1//===- MergeICmps.cpp - Optimize chains of integer comparisons ------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass turns chains of integer comparisons into memcmp (the memcmp is
10// later typically inlined as a chain of efficient hardware comparisons). This
11// typically benefits c++ member or nonmember operator==().
12//
13// The basic idea is to replace a longer chain of integer comparisons loaded
14// from contiguous memory locations into a shorter chain of larger integer
15// comparisons. Benefits are double:
16//  - There are less jumps, and therefore less opportunities for mispredictions
17//    and I-cache misses.
18//  - Code size is smaller, both because jumps are removed and because the
19//    encoding of a 2*n byte compare is smaller than that of two n-byte
20//    compares.
21//
22// Example:
23//
24//  struct S {
25//    int a;
26//    char b;
27//    char c;
28//    uint16_t d;
29//    bool operator==(const S& o) const {
30//      return a == o.a && b == o.b && c == o.c && d == o.d;
31//    }
32//  };
33//
34//  Is optimized as :
35//
36//    bool S::operator==(const S& o) const {
37//      return memcmp(this, &o, 8) == 0;
38//    }
39//
40//  Which will later be expanded (ExpandMemCmp) as a single 8-bytes icmp.
41//
42//===----------------------------------------------------------------------===//
43
44#include "llvm/Transforms/Scalar/MergeICmps.h"
45#include "llvm/ADT/SmallString.h"
46#include "llvm/Analysis/DomTreeUpdater.h"
47#include "llvm/Analysis/GlobalsModRef.h"
48#include "llvm/Analysis/Loads.h"
49#include "llvm/Analysis/TargetLibraryInfo.h"
50#include "llvm/Analysis/TargetTransformInfo.h"
51#include "llvm/IR/Dominators.h"
52#include "llvm/IR/Function.h"
53#include "llvm/IR/Instruction.h"
54#include "llvm/IR/IRBuilder.h"
55#include "llvm/InitializePasses.h"
56#include "llvm/Pass.h"
57#include "llvm/Transforms/Scalar.h"
58#include "llvm/Transforms/Utils/BasicBlockUtils.h"
59#include "llvm/Transforms/Utils/BuildLibCalls.h"
60#include <algorithm>
61#include <numeric>
62#include <utility>
63#include <vector>
64
65using namespace llvm;
66
67namespace {
68
69#define DEBUG_TYPE "mergeicmps"
70
71// A BCE atom "Binary Compare Expression Atom" represents an integer load
72// that is a constant offset from a base value, e.g. `a` or `o.c` in the example
73// at the top.
74struct BCEAtom {
75  BCEAtom() = default;
76  BCEAtom(GetElementPtrInst *GEP, LoadInst *LoadI, int BaseId, APInt Offset)
77      : GEP(GEP), LoadI(LoadI), BaseId(BaseId), Offset(Offset) {}
78
79  BCEAtom(const BCEAtom &) = delete;
80  BCEAtom &operator=(const BCEAtom &) = delete;
81
82  BCEAtom(BCEAtom &&that) = default;
83  BCEAtom &operator=(BCEAtom &&that) {
84    if (this == &that)
85      return *this;
86    GEP = that.GEP;
87    LoadI = that.LoadI;
88    BaseId = that.BaseId;
89    Offset = std::move(that.Offset);
90    return *this;
91  }
92
93  // We want to order BCEAtoms by (Base, Offset). However we cannot use
94  // the pointer values for Base because these are non-deterministic.
95  // To make sure that the sort order is stable, we first assign to each atom
96  // base value an index based on its order of appearance in the chain of
97  // comparisons. We call this index `BaseOrdering`. For example, for:
98  //    b[3] == c[2] && a[1] == d[1] && b[4] == c[3]
99  //    |  block 1 |    |  block 2 |    |  block 3 |
100  // b gets assigned index 0 and a index 1, because b appears as LHS in block 1,
101  // which is before block 2.
102  // We then sort by (BaseOrdering[LHS.Base()], LHS.Offset), which is stable.
103  bool operator<(const BCEAtom &O) const {
104    return BaseId != O.BaseId ? BaseId < O.BaseId : Offset.slt(O.Offset);
105  }
106
107  GetElementPtrInst *GEP = nullptr;
108  LoadInst *LoadI = nullptr;
109  unsigned BaseId = 0;
110  APInt Offset;
111};
112
113// A class that assigns increasing ids to values in the order in which they are
114// seen. See comment in `BCEAtom::operator<()``.
115class BaseIdentifier {
116public:
117  // Returns the id for value `Base`, after assigning one if `Base` has not been
118  // seen before.
119  int getBaseId(const Value *Base) {
120    assert(Base && "invalid base");
121    const auto Insertion = BaseToIndex.try_emplace(Base, Order);
122    if (Insertion.second)
123      ++Order;
124    return Insertion.first->second;
125  }
126
127private:
128  unsigned Order = 1;
129  DenseMap<const Value*, int> BaseToIndex;
130};
131
132// If this value is a load from a constant offset w.r.t. a base address, and
133// there are no other users of the load or address, returns the base address and
134// the offset.
