1//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This transformation analyzes and transforms the induction variables (and
10// computations derived from them) into forms suitable for efficient execution
11// on the target.
12//
13// This pass performs a strength reduction on array references inside loops that
14// have as one or more of their components the loop induction variable, it
15// rewrites expressions to take advantage of scaled-index addressing modes
16// available on the target, and it performs a variety of other optimizations
17// related to loop induction variables.
18//
19// Terminology note: this code has a lot of handling for "post-increment" or
20// "post-inc" users. This is not talking about post-increment addressing modes;
21// it is instead talking about code like this:
22//
23//   %i = phi [ 0, %entry ], [ %i.next, %latch ]
24//   ...
25//   %i.next = add %i, 1
26//   %c = icmp eq %i.next, %n
27//
28// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
29// it's useful to think about these as the same register, with some uses using
30// the value of the register before the add and some using it after. In this
31// example, the icmp is a post-increment user, since it uses %i.next, which is
32// the value of the induction variable after the increment. The other common
33// case of post-increment users is users outside the loop.
34//
35// TODO: More sophistication in the way Formulae are generated and filtered.
36//
37// TODO: Handle multiple loops at a time.
38//
39// TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
40//       of a GlobalValue?
41//
42// TODO: When truncation is free, truncate ICmp users' operands to make it a
43//       smaller encoding (on x86 at least).
44//
45// TODO: When a negated register is used by an add (such as in a list of
46//       multiple base registers, or as the increment expression in an addrec),
47//       we may not actually need both reg and (-1 * reg) in registers; the
48//       negation can be implemented by using a sub instead of an add. The
49//       lack of support for taking this into consideration when making
50//       register pressure decisions is partly worked around by the "Special"
51//       use kind.
52//
53//===----------------------------------------------------------------------===//
54
55#include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
56#include "llvm/ADT/APInt.h"
57#include "llvm/ADT/DenseMap.h"
58#include "llvm/ADT/DenseSet.h"
59#include "llvm/ADT/Hashing.h"
60#include "llvm/ADT/PointerIntPair.h"
61#include "llvm/ADT/STLExtras.h"
62#include "llvm/ADT/SetVector.h"
63#include "llvm/ADT/SmallBitVector.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/SmallSet.h"
66#include "llvm/ADT/SmallVector.h"
67#include "llvm/ADT/Statistic.h"
68#include "llvm/ADT/iterator_range.h"
69#include "llvm/Analysis/AssumptionCache.h"
70#include "llvm/Analysis/DomTreeUpdater.h"
71#include "llvm/Analysis/IVUsers.h"
72#include "llvm/Analysis/LoopAnalysisManager.h"
73#include "llvm/Analysis/LoopInfo.h"
74#include "llvm/Analysis/LoopPass.h"
75#include "llvm/Analysis/MemorySSA.h"
76#include "llvm/Analysis/MemorySSAUpdater.h"
77#include "llvm/Analysis/ScalarEvolution.h"
78#include "llvm/Analysis/ScalarEvolutionExpressions.h"
79#include "llvm/Analysis/ScalarEvolutionNormalization.h"
80#include "llvm/Analysis/TargetLibraryInfo.h"
81#include "llvm/Analysis/TargetTransformInfo.h"
82#include "llvm/Analysis/ValueTracking.h"
83#include "llvm/BinaryFormat/Dwarf.h"
84#include "llvm/Config/llvm-config.h"
85#include "llvm/IR/BasicBlock.h"
86#include "llvm/IR/Constant.h"
87#include "llvm/IR/Constants.h"
88#include "llvm/IR/DebugInfoMetadata.h"
89#include "llvm/IR/DerivedTypes.h"
90#include "llvm/IR/Dominators.h"
91#include "llvm/IR/GlobalValue.h"
92#include "llvm/IR/IRBuilder.h"
93#include "llvm/IR/InstrTypes.h"
94#include "llvm/IR/Instruction.h"
95#include "llvm/IR/Instructions.h"
96#include "llvm/IR/IntrinsicInst.h"
97#include "llvm/IR/Module.h"
98#include "llvm/IR/Operator.h"
99#include "llvm/IR/PassManager.h"
100#include "llvm/IR/Type.h"
101#include "llvm/IR/Use.h"
102#include "llvm/IR/User.h"
103#include "llvm/IR/Value.h"
104#include "llvm/IR/ValueHandle.h"
105#include "llvm/InitializePasses.h"
106#include "llvm/Pass.h"
107#include "llvm/Support/Casting.h"
108#include "llvm/Support/CommandLine.h"
109#include "llvm/Support/Compiler.h"
110#include "llvm/Support/Debug.h"
111#include "llvm/Support/ErrorHandling.h"
112#include "llvm/Support/MathExtras.h"
113#include "llvm/Support/raw_ostream.h"
114#include "llvm/Transforms/Scalar.h"
115#include "llvm/Transforms/Utils.h"
116#include "llvm/Transforms/Utils/BasicBlockUtils.h"
117#include "llvm/Transforms/Utils/Local.h"
118#include "llvm/Transforms/Utils/LoopUtils.h"
119#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
120#include <algorithm>
121#include <cassert>
122#include <cstddef>
123#include <cstdint>
124#include <iterator>
125#include <limits>
126#include <map>
127#include <numeric>
128#include <optional>
129#include <utility>
130
131using namespace llvm;
132
133#define DEBUG_TYPE "loop-reduce"
134
135/// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
136/// bail out. This threshold is far beyond the number of users that LSR can
137/// conceivably solve, so it should not affect generated code, but catches the
138/// worst cases before LSR burns too much compile time and stack space.
139static const unsigned MaxIVUsers = 200;
140
141/// Limit the size of expression that SCEV-based salvaging will attempt to
142/// translate into a DIExpression.
143/// Choose a maximum size such that debuginfo is not excessively increased and
144/// the salvaging is not too expensive for the compiler.
145static const unsigned MaxSCEVSalvageExpressionSize = 64;
146
147// Cleanup congruent phis after LSR phi expansion.
148static cl::opt<bool> EnablePhiElim(
149  "enable-lsr-phielim", cl::Hidden, cl::init(true),
150  cl::desc("Enable LSR phi elimination"));
151
152// The flag adds instruction count to solutions cost comparison.
153static cl::opt<bool> InsnsCost(
154  "lsr-insns-cost", cl::Hidden, cl::init(true),
155  cl::desc("Add instruction count to a LSR cost model"));
156
157// Flag to choose how to narrow complex lsr solution
158static cl::opt<bool> LSRExpNarrow(
159  "lsr-exp-narrow", cl::Hidden, cl::init(false),
160  cl::desc("Narrow LSR complex solution using"
161           " expectation of registers number"));
162
163// Flag to narrow search space by filtering non-optimal formulae with
164// the same ScaledReg and Scale.
165static cl::opt<bool> FilterSameScaledReg(
166    "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
167    cl::desc("Narrow LSR search space by filtering non-optimal formulae"
168             " with the same ScaledReg and Scale"));
169
170static cl::opt<TTI::AddressingModeKind> PreferredAddresingMode(
171  "lsr-preferred-addressing-mode", cl::Hidden, cl::init(TTI::AMK_None),
172   cl::desc("A flag that overrides the target's preferred addressing mode."),
173   cl::values(clEnumValN(TTI::AMK_None,
174                         "none",
175                         "Don't prefer any addressing mode"),
176              clEnumValN(TTI::AMK_PreIndexed,
177                         "preindexed",
178                         "Prefer pre-indexed addressing mode"),
179              clEnumValN(TTI::AMK_PostIndexed,
180                         "postindexed",
181                         "Prefer post-indexed addressing mode")));
182
183static cl::opt<unsigned> ComplexityLimit(
184  "lsr-complexity-limit", cl::Hidden,
185  cl::init(std::numeric_limits<uint16_t>::max()),
186  cl::desc("LSR search space complexity limit"));
187
188static cl::opt<unsigned> SetupCostDepthLimit(
189    "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7),
190    cl::desc("The limit on recursion depth for LSRs setup cost"));
191
192static cl::opt<cl::boolOrDefault> AllowTerminatingConditionFoldingAfterLSR(
193    "lsr-term-fold", cl::Hidden,
194    cl::desc("Attempt to replace primary IV with other IV."));
195
196static cl::opt<bool> AllowDropSolutionIfLessProfitable(
197    "lsr-drop-solution", cl::Hidden, cl::init(false),
198    cl::desc("Attempt to drop solution if it is less profitable"));
199
200STATISTIC(NumTermFold,
201          "Number of terminating condition fold recognized and performed");
202
203#ifndef NDEBUG
204// Stress test IV chain generation.
205static cl::opt<bool> StressIVChain(
206  "stress-ivchain", cl::Hidden, cl::init(false),
207  cl::desc("Stress test LSR IV chains"));
208#else
209static bool StressIVChain = false;
210#endif
211
212namespace {
213
214struct MemAccessTy {
215  /// Used in situations where the accessed memory type is unknown.
216  static const unsigned UnknownAddressSpace =
217      std::numeric_limits<unsigned>::max();
218
219  Type *MemTy = nullptr;
220  unsigned AddrSpace = UnknownAddressSpace;
221
222  MemAccessTy() = default;
223  MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
224
225  bool operator==(MemAccessTy Other) const {
226    return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
227  }
228
229  bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
230
231  static MemAccessTy getUnknown(LLVMContext &Ctx,
232                                unsigned AS = UnknownAddressSpace) {
233    return MemAccessTy(Type::getVoidTy(Ctx), AS);
234  }
235
236  Type *getType() { return MemTy; }
237};
238
239/// This class holds data which is used to order reuse candidates.
240class RegSortData {
241public:
242  /// This represents the set of LSRUse indices which reference
243  /// a particular register.
244  SmallBitVector UsedByIndices;
245
246  void print(raw_ostream &OS) const;
247  void dump() const;
248};
249
250} // end anonymous namespace
251
252#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
253void RegSortData::print(raw_ostream &OS) const {
254  OS << "[NumUses=" << UsedByIndices.count() << ']';
255}
256
257LLVM_DUMP_METHOD void RegSortData::dump() const {
258  print(errs()); errs() << '\n';
259}
260#endif
261
262namespace {
263
264/// Map register candidates to information about how they are used.
265class RegUseTracker {
266  using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
267
268  RegUsesTy RegUsesMap;
269  SmallVector<const SCEV *, 16> RegSequence;
270
271public:
272  void countRegister(const SCEV *Reg, size_t LUIdx);
273  void dropRegister(const SCEV *Reg, size_t LUIdx);
274  void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
275
276  bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
277
278  const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
279
280  void clear();
281
282  using iterator = SmallVectorImpl<const SCEV *>::iterator;
283  using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
284
285  iterator begin() { return RegSequence.begin(); }
286  iterator end()   { return RegSequence.end(); }
287  const_iterator begin() const { return RegSequence.begin(); }
288  const_iterator end() const   { return RegSequence.end(); }
289};
290
291} // end anonymous namespace
292
293void
294RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
295  std::pair<RegUsesTy::iterator, bool> Pair =
296    RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
297  RegSortData &RSD = Pair.first->second;
298  if (Pair.second)
299    RegSequence.push_back(Reg);
300  RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
301  RSD.UsedByIndices.set(LUIdx);
302}
303
304void
305RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
306  RegUsesTy::iterator It = RegUsesMap.find(Reg);
307  assert(It != RegUsesMap.end());
308  RegSortData &RSD = It->second;
309  assert(RSD.UsedByIndices.size() > LUIdx);
310  RSD.UsedByIndices.reset(LUIdx);
311}
312
313void
314RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
315  assert(LUIdx <= LastLUIdx);
316
317  // Update RegUses. The data structure is not optimized for this purpose;
318  // we must iterate through it and update each of the bit vectors.
319  for (auto &Pair : RegUsesMap) {
320    SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
321    if (LUIdx < UsedByIndices.size())
322      UsedByIndices[LUIdx] =
323        LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
324    UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
325  }
326}
327
328bool
329RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
330  RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
331  if (I == RegUsesMap.end())
332    return false;
333  const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
334  int i = UsedByIndices.find_first();
335  if (i == -1) return false;
336  if ((size_t)i != LUIdx) return true;
337  return UsedByIndices.find_next(i) != -1;
338}
339
340const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
341  RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
342  assert(I != RegUsesMap.end() && "Unknown register!");
343  return I->second.UsedByIndices;
344}
345
346void RegUseTracker::clear() {
347  RegUsesMap.clear();
348  RegSequence.clear();
349}
350
351namespace {
352
353/// This class holds information that describes a formula for computing
354/// satisfying a use. It may include broken-out immediates and scaled registers.
355struct Formula {
356  /// Global base address used for complex addressing.
357  GlobalValue *BaseGV = nullptr;
358
359  /// Base offset for complex addressing.
360  int64_t BaseOffset = 0;
361
362  /// Whether any complex addressing has a base register.
363  bool HasBaseReg = false;
364
365  /// The scale of any complex addressing.
366  int64_t Scale = 0;
367
368  /// The list of "base" registers for this use. When this is non-empty. The
369  /// canonical representation of a formula is
370  /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
371  /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
372  /// 3. The reg containing recurrent expr related with currect loop in the
373  /// formula should be put in the ScaledReg.
374  /// #1 enforces that the scaled register is always used when at least two
375  /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
376  /// #2 enforces that 1 * reg is reg.
377  /// #3 ensures invariant regs with respect to current loop can be combined
378  /// together in LSR codegen.
379  /// This invariant can be temporarily broken while building a formula.
380  /// However, every formula inserted into the LSRInstance must be in canonical
381  /// form.
382  SmallVector<const SCEV *, 4> BaseRegs;
383
384  /// The 'scaled' register for this use. This should be non-null when Scale is
385  /// not zero.
386  const SCEV *ScaledReg = nullptr;
387
388  /// An additional constant offset which added near the use. This requires a
389  /// temporary register, but the offset itself can live in an add immediate
390  /// field rather than a register.
391  int64_t UnfoldedOffset = 0;
392
393  Formula() = default;
394
395  void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
396
397  bool isCanonical(const Loop &L) const;
398
399  void canonicalize(const Loop &L);
400
401  bool unscale();
402
403  bool hasZeroEnd() const;
404
405  size_t getNumRegs() const;
406  Type *getType() const;
407
408  void deleteBaseReg(const SCEV *&S);
409
410  bool referencesReg(const SCEV *S) const;
411  bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
412                                  const RegUseTracker &RegUses) const;
413
414  void print(raw_ostream &OS) const;
415  void dump() const;
416};
417
418} // end anonymous namespace
419
420/// Recursion helper for initialMatch.
421static void DoInitialMatch(const SCEV *S, Loop *L,
422                           SmallVectorImpl<const SCEV *> &Good,
423                           SmallVectorImpl<const SCEV *> &Bad,
424                           ScalarEvolution &SE) {
425  // Collect expressions which properly dominate the loop header.
426  if (SE.properlyDominates(S, L->getHeader())) {
427    Good.push_back(S);
428    return;
429  }
430
431  // Look at add operands.
432  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
433    for (const SCEV *S : Add->operands())
434      DoInitialMatch(S, L, Good, Bad, SE);
435    return;
436  }
437
438  // Look at addrec operands.
439  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
440    if (!AR->getStart()->isZero() && AR->isAffine()) {
441      DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
442      DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
443                                      AR->getStepRecurrence(SE),
444                                      // FIXME: AR->getNoWrapFlags()
445                                      AR->getLoop(), SCEV::FlagAnyWrap),
446                     L, Good, Bad, SE);
447      return;
448    }
449
450  // Handle a multiplication by -1 (negation) if it didn't fold.
451  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
452    if (Mul->getOperand(0)->isAllOnesValue()) {
453      SmallVector<const SCEV *, 4> Ops(drop_begin(Mul->operands()));
454      const SCEV *NewMul = SE.getMulExpr(Ops);
455
456      SmallVector<const SCEV *, 4> MyGood;
457      SmallVector<const SCEV *, 4> MyBad;
458      DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
459      const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
460        SE.getEffectiveSCEVType(NewMul->getType())));
461      for (const SCEV *S : MyGood)
462        Good.push_back(SE.getMulExpr(NegOne, S));
463      for (const SCEV *S : MyBad)
464        Bad.push_back(SE.getMulExpr(NegOne, S));
465      return;
466    }
467
468  // Ok, we can't do anything interesting. Just stuff the whole thing into a
469  // register and hope for the best.
470  Bad.push_back(S);
471}
472
473/// Incorporate loop-variant parts of S into this Formula, attempting to keep
474/// all loop-invariant and loop-computable values in a single base register.
475void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
476  SmallVector<const SCEV *, 4> Good;
477  SmallVector<const SCEV *, 4> Bad;
478  DoInitialMatch(S, L, Good, Bad, SE);
479  if (!Good.empty()) {
480    const SCEV *Sum = SE.getAddExpr(Good);
481    if (!Sum->isZero())
482      BaseRegs.push_back(Sum);
483    HasBaseReg = true;
484  }
485  if (!Bad.empty()) {
486    const SCEV *Sum = SE.getAddExpr(Bad);
487    if (!Sum->isZero())
488      BaseRegs.push_back(Sum);
489    HasBaseReg = true;
490  }
491  canonicalize(*L);
492}
493
494static bool containsAddRecDependentOnLoop(const SCEV *S, const Loop &L) {
495  return SCEVExprContains(S, [&L](const SCEV *S) {
496    return isa<SCEVAddRecExpr>(S) && (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
497  });
498}
499
500/// Check whether or not this formula satisfies the canonical
501/// representation.
502/// \see Formula::BaseRegs.
503bool Formula::isCanonical(const Loop &L) const {
504  if (!ScaledReg)
505    return BaseRegs.size() <= 1;
506
507  if (Scale != 1)
508    return true;
509
510  if (Scale == 1 && BaseRegs.empty())
511    return false;
512
513  if (containsAddRecDependentOnLoop(ScaledReg, L))
514    return true;
515
516  // If ScaledReg is not a recurrent expr, or it is but its loop is not current
517  // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
518  // loop, we want to swap the reg in BaseRegs with ScaledReg.
519  return none_of(BaseRegs, [&L](const SCEV *S) {
520    return containsAddRecDependentOnLoop(S, L);
521  });
522}
523
524/// Helper method to morph a formula into its canonical representation.
525/// \see Formula::BaseRegs.
526/// Every formula having more than one base register, must use the ScaledReg
527/// field. Otherwise, we would have to do special cases everywhere in LSR
528/// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
529/// On the other hand, 1*reg should be canonicalized into reg.
530void Formula::canonicalize(const Loop &L) {
531  if (isCanonical(L))
532    return;
533
534  if (BaseRegs.empty()) {
535    // No base reg? Use scale reg with scale = 1 as such.
536    assert(ScaledReg && "Expected 1*reg => reg");
537    assert(Scale == 1 && "Expected 1*reg => reg");
538    BaseRegs.push_back(ScaledReg);
539    Scale = 0;
540    ScaledReg = nullptr;
541    return;
542  }
543
544  // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
545  if (!ScaledReg) {
546    ScaledReg = BaseRegs.pop_back_val();
547    Scale = 1;
548  }
549
550  // If ScaledReg is an invariant with respect to L, find the reg from
551  // BaseRegs containing the recurrent expr related with Loop L. Swap the
552  // reg with ScaledReg.
553  if (!containsAddRecDependentOnLoop(ScaledReg, L)) {
554    auto I = find_if(BaseRegs, [&L](const SCEV *S) {
555      return containsAddRecDependentOnLoop(S, L);
556    });
557    if (I != BaseRegs.end())
558      std::swap(ScaledReg, *I);
559  }
560  assert(isCanonical(L) && "Failed to canonicalize?");
561}
562
563/// Get rid of the scale in the formula.
564/// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
565/// \return true if it was possible to get rid of the scale, false otherwise.
566/// \note After this operation the formula may not be in the canonical form.
567bool Formula::unscale() {
568  if (Scale != 1)
569    return false;
570  Scale = 0;
571  BaseRegs.push_back(ScaledReg);
572  ScaledReg = nullptr;
573  return true;
574}
575
576bool Formula::hasZeroEnd() const {
577  if (UnfoldedOffset || BaseOffset)
578    return false;
579  if (BaseRegs.size() != 1 || ScaledReg)
580    return false;
581  return true;
582}
583
584/// Return the total number of register operands used by this formula. This does
585/// not include register uses implied by non-constant addrec strides.
586size_t Formula::getNumRegs() const {
587  return !!ScaledReg + BaseRegs.size();
588}
589
590/// Return the type of this formula, if it has one, or null otherwise. This type
591/// is meaningless except for the bit size.
592Type *Formula::getType() const {
593  return !BaseRegs.empty() ? BaseRegs.front()->getType() :
594         ScaledReg ? ScaledReg->getType() :
595         BaseGV ? BaseGV->getType() :
596         nullptr;
597}
598
599/// Delete the given base reg from the BaseRegs list.
600void Formula::deleteBaseReg(const SCEV *&S) {
601  if (&S != &BaseRegs.back())
602    std::swap(S, BaseRegs.back());
603  BaseRegs.pop_back();
604}
605
606/// Test if this formula references the given register.
607bool Formula::referencesReg(const SCEV *S) const {
608  return S == ScaledReg || is_contained(BaseRegs, S);
609}
610
611/// Test whether this formula uses registers which are used by uses other than
612/// the use with the given index.
613bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
614                                         const RegUseTracker &RegUses) const {
615  if (ScaledReg)
616    if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
617      return true;
618  for (const SCEV *BaseReg : BaseRegs)
619    if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
620      return true;
621  return false;
622}
623
624#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
625void Formula::print(raw_ostream &OS) const {
626  bool First = true;
627  if (BaseGV) {
628    if (!First) OS << " + "; else First = false;
629    BaseGV->printAsOperand(OS, /*PrintType=*/false);
630  }
631  if (BaseOffset != 0) {
632    if (!First) OS << " + "; else First = false;
633    OS << BaseOffset;
634  }
635  for (const SCEV *BaseReg : BaseRegs) {
636    if (!First) OS << " + "; else First = false;
637    OS << "reg(" << *BaseReg << ')';
638  }
639  if (HasBaseReg && BaseRegs.empty()) {
640    if (!First) OS << " + "; else First = false;
641    OS << "**error: HasBaseReg**";
642  } else if (!HasBaseReg && !BaseRegs.empty()) {
643    if (!First) OS << " + "; else First = false;
644    OS << "**error: !HasBaseReg**";
645  }
646  if (Scale != 0) {
647    if (!First) OS << " + "; else First = false;
648    OS << Scale << "*reg(";
649    if (ScaledReg)
650      OS << *ScaledReg;
651    else
652      OS << "<unknown>";
653    OS << ')';
654  }
655  if (UnfoldedOffset != 0) {
656    if (!First) OS << " + ";
657    OS << "imm(" << UnfoldedOffset << ')';
658  }
659}
660
661LLVM_DUMP_METHOD void Formula::dump() const {
662  print(errs()); errs() << '\n';
663}
664#endif
665
666/// Return true if the given addrec can be sign-extended without changing its
667/// value.
668static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
669  Type *WideTy =
670    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
671  return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
672}
673
674/// Return true if the given add can be sign-extended without changing its
675/// value.
676static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
677  Type *WideTy =
678    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
679  return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
680}
681
682/// Return true if the given mul can be sign-extended without changing its
683/// value.
684static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
685  Type *WideTy =
686    IntegerType::get(SE.getContext(),
687                     SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
688  return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
689}
690
691/// Return an expression for LHS /s RHS, if it can be determined and if the
692/// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
693/// is true, expressions like (X * Y) /s Y are simplified to X, ignoring that
694/// the multiplication may overflow, which is useful when the result will be
695/// used in a context where the most significant bits are ignored.
696static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
697                                ScalarEvolution &SE,
698                                bool IgnoreSignificantBits = false) {
699  // Handle the trivial case, which works for any SCEV type.
700  if (LHS == RHS)
701    return SE.getConstant(LHS->getType(), 1);
702
703  // Handle a few RHS special cases.
704  const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
705  if (RC) {
706    const APInt &RA = RC->getAPInt();
707    // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
708    // some folding.
709    if (RA.isAllOnes()) {
710      if (LHS->getType()->isPointerTy())
711        return nullptr;
712      return SE.getMulExpr(LHS, RC);
713    }
714    // Handle x /s 1 as x.
715    if (RA == 1)
716      return LHS;
717  }
718
719  // Check for a division of a constant by a constant.
720  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
721    if (!RC)
722      return nullptr;
723    const APInt &LA = C->getAPInt();
724    const APInt &RA = RC->getAPInt();
725    if (LA.srem(RA) != 0)
726      return nullptr;
727    return SE.getConstant(LA.sdiv(RA));
728  }
729
730  // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
731  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
732    if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
733      const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
734                                      IgnoreSignificantBits);
735      if (!Step) return nullptr;
736      const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
737                                       IgnoreSignificantBits);
738      if (!Start) return nullptr;
739      // FlagNW is independent of the start value, step direction, and is
740      // preserved with smaller magnitude steps.
741      // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
742      return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
743    }
744    return nullptr;
745  }
746
747  // Distribute the sdiv over add operands, if the add doesn't overflow.
748  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
749    if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
750      SmallVector<const SCEV *, 8> Ops;
751      for (const SCEV *S : Add->operands()) {
752        const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
753        if (!Op) return nullptr;
754        Ops.push_back(Op);
755      }
756      return SE.getAddExpr(Ops);
757    }
758    return nullptr;
759  }
760
761  // Check for a multiply operand that we can pull RHS out of.
762  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
763    if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
764      // Handle special case C1*X*Y /s C2*X*Y.
765      if (const SCEVMulExpr *MulRHS = dyn_cast<SCEVMulExpr>(RHS)) {
766        if (IgnoreSignificantBits || isMulSExtable(MulRHS, SE)) {
767          const SCEVConstant *LC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
768          const SCEVConstant *RC =
769              dyn_cast<SCEVConstant>(MulRHS->getOperand(0));
770          if (LC && RC) {
771            SmallVector<const SCEV *, 4> LOps(drop_begin(Mul->operands()));
772            SmallVector<const SCEV *, 4> ROps(drop_begin(MulRHS->operands()));
773            if (LOps == ROps)
774              return getExactSDiv(LC, RC, SE, IgnoreSignificantBits);
775          }
776        }
777      }
778
779      SmallVector<const SCEV *, 4> Ops;
780      bool Found = false;
781      for (const SCEV *S : Mul->operands()) {
782        if (!Found)
783          if (const SCEV *Q = getExactSDiv(S, RHS, SE,
784                                           IgnoreSignificantBits)) {
785            S = Q;
786            Found = true;
787          }
788        Ops.push_back(S);
789      }
790      return Found ? SE.getMulExpr(Ops) : nullptr;
791    }
792    return nullptr;
793  }
794
795  // Otherwise we don't know.
796  return nullptr;
797}
798
799/// If S involves the addition of a constant integer value, return that integer
800/// value, and mutate S to point to a new SCEV with that value excluded.
801static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
802  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
803    if (C->getAPInt().getSignificantBits() <= 64) {
804      S = SE.getConstant(C->getType(), 0);
805      return C->getValue()->getSExtValue();
806    }
807  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
808    SmallVector<const SCEV *, 8> NewOps(Add->operands());
809    int64_t Result = ExtractImmediate(NewOps.front(), SE);
810    if (Result != 0)
811      S = SE.getAddExpr(NewOps);
812    return Result;
813  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
814    SmallVector<const SCEV *, 8> NewOps(AR->operands());
815    int64_t Result = ExtractImmediate(NewOps.front(), SE);
816    if (Result != 0)
817      S = SE.getAddRecExpr(NewOps, AR->getLoop(),
818                           // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
819                           SCEV::FlagAnyWrap);
820    return Result;
821  }
822  return 0;
823}
824
825/// If S involves the addition of a GlobalValue address, return that symbol, and
826/// mutate S to point to a new SCEV with that value excluded.
827static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
828  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
829    if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
830      S = SE.getConstant(GV->getType(), 0);
831      return GV;
832    }
833  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
834    SmallVector<const SCEV *, 8> NewOps(Add->operands());
835    GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
836    if (Result)
837      S = SE.getAddExpr(NewOps);
838    return Result;
839  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
840    SmallVector<const SCEV *, 8> NewOps(AR->operands());
841    GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
842    if (Result)
843      S = SE.getAddRecExpr(NewOps, AR->getLoop(),
844                           // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
845                           SCEV::FlagAnyWrap);
846    return Result;
847  }
848  return nullptr;
849}
850
851/// Returns true if the specified instruction is using the specified value as an
852/// address.
853static bool isAddressUse(const TargetTransformInfo &TTI,
854                         Instruction *Inst, Value *OperandVal) {
855  bool isAddress = isa<LoadInst>(Inst);
856  if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
857    if (SI->getPointerOperand() == OperandVal)
858      isAddress = true;
859  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
860    // Addressing modes can also be folded into prefetches and a variety
861    // of intrinsics.
862    switch (II->getIntrinsicID()) {
863    case Intrinsic::memset:
864    case Intrinsic::prefetch:
865    case Intrinsic::masked_load:
866      if (II->getArgOperand(0) == OperandVal)
867        isAddress = true;
868      break;
869    case Intrinsic::masked_store:
870      if (II->getArgOperand(1) == OperandVal)
871        isAddress = true;
872      break;
873    case Intrinsic::memmove:
874    case Intrinsic::memcpy:
875      if (II->getArgOperand(0) == OperandVal ||
876          II->getArgOperand(1) == OperandVal)
877        isAddress = true;
878      break;
879    default: {
880      MemIntrinsicInfo IntrInfo;
881      if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
882        if (IntrInfo.PtrVal == OperandVal)
883          isAddress = true;
884      }
885    }
886    }
887  } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
888    if (RMW->getPointerOperand() == OperandVal)
889      isAddress = true;
890  } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
891    if (CmpX->getPointerOperand() == OperandVal)
892      isAddress = true;
893  }
894  return isAddress;
895}
896
897/// Return the type of the memory being accessed.
