuilder.h"
30#include "llvm/IR/PatternMatch.h"
31#include "llvm/IR/ProfDataUtils.h"
32#include "llvm/Support/Casting.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/Transforms/Utils/BasicBlockUtils.h"
37#include "llvm/Transforms/Utils/Cloning.h"
38#include "llvm/Transforms/Utils/LoopSimplify.h"
39#include "llvm/Transforms/Utils/LoopUtils.h"
40#include "llvm/Transforms/Utils/ValueMapper.h"
41#include <algorithm>
42#include <cassert>
43#include <cstdint>
44#include <optional>
45
46using namespace llvm;
47using namespace llvm::PatternMatch;
48
49#define DEBUG_TYPE "loop-peel"
50
51STATISTIC(NumPeeled, "Number of loops peeled");
52
53static cl::opt<unsigned> UnrollPeelCount(
54    "unroll-peel-count", cl::Hidden,
55    cl::desc("Set the unroll peeling count, for testing purposes"));
56
57static cl::opt<bool>
58    UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden,
59                       cl::desc("Allows loops to be peeled when the dynamic "
60                                "trip count is known to be low."));
61
62static cl::opt<bool>
63    UnrollAllowLoopNestsPeeling("unroll-allow-loop-nests-peeling",
64                                cl::init(false), cl::Hidden,
65                                cl::desc("Allows loop nests to be peeled."));
66
67static cl::opt<unsigned> UnrollPeelMaxCount(
68    "unroll-peel-max-count", cl::init(7), cl::Hidden,
69    cl::desc("Max average trip count which will cause loop peeling."));
70
71static cl::opt<unsigned> UnrollForcePeelCount(
72    "unroll-force-peel-count", cl::init(0), cl::Hidden,
73    cl::desc("Force a peel count regardless of profiling information."));
74
75static cl::opt<bool> DisableAdvancedPeeling(
76    "disable-advanced-peeling", cl::init(false), cl::Hidden,
77    cl::desc(
78        "Disable advance peeling. Issues for convergent targets (D134803)."));
79
80static const char *PeeledCountMetaData = "llvm.loop.peeled.count";
81
82// Check whether we are capable of peeling this loop.
83bool llvm::canPeel(const Loop *L) {
84  // Make sure the loop is in simplified form
85  if (!L->isLoopSimplifyForm())
86    return false;
87  if (!DisableAdvancedPeeling)
88    return true;
89
90  SmallVector<BasicBlock *, 4> Exits;
91  L->getUniqueNonLatchExitBlocks(Exits);
92  // The latch must either be the only exiting block or all non-latch exit
93  // blocks have either a deopt or unreachable terminator or compose a chain of
94  // blocks where the last one is either deopt or unreachable terminated. Both
95  // deopt and unreachable terminators are a strong indication they are not
96  // taken. Note that this is a profitability check, not a legality check. Also
97  // note that LoopPeeling currently can only update the branch weights of latch
98  // blocks and branch weights to blocks with deopt or unreachable do not need
99  // updating.
100  return llvm::all_of(Exits, IsBlockFollowedByDeoptOrUnreachable);
101}
102
103namespace {
104
105// As a loop is peeled, it may be the case that Phi nodes become
106// loop-invariant (ie, known because there is only one choice).
107// For example, consider the following function:
108//   void g(int);
109//   void binary() {
110//     int x = 0;
111//     int y = 0;
112//     int a = 0;
113//     for(int i = 0; i <100000; ++i) {
114//       g(x);
115//       x = y;
116//       g(a);
117//       y = a + 1;
118//       a = 5;
119//     }
120//   }
121// Peeling 3 iterations is beneficial because the values for x, y and a
122// become known.  The IR for this loop looks something like the following:
123//
124//   %i = phi i32 [ 0, %entry ], [ %inc, %if.end ]
125//   %a = phi i32 [ 0, %entry ], [ 5, %if.end ]
126//   %y = phi i32 [ 0, %entry ], [ %add, %if.end ]
127//   %x = phi i32 [ 0, %entry ], [ %y, %if.end ]
128//   ...
129//   tail call void @_Z1gi(i32 signext %x)
130//   tail call void @_Z1gi(i32 signext %a)
131//   %add = add nuw nsw i32 %a, 1
132//   %inc = add nuw nsw i32 %i, 1
133//   %exitcond = icmp eq i32 %inc, 100000
134//   br i1 %exitcond, label %for.cond.cleanup, label %for.body
135//
136// The arguments for the calls to g will become known after 3 iterations
137// of the loop, because the phi nodes values become known after 3 iterations
138// of the loop (ie, they are known on the 4th iteration, so peel 3 iterations).
139// The first iteration has g(0), g(0); the second has g(0), g(5); the
140// third has g(1), g(5) and the fourth (and all subsequent) have g(6), g(5).
141// Now consider the phi nodes:
142//   %a is a phi with constants so it is determined after iteration 1.
143//   %y is a phi based on a constant and %a so it is determined on
144//     the iteration after %a is determined, so iteration 2.
145//   %x is a phi based on a constant and %y so it is determined on
146//     the iteration after %y, so iteration 3.
147//   %i is based on itself (and is an induction variable) so it is
148//     never determined.
149// This means that peeling off 3 iterations will result in being able to
150// remove the phi nodes for %a, %y, and %x.  The arguments for the
151// corresponding calls to g are determined and the code for computing
152// x, y, and a can be removed.