135BCEAtom visitICmpLoadOperand(Value *const Val, BaseIdentifier &BaseId) {
136  auto *const LoadI = dyn_cast<LoadInst>(Val);
137  if (!LoadI)
138    return {};
139  LLVM_DEBUG(dbgs() << "load\n");
140  if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) {
141    LLVM_DEBUG(dbgs() << "used outside of block\n");
142    return {};
143  }
144  // Do not optimize atomic loads to non-atomic memcmp
145  if (!LoadI->isSimple()) {
146    LLVM_DEBUG(dbgs() << "volatile or atomic\n");
147    return {};
148  }
149  Value *Addr = LoadI->getOperand(0);
150  if (Addr->getType()->getPointerAddressSpace() != 0) {
151    LLVM_DEBUG(dbgs() << "from non-zero AddressSpace\n");
152    return {};
153  }
154  const auto &DL = LoadI->getModule()->getDataLayout();
155  if (!isDereferenceablePointer(Addr, LoadI->getType(), DL)) {
156    LLVM_DEBUG(dbgs() << "not dereferenceable\n");
157    // We need to make sure that we can do comparison in any order, so we
158    // require memory to be unconditionally dereferenceable.
159    return {};
160  }
161
162  APInt Offset = APInt(DL.getIndexTypeSizeInBits(Addr->getType()), 0);
163  Value *Base = Addr;
164  auto *GEP = dyn_cast<GetElementPtrInst>(Addr);
165  if (GEP) {
166    LLVM_DEBUG(dbgs() << "GEP\n");
167    if (GEP->isUsedOutsideOfBlock(LoadI->getParent())) {
168      LLVM_DEBUG(dbgs() << "used outside of block\n");
169      return {};
170    }
171    if (!GEP->accumulateConstantOffset(DL, Offset))
172      return {};
173    Base = GEP->getPointerOperand();
174  }
175  return BCEAtom(GEP, LoadI, BaseId.getBaseId(Base), Offset);
176}
177
178// A comparison between two BCE atoms, e.g. `a == o.a` in the example at the
179// top.
180// Note: the terminology is misleading: the comparison is symmetric, so there
181// is no real {l/r}hs. What we want though is to have the same base on the
182// left (resp. right), so that we can detect consecutive loads. To ensure this
183// we put the smallest atom on the left.
184struct BCECmp {
185  BCEAtom Lhs;
186  BCEAtom Rhs;
187  int SizeBits;
188  const ICmpInst *CmpI;
189
190  BCECmp(BCEAtom L, BCEAtom R, int SizeBits, const ICmpInst *CmpI)
191      : Lhs(std::move(L)), Rhs(std::move(R)), SizeBits(SizeBits), CmpI(CmpI) {
192    if (Rhs < Lhs) std::swap(Rhs, Lhs);
193  }
194};
195
196// A basic block with a comparison between two BCE atoms.
197// The block might do extra work besides the atom comparison, in which case
198// doesOtherWork() returns true. Under some conditions, the block can be
199// split into the atom comparison part and the "other work" part
200// (see canSplit()).
201class BCECmpBlock {
202 public:
203  typedef SmallDenseSet<const Instruction *, 8> InstructionSet;
204
205  BCECmpBlock(BCECmp Cmp, BasicBlock *BB, InstructionSet BlockInsts)
206      : BB(BB), BlockInsts(std::move(BlockInsts)), Cmp(std::move(Cmp)) {}
207
208  const BCEAtom &Lhs() const { return Cmp.Lhs; }
209  const BCEAtom &Rhs() const { return Cmp.Rhs; }
210  int SizeBits() const { return Cmp.SizeBits; }
211
212  // Returns true if the block does other works besides comparison.
213  bool doesOtherWork() const;
214
215  // Returns true if the non-BCE-cmp instructions can be separated from BCE-cmp
216  // instructions in the block.
217  bool canSplit(AliasAnalysis &AA) const;
218
219  // Return true if this all the relevant instructions in the BCE-cmp-block can
220  // be sunk below this instruction. By doing this, we know we can separate the
221  // BCE-cmp-block instructions from the non-BCE-cmp-block instructions in the
222  // block.
223  bool canSinkBCECmpInst(const Instruction *, AliasAnalysis &AA) const;
224
225  // We can separate the BCE-cmp-block instructions and the non-BCE-cmp-block
226  // instructions. Split the old block and move all non-BCE-cmp-insts into the
227  // new parent block.
228  void split(BasicBlock *NewParent, AliasAnalysis &AA) const;
229
230  // The basic block where this comparison happens.
231  BasicBlock *BB;
232  // Instructions relating to the BCECmp and branch.
233  InstructionSet BlockInsts;
234  // The block requires splitting.
235  bool RequireSplit = false;
236  // Original order of this block in the chain.
237  unsigned OrigOrder = 0;
238
239private:
240  BCECmp Cmp;
241};
242
243bool BCECmpBlock::canSinkBCECmpInst(const Instruction *Inst,
244                                    AliasAnalysis &AA) const {
245  // If this instruction may clobber the loads and is in middle of the BCE cmp
246  // block instructions, then bail for now.
247  if (Inst->mayWriteToMemory()) {
248    auto MayClobber = [&](LoadInst *LI) {
249      // If a potentially clobbering instruction comes before the load,
250      // we can still safely sink the load.