898static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
899                                 Instruction *Inst, Value *OperandVal) {
900  MemAccessTy AccessTy = MemAccessTy::getUnknown(Inst->getContext());
901
902  // First get the type of memory being accessed.
903  if (Type *Ty = Inst->getAccessType())
904    AccessTy.MemTy = Ty;
905
906  // Then get the pointer address space.
907  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
908    AccessTy.AddrSpace = SI->getPointerAddressSpace();
909  } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
910    AccessTy.AddrSpace = LI->getPointerAddressSpace();
911  } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
912    AccessTy.AddrSpace = RMW->getPointerAddressSpace();
913  } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
914    AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
915  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
916    switch (II->getIntrinsicID()) {
917    case Intrinsic::prefetch:
918    case Intrinsic::memset:
919      AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
920      AccessTy.MemTy = OperandVal->getType();
921      break;
922    case Intrinsic::memmove:
923    case Intrinsic::memcpy:
924      AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace();
925      AccessTy.MemTy = OperandVal->getType();
926      break;
927    case Intrinsic::masked_load:
928      AccessTy.AddrSpace =
929          II->getArgOperand(0)->getType()->getPointerAddressSpace();
930      break;
931    case Intrinsic::masked_store:
932      AccessTy.AddrSpace =
933          II->getArgOperand(1)->getType()->getPointerAddressSpace();
934      break;
935    default: {
936      MemIntrinsicInfo IntrInfo;
937      if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
938        AccessTy.AddrSpace
939          = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
940      }
941
942      break;
943    }
944    }
945  }
946
947  return AccessTy;
948}
949
950/// Return true if this AddRec is already a phi in its loop.
951static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
952  for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
953    if (SE.isSCEVable(PN.getType()) &&
954        (SE.getEffectiveSCEVType(PN.getType()) ==
955         SE.getEffectiveSCEVType(AR->getType())) &&
956        SE.getSCEV(&PN) == AR)
957      return true;
958  }
959  return false;
960}
961
962/// Check if expanding this expression is likely to incur significant cost. This
963/// is tricky because SCEV doesn't track which expressions are actually computed
964/// by the current IR.
965///
966/// We currently allow expansion of IV increments that involve adds,
967/// multiplication by constants, and AddRecs from existing phis.
968///
969/// TODO: Allow UDivExpr if we can find an existing IV increment that is an
970/// obvious multiple of the UDivExpr.
971static bool isHighCostExpansion(const SCEV *S,
972                                SmallPtrSetImpl<const SCEV*> &Processed,
973                                ScalarEvolution &SE) {
974  // Zero/One operand expressions
975  switch (S->getSCEVType()) {
976  case scUnknown:
977  case scConstant:
978  case scVScale:
979    return false;
980  case scTruncate:
981    return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
982                               Processed, SE);
983  case scZeroExtend:
984    return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
985                               Processed, SE);
986  case scSignExtend:
987    return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
988                               Processed, SE);
989  default:
990    break;
991  }
992
993  if (!Processed.insert(S).second)
994    return false;
995
996  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
997    for (const SCEV *S : Add->operands()) {
998      if (isHighCostExpansion(S, Processed, SE))
999        return true;
1000    }
1001    return false;
1002  }
1003
1004  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
1005    if (Mul->getNumOperands() == 2) {
1006      // Multiplication by a constant is ok
1007      if (isa<SCEVConstant>(Mul->getOperand(0)))
1008        return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
1009
1010      // If we have the value of one operand, check if an existing
1011      // multiplication already generates this expression.
1012      if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
1013        Value *UVal = U->getValue();
1014        for (User *UR : UVal->users()) {
1015          // If U is a constant, it may be used by a ConstantExpr.
1016          Instruction *UI = dyn_cast<Instruction>(UR);
1017          if (UI && UI->getOpcode() == Instruction::Mul &&
1018              SE.isSCEVable(UI->getType())) {
1019            return SE.getSCEV(UI) == Mul;
1020          }
1021        }
1022      }
1023    }
1024  }
1025
1026  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
1027    if (isExistingPhi(AR, SE))
1028      return false;
1029  }
1030
1031  // Fow now, consider any other type of expression (div/mul/min/max) high cost.
1032  return true;
1033}
1034
1035namespace {
1036
1037class LSRUse;
1038
1039} // end anonymous namespace
1040
1041/// Check if the addressing mode defined by \p F is completely
1042/// folded in \p LU at isel time.
1043/// This includes address-mode folding and special icmp tricks.
1044/// This function returns true if \p LU can accommodate what \p F
1045/// defines and up to 1 base + 1 scaled + offset.
1046/// In other words, if \p F has several base registers, this function may
1047/// still return true. Therefore, users still need to account for
1048/// additional base registers and/or unfolded offsets to derive an
1049/// accurate cost model.
1050static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1051                                 const LSRUse &LU, const Formula &F);
1052
1053// Get the cost of the scaling factor used in F for LU.
1054static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI,
1055                                            const LSRUse &LU, const Formula &F,
1056                                            const Loop &L);
1057
1058namespace {
1059
1060/// This class is used to measure and compare candidate formulae.
1061class Cost {
1062  const Loop *L = nullptr;
1063  ScalarEvolution *SE = nullptr;
1064  const TargetTransformInfo *TTI = nullptr;
1065  TargetTransformInfo::LSRCost C;
1066  TTI::AddressingModeKind AMK = TTI::AMK_None;
1067
1068public:
1069  Cost() = delete;
1070  Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
1071       TTI::AddressingModeKind AMK) :
1072    L(L), SE(&SE), TTI(&TTI), AMK(AMK) {
1073    C.Insns = 0;
1074    C.NumRegs = 0;
1075    C.AddRecCost = 0;
1076    C.NumIVMuls = 0;
1077    C.NumBaseAdds = 0;
1078    C.ImmCost = 0;
1079    C.SetupCost = 0;
1080    C.ScaleCost = 0;
1081  }
1082
1083  bool isLess(const Cost &Other) const;
1084
1085  void Lose();
1086
1087#ifndef NDEBUG
1088  // Once any of the metrics loses, they must all remain losers.
1089  bool isValid() {
1090    return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1091             | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1092      || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1093           & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1094  }
1095#endif
1096
1097  bool isLoser() {
1098    assert(isValid() && "invalid cost");
1099    return C.NumRegs == ~0u;
1100  }
1101
1102  void RateFormula(const Formula &F,
1103                   SmallPtrSetImpl<const SCEV *> &Regs,
1104                   const DenseSet<const SCEV *> &VisitedRegs,
1105                   const LSRUse &LU,
1106                   SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1107
1108  void print(raw_ostream &OS) const;
1109  void dump() const;
1110
1111private:
1112  void RateRegister(const Formula &F, const SCEV *Reg,
1113                    SmallPtrSetImpl<const SCEV *> &Regs);
1114  void RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1115                           SmallPtrSetImpl<const SCEV *> &Regs,
1116                           SmallPtrSetImpl<const SCEV *> *LoserRegs);
1117};
1118
1119/// An operand value in an instruction which is to be replaced with some
1120/// equivalent, possibly strength-reduced, replacement.
1121struct LSRFixup {
1122  /// The instruction which will be updated.
1123  Instruction *UserInst = nullptr;
1124
1125  /// The operand of the instruction which will be replaced. The operand may be
1126  /// used more than once; every instance will be replaced.
1127  Value *OperandValToReplace = nullptr;
1128
1129  /// If this user is to use the post-incremented value of an induction
1130  /// variable, this set is non-empty and holds the loops associated with the
1131  /// induction variable.
1132  PostIncLoopSet PostIncLoops;
1133
1134  /// A constant offset to be added to the LSRUse expression.  This allows
1135  /// multiple fixups to share the same LSRUse with different offsets, for
1136  /// example in an unrolled loop.
1137  int64_t Offset = 0;
1138
1139  LSRFixup() = default;
1140
1141  bool isUseFullyOutsideLoop(const Loop *L) const;
1142
1143  void print(raw_ostream &OS) const;
1144  void dump() const;
1145};
1146
1147/// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1148/// SmallVectors of const SCEV*.
1149struct UniquifierDenseMapInfo {
1150  static SmallVector<const SCEV *, 4> getEmptyKey() {
1151    SmallVector<const SCEV *, 4>  V;
1152    V.push_back(reinterpret_cast<const SCEV *>(-1));
1153    return V;
1154  }
1155
1156  static SmallVector<const SCEV *, 4> getTombstoneKey() {
1157    SmallVector<const SCEV *, 4> V;
1158    V.push_back(reinterpret_cast<const SCEV *>(-2));
1159    return V;
1160  }
1161
1162  static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1163    return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1164  }
1165
1166  static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1167                      const SmallVector<const SCEV *, 4> &RHS) {
1168    return LHS == RHS;
1169  }
1170};
1171
1172/// This class holds the state that LSR keeps for each use in IVUsers, as well
1173/// as uses invented by LSR itself. It includes information about what kinds of
1174/// things can be folded into the user, information about the user itself, and
1175/// information about how the use may be satisfied.  TODO: Represent multiple
1176/// users of the same expression in common?
1177class LSRUse {
1178  DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1179
1180public:
1181  /// An enum for a kind of use, indicating what types of scaled and immediate
1182  /// operands it might support.
1183  enum KindType {
1184    Basic,   ///< A normal use, with no folding.
1185    Special, ///< A special case of basic, allowing -1 scales.
1186    Address, ///< An address use; folding according to TargetLowering
1187    ICmpZero ///< An equality icmp with both operands folded into one.
1188    // TODO: Add a generic icmp too?
1189  };
1190
1191  using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1192
1193  KindType Kind;
1194  MemAccessTy AccessTy;
1195
1196  /// The list of operands which are to be replaced.
1197  SmallVector<LSRFixup, 8> Fixups;
1198
1199  /// Keep track of the min and max offsets of the fixups.
1200  int64_t MinOffset = std::numeric_limits<int64_t>::max();
1201  int64_t MaxOffset = std::numeric_limits<int64_t>::min();
1202
1203  /// This records whether all of the fixups using this LSRUse are outside of
1204  /// the loop, in which case some special-case heuristics may be used.
1205  bool AllFixupsOutsideLoop = true;
1206
1207  /// RigidFormula is set to true to guarantee that this use will be associated
1208  /// with a single formula--the one that initially matched. Some SCEV
1209  /// expressions cannot be expanded. This allows LSR to consider the registers
1210  /// used by those expressions without the need to expand them later after
1211  /// changing the formula.
1212  bool RigidFormula = false;
1213
1214  /// This records the widest use type for any fixup using this
1215  /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1216  /// fixup widths to be equivalent, because the narrower one may be relying on
1217  /// the implicit truncation to truncate away bogus bits.
1218  Type *WidestFixupType = nullptr;
1219
1220  /// A list of ways to build a value that can satisfy this user.  After the
1221  /// list is populated, one of these is selected heuristically and used to
1222  /// formulate a replacement for OperandValToReplace in UserInst.
1223  SmallVector<Formula, 12> Formulae;
1224
1225  /// The set of register candidates used by all formulae in this LSRUse.
1226  SmallPtrSet<const SCEV *, 4> Regs;
1227
1228  LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1229
1230  LSRFixup &getNewFixup() {
1231    Fixups.push_back(LSRFixup());
1232    return Fixups.back();
1233  }
1234
1235  void pushFixup(LSRFixup &f) {
1236    Fixups.push_back(f);
1237    if (f.Offset > MaxOffset)
1238      MaxOffset = f.Offset;
1239    if (f.Offset < MinOffset)
1240      MinOffset = f.Offset;
1241  }
1242
1243  bool HasFormulaWithSameRegs(const Formula &F) const;
1244  float getNotSelectedProbability(const SCEV *Reg) const;
1245  bool InsertFormula(const Formula &F, const Loop &L);
1246  void DeleteFormula(Formula &F);
1247  void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1248
1249  void print(raw_ostream &OS) const;
1250  void dump() const;
1251};
1252
1253} // end anonymous namespace
1254
1255static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1256                                 LSRUse::KindType Kind, MemAccessTy AccessTy,
1257                                 GlobalValue *BaseGV, int64_t BaseOffset,
1258                                 bool HasBaseReg, int64_t Scale,
1259                                 Instruction *Fixup = nullptr);
1260
1261static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) {
1262  if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg))
1263    return 1;
1264  if (Depth == 0)
1265    return 0;
1266  if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg))
1267    return getSetupCost(S->getStart(), Depth - 1);
1268  if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg))
1269    return getSetupCost(S->getOperand(), Depth - 1);
1270  if (auto S = dyn_cast<SCEVNAryExpr>(Reg))
1271    return std::accumulate(S->operands().begin(), S->operands().end(), 0,
1272                           [&](unsigned i, const SCEV *Reg) {
1273                             return i + getSetupCost(Reg, Depth - 1);
1274                           });
1275  if (auto S = dyn_cast<SCEVUDivExpr>(Reg))
1276    return getSetupCost(S->getLHS(), Depth - 1) +
1277           getSetupCost(S->getRHS(), Depth - 1);
1278  return 0;
1279}
1280
1281/// Tally up interesting quantities from the given register.
1282void Cost::RateRegister(const Formula &F, const SCEV *Reg,
1283                        SmallPtrSetImpl<const SCEV *> &Regs) {
1284  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1285    // If this is an addrec for another loop, it should be an invariant
1286    // with respect to L since L is the innermost loop (at least
1287    // for now LSR only handles innermost loops).
1288    if (AR->getLoop() != L) {
1289      // If the AddRec exists, consider it's register free and leave it alone.
1290      if (isExistingPhi(AR, *SE) && AMK != TTI::AMK_PostIndexed)
1291        return;
1292
1293      // It is bad to allow LSR for current loop to add induction variables
1294      // for its sibling loops.
1295      if (!AR->getLoop()->contains(L)) {
1296        Lose();
1297        return;
1298      }
1299
1300      // Otherwise, it will be an invariant with respect to Loop L.
1301      ++C.NumRegs;
1302      return;
1303    }
1304
1305    unsigned LoopCost = 1;
1306    if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) ||
1307        TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) {
1308
1309      // If the step size matches the base offset, we could use pre-indexed
1310      // addressing.
1311      if (AMK == TTI::AMK_PreIndexed) {
1312        if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)))
1313          if (Step->getAPInt() == F.BaseOffset)
1314            LoopCost = 0;
1315      } else if (AMK == TTI::AMK_PostIndexed) {
1316        const SCEV *LoopStep = AR->getStepRecurrence(*SE);
1317        if (isa<SCEVConstant>(LoopStep)) {
1318          const SCEV *LoopStart = AR->getStart();
1319          if (!isa<SCEVConstant>(LoopStart) &&
1320              SE->isLoopInvariant(LoopStart, L))
1321            LoopCost = 0;
1322        }
1323      }
1324    }
1325    C.AddRecCost += LoopCost;
1326
1327    // Add the step value register, if it needs one.
1328    // TODO: The non-affine case isn't precisely modeled here.
1329    if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1330      if (!Regs.count(AR->getOperand(1))) {
1331        RateRegister(F, AR->getOperand(1), Regs);
1332        if (isLoser())
1333          return;
1334      }
1335    }
1336  }
1337  ++C.NumRegs;
1338
1339  // Rough heuristic; favor registers which don't require extra setup
1340  // instructions in the preheader.
1341  C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit);
1342  // Ensure we don't, even with the recusion limit, produce invalid costs.
1343  C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16);
1344
1345  C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1346               SE->hasComputableLoopEvolution(Reg, L);
1347}
1348
1349/// Record this register in the set. If we haven't seen it before, rate
1350/// it. Optional LoserRegs provides a way to declare any formula that refers to
1351/// one of those regs an instant loser.
1352void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1353                               SmallPtrSetImpl<const SCEV *> &Regs,
1354                               SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1355  if (LoserRegs && LoserRegs->count(Reg)) {
1356    Lose();
1357    return;
1358  }
1359  if (Regs.insert(Reg).second) {
1360    RateRegister(F, Reg, Regs);
1361    if (LoserRegs && isLoser())
1362      LoserRegs->insert(Reg);
1363  }
1364}
1365
1366void Cost::RateFormula(const Formula &F,
1367                       SmallPtrSetImpl<const SCEV *> &Regs,
1368                       const DenseSet<const SCEV *> &VisitedRegs,
1369                       const LSRUse &LU,
1370                       SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1371  if (isLoser())
1372    return;
1373  assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1374  // Tally up the registers.
1375  unsigned PrevAddRecCost = C.AddRecCost;
1376  unsigned PrevNumRegs = C.NumRegs;
1377  unsigned PrevNumBaseAdds = C.NumBaseAdds;
1378  if (const SCEV *ScaledReg = F.ScaledReg) {
1379    if (VisitedRegs.count(ScaledReg)) {
1380      Lose();
1381      return;
1382    }
1383    RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs);
1384    if (isLoser())
1385      return;
1386  }
1387  for (const SCEV *BaseReg : F.BaseRegs) {
1388    if (VisitedRegs.count(BaseReg)) {
1389      Lose();
1390      return;
1391    }
1392    RatePrimaryRegister(F, BaseReg, Regs, LoserRegs);
1393    if (isLoser())
1394      return;
1395  }
1396
1397  // Determine how many (unfolded) adds we'll need inside the loop.
1398  size_t NumBaseParts = F.getNumRegs();
1399  if (NumBaseParts > 1)
1400    // Do not count the base and a possible second register if the target
1401    // allows to fold 2 registers.
1402    C.NumBaseAdds +=
1403        NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F)));
1404  C.NumBaseAdds += (F.UnfoldedOffset != 0);
1405
1406  // Accumulate non-free scaling amounts.
1407  C.ScaleCost += *getScalingFactorCost(*TTI, LU, F, *L).getValue();
1408
1409  // Tally up the non-zero immediates.
1410  for (const LSRFixup &Fixup : LU.Fixups) {
1411    int64_t O = Fixup.Offset;
1412    int64_t Offset = (uint64_t)O + F.BaseOffset;
1413    if (F.BaseGV)
1414      C.ImmCost += 64; // Handle symbolic values conservatively.
1415                     // TODO: This should probably be the pointer size.
1416    else if (Offset != 0)
1417      C.ImmCost += APInt(64, Offset, true).getSignificantBits();
1418
1419    // Check with target if this offset with this instruction is
1420    // specifically not supported.
1421    if (LU.Kind == LSRUse::Address && Offset != 0 &&
1422        !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1423                              Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1424      C.NumBaseAdds++;
1425  }
1426
1427  // If we don't count instruction cost exit here.
1428  if (!InsnsCost) {
1429    assert(isValid() && "invalid cost");
1430    return;
1431  }
1432
1433  // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1434  // additional instruction (at least fill).
1435  // TODO: Need distinguish register class?
1436  unsigned TTIRegNum = TTI->getNumberOfRegisters(
1437                       TTI->getRegisterClassForType(false, F.getType())) - 1;
1438  if (C.NumRegs > TTIRegNum) {
1439    // Cost already exceeded TTIRegNum, then only newly added register can add
1440    // new instructions.
1441    if (PrevNumRegs > TTIRegNum)
1442      C.Insns += (C.NumRegs - PrevNumRegs);
1443    else
1444      C.Insns += (C.NumRegs - TTIRegNum);
1445  }
1446
1447  // If ICmpZero formula ends with not 0, it could not be replaced by
1448  // just add or sub. We'll need to compare final result of AddRec.
1449  // That means we'll need an additional instruction. But if the target can
1450  // macro-fuse a compare with a branch, don't count this extra instruction.
1451  // For -10 + {0, +, 1}:
1452  // i = i + 1;
1453  // cmp i, 10
1454  //
1455  // For {-10, +, 1}:
1456  // i = i + 1;
1457  if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() &&
1458      !TTI->canMacroFuseCmp())
1459    C.Insns++;
1460  // Each new AddRec adds 1 instruction to calculation.
1461  C.Insns += (C.AddRecCost - PrevAddRecCost);
1462
1463  // BaseAdds adds instructions for unfolded registers.
1464  if (LU.Kind != LSRUse::ICmpZero)
1465    C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1466  assert(isValid() && "invalid cost");
1467}
1468
1469/// Set this cost to a losing value.
1470void Cost::Lose() {
1471  C.Insns = std::numeric_limits<unsigned>::max();
1472  C.NumRegs = std::numeric_limits<unsigned>::max();
1473  C.AddRecCost = std::numeric_limits<unsigned>::max();
1474  C.NumIVMuls = std::numeric_limits<unsigned>::max();
1475  C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1476  C.ImmCost = std::numeric_limits<unsigned>::max();
1477  C.SetupCost = std::numeric_limits<unsigned>::max();
1478  C.ScaleCost = std::numeric_limits<unsigned>::max();
1479}
1480
1481/// Choose the lower cost.
1482bool Cost::isLess(const Cost &Other) const {
1483  if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1484      C.Insns != Other.C.Insns)
1485    return C.Insns < Other.C.Insns;
1486  return TTI->isLSRCostLess(C, Other.C);
1487}
1488
1489#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1490void Cost::print(raw_ostream &OS) const {
1491  if (InsnsCost)
1492    OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1493  OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1494  if (C.AddRecCost != 0)
1495    OS << ", with addrec cost " << C.AddRecCost;
1496  if (C.NumIVMuls != 0)
1497    OS << ", plus " << C.NumIVMuls << " IV mul"
1498       << (C.NumIVMuls == 1 ? "" : "s");
1499  if (C.NumBaseAdds != 0)
1500    OS << ", plus " << C.NumBaseAdds << " base add"
1501       << (C.NumBaseAdds == 1 ? "" : "s");
1502  if (C.ScaleCost != 0)
1503    OS << ", plus " << C.ScaleCost << " scale cost";
1504  if (C.ImmCost != 0)
1505    OS << ", plus " << C.ImmCost << " imm cost";
1506  if (C.SetupCost != 0)
1507    OS << ", plus " << C.SetupCost << " setup cost";
1508}
1509
1510LLVM_DUMP_METHOD void Cost::dump() const {
1511  print(errs()); errs() << '\n';
1512}
1513#endif
1514
1515/// Test whether this fixup always uses its value outside of the given loop.
1516bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1517  // PHI nodes use their value in their incoming blocks.
1518  if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1519    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1520      if (PN->getIncomingValue(i) == OperandValToReplace &&
1521          L->contains(PN->getIncomingBlock(i)))
1522        return false;
1523    return true;
1524  }
1525
1526  return !L->contains(UserInst);
1527}
1528
1529#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1530void LSRFixup::print(raw_ostream &OS) const {
1531  OS << "UserInst=";
1532  // Store is common and interesting enough to be worth special-casing.
1533  if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1534    OS << "store ";
1535    Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1536  } else if (UserInst->getType()->isVoidTy())
1537    OS << UserInst->getOpcodeName();
1538  else
1539    UserInst->printAsOperand(OS, /*PrintType=*/false);
1540
1541  OS << ", OperandValToReplace=";
1542  OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1543
1544  for (const Loop *PIL : PostIncLoops) {
1545    OS << ", PostIncLoop=";
1546    PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1547  }
1548
1549  if (Offset != 0)
1550    OS << ", Offset=" << Offset;
1551}
1552
1553LLVM_DUMP_METHOD void LSRFixup::dump() const {
1554  print(errs()); errs() << '\n';
1555}
1556#endif
1557
1558/// Test whether this use as a formula which has the same registers as the given
1559/// formula.
1560bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1561  SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1562  if (F.ScaledReg) Key.push_back(F.ScaledReg);
1563  // Unstable sort by host order ok, because this is only used for uniquifying.
1564  llvm::sort(Key);
1565  return Uniquifier.count(Key);
1566}
1567
1568/// The function returns a probability of selecting formula without Reg.
1569float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1570  unsigned FNum = 0;
1571  for (const Formula &F : Formulae)
1572    if (F.referencesReg(Reg))
1573      FNum++;
1574  return ((float)(Formulae.size() - FNum)) / Formulae.size();
1575}
1576
1577/// If the given formula has not yet been inserted, add it to the list, and
1578/// return true. Return false otherwise.  The formula must be in canonical form.
1579bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1580  assert(F.isCanonical(L) && "Invalid canonical representation");
1581
1582  if (!Formulae.empty() && RigidFormula)
1583    return false;
1584
1585  SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1586  if (F.ScaledReg) Key.push_back(F.ScaledReg);
1587  // Unstable sort by host order ok, because this is only used for uniquifying.
1588  llvm::sort(Key);
1589
1590  if (!Uniquifier.insert(Key).second)
1591    return false;
1592
1593  // Using a register to hold the value of 0 is not profitable.
1594  assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1595         "Zero allocated in a scaled register!");
1596#ifndef NDEBUG
1597  for (const SCEV *BaseReg : F.BaseRegs)
1598    assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1599#endif
1600
1601  // Add the formula to the list.
1602  Formulae.push_back(F);
1603
1604  // Record registers now being used by this use.
1605  Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1606  if (F.ScaledReg)
1607    Regs.insert(F.ScaledReg);
1608
1609  return true;
1610}
1611
1612/// Remove the given formula from this use's list.
1613void LSRUse::DeleteFormula(Formula &F) {
1614  if (&F != &Formulae.back())
1615    std::swap(F, Formulae.back());
1616  Formulae.pop_back();
1617}
1618
1619/// Recompute the Regs field, and update RegUses.
1620void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1621  // Now that we've filtered out some formulae, recompute the Regs set.
1622  SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1623  Regs.clear();
1624  for (const Formula &F : Formulae) {
1625    if (F.ScaledReg) Regs.insert(F.ScaledReg);
1626    Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1627  }
1628
1629  // Update the RegTracker.
1630  for (const SCEV *S : OldRegs)
1631    if (!Regs.count(S))
1632      RegUses.dropRegister(S, LUIdx);
1633}
1634
1635#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1636void LSRUse::print(raw_ostream &OS) const {
1637  OS << "LSR Use: Kind=";
1638  switch (Kind) {
1639  case Basic:    OS << "Basic"; break;
1640  case Special:  OS << "Special"; break;
1641  case ICmpZero: OS << "ICmpZero"; break;
1642  case Address:
1643    OS << "Address of ";
1644    if (AccessTy.MemTy->isPointerTy())
1645      OS << "pointer"; // the full pointer type could be really verbose
1646    else {
1647      OS << *AccessTy.MemTy;
1648    }
1649
1650    OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1651  }
1652
1653  OS << ", Offsets={";
1654  bool NeedComma = false;
1655  for (const LSRFixup &Fixup : Fixups) {
1656    if (NeedComma) OS << ',';
1657    OS << Fixup.Offset;
1658    NeedComma = true;
1659  }
1660  OS << '}';
1661
1662  if (AllFixupsOutsideLoop)
1663    OS << ", all-fixups-outside-loop";
1664
1665  if (WidestFixupType)
1666    OS << ", widest fixup type: " << *WidestFixupType;
1667}
1668
1669LLVM_DUMP_METHOD void LSRUse::dump() const {
1670  print(errs()); errs() << '\n';
1671}
1672#endif
1673
1674static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1675                                 LSRUse::KindType Kind, MemAccessTy AccessTy,
1676                                 GlobalValue *BaseGV, int64_t BaseOffset,
1677                                 bool HasBaseReg, int64_t Scale,
1678                                 Instruction *Fixup/*= nullptr*/) {
1679  switch (Kind) {
1680  case LSRUse::Address:
1681    return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1682                                     HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1683
1684  case LSRUse::ICmpZero:
1685    // There's not even a target hook for querying whether it would be legal to
1686    // fold a GV into an ICmp.
1687    if (BaseGV)
1688      return false;
1689
1690    // ICmp only has two operands; don't allow more than two non-trivial parts.
1691    if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1692      return false;
1693
1694    // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1695    // putting the scaled register in the other operand of the icmp.
1696    if (Scale != 0 && Scale != -1)
1697      return false;
1698
1699    // If we have low-level target information, ask the target if it can fold an
1700    // integer immediate on an icmp.
1701    if (BaseOffset != 0) {
1702      // We have one of:
1703      // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1704      // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1705      // Offs is the ICmp immediate.
1706      if (Scale == 0)
1707        // The cast does the right thing with
1708        // std::numeric_limits<int64_t>::min().
1709        BaseOffset = -(uint64_t)BaseOffset;
1710      return TTI.isLegalICmpImmediate(BaseOffset);
1711    }
1712
1713    // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1714    return true;
1715
1716  case LSRUse::Basic:
1717    // Only handle single-register values.
1718    return !BaseGV && Scale == 0 && BaseOffset == 0;
1719
1720  case LSRUse::Special:
1721    // Special case Basic to handle -1 scales.
1722    return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1723  }
1724
1725  llvm_unreachable("Invalid LSRUse Kind!");
1726}
1727
1728static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1729                                 int64_t MinOffset, int64_t MaxOffset,
1730                                 LSRUse::KindType Kind, MemAccessTy AccessTy,
1731                                 GlobalValue *BaseGV, int64_t BaseOffset,
1732                                 bool HasBaseReg, int64_t Scale) {
1733  // Check for overflow.