153//
154// The PhiAnalyzer class calculates how many times a loop should be
155// peeled based on the above analysis of the phi nodes in the loop while
156// respecting the maximum specified.
157class PhiAnalyzer {
158public:
159  PhiAnalyzer(const Loop &L, unsigned MaxIterations);
160
161  // Calculate the sufficient minimum number of iterations of the loop to peel
162  // such that phi instructions become determined (subject to allowable limits)
163  std::optional<unsigned> calculateIterationsToPeel();
164
165protected:
166  using PeelCounter = std::optional<unsigned>;
167  const PeelCounter Unknown = std::nullopt;
168
169  // Add 1 respecting Unknown and return Unknown if result over MaxIterations
170  PeelCounter addOne(PeelCounter PC) const {
171    if (PC == Unknown)
172      return Unknown;
173    return (*PC + 1 <= MaxIterations) ? PeelCounter{*PC + 1} : Unknown;
174  }
175
176  // Calculate the number of iterations after which the given value
177  // becomes an invariant.
178  PeelCounter calculate(const Value &);
179
180  const Loop &L;
181  const unsigned MaxIterations;
182
183  // Map of Values to number of iterations to invariance
184  SmallDenseMap<const Value *, PeelCounter> IterationsToInvariance;
185};
186
187PhiAnalyzer::PhiAnalyzer(const Loop &L, unsigned MaxIterations)
188    : L(L), MaxIterations(MaxIterations) {
189  assert(canPeel(&L) && "loop is not suitable for peeling");
190  assert(MaxIterations > 0 && "no peeling is allowed?");
191}
192
193// This function calculates the number of iterations after which the value
194// becomes an invariant. The pre-calculated values are memorized in a map.
195// N.B. This number will be Unknown or <= MaxIterations.
196// The function is calculated according to the following definition:
197// Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge].
198//   F(%x) = G(%y) + 1 (N.B. [MaxIterations | Unknown] + 1 => Unknown)
199//   G(%y) = 0 if %y is a loop invariant
200//   G(%y) = G(%BackEdgeValue) if %y is a phi in the header block
201//   G(%y) = TODO: if %y is an expression based on phis and loop invariants
202//           The example looks like:
203//           %x = phi(0, %a) <-- becomes invariant starting from 3rd iteration.
204//           %y = phi(0, 5)
205//           %a = %y + 1
206//   G(%y) = Unknown otherwise (including phi not in header block)
207PhiAnalyzer::PeelCounter PhiAnalyzer::calculate(const Value &V) {
208  // If we already know the answer, take it from the map.
209  auto I = IterationsToInvariance.find(&V);
210  if (I != IterationsToInvariance.end())
211    return I->second;
212
213  // Place Unknown to map to avoid infinite recursion. Such
214  // cycles can never stop on an invariant.
215  IterationsToInvariance[&V] = Unknown;
216
217  if (L.isLoopInvariant(&V))
218    // Loop invariant so known at start.
219    return (IterationsToInvariance[&V] = 0);
220  if (const PHINode *Phi = dyn_cast<PHINode>(&V)) {
221    if (Phi->getParent() != L.getHeader()) {
222      // Phi is not in header block so Unknown.
223      assert(IterationsToInvariance[&V] == Unknown && "unexpected value saved");
224      return Unknown;
225    }
226    // We need to analyze the input from the back edge and add 1.
227    Value *Input = Phi->getIncomingValueForBlock(L.getLoopLatch());
228    PeelCounter Iterations = calculate(*Input);
229    assert(IterationsToInvariance[Input] == Iterations &&
230           "unexpected value saved");
231    return (IterationsToInvariance[Phi] = addOne(Iterations));
232  }
233  if (const Instruction *I = dyn_cast<Instruction>(&V)) {
234    if (isa<CmpInst>(I) || I->isBinaryOp()) {
235      // Binary instructions get the max of the operands.
236      PeelCounter LHS = calculate(*I->getOperand(0));
237      if (LHS == Unknown)
238        return Unknown;
239      PeelCounter RHS = calculate(*I->getOperand(1));
240      if (RHS == Unknown)
241        return Unknown;
242      return (IterationsToInvariance[I] = {std::max(*LHS, *RHS)});
243    }
244    if (I->isCast())
245      // Cast instructions get the value of the operand.
246      return (IterationsToInvariance[I] = calculate(*I->getOperand(0)));
247  }
248  // TODO: handle more expressions
249
250  // Everything else is Unknown.
251  assert(IterationsToInvariance[&V] == Unknown && "unexpected value saved");
252  return Unknown;
253}
254
255std::optional<unsigned> PhiAnalyzer::calculateIterationsToPeel() {
256  unsigned Iterations = 0;
257  for (auto &PHI : L.getHeader()->phis()) {
258    PeelCounter ToInvariance = calculate(PHI);
259    if (ToInvariance != Unknown) {
260      assert(*ToInvariance <= MaxIterations && "bad result in phi analysis");
261      Iterations = std::max(Iterations, *ToInvariance);
262      if (Iterations == MaxIterations)
263        break;
264    }
265  }
266  assert((Iterations <= MaxIterations) && "bad result in phi analysis");
267  return Iterations ? std::optional<unsigned>(Iterations) : std::nullopt;
268}
269
270} // unnamed namespace
271
272// Try to find any invariant memory reads that will become dereferenceable in
273// the remainder loop after peeling. The load must also be used (transitively)
274// by an exit condition. Returns the number of iterations to peel off (at the
275// moment either 0 or 1).