251      return (Inst->getParent() != LI->getParent() || !Inst->comesBefore(LI)) &&
252             isModSet(AA.getModRefInfo(Inst, MemoryLocation::get(LI)));
253    };
254    if (MayClobber(Cmp.Lhs.LoadI) || MayClobber(Cmp.Rhs.LoadI))
255      return false;
256  }
257  // Make sure this instruction does not use any of the BCE cmp block
258  // instructions as operand.
259  return llvm::none_of(Inst->operands(), [&](const Value *Op) {
260    const Instruction *OpI = dyn_cast<Instruction>(Op);
261    return OpI && BlockInsts.contains(OpI);
262  });
263}
264
265void BCECmpBlock::split(BasicBlock *NewParent, AliasAnalysis &AA) const {
266  llvm::SmallVector<Instruction *, 4> OtherInsts;
267  for (Instruction &Inst : *BB) {
268    if (BlockInsts.count(&Inst))
269      continue;
270    assert(canSinkBCECmpInst(&Inst, AA) && "Split unsplittable block");
271    // This is a non-BCE-cmp-block instruction. And it can be separated
272    // from the BCE-cmp-block instruction.
273    OtherInsts.push_back(&Inst);
274  }
275
276  // Do the actual spliting.
277  for (Instruction *Inst : reverse(OtherInsts))
278    Inst->moveBeforePreserving(*NewParent, NewParent->begin());
279}
280
281bool BCECmpBlock::canSplit(AliasAnalysis &AA) const {
282  for (Instruction &Inst : *BB) {
283    if (!BlockInsts.count(&Inst)) {
284      if (!canSinkBCECmpInst(&Inst, AA))
285        return false;
286    }
287  }
288  return true;
289}
290
291bool BCECmpBlock::doesOtherWork() const {
292  // TODO(courbet): Can we allow some other things ? This is very conservative.
293  // We might be able to get away with anything does not have any side
294  // effects outside of the basic block.
295  // Note: The GEPs and/or loads are not necessarily in the same block.
296  for (const Instruction &Inst : *BB) {
297    if (!BlockInsts.count(&Inst))
298      return true;
299  }
300  return false;
301}
302
303// Visit the given comparison. If this is a comparison between two valid
304// BCE atoms, returns the comparison.
305std::optional<BCECmp> visitICmp(const ICmpInst *const CmpI,
306                                const ICmpInst::Predicate ExpectedPredicate,
307                                BaseIdentifier &BaseId) {
308  // The comparison can only be used once:
309  //  - For intermediate blocks, as a branch condition.
310  //  - For the final block, as an incoming value for the Phi.
311  // If there are any other uses of the comparison, we cannot merge it with
312  // other comparisons as we would create an orphan use of the value.
313  if (!CmpI->hasOneUse()) {
314    LLVM_DEBUG(dbgs() << "cmp has several uses\n");
315    return std::nullopt;
316  }
317  if (CmpI->getPredicate() != ExpectedPredicate)
318    return std::nullopt;
319  LLVM_DEBUG(dbgs() << "cmp "
320                    << (ExpectedPredicate == ICmpInst::ICMP_EQ ? "eq" : "ne")
321                    << "\n");
322  auto Lhs = visitICmpLoadOperand(CmpI->getOperand(0), BaseId);
323  if (!Lhs.BaseId)
324    return std::nullopt;
325  auto Rhs = visitICmpLoadOperand(CmpI->getOperand(1), BaseId);
326  if (!Rhs.BaseId)
327    return std::nullopt;
328  const auto &DL = CmpI->getModule()->getDataLayout();
329  return BCECmp(std::move(Lhs), std::move(Rhs),
330                DL.getTypeSizeInBits(CmpI->getOperand(0)->getType()), CmpI);
331}
332
333// Visit the given comparison block. If this is a comparison between two valid
334// BCE atoms, returns the comparison.
335std::optional<BCECmpBlock> visitCmpBlock(Value *const Val,
336                                         BasicBlock *const Block,
337                                         const BasicBlock *const PhiBlock,
338                                         BaseIdentifier &BaseId) {
339  if (Block->empty())
340    return std::nullopt;
341  auto *const BranchI = dyn_cast<BranchInst>(Block->getTerminator());
342  if (!BranchI)
343    return std::nullopt;
344  LLVM_DEBUG(dbgs() << "branch\n");
345  Value *Cond;
346  ICmpInst::Predicate ExpectedPredicate;
347  if (BranchI->isUnconditional()) {
348    // In this case, we expect an incoming value which is the result of the
349    // comparison. This is the last link in the chain of comparisons (note
350    // that this does not mean that this is the last incoming value, blocks
351    // can be reordered).
352    Cond = Val;
353    ExpectedPredicate = ICmpInst::ICMP_EQ;
354  } else {
355    // In this case, we expect a constant incoming value (the comparison is
356    // chained).