1734  if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1735      (MinOffset > 0))
1736    return false;
1737  MinOffset = (uint64_t)BaseOffset + MinOffset;
1738  if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1739      (MaxOffset > 0))
1740    return false;
1741  MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1742
1743  return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1744                              HasBaseReg, Scale) &&
1745         isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1746                              HasBaseReg, Scale);
1747}
1748
1749static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1750                                 int64_t MinOffset, int64_t MaxOffset,
1751                                 LSRUse::KindType Kind, MemAccessTy AccessTy,
1752                                 const Formula &F, const Loop &L) {
1753  // For the purpose of isAMCompletelyFolded either having a canonical formula
1754  // or a scale not equal to zero is correct.
1755  // Problems may arise from non canonical formulae having a scale == 0.
1756  // Strictly speaking it would best to just rely on canonical formulae.
1757  // However, when we generate the scaled formulae, we first check that the
1758  // scaling factor is profitable before computing the actual ScaledReg for
1759  // compile time sake.
1760  assert((F.isCanonical(L) || F.Scale != 0));
1761  return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1762                              F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1763}
1764
1765/// Test whether we know how to expand the current formula.
1766static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1767                       int64_t MaxOffset, LSRUse::KindType Kind,
1768                       MemAccessTy AccessTy, GlobalValue *BaseGV,
1769                       int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1770  // We know how to expand completely foldable formulae.
1771  return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1772                              BaseOffset, HasBaseReg, Scale) ||
1773         // Or formulae that use a base register produced by a sum of base
1774         // registers.
1775         (Scale == 1 &&
1776          isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1777                               BaseGV, BaseOffset, true, 0));
1778}
1779
1780static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1781                       int64_t MaxOffset, LSRUse::KindType Kind,
1782                       MemAccessTy AccessTy, const Formula &F) {
1783  return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1784                    F.BaseOffset, F.HasBaseReg, F.Scale);
1785}
1786
1787static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1788                                 const LSRUse &LU, const Formula &F) {
1789  // Target may want to look at the user instructions.
1790  if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1791    for (const LSRFixup &Fixup : LU.Fixups)
1792      if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1793                                (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1794                                F.Scale, Fixup.UserInst))
1795        return false;
1796    return true;
1797  }
1798
1799  return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1800                              LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1801                              F.Scale);
1802}
1803
1804static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI,
1805                                            const LSRUse &LU, const Formula &F,
1806                                            const Loop &L) {
1807  if (!F.Scale)
1808    return 0;
1809
1810  // If the use is not completely folded in that instruction, we will have to
1811  // pay an extra cost only for scale != 1.
1812  if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1813                            LU.AccessTy, F, L))
1814    return F.Scale != 1;
1815
1816  switch (LU.Kind) {
1817  case LSRUse::Address: {
1818    // Check the scaling factor cost with both the min and max offsets.
1819    InstructionCost ScaleCostMinOffset = TTI.getScalingFactorCost(
1820        LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1821        F.Scale, LU.AccessTy.AddrSpace);
1822    InstructionCost ScaleCostMaxOffset = TTI.getScalingFactorCost(
1823        LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1824        F.Scale, LU.AccessTy.AddrSpace);
1825
1826    assert(ScaleCostMinOffset.isValid() && ScaleCostMaxOffset.isValid() &&
1827           "Legal addressing mode has an illegal cost!");
1828    return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1829  }
1830  case LSRUse::ICmpZero:
1831  case LSRUse::Basic:
1832  case LSRUse::Special:
1833    // The use is completely folded, i.e., everything is folded into the
1834    // instruction.
1835    return 0;
1836  }
1837
1838  llvm_unreachable("Invalid LSRUse Kind!");
1839}
1840
1841static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1842                             LSRUse::KindType Kind, MemAccessTy AccessTy,
1843                             GlobalValue *BaseGV, int64_t BaseOffset,
1844                             bool HasBaseReg) {
1845  // Fast-path: zero is always foldable.
1846  if (BaseOffset == 0 && !BaseGV) return true;
1847
1848  // Conservatively, create an address with an immediate and a
1849  // base and a scale.
1850  int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1851
1852  // Canonicalize a scale of 1 to a base register if the formula doesn't
1853  // already have a base register.
1854  if (!HasBaseReg && Scale == 1) {
1855    Scale = 0;
1856    HasBaseReg = true;
1857  }
1858
1859  return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1860                              HasBaseReg, Scale);
1861}
1862
1863static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1864                             ScalarEvolution &SE, int64_t MinOffset,
1865                             int64_t MaxOffset, LSRUse::KindType Kind,
1866                             MemAccessTy AccessTy, const SCEV *S,
1867                             bool HasBaseReg) {
1868  // Fast-path: zero is always foldable.
1869  if (S->isZero()) return true;
1870
1871  // Conservatively, create an address with an immediate and a
1872  // base and a scale.
1873  int64_t BaseOffset = ExtractImmediate(S, SE);
1874  GlobalValue *BaseGV = ExtractSymbol(S, SE);
1875
1876  // If there's anything else involved, it's not foldable.
1877  if (!S->isZero()) return false;
1878
1879  // Fast-path: zero is always foldable.
1880  if (BaseOffset == 0 && !BaseGV) return true;
1881
1882  // Conservatively, create an address with an immediate and a
1883  // base and a scale.
1884  int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1885
1886  return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1887                              BaseOffset, HasBaseReg, Scale);
1888}
1889
1890namespace {
1891
1892/// An individual increment in a Chain of IV increments.  Relate an IV user to
1893/// an expression that computes the IV it uses from the IV used by the previous
1894/// link in the Chain.
1895///
1896/// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1897/// original IVOperand. The head of the chain's IVOperand is only valid during
1898/// chain collection, before LSR replaces IV users. During chain generation,
1899/// IncExpr can be used to find the new IVOperand that computes the same
1900/// expression.
1901struct IVInc {
1902  Instruction *UserInst;
1903  Value* IVOperand;
1904  const SCEV *IncExpr;
1905
1906  IVInc(Instruction *U, Value *O, const SCEV *E)
1907      : UserInst(U), IVOperand(O), IncExpr(E) {}
1908};
1909
1910// The list of IV increments in program order.  We typically add the head of a
1911// chain without finding subsequent links.
1912struct IVChain {
1913  SmallVector<IVInc, 1> Incs;
1914  const SCEV *ExprBase = nullptr;
1915
1916  IVChain() = default;
1917  IVChain(const IVInc &Head, const SCEV *Base)
1918      : Incs(1, Head), ExprBase(Base) {}
1919
1920  using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
1921
1922  // Return the first increment in the chain.
1923  const_iterator begin() const {
1924    assert(!Incs.empty());
1925    return std::next(Incs.begin());
1926  }
1927  const_iterator end() const {
1928    return Incs.end();
1929  }
1930
1931  // Returns true if this chain contains any increments.
1932  bool hasIncs() const { return Incs.size() >= 2; }
1933
1934  // Add an IVInc to the end of this chain.
1935  void add(const IVInc &X) { Incs.push_back(X); }
1936
1937  // Returns the last UserInst in the chain.
1938  Instruction *tailUserInst() const { return Incs.back().UserInst; }
1939
1940  // Returns true if IncExpr can be profitably added to this chain.
1941  bool isProfitableIncrement(const SCEV *OperExpr,
1942                             const SCEV *IncExpr,
1943                             ScalarEvolution&);
1944};
1945
1946/// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1947/// between FarUsers that definitely cross IV increments and NearUsers that may
1948/// be used between IV increments.
1949struct ChainUsers {
1950  SmallPtrSet<Instruction*, 4> FarUsers;
1951  SmallPtrSet<Instruction*, 4> NearUsers;
1952};
1953
1954/// This class holds state for the main loop strength reduction logic.
1955class LSRInstance {
1956  IVUsers &IU;
1957  ScalarEvolution &SE;
1958  DominatorTree &DT;
1959  LoopInfo &LI;
1960  AssumptionCache &AC;
1961  TargetLibraryInfo &TLI;
1962  const TargetTransformInfo &TTI;
1963  Loop *const L;
1964  MemorySSAUpdater *MSSAU;
1965  TTI::AddressingModeKind AMK;
1966  mutable SCEVExpander Rewriter;
1967  bool Changed = false;
1968
1969  /// This is the insert position that the current loop's induction variable
1970  /// increment should be placed. In simple loops, this is the latch block's
1971  /// terminator. But in more complicated cases, this is a position which will
1972  /// dominate all the in-loop post-increment users.
1973  Instruction *IVIncInsertPos = nullptr;
1974
1975  /// Interesting factors between use strides.
1976  ///
1977  /// We explicitly use a SetVector which contains a SmallSet, instead of the
1978  /// default, a SmallDenseSet, because we need to use the full range of
1979  /// int64_ts, and there's currently no good way of doing that with
1980  /// SmallDenseSet.
1981  SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1982
1983  /// The cost of the current SCEV, the best solution by LSR will be dropped if
1984  /// the solution is not profitable.
1985  Cost BaselineCost;
1986
1987  /// Interesting use types, to facilitate truncation reuse.
1988  SmallSetVector<Type *, 4> Types;
1989
1990  /// The list of interesting uses.
1991  mutable SmallVector<LSRUse, 16> Uses;
1992
1993  /// Track which uses use which register candidates.
1994  RegUseTracker RegUses;
1995
1996  // Limit the number of chains to avoid quadratic behavior. We don't expect to
1997  // have more than a few IV increment chains in a loop. Missing a Chain falls
1998  // back to normal LSR behavior for those uses.
1999  static const unsigned MaxChains = 8;
2000
2001  /// IV users can form a chain of IV increments.
2002  SmallVector<IVChain, MaxChains> IVChainVec;
2003
2004  /// IV users that belong to profitable IVChains.
2005  SmallPtrSet<Use*, MaxChains> IVIncSet;
2006
2007  /// Induction variables that were generated and inserted by the SCEV Expander.
2008  SmallVector<llvm::WeakVH, 2> ScalarEvolutionIVs;
2009
2010  void OptimizeShadowIV();
2011  bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
2012  ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
2013  void OptimizeLoopTermCond();
2014
2015  void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2016                        SmallVectorImpl<ChainUsers> &ChainUsersVec);
2017  void FinalizeChain(IVChain &Chain);
2018  void CollectChains();
2019  void GenerateIVChain(const IVChain &Chain,
2020                       SmallVectorImpl<WeakTrackingVH> &DeadInsts);
2021
2022  void CollectInterestingTypesAndFactors();
2023  void CollectFixupsAndInitialFormulae();
2024
2025  // Support for sharing of LSRUses between LSRFixups.
2026  using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
2027  UseMapTy UseMap;
2028
2029  bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
2030                          LSRUse::KindType Kind, MemAccessTy AccessTy);
2031
2032  std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
2033                                    MemAccessTy AccessTy);
2034
2035  void DeleteUse(LSRUse &LU, size_t LUIdx);
2036
2037  LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
2038
2039  void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
2040  void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
2041  void CountRegisters(const Formula &F, size_t LUIdx);
2042  bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
2043
2044  void CollectLoopInvariantFixupsAndFormulae();
2045
2046  void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
2047                              unsigned Depth = 0);
2048
2049  void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
2050                                  const Formula &Base, unsigned Depth,
2051                                  size_t Idx, bool IsScaledReg = false);
2052  void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
2053  void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2054                                   const Formula &Base, size_t Idx,
2055                                   bool IsScaledReg = false);
2056  void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2057  void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2058                                   const Formula &Base,
2059                                   const SmallVectorImpl<int64_t> &Worklist,
2060                                   size_t Idx, bool IsScaledReg = false);
2061  void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2062  void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2063  void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2064  void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
2065  void GenerateCrossUseConstantOffsets();
2066  void GenerateAllReuseFormulae();
2067
2068  void FilterOutUndesirableDedicatedRegisters();
2069
2070  size_t EstimateSearchSpaceComplexity() const;
2071  void NarrowSearchSpaceByDetectingSupersets();
2072  void NarrowSearchSpaceByCollapsingUnrolledCode();
2073  void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
2074  void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
2075  void NarrowSearchSpaceByFilterPostInc();
2076  void NarrowSearchSpaceByDeletingCostlyFormulas();
2077  void NarrowSearchSpaceByPickingWinnerRegs();
2078  void NarrowSearchSpaceUsingHeuristics();
2079
2080  void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2081                    Cost &SolutionCost,
2082                    SmallVectorImpl<const Formula *> &Workspace,
2083                    const Cost &CurCost,
2084                    const SmallPtrSet<const SCEV *, 16> &CurRegs,
2085                    DenseSet<const SCEV *> &VisitedRegs) const;
2086  void Solve(SmallVectorImpl<const Formula *> &Solution) const;
2087
2088  BasicBlock::iterator
2089  HoistInsertPosition(BasicBlock::iterator IP,
2090                      const SmallVectorImpl<Instruction *> &Inputs) const;
2091  BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP,
2092                                                     const LSRFixup &LF,
2093                                                     const LSRUse &LU) const;
2094
2095  Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2096                BasicBlock::iterator IP,
2097                SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2098  void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
2099                     const Formula &F,
2100                     SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2101  void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2102               SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2103  void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
2104
2105public:
2106  LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
2107              LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC,
2108              TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU);
2109
2110  bool getChanged() const { return Changed; }
2111  const SmallVectorImpl<WeakVH> &getScalarEvolutionIVs() const {
2112    return ScalarEvolutionIVs;
2113  }
2114
2115  void print_factors_and_types(raw_ostream &OS) const;
2116  void print_fixups(raw_ostream &OS) const;
2117  void print_uses(raw_ostream &OS) const;
2118  void print(raw_ostream &OS) const;
2119  void dump() const;
2120};
2121
2122} // end anonymous namespace
2123
2124/// If IV is used in a int-to-float cast inside the loop then try to eliminate
2125/// the cast operation.
2126void LSRInstance::OptimizeShadowIV() {
2127  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2128  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2129    return;
2130
2131  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2132       UI != E; /* empty */) {
2133    IVUsers::const_iterator CandidateUI = UI;
2134    ++UI;
2135    Instruction *ShadowUse = CandidateUI->getUser();
2136    Type *DestTy = nullptr;
2137    bool IsSigned = false;
2138
2139    /* If shadow use is a int->float cast then insert a second IV
2140       to eliminate this cast.
2141
2142         for (unsigned i = 0; i < n; ++i)
2143           foo((double)i);
2144
2145       is transformed into
2146
2147         double d = 0.0;
2148         for (unsigned i = 0; i < n; ++i, ++d)
2149           foo(d);
2150    */
2151    if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2152      IsSigned = false;
2153      DestTy = UCast->getDestTy();
2154    }
2155    else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2156      IsSigned = true;
2157      DestTy = SCast->getDestTy();
2158    }
2159    if (!DestTy) continue;
2160
2161    // If target does not support DestTy natively then do not apply
2162    // this transformation.
2163    if (!TTI.isTypeLegal(DestTy)) continue;
2164
2165    PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2166    if (!PH) continue;
2167    if (PH->getNumIncomingValues() != 2) continue;
2168
2169    // If the calculation in integers overflows, the result in FP type will
2170    // differ. So we only can do this transformation if we are guaranteed to not
2171    // deal with overflowing values
2172    const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2173    if (!AR) continue;
2174    if (IsSigned && !AR->hasNoSignedWrap()) continue;
2175    if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2176
2177    Type *SrcTy = PH->getType();
2178    int Mantissa = DestTy->getFPMantissaWidth();
2179    if (Mantissa == -1) continue;
2180    if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2181      continue;
2182
2183    unsigned Entry, Latch;
2184    if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2185      Entry = 0;
2186      Latch = 1;
2187    } else {
2188      Entry = 1;
2189      Latch = 0;
2190    }
2191
2192    ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2193    if (!Init) continue;
2194    Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2195                                        (double)Init->getSExtValue() :
2196                                        (double)Init->getZExtValue());
2197
2198    BinaryOperator *Incr =
2199      dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2200    if (!Incr) continue;
2201    if (Incr->getOpcode() != Instruction::Add
2202        && Incr->getOpcode() != Instruction::Sub)
2203      continue;
2204
2205    /* Initialize new IV, double d = 0.0 in above example. */
2206    ConstantInt *C = nullptr;
2207    if (Incr->getOperand(0) == PH)
2208      C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2209    else if (Incr->getOperand(1) == PH)
2210      C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2211    else
2212      continue;
2213
2214    if (!C) continue;
2215
2216    // Ignore negative constants, as the code below doesn't handle them
2217    // correctly. TODO: Remove this restriction.
2218    if (!C->getValue().isStrictlyPositive()) continue;
2219
2220    /* Add new PHINode. */
2221    PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2222
2223    /* create new increment. '++d' in above example. */
2224    Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2225    BinaryOperator *NewIncr =
2226      BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2227                               Instruction::FAdd : Instruction::FSub,
2228                             NewPH, CFP, "IV.S.next.", Incr);
2229
2230    NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2231    NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2232
2233    /* Remove cast operation */
2234    ShadowUse->replaceAllUsesWith(NewPH);
2235    ShadowUse->eraseFromParent();
2236    Changed = true;
2237    break;
2238  }
2239}
2240
2241/// If Cond has an operand that is an expression of an IV, set the IV user and
2242/// stride information and return true, otherwise return false.
2243bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2244  for (IVStrideUse &U : IU)
2245    if (U.getUser() == Cond) {
2246      // NOTE: we could handle setcc instructions with multiple uses here, but
2247      // InstCombine does it as well for simple uses, it's not clear that it
2248      // occurs enough in real life to handle.
2249      CondUse = &U;
2250      return true;
2251    }
2252  return false;
2253}
2254
2255/// Rewrite the loop's terminating condition if it uses a max computation.
2256///
2257/// This is a narrow solution to a specific, but acute, problem. For loops
2258/// like this:
2259///
2260///   i = 0;
2261///   do {
2262///     p[i] = 0.0;
2263///   } while (++i < n);
2264///
2265/// the trip count isn't just 'n', because 'n' might not be positive. And
2266/// unfortunately this can come up even for loops where the user didn't use
2267/// a C do-while loop. For example, seemingly well-behaved top-test loops
2268/// will commonly be lowered like this:
2269///
2270///   if (n > 0) {
2271///     i = 0;
2272///     do {
2273///       p[i] = 0.0;
2274///     } while (++i < n);
2275///   }
2276///
2277/// and then it's possible for subsequent optimization to obscure the if
2278/// test in such a way that indvars can't find it.
2279///
2280/// When indvars can't find the if test in loops like this, it creates a
2281/// max expression, which allows it to give the loop a canonical
2282/// induction variable:
2283///
2284///   i = 0;
2285///   max = n < 1 ? 1 : n;
2286///   do {
2287///     p[i] = 0.0;
2288///   } while (++i != max);
2289///
2290/// Canonical induction variables are necessary because the loop passes
2291/// are designed around them. The most obvious example of this is the
2292/// LoopInfo analysis, which doesn't remember trip count values. It
2293/// expects to be able to rediscover the trip count each time it is
2294/// needed, and it does this using a simple analysis that only succeeds if
2295/// the loop has a canonical induction variable.
2296///
2297/// However, when it comes time to generate code, the maximum operation
2298/// can be quite costly, especially if it's inside of an outer loop.
2299///
2300/// This function solves this problem by detecting this type of loop and
2301/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2302/// the instructions for the maximum computation.
2303ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2304  // Check that the loop matches the pattern we're looking for.
2305  if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2306      Cond->getPredicate() != CmpInst::ICMP_NE)
2307    return Cond;
2308
2309  SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2310  if (!Sel || !Sel->hasOneUse()) return Cond;
2311
2312  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2313  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2314    return Cond;
2315  const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2316
2317  // Add one to the backedge-taken count to get the trip count.
2318  const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2319  if (IterationCount != SE.getSCEV(Sel)) return Cond;
2320
2321  // Check for a max calculation that matches the pattern. There's no check
2322  // for ICMP_ULE here because the comparison would be with zero, which
2323  // isn't interesting.
2324  CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2325  const SCEVNAryExpr *Max = nullptr;
2326  if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2327    Pred = ICmpInst::ICMP_SLE;
2328    Max = S;
2329  } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2330    Pred = ICmpInst::ICMP_SLT;
2331    Max = S;
2332  } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2333    Pred = ICmpInst::ICMP_ULT;
2334    Max = U;
2335  } else {
2336    // No match; bail.
2337    return Cond;
2338  }
2339
2340  // To handle a max with more than two operands, this optimization would
2341  // require additional checking and setup.
2342  if (Max->getNumOperands() != 2)
2343    return Cond;
2344
2345  const SCEV *MaxLHS = Max->getOperand(0);
2346  const SCEV *MaxRHS = Max->getOperand(1);
2347
2348  // ScalarEvolution canonicalizes constants to the left. For < and >, look
2349  // for a comparison with 1. For <= and >=, a comparison with zero.
2350  if (!MaxLHS ||
2351      (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2352    return Cond;
2353
2354  // Check the relevant induction variable for conformance to
2355  // the pattern.
2356  const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2357  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2358  if (!AR || !AR->isAffine() ||
2359      AR->getStart() != One ||
2360      AR->getStepRecurrence(SE) != One)
2361    return Cond;
2362
2363  assert(AR->getLoop() == L &&
2364         "Loop condition operand is an addrec in a different loop!");
2365
2366  // Check the right operand of the select, and remember it, as it will
2367  // be used in the new comparison instruction.
2368  Value *NewRHS = nullptr;
2369  if (ICmpInst::isTrueWhenEqual(Pred)) {
2370    // Look for n+1, and grab n.
2371    if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2372      if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2373         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2374           NewRHS = BO->getOperand(0);
2375    if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2376      if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2377        if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2378          NewRHS = BO->getOperand(0);
2379    if (!NewRHS)
2380      return Cond;
2381  } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2382    NewRHS = Sel->getOperand(1);
2383  else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2384    NewRHS = Sel->getOperand(2);
2385  else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2386    NewRHS = SU->getValue();
2387  else
2388    // Max doesn't match expected pattern.
2389    return Cond;
2390
2391  // Determine the new comparison opcode. It may be signed or unsigned,
2392  // and the original comparison may be either equality or inequality.
2393  if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2394    Pred = CmpInst::getInversePredicate(Pred);
2395
2396  // Ok, everything looks ok to change the condition into an SLT or SGE and
2397  // delete the max calculation.
2398  ICmpInst *NewCond =
2399    new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2400
2401  // Delete the max calculation instructions.
2402  NewCond->setDebugLoc(Cond->getDebugLoc());
2403  Cond->replaceAllUsesWith(NewCond);
2404  CondUse->setUser(NewCond);
2405  Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2406  Cond->eraseFromParent();
2407  Sel->eraseFromParent();
2408  if (Cmp->use_empty())
2409    Cmp->eraseFromParent();
2410  return NewCond;
2411}
2412
2413/// Change loop terminating condition to use the postinc iv when possible.
2414void
2415LSRInstance::OptimizeLoopTermCond() {
2416  SmallPtrSet<Instruction *, 4> PostIncs;
2417
2418  // We need a different set of heuristics for rotated and non-rotated loops.
2419  // If a loop is rotated then the latch is also the backedge, so inserting
2420  // post-inc expressions just before the latch is ideal. To reduce live ranges
2421  // it also makes sense to rewrite terminating conditions to use post-inc
2422  // expressions.
2423  //
2424  // If the loop is not rotated then the latch is not a backedge; the latch
2425  // check is done in the loop head. Adding post-inc expressions before the
2426  // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2427  // in the loop body. In this case we do *not* want to use post-inc expressions
2428  // in the latch check, and we want to insert post-inc expressions before
2429  // the backedge.
2430  BasicBlock *LatchBlock = L->getLoopLatch();
2431  SmallVector<BasicBlock*, 8> ExitingBlocks;
2432  L->getExitingBlocks(ExitingBlocks);
2433  if (!llvm::is_contained(ExitingBlocks, LatchBlock)) {
2434    // The backedge doesn't exit the loop; treat this as a head-tested loop.
2435    IVIncInsertPos = LatchBlock->getTerminator();
2436    return;
2437  }
2438
2439  // Otherwise treat this as a rotated loop.
2440  for (BasicBlock *ExitingBlock : ExitingBlocks) {
2441    // Get the terminating condition for the loop if possible.  If we
2442    // can, we want to change it to use a post-incremented version of its
2443    // induction variable, to allow coalescing the live ranges for the IV into
2444    // one register value.
2445
2446    BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2447    if (!TermBr)
2448      continue;
2449    // FIXME: Overly conservative, termination condition could be an 'or' etc..
2450    if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2451      continue;
2452
2453    // Search IVUsesByStride to find Cond's IVUse if there is one.
2454    IVStrideUse *CondUse = nullptr;
2455    ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2456    if (!FindIVUserForCond(Cond, CondUse))
2457      continue;
2458
2459    // If the trip count is computed in terms of a max (due to ScalarEvolution
2460    // being unable to find a sufficient guard, for example), change the loop
2461    // comparison to use SLT or ULT instead of NE.
2462    // One consequence of doing this now is that it disrupts the count-down
2463    // optimization. That's not always a bad thing though, because in such
2464    // cases it may still be worthwhile to avoid a max.
2465    Cond = OptimizeMax(Cond, CondUse);
2466
2467    // If this exiting block dominates the latch block, it may also use
2468    // the post-inc value if it won't be shared with other uses.
2469    // Check for dominance.
2470    if (!DT.dominates(ExitingBlock, LatchBlock))
2471      continue;
2472
2473    // Conservatively avoid trying to use the post-inc value in non-latch
2474    // exits if there may be pre-inc users in intervening blocks.
2475    if (LatchBlock != ExitingBlock)
2476      for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2477        // Test if the use is reachable from the exiting block. This dominator
2478        // query is a conservative approximation of reachability.
2479        if (&*UI != CondUse &&
2480            !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2481          // Conservatively assume there may be reuse if the quotient of their
2482          // strides could be a legal scale.
2483          const SCEV *A = IU.getStride(*CondUse, L);
2484          const SCEV *B = IU.getStride(*UI, L);
2485          if (!A || !B) continue;
2486          if (SE.getTypeSizeInBits(A->getType()) !=
2487              SE.getTypeSizeInBits(B->getType())) {
2488            if (SE.getTypeSizeInBits(A->getType()) >
2489                SE.getTypeSizeInBits(B->getType()))
2490              B = SE.getSignExtendExpr(B, A->getType());
2491            else
2492              A = SE.getSignExtendExpr(A, B->getType());
2493          }
2494          if (const SCEVConstant *D =
2495                dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2496            const ConstantInt *C = D->getValue();
2497            // Stride of one or negative one can have reuse with non-addresses.
2498            if (C->isOne() || C->isMinusOne())
2499              goto decline_post_inc;
2500            // Avoid weird situations.
2501            if (C->getValue().getSignificantBits() >= 64 ||
2502                C->getValue().isMinSignedValue())
2503              goto decline_post_inc;
2504            // Check for possible scaled-address reuse.
2505            if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) {
2506              MemAccessTy AccessTy = getAccessType(
2507                  TTI, UI->getUser(), UI->getOperandValToReplace());
2508              int64_t Scale = C->getSExtValue();
2509              if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2510                                            /*BaseOffset=*/0,
2511                                            /*HasBaseReg=*/true, Scale,
2512                                            AccessTy.AddrSpace))
2513                goto decline_post_inc;
2514              Scale = -Scale;
2515              if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2516                                            /*BaseOffset=*/0,
2517                                            /*HasBaseReg=*/true, Scale,
2518                                            AccessTy.AddrSpace))
2519                goto decline_post_inc;
2520            }
2521          }
2522        }
2523
2524    LLVM_DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2525                      << *Cond << '\n');
2526
2527    // It's possible for the setcc instruction to be anywhere in the loop, and
2528    // possible for it to have multiple users.  If it is not immediately before
2529    // the exiting block branch, move it.
2530    if (Cond->getNextNonDebugInstruction() != TermBr) {
2531      if (Cond->hasOneUse()) {
2532        Cond->moveBefore(TermBr);
2533      } else {
2534        // Clone the terminating condition and insert into the loopend.
2535        ICmpInst *OldCond = Cond;
2536        Cond = cast<ICmpInst>(Cond->clone());
2537        Cond->setName(L->getHeader()->getName() + ".termcond");
2538        Cond->insertInto(ExitingBlock, TermBr->getIterator());
2539
2540        // Clone the IVUse, as the old use still exists!
2541        CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2542        TermBr->replaceUsesOfWith(OldCond, Cond);
2543      }
2544    }
2545
2546    // If we get to here, we know that we can transform the setcc instruction to
2547    // use the post-incremented version of the IV, allowing us to coalesce the
2548    // live ranges for the IV correctly.
2549    CondUse->transformToPostInc(L);
2550    Changed = true;
2551
2552    PostIncs.insert(Cond);
2553  decline_post_inc:;
2554  }
2555
2556  // Determine an insertion point for the loop induction variable increment. It
2557  // must dominate all the post-inc comparisons we just set up, and it must
2558  // dominate the loop latch edge.
2559  IVIncInsertPos = L->getLoopLatch()->getTerminator();
2560  for (Instruction *Inst : PostIncs)
2561    IVIncInsertPos = DT.findNearestCommonDominator(IVIncInsertPos, Inst);
2562}
2563
2564/// Determine if the given use can accommodate a fixup at the given offset and
2565/// other details. If so, update the use and return true.
2566bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2567                                     bool HasBaseReg, LSRUse::KindType Kind,
2568                                     MemAccessTy AccessTy) {
2569  int64_t NewMinOffset = LU.MinOffset;
2570  int64_t NewMaxOffset = LU.MaxOffset;
2571  MemAccessTy NewAccessTy = AccessTy;
2572
2573  // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2574  // something conservative, however this can pessimize in the case that one of
2575  // the uses will have all its uses outside the loop, for example.
2576  if (LU.Kind != Kind)
2577    return false;
2578
2579  // Check for a mismatched access type, and fall back conservatively as needed.
2580  // TODO: Be less conservative when the type is similar and can use the same
2581  // addressing modes.