276static unsigned peelToTurnInvariantLoadsDerefencebale(Loop &L,
277                                                      DominatorTree &DT,
278                                                      AssumptionCache *AC) {
279  // Skip loops with a single exiting block, because there should be no benefit
280  // for the heuristic below.
281  if (L.getExitingBlock())
282    return 0;
283
284  // All non-latch exit blocks must have an UnreachableInst terminator.
285  // Otherwise the heuristic below may not be profitable.
286  SmallVector<BasicBlock *, 4> Exits;
287  L.getUniqueNonLatchExitBlocks(Exits);
288  if (any_of(Exits, [](const BasicBlock *BB) {
289        return !isa<UnreachableInst>(BB->getTerminator());
290      }))
291    return 0;
292
293  // Now look for invariant loads that dominate the latch and are not known to
294  // be dereferenceable. If there are such loads and no writes, they will become
295  // dereferenceable in the loop if the first iteration is peeled off. Also
296  // collect the set of instructions controlled by such loads. Only peel if an
297  // exit condition uses (transitively) such a load.
298  BasicBlock *Header = L.getHeader();
299  BasicBlock *Latch = L.getLoopLatch();
300  SmallPtrSet<Value *, 8> LoadUsers;
301  const DataLayout &DL = L.getHeader()->getModule()->getDataLayout();
302  for (BasicBlock *BB : L.blocks()) {
303    for (Instruction &I : *BB) {
304      if (I.mayWriteToMemory())
305        return 0;
306
307      auto Iter = LoadUsers.find(&I);
308      if (Iter != LoadUsers.end()) {
309        for (Value *U : I.users())
310          LoadUsers.insert(U);
311      }
312      // Do not look for reads in the header; they can already be hoisted
313      // without peeling.
314      if (BB == Header)
315        continue;
316      if (auto *LI = dyn_cast<LoadInst>(&I)) {
317        Value *Ptr = LI->getPointerOperand();
318        if (DT.dominates(BB, Latch) && L.isLoopInvariant(Ptr) &&
319            !isDereferenceablePointer(Ptr, LI->getType(), DL, LI, AC, &DT))
320          for (Value *U : I.users())
321            LoadUsers.insert(U);
322      }
323    }
324  }
325  SmallVector<BasicBlock *> ExitingBlocks;
326  L.getExitingBlocks(ExitingBlocks);
327  if (any_of(ExitingBlocks, [&LoadUsers](BasicBlock *Exiting) {
328        return LoadUsers.contains(Exiting->getTerminator());
329      }))
330    return 1;
331  return 0;
332}
333
334// Return the number of iterations to peel off that make conditions in the
335// body true/false. For example, if we peel 2 iterations off the loop below,
336// the condition i < 2 can be evaluated at compile time.
337//  for (i = 0; i < n; i++)
338//    if (i < 2)
339//      ..
340//    else
341//      ..
342//   }
343static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount,
344                                         ScalarEvolution &SE) {
345  assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form");
346  unsigned DesiredPeelCount = 0;
347
348  // Do not peel the entire loop.
349  const SCEV *BE = SE.getConstantMaxBackedgeTakenCount(&L);
350  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(BE))
351    MaxPeelCount =
352        std::min((unsigned)SC->getAPInt().getLimitedValue() - 1, MaxPeelCount);
353
354  const unsigned MaxDepth = 4;
355  std::function<void(Value *, unsigned)> ComputePeelCount =
356      [&](Value *Condition, unsigned Depth) -> void {
357    if (!Condition->getType()->isIntegerTy() || Depth >= MaxDepth)
358      return;
359
360    Value *LeftVal, *RightVal;
361    if (match(Condition, m_And(m_Value(LeftVal), m_Value(RightVal))) ||
362        match(Condition, m_Or(m_Value(LeftVal), m_Value(RightVal)))) {
363      ComputePeelCount(LeftVal, Depth + 1);
364      ComputePeelCount(RightVal, Depth + 1);
365      return;
366    }
367
368    CmpInst::Predicate Pred;
369    if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal))))
370      return;
371
372    const SCEV *LeftSCEV = SE.getSCEV(LeftVal);
373    const SCEV *RightSCEV = SE.getSCEV(RightVal);
374
375    // Do not consider predicates that are known to be true or false
376    // independently of the loop iteration.
377    if (SE.evaluatePredicate(Pred, LeftSCEV, RightSCEV))
378      return;
379
380    // Check if we have a condition with one AddRec and one non AddRec
381    // expression. Normalize LeftSCEV to be the AddRec.
382    if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
383      if (isa<SCEVAddRecExpr>(RightSCEV)) {
384        std::swap(LeftSCEV, RightSCEV);
385        Pred = ICmpInst::getSwappedPredicate(Pred);
386      } else
387        return;
388    }
389
390    const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV);
391
392    // Avoid huge SCEV computations in the loop below, make sure we only
393    // consider AddRecs of the loop we are trying to peel.
394    if (!LeftAR->isAffine() || LeftAR->getLoop() != &L)
395      return;
396    if (!(ICmpInst::isEquality(Pred) && LeftAR->hasNoSelfWrap()) &&
397        !SE.getMonotonicPredicateType(LeftAR, Pred))
398      return;
399
400    // Check if extending the current DesiredPeelCount lets us evaluate Pred
401    // or !Pred in the loop body statically.