357    const auto *const Const = cast<ConstantInt>(Val);
358    LLVM_DEBUG(dbgs() << "const\n");
359    if (!Const->isZero())
360      return std::nullopt;
361    LLVM_DEBUG(dbgs() << "false\n");
362    assert(BranchI->getNumSuccessors() == 2 && "expecting a cond branch");
363    BasicBlock *const FalseBlock = BranchI->getSuccessor(1);
364    Cond = BranchI->getCondition();
365    ExpectedPredicate =
366        FalseBlock == PhiBlock ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
367  }
368
369  auto *CmpI = dyn_cast<ICmpInst>(Cond);
370  if (!CmpI)
371    return std::nullopt;
372  LLVM_DEBUG(dbgs() << "icmp\n");
373
374  std::optional<BCECmp> Result = visitICmp(CmpI, ExpectedPredicate, BaseId);
375  if (!Result)
376    return std::nullopt;
377
378  BCECmpBlock::InstructionSet BlockInsts(
379      {Result->Lhs.LoadI, Result->Rhs.LoadI, Result->CmpI, BranchI});
380  if (Result->Lhs.GEP)
381    BlockInsts.insert(Result->Lhs.GEP);
382  if (Result->Rhs.GEP)
383    BlockInsts.insert(Result->Rhs.GEP);
384  return BCECmpBlock(std::move(*Result), Block, BlockInsts);
385}
386
387static inline void enqueueBlock(std::vector<BCECmpBlock> &Comparisons,
388                                BCECmpBlock &&Comparison) {
389  LLVM_DEBUG(dbgs() << "Block '" << Comparison.BB->getName()
390                    << "': Found cmp of " << Comparison.SizeBits()
391                    << " bits between " << Comparison.Lhs().BaseId << " + "
392                    << Comparison.Lhs().Offset << " and "
393                    << Comparison.Rhs().BaseId << " + "
394                    << Comparison.Rhs().Offset << "\n");
395  LLVM_DEBUG(dbgs() << "\n");
396  Comparison.OrigOrder = Comparisons.size();
397  Comparisons.push_back(std::move(Comparison));
398}
399
400// A chain of comparisons.
401class BCECmpChain {
402public:
403  using ContiguousBlocks = std::vector<BCECmpBlock>;
404
405  BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi,
406              AliasAnalysis &AA);
407
408  bool simplify(const TargetLibraryInfo &TLI, AliasAnalysis &AA,
409                DomTreeUpdater &DTU);
410
411  bool atLeastOneMerged() const {
412    return any_of(MergedBlocks_,
413                  [](const auto &Blocks) { return Blocks.size() > 1; });
414  }
415
416private:
417  PHINode &Phi_;
418  // The list of all blocks in the chain, grouped by contiguity.
419  std::vector<ContiguousBlocks> MergedBlocks_;
420  // The original entry block (before sorting);
421  BasicBlock *EntryBlock_;
422};
423
424static bool areContiguous(const BCECmpBlock &First, const BCECmpBlock &Second) {
425  return First.Lhs().BaseId == Second.Lhs().BaseId &&
426         First.Rhs().BaseId == Second.Rhs().BaseId &&
427         First.Lhs().Offset + First.SizeBits() / 8 == Second.Lhs().Offset &&
428         First.Rhs().Offset + First.SizeBits() / 8 == Second.Rhs().Offset;
429}
430
431static unsigned getMinOrigOrder(const BCECmpChain::ContiguousBlocks &Blocks) {
432  unsigned MinOrigOrder = std::numeric_limits<unsigned>::max();
433  for (const BCECmpBlock &Block : Blocks)
434    MinOrigOrder = std::min(MinOrigOrder, Block.OrigOrder);
435  return MinOrigOrder;
436}
437
438/// Given a chain of comparison blocks, groups the blocks into contiguous
439/// ranges that can be merged together into a single comparison.
440static std::vector<BCECmpChain::ContiguousBlocks>
441mergeBlocks(std::vector<BCECmpBlock> &&Blocks) {
442  std::vector<BCECmpChain::ContiguousBlocks> MergedBlocks;
443
444  // Sort to detect continuous offsets.
445  llvm::sort(Blocks,
446             [](const BCECmpBlock &LhsBlock, const BCECmpBlock &RhsBlock) {
447               return std::tie(LhsBlock.Lhs(), LhsBlock.Rhs()) <
448                      std::tie(RhsBlock.Lhs(), RhsBlock.Rhs());
449             });
450
451  BCECmpChain::ContiguousBlocks *LastMergedBlock = nullptr;
452  for (BCECmpBlock &Block : Blocks) {
453    if (!LastMergedBlock || !areContiguous(LastMergedBlock->back(), Block)) {
454      MergedBlocks.emplace_back();
455      LastMergedBlock = &MergedBlocks.back();
456    } else {
457      LLVM_DEBUG(dbgs() << "Merging block " << Block.BB->getName() << " into "
458                        << LastMergedBlock->back().BB->getName() << "\n");
459    }
460    LastMergedBlock->push_back(std::move(Block));
461  }
462
463  // While we allow reordering for merging, do not reorder unmerged comparisons.
464  // Doing so may introduce branch on poison.