2582  if (Kind == LSRUse::Address) {
2583    if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2584      NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2585                                            AccessTy.AddrSpace);
2586    }
2587  }
2588
2589  // Conservatively assume HasBaseReg is true for now.
2590  if (NewOffset < LU.MinOffset) {
2591    if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2592                          LU.MaxOffset - NewOffset, HasBaseReg))
2593      return false;
2594    NewMinOffset = NewOffset;
2595  } else if (NewOffset > LU.MaxOffset) {
2596    if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2597                          NewOffset - LU.MinOffset, HasBaseReg))
2598      return false;
2599    NewMaxOffset = NewOffset;
2600  }
2601
2602  // Update the use.
2603  LU.MinOffset = NewMinOffset;
2604  LU.MaxOffset = NewMaxOffset;
2605  LU.AccessTy = NewAccessTy;
2606  return true;
2607}
2608
2609/// Return an LSRUse index and an offset value for a fixup which needs the given
2610/// expression, with the given kind and optional access type.  Either reuse an
2611/// existing use or create a new one, as needed.
2612std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2613                                               LSRUse::KindType Kind,
2614                                               MemAccessTy AccessTy) {
2615  const SCEV *Copy = Expr;
2616  int64_t Offset = ExtractImmediate(Expr, SE);
2617
2618  // Basic uses can't accept any offset, for example.
2619  if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2620                        Offset, /*HasBaseReg=*/ true)) {
2621    Expr = Copy;
2622    Offset = 0;
2623  }
2624
2625  std::pair<UseMapTy::iterator, bool> P =
2626    UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2627  if (!P.second) {
2628    // A use already existed with this base.
2629    size_t LUIdx = P.first->second;
2630    LSRUse &LU = Uses[LUIdx];
2631    if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2632      // Reuse this use.
2633      return std::make_pair(LUIdx, Offset);
2634  }
2635
2636  // Create a new use.
2637  size_t LUIdx = Uses.size();
2638  P.first->second = LUIdx;
2639  Uses.push_back(LSRUse(Kind, AccessTy));
2640  LSRUse &LU = Uses[LUIdx];
2641
2642  LU.MinOffset = Offset;
2643  LU.MaxOffset = Offset;
2644  return std::make_pair(LUIdx, Offset);
2645}
2646
2647/// Delete the given use from the Uses list.
2648void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2649  if (&LU != &Uses.back())
2650    std::swap(LU, Uses.back());
2651  Uses.pop_back();
2652
2653  // Update RegUses.
2654  RegUses.swapAndDropUse(LUIdx, Uses.size());
2655}
2656
2657/// Look for a use distinct from OrigLU which is has a formula that has the same
2658/// registers as the given formula.
2659LSRUse *
2660LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2661                                       const LSRUse &OrigLU) {
2662  // Search all uses for the formula. This could be more clever.
2663  for (LSRUse &LU : Uses) {
2664    // Check whether this use is close enough to OrigLU, to see whether it's
2665    // worthwhile looking through its formulae.
2666    // Ignore ICmpZero uses because they may contain formulae generated by
2667    // GenerateICmpZeroScales, in which case adding fixup offsets may
2668    // be invalid.
2669    if (&LU != &OrigLU &&
2670        LU.Kind != LSRUse::ICmpZero &&
2671        LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2672        LU.WidestFixupType == OrigLU.WidestFixupType &&
2673        LU.HasFormulaWithSameRegs(OrigF)) {
2674      // Scan through this use's formulae.
2675      for (const Formula &F : LU.Formulae) {
2676        // Check to see if this formula has the same registers and symbols
2677        // as OrigF.
2678        if (F.BaseRegs == OrigF.BaseRegs &&
2679            F.ScaledReg == OrigF.ScaledReg &&
2680            F.BaseGV == OrigF.BaseGV &&
2681            F.Scale == OrigF.Scale &&
2682            F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2683          if (F.BaseOffset == 0)
2684            return &LU;
2685          // This is the formula where all the registers and symbols matched;
2686          // there aren't going to be any others. Since we declined it, we
2687          // can skip the rest of the formulae and proceed to the next LSRUse.
2688          break;
2689        }
2690      }
2691    }
2692  }
2693
2694  // Nothing looked good.
2695  return nullptr;
2696}
2697
2698void LSRInstance::CollectInterestingTypesAndFactors() {
2699  SmallSetVector<const SCEV *, 4> Strides;
2700
2701  // Collect interesting types and strides.
2702  SmallVector<const SCEV *, 4> Worklist;
2703  for (const IVStrideUse &U : IU) {
2704    const SCEV *Expr = IU.getExpr(U);
2705    if (!Expr)
2706      continue;
2707
2708    // Collect interesting types.
2709    Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2710
2711    // Add strides for mentioned loops.
2712    Worklist.push_back(Expr);
2713    do {
2714      const SCEV *S = Worklist.pop_back_val();
2715      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2716        if (AR->getLoop() == L)
2717          Strides.insert(AR->getStepRecurrence(SE));
2718        Worklist.push_back(AR->getStart());
2719      } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2720        append_range(Worklist, Add->operands());
2721      }
2722    } while (!Worklist.empty());
2723  }
2724
2725  // Compute interesting factors from the set of interesting strides.
2726  for (SmallSetVector<const SCEV *, 4>::const_iterator
2727       I = Strides.begin(), E = Strides.end(); I != E; ++I)
2728    for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2729         std::next(I); NewStrideIter != E; ++NewStrideIter) {
2730      const SCEV *OldStride = *I;
2731      const SCEV *NewStride = *NewStrideIter;
2732
2733      if (SE.getTypeSizeInBits(OldStride->getType()) !=
2734          SE.getTypeSizeInBits(NewStride->getType())) {
2735        if (SE.getTypeSizeInBits(OldStride->getType()) >
2736            SE.getTypeSizeInBits(NewStride->getType()))
2737          NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2738        else
2739          OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2740      }
2741      if (const SCEVConstant *Factor =
2742            dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2743                                                        SE, true))) {
2744        if (Factor->getAPInt().getSignificantBits() <= 64 && !Factor->isZero())
2745          Factors.insert(Factor->getAPInt().getSExtValue());
2746      } else if (const SCEVConstant *Factor =
2747                   dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2748                                                               NewStride,
2749                                                               SE, true))) {
2750        if (Factor->getAPInt().getSignificantBits() <= 64 && !Factor->isZero())
2751          Factors.insert(Factor->getAPInt().getSExtValue());
2752      }
2753    }
2754
2755  // If all uses use the same type, don't bother looking for truncation-based
2756  // reuse.
2757  if (Types.size() == 1)
2758    Types.clear();
2759
2760  LLVM_DEBUG(print_factors_and_types(dbgs()));
2761}
2762
2763/// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2764/// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2765/// IVStrideUses, we could partially skip this.
2766static User::op_iterator
2767findIVOperand(User::op_iterator OI, User::op_iterator OE,
2768              Loop *L, ScalarEvolution &SE) {
2769  for(; OI != OE; ++OI) {
2770    if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2771      if (!SE.isSCEVable(Oper->getType()))
2772        continue;
2773
2774      if (const SCEVAddRecExpr *AR =
2775          dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2776        if (AR->getLoop() == L)
2777          break;
2778      }
2779    }
2780  }
2781  return OI;
2782}
2783
2784/// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2785/// a convenient helper.
2786static Value *getWideOperand(Value *Oper) {
2787  if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2788    return Trunc->getOperand(0);
2789  return Oper;
2790}
2791
2792/// Return an approximation of this SCEV expression's "base", or NULL for any
2793/// constant. Returning the expression itself is conservative. Returning a
2794/// deeper subexpression is more precise and valid as long as it isn't less
2795/// complex than another subexpression. For expressions involving multiple
2796/// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2797/// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2798/// IVInc==b-a.
2799///
2800/// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2801/// SCEVUnknown, we simply return the rightmost SCEV operand.
2802static const SCEV *getExprBase(const SCEV *S) {
2803  switch (S->getSCEVType()) {
2804  default: // including scUnknown.
2805    return S;
2806  case scConstant:
2807  case scVScale:
2808    return nullptr;
2809  case scTruncate:
2810    return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2811  case scZeroExtend:
2812    return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2813  case scSignExtend:
2814    return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2815  case scAddExpr: {
2816    // Skip over scaled operands (scMulExpr) to follow add operands as long as
2817    // there's nothing more complex.
2818    // FIXME: not sure if we want to recognize negation.
2819    const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2820    for (const SCEV *SubExpr : reverse(Add->operands())) {
2821      if (SubExpr->getSCEVType() == scAddExpr)
2822        return getExprBase(SubExpr);
2823
2824      if (SubExpr->getSCEVType() != scMulExpr)
2825        return SubExpr;
2826    }
2827    return S; // all operands are scaled, be conservative.
2828  }
2829  case scAddRecExpr:
2830    return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2831  }
2832  llvm_unreachable("Unknown SCEV kind!");
2833}
2834
2835/// Return true if the chain increment is profitable to expand into a loop
2836/// invariant value, which may require its own register. A profitable chain
2837/// increment will be an offset relative to the same base. We allow such offsets
2838/// to potentially be used as chain increment as long as it's not obviously
2839/// expensive to expand using real instructions.
2840bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2841                                    const SCEV *IncExpr,
2842                                    ScalarEvolution &SE) {
2843  // Aggressively form chains when -stress-ivchain.
2844  if (StressIVChain)
2845    return true;
2846
2847  // Do not replace a constant offset from IV head with a nonconstant IV
2848  // increment.
2849  if (!isa<SCEVConstant>(IncExpr)) {
2850    const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2851    if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2852      return false;
2853  }
2854
2855  SmallPtrSet<const SCEV*, 8> Processed;
2856  return !isHighCostExpansion(IncExpr, Processed, SE);
2857}
2858
2859/// Return true if the number of registers needed for the chain is estimated to
2860/// be less than the number required for the individual IV users. First prohibit
2861/// any IV users that keep the IV live across increments (the Users set should
2862/// be empty). Next count the number and type of increments in the chain.
2863///
2864/// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2865/// effectively use postinc addressing modes. Only consider it profitable it the
2866/// increments can be computed in fewer registers when chained.
2867///
2868/// TODO: Consider IVInc free if it's already used in another chains.
2869static bool isProfitableChain(IVChain &Chain,
2870                              SmallPtrSetImpl<Instruction *> &Users,
2871                              ScalarEvolution &SE,
2872                              const TargetTransformInfo &TTI) {
2873  if (StressIVChain)
2874    return true;
2875
2876  if (!Chain.hasIncs())
2877    return false;
2878
2879  if (!Users.empty()) {
2880    LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2881               for (Instruction *Inst
2882                    : Users) { dbgs() << "  " << *Inst << "\n"; });
2883    return false;
2884  }
2885  assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2886
2887  // The chain itself may require a register, so intialize cost to 1.
2888  int cost = 1;
2889
2890  // A complete chain likely eliminates the need for keeping the original IV in
2891  // a register. LSR does not currently know how to form a complete chain unless
2892  // the header phi already exists.
2893  if (isa<PHINode>(Chain.tailUserInst())
2894      && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2895    --cost;
2896  }
2897  const SCEV *LastIncExpr = nullptr;
2898  unsigned NumConstIncrements = 0;
2899  unsigned NumVarIncrements = 0;
2900  unsigned NumReusedIncrements = 0;
2901
2902  if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst))
2903    return true;
2904
2905  for (const IVInc &Inc : Chain) {
2906    if (TTI.isProfitableLSRChainElement(Inc.UserInst))
2907      return true;
2908    if (Inc.IncExpr->isZero())
2909      continue;
2910
2911    // Incrementing by zero or some constant is neutral. We assume constants can
2912    // be folded into an addressing mode or an add's immediate operand.
2913    if (isa<SCEVConstant>(Inc.IncExpr)) {
2914      ++NumConstIncrements;
2915      continue;
2916    }
2917
2918    if (Inc.IncExpr == LastIncExpr)
2919      ++NumReusedIncrements;
2920    else
2921      ++NumVarIncrements;
2922
2923    LastIncExpr = Inc.IncExpr;
2924  }
2925  // An IV chain with a single increment is handled by LSR's postinc
2926  // uses. However, a chain with multiple increments requires keeping the IV's
2927  // value live longer than it needs to be if chained.
2928  if (NumConstIncrements > 1)
2929    --cost;
2930
2931  // Materializing increment expressions in the preheader that didn't exist in
2932  // the original code may cost a register. For example, sign-extended array
2933  // indices can produce ridiculous increments like this:
2934  // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2935  cost += NumVarIncrements;
2936
2937  // Reusing variable increments likely saves a register to hold the multiple of
2938  // the stride.
2939  cost -= NumReusedIncrements;
2940
2941  LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2942                    << "\n");
2943
2944  return cost < 0;
2945}
2946
2947/// Add this IV user to an existing chain or make it the head of a new chain.
2948void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2949                                   SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2950  // When IVs are used as types of varying widths, they are generally converted
2951  // to a wider type with some uses remaining narrow under a (free) trunc.
2952  Value *const NextIV = getWideOperand(IVOper);
2953  const SCEV *const OperExpr = SE.getSCEV(NextIV);
2954  const SCEV *const OperExprBase = getExprBase(OperExpr);
2955
2956  // Visit all existing chains. Check if its IVOper can be computed as a
2957  // profitable loop invariant increment from the last link in the Chain.
2958  unsigned ChainIdx = 0, NChains = IVChainVec.size();
2959  const SCEV *LastIncExpr = nullptr;
2960  for (; ChainIdx < NChains; ++ChainIdx) {
2961    IVChain &Chain = IVChainVec[ChainIdx];
2962
2963    // Prune the solution space aggressively by checking that both IV operands
2964    // are expressions that operate on the same unscaled SCEVUnknown. This
2965    // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2966    // first avoids creating extra SCEV expressions.
2967    if (!StressIVChain && Chain.ExprBase != OperExprBase)
2968      continue;
2969
2970    Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2971    if (PrevIV->getType() != NextIV->getType())
2972      continue;
2973
2974    // A phi node terminates a chain.
2975    if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2976      continue;
2977
2978    // The increment must be loop-invariant so it can be kept in a register.
2979    const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2980    const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2981    if (isa<SCEVCouldNotCompute>(IncExpr) || !SE.isLoopInvariant(IncExpr, L))
2982      continue;
2983
2984    if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2985      LastIncExpr = IncExpr;
2986      break;
2987    }
2988  }
2989  // If we haven't found a chain, create a new one, unless we hit the max. Don't
2990  // bother for phi nodes, because they must be last in the chain.
2991  if (ChainIdx == NChains) {
2992    if (isa<PHINode>(UserInst))
2993      return;
2994    if (NChains >= MaxChains && !StressIVChain) {
2995      LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
2996      return;
2997    }
2998    LastIncExpr = OperExpr;
2999    // IVUsers may have skipped over sign/zero extensions. We don't currently
3000    // attempt to form chains involving extensions unless they can be hoisted
3001    // into this loop's AddRec.
3002    if (!isa<SCEVAddRecExpr>(LastIncExpr))
3003      return;
3004    ++NChains;
3005    IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
3006                                 OperExprBase));
3007    ChainUsersVec.resize(NChains);
3008    LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
3009                      << ") IV=" << *LastIncExpr << "\n");
3010  } else {
3011    LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
3012                      << ") IV+" << *LastIncExpr << "\n");
3013    // Add this IV user to the end of the chain.
3014    IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
3015  }
3016  IVChain &Chain = IVChainVec[ChainIdx];
3017
3018  SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
3019  // This chain's NearUsers become FarUsers.
3020  if (!LastIncExpr->isZero()) {
3021    ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
3022                                            NearUsers.end());
3023    NearUsers.clear();
3024  }
3025
3026  // All other uses of IVOperand become near uses of the chain.
3027  // We currently ignore intermediate values within SCEV expressions, assuming
3028  // they will eventually be used be the current chain, or can be computed
3029  // from one of the chain increments. To be more precise we could
3030  // transitively follow its user and only add leaf IV users to the set.
3031  for (User *U : IVOper->users()) {
3032    Instruction *OtherUse = dyn_cast<Instruction>(U);
3033    if (!OtherUse)
3034      continue;
3035    // Uses in the chain will no longer be uses if the chain is formed.
3036    // Include the head of the chain in this iteration (not Chain.begin()).
3037    IVChain::const_iterator IncIter = Chain.Incs.begin();
3038    IVChain::const_iterator IncEnd = Chain.Incs.end();
3039    for( ; IncIter != IncEnd; ++IncIter) {
3040      if (IncIter->UserInst == OtherUse)
3041        break;
3042    }
3043    if (IncIter != IncEnd)
3044      continue;
3045
3046    if (SE.isSCEVable(OtherUse->getType())
3047        && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
3048        && IU.isIVUserOrOperand(OtherUse)) {
3049      continue;
3050    }
3051    NearUsers.insert(OtherUse);
3052  }
3053
3054  // Since this user is part of the chain, it's no longer considered a use
3055  // of the chain.
3056  ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
3057}
3058
3059/// Populate the vector of Chains.
3060///
3061/// This decreases ILP at the architecture level. Targets with ample registers,
3062/// multiple memory ports, and no register renaming probably don't want
3063/// this. However, such targets should probably disable LSR altogether.
3064///
3065/// The job of LSR is to make a reasonable choice of induction variables across
3066/// the loop. Subsequent passes can easily "unchain" computation exposing more
3067/// ILP *within the loop* if the target wants it.
3068///
3069/// Finding the best IV chain is potentially a scheduling problem. Since LSR
3070/// will not reorder memory operations, it will recognize this as a chain, but
3071/// will generate redundant IV increments. Ideally this would be corrected later
3072/// by a smart scheduler:
3073///        = A[i]
3074///        = A[i+x]
3075/// A[i]   =
3076/// A[i+x] =
3077///
3078/// TODO: Walk the entire domtree within this loop, not just the path to the
3079/// loop latch. This will discover chains on side paths, but requires
3080/// maintaining multiple copies of the Chains state.
3081void LSRInstance::CollectChains() {
3082  LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
3083  SmallVector<ChainUsers, 8> ChainUsersVec;
3084
3085  SmallVector<BasicBlock *,8> LatchPath;
3086  BasicBlock *LoopHeader = L->getHeader();
3087  for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
3088       Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
3089    LatchPath.push_back(Rung->getBlock());
3090  }
3091  LatchPath.push_back(LoopHeader);
3092
3093  // Walk the instruction stream from the loop header to the loop latch.
3094  for (BasicBlock *BB : reverse(LatchPath)) {
3095    for (Instruction &I : *BB) {
3096      // Skip instructions that weren't seen by IVUsers analysis.
3097      if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
3098        continue;
3099
3100      // Ignore users that are part of a SCEV expression. This way we only
3101      // consider leaf IV Users. This effectively rediscovers a portion of
3102      // IVUsers analysis but in program order this time.
3103      if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
3104          continue;
3105
3106      // Remove this instruction from any NearUsers set it may be in.
3107      for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3108           ChainIdx < NChains; ++ChainIdx) {
3109        ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3110      }
3111      // Search for operands that can be chained.
3112      SmallPtrSet<Instruction*, 4> UniqueOperands;
3113      User::op_iterator IVOpEnd = I.op_end();
3114      User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3115      while (IVOpIter != IVOpEnd) {
3116        Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3117        if (UniqueOperands.insert(IVOpInst).second)
3118          ChainInstruction(&I, IVOpInst, ChainUsersVec);
3119        IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3120      }
3121    } // Continue walking down the instructions.
3122  } // Continue walking down the domtree.
3123  // Visit phi backedges to determine if the chain can generate the IV postinc.
3124  for (PHINode &PN : L->getHeader()->phis()) {
3125    if (!SE.isSCEVable(PN.getType()))
3126      continue;
3127
3128    Instruction *IncV =
3129        dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
3130    if (IncV)
3131      ChainInstruction(&PN, IncV, ChainUsersVec);
3132  }
3133  // Remove any unprofitable chains.
3134  unsigned ChainIdx = 0;
3135  for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3136       UsersIdx < NChains; ++UsersIdx) {
3137    if (!isProfitableChain(IVChainVec[UsersIdx],
3138                           ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
3139      continue;
3140    // Preserve the chain at UsesIdx.
3141    if (ChainIdx != UsersIdx)
3142      IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3143    FinalizeChain(IVChainVec[ChainIdx]);
3144    ++ChainIdx;
3145  }
3146  IVChainVec.resize(ChainIdx);
3147}
3148
3149void LSRInstance::FinalizeChain(IVChain &Chain) {
3150  assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3151  LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3152
3153  for (const IVInc &Inc : Chain) {
3154    LLVM_DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
3155    auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3156    assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3157    IVIncSet.insert(UseI);
3158  }
3159}
3160
3161/// Return true if the IVInc can be folded into an addressing mode.
3162static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3163                             Value *Operand, const TargetTransformInfo &TTI) {
3164  const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3165  if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
3166    return false;
3167
3168  if (IncConst->getAPInt().getSignificantBits() > 64)
3169    return false;
3170
3171  MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand);
3172  int64_t IncOffset = IncConst->getValue()->getSExtValue();
3173  if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3174                        IncOffset, /*HasBaseReg=*/false))
3175    return false;
3176
3177  return true;
3178}
3179
3180/// Generate an add or subtract for each IVInc in a chain to materialize the IV
3181/// user's operand from the previous IV user's operand.
3182void LSRInstance::GenerateIVChain(const IVChain &Chain,
3183                                  SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3184  // Find the new IVOperand for the head of the chain. It may have been replaced
3185  // by LSR.
3186  const IVInc &Head = Chain.Incs[0];
3187  User::op_iterator IVOpEnd = Head.UserInst->op_end();
3188  // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3189  User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3190                                             IVOpEnd, L, SE);
3191  Value *IVSrc = nullptr;
3192  while (IVOpIter != IVOpEnd) {
3193    IVSrc = getWideOperand(*IVOpIter);
3194
3195    // If this operand computes the expression that the chain needs, we may use
3196    // it. (Check this after setting IVSrc which is used below.)
3197    //
3198    // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3199    // narrow for the chain, so we can no longer use it. We do allow using a
3200    // wider phi, assuming the LSR checked for free truncation. In that case we
3201    // should already have a truncate on this operand such that
3202    // getSCEV(IVSrc) == IncExpr.
3203    if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3204        || SE.getSCEV(IVSrc) == Head.IncExpr) {
3205      break;
3206    }
3207    IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3208  }
3209  if (IVOpIter == IVOpEnd) {
3210    // Gracefully give up on this chain.
3211    LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3212    return;
3213  }
3214  assert(IVSrc && "Failed to find IV chain source");
3215
3216  LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3217  Type *IVTy = IVSrc->getType();
3218  Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3219  const SCEV *LeftOverExpr = nullptr;
3220  for (const IVInc &Inc : Chain) {
3221    Instruction *InsertPt = Inc.UserInst;
3222    if (isa<PHINode>(InsertPt))
3223      InsertPt = L->getLoopLatch()->getTerminator();
3224
3225    // IVOper will replace the current IV User's operand. IVSrc is the IV
3226    // value currently held in a register.
3227    Value *IVOper = IVSrc;
3228    if (!Inc.IncExpr->isZero()) {
3229      // IncExpr was the result of subtraction of two narrow values, so must
3230      // be signed.
3231      const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3232      LeftOverExpr = LeftOverExpr ?
3233        SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3234    }
3235    if (LeftOverExpr && !LeftOverExpr->isZero()) {
3236      // Expand the IV increment.
3237      Rewriter.clearPostInc();
3238      Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3239      const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3240                                             SE.getUnknown(IncV));
3241      IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3242
3243      // If an IV increment can't be folded, use it as the next IV value.
3244      if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3245        assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3246        IVSrc = IVOper;
3247        LeftOverExpr = nullptr;
3248      }
3249    }
3250    Type *OperTy = Inc.IVOperand->getType();
3251    if (IVTy != OperTy) {
3252      assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3253             "cannot extend a chained IV");
3254      IRBuilder<> Builder(InsertPt);
3255      IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3256    }
3257    Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3258    if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand))
3259      DeadInsts.emplace_back(OperandIsInstr);
3260  }
3261  // If LSR created a new, wider phi, we may also replace its postinc. We only
3262  // do this if we also found a wide value for the head of the chain.
3263  if (isa<PHINode>(Chain.tailUserInst())) {
3264    for (PHINode &Phi : L->getHeader()->phis()) {
3265      if (Phi.getType() != IVSrc->getType())
3266        continue;
3267      Instruction *PostIncV = dyn_cast<Instruction>(
3268          Phi.getIncomingValueForBlock(L->getLoopLatch()));
3269      if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3270        continue;
3271      Value *IVOper = IVSrc;
3272      Type *PostIncTy = PostIncV->getType();
3273      if (IVTy != PostIncTy) {
3274        assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3275        IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3276        Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3277        IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3278      }
3279      Phi.replaceUsesOfWith(PostIncV, IVOper);
3280      DeadInsts.emplace_back(PostIncV);
3281    }
3282  }
3283}
3284
3285void LSRInstance::CollectFixupsAndInitialFormulae() {
3286  BranchInst *ExitBranch = nullptr;
3287  bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI);
3288
3289  // For calculating baseline cost
3290  SmallPtrSet<const SCEV *, 16> Regs;
3291  DenseSet<const SCEV *> VisitedRegs;
3292  DenseSet<size_t> VisitedLSRUse;
3293
3294  for (const IVStrideUse &U : IU) {
3295    Instruction *UserInst = U.getUser();
3296    // Skip IV users that are part of profitable IV Chains.
3297    User::op_iterator UseI =
3298        find(UserInst->operands(), U.getOperandValToReplace());
3299    assert(UseI != UserInst->op_end() && "cannot find IV operand");
3300    if (IVIncSet.count(UseI)) {
3301      LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3302      continue;
3303    }
3304
3305    LSRUse::KindType Kind = LSRUse::Basic;
3306    MemAccessTy AccessTy;
3307    if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3308      Kind = LSRUse::Address;
3309      AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace());
3310    }
3311
3312    const SCEV *S = IU.getExpr(U);
3313    if (!S)
3314      continue;
3315    PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3316
3317    // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3318    // (N - i == 0), and this allows (N - i) to be the expression that we work
3319    // with rather than just N or i, so we can consider the register
3320    // requirements for both N and i at the same time. Limiting this code to
3321    // equality icmps is not a problem because all interesting loops use
3322    // equality icmps, thanks to IndVarSimplify.
3323    if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) {
3324      // If CI can be saved in some target, like replaced inside hardware loop
3325      // in PowerPC, no need to generate initial formulae for it.
3326      if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition()))
3327        continue;
3328      if (CI->isEquality()) {
3329        // Swap the operands if needed to put the OperandValToReplace on the
3330        // left, for consistency.
3331        Value *NV = CI->getOperand(1);
3332        if (NV == U.getOperandValToReplace()) {
3333          CI->setOperand(1, CI->getOperand(0));
3334          CI->setOperand(0, NV);
3335          NV = CI->getOperand(1);
3336          Changed = true;
3337        }
3338
3339        // x == y  -->  x - y == 0
3340        const SCEV *N = SE.getSCEV(NV);
3341        if (SE.isLoopInvariant(N, L) && Rewriter.isSafeToExpand(N) &&
3342            (!NV->getType()->isPointerTy() ||
3343             SE.getPointerBase(N) == SE.getPointerBase(S))) {
3344          // S is normalized, so normalize N before folding it into S
3345          // to keep the result normalized.
3346          N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3347          if (!N)
3348            continue;
3349          Kind = LSRUse::ICmpZero;
3350          S = SE.getMinusSCEV(N, S);
3351        } else if (L->isLoopInvariant(NV) &&
3352                   (!isa<Instruction>(NV) ||
3353                    DT.dominates(cast<Instruction>(NV), L->getHeader())) &&
3354                   !NV->getType()->isPointerTy()) {
3355          // If we can't generally expand the expression (e.g. it contains
3356          // a divide), but it is already at a loop invariant point before the
3357          // loop, wrap it in an unknown (to prevent the expander from trying
3358          // to re-expand in a potentially unsafe way.)  The restriction to
3359          // integer types is required because the unknown hides the base, and
3360          // SCEV can't compute the difference of two unknown pointers.
3361          N = SE.getUnknown(NV);
3362          N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3363          if (!N)
3364            continue;
3365          Kind = LSRUse::ICmpZero;
3366          S = SE.getMinusSCEV(N, S);
3367          assert(!isa<SCEVCouldNotCompute>(S));
3368        }
3369
3370        // -1 and the negations of all interesting strides (except the negation
3371        // of -1) are now also interesting.
3372        for (size_t i = 0, e = Factors.size(); i != e; ++i)
3373          if (Factors[i] != -1)
3374            Factors.insert(-(uint64_t)Factors[i]);
3375        Factors.insert(-1);
3376      }
3377    }
3378
3379    // Get or create an LSRUse.
3380    std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3381    size_t LUIdx = P.first;
3382    int64_t Offset = P.second;
3383    LSRUse &LU = Uses[LUIdx];
3384
3385    // Record the fixup.
3386    LSRFixup &LF = LU.getNewFixup();
3387    LF.UserInst = UserInst;
3388    LF.OperandValToReplace = U.getOperandValToReplace();
3389    LF.PostIncLoops = TmpPostIncLoops;
3390    LF.Offset = Offset;
3391    LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3392
3393    // Create SCEV as Formula for calculating baseline cost
3394    if (!VisitedLSRUse.count(LUIdx) && !LF.isUseFullyOutsideLoop(L)) {
3395      Formula F;
3396      F.initialMatch(S, L, SE);
3397      BaselineCost.RateFormula(F, Regs, VisitedRegs, LU);
3398      VisitedLSRUse.insert(LUIdx);
3399    }
3400
3401    if (!LU.WidestFixupType ||
3402        SE.getTypeSizeInBits(LU.WidestFixupType) <
3403        SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3404      LU.WidestFixupType = LF.OperandValToReplace->getType();
3405
3406    // If this is the first use of this LSRUse, give it a formula.