402    unsigned NewPeelCount = DesiredPeelCount;
403
404    const SCEV *IterVal = LeftAR->evaluateAtIteration(
405        SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE);
406
407    // If the original condition is not known, get the negated predicate
408    // (which holds on the else branch) and check if it is known. This allows
409    // us to peel of iterations that make the original condition false.
410    if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV))
411      Pred = ICmpInst::getInversePredicate(Pred);
412
413    const SCEV *Step = LeftAR->getStepRecurrence(SE);
414    const SCEV *NextIterVal = SE.getAddExpr(IterVal, Step);
415    auto PeelOneMoreIteration = [&IterVal, &NextIterVal, &SE, Step,
416                                 &NewPeelCount]() {
417      IterVal = NextIterVal;
418      NextIterVal = SE.getAddExpr(IterVal, Step);
419      NewPeelCount++;
420    };
421
422    auto CanPeelOneMoreIteration = [&NewPeelCount, &MaxPeelCount]() {
423      return NewPeelCount < MaxPeelCount;
424    };
425
426    while (CanPeelOneMoreIteration() &&
427           SE.isKnownPredicate(Pred, IterVal, RightSCEV))
428      PeelOneMoreIteration();
429
430    // With *that* peel count, does the predicate !Pred become known in the
431    // first iteration of the loop body after peeling?
432    if (!SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal,
433                             RightSCEV))
434      return; // If not, give up.
435
436    // However, for equality comparisons, that isn't always sufficient to
437    // eliminate the comparsion in loop body, we may need to peel one more
438    // iteration. See if that makes !Pred become unknown again.
439    if (ICmpInst::isEquality(Pred) &&
440        !SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), NextIterVal,
441                             RightSCEV) &&
442        !SE.isKnownPredicate(Pred, IterVal, RightSCEV) &&
443        SE.isKnownPredicate(Pred, NextIterVal, RightSCEV)) {
444      if (!CanPeelOneMoreIteration())
445        return; // Need to peel one more iteration, but can't. Give up.
446      PeelOneMoreIteration(); // Great!
447    }
448
449    DesiredPeelCount = std::max(DesiredPeelCount, NewPeelCount);
450  };
451
452  for (BasicBlock *BB : L.blocks()) {
453    for (Instruction &I : *BB) {
454      if (SelectInst *SI = dyn_cast<SelectInst>(&I))
455        ComputePeelCount(SI->getCondition(), 0);
456    }
457
458    auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
459    if (!BI || BI->isUnconditional())
460      continue;
461
462    // Ignore loop exit condition.
463    if (L.getLoopLatch() == BB)
464      continue;
465
466    ComputePeelCount(BI->getCondition(), 0);
467  }
468
469  return DesiredPeelCount;
470}
471
472/// This "heuristic" exactly matches implicit behavior which used to exist
473/// inside getLoopEstimatedTripCount.  It was added here to keep an
474/// improvement inside that API from causing peeling to become more aggressive.
475/// This should probably be removed.
476static bool violatesLegacyMultiExitLoopCheck(Loop *L) {
477  BasicBlock *Latch = L->getLoopLatch();
478  if (!Latch)
479    return true;
480
481  BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
482  if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
483    return true;
484
485  assert((LatchBR->getSuccessor(0) == L->getHeader() ||
486          LatchBR->getSuccessor(1) == L->getHeader()) &&
487         "At least one edge out of the latch must go to the header");
488
489  SmallVector<BasicBlock *, 4> ExitBlocks;
490  L->getUniqueNonLatchExitBlocks(ExitBlocks);
491  return any_of(ExitBlocks, [](const BasicBlock *EB) {
492      return !EB->getTerminatingDeoptimizeCall();
493    });
494}
495
496
497// Return the number of iterations we want to peel off.
498void llvm::computePeelCount(Loop *L, unsigned LoopSize,
499                            TargetTransformInfo::PeelingPreferences &PP,
500                            unsigned TripCount, DominatorTree &DT,
501                            ScalarEvolution &SE, AssumptionCache *AC,
502                            unsigned Threshold) {
503  assert(LoopSize > 0 && "Zero loop size is not allowed!");
504  // Save the PP.PeelCount value set by the target in
505  // TTI.getPeelingPreferences or by the flag -unroll-peel-count.
506  unsigned TargetPeelCount = PP.PeelCount;
507  PP.PeelCount = 0;
508  if (!canPeel(L))
509    return;
510
511  // Only try to peel innermost loops by default.
512  // The constraint can be relaxed by the target in TTI.getPeelingPreferences
513  // or by the flag -unroll-allow-loop-nests-peeling.
514  if (!PP.AllowLoopNestsPeeling && !L->isInnermost())
515    return;
516
517  // If the user provided a peel count, use that.
518  bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0;
519  if (UserPeelCount) {
520    LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount
521                      << " iterations.\n");
522    PP.PeelCount = UnrollForcePeelCount;
523    PP.PeelProfiledIterations = true;
524    return;
525  }
526
527  // Skip peeling if it's disabled.
528  if (!PP.AllowPeeling)
529    return;
530
531  // Check that we can peel at least one iteration.
532  if (2 * LoopSize > Threshold)
533    return;
534
535  unsigned AlreadyPeeled = 0;
536  if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
537    AlreadyPeeled = *Peeled;
538  // Stop if we already peeled off the maximum number of iterations.