465  llvm::sort(MergedBlocks, [](const BCECmpChain::ContiguousBlocks &LhsBlocks,
466                              const BCECmpChain::ContiguousBlocks &RhsBlocks) {
467    return getMinOrigOrder(LhsBlocks) < getMinOrigOrder(RhsBlocks);
468  });
469
470  return MergedBlocks;
471}
472
473BCECmpChain::BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi,
474                         AliasAnalysis &AA)
475    : Phi_(Phi) {
476  assert(!Blocks.empty() && "a chain should have at least one block");
477  // Now look inside blocks to check for BCE comparisons.
478  std::vector<BCECmpBlock> Comparisons;
479  BaseIdentifier BaseId;
480  for (BasicBlock *const Block : Blocks) {
481    assert(Block && "invalid block");
482    std::optional<BCECmpBlock> Comparison = visitCmpBlock(
483        Phi.getIncomingValueForBlock(Block), Block, Phi.getParent(), BaseId);
484    if (!Comparison) {
485      LLVM_DEBUG(dbgs() << "chain with invalid BCECmpBlock, no merge.\n");
486      return;
487    }
488    if (Comparison->doesOtherWork()) {
489      LLVM_DEBUG(dbgs() << "block '" << Comparison->BB->getName()
490                        << "' does extra work besides compare\n");
491      if (Comparisons.empty()) {
492        // This is the initial block in the chain, in case this block does other
493        // work, we can try to split the block and move the irrelevant
494        // instructions to the predecessor.
495        //
496        // If this is not the initial block in the chain, splitting it wont
497        // work.
498        //
499        // As once split, there will still be instructions before the BCE cmp
500        // instructions that do other work in program order, i.e. within the
501        // chain before sorting. Unless we can abort the chain at this point
502        // and start anew.
503        //
504        // NOTE: we only handle blocks a with single predecessor for now.
505        if (Comparison->canSplit(AA)) {
506          LLVM_DEBUG(dbgs()
507                     << "Split initial block '" << Comparison->BB->getName()
508                     << "' that does extra work besides compare\n");
509          Comparison->RequireSplit = true;
510          enqueueBlock(Comparisons, std::move(*Comparison));
511        } else {
512          LLVM_DEBUG(dbgs()
513                     << "ignoring initial block '" << Comparison->BB->getName()
514                     << "' that does extra work besides compare\n");
515        }
516        continue;
517      }
518      // TODO(courbet): Right now we abort the whole chain. We could be
519      // merging only the blocks that don't do other work and resume the
520      // chain from there. For example:
521      //  if (a[0] == b[0]) {  // bb1
522      //    if (a[1] == b[1]) {  // bb2
523      //      some_value = 3; //bb3
524      //      if (a[2] == b[2]) { //bb3
525      //        do a ton of stuff  //bb4
526      //      }
527      //    }
528      //  }
529      //
530      // This is:
531      //
532      // bb1 --eq--> bb2 --eq--> bb3* -eq--> bb4 --+
533      //  \            \           \               \
534      //   ne           ne          ne              \
535      //    \            \           \               v
536      //     +------------+-----------+----------> bb_phi
537      //
538      // We can only merge the first two comparisons, because bb3* does
539      // "other work" (setting some_value to 3).
540      // We could still merge bb1 and bb2 though.
541      return;
542    }
543    enqueueBlock(Comparisons, std::move(*Comparison));
544  }
545
546  // It is possible we have no suitable comparison to merge.
547  if (Comparisons.empty()) {
548    LLVM_DEBUG(dbgs() << "chain with no BCE basic blocks, no merge\n");
549    return;
550  }
551  EntryBlock_ = Comparisons[0].BB;
552  MergedBlocks_ = mergeBlocks(std::move(Comparisons));
553}
554
555namespace {
556
557// A class to compute the name of a set of merged basic blocks.
558// This is optimized for the common case of no block names.
559class MergedBlockName {
560  // Storage for the uncommon case of several named blocks.
561  SmallString<16> Scratch;
562
563public:
564  explicit MergedBlockName(ArrayRef<BCECmpBlock> Comparisons)
565      : Name(makeName(Comparisons)) {}
566  const StringRef Name;
567
568private:
569  StringRef makeName(ArrayRef<BCECmpBlock> Comparisons) {
570    assert(!Comparisons.empty() && "no basic block");
571    // Fast path: only one block, or no names at all.
572    if (Comparisons.size() == 1)
573      return Comparisons[0].BB->getName();
574    const int size = std::accumulate(Comparisons.begin(), Comparisons.end(), 0,
575                                     [](int i, const BCECmpBlock &Cmp) {
576                                       return i + Cmp.BB->getName().size();
577                                     });
578    if (size == 0)
579      return StringRef("", 0);
580
581    // Slow path: at least two blocks, at least one block with a name.
582    Scratch.clear();
583    // We'll have `size` bytes for name and `Comparisons.size() - 1` bytes for
584    // separators.
585    Scratch.reserve(size + Comparisons.size() - 1);
586    const auto append = [this](StringRef str) {
587      Scratch.append(str.begin(), str.end());
588    };
589    append(Comparisons[0].BB->getName());
590    for (int I = 1, E = Comparisons.size(); I < E; ++I) {
591      const BasicBlock *const BB = Comparisons[I].BB;
592      if (!BB->getName().empty()) {
593        append("+");
594        append(BB->getName());
595      }
596    }
597    return Scratch.str();
598  }
599};
600} // namespace
601
602// Merges the given contiguous comparison blocks into one memcmp block.