3407    if (LU.Formulae.empty()) {
3408      InsertInitialFormula(S, LU, LUIdx);
3409      CountRegisters(LU.Formulae.back(), LUIdx);
3410    }
3411  }
3412
3413  LLVM_DEBUG(print_fixups(dbgs()));
3414}
3415
3416/// Insert a formula for the given expression into the given use, separating out
3417/// loop-variant portions from loop-invariant and loop-computable portions.
3418void LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU,
3419                                       size_t LUIdx) {
3420  // Mark uses whose expressions cannot be expanded.
3421  if (!Rewriter.isSafeToExpand(S))
3422    LU.RigidFormula = true;
3423
3424  Formula F;
3425  F.initialMatch(S, L, SE);
3426  bool Inserted = InsertFormula(LU, LUIdx, F);
3427  assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3428}
3429
3430/// Insert a simple single-register formula for the given expression into the
3431/// given use.
3432void
3433LSRInstance::InsertSupplementalFormula(const SCEV *S,
3434                                       LSRUse &LU, size_t LUIdx) {
3435  Formula F;
3436  F.BaseRegs.push_back(S);
3437  F.HasBaseReg = true;
3438  bool Inserted = InsertFormula(LU, LUIdx, F);
3439  assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3440}
3441
3442/// Note which registers are used by the given formula, updating RegUses.
3443void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3444  if (F.ScaledReg)
3445    RegUses.countRegister(F.ScaledReg, LUIdx);
3446  for (const SCEV *BaseReg : F.BaseRegs)
3447    RegUses.countRegister(BaseReg, LUIdx);
3448}
3449
3450/// If the given formula has not yet been inserted, add it to the list, and
3451/// return true. Return false otherwise.
3452bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3453  // Do not insert formula that we will not be able to expand.
3454  assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3455         "Formula is illegal");
3456
3457  if (!LU.InsertFormula(F, *L))
3458    return false;
3459
3460  CountRegisters(F, LUIdx);
3461  return true;
3462}
3463
3464/// Check for other uses of loop-invariant values which we're tracking. These
3465/// other uses will pin these values in registers, making them less profitable
3466/// for elimination.
3467/// TODO: This currently misses non-constant addrec step registers.
3468/// TODO: Should this give more weight to users inside the loop?
3469void
3470LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3471  SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3472  SmallPtrSet<const SCEV *, 32> Visited;
3473
3474  // Don't collect outside uses if we are favoring postinc - the instructions in
3475  // the loop are more important than the ones outside of it.
3476  if (AMK == TTI::AMK_PostIndexed)
3477    return;
3478
3479  while (!Worklist.empty()) {
3480    const SCEV *S = Worklist.pop_back_val();
3481
3482    // Don't process the same SCEV twice
3483    if (!Visited.insert(S).second)
3484      continue;
3485
3486    if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3487      append_range(Worklist, N->operands());
3488    else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S))
3489      Worklist.push_back(C->getOperand());
3490    else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3491      Worklist.push_back(D->getLHS());
3492      Worklist.push_back(D->getRHS());
3493    } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3494      const Value *V = US->getValue();
3495      if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3496        // Look for instructions defined outside the loop.
3497        if (L->contains(Inst)) continue;
3498      } else if (isa<Constant>(V))
3499        // Constants can be re-materialized.
3500        continue;
3501      for (const Use &U : V->uses()) {
3502        const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3503        // Ignore non-instructions.
3504        if (!UserInst)
3505          continue;
3506        // Don't bother if the instruction is an EHPad.
3507        if (UserInst->isEHPad())
3508          continue;
3509        // Ignore instructions in other functions (as can happen with
3510        // Constants).
3511        if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3512          continue;
3513        // Ignore instructions not dominated by the loop.
3514        const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3515          UserInst->getParent() :
3516          cast<PHINode>(UserInst)->getIncomingBlock(
3517            PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3518        if (!DT.dominates(L->getHeader(), UseBB))
3519          continue;
3520        // Don't bother if the instruction is in a BB which ends in an EHPad.
3521        if (UseBB->getTerminator()->isEHPad())
3522          continue;
3523
3524        // Ignore cases in which the currently-examined value could come from
3525        // a basic block terminated with an EHPad. This checks all incoming
3526        // blocks of the phi node since it is possible that the same incoming
3527        // value comes from multiple basic blocks, only some of which may end
3528        // in an EHPad. If any of them do, a subsequent rewrite attempt by this
3529        // pass would try to insert instructions into an EHPad, hitting an
3530        // assertion.
3531        if (isa<PHINode>(UserInst)) {
3532          const auto *PhiNode = cast<PHINode>(UserInst);
3533          bool HasIncompatibleEHPTerminatedBlock = false;
3534          llvm::Value *ExpectedValue = U;
3535          for (unsigned int I = 0; I < PhiNode->getNumIncomingValues(); I++) {
3536            if (PhiNode->getIncomingValue(I) == ExpectedValue) {
3537              if (PhiNode->getIncomingBlock(I)->getTerminator()->isEHPad()) {
3538                HasIncompatibleEHPTerminatedBlock = true;
3539                break;
3540              }
3541            }
3542          }
3543          if (HasIncompatibleEHPTerminatedBlock) {
3544            continue;
3545          }
3546        }
3547
3548        // Don't bother rewriting PHIs in catchswitch blocks.
3549        if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3550          continue;
3551        // Ignore uses which are part of other SCEV expressions, to avoid
3552        // analyzing them multiple times.
3553        if (SE.isSCEVable(UserInst->getType())) {
3554          const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3555          // If the user is a no-op, look through to its uses.
3556          if (!isa<SCEVUnknown>(UserS))
3557            continue;
3558          if (UserS == US) {
3559            Worklist.push_back(
3560              SE.getUnknown(const_cast<Instruction *>(UserInst)));
3561            continue;
3562          }
3563        }
3564        // Ignore icmp instructions which are already being analyzed.
3565        if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3566          unsigned OtherIdx = !U.getOperandNo();
3567          Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3568          if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3569            continue;
3570        }
3571
3572        std::pair<size_t, int64_t> P = getUse(
3573            S, LSRUse::Basic, MemAccessTy());
3574        size_t LUIdx = P.first;
3575        int64_t Offset = P.second;
3576        LSRUse &LU = Uses[LUIdx];
3577        LSRFixup &LF = LU.getNewFixup();
3578        LF.UserInst = const_cast<Instruction *>(UserInst);
3579        LF.OperandValToReplace = U;
3580        LF.Offset = Offset;
3581        LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3582        if (!LU.WidestFixupType ||
3583            SE.getTypeSizeInBits(LU.WidestFixupType) <
3584            SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3585          LU.WidestFixupType = LF.OperandValToReplace->getType();
3586        InsertSupplementalFormula(US, LU, LUIdx);
3587        CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3588        break;
3589      }
3590    }
3591  }
3592}
3593
3594/// Split S into subexpressions which can be pulled out into separate
3595/// registers. If C is non-null, multiply each subexpression by C.
3596///
3597/// Return remainder expression after factoring the subexpressions captured by
3598/// Ops. If Ops is complete, return NULL.
3599static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3600                                   SmallVectorImpl<const SCEV *> &Ops,
3601                                   const Loop *L,
3602                                   ScalarEvolution &SE,
3603                                   unsigned Depth = 0) {
3604  // Arbitrarily cap recursion to protect compile time.
3605  if (Depth >= 3)
3606    return S;
3607
3608  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3609    // Break out add operands.
3610    for (const SCEV *S : Add->operands()) {
3611      const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3612      if (Remainder)
3613        Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3614    }
3615    return nullptr;
3616  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3617    // Split a non-zero base out of an addrec.
3618    if (AR->getStart()->isZero() || !AR->isAffine())
3619      return S;
3620
3621    const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3622                                            C, Ops, L, SE, Depth+1);
3623    // Split the non-zero AddRec unless it is part of a nested recurrence that
3624    // does not pertain to this loop.
3625    if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3626      Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3627      Remainder = nullptr;
3628    }
3629    if (Remainder != AR->getStart()) {
3630      if (!Remainder)
3631        Remainder = SE.getConstant(AR->getType(), 0);
3632      return SE.getAddRecExpr(Remainder,
3633                              AR->getStepRecurrence(SE),
3634                              AR->getLoop(),
3635                              //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3636                              SCEV::FlagAnyWrap);
3637    }
3638  } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3639    // Break (C * (a + b + c)) into C*a + C*b + C*c.
3640    if (Mul->getNumOperands() != 2)
3641      return S;
3642    if (const SCEVConstant *Op0 =
3643        dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3644      C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3645      const SCEV *Remainder =
3646        CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3647      if (Remainder)
3648        Ops.push_back(SE.getMulExpr(C, Remainder));
3649      return nullptr;
3650    }
3651  }
3652  return S;
3653}
3654
3655/// Return true if the SCEV represents a value that may end up as a
3656/// post-increment operation.
3657static bool mayUsePostIncMode(const TargetTransformInfo &TTI,
3658                              LSRUse &LU, const SCEV *S, const Loop *L,
3659                              ScalarEvolution &SE) {
3660  if (LU.Kind != LSRUse::Address ||
3661      !LU.AccessTy.getType()->isIntOrIntVectorTy())
3662    return false;
3663  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
3664  if (!AR)
3665    return false;
3666  const SCEV *LoopStep = AR->getStepRecurrence(SE);
3667  if (!isa<SCEVConstant>(LoopStep))
3668    return false;
3669  // Check if a post-indexed load/store can be used.
3670  if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
3671      TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
3672    const SCEV *LoopStart = AR->getStart();
3673    if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L))
3674      return true;
3675  }
3676  return false;
3677}
3678
3679/// Helper function for LSRInstance::GenerateReassociations.
3680void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3681                                             const Formula &Base,
3682                                             unsigned Depth, size_t Idx,
3683                                             bool IsScaledReg) {
3684  const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3685  // Don't generate reassociations for the base register of a value that
3686  // may generate a post-increment operator. The reason is that the
3687  // reassociations cause extra base+register formula to be created,
3688  // and possibly chosen, but the post-increment is more efficient.
3689  if (AMK == TTI::AMK_PostIndexed && mayUsePostIncMode(TTI, LU, BaseReg, L, SE))
3690    return;
3691  SmallVector<const SCEV *, 8> AddOps;
3692  const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3693  if (Remainder)
3694    AddOps.push_back(Remainder);
3695
3696  if (AddOps.size() == 1)
3697    return;
3698
3699  for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3700                                                     JE = AddOps.end();
3701       J != JE; ++J) {
3702    // Loop-variant "unknown" values are uninteresting; we won't be able to
3703    // do anything meaningful with them.
3704    if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3705      continue;
3706
3707    // Don't pull a constant into a register if the constant could be folded
3708    // into an immediate field.
3709    if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3710                         LU.AccessTy, *J, Base.getNumRegs() > 1))
3711      continue;
3712
3713    // Collect all operands except *J.
3714    SmallVector<const SCEV *, 8> InnerAddOps(
3715        ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3716    InnerAddOps.append(std::next(J),
3717                       ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3718
3719    // Don't leave just a constant behind in a register if the constant could
3720    // be folded into an immediate field.
3721    if (InnerAddOps.size() == 1 &&
3722        isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3723                         LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3724      continue;
3725
3726    const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3727    if (InnerSum->isZero())
3728      continue;
3729    Formula F = Base;
3730
3731    // Add the remaining pieces of the add back into the new formula.
3732    const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3733    if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3734        TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3735                                InnerSumSC->getValue()->getZExtValue())) {
3736      F.UnfoldedOffset =
3737          (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3738      if (IsScaledReg)
3739        F.ScaledReg = nullptr;
3740      else
3741        F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3742    } else if (IsScaledReg)
3743      F.ScaledReg = InnerSum;
3744    else
3745      F.BaseRegs[Idx] = InnerSum;
3746
3747    // Add J as its own register, or an unfolded immediate.
3748    const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3749    if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3750        TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3751                                SC->getValue()->getZExtValue()))
3752      F.UnfoldedOffset =
3753          (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3754    else
3755      F.BaseRegs.push_back(*J);
3756    // We may have changed the number of register in base regs, adjust the
3757    // formula accordingly.
3758    F.canonicalize(*L);
3759
3760    if (InsertFormula(LU, LUIdx, F))
3761      // If that formula hadn't been seen before, recurse to find more like
3762      // it.
3763      // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
3764      // Because just Depth is not enough to bound compile time.
3765      // This means that every time AddOps.size() is greater 16^x we will add
3766      // x to Depth.
3767      GenerateReassociations(LU, LUIdx, LU.Formulae.back(),
3768                             Depth + 1 + (Log2_32(AddOps.size()) >> 2));
3769  }
3770}
3771
3772/// Split out subexpressions from adds and the bases of addrecs.
3773void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3774                                         Formula Base, unsigned Depth) {
3775  assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3776  // Arbitrarily cap recursion to protect compile time.
3777  if (Depth >= 3)
3778    return;
3779
3780  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3781    GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3782
3783  if (Base.Scale == 1)
3784    GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3785                               /* Idx */ -1, /* IsScaledReg */ true);
3786}
3787
3788///  Generate a formula consisting of all of the loop-dominating registers added
3789/// into a single register.
3790void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3791                                       Formula Base) {
3792  // This method is only interesting on a plurality of registers.
3793  if (Base.BaseRegs.size() + (Base.Scale == 1) +
3794      (Base.UnfoldedOffset != 0) <= 1)
3795    return;
3796
3797  // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3798  // processing the formula.
3799  Base.unscale();
3800  SmallVector<const SCEV *, 4> Ops;
3801  Formula NewBase = Base;
3802  NewBase.BaseRegs.clear();
3803  Type *CombinedIntegerType = nullptr;
3804  for (const SCEV *BaseReg : Base.BaseRegs) {
3805    if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3806        !SE.hasComputableLoopEvolution(BaseReg, L)) {
3807      if (!CombinedIntegerType)
3808        CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType());
3809      Ops.push_back(BaseReg);
3810    }
3811    else
3812      NewBase.BaseRegs.push_back(BaseReg);
3813  }
3814
3815  // If no register is relevant, we're done.
3816  if (Ops.size() == 0)
3817    return;
3818
3819  // Utility function for generating the required variants of the combined
3820  // registers.
3821  auto GenerateFormula = [&](const SCEV *Sum) {
3822    Formula F = NewBase;
3823
3824    // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3825    // opportunity to fold something. For now, just ignore such cases
3826    // rather than proceed with zero in a register.
3827    if (Sum->isZero())
3828      return;
3829
3830    F.BaseRegs.push_back(Sum);
3831    F.canonicalize(*L);
3832    (void)InsertFormula(LU, LUIdx, F);
3833  };
3834
3835  // If we collected at least two registers, generate a formula combining them.
3836  if (Ops.size() > 1) {
3837    SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops.
3838    GenerateFormula(SE.getAddExpr(OpsCopy));
3839  }
3840
3841  // If we have an unfolded offset, generate a formula combining it with the
3842  // registers collected.
3843  if (NewBase.UnfoldedOffset) {
3844    assert(CombinedIntegerType && "Missing a type for the unfolded offset");
3845    Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset,
3846                                 true));
3847    NewBase.UnfoldedOffset = 0;
3848    GenerateFormula(SE.getAddExpr(Ops));
3849  }
3850}
3851
3852/// Helper function for LSRInstance::GenerateSymbolicOffsets.
3853void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3854                                              const Formula &Base, size_t Idx,
3855                                              bool IsScaledReg) {
3856  const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3857  GlobalValue *GV = ExtractSymbol(G, SE);
3858  if (G->isZero() || !GV)
3859    return;
3860  Formula F = Base;
3861  F.BaseGV = GV;
3862  if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3863    return;
3864  if (IsScaledReg)
3865    F.ScaledReg = G;
3866  else
3867    F.BaseRegs[Idx] = G;
3868  (void)InsertFormula(LU, LUIdx, F);
3869}
3870
3871/// Generate reuse formulae using symbolic offsets.
3872void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3873                                          Formula Base) {
3874  // We can't add a symbolic offset if the address already contains one.
3875  if (Base.BaseGV) return;
3876
3877  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3878    GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3879  if (Base.Scale == 1)
3880    GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3881                                /* IsScaledReg */ true);
3882}
3883
3884/// Helper function for LSRInstance::GenerateConstantOffsets.
3885void LSRInstance::GenerateConstantOffsetsImpl(
3886    LSRUse &LU, unsigned LUIdx, const Formula &Base,
3887    const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3888
3889  auto GenerateOffset = [&](const SCEV *G, int64_t Offset) {
3890    Formula F = Base;
3891    F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3892
3893    if (isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) {
3894      // Add the offset to the base register.
3895      const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3896      // If it cancelled out, drop the base register, otherwise update it.
3897      if (NewG->isZero()) {
3898        if (IsScaledReg) {
3899          F.Scale = 0;
3900          F.ScaledReg = nullptr;
3901        } else
3902          F.deleteBaseReg(F.BaseRegs[Idx]);
3903        F.canonicalize(*L);
3904      } else if (IsScaledReg)
3905        F.ScaledReg = NewG;
3906      else
3907        F.BaseRegs[Idx] = NewG;
3908
3909      (void)InsertFormula(LU, LUIdx, F);
3910    }
3911  };
3912
3913  const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3914
3915  // With constant offsets and constant steps, we can generate pre-inc
3916  // accesses by having the offset equal the step. So, for access #0 with a
3917  // step of 8, we generate a G - 8 base which would require the first access
3918  // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
3919  // for itself and hopefully becomes the base for other accesses. This means
3920  // means that a single pre-indexed access can be generated to become the new
3921  // base pointer for each iteration of the loop, resulting in no extra add/sub
3922  // instructions for pointer updating.
3923  if (AMK == TTI::AMK_PreIndexed && LU.Kind == LSRUse::Address) {
3924    if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) {
3925      if (auto *StepRec =
3926          dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) {
3927        const APInt &StepInt = StepRec->getAPInt();
3928        int64_t Step = StepInt.isNegative() ?
3929          StepInt.getSExtValue() : StepInt.getZExtValue();
3930
3931        for (int64_t Offset : Worklist) {
3932          Offset -= Step;
3933          GenerateOffset(G, Offset);
3934        }
3935      }
3936    }
3937  }
3938  for (int64_t Offset : Worklist)
3939    GenerateOffset(G, Offset);
3940
3941  int64_t Imm = ExtractImmediate(G, SE);
3942  if (G->isZero() || Imm == 0)
3943    return;
3944  Formula F = Base;
3945  F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3946  if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3947    return;
3948  if (IsScaledReg) {
3949    F.ScaledReg = G;
3950  } else {
3951    F.BaseRegs[Idx] = G;
3952    // We may generate non canonical Formula if G is a recurrent expr reg
3953    // related with current loop while F.ScaledReg is not.
3954    F.canonicalize(*L);
3955  }
3956  (void)InsertFormula(LU, LUIdx, F);
3957}
3958
3959/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3960void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3961                                          Formula Base) {
3962  // TODO: For now, just add the min and max offset, because it usually isn't
3963  // worthwhile looking at everything inbetween.
3964  SmallVector<int64_t, 2> Worklist;
3965  Worklist.push_back(LU.MinOffset);
3966  if (LU.MaxOffset != LU.MinOffset)
3967    Worklist.push_back(LU.MaxOffset);
3968
3969  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3970    GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3971  if (Base.Scale == 1)
3972    GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3973                                /* IsScaledReg */ true);
3974}
3975
3976/// For ICmpZero, check to see if we can scale up the comparison. For example, x
3977/// == y -> x*c == y*c.
3978void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3979                                         Formula Base) {
3980  if (LU.Kind != LSRUse::ICmpZero) return;
3981
3982  // Determine the integer type for the base formula.
3983  Type *IntTy = Base.getType();
3984  if (!IntTy) return;
3985  if (SE.getTypeSizeInBits(IntTy) > 64) return;
3986
3987  // Don't do this if there is more than one offset.
3988  if (LU.MinOffset != LU.MaxOffset) return;
3989
3990  // Check if transformation is valid. It is illegal to multiply pointer.
3991  if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
3992    return;
3993  for (const SCEV *BaseReg : Base.BaseRegs)
3994    if (BaseReg->getType()->isPointerTy())
3995      return;
3996  assert(!Base.BaseGV && "ICmpZero use is not legal!");
3997
3998  // Check each interesting stride.
3999  for (int64_t Factor : Factors) {
4000    // Check that Factor can be represented by IntTy
4001    if (!ConstantInt::isValueValidForType(IntTy, Factor))
4002      continue;
4003    // Check that the multiplication doesn't overflow.
4004    if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
4005      continue;
4006    int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
4007    assert(Factor != 0 && "Zero factor not expected!");
4008    if (NewBaseOffset / Factor != Base.BaseOffset)
4009      continue;
4010    // If the offset will be truncated at this use, check that it is in bounds.
4011    if (!IntTy->isPointerTy() &&
4012        !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
4013      continue;
4014
4015    // Check that multiplying with the use offset doesn't overflow.
4016    int64_t Offset = LU.MinOffset;
4017    if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
4018      continue;
4019    Offset = (uint64_t)Offset * Factor;
4020    if (Offset / Factor != LU.MinOffset)
4021      continue;
4022    // If the offset will be truncated at this use, check that it is in bounds.
4023    if (!IntTy->isPointerTy() &&
4024        !ConstantInt::isValueValidForType(IntTy, Offset))
4025      continue;
4026
4027    Formula F = Base;
4028    F.BaseOffset = NewBaseOffset;
4029
4030    // Check that this scale is legal.
4031    if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
4032      continue;
4033
4034    // Compensate for the use having MinOffset built into it.
4035    F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
4036
4037    const SCEV *FactorS = SE.getConstant(IntTy, Factor);
4038
4039    // Check that multiplying with each base register doesn't overflow.
4040    for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
4041      F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
4042      if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
4043        goto next;
4044    }
4045
4046    // Check that multiplying with the scaled register doesn't overflow.
4047    if (F.ScaledReg) {
4048      F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
4049      if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
4050        continue;
4051    }
4052
4053    // Check that multiplying with the unfolded offset doesn't overflow.
4054    if (F.UnfoldedOffset != 0) {
4055      if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
4056          Factor == -1)
4057        continue;
4058      F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
4059      if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
4060        continue;
4061      // If the offset will be truncated, check that it is in bounds.
4062      if (!IntTy->isPointerTy() &&
4063          !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
4064        continue;
4065    }
4066
4067    // If we make it here and it's legal, add it.
4068    (void)InsertFormula(LU, LUIdx, F);
4069  next:;
4070  }
4071}
4072
4073/// Generate stride factor reuse formulae by making use of scaled-offset address
4074/// modes, for example.
4075void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
4076  // Determine the integer type for the base formula.
4077  Type *IntTy = Base.getType();
4078  if (!IntTy) return;
4079
4080  // If this Formula already has a scaled register, we can't add another one.
4081  // Try to unscale the formula to generate a better scale.
4082  if (Base.Scale != 0 && !Base.unscale())
4083    return;
4084
4085  assert(Base.Scale == 0 && "unscale did not did its job!");
4086
4087  // Check each interesting stride.
4088  for (int64_t Factor : Factors) {
4089    Base.Scale = Factor;
4090    Base.HasBaseReg = Base.BaseRegs.size() > 1;
4091    // Check whether this scale is going to be legal.
4092    if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4093                    Base)) {
4094      // As a special-case, handle special out-of-loop Basic users specially.
4095      // TODO: Reconsider this special case.
4096      if (LU.Kind == LSRUse::Basic &&
4097          isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
4098                     LU.AccessTy, Base) &&
4099          LU.AllFixupsOutsideLoop)
4100        LU.Kind = LSRUse::Special;
4101      else
4102        continue;
4103    }
4104    // For an ICmpZero, negating a solitary base register won't lead to
4105    // new solutions.
4106    if (LU.Kind == LSRUse::ICmpZero &&
4107        !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
4108      continue;
4109    // For each addrec base reg, if its loop is current loop, apply the scale.
4110    for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
4111      const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
4112      if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
4113        const SCEV *FactorS = SE.getConstant(IntTy, Factor);
4114        if (FactorS->isZero())
4115          continue;
4116        // Divide out the factor, ignoring high bits, since we'll be
4117        // scaling the value back up in the end.
4118        if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true))
4119          if (!Quotient->isZero()) {
4120            // TODO: This could be optimized to avoid all the copying.
4121            Formula F = Base;
4122            F.ScaledReg = Quotient;
4123            F.deleteBaseReg(F.BaseRegs[i]);
4124            // The canonical representation of 1*reg is reg, which is already in
4125            // Base. In that case, do not try to insert the formula, it will be
4126            // rejected anyway.
4127            if (F.Scale == 1 && (F.BaseRegs.empty() ||
4128                                 (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
4129              continue;
4130            // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
4131            // non canonical Formula with ScaledReg's loop not being L.
4132            if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
4133              F.canonicalize(*L);
4134            (void)InsertFormula(LU, LUIdx, F);
4135          }
4136      }
4137    }
4138  }
4139}
4140
4141/// Extend/Truncate \p Expr to \p ToTy considering post-inc uses in \p Loops.
4142/// For all PostIncLoopSets in \p Loops, first de-normalize \p Expr, then
4143/// perform the extension/truncate and normalize again, as the normalized form
4144/// can result in folds that are not valid in the post-inc use contexts. The
4145/// expressions for all PostIncLoopSets must match, otherwise return nullptr.
4146static const SCEV *
4147getAnyExtendConsideringPostIncUses(ArrayRef<PostIncLoopSet> Loops,
4148                                   const SCEV *Expr, Type *ToTy,
4149                                   ScalarEvolution &SE) {
4150  const SCEV *Result = nullptr;
4151  for (auto &L : Loops) {
4152    auto *DenormExpr = denormalizeForPostIncUse(Expr, L, SE);
4153    const SCEV *NewDenormExpr = SE.getAnyExtendExpr(DenormExpr, ToTy);
4154    const SCEV *New = normalizeForPostIncUse(NewDenormExpr, L, SE);
4155    if (!New || (Result && New != Result))
4156      return nullptr;
4157    Result = New;
4158  }
4159
4160  assert(Result && "failed to create expression");
4161  return Result;
4162}
4163
4164/// Generate reuse formulae from different IV types.
4165void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
4166  // Don't bother truncating symbolic values.
4167  if (Base.BaseGV) return;
4168
4169  // Determine the integer type for the base formula.
4170  Type *DstTy = Base.getType();
4171  if (!DstTy) return;
4172  if (DstTy->isPointerTy())
4173    return;
4174
4175  // It is invalid to extend a pointer type so exit early if ScaledReg or
4176  // any of the BaseRegs are pointers.
4177  if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
4178    return;
4179  if (any_of(Base.BaseRegs,
4180             [](const SCEV *S) { return S->getType()->isPointerTy(); }))
4181    return;
4182
4183  SmallVector<PostIncLoopSet> Loops;
4184  for (auto &LF : LU.Fixups)
4185    Loops.push_back(LF.PostIncLoops);
4186
4187  for (Type *SrcTy : Types) {
4188    if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
4189      Formula F = Base;
4190
4191      // Sometimes SCEV is able to prove zero during ext transform. It may
4192      // happen if SCEV did not do all possible transforms while creating the
4193      // initial node (maybe due to depth limitations), but it can do them while
4194      // taking ext.
4195      if (F.ScaledReg) {
4196        const SCEV *NewScaledReg =
4197            getAnyExtendConsideringPostIncUses(Loops, F.ScaledReg, SrcTy, SE);
4198        if (!NewScaledReg || NewScaledReg->isZero())
4199          continue;
4200        F.ScaledReg = NewScaledReg;
4201      }
4202      bool HasZeroBaseReg = false;
4203      for (const SCEV *&BaseReg : F.BaseRegs) {
4204        const SCEV *NewBaseReg =
4205            getAnyExtendConsideringPostIncUses(Loops, BaseReg, SrcTy, SE);
4206        if (!NewBaseReg || NewBaseReg->isZero()) {
4207          HasZeroBaseReg = true;
4208          break;
4209        }
4210        BaseReg = NewBaseReg;
4211      }
4212      if (HasZeroBaseReg)
4213        continue;
4214
4215      // TODO: This assumes we've done basic processing on all uses and
4216      // have an idea what the register usage is.
4217      if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
4218        continue;
4219
4220      F.canonicalize(*L);
4221      (void)InsertFormula(LU, LUIdx, F);
4222    }
4223  }
4224}
4225
4226namespace {
4227
4228/// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
4229/// modifications so that the search phase doesn't have to worry about the data
4230/// structures moving underneath it.
4231struct WorkItem {
4232  size_t LUIdx;
4233  int64_t Imm;
4234  const SCEV *OrigReg;
4235
4236  WorkItem(size_t LI, int64_t I, const SCEV *R)
4237      : LUIdx(LI), Imm(I), OrigReg(R) {}
4238
4239  void print(raw_ostream &OS) const;
4240  void dump() const;
4241};
4242
4243} // end anonymous namespace
4244
4245#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4246void WorkItem::print(raw_ostream &OS) const {
4247  OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
4248     << " , add offset " << Imm;
4249}
4250
4251LLVM_DUMP_METHOD void WorkItem::dump() const {
4252  print(errs()); errs() << '\n';
4253}
4254#endif
4255
4256/// Look for registers which are a constant distance apart and try to form reuse
4257/// opportunities between them.