539  if (AlreadyPeeled >= UnrollPeelMaxCount)
540    return;
541
542  // Pay respect to limitations implied by loop size and the max peel count.
543  unsigned MaxPeelCount = UnrollPeelMaxCount;
544  MaxPeelCount = std::min(MaxPeelCount, Threshold / LoopSize - 1);
545
546  // Start the max computation with the PP.PeelCount value set by the target
547  // in TTI.getPeelingPreferences or by the flag -unroll-peel-count.
548  unsigned DesiredPeelCount = TargetPeelCount;
549
550  // Here we try to get rid of Phis which become invariants after 1, 2, ..., N
551  // iterations of the loop. For this we compute the number for iterations after
552  // which every Phi is guaranteed to become an invariant, and try to peel the
553  // maximum number of iterations among these values, thus turning all those
554  // Phis into invariants.
555  if (MaxPeelCount > DesiredPeelCount) {
556    // Check how many iterations are useful for resolving Phis
557    auto NumPeels = PhiAnalyzer(*L, MaxPeelCount).calculateIterationsToPeel();
558    if (NumPeels)
559      DesiredPeelCount = std::max(DesiredPeelCount, *NumPeels);
560  }
561
562  DesiredPeelCount = std::max(DesiredPeelCount,
563                              countToEliminateCompares(*L, MaxPeelCount, SE));
564
565  if (DesiredPeelCount == 0)
566    DesiredPeelCount = peelToTurnInvariantLoadsDerefencebale(*L, DT, AC);
567
568  if (DesiredPeelCount > 0) {
569    DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount);
570    // Consider max peel count limitation.
571    assert(DesiredPeelCount > 0 && "Wrong loop size estimation?");
572    if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) {
573      LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount
574                        << " iteration(s) to turn"
575                        << " some Phis into invariants.\n");
576      PP.PeelCount = DesiredPeelCount;
577      PP.PeelProfiledIterations = false;
578      return;
579    }
580  }
581
582  // Bail if we know the statically calculated trip count.
583  // In this case we rather prefer partial unrolling.
584  if (TripCount)
585    return;
586
587  // Do not apply profile base peeling if it is disabled.
588  if (!PP.PeelProfiledIterations)
589    return;
590  // If we don't know the trip count, but have reason to believe the average
591  // trip count is low, peeling should be beneficial, since we will usually
592  // hit the peeled section.
593  // We only do this in the presence of profile information, since otherwise
594  // our estimates of the trip count are not reliable enough.
595  if (L->getHeader()->getParent()->hasProfileData()) {
596    if (violatesLegacyMultiExitLoopCheck(L))
597      return;
598    std::optional<unsigned> EstimatedTripCount = getLoopEstimatedTripCount(L);
599    if (!EstimatedTripCount)
600      return;
601
602    LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is "
603                      << *EstimatedTripCount << "\n");
604
605    if (*EstimatedTripCount) {
606      if (*EstimatedTripCount + AlreadyPeeled <= MaxPeelCount) {
607        unsigned PeelCount = *EstimatedTripCount;
608        LLVM_DEBUG(dbgs() << "Peeling first " << PeelCount << " iterations.\n");
609        PP.PeelCount = PeelCount;
610        return;
611      }
612      LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n");
613      LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n");
614      LLVM_DEBUG(dbgs() << "Loop cost: " << LoopSize << "\n");
615      LLVM_DEBUG(dbgs() << "Max peel cost: " << Threshold << "\n");
616      LLVM_DEBUG(dbgs() << "Max peel count by cost: "
617                        << (Threshold / LoopSize - 1) << "\n");
618    }
619  }
620}
621
622struct WeightInfo {
623  // Weights for current iteration.
624  SmallVector<uint32_t> Weights;
625  // Weights to subtract after each iteration.
626  const SmallVector<uint32_t> SubWeights;
627};
628
629/// Update the branch weights of an exiting block of a peeled-off loop
630/// iteration.
631/// Let F is a weight of the edge to continue (fallthrough) into the loop.
632/// Let E is a weight of the edge to an exit.
633/// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to
634/// go to exit.
635/// Then, Estimated ExitCount = F / E.
636/// For I-th (counting from 0) peeled off iteration we set the weights for
637/// the peeled exit as (EC - I, 1). It gives us reasonable distribution,
638/// The probability to go to exit 1/(EC-I) increases. At the same time
639/// the estimated exit count in the remainder loop reduces by I.
640/// To avoid dealing with division rounding we can just multiple both part
641/// of weights to E and use weight as (F - I * E, E).
642static void updateBranchWeights(Instruction *Term, WeightInfo &Info) {
643  setBranchWeights(*Term, Info.Weights);
644  for (auto [Idx, SubWeight] : enumerate(Info.SubWeights))
645    if (SubWeight != 0)
646      // Don't set the probability of taking the edge from latch to loop header
647      // to less than 1:1 ratio (meaning Weight should not be lower than
648      // SubWeight), as this could significantly reduce the loop's hotness,
649      // which would be incorrect in the case of underestimating the trip count.
650      Info.Weights[Idx] =
651          Info.Weights[Idx] > SubWeight
652              ? std::max(Info.Weights[Idx] - SubWeight, SubWeight)
653              : SubWeight;
654}
655
656/// Initialize the weights for all exiting blocks.