603static BasicBlock *mergeComparisons(ArrayRef<BCECmpBlock> Comparisons,
604                                    BasicBlock *const InsertBefore,
605                                    BasicBlock *const NextCmpBlock,
606                                    PHINode &Phi, const TargetLibraryInfo &TLI,
607                                    AliasAnalysis &AA, DomTreeUpdater &DTU) {
608  assert(!Comparisons.empty() && "merging zero comparisons");
609  LLVMContext &Context = NextCmpBlock->getContext();
610  const BCECmpBlock &FirstCmp = Comparisons[0];
611
612  // Create a new cmp block before next cmp block.
613  BasicBlock *const BB =
614      BasicBlock::Create(Context, MergedBlockName(Comparisons).Name,
615                         NextCmpBlock->getParent(), InsertBefore);
616  IRBuilder<> Builder(BB);
617  // Add the GEPs from the first BCECmpBlock.
618  Value *Lhs, *Rhs;
619  if (FirstCmp.Lhs().GEP)
620    Lhs = Builder.Insert(FirstCmp.Lhs().GEP->clone());
621  else
622    Lhs = FirstCmp.Lhs().LoadI->getPointerOperand();
623  if (FirstCmp.Rhs().GEP)
624    Rhs = Builder.Insert(FirstCmp.Rhs().GEP->clone());
625  else
626    Rhs = FirstCmp.Rhs().LoadI->getPointerOperand();
627
628  Value *IsEqual = nullptr;
629  LLVM_DEBUG(dbgs() << "Merging " << Comparisons.size() << " comparisons -> "
630                    << BB->getName() << "\n");
631
632  // If there is one block that requires splitting, we do it now, i.e.
633  // just before we know we will collapse the chain. The instructions
634  // can be executed before any of the instructions in the chain.
635  const auto ToSplit = llvm::find_if(
636      Comparisons, [](const BCECmpBlock &B) { return B.RequireSplit; });
637  if (ToSplit != Comparisons.end()) {
638    LLVM_DEBUG(dbgs() << "Splitting non_BCE work to header\n");
639    ToSplit->split(BB, AA);
640  }
641
642  if (Comparisons.size() == 1) {
643    LLVM_DEBUG(dbgs() << "Only one comparison, updating branches\n");
644    // Use clone to keep the metadata
645    Instruction *const LhsLoad = Builder.Insert(FirstCmp.Lhs().LoadI->clone());
646    Instruction *const RhsLoad = Builder.Insert(FirstCmp.Rhs().LoadI->clone());
647    LhsLoad->replaceUsesOfWith(LhsLoad->getOperand(0), Lhs);
648    RhsLoad->replaceUsesOfWith(RhsLoad->getOperand(0), Rhs);
649    // There are no blocks to merge, just do the comparison.
650    IsEqual = Builder.CreateICmpEQ(LhsLoad, RhsLoad);
651  } else {
652    const unsigned TotalSizeBits = std::accumulate(
653        Comparisons.begin(), Comparisons.end(), 0u,
654        [](int Size, const BCECmpBlock &C) { return Size + C.SizeBits(); });
655
656    // memcmp expects a 'size_t' argument and returns 'int'.
657    unsigned SizeTBits = TLI.getSizeTSize(*Phi.getModule());
658    unsigned IntBits = TLI.getIntSize();
659
660    // Create memcmp() == 0.
661    const auto &DL = Phi.getModule()->getDataLayout();
662    Value *const MemCmpCall = emitMemCmp(
663        Lhs, Rhs,
664        ConstantInt::get(Builder.getIntNTy(SizeTBits), TotalSizeBits / 8),
665        Builder, DL, &TLI);
666    IsEqual = Builder.CreateICmpEQ(
667        MemCmpCall, ConstantInt::get(Builder.getIntNTy(IntBits), 0));
668  }
669
670  BasicBlock *const PhiBB = Phi.getParent();
671  // Add a branch to the next basic block in the chain.
672  if (NextCmpBlock == PhiBB) {
673    // Continue to phi, passing it the comparison result.
674    Builder.CreateBr(PhiBB);
675    Phi.addIncoming(IsEqual, BB);
676    DTU.applyUpdates({{DominatorTree::Insert, BB, PhiBB}});
677  } else {
678    // Continue to next block if equal, exit to phi else.
679    Builder.CreateCondBr(IsEqual, NextCmpBlock, PhiBB);
680    Phi.addIncoming(ConstantInt::getFalse(Context), BB);
681    DTU.applyUpdates({{DominatorTree::Insert, BB, NextCmpBlock},
682                      {DominatorTree::Insert, BB, PhiBB}});
683  }
684  return BB;
685}
686
687bool BCECmpChain::simplify(const TargetLibraryInfo &TLI, AliasAnalysis &AA,
688                           DomTreeUpdater &DTU) {
689  assert(atLeastOneMerged() && "simplifying trivial BCECmpChain");
690  LLVM_DEBUG(dbgs() << "Simplifying comparison chain starting at block "
691                    << EntryBlock_->getName() << "\n");
692
693  // Effectively merge blocks. We go in the reverse direction from the phi block
694  // so that the next block is always available to branch to.