4258void LSRInstance::GenerateCrossUseConstantOffsets() {
4259  // Group the registers by their value without any added constant offset.
4260  using ImmMapTy = std::map<int64_t, const SCEV *>;
4261
4262  DenseMap<const SCEV *, ImmMapTy> Map;
4263  DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
4264  SmallVector<const SCEV *, 8> Sequence;
4265  for (const SCEV *Use : RegUses) {
4266    const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
4267    int64_t Imm = ExtractImmediate(Reg, SE);
4268    auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
4269    if (Pair.second)
4270      Sequence.push_back(Reg);
4271    Pair.first->second.insert(std::make_pair(Imm, Use));
4272    UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
4273  }
4274
4275  // Now examine each set of registers with the same base value. Build up
4276  // a list of work to do and do the work in a separate step so that we're
4277  // not adding formulae and register counts while we're searching.
4278  SmallVector<WorkItem, 32> WorkItems;
4279  SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
4280  for (const SCEV *Reg : Sequence) {
4281    const ImmMapTy &Imms = Map.find(Reg)->second;
4282
4283    // It's not worthwhile looking for reuse if there's only one offset.
4284    if (Imms.size() == 1)
4285      continue;
4286
4287    LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
4288               for (const auto &Entry
4289                    : Imms) dbgs()
4290               << ' ' << Entry.first;
4291               dbgs() << '\n');
4292
4293    // Examine each offset.
4294    for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
4295         J != JE; ++J) {
4296      const SCEV *OrigReg = J->second;
4297
4298      int64_t JImm = J->first;
4299      const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
4300
4301      if (!isa<SCEVConstant>(OrigReg) &&
4302          UsedByIndicesMap[Reg].count() == 1) {
4303        LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4304                          << '\n');
4305        continue;
4306      }
4307
4308      // Conservatively examine offsets between this orig reg a few selected
4309      // other orig regs.
4310      int64_t First = Imms.begin()->first;
4311      int64_t Last = std::prev(Imms.end())->first;
4312      // Compute (First + Last)  / 2 without overflow using the fact that
4313      // First + Last = 2 * (First + Last) + (First ^ Last).
4314      int64_t Avg = (First & Last) + ((First ^ Last) >> 1);
4315      // If the result is negative and First is odd and Last even (or vice versa),
4316      // we rounded towards -inf. Add 1 in that case, to round towards 0.
4317      Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63));
4318      ImmMapTy::const_iterator OtherImms[] = {
4319          Imms.begin(), std::prev(Imms.end()),
4320         Imms.lower_bound(Avg)};
4321      for (const auto &M : OtherImms) {
4322        if (M == J || M == JE) continue;
4323
4324        // Compute the difference between the two.
4325        int64_t Imm = (uint64_t)JImm - M->first;
4326        for (unsigned LUIdx : UsedByIndices.set_bits())
4327          // Make a memo of this use, offset, and register tuple.
4328          if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
4329            WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
4330      }
4331    }
4332  }
4333
4334  Map.clear();
4335  Sequence.clear();
4336  UsedByIndicesMap.clear();
4337  UniqueItems.clear();
4338
4339  // Now iterate through the worklist and add new formulae.
4340  for (const WorkItem &WI : WorkItems) {
4341    size_t LUIdx = WI.LUIdx;
4342    LSRUse &LU = Uses[LUIdx];
4343    int64_t Imm = WI.Imm;
4344    const SCEV *OrigReg = WI.OrigReg;
4345
4346    Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
4347    const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
4348    unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
4349
4350    // TODO: Use a more targeted data structure.
4351    for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4352      Formula F = LU.Formulae[L];
4353      // FIXME: The code for the scaled and unscaled registers looks
4354      // very similar but slightly different. Investigate if they
4355      // could be merged. That way, we would not have to unscale the
4356      // Formula.
4357      F.unscale();
4358      // Use the immediate in the scaled register.
4359      if (F.ScaledReg == OrigReg) {
4360        int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
4361        // Don't create 50 + reg(-50).
4362        if (F.referencesReg(SE.getSCEV(
4363                   ConstantInt::get(IntTy, -(uint64_t)Offset))))
4364          continue;
4365        Formula NewF = F;
4366        NewF.BaseOffset = Offset;
4367        if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4368                        NewF))
4369          continue;
4370        NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4371
4372        // If the new scale is a constant in a register, and adding the constant
4373        // value to the immediate would produce a value closer to zero than the
4374        // immediate itself, then the formula isn't worthwhile.
4375        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
4376          if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
4377              (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4378                  .ule(std::abs(NewF.BaseOffset)))
4379            continue;
4380
4381        // OK, looks good.
4382        NewF.canonicalize(*this->L);
4383        (void)InsertFormula(LU, LUIdx, NewF);
4384      } else {
4385        // Use the immediate in a base register.
4386        for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4387          const SCEV *BaseReg = F.BaseRegs[N];
4388          if (BaseReg != OrigReg)
4389            continue;
4390          Formula NewF = F;
4391          NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4392          if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4393                          LU.Kind, LU.AccessTy, NewF)) {
4394            if (AMK == TTI::AMK_PostIndexed &&
4395                mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE))
4396              continue;
4397            if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4398              continue;
4399            NewF = F;
4400            NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4401          }
4402          NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4403
4404          // If the new formula has a constant in a register, and adding the
4405          // constant value to the immediate would produce a value closer to
4406          // zero than the immediate itself, then the formula isn't worthwhile.
4407          for (const SCEV *NewReg : NewF.BaseRegs)
4408            if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4409              if ((C->getAPInt() + NewF.BaseOffset)
4410                      .abs()
4411                      .slt(std::abs(NewF.BaseOffset)) &&
4412                  (C->getAPInt() + NewF.BaseOffset).countr_zero() >=
4413                      (unsigned)llvm::countr_zero<uint64_t>(NewF.BaseOffset))
4414                goto skip_formula;
4415
4416          // Ok, looks good.
4417          NewF.canonicalize(*this->L);
4418          (void)InsertFormula(LU, LUIdx, NewF);
4419          break;
4420        skip_formula:;
4421        }
4422      }
4423    }
4424  }
4425}
4426
4427/// Generate formulae for each use.
4428void
4429LSRInstance::GenerateAllReuseFormulae() {
4430  // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4431  // queries are more precise.
4432  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4433    LSRUse &LU = Uses[LUIdx];
4434    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4435      GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4436    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4437      GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4438  }
4439  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4440    LSRUse &LU = Uses[LUIdx];
4441    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4442      GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4443    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4444      GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4445    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4446      GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4447    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4448      GenerateScales(LU, LUIdx, LU.Formulae[i]);
4449  }
4450  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4451    LSRUse &LU = Uses[LUIdx];
4452    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4453      GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4454  }
4455
4456  GenerateCrossUseConstantOffsets();
4457
4458  LLVM_DEBUG(dbgs() << "\n"
4459                       "After generating reuse formulae:\n";
4460             print_uses(dbgs()));
4461}
4462
4463/// If there are multiple formulae with the same set of registers used
4464/// by other uses, pick the best one and delete the others.
4465void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4466  DenseSet<const SCEV *> VisitedRegs;
4467  SmallPtrSet<const SCEV *, 16> Regs;
4468  SmallPtrSet<const SCEV *, 16> LoserRegs;
4469#ifndef NDEBUG
4470  bool ChangedFormulae = false;
4471#endif
4472
4473  // Collect the best formula for each unique set of shared registers. This
4474  // is reset for each use.
4475  using BestFormulaeTy =
4476      DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4477
4478  BestFormulaeTy BestFormulae;
4479
4480  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4481    LSRUse &LU = Uses[LUIdx];
4482    LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4483               dbgs() << '\n');
4484
4485    bool Any = false;
4486    for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4487         FIdx != NumForms; ++FIdx) {
4488      Formula &F = LU.Formulae[FIdx];
4489
4490      // Some formulas are instant losers. For example, they may depend on
4491      // nonexistent AddRecs from other loops. These need to be filtered
4492      // immediately, otherwise heuristics could choose them over others leading
4493      // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4494      // avoids the need to recompute this information across formulae using the
4495      // same bad AddRec. Passing LoserRegs is also essential unless we remove
4496      // the corresponding bad register from the Regs set.
4497      Cost CostF(L, SE, TTI, AMK);
4498      Regs.clear();
4499      CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs);
4500      if (CostF.isLoser()) {
4501        // During initial formula generation, undesirable formulae are generated
4502        // by uses within other loops that have some non-trivial address mode or
4503        // use the postinc form of the IV. LSR needs to provide these formulae
4504        // as the basis of rediscovering the desired formula that uses an AddRec
4505        // corresponding to the existing phi. Once all formulae have been
4506        // generated, these initial losers may be pruned.
4507        LLVM_DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
4508                   dbgs() << "\n");
4509      }
4510      else {
4511        SmallVector<const SCEV *, 4> Key;
4512        for (const SCEV *Reg : F.BaseRegs) {
4513          if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4514            Key.push_back(Reg);
4515        }
4516        if (F.ScaledReg &&
4517            RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4518          Key.push_back(F.ScaledReg);
4519        // Unstable sort by host order ok, because this is only used for
4520        // uniquifying.
4521        llvm::sort(Key);
4522
4523        std::pair<BestFormulaeTy::const_iterator, bool> P =
4524          BestFormulae.insert(std::make_pair(Key, FIdx));
4525        if (P.second)
4526          continue;
4527
4528        Formula &Best = LU.Formulae[P.first->second];
4529
4530        Cost CostBest(L, SE, TTI, AMK);
4531        Regs.clear();
4532        CostBest.RateFormula(Best, Regs, VisitedRegs, LU);
4533        if (CostF.isLess(CostBest))
4534          std::swap(F, Best);
4535        LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4536                   dbgs() << "\n"
4537                             "    in favor of formula ";
4538                   Best.print(dbgs()); dbgs() << '\n');
4539      }
4540#ifndef NDEBUG
4541      ChangedFormulae = true;
4542#endif
4543      LU.DeleteFormula(F);
4544      --FIdx;
4545      --NumForms;
4546      Any = true;
4547    }
4548
4549    // Now that we've filtered out some formulae, recompute the Regs set.
4550    if (Any)
4551      LU.RecomputeRegs(LUIdx, RegUses);
4552
4553    // Reset this to prepare for the next use.
4554    BestFormulae.clear();
4555  }
4556
4557  LLVM_DEBUG(if (ChangedFormulae) {
4558    dbgs() << "\n"
4559              "After filtering out undesirable candidates:\n";
4560    print_uses(dbgs());
4561  });
4562}
4563
4564/// Estimate the worst-case number of solutions the solver might have to
4565/// consider. It almost never considers this many solutions because it prune the
4566/// search space, but the pruning isn't always sufficient.
4567size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4568  size_t Power = 1;
4569  for (const LSRUse &LU : Uses) {
4570    size_t FSize = LU.Formulae.size();
4571    if (FSize >= ComplexityLimit) {
4572      Power = ComplexityLimit;
4573      break;
4574    }
4575    Power *= FSize;
4576    if (Power >= ComplexityLimit)
4577      break;
4578  }
4579  return Power;
4580}
4581
4582/// When one formula uses a superset of the registers of another formula, it
4583/// won't help reduce register pressure (though it may not necessarily hurt
4584/// register pressure); remove it to simplify the system.
4585void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4586  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4587    LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4588
4589    LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4590                         "which use a superset of registers used by other "
4591                         "formulae.\n");
4592
4593    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4594      LSRUse &LU = Uses[LUIdx];
4595      bool Any = false;
4596      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4597        Formula &F = LU.Formulae[i];
4598        // Look for a formula with a constant or GV in a register. If the use
4599        // also has a formula with that same value in an immediate field,
4600        // delete the one that uses a register.
4601        for (SmallVectorImpl<const SCEV *>::const_iterator
4602             I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4603          if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4604            Formula NewF = F;
4605            //FIXME: Formulas should store bitwidth to do wrapping properly.
4606            //       See PR41034.
4607            NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue();
4608            NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4609                                (I - F.BaseRegs.begin()));
4610            if (LU.HasFormulaWithSameRegs(NewF)) {
4611              LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4612                         dbgs() << '\n');
4613              LU.DeleteFormula(F);
4614              --i;
4615              --e;
4616              Any = true;
4617              break;
4618            }
4619          } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4620            if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4621              if (!F.BaseGV) {
4622                Formula NewF = F;
4623                NewF.BaseGV = GV;
4624                NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4625                                    (I - F.BaseRegs.begin()));
4626                if (LU.HasFormulaWithSameRegs(NewF)) {
4627                  LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4628                             dbgs() << '\n');
4629                  LU.DeleteFormula(F);
4630                  --i;
4631                  --e;
4632                  Any = true;
4633                  break;
4634                }
4635              }
4636          }
4637        }
4638      }
4639      if (Any)
4640        LU.RecomputeRegs(LUIdx, RegUses);
4641    }
4642
4643    LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4644  }
4645}
4646
4647/// When there are many registers for expressions like A, A+1, A+2, etc.,
4648/// allocate a single register for them.
4649void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4650  if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4651    return;
4652
4653  LLVM_DEBUG(
4654      dbgs() << "The search space is too complex.\n"
4655                "Narrowing the search space by assuming that uses separated "
4656                "by a constant offset will use the same registers.\n");
4657
4658  // This is especially useful for unrolled loops.
4659
4660  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4661    LSRUse &LU = Uses[LUIdx];
4662    for (const Formula &F : LU.Formulae) {
4663      if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4664        continue;
4665
4666      LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4667      if (!LUThatHas)
4668        continue;
4669
4670      if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4671                              LU.Kind, LU.AccessTy))
4672        continue;
4673
4674      LLVM_DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4675
4676      LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4677
4678      // Transfer the fixups of LU to LUThatHas.
4679      for (LSRFixup &Fixup : LU.Fixups) {
4680        Fixup.Offset += F.BaseOffset;
4681        LUThatHas->pushFixup(Fixup);
4682        LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4683      }
4684
4685      // Delete formulae from the new use which are no longer legal.
4686      bool Any = false;
4687      for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4688        Formula &F = LUThatHas->Formulae[i];
4689        if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4690                        LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4691          LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4692          LUThatHas->DeleteFormula(F);
4693          --i;
4694          --e;
4695          Any = true;
4696        }
4697      }
4698
4699      if (Any)
4700        LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4701
4702      // Delete the old use.
4703      DeleteUse(LU, LUIdx);
4704      --LUIdx;
4705      --NumUses;
4706      break;
4707    }
4708  }
4709
4710  LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4711}
4712
4713/// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4714/// we've done more filtering, as it may be able to find more formulae to
4715/// eliminate.
4716void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4717  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4718    LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4719
4720    LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4721                         "undesirable dedicated registers.\n");
4722
4723    FilterOutUndesirableDedicatedRegisters();
4724
4725    LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4726  }
4727}
4728
4729/// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4730/// Pick the best one and delete the others.
4731/// This narrowing heuristic is to keep as many formulae with different
4732/// Scale and ScaledReg pair as possible while narrowing the search space.
4733/// The benefit is that it is more likely to find out a better solution
4734/// from a formulae set with more Scale and ScaledReg variations than
4735/// a formulae set with the same Scale and ScaledReg. The picking winner
4736/// reg heuristic will often keep the formulae with the same Scale and
4737/// ScaledReg and filter others, and we want to avoid that if possible.
4738void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4739  if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4740    return;
4741
4742  LLVM_DEBUG(
4743      dbgs() << "The search space is too complex.\n"
4744                "Narrowing the search space by choosing the best Formula "
4745                "from the Formulae with the same Scale and ScaledReg.\n");
4746
4747  // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4748  using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
4749
4750  BestFormulaeTy BestFormulae;
4751#ifndef NDEBUG
4752  bool ChangedFormulae = false;
4753#endif
4754  DenseSet<const SCEV *> VisitedRegs;
4755  SmallPtrSet<const SCEV *, 16> Regs;
4756
4757  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4758    LSRUse &LU = Uses[LUIdx];
4759    LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4760               dbgs() << '\n');
4761
4762    // Return true if Formula FA is better than Formula FB.
4763    auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4764      // First we will try to choose the Formula with fewer new registers.
4765      // For a register used by current Formula, the more the register is
4766      // shared among LSRUses, the less we increase the register number
4767      // counter of the formula.
4768      size_t FARegNum = 0;
4769      for (const SCEV *Reg : FA.BaseRegs) {
4770        const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4771        FARegNum += (NumUses - UsedByIndices.count() + 1);
4772      }
4773      size_t FBRegNum = 0;
4774      for (const SCEV *Reg : FB.BaseRegs) {
4775        const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4776        FBRegNum += (NumUses - UsedByIndices.count() + 1);
4777      }
4778      if (FARegNum != FBRegNum)
4779        return FARegNum < FBRegNum;
4780
4781      // If the new register numbers are the same, choose the Formula with
4782      // less Cost.
4783      Cost CostFA(L, SE, TTI, AMK);
4784      Cost CostFB(L, SE, TTI, AMK);
4785      Regs.clear();
4786      CostFA.RateFormula(FA, Regs, VisitedRegs, LU);
4787      Regs.clear();
4788      CostFB.RateFormula(FB, Regs, VisitedRegs, LU);
4789      return CostFA.isLess(CostFB);
4790    };
4791
4792    bool Any = false;
4793    for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4794         ++FIdx) {
4795      Formula &F = LU.Formulae[FIdx];
4796      if (!F.ScaledReg)
4797        continue;
4798      auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4799      if (P.second)
4800        continue;
4801
4802      Formula &Best = LU.Formulae[P.first->second];
4803      if (IsBetterThan(F, Best))
4804        std::swap(F, Best);
4805      LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4806                 dbgs() << "\n"
4807                           "    in favor of formula ";
4808                 Best.print(dbgs()); dbgs() << '\n');
4809#ifndef NDEBUG
4810      ChangedFormulae = true;
4811#endif
4812      LU.DeleteFormula(F);
4813      --FIdx;
4814      --NumForms;
4815      Any = true;
4816    }
4817    if (Any)
4818      LU.RecomputeRegs(LUIdx, RegUses);
4819
4820    // Reset this to prepare for the next use.
4821    BestFormulae.clear();
4822  }
4823
4824  LLVM_DEBUG(if (ChangedFormulae) {
4825    dbgs() << "\n"
4826              "After filtering out undesirable candidates:\n";
4827    print_uses(dbgs());
4828  });
4829}
4830
4831/// If we are over the complexity limit, filter out any post-inc prefering
4832/// variables to only post-inc values.
4833void LSRInstance::NarrowSearchSpaceByFilterPostInc() {
4834  if (AMK != TTI::AMK_PostIndexed)
4835    return;
4836  if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4837    return;
4838
4839  LLVM_DEBUG(dbgs() << "The search space is too complex.\n"
4840                       "Narrowing the search space by choosing the lowest "
4841                       "register Formula for PostInc Uses.\n");
4842
4843  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4844    LSRUse &LU = Uses[LUIdx];
4845
4846    if (LU.Kind != LSRUse::Address)
4847      continue;
4848    if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) &&
4849        !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType()))
4850      continue;
4851
4852    size_t MinRegs = std::numeric_limits<size_t>::max();
4853    for (const Formula &F : LU.Formulae)
4854      MinRegs = std::min(F.getNumRegs(), MinRegs);
4855
4856    bool Any = false;
4857    for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4858         ++FIdx) {
4859      Formula &F = LU.Formulae[FIdx];
4860      if (F.getNumRegs() > MinRegs) {
4861        LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4862                   dbgs() << "\n");
4863        LU.DeleteFormula(F);
4864        --FIdx;
4865        --NumForms;
4866        Any = true;
4867      }
4868    }
4869    if (Any)
4870      LU.RecomputeRegs(LUIdx, RegUses);
4871
4872    if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4873      break;
4874  }
4875
4876  LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4877}
4878
4879/// The function delete formulas with high registers number expectation.
4880/// Assuming we don't know the value of each formula (already delete
4881/// all inefficient), generate probability of not selecting for each
4882/// register.
4883/// For example,
4884/// Use1:
4885///  reg(a) + reg({0,+,1})
4886///  reg(a) + reg({-1,+,1}) + 1
4887///  reg({a,+,1})
4888/// Use2:
4889///  reg(b) + reg({0,+,1})
4890///  reg(b) + reg({-1,+,1}) + 1
4891///  reg({b,+,1})
4892/// Use3:
4893///  reg(c) + reg(b) + reg({0,+,1})
4894///  reg(c) + reg({b,+,1})
4895///
4896/// Probability of not selecting
4897///                 Use1   Use2    Use3
4898/// reg(a)         (1/3) *   1   *   1
4899/// reg(b)           1   * (1/3) * (1/2)
4900/// reg({0,+,1})   (2/3) * (2/3) * (1/2)
4901/// reg({-1,+,1})  (2/3) * (2/3) *   1
4902/// reg({a,+,1})   (2/3) *   1   *   1
4903/// reg({b,+,1})     1   * (2/3) * (2/3)
4904/// reg(c)           1   *   1   *   0
4905///
4906/// Now count registers number mathematical expectation for each formula:
4907/// Note that for each use we exclude probability if not selecting for the use.
4908/// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4909/// probabilty 1/3 of not selecting for Use1).
4910/// Use1:
4911///  reg(a) + reg({0,+,1})          1 + 1/3       -- to be deleted
4912///  reg(a) + reg({-1,+,1}) + 1     1 + 4/9       -- to be deleted
4913///  reg({a,+,1})                   1
4914/// Use2:
4915///  reg(b) + reg({0,+,1})          1/2 + 1/3     -- to be deleted
4916///  reg(b) + reg({-1,+,1}) + 1     1/2 + 2/3     -- to be deleted
4917///  reg({b,+,1})                   2/3
4918/// Use3:
4919///  reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4920///  reg(c) + reg({b,+,1})          1 + 2/3
4921void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4922  if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4923    return;
4924  // Ok, we have too many of formulae on our hands to conveniently handle.
4925  // Use a rough heuristic to thin out the list.
4926
4927  // Set of Regs wich will be 100% used in final solution.
4928  // Used in each formula of a solution (in example above this is reg(c)).
4929  // We can skip them in calculations.
4930  SmallPtrSet<const SCEV *, 4> UniqRegs;
4931  LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4932
4933  // Map each register to probability of not selecting
4934  DenseMap <const SCEV *, float> RegNumMap;
4935  for (const SCEV *Reg : RegUses) {
4936    if (UniqRegs.count(Reg))
4937      continue;
4938    float PNotSel = 1;
4939    for (const LSRUse &LU : Uses) {
4940      if (!LU.Regs.count(Reg))
4941        continue;
4942      float P = LU.getNotSelectedProbability(Reg);
4943      if (P != 0.0)
4944        PNotSel *= P;
4945      else
4946        UniqRegs.insert(Reg);
4947    }
4948    RegNumMap.insert(std::make_pair(Reg, PNotSel));
4949  }
4950
4951  LLVM_DEBUG(
4952      dbgs() << "Narrowing the search space by deleting costly formulas\n");
4953
4954  // Delete formulas where registers number expectation is high.
4955  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4956    LSRUse &LU = Uses[LUIdx];
4957    // If nothing to delete - continue.
4958    if (LU.Formulae.size() < 2)
4959      continue;
4960    // This is temporary solution to test performance. Float should be
4961    // replaced with round independent type (based on integers) to avoid
4962    // different results for different target builds.
4963    float FMinRegNum = LU.Formulae[0].getNumRegs();
4964    float FMinARegNum = LU.Formulae[0].getNumRegs();
4965    size_t MinIdx = 0;
4966    for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4967      Formula &F = LU.Formulae[i];
4968      float FRegNum = 0;
4969      float FARegNum = 0;
4970      for (const SCEV *BaseReg : F.BaseRegs) {
4971        if (UniqRegs.count(BaseReg))
4972          continue;
4973        FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4974        if (isa<SCEVAddRecExpr>(BaseReg))
4975          FARegNum +=
4976              RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4977      }
4978      if (const SCEV *ScaledReg = F.ScaledReg) {
4979        if (!UniqRegs.count(ScaledReg)) {
4980          FRegNum +=
4981              RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4982          if (isa<SCEVAddRecExpr>(ScaledReg))
4983            FARegNum +=
4984                RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4985        }
4986      }
4987      if (FMinRegNum > FRegNum ||
4988          (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4989        FMinRegNum = FRegNum;
4990        FMinARegNum = FARegNum;
4991        MinIdx = i;
4992      }
4993    }
4994    LLVM_DEBUG(dbgs() << "  The formula "; LU.Formulae[MinIdx].print(dbgs());
4995               dbgs() << " with min reg num " << FMinRegNum << '\n');
4996    if (MinIdx != 0)
4997      std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4998    while (LU.Formulae.size() != 1) {
4999      LLVM_DEBUG(dbgs() << "  Deleting "; LU.Formulae.back().print(dbgs());
5000                 dbgs() << '\n');
5001      LU.Formulae.pop_back();
5002    }
5003    LU.RecomputeRegs(LUIdx, RegUses);
5004    assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
5005    Formula &F = LU.Formulae[0];
5006    LLVM_DEBUG(dbgs() << "  Leaving only "; F.print(dbgs()); dbgs() << '\n');
5007    // When we choose the formula, the regs become unique.
5008    UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
5009    if (F.ScaledReg)
5010      UniqRegs.insert(F.ScaledReg);
5011  }
5012  LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
5013}
5014
5015// Check if Best and Reg are SCEVs separated by a constant amount C, and if so
5016// would the addressing offset +C would be legal where the negative offset -C is
5017// not.
5018static bool IsSimplerBaseSCEVForTarget(const TargetTransformInfo &TTI,
5019                                       ScalarEvolution &SE, const SCEV *Best,
5020                                       const SCEV *Reg,
5021                                       MemAccessTy AccessType) {
5022  if (Best->getType() != Reg->getType() ||
5023      (isa<SCEVAddRecExpr>(Best) && isa<SCEVAddRecExpr>(Reg) &&
5024       cast<SCEVAddRecExpr>(Best)->getLoop() !=
5025           cast<SCEVAddRecExpr>(Reg)->getLoop()))
5026    return false;
5027  const auto *Diff = dyn_cast<SCEVConstant>(SE.getMinusSCEV(Best, Reg));
5028  if (!Diff)
5029    return false;
5030
5031  return TTI.isLegalAddressingMode(
5032             AccessType.MemTy, /*BaseGV=*/nullptr,
5033             /*BaseOffset=*/Diff->getAPInt().getSExtValue(),
5034             /*HasBaseReg=*/true, /*Scale=*/0, AccessType.AddrSpace) &&
5035         !TTI.isLegalAddressingMode(
5036             AccessType.MemTy, /*BaseGV=*/nullptr,
5037             /*BaseOffset=*/-Diff->getAPInt().getSExtValue(),
5038             /*HasBaseReg=*/true, /*Scale=*/0, AccessType.AddrSpace);
5039}
5040
5041/// Pick a register which seems likely to be profitable, and then in any use
5042/// which has any reference to that register, delete all formulae which do not
5043/// reference that register.
5044void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
5045  // With all other options exhausted, loop until the system is simple
5046  // enough to handle.
5047  SmallPtrSet<const SCEV *, 4> Taken;
5048  while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
5049    // Ok, we have too many of formulae on our hands to conveniently handle.
5050    // Use a rough heuristic to thin out the list.
5051    LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
5052
5053    // Pick the register which is used by the most LSRUses, which is likely
5054    // to be a good reuse register candidate.
5055    const SCEV *Best = nullptr;
5056    unsigned BestNum = 0;
5057    for (const SCEV *Reg : RegUses) {
5058      if (Taken.count(Reg))
5059        continue;
5060      if (!Best) {
5061        Best = Reg;
5062        BestNum = RegUses.getUsedByIndices(Reg).count();
5063      } else {
5064        unsigned Count = RegUses.getUsedByIndices(Reg).count();
5065        if (Count > BestNum) {
5066          Best = Reg;
5067          BestNum = Count;
5068        }
5069
5070        // If the scores are the same, but the Reg is simpler for the target
5071        // (for example {x,+,1} as opposed to {x+C,+,1}, where the target can
5072        // handle +C but not -C), opt for the simpler formula.
5073        if (Count == BestNum) {
5074          int LUIdx = RegUses.getUsedByIndices(Reg).find_first();
5075          if (LUIdx >= 0 && Uses[LUIdx].Kind == LSRUse::Address &&
5076              IsSimplerBaseSCEVForTarget(TTI, SE, Best, Reg,
5077                                         Uses[LUIdx].AccessTy)) {
5078            Best = Reg;
5079            BestNum = Count;
5080          }
5081        }
5082      }
5083    }
5084    assert(Best && "Failed to find best LSRUse candidate");
5085
5086    LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
5087                      << " will yield profitable reuse.\n");
5088    Taken.insert(Best);
5089
5090    // In any use with formulae which references this register, delete formulae
5091    // which don't reference it.
5092    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
5093      LSRUse &LU = Uses[LUIdx];
5094      if (!LU.Regs.count(Best)) continue;
5095
5096      bool Any = false;
5097      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
5098        Formula &F = LU.Formulae[i];
5099        if (!F.referencesReg(Best)) {
5100          LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
5101          LU.DeleteFormula(F);
5102          --e;
5103          --i;
5104          Any = true;
5105          assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
5106          continue;
5107        }
5108      }
5109
5110      if (Any)
5111        LU.RecomputeRegs(LUIdx, RegUses);
5112    }
5113
5114    LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
5115  }
5116}
5117
5118/// If there are an extraordinary number of formulae to choose from, use some
5119/// rough heuristics to prune down the number of formulae. This keeps the main
5120/// solver from taking an extraordinary amount of time in some worst-case
5121/// scenarios.