657static void initBranchWeights(DenseMap<Instruction *, WeightInfo> &WeightInfos,
658                              Loop *L) {
659  SmallVector<BasicBlock *> ExitingBlocks;
660  L->getExitingBlocks(ExitingBlocks);
661  for (BasicBlock *ExitingBlock : ExitingBlocks) {
662    Instruction *Term = ExitingBlock->getTerminator();
663    SmallVector<uint32_t> Weights;
664    if (!extractBranchWeights(*Term, Weights))
665      continue;
666
667    // See the comment on updateBranchWeights() for an explanation of what we
668    // do here.
669    uint32_t FallThroughWeights = 0;
670    uint32_t ExitWeights = 0;
671    for (auto [Succ, Weight] : zip(successors(Term), Weights)) {
672      if (L->contains(Succ))
673        FallThroughWeights += Weight;
674      else
675        ExitWeights += Weight;
676    }
677
678    // Don't try to update weights for degenerate case.
679    if (FallThroughWeights == 0)
680      continue;
681
682    SmallVector<uint32_t> SubWeights;
683    for (auto [Succ, Weight] : zip(successors(Term), Weights)) {
684      if (!L->contains(Succ)) {
685        // Exit weights stay the same.
686        SubWeights.push_back(0);
687        continue;
688      }
689
690      // Subtract exit weights on each iteration, distributed across all
691      // fallthrough edges.
692      double W = (double)Weight / (double)FallThroughWeights;
693      SubWeights.push_back((uint32_t)(ExitWeights * W));
694    }
695
696    WeightInfos.insert({Term, {std::move(Weights), std::move(SubWeights)}});
697  }
698}
699
700/// Clones the body of the loop L, putting it between \p InsertTop and \p
701/// InsertBot.
702/// \param IterNumber The serial number of the iteration currently being
703/// peeled off.
704/// \param ExitEdges The exit edges of the original loop.
705/// \param[out] NewBlocks A list of the blocks in the newly created clone
706/// \param[out] VMap The value map between the loop and the new clone.
707/// \param LoopBlocks A helper for DFS-traversal of the loop.
708/// \param LVMap A value-map that maps instructions from the original loop to
709/// instructions in the last peeled-off iteration.
710static void cloneLoopBlocks(
711    Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot,
712    SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *>> &ExitEdges,
713    SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
714    ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT,
715    LoopInfo *LI, ArrayRef<MDNode *> LoopLocalNoAliasDeclScopes,
716    ScalarEvolution &SE) {
717  BasicBlock *Header = L->getHeader();
718  BasicBlock *Latch = L->getLoopLatch();
719  BasicBlock *PreHeader = L->getLoopPreheader();
720
721  Function *F = Header->getParent();
722  LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
723  LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
724  Loop *ParentLoop = L->getParentLoop();
725
726  // For each block in the original loop, create a new copy,
727  // and update the value map with the newly created values.
728  for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
729    BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F);
730    NewBlocks.push_back(NewBB);
731
732    // If an original block is an immediate child of the loop L, its copy
733    // is a child of a ParentLoop after peeling. If a block is a child of
734    // a nested loop, it is handled in the cloneLoop() call below.
735    if (ParentLoop && LI->getLoopFor(*BB) == L)
736      ParentLoop->addBasicBlockToLoop(NewBB, *LI);
737
738    VMap[*BB] = NewBB;
739
740    // If dominator tree is available, insert nodes to represent cloned blocks.
741    if (DT) {
742      if (Header == *BB)
743        DT->addNewBlock(NewBB, InsertTop);
744      else {
745        DomTreeNode *IDom = DT->getNode(*BB)->getIDom();
746        // VMap must contain entry for IDom, as the iteration order is RPO.
747        DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()]));
748      }
749    }
750  }
751
752  {
753    // Identify what other metadata depends on the cloned version. After
754    // cloning, replace the metadata with the corrected version for both
755    // memory instructions and noalias intrinsics.
756    std::string Ext = (Twine("Peel") + Twine(IterNumber)).str();
757    cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
758                               Header->getContext(), Ext);
759  }
760
761  // Recursively create the new Loop objects for nested loops, if any,
762  // to preserve LoopInfo.
763  for (Loop *ChildLoop : *L) {
764    cloneLoop(ChildLoop, ParentLoop, VMap, LI, nullptr);
765  }
766
767  // Hook-up the control flow for the newly inserted blocks.
768  // The new header is hooked up directly to the "top", which is either
769  // the original loop preheader (for the first iteration) or the previous
770  // iteration's exiting block (for every other iteration)
771  InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header]));
772
773  // Similarly, for the latch:
774  // The original exiting edge is still hooked up to the loop exit.
775  // The backedge now goes to the "bottom", which is either the loop's real
776  // header (for the last peeled iteration) or the copied header of the next
777  // iteration (for every other iteration)
778  BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
779  auto *LatchTerm = cast<Instruction>(NewLatch->getTerminator());
780  for (unsigned idx = 0, e = LatchTerm->getNumSuccessors(); idx < e; ++idx)
781    if (LatchTerm->getSuccessor(idx) == Header) {
782      LatchTerm->setSuccessor(idx, InsertBot);
783      break;
784    }
785  if (DT)
786    DT->changeImmediateDominator(InsertBot, NewLatch);
787
788  // The new copy of the loop body starts with a bunch of PHI nodes
789  // that pick an incoming value from either the preheader, or the previous
790  // loop iteration. Since this copy is no longer part of the loop, we
791  // resolve this statically:
792  // For the first iteration, we use the value from the preheader directly.