695  BasicBlock *InsertBefore = EntryBlock_;
696  BasicBlock *NextCmpBlock = Phi_.getParent();
697  for (const auto &Blocks : reverse(MergedBlocks_)) {
698    InsertBefore = NextCmpBlock = mergeComparisons(
699        Blocks, InsertBefore, NextCmpBlock, Phi_, TLI, AA, DTU);
700  }
701
702  // Replace the original cmp chain with the new cmp chain by pointing all
703  // predecessors of EntryBlock_ to NextCmpBlock instead. This makes all cmp
704  // blocks in the old chain unreachable.
705  while (!pred_empty(EntryBlock_)) {
706    BasicBlock* const Pred = *pred_begin(EntryBlock_);
707    LLVM_DEBUG(dbgs() << "Updating jump into old chain from " << Pred->getName()
708                      << "\n");
709    Pred->getTerminator()->replaceUsesOfWith(EntryBlock_, NextCmpBlock);
710    DTU.applyUpdates({{DominatorTree::Delete, Pred, EntryBlock_},
711                      {DominatorTree::Insert, Pred, NextCmpBlock}});
712  }
713
714  // If the old cmp chain was the function entry, we need to update the function
715  // entry.
716  const bool ChainEntryIsFnEntry = EntryBlock_->isEntryBlock();
717  if (ChainEntryIsFnEntry && DTU.hasDomTree()) {
718    LLVM_DEBUG(dbgs() << "Changing function entry from "
719                      << EntryBlock_->getName() << " to "
720                      << NextCmpBlock->getName() << "\n");
721    DTU.getDomTree().setNewRoot(NextCmpBlock);
722    DTU.applyUpdates({{DominatorTree::Delete, NextCmpBlock, EntryBlock_}});
723  }
724  EntryBlock_ = nullptr;
725
726  // Delete merged blocks. This also removes incoming values in phi.
727  SmallVector<BasicBlock *, 16> DeadBlocks;
728  for (const auto &Blocks : MergedBlocks_) {
729    for (const BCECmpBlock &Block : Blocks) {
730      LLVM_DEBUG(dbgs() << "Deleting merged block " << Block.BB->getName()
731                        << "\n");
732      DeadBlocks.push_back(Block.BB);
733    }
734  }
735  DeleteDeadBlocks(DeadBlocks, &DTU);
736
737  MergedBlocks_.clear();
738  return true;
739}
740
741std::vector<BasicBlock *> getOrderedBlocks(PHINode &Phi,
742                                           BasicBlock *const LastBlock,
743                                           int NumBlocks) {
744  // Walk up from the last block to find other blocks.
745  std::vector<BasicBlock *> Blocks(NumBlocks);
746  assert(LastBlock && "invalid last block");
747  BasicBlock *CurBlock = LastBlock;
748  for (int BlockIndex = NumBlocks - 1; BlockIndex > 0; --BlockIndex) {
749    if (CurBlock->hasAddressTaken()) {
750      // Somebody is jumping to the block through an address, all bets are
751      // off.
752      LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
753                        << " has its address taken\n");
754      return {};
755    }
756    Blocks[BlockIndex] = CurBlock;
757    auto *SinglePredecessor = CurBlock->getSinglePredecessor();
758    if (!SinglePredecessor) {
759      // The block has two or more predecessors.
760      LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
761                        << " has two or more predecessors\n");
762      return {};
763    }
764    if (Phi.getBasicBlockIndex(SinglePredecessor) < 0) {
765      // The block does not link back to the phi.
766      LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
767                        << " does not link back to the phi\n");
768      return {};
769    }
770    CurBlock = SinglePredecessor;
771  }
772  Blocks[0] = CurBlock;
773  return Blocks;
774}
775
776bool processPhi(PHINode &Phi, const TargetLibraryInfo &TLI, AliasAnalysis &AA,
777                DomTreeUpdater &DTU) {
778  LLVM_DEBUG(dbgs() << "processPhi()\n");
779  if (Phi.getNumIncomingValues() <= 1) {
780    LLVM_DEBUG(dbgs() << "skip: only one incoming value in phi\n");
781    return false;
782  }
783  // We are looking for something that has the following structure:
784  //   bb1 --eq--> bb2 --eq--> bb3 --eq--> bb4 --+
785  //     \            \           \               \
786  //      ne           ne          ne              \
787  //       \            \           \               v
788  //        +------------+-----------+----------> bb_phi
789  //
790  //  - The last basic block (bb4 here) must branch unconditionally to bb_phi.
791  //    It's the only block that contributes a non-constant value to the Phi.
792  //  - All other blocks (b1, b2, b3) must have exactly two successors, one of
793  //    them being the phi block.
794  //  - All intermediate blocks (bb2, bb3) must have only one predecessor.
795  //  - Blocks cannot do other work besides the comparison, see doesOtherWork()
796
797  // The blocks are not necessarily ordered in the phi, so we start from the
798  // last block and reconstruct the order.
799  BasicBlock *LastBlock = nullptr;
800  for (unsigned I = 0; I < Phi.getNumIncomingValues(); ++I) {
801    if (isa<ConstantInt>(Phi.getIncomingValue(I))) continue;
802    if (LastBlock) {
803      // There are several non-constant values.