5122void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
5123  NarrowSearchSpaceByDetectingSupersets();
5124  NarrowSearchSpaceByCollapsingUnrolledCode();
5125  NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
5126  if (FilterSameScaledReg)
5127    NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
5128  NarrowSearchSpaceByFilterPostInc();
5129  if (LSRExpNarrow)
5130    NarrowSearchSpaceByDeletingCostlyFormulas();
5131  else
5132    NarrowSearchSpaceByPickingWinnerRegs();
5133}
5134
5135/// This is the recursive solver.
5136void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
5137                               Cost &SolutionCost,
5138                               SmallVectorImpl<const Formula *> &Workspace,
5139                               const Cost &CurCost,
5140                               const SmallPtrSet<const SCEV *, 16> &CurRegs,
5141                               DenseSet<const SCEV *> &VisitedRegs) const {
5142  // Some ideas:
5143  //  - prune more:
5144  //    - use more aggressive filtering
5145  //    - sort the formula so that the most profitable solutions are found first
5146  //    - sort the uses too
5147  //  - search faster:
5148  //    - don't compute a cost, and then compare. compare while computing a cost
5149  //      and bail early.
5150  //    - track register sets with SmallBitVector
5151
5152  const LSRUse &LU = Uses[Workspace.size()];
5153
5154  // If this use references any register that's already a part of the
5155  // in-progress solution, consider it a requirement that a formula must
5156  // reference that register in order to be considered. This prunes out
5157  // unprofitable searching.
5158  SmallSetVector<const SCEV *, 4> ReqRegs;
5159  for (const SCEV *S : CurRegs)
5160    if (LU.Regs.count(S))
5161      ReqRegs.insert(S);
5162
5163  SmallPtrSet<const SCEV *, 16> NewRegs;
5164  Cost NewCost(L, SE, TTI, AMK);
5165  for (const Formula &F : LU.Formulae) {
5166    // Ignore formulae which may not be ideal in terms of register reuse of
5167    // ReqRegs.  The formula should use all required registers before
5168    // introducing new ones.
5169    // This can sometimes (notably when trying to favour postinc) lead to
5170    // sub-optimial decisions. There it is best left to the cost modelling to
5171    // get correct.
5172    if (AMK != TTI::AMK_PostIndexed || LU.Kind != LSRUse::Address) {
5173      int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
5174      for (const SCEV *Reg : ReqRegs) {
5175        if ((F.ScaledReg && F.ScaledReg == Reg) ||
5176            is_contained(F.BaseRegs, Reg)) {
5177          --NumReqRegsToFind;
5178          if (NumReqRegsToFind == 0)
5179            break;
5180        }
5181      }
5182      if (NumReqRegsToFind != 0) {
5183        // If none of the formulae satisfied the required registers, then we could
5184        // clear ReqRegs and try again. Currently, we simply give up in this case.
5185        continue;
5186      }
5187    }
5188
5189    // Evaluate the cost of the current formula. If it's already worse than
5190    // the current best, prune the search at that point.
5191    NewCost = CurCost;
5192    NewRegs = CurRegs;
5193    NewCost.RateFormula(F, NewRegs, VisitedRegs, LU);
5194    if (NewCost.isLess(SolutionCost)) {
5195      Workspace.push_back(&F);
5196      if (Workspace.size() != Uses.size()) {
5197        SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
5198                     NewRegs, VisitedRegs);
5199        if (F.getNumRegs() == 1 && Workspace.size() == 1)
5200          VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
5201      } else {
5202        LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
5203                   dbgs() << ".\nRegs:\n";
5204                   for (const SCEV *S : NewRegs) dbgs()
5205                      << "- " << *S << "\n";
5206                   dbgs() << '\n');
5207
5208        SolutionCost = NewCost;
5209        Solution = Workspace;
5210      }
5211      Workspace.pop_back();
5212    }
5213  }
5214}
5215
5216/// Choose one formula from each use. Return the results in the given Solution
5217/// vector.
5218void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
5219  SmallVector<const Formula *, 8> Workspace;
5220  Cost SolutionCost(L, SE, TTI, AMK);
5221  SolutionCost.Lose();
5222  Cost CurCost(L, SE, TTI, AMK);
5223  SmallPtrSet<const SCEV *, 16> CurRegs;
5224  DenseSet<const SCEV *> VisitedRegs;
5225  Workspace.reserve(Uses.size());
5226
5227  // SolveRecurse does all the work.
5228  SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
5229               CurRegs, VisitedRegs);
5230  if (Solution.empty()) {
5231    LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
5232    return;
5233  }
5234
5235  // Ok, we've now made all our decisions.
5236  LLVM_DEBUG(dbgs() << "\n"
5237                       "The chosen solution requires ";
5238             SolutionCost.print(dbgs()); dbgs() << ":\n";
5239             for (size_t i = 0, e = Uses.size(); i != e; ++i) {
5240               dbgs() << "  ";
5241               Uses[i].print(dbgs());
5242               dbgs() << "\n"
5243                         "    ";
5244               Solution[i]->print(dbgs());
5245               dbgs() << '\n';
5246             });
5247
5248  assert(Solution.size() == Uses.size() && "Malformed solution!");
5249
5250  if (BaselineCost.isLess(SolutionCost)) {
5251    LLVM_DEBUG(dbgs() << "The baseline solution requires ";
5252               BaselineCost.print(dbgs()); dbgs() << "\n");
5253    if (!AllowDropSolutionIfLessProfitable)
5254      LLVM_DEBUG(
5255          dbgs() << "Baseline is more profitable than chosen solution, "
5256                    "add option 'lsr-drop-solution' to drop LSR solution.\n");
5257    else {
5258      LLVM_DEBUG(dbgs() << "Baseline is more profitable than chosen "
5259                           "solution, dropping LSR solution.\n";);
5260      Solution.clear();
5261    }
5262  }
5263}
5264
5265/// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
5266/// we can go while still being dominated by the input positions. This helps
5267/// canonicalize the insert position, which encourages sharing.
5268BasicBlock::iterator
5269LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
5270                                 const SmallVectorImpl<Instruction *> &Inputs)
5271                                                                         const {
5272  Instruction *Tentative = &*IP;
5273  while (true) {
5274    bool AllDominate = true;
5275    Instruction *BetterPos = nullptr;
5276    // Don't bother attempting to insert before a catchswitch, their basic block
5277    // cannot have other non-PHI instructions.
5278    if (isa<CatchSwitchInst>(Tentative))
5279      return IP;
5280
5281    for (Instruction *Inst : Inputs) {
5282      if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
5283        AllDominate = false;
5284        break;
5285      }
5286      // Attempt to find an insert position in the middle of the block,
5287      // instead of at the end, so that it can be used for other expansions.
5288      if (Tentative->getParent() == Inst->getParent() &&
5289          (!BetterPos || !DT.dominates(Inst, BetterPos)))
5290        BetterPos = &*std::next(BasicBlock::iterator(Inst));
5291    }
5292    if (!AllDominate)
5293      break;
5294    if (BetterPos)
5295      IP = BetterPos->getIterator();
5296    else
5297      IP = Tentative->getIterator();
5298
5299    const Loop *IPLoop = LI.getLoopFor(IP->getParent());
5300    unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
5301
5302    BasicBlock *IDom;
5303    for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
5304      if (!Rung) return IP;
5305      Rung = Rung->getIDom();
5306      if (!Rung) return IP;
5307      IDom = Rung->getBlock();
5308
5309      // Don't climb into a loop though.
5310      const Loop *IDomLoop = LI.getLoopFor(IDom);
5311      unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
5312      if (IDomDepth <= IPLoopDepth &&
5313          (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
5314        break;
5315    }
5316
5317    Tentative = IDom->getTerminator();
5318  }
5319
5320  return IP;
5321}
5322
5323/// Determine an input position which will be dominated by the operands and
5324/// which will dominate the result.
5325BasicBlock::iterator LSRInstance::AdjustInsertPositionForExpand(
5326    BasicBlock::iterator LowestIP, const LSRFixup &LF, const LSRUse &LU) const {
5327  // Collect some instructions which must be dominated by the
5328  // expanding replacement. These must be dominated by any operands that
5329  // will be required in the expansion.
5330  SmallVector<Instruction *, 4> Inputs;
5331  if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
5332    Inputs.push_back(I);
5333  if (LU.Kind == LSRUse::ICmpZero)
5334    if (Instruction *I =
5335          dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
5336      Inputs.push_back(I);
5337  if (LF.PostIncLoops.count(L)) {
5338    if (LF.isUseFullyOutsideLoop(L))
5339      Inputs.push_back(L->getLoopLatch()->getTerminator());
5340    else
5341      Inputs.push_back(IVIncInsertPos);
5342  }
5343  // The expansion must also be dominated by the increment positions of any
5344  // loops it for which it is using post-inc mode.
5345  for (const Loop *PIL : LF.PostIncLoops) {
5346    if (PIL == L) continue;
5347
5348    // Be dominated by the loop exit.
5349    SmallVector<BasicBlock *, 4> ExitingBlocks;
5350    PIL->getExitingBlocks(ExitingBlocks);
5351    if (!ExitingBlocks.empty()) {
5352      BasicBlock *BB = ExitingBlocks[0];
5353      for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
5354        BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
5355      Inputs.push_back(BB->getTerminator());
5356    }
5357  }
5358
5359  assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
5360         && !isa<DbgInfoIntrinsic>(LowestIP) &&
5361         "Insertion point must be a normal instruction");
5362
5363  // Then, climb up the immediate dominator tree as far as we can go while
5364  // still being dominated by the input positions.
5365  BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
5366
5367  // Don't insert instructions before PHI nodes.
5368  while (isa<PHINode>(IP)) ++IP;
5369
5370  // Ignore landingpad instructions.
5371  while (IP->isEHPad()) ++IP;
5372
5373  // Ignore debug intrinsics.
5374  while (isa<DbgInfoIntrinsic>(IP)) ++IP;
5375
5376  // Set IP below instructions recently inserted by SCEVExpander. This keeps the
5377  // IP consistent across expansions and allows the previously inserted
5378  // instructions to be reused by subsequent expansion.
5379  while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
5380    ++IP;
5381
5382  return IP;
5383}
5384
5385/// Emit instructions for the leading candidate expression for this LSRUse (this
5386/// is called "expanding").
5387Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
5388                           const Formula &F, BasicBlock::iterator IP,
5389                           SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5390  if (LU.RigidFormula)
5391    return LF.OperandValToReplace;
5392
5393  // Determine an input position which will be dominated by the operands and
5394  // which will dominate the result.
5395  IP = AdjustInsertPositionForExpand(IP, LF, LU);
5396  Rewriter.setInsertPoint(&*IP);
5397
5398  // Inform the Rewriter if we have a post-increment use, so that it can
5399  // perform an advantageous expansion.
5400  Rewriter.setPostInc(LF.PostIncLoops);
5401
5402  // This is the type that the user actually needs.
5403  Type *OpTy = LF.OperandValToReplace->getType();
5404  // This will be the type that we'll initially expand to.
5405  Type *Ty = F.getType();
5406  if (!Ty)
5407    // No type known; just expand directly to the ultimate type.
5408    Ty = OpTy;
5409  else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
5410    // Expand directly to the ultimate type if it's the right size.
5411    Ty = OpTy;
5412  // This is the type to do integer arithmetic in.
5413  Type *IntTy = SE.getEffectiveSCEVType(Ty);
5414
5415  // Build up a list of operands to add together to form the full base.
5416  SmallVector<const SCEV *, 8> Ops;
5417
5418  // Expand the BaseRegs portion.
5419  for (const SCEV *Reg : F.BaseRegs) {
5420    assert(!Reg->isZero() && "Zero allocated in a base register!");
5421
5422    // If we're expanding for a post-inc user, make the post-inc adjustment.
5423    Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
5424    Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
5425  }
5426
5427  // Expand the ScaledReg portion.
5428  Value *ICmpScaledV = nullptr;
5429  if (F.Scale != 0) {
5430    const SCEV *ScaledS = F.ScaledReg;
5431
5432    // If we're expanding for a post-inc user, make the post-inc adjustment.
5433    PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
5434    ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
5435
5436    if (LU.Kind == LSRUse::ICmpZero) {
5437      // Expand ScaleReg as if it was part of the base regs.
5438      if (F.Scale == 1)
5439        Ops.push_back(
5440            SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
5441      else {
5442        // An interesting way of "folding" with an icmp is to use a negated
5443        // scale, which we'll implement by inserting it into the other operand
5444        // of the icmp.
5445        assert(F.Scale == -1 &&
5446               "The only scale supported by ICmpZero uses is -1!");
5447        ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
5448      }
5449    } else {
5450      // Otherwise just expand the scaled register and an explicit scale,
5451      // which is expected to be matched as part of the address.
5452
5453      // Flush the operand list to suppress SCEVExpander hoisting address modes.
5454      // Unless the addressing mode will not be folded.
5455      if (!Ops.empty() && LU.Kind == LSRUse::Address &&
5456          isAMCompletelyFolded(TTI, LU, F)) {
5457        Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
5458        Ops.clear();
5459        Ops.push_back(SE.getUnknown(FullV));
5460      }
5461      ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5462      if (F.Scale != 1)
5463        ScaledS =
5464            SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5465      Ops.push_back(ScaledS);
5466    }
5467  }
5468
5469  // Expand the GV portion.
5470  if (F.BaseGV) {
5471    // Flush the operand list to suppress SCEVExpander hoisting.
5472    if (!Ops.empty()) {
5473      Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), IntTy);
5474      Ops.clear();
5475      Ops.push_back(SE.getUnknown(FullV));
5476    }
5477    Ops.push_back(SE.getUnknown(F.BaseGV));
5478  }
5479
5480  // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5481  // unfolded offsets. LSR assumes they both live next to their uses.
5482  if (!Ops.empty()) {
5483    Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5484    Ops.clear();
5485    Ops.push_back(SE.getUnknown(FullV));
5486  }
5487
5488  // Expand the immediate portion.
5489  int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5490  if (Offset != 0) {
5491    if (LU.Kind == LSRUse::ICmpZero) {
5492      // The other interesting way of "folding" with an ICmpZero is to use a
5493      // negated immediate.
5494      if (!ICmpScaledV)
5495        ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5496      else {
5497        Ops.push_back(SE.getUnknown(ICmpScaledV));
5498        ICmpScaledV = ConstantInt::get(IntTy, Offset);
5499      }
5500    } else {
5501      // Just add the immediate values. These again are expected to be matched
5502      // as part of the address.
5503      Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5504    }
5505  }
5506
5507  // Expand the unfolded offset portion.
5508  int64_t UnfoldedOffset = F.UnfoldedOffset;
5509  if (UnfoldedOffset != 0) {
5510    // Just add the immediate values.
5511    Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5512                                                       UnfoldedOffset)));
5513  }
5514
5515  // Emit instructions summing all the operands.
5516  const SCEV *FullS = Ops.empty() ?
5517                      SE.getConstant(IntTy, 0) :
5518                      SE.getAddExpr(Ops);
5519  Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5520
5521  // We're done expanding now, so reset the rewriter.
5522  Rewriter.clearPostInc();
5523
5524  // An ICmpZero Formula represents an ICmp which we're handling as a
5525  // comparison against zero. Now that we've expanded an expression for that
5526  // form, update the ICmp's other operand.
5527  if (LU.Kind == LSRUse::ICmpZero) {
5528    ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5529    if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1)))
5530      DeadInsts.emplace_back(OperandIsInstr);
5531    assert(!F.BaseGV && "ICmp does not support folding a global value and "
5532                           "a scale at the same time!");
5533    if (F.Scale == -1) {
5534      if (ICmpScaledV->getType() != OpTy) {
5535        Instruction *Cast =
5536          CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5537                                                   OpTy, false),
5538                           ICmpScaledV, OpTy, "tmp", CI);
5539        ICmpScaledV = Cast;
5540      }
5541      CI->setOperand(1, ICmpScaledV);
5542    } else {
5543      // A scale of 1 means that the scale has been expanded as part of the
5544      // base regs.
5545      assert((F.Scale == 0 || F.Scale == 1) &&
5546             "ICmp does not support folding a global value and "
5547             "a scale at the same time!");
5548      Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5549                                           -(uint64_t)Offset);
5550      if (C->getType() != OpTy) {
5551        C = ConstantFoldCastOperand(
5552            CastInst::getCastOpcode(C, false, OpTy, false), C, OpTy,
5553            CI->getModule()->getDataLayout());
5554        assert(C && "Cast of ConstantInt should have folded");
5555      }
5556
5557      CI->setOperand(1, C);
5558    }
5559  }
5560
5561  return FullV;
5562}
5563
5564/// Helper for Rewrite. PHI nodes are special because the use of their operands
5565/// effectively happens in their predecessor blocks, so the expression may need
5566/// to be expanded in multiple places.
5567void LSRInstance::RewriteForPHI(
5568    PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5569    SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5570  DenseMap<BasicBlock *, Value *> Inserted;
5571
5572  // Inserting instructions in the loop and using them as PHI's input could
5573  // break LCSSA in case if PHI's parent block is not a loop exit (i.e. the
5574  // corresponding incoming block is not loop exiting). So collect all such
5575  // instructions to form LCSSA for them later.
5576  SmallVector<Instruction *, 4> InsertedNonLCSSAInsts;
5577
5578  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5579    if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5580      bool needUpdateFixups = false;
5581      BasicBlock *BB = PN->getIncomingBlock(i);
5582
5583      // If this is a critical edge, split the edge so that we do not insert
5584      // the code on all predecessor/successor paths.  We do this unless this
5585      // is the canonical backedge for this loop, which complicates post-inc
5586      // users.
5587      if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5588          !isa<IndirectBrInst>(BB->getTerminator()) &&
5589          !isa<CatchSwitchInst>(BB->getTerminator())) {
5590        BasicBlock *Parent = PN->getParent();
5591        Loop *PNLoop = LI.getLoopFor(Parent);
5592        if (!PNLoop || Parent != PNLoop->getHeader()) {
5593          // Split the critical edge.
5594          BasicBlock *NewBB = nullptr;
5595          if (!Parent->isLandingPad()) {
5596            NewBB =
5597                SplitCriticalEdge(BB, Parent,
5598                                  CriticalEdgeSplittingOptions(&DT, &LI, MSSAU)
5599                                      .setMergeIdenticalEdges()
5600                                      .setKeepOneInputPHIs());
5601          } else {
5602            SmallVector<BasicBlock*, 2> NewBBs;
5603            DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
5604            SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DTU, &LI);
5605            NewBB = NewBBs[0];
5606          }
5607          // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5608          // phi predecessors are identical. The simple thing to do is skip
5609          // splitting in this case rather than complicate the API.
5610          if (NewBB) {
5611            // If PN is outside of the loop and BB is in the loop, we want to
5612            // move the block to be immediately before the PHI block, not
5613            // immediately after BB.
5614            if (L->contains(BB) && !L->contains(PN))
5615              NewBB->moveBefore(PN->getParent());
5616
5617            // Splitting the edge can reduce the number of PHI entries we have.
5618            e = PN->getNumIncomingValues();
5619            BB = NewBB;
5620            i = PN->getBasicBlockIndex(BB);
5621
5622            needUpdateFixups = true;
5623          }
5624        }
5625      }
5626
5627      std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5628        Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5629      if (!Pair.second)
5630        PN->setIncomingValue(i, Pair.first->second);
5631      else {
5632        Value *FullV =
5633            Expand(LU, LF, F, BB->getTerminator()->getIterator(), DeadInsts);
5634
5635        // If this is reuse-by-noop-cast, insert the noop cast.
5636        Type *OpTy = LF.OperandValToReplace->getType();
5637        if (FullV->getType() != OpTy)
5638          FullV =
5639            CastInst::Create(CastInst::getCastOpcode(FullV, false,
5640                                                     OpTy, false),
5641                             FullV, LF.OperandValToReplace->getType(),
5642                             "tmp", BB->getTerminator());
5643
5644        // If the incoming block for this value is not in the loop, it means the
5645        // current PHI is not in a loop exit, so we must create a LCSSA PHI for
5646        // the inserted value.
5647        if (auto *I = dyn_cast<Instruction>(FullV))
5648          if (L->contains(I) && !L->contains(BB))
5649            InsertedNonLCSSAInsts.push_back(I);
5650
5651        PN->setIncomingValue(i, FullV);
5652        Pair.first->second = FullV;
5653      }
5654
5655      // If LSR splits critical edge and phi node has other pending
5656      // fixup operands, we need to update those pending fixups. Otherwise
5657      // formulae will not be implemented completely and some instructions
5658      // will not be eliminated.
5659      if (needUpdateFixups) {
5660        for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5661          for (LSRFixup &Fixup : Uses[LUIdx].Fixups)
5662            // If fixup is supposed to rewrite some operand in the phi
5663            // that was just updated, it may be already moved to
5664            // another phi node. Such fixup requires update.
5665            if (Fixup.UserInst == PN) {
5666              // Check if the operand we try to replace still exists in the
5667              // original phi.
5668              bool foundInOriginalPHI = false;
5669              for (const auto &val : PN->incoming_values())
5670                if (val == Fixup.OperandValToReplace) {
5671                  foundInOriginalPHI = true;
5672                  break;
5673                }
5674
5675              // If fixup operand found in original PHI - nothing to do.
5676              if (foundInOriginalPHI)
5677                continue;
5678
5679              // Otherwise it might be moved to another PHI and requires update.
5680              // If fixup operand not found in any of the incoming blocks that
5681              // means we have already rewritten it - nothing to do.
5682              for (const auto &Block : PN->blocks())
5683                for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I);
5684                     ++I) {
5685                  PHINode *NewPN = cast<PHINode>(I);
5686                  for (const auto &val : NewPN->incoming_values())
5687                    if (val == Fixup.OperandValToReplace)
5688                      Fixup.UserInst = NewPN;
5689                }
5690            }
5691      }
5692    }
5693
5694  formLCSSAForInstructions(InsertedNonLCSSAInsts, DT, LI, &SE);
5695}
5696
5697/// Emit instructions for the leading candidate expression for this LSRUse (this
5698/// is called "expanding"), and update the UserInst to reference the newly
5699/// expanded value.
5700void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5701                          const Formula &F,
5702                          SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5703  // First, find an insertion point that dominates UserInst. For PHI nodes,
5704  // find the nearest block which dominates all the relevant uses.
5705  if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5706    RewriteForPHI(PN, LU, LF, F, DeadInsts);
5707  } else {
5708    Value *FullV = Expand(LU, LF, F, LF.UserInst->getIterator(), DeadInsts);
5709
5710    // If this is reuse-by-noop-cast, insert the noop cast.
5711    Type *OpTy = LF.OperandValToReplace->getType();
5712    if (FullV->getType() != OpTy) {
5713      Instruction *Cast =
5714        CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5715                         FullV, OpTy, "tmp", LF.UserInst);
5716      FullV = Cast;
5717    }
5718
5719    // Update the user. ICmpZero is handled specially here (for now) because
5720    // Expand may have updated one of the operands of the icmp already, and
5721    // its new value may happen to be equal to LF.OperandValToReplace, in
5722    // which case doing replaceUsesOfWith leads to replacing both operands
5723    // with the same value. TODO: Reorganize this.
5724    if (LU.Kind == LSRUse::ICmpZero)
5725      LF.UserInst->setOperand(0, FullV);
5726    else
5727      LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5728  }
5729
5730  if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace))
5731    DeadInsts.emplace_back(OperandIsInstr);
5732}
5733
5734// Trying to hoist the IVInc to loop header if all IVInc users are in
5735// the loop header. It will help backend to generate post index load/store
5736// when the latch block is different from loop header block.
5737static bool canHoistIVInc(const TargetTransformInfo &TTI, const LSRFixup &Fixup,
5738                          const LSRUse &LU, Instruction *IVIncInsertPos,
5739                          Loop *L) {
5740  if (LU.Kind != LSRUse::Address)
5741    return false;
5742
5743  // For now this code do the conservative optimization, only work for
5744  // the header block. Later we can hoist the IVInc to the block post
5745  // dominate all users.
5746  BasicBlock *LHeader = L->getHeader();
5747  if (IVIncInsertPos->getParent() == LHeader)
5748    return false;
5749
5750  if (!Fixup.OperandValToReplace ||
5751      any_of(Fixup.OperandValToReplace->users(), [&LHeader](User *U) {
5752        Instruction *UI = cast<Instruction>(U);
5753        return UI->getParent() != LHeader;
5754      }))
5755    return false;
5756
5757  Instruction *I = Fixup.UserInst;
5758  Type *Ty = I->getType();
5759  return Ty->isIntegerTy() &&
5760         ((isa<LoadInst>(I) && TTI.isIndexedLoadLegal(TTI.MIM_PostInc, Ty)) ||
5761          (isa<StoreInst>(I) && TTI.isIndexedStoreLegal(TTI.MIM_PostInc, Ty)));
5762}
5763
5764/// Rewrite all the fixup locations with new values, following the chosen
5765/// solution.
5766void LSRInstance::ImplementSolution(
5767    const SmallVectorImpl<const Formula *> &Solution) {
5768  // Keep track of instructions we may have made dead, so that
5769  // we can remove them after we are done working.
5770  SmallVector<WeakTrackingVH, 16> DeadInsts;
5771
5772  // Mark phi nodes that terminate chains so the expander tries to reuse them.
5773  for (const IVChain &Chain : IVChainVec) {
5774    if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5775      Rewriter.setChainedPhi(PN);
5776  }
5777
5778  // Expand the new value definitions and update the users.
5779  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5780    for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5781      Instruction *InsertPos =
5782          canHoistIVInc(TTI, Fixup, Uses[LUIdx], IVIncInsertPos, L)
5783              ? L->getHeader()->getTerminator()
5784              : IVIncInsertPos;
5785      Rewriter.setIVIncInsertPos(L, InsertPos);
5786      Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], DeadInsts);
5787      Changed = true;
5788    }
5789
5790  for (const IVChain &Chain : IVChainVec) {
5791    GenerateIVChain(Chain, DeadInsts);
5792    Changed = true;
5793  }
5794
5795  for (const WeakVH &IV : Rewriter.getInsertedIVs())
5796    if (IV && dyn_cast<Instruction>(&*IV)->getParent())
5797      ScalarEvolutionIVs.push_back(IV);
5798
5799  // Clean up after ourselves. This must be done before deleting any
5800  // instructions.
5801  Rewriter.clear();
5802
5803  Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts,
5804                                                                  &TLI, MSSAU);
5805
5806  // In our cost analysis above, we assume that each addrec consumes exactly
5807  // one register, and arrange to have increments inserted just before the
5808  // latch to maximimize the chance this is true.  However, if we reused
5809  // existing IVs, we now need to move the increments to match our
5810  // expectations.  Otherwise, our cost modeling results in us having a
5811  // chosen a non-optimal result for the actual schedule.  (And yes, this
5812  // scheduling decision does impact later codegen.)
5813  for (PHINode &PN : L->getHeader()->phis()) {
5814    BinaryOperator *BO = nullptr;
5815    Value *Start = nullptr, *Step = nullptr;
5816    if (!matchSimpleRecurrence(&PN, BO, Start, Step))
5817      continue;
5818
5819    switch (BO->getOpcode()) {
5820    case Instruction::Sub:
5821      if (BO->getOperand(0) != &PN)
5822        // sub is non-commutative - match handling elsewhere in LSR
5823        continue;
5824      break;
5825    case Instruction::Add:
5826      break;
5827    default:
5828      continue;
5829    };
5830
5831    if (!isa<Constant>(Step))
5832      // If not a constant step, might increase register pressure
5833      // (We assume constants have been canonicalized to RHS)
5834      continue;
5835
5836    if (BO->getParent() == IVIncInsertPos->getParent())
5837      // Only bother moving across blocks.  Isel can handle block local case.
5838      continue;
5839
5840    // Can we legally schedule inc at the desired point?
5841    if (!llvm::all_of(BO->uses(),
5842                      [&](Use &U) {return DT.dominates(IVIncInsertPos, U);}))
5843      continue;
5844    BO->moveBefore(IVIncInsertPos);
5845    Changed = true;
5846  }
5847
5848
5849}
5850
5851LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5852                         DominatorTree &DT, LoopInfo &LI,
5853                         const TargetTransformInfo &TTI, AssumptionCache &AC,
5854                         TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU)
5855    : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L),
5856      MSSAU(MSSAU), AMK(PreferredAddresingMode.getNumOccurrences() > 0
5857                            ? PreferredAddresingMode
5858                            : TTI.getPreferredAddressingMode(L, &SE)),
5859      Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), "lsr", false),
5860      BaselineCost(L, SE, TTI, AMK) {
5861  // If LoopSimplify form is not available, stay out of trouble.
5862  if (!L->isLoopSimplifyForm())
5863    return;
5864
5865  // If there's no interesting work to be done, bail early.
5866  if (IU.empty()) return;
5867
5868  // If there's too much analysis to be done, bail early. We won't be able to
5869  // model the problem anyway.
5870  unsigned NumUsers = 0;
5871  for (const IVStrideUse &U : IU) {
5872    if (++NumUsers > MaxIVUsers) {
5873      (void)U;
5874      LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
5875                        << "\n");
5876      return;
5877    }
5878    // Bail out if we have a PHI on an EHPad that gets a value from a
5879    // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
5880    // no good place to stick any instructions.
5881    if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5882       auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5883       if (isa<FuncletPadInst>(FirstNonPHI) ||
5884           isa<CatchSwitchInst>(FirstNonPHI))
5885         for (BasicBlock *PredBB : PN->blocks())
5886           if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5887             return;
5888    }
5889  }
5890
5891  LLVM_DEBUG(dbgs() << "\nLSR on loop ";
5892             L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5893             dbgs() << ":\n");
5894
5895  // Configure SCEVExpander already now, so the correct mode is used for
5896  // isSafeToExpand() checks.