793  // For any other iteration, we replace the phi with the value generated by
794  // the immediately preceding clone of the loop body (which represents
795  // the previous iteration).
796  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
797    PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
798    if (IterNumber == 0) {
799      VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader);
800    } else {
801      Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch);
802      Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
803      if (LatchInst && L->contains(LatchInst))
804        VMap[&*I] = LVMap[LatchInst];
805      else
806        VMap[&*I] = LatchVal;
807    }
808    NewPHI->eraseFromParent();
809  }
810
811  // Fix up the outgoing values - we need to add a value for the iteration
812  // we've just created. Note that this must happen *after* the incoming
813  // values are adjusted, since the value going out of the latch may also be
814  // a value coming into the header.
815  for (auto Edge : ExitEdges)
816    for (PHINode &PHI : Edge.second->phis()) {
817      Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first);
818      Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
819      if (LatchInst && L->contains(LatchInst))
820        LatchVal = VMap[LatchVal];
821      PHI.addIncoming(LatchVal, cast<BasicBlock>(VMap[Edge.first]));
822      SE.forgetValue(&PHI);
823    }
824
825  // LastValueMap is updated with the values for the current loop
826  // which are used the next time this function is called.
827  for (auto KV : VMap)
828    LVMap[KV.first] = KV.second;
829}
830
831TargetTransformInfo::PeelingPreferences
832llvm::gatherPeelingPreferences(Loop *L, ScalarEvolution &SE,
833                               const TargetTransformInfo &TTI,
834                               std::optional<bool> UserAllowPeeling,
835                               std::optional<bool> UserAllowProfileBasedPeeling,
836                               bool UnrollingSpecficValues) {
837  TargetTransformInfo::PeelingPreferences PP;
838
839  // Set the default values.
840  PP.PeelCount = 0;
841  PP.AllowPeeling = true;
842  PP.AllowLoopNestsPeeling = false;
843  PP.PeelProfiledIterations = true;
844
845  // Get the target specifc values.
846  TTI.getPeelingPreferences(L, SE, PP);
847
848  // User specified values using cl::opt.
849  if (UnrollingSpecficValues) {
850    if (UnrollPeelCount.getNumOccurrences() > 0)
851      PP.PeelCount = UnrollPeelCount;
852    if (UnrollAllowPeeling.getNumOccurrences() > 0)
853      PP.AllowPeeling = UnrollAllowPeeling;
854    if (UnrollAllowLoopNestsPeeling.getNumOccurrences() > 0)
855      PP.AllowLoopNestsPeeling = UnrollAllowLoopNestsPeeling;
856  }
857
858  // User specifed values provided by argument.
859  if (UserAllowPeeling)
860    PP.AllowPeeling = *UserAllowPeeling;
861  if (UserAllowProfileBasedPeeling)
862    PP.PeelProfiledIterations = *UserAllowProfileBasedPeeling;
863
864  return PP;
865}
866
867/// Peel off the first \p PeelCount iterations of loop \p L.
868///
869/// Note that this does not peel them off as a single straight-line block.
870/// Rather, each iteration is peeled off separately, and needs to check the
871/// exit condition.
872/// For loops that dynamically execute \p PeelCount iterations or less
873/// this provides a benefit, since the peeled off iterations, which account
874/// for the bulk of dynamic execution, can be further simplified by scalar
875/// optimizations.
876bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI,
877                    ScalarEvolution *SE, DominatorTree &DT, AssumptionCache *AC,
878                    bool PreserveLCSSA, ValueToValueMapTy &LVMap) {
879  assert(PeelCount > 0 && "Attempt to peel out zero iterations?");
880  assert(canPeel(L) && "Attempt to peel a loop which is not peelable?");
881
882  LoopBlocksDFS LoopBlocks(L);
883  LoopBlocks.perform(LI);
884
885  BasicBlock *Header = L->getHeader();
886  BasicBlock *PreHeader = L->getLoopPreheader();
887  BasicBlock *Latch = L->getLoopLatch();
888  SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges;
889  L->getExitEdges(ExitEdges);
890
891  // Remember dominators of blocks we might reach through exits to change them
892  // later. Immediate dominator of such block might change, because we add more
893  // routes which can lead to the exit: we can reach it from the peeled
894  // iterations too.
895  DenseMap<BasicBlock *, BasicBlock *> NonLoopBlocksIDom;
896  for (auto *BB : L->blocks()) {
897    auto *BBDomNode = DT.getNode(BB);
898    SmallVector<BasicBlock *, 16> ChildrenToUpdate;
899    for (auto *ChildDomNode : BBDomNode->children()) {
900      auto *ChildBB = ChildDomNode->getBlock();
901      if (!L->contains(ChildBB))
902        ChildrenToUpdate.push_back(ChildBB);
903    }
904    // The new idom of the block will be the nearest common dominator
905    // of all copies of the previous idom. This is equivalent to the
906    // nearest common dominator of the previous idom and the first latch,
907    // which dominates all copies of the previous idom.
908    BasicBlock *NewIDom = DT.findNearestCommonDominator(BB, Latch);
909    for (auto *ChildBB : ChildrenToUpdate)
910      NonLoopBlocksIDom[ChildBB] = NewIDom;
911  }
912
913  Function *F = Header->getParent();
914
915  // Set up all the necessary basic blocks. It is convenient to split the
916  // preheader into 3 parts - two blocks to anchor the peeled copy of the loop
917  // body, and a new preheader for the "real" loop.