804      LLVM_DEBUG(dbgs() << "skip: several non-constant values\n");
805      return false;
806    }
807    if (!isa<ICmpInst>(Phi.getIncomingValue(I)) ||
808        cast<ICmpInst>(Phi.getIncomingValue(I))->getParent() !=
809            Phi.getIncomingBlock(I)) {
810      // Non-constant incoming value is not from a cmp instruction or not
811      // produced by the last block. We could end up processing the value
812      // producing block more than once.
813      //
814      // This is an uncommon case, so we bail.
815      LLVM_DEBUG(
816          dbgs()
817          << "skip: non-constant value not from cmp or not from last block.\n");
818      return false;
819    }
820    LastBlock = Phi.getIncomingBlock(I);
821  }
822  if (!LastBlock) {
823    // There is no non-constant block.
824    LLVM_DEBUG(dbgs() << "skip: no non-constant block\n");
825    return false;
826  }
827  if (LastBlock->getSingleSuccessor() != Phi.getParent()) {
828    LLVM_DEBUG(dbgs() << "skip: last block non-phi successor\n");
829    return false;
830  }
831
832  const auto Blocks =
833      getOrderedBlocks(Phi, LastBlock, Phi.getNumIncomingValues());
834  if (Blocks.empty()) return false;
835  BCECmpChain CmpChain(Blocks, Phi, AA);
836
837  if (!CmpChain.atLeastOneMerged()) {
838    LLVM_DEBUG(dbgs() << "skip: nothing merged\n");
839    return false;
840  }
841
842  return CmpChain.simplify(TLI, AA, DTU);
843}
844
845static bool runImpl(Function &F, const TargetLibraryInfo &TLI,
846                    const TargetTransformInfo &TTI, AliasAnalysis &AA,
847                    DominatorTree *DT) {
848  LLVM_DEBUG(dbgs() << "MergeICmpsLegacyPass: " << F.getName() << "\n");
849
850  // We only try merging comparisons if the target wants to expand memcmp later.
851  // The rationale is to avoid turning small chains into memcmp calls.
852  if (!TTI.enableMemCmpExpansion(F.hasOptSize(), true))
853    return false;
854
855  // If we don't have memcmp avaiable we can't emit calls to it.
856  if (!TLI.has(LibFunc_memcmp))
857    return false;
858
859  DomTreeUpdater DTU(DT, /*PostDominatorTree*/ nullptr,
860                     DomTreeUpdater::UpdateStrategy::Eager);
861
862  bool MadeChange = false;
863
864  for (BasicBlock &BB : llvm::drop_begin(F)) {
865    // A Phi operation is always first in a basic block.
866    if (auto *const Phi = dyn_cast<PHINode>(&*BB.begin()))
867      MadeChange |= processPhi(*Phi, TLI, AA, DTU);
868  }
869
870  return MadeChange;
871}
872
873class MergeICmpsLegacyPass : public FunctionPass {
874public:
875  static char ID;
876
877  MergeICmpsLegacyPass() : FunctionPass(ID) {
878    initializeMergeICmpsLegacyPassPass(*PassRegistry::getPassRegistry());
879  }
880
881  bool runOnFunction(Function &F) override {
882    if (skipFunction(F)) return false;
883    const auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
884    const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
885    // MergeICmps does not need the DominatorTree, but we update it if it's
886    // already available.
887    auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
888    auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
889    return runImpl(F, TLI, TTI, AA, DTWP ? &DTWP->getDomTree() : nullptr);
890  }
891
892 private:
893  void getAnalysisUsage(AnalysisUsage &AU) const override {
894    AU.addRequired<TargetLibraryInfoWrapperPass>();
895    AU.addRequired<TargetTransformInfoWrapperPass>();
896    AU.addRequired<AAResultsWrapperPass>();
897    AU.addPreserved<GlobalsAAWrapperPass>();
898    AU.addPreserved<DominatorTreeWrapperPass>();
899  }
900};
901
902} // namespace
903
904char MergeICmpsLegacyPass::ID = 0;
905INITIALIZE_PASS_BEGIN(MergeICmpsLegacyPass, "mergeicmps",
906                      "Merge contiguous icmps into a memcmp", false, false)
907INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
908INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
909INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
910INITIALIZE_PASS_END(MergeICmpsLegacyPass, "mergeicmps",
911                    "Merge contiguous icmps into a memcmp", false, false)
912
913Pass *llvm::createMergeICmpsLegacyPass() { return new MergeICmpsLegacyPass(); }
914
915PreservedAnalyses MergeICmpsPass::run(Function &F,
916                                      FunctionAnalysisManager &AM) {
917  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
918  auto &TTI = AM.getResult<TargetIRAnalysis>(F);
919  auto &AA = AM.getResult<AAManager>(F);
920  auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
921  const bool MadeChanges = runImpl(F, TLI, TTI, AA, DT);
922  if (!MadeChanges)
923    return PreservedAnalyses::all();
924  PreservedAnalyses PA;
925  PA.preserve<DominatorTreeAnalysis>();
926  return PA;
927}
928