918
919  // Peeling the first iteration transforms.
920  //
921  // PreHeader:
922  // ...
923  // Header:
924  //   LoopBody
925  //   If (cond) goto Header
926  // Exit:
927  //
928  // into
929  //
930  // InsertTop:
931  //   LoopBody
932  //   If (!cond) goto Exit
933  // InsertBot:
934  // NewPreHeader:
935  // ...
936  // Header:
937  //  LoopBody
938  //  If (cond) goto Header
939  // Exit:
940  //
941  // Each following iteration will split the current bottom anchor in two,
942  // and put the new copy of the loop body between these two blocks. That is,
943  // after peeling another iteration from the example above, we'll split
944  // InsertBot, and get:
945  //
946  // InsertTop:
947  //   LoopBody
948  //   If (!cond) goto Exit
949  // InsertBot:
950  //   LoopBody
951  //   If (!cond) goto Exit
952  // InsertBot.next:
953  // NewPreHeader:
954  // ...
955  // Header:
956  //  LoopBody
957  //  If (cond) goto Header
958  // Exit:
959
960  BasicBlock *InsertTop = SplitEdge(PreHeader, Header, &DT, LI);
961  BasicBlock *InsertBot =
962      SplitBlock(InsertTop, InsertTop->getTerminator(), &DT, LI);
963  BasicBlock *NewPreHeader =
964      SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI);
965
966  InsertTop->setName(Header->getName() + ".peel.begin");
967  InsertBot->setName(Header->getName() + ".peel.next");
968  NewPreHeader->setName(PreHeader->getName() + ".peel.newph");
969
970  Instruction *LatchTerm =
971      cast<Instruction>(cast<BasicBlock>(Latch)->getTerminator());
972
973  // If we have branch weight information, we'll want to update it for the
974  // newly created branches.
975  DenseMap<Instruction *, WeightInfo> Weights;
976  initBranchWeights(Weights, L);
977
978  // Identify what noalias metadata is inside the loop: if it is inside the
979  // loop, the associated metadata must be cloned for each iteration.
980  SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
981  identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
982
983  // For each peeled-off iteration, make a copy of the loop.
984  for (unsigned Iter = 0; Iter < PeelCount; ++Iter) {
985    SmallVector<BasicBlock *, 8> NewBlocks;
986    ValueToValueMapTy VMap;
987
988    cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks,
989                    LoopBlocks, VMap, LVMap, &DT, LI,
990                    LoopLocalNoAliasDeclScopes, *SE);
991
992    // Remap to use values from the current iteration instead of the
993    // previous one.
994    remapInstructionsInBlocks(NewBlocks, VMap);
995
996    // Update IDoms of the blocks reachable through exits.
997    if (Iter == 0)
998      for (auto BBIDom : NonLoopBlocksIDom)
999        DT.changeImmediateDominator(BBIDom.first,
1000                                     cast<BasicBlock>(LVMap[BBIDom.second]));
1001#ifdef EXPENSIVE_CHECKS
1002    assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1003#endif
1004
1005    for (auto &[Term, Info] : Weights) {
1006      auto *TermCopy = cast<Instruction>(VMap[Term]);
1007      updateBranchWeights(TermCopy, Info);
1008    }
1009
1010    // Remove Loop metadata from the latch branch instruction
1011    // because it is not the Loop's latch branch anymore.
1012    auto *LatchTermCopy = cast<Instruction>(VMap[LatchTerm]);
1013    LatchTermCopy->setMetadata(LLVMContext::MD_loop, nullptr);
1014
1015    InsertTop = InsertBot;
1016    InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI);
1017    InsertBot->setName(Header->getName() + ".peel.next");
1018
1019    F->splice(InsertTop->getIterator(), F, NewBlocks[0]->getIterator(),
1020              F->end());
1021  }
1022
1023  // Now adjust the phi nodes in the loop header to get their initial values
1024  // from the last peeled-off iteration instead of the preheader.
1025  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
1026    PHINode *PHI = cast<PHINode>(I);
1027    Value *NewVal = PHI->getIncomingValueForBlock(Latch);
1028    Instruction *LatchInst = dyn_cast<Instruction>(NewVal);
1029    if (LatchInst && L->contains(LatchInst))
1030      NewVal = LVMap[LatchInst];
1031
1032    PHI->setIncomingValueForBlock(NewPreHeader, NewVal);
1033  }
1034
1035  for (const auto &[Term, Info] : Weights) {
1036    setBranchWeights(*Term, Info.Weights);
1037  }
1038
1039  // Update Metadata for count of peeled off iterations.
1040  unsigned AlreadyPeeled = 0;
1041  if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
1042    AlreadyPeeled = *Peeled;
1043  addStringMetadataToLoop(L, PeeledCountMetaData, AlreadyPeeled + PeelCount);
1044
1045  if (Loop *ParentLoop = L->getParentLoop())
1046    L = ParentLoop;
1047
1048  // We modified the loop, update SE.
1049  SE->forgetTopmostLoop(L);
1050  SE->forgetBlockAndLoopDispositions();
1051
1052#ifdef EXPENSIVE_CHECKS
1053  // Finally DomtTree must be correct.
1054  assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1055#endif
1056
1057  // FIXME: Incrementally update loop-simplify
1058  simplifyLoop(L, &DT, LI, SE, AC, nullptr, PreserveLCSSA);
1059
1060  NumPeeled++;
1061
1062  return true;
1063}
1064