5897#ifndef NDEBUG
5898  Rewriter.setDebugType(DEBUG_TYPE);
5899#endif
5900  Rewriter.disableCanonicalMode();
5901  Rewriter.enableLSRMode();
5902
5903  // First, perform some low-level loop optimizations.
5904  OptimizeShadowIV();
5905  OptimizeLoopTermCond();
5906
5907  // If loop preparation eliminates all interesting IV users, bail.
5908  if (IU.empty()) return;
5909
5910  // Skip nested loops until we can model them better with formulae.
5911  if (!L->isInnermost()) {
5912    LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5913    return;
5914  }
5915
5916  // Start collecting data and preparing for the solver.
5917  // If number of registers is not the major cost, we cannot benefit from the
5918  // current profitable chain optimization which is based on number of
5919  // registers.
5920  // FIXME: add profitable chain optimization for other kinds major cost, for
5921  // example number of instructions.
5922  if (TTI.isNumRegsMajorCostOfLSR() || StressIVChain)
5923    CollectChains();
5924  CollectInterestingTypesAndFactors();
5925  CollectFixupsAndInitialFormulae();
5926  CollectLoopInvariantFixupsAndFormulae();
5927
5928  if (Uses.empty())
5929    return;
5930
5931  LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5932             print_uses(dbgs()));
5933
5934  // Now use the reuse data to generate a bunch of interesting ways
5935  // to formulate the values needed for the uses.
5936  GenerateAllReuseFormulae();
5937
5938  FilterOutUndesirableDedicatedRegisters();
5939  NarrowSearchSpaceUsingHeuristics();
5940
5941  SmallVector<const Formula *, 8> Solution;
5942  Solve(Solution);
5943
5944  // Release memory that is no longer needed.
5945  Factors.clear();
5946  Types.clear();
5947  RegUses.clear();
5948
5949  if (Solution.empty())
5950    return;
5951
5952#ifndef NDEBUG
5953  // Formulae should be legal.
5954  for (const LSRUse &LU : Uses) {
5955    for (const Formula &F : LU.Formulae)
5956      assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5957                        F) && "Illegal formula generated!");
5958  };
5959#endif
5960
5961  // Now that we've decided what we want, make it so.
5962  ImplementSolution(Solution);
5963}
5964
5965#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5966void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5967  if (Factors.empty() && Types.empty()) return;
5968
5969  OS << "LSR has identified the following interesting factors and types: ";
5970  bool First = true;
5971
5972  for (int64_t Factor : Factors) {
5973    if (!First) OS << ", ";
5974    First = false;
5975    OS << '*' << Factor;
5976  }
5977
5978  for (Type *Ty : Types) {
5979    if (!First) OS << ", ";
5980    First = false;
5981    OS << '(' << *Ty << ')';
5982  }
5983  OS << '\n';
5984}
5985
5986void LSRInstance::print_fixups(raw_ostream &OS) const {
5987  OS << "LSR is examining the following fixup sites:\n";
5988  for (const LSRUse &LU : Uses)
5989    for (const LSRFixup &LF : LU.Fixups) {
5990      dbgs() << "  ";
5991      LF.print(OS);
5992      OS << '\n';
5993    }
5994}
5995
5996void LSRInstance::print_uses(raw_ostream &OS) const {
5997  OS << "LSR is examining the following uses:\n";
5998  for (const LSRUse &LU : Uses) {
5999    dbgs() << "  ";
6000    LU.print(OS);
6001    OS << '\n';
6002    for (const Formula &F : LU.Formulae) {
6003      OS << "    ";
6004      F.print(OS);
6005      OS << '\n';
6006    }
6007  }
6008}
6009
6010void LSRInstance::print(raw_ostream &OS) const {
6011  print_factors_and_types(OS);
6012  print_fixups(OS);
6013  print_uses(OS);
6014}
6015
6016LLVM_DUMP_METHOD void LSRInstance::dump() const {
6017  print(errs()); errs() << '\n';
6018}
6019#endif
6020
6021namespace {
6022
6023class LoopStrengthReduce : public LoopPass {
6024public:
6025  static char ID; // Pass ID, replacement for typeid
6026
6027  LoopStrengthReduce();
6028
6029private:
6030  bool runOnLoop(Loop *L, LPPassManager &LPM) override;
6031  void getAnalysisUsage(AnalysisUsage &AU) const override;
6032};
6033
6034} // end anonymous namespace
6035
6036LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
6037  initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
6038}
6039
6040void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
6041  // We split critical edges, so we change the CFG.  However, we do update
6042  // many analyses if they are around.
6043  AU.addPreservedID(LoopSimplifyID);
6044
6045  AU.addRequired<LoopInfoWrapperPass>();
6046  AU.addPreserved<LoopInfoWrapperPass>();
6047  AU.addRequiredID(LoopSimplifyID);
6048  AU.addRequired<DominatorTreeWrapperPass>();
6049  AU.addPreserved<DominatorTreeWrapperPass>();
6050  AU.addRequired<ScalarEvolutionWrapperPass>();
6051  AU.addPreserved<ScalarEvolutionWrapperPass>();
6052  AU.addRequired<AssumptionCacheTracker>();
6053  AU.addRequired<TargetLibraryInfoWrapperPass>();
6054  // Requiring LoopSimplify a second time here prevents IVUsers from running
6055  // twice, since LoopSimplify was invalidated by running ScalarEvolution.
6056  AU.addRequiredID(LoopSimplifyID);
6057  AU.addRequired<IVUsersWrapperPass>();
6058  AU.addPreserved<IVUsersWrapperPass>();
6059  AU.addRequired<TargetTransformInfoWrapperPass>();
6060  AU.addPreserved<MemorySSAWrapperPass>();
6061}
6062
6063namespace {
6064
6065/// Enables more convenient iteration over a DWARF expression vector.
6066static iterator_range<llvm::DIExpression::expr_op_iterator>
6067ToDwarfOpIter(SmallVectorImpl<uint64_t> &Expr) {
6068  llvm::DIExpression::expr_op_iterator Begin =
6069      llvm::DIExpression::expr_op_iterator(Expr.begin());
6070  llvm::DIExpression::expr_op_iterator End =
6071      llvm::DIExpression::expr_op_iterator(Expr.end());
6072  return {Begin, End};
6073}
6074
6075struct SCEVDbgValueBuilder {
6076  SCEVDbgValueBuilder() = default;
6077  SCEVDbgValueBuilder(const SCEVDbgValueBuilder &Base) { clone(Base); }
6078
6079  void clone(const SCEVDbgValueBuilder &Base) {
6080    LocationOps = Base.LocationOps;
6081    Expr = Base.Expr;
6082  }
6083
6084  void clear() {
6085    LocationOps.clear();
6086    Expr.clear();
6087  }
6088
6089  /// The DIExpression as we translate the SCEV.
6090  SmallVector<uint64_t, 6> Expr;
6091  /// The location ops of the DIExpression.
6092  SmallVector<Value *, 2> LocationOps;
6093
6094  void pushOperator(uint64_t Op) { Expr.push_back(Op); }
6095  void pushUInt(uint64_t Operand) { Expr.push_back(Operand); }
6096
6097  /// Add a DW_OP_LLVM_arg to the expression, followed by the index of the value
6098  /// in the set of values referenced by the expression.
6099  void pushLocation(llvm::Value *V) {
6100    Expr.push_back(llvm::dwarf::DW_OP_LLVM_arg);
6101    auto *It = llvm::find(LocationOps, V);
6102    unsigned ArgIndex = 0;
6103    if (It != LocationOps.end()) {
6104      ArgIndex = std::distance(LocationOps.begin(), It);
6105    } else {
6106      ArgIndex = LocationOps.size();
6107      LocationOps.push_back(V);
6108    }
6109    Expr.push_back(ArgIndex);
6110  }
6111
6112  void pushValue(const SCEVUnknown *U) {
6113    llvm::Value *V = cast<SCEVUnknown>(U)->getValue();
6114    pushLocation(V);
6115  }
6116
6117  bool pushConst(const SCEVConstant *C) {
6118    if (C->getAPInt().getSignificantBits() > 64)
6119      return false;
6120    Expr.push_back(llvm::dwarf::DW_OP_consts);
6121    Expr.push_back(C->getAPInt().getSExtValue());
6122    return true;
6123  }
6124
6125  // Iterating the expression as DWARF ops is convenient when updating
6126  // DWARF_OP_LLVM_args.
6127  iterator_range<llvm::DIExpression::expr_op_iterator> expr_ops() {
6128    return ToDwarfOpIter(Expr);
6129  }
6130
6131  /// Several SCEV types are sequences of the same arithmetic operator applied
6132  /// to constants and values that may be extended or truncated.
6133  bool pushArithmeticExpr(const llvm::SCEVCommutativeExpr *CommExpr,
6134                          uint64_t DwarfOp) {
6135    assert((isa<llvm::SCEVAddExpr>(CommExpr) || isa<SCEVMulExpr>(CommExpr)) &&
6136           "Expected arithmetic SCEV type");
6137    bool Success = true;
6138    unsigned EmitOperator = 0;
6139    for (const auto &Op : CommExpr->operands()) {
6140      Success &= pushSCEV(Op);
6141
6142      if (EmitOperator >= 1)
6143        pushOperator(DwarfOp);
6144      ++EmitOperator;
6145    }
6146    return Success;
6147  }
6148
6149  // TODO: Identify and omit noop casts.
6150  bool pushCast(const llvm::SCEVCastExpr *C, bool IsSigned) {
6151    const llvm::SCEV *Inner = C->getOperand(0);
6152    const llvm::Type *Type = C->getType();
6153    uint64_t ToWidth = Type->getIntegerBitWidth();
6154    bool Success = pushSCEV(Inner);
6155    uint64_t CastOps[] = {dwarf::DW_OP_LLVM_convert, ToWidth,
6156                          IsSigned ? llvm::dwarf::DW_ATE_signed
6157                                   : llvm::dwarf::DW_ATE_unsigned};
6158    for (const auto &Op : CastOps)
6159      pushOperator(Op);
6160    return Success;
6161  }
6162
6163  // TODO: MinMax - although these haven't been encountered in the test suite.
6164  bool pushSCEV(const llvm::SCEV *S) {
6165    bool Success = true;
6166    if (const SCEVConstant *StartInt = dyn_cast<SCEVConstant>(S)) {
6167      Success &= pushConst(StartInt);
6168
6169    } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
6170      if (!U->getValue())
6171        return false;
6172      pushLocation(U->getValue());
6173
6174    } else if (const SCEVMulExpr *MulRec = dyn_cast<SCEVMulExpr>(S)) {
6175      Success &= pushArithmeticExpr(MulRec, llvm::dwarf::DW_OP_mul);
6176
6177    } else if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
6178      Success &= pushSCEV(UDiv->getLHS());
6179      Success &= pushSCEV(UDiv->getRHS());
6180      pushOperator(llvm::dwarf::DW_OP_div);
6181
6182    } else if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(S)) {
6183      // Assert if a new and unknown SCEVCastEXpr type is encountered.
6184      assert((isa<SCEVZeroExtendExpr>(Cast) || isa<SCEVTruncateExpr>(Cast) ||
6185              isa<SCEVPtrToIntExpr>(Cast) || isa<SCEVSignExtendExpr>(Cast)) &&
6186             "Unexpected cast type in SCEV.");
6187      Success &= pushCast(Cast, (isa<SCEVSignExtendExpr>(Cast)));
6188
6189    } else if (const SCEVAddExpr *AddExpr = dyn_cast<SCEVAddExpr>(S)) {
6190      Success &= pushArithmeticExpr(AddExpr, llvm::dwarf::DW_OP_plus);
6191
6192    } else if (isa<SCEVAddRecExpr>(S)) {
6193      // Nested SCEVAddRecExpr are generated by nested loops and are currently
6194      // unsupported.
6195      return false;
6196
6197    } else {
6198      return false;
6199    }
6200    return Success;
6201  }
6202
6203  /// Return true if the combination of arithmetic operator and underlying
6204  /// SCEV constant value is an identity function.
6205  bool isIdentityFunction(uint64_t Op, const SCEV *S) {
6206    if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
6207      if (C->getAPInt().getSignificantBits() > 64)
6208        return false;
6209      int64_t I = C->getAPInt().getSExtValue();
6210      switch (Op) {
6211      case llvm::dwarf::DW_OP_plus:
6212      case llvm::dwarf::DW_OP_minus:
6213        return I == 0;
6214      case llvm::dwarf::DW_OP_mul:
6215      case llvm::dwarf::DW_OP_div:
6216        return I == 1;
6217      }
6218    }
6219    return false;
6220  }
6221
6222  /// Convert a SCEV of a value to a DIExpression that is pushed onto the
6223  /// builder's expression stack. The stack should already contain an
6224  /// expression for the iteration count, so that it can be multiplied by
6225  /// the stride and added to the start.
6226  /// Components of the expression are omitted if they are an identity function.
6227  /// Chain (non-affine) SCEVs are not supported.
6228  bool SCEVToValueExpr(const llvm::SCEVAddRecExpr &SAR, ScalarEvolution &SE) {
6229    assert(SAR.isAffine() && "Expected affine SCEV");
6230    // TODO: Is this check needed?
6231    if (isa<SCEVAddRecExpr>(SAR.getStart()))
6232      return false;
6233
6234    const SCEV *Start = SAR.getStart();
6235    const SCEV *Stride = SAR.getStepRecurrence(SE);
6236
6237    // Skip pushing arithmetic noops.
6238    if (!isIdentityFunction(llvm::dwarf::DW_OP_mul, Stride)) {
6239      if (!pushSCEV(Stride))
6240        return false;
6241      pushOperator(llvm::dwarf::DW_OP_mul);
6242    }
6243    if (!isIdentityFunction(llvm::dwarf::DW_OP_plus, Start)) {
6244      if (!pushSCEV(Start))
6245        return false;
6246      pushOperator(llvm::dwarf::DW_OP_plus);
6247    }
6248    return true;
6249  }
6250
6251  /// Create an expression that is an offset from a value (usually the IV).
6252  void createOffsetExpr(int64_t Offset, Value *OffsetValue) {
6253    pushLocation(OffsetValue);
6254    DIExpression::appendOffset(Expr, Offset);
6255    LLVM_DEBUG(
6256        dbgs() << "scev-salvage: Generated IV offset expression. Offset: "
6257               << std::to_string(Offset) << "\n");
6258  }
6259
6260  /// Combine a translation of the SCEV and the IV to create an expression that
6261  /// recovers a location's value.
6262  /// returns true if an expression was created.
6263  bool createIterCountExpr(const SCEV *S,
6264                           const SCEVDbgValueBuilder &IterationCount,
6265                           ScalarEvolution &SE) {
6266    // SCEVs for SSA values are most frquently of the form
6267    // {start,+,stride}, but sometimes they are ({start,+,stride} + %a + ..).
6268    // This is because %a is a PHI node that is not the IV. However, these
6269    // SCEVs have not been observed to result in debuginfo-lossy optimisations,
6270    // so its not expected this point will be reached.
6271    if (!isa<SCEVAddRecExpr>(S))
6272      return false;
6273
6274    LLVM_DEBUG(dbgs() << "scev-salvage: Location to salvage SCEV: " << *S
6275                      << '\n');
6276
6277    const auto *Rec = cast<SCEVAddRecExpr>(S);
6278    if (!Rec->isAffine())
6279      return false;
6280
6281    if (S->getExpressionSize() > MaxSCEVSalvageExpressionSize)
6282      return false;
6283
6284    // Initialise a new builder with the iteration count expression. In
6285    // combination with the value's SCEV this enables recovery.
6286    clone(IterationCount);
6287    if (!SCEVToValueExpr(*Rec, SE))
6288      return false;
6289
6290    return true;
6291  }
6292
6293  /// Convert a SCEV of a value to a DIExpression that is pushed onto the
6294  /// builder's expression stack. The stack should already contain an
6295  /// expression for the iteration count, so that it can be multiplied by
6296  /// the stride and added to the start.
6297  /// Components of the expression are omitted if they are an identity function.
6298  bool SCEVToIterCountExpr(const llvm::SCEVAddRecExpr &SAR,
6299                           ScalarEvolution &SE) {
6300    assert(SAR.isAffine() && "Expected affine SCEV");
6301    if (isa<SCEVAddRecExpr>(SAR.getStart())) {
6302      LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV. Unsupported nested AddRec: "
6303                        << SAR << '\n');
6304      return false;
6305    }
6306    const SCEV *Start = SAR.getStart();
6307    const SCEV *Stride = SAR.getStepRecurrence(SE);
6308
6309    // Skip pushing arithmetic noops.
6310    if (!isIdentityFunction(llvm::dwarf::DW_OP_minus, Start)) {
6311      if (!pushSCEV(Start))
6312        return false;
6313      pushOperator(llvm::dwarf::DW_OP_minus);
6314    }
6315    if (!isIdentityFunction(llvm::dwarf::DW_OP_div, Stride)) {
6316      if (!pushSCEV(Stride))
6317        return false;
6318      pushOperator(llvm::dwarf::DW_OP_div);
6319    }
6320    return true;
6321  }
6322
6323  // Append the current expression and locations to a location list and an
6324  // expression list. Modify the DW_OP_LLVM_arg indexes to account for
6325  // the locations already present in the destination list.
6326  void appendToVectors(SmallVectorImpl<uint64_t> &DestExpr,
6327                       SmallVectorImpl<Value *> &DestLocations) {
6328    assert(!DestLocations.empty() &&
6329           "Expected the locations vector to contain the IV");
6330    // The DWARF_OP_LLVM_arg arguments of the expression being appended must be
6331    // modified to account for the locations already in the destination vector.
6332    // All builders contain the IV as the first location op.
6333    assert(!LocationOps.empty() &&
6334           "Expected the location ops to contain the IV.");
6335    // DestIndexMap[n] contains the index in DestLocations for the nth
6336    // location in this SCEVDbgValueBuilder.
6337    SmallVector<uint64_t, 2> DestIndexMap;
6338    for (const auto &Op : LocationOps) {
6339      auto It = find(DestLocations, Op);
6340      if (It != DestLocations.end()) {
6341        // Location already exists in DestLocations, reuse existing ArgIndex.
6342        DestIndexMap.push_back(std::distance(DestLocations.begin(), It));
6343        continue;
6344      }
6345      // Location is not in DestLocations, add it.
6346      DestIndexMap.push_back(DestLocations.size());
6347      DestLocations.push_back(Op);
6348    }
6349
6350    for (const auto &Op : expr_ops()) {
6351      if (Op.getOp() != dwarf::DW_OP_LLVM_arg) {
6352        Op.appendToVector(DestExpr);
6353        continue;
6354      }
6355
6356      DestExpr.push_back(dwarf::DW_OP_LLVM_arg);
6357      // `DW_OP_LLVM_arg n` represents the nth LocationOp in this SCEV,
6358      // DestIndexMap[n] contains its new index in DestLocations.
6359      uint64_t NewIndex = DestIndexMap[Op.getArg(0)];
6360      DestExpr.push_back(NewIndex);
6361    }
6362  }
6363};
6364
6365/// Holds all the required data to salvage a dbg.value using the pre-LSR SCEVs
6366/// and DIExpression.
6367struct DVIRecoveryRec {
6368  DVIRecoveryRec(DbgValueInst *DbgValue)
6369      : DbgRef(DbgValue), Expr(DbgValue->getExpression()),
6370        HadLocationArgList(false) {}
6371  DVIRecoveryRec(DPValue *DPV)
6372      : DbgRef(DPV), Expr(DPV->getExpression()), HadLocationArgList(false) {}
6373
6374  PointerUnion<DbgValueInst *, DPValue *> DbgRef;
6375  DIExpression *Expr;
6376  bool HadLocationArgList;
6377  SmallVector<WeakVH, 2> LocationOps;
6378  SmallVector<const llvm::SCEV *, 2> SCEVs;
6379  SmallVector<std::unique_ptr<SCEVDbgValueBuilder>, 2> RecoveryExprs;
6380
6381  void clear() {
6382    for (auto &RE : RecoveryExprs)
6383      RE.reset();
6384    RecoveryExprs.clear();
6385  }
6386
6387  ~DVIRecoveryRec() { clear(); }
6388};
6389} // namespace
6390
6391/// Returns the total number of DW_OP_llvm_arg operands in the expression.
6392/// This helps in determining if a DIArglist is necessary or can be omitted from
6393/// the dbg.value.
6394static unsigned numLLVMArgOps(SmallVectorImpl<uint64_t> &Expr) {
6395  auto expr_ops = ToDwarfOpIter(Expr);
6396  unsigned Count = 0;
6397  for (auto Op : expr_ops)
6398    if (Op.getOp() == dwarf::DW_OP_LLVM_arg)
6399      Count++;
6400  return Count;
6401}
6402
6403/// Overwrites DVI with the location and Ops as the DIExpression. This will
6404/// create an invalid expression if Ops has any dwarf::DW_OP_llvm_arg operands,
6405/// because a DIArglist is not created for the first argument of the dbg.value.
6406template <typename T>
6407static void updateDVIWithLocation(T &DbgVal, Value *Location,
6408                                  SmallVectorImpl<uint64_t> &Ops) {
6409  assert(numLLVMArgOps(Ops) == 0 && "Expected expression that does not "
6410                                    "contain any DW_OP_llvm_arg operands.");
6411  DbgVal.setRawLocation(ValueAsMetadata::get(Location));
6412  DbgVal.setExpression(DIExpression::get(DbgVal.getContext(), Ops));
6413  DbgVal.setExpression(DIExpression::get(DbgVal.getContext(), Ops));
6414}
6415
6416/// Overwrite DVI with locations placed into a DIArglist.
6417template <typename T>
6418static void updateDVIWithLocations(T &DbgVal,
6419                                   SmallVectorImpl<Value *> &Locations,
6420                                   SmallVectorImpl<uint64_t> &Ops) {
6421  assert(numLLVMArgOps(Ops) != 0 &&
6422         "Expected expression that references DIArglist locations using "
6423         "DW_OP_llvm_arg operands.");
6424  SmallVector<ValueAsMetadata *, 3> MetadataLocs;
6425  for (Value *V : Locations)
6426    MetadataLocs.push_back(ValueAsMetadata::get(V));
6427  auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(MetadataLocs);
6428  DbgVal.setRawLocation(llvm::DIArgList::get(DbgVal.getContext(), ValArrayRef));
6429  DbgVal.setExpression(DIExpression::get(DbgVal.getContext(), Ops));
6430}
6431
6432/// Write the new expression and new location ops for the dbg.value. If possible
6433/// reduce the szie of the dbg.value intrinsic by omitting DIArglist. This
6434/// can be omitted if:
6435/// 1. There is only a single location, refenced by a single DW_OP_llvm_arg.
6436/// 2. The DW_OP_LLVM_arg is the first operand in the expression.
6437static void UpdateDbgValueInst(DVIRecoveryRec &DVIRec,
6438                               SmallVectorImpl<Value *> &NewLocationOps,
6439                               SmallVectorImpl<uint64_t> &NewExpr) {
6440  auto UpdateDbgValueInstImpl = [&](auto *DbgVal) {
6441    unsigned NumLLVMArgs = numLLVMArgOps(NewExpr);
6442    if (NumLLVMArgs == 0) {
6443      // Location assumed to be on the stack.
6444      updateDVIWithLocation(*DbgVal, NewLocationOps[0], NewExpr);
6445    } else if (NumLLVMArgs == 1 && NewExpr[0] == dwarf::DW_OP_LLVM_arg) {
6446      // There is only a single DW_OP_llvm_arg at the start of the expression,
6447      // so it can be omitted along with DIArglist.
6448      assert(NewExpr[1] == 0 &&
6449             "Lone LLVM_arg in a DIExpression should refer to location-op 0.");
6450      llvm::SmallVector<uint64_t, 6> ShortenedOps(llvm::drop_begin(NewExpr, 2));
6451      updateDVIWithLocation(*DbgVal, NewLocationOps[0], ShortenedOps);
6452    } else {
6453      // Multiple DW_OP_llvm_arg, so DIArgList is strictly necessary.
6454      updateDVIWithLocations(*DbgVal, NewLocationOps, NewExpr);
6455    }
6456
6457    // If the DIExpression was previously empty then add the stack terminator.
6458    // Non-empty expressions have only had elements inserted into them and so
6459    // the terminator should already be present e.g. stack_value or fragment.
6460    DIExpression *SalvageExpr = DbgVal->getExpression();
6461    if (!DVIRec.Expr->isComplex() && SalvageExpr->isComplex()) {
6462      SalvageExpr =
6463          DIExpression::append(SalvageExpr, {dwarf::DW_OP_stack_value});
6464      DbgVal->setExpression(SalvageExpr);
6465    }
6466  };
6467  if (isa<DbgValueInst *>(DVIRec.DbgRef))
6468    UpdateDbgValueInstImpl(cast<DbgValueInst *>(DVIRec.DbgRef));
6469  else
6470    UpdateDbgValueInstImpl(cast<DPValue *>(DVIRec.DbgRef));
6471}
6472
6473/// Cached location ops may be erased during LSR, in which case a poison is
6474/// required when restoring from the cache. The type of that location is no
6475/// longer available, so just use int8. The poison will be replaced by one or
6476/// more locations later when a SCEVDbgValueBuilder selects alternative
6477/// locations to use for the salvage.
6478static Value *getValueOrPoison(WeakVH &VH, LLVMContext &C) {
6479  return (VH) ? VH : PoisonValue::get(llvm::Type::getInt8Ty(C));
6480}
6481
6482/// Restore the DVI's pre-LSR arguments. Substitute undef for any erased values.
6483static void restorePreTransformState(DVIRecoveryRec &DVIRec) {
6484  auto RestorePreTransformStateImpl = [&](auto *DbgVal) {
6485    LLVM_DEBUG(dbgs() << "scev-salvage: restore dbg.value to pre-LSR state\n"
6486                      << "scev-salvage: post-LSR: " << *DbgVal << '\n');
6487    assert(DVIRec.Expr && "Expected an expression");
6488    DbgVal->setExpression(DVIRec.Expr);
6489
6490    // Even a single location-op may be inside a DIArgList and referenced with
6491    // DW_OP_LLVM_arg, which is valid only with a DIArgList.
6492    if (!DVIRec.HadLocationArgList) {
6493      assert(DVIRec.LocationOps.size() == 1 &&
6494             "Unexpected number of location ops.");
6495      // LSR's unsuccessful salvage attempt may have added DIArgList, which in
6496      // this case was not present before, so force the location back to a
6497      // single uncontained Value.
6498      Value *CachedValue =
6499          getValueOrPoison(DVIRec.LocationOps[0], DbgVal->getContext());
6500      DbgVal->setRawLocation(ValueAsMetadata::get(CachedValue));
6501    } else {
6502      SmallVector<ValueAsMetadata *, 3> MetadataLocs;
6503      for (WeakVH VH : DVIRec.LocationOps) {
6504        Value *CachedValue = getValueOrPoison(VH, DbgVal->getContext());
6505        MetadataLocs.push_back(ValueAsMetadata::get(CachedValue));
6506      }
6507      auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(MetadataLocs);
6508      DbgVal->setRawLocation(
6509          llvm::DIArgList::get(DbgVal->getContext(), ValArrayRef));
6510    }
6511    LLVM_DEBUG(dbgs() << "scev-salvage: pre-LSR: " << *DbgVal << '\n');
6512  };
6513  if (isa<DbgValueInst *>(DVIRec.DbgRef))
6514    RestorePreTransformStateImpl(cast<DbgValueInst *>(DVIRec.DbgRef));
6515  else
6516    RestorePreTransformStateImpl(cast<DPValue *>(DVIRec.DbgRef));
6517}
6518
6519static bool SalvageDVI(llvm::Loop *L, ScalarEvolution &SE,
6520                       llvm::PHINode *LSRInductionVar, DVIRecoveryRec &DVIRec,
6521                       const SCEV *SCEVInductionVar,
6522                       SCEVDbgValueBuilder IterCountExpr) {
6523
6524  if (isa<DbgValueInst *>(DVIRec.DbgRef)
6525          ? !cast<DbgValueInst *>(DVIRec.DbgRef)->isKillLocation()
6526          : !cast<DPValue *>(DVIRec.DbgRef)->isKillLocation())
6527    return false;
6528
6529  // LSR may have caused several changes to the dbg.value in the failed salvage
6530  // attempt. So restore the DIExpression, the location ops and also the
6531  // location ops format, which is always DIArglist for multiple ops, but only
6532  // sometimes for a single op.
6533  restorePreTransformState(DVIRec);
6534
6535  // LocationOpIndexMap[i] will store the post-LSR location index of
6536  // the non-optimised out location at pre-LSR index i.
6537  SmallVector<int64_t, 2> LocationOpIndexMap;
6538  LocationOpIndexMap.assign(DVIRec.LocationOps.size(), -1);
6539  SmallVector<Value *, 2> NewLocationOps;
6540  NewLocationOps.push_back(LSRInductionVar);
6541
6542  for (unsigned i = 0; i < DVIRec.LocationOps.size(); i++) {
6543    WeakVH VH = DVIRec.LocationOps[i];
6544    // Place the locations not optimised out in the list first, avoiding
6545    // inserts later. The map is used to update the DIExpression's
6546    // DW_OP_LLVM_arg arguments as the expression is updated.
6547    if (VH && !isa<UndefValue>(VH)) {
6548      NewLocationOps.push_back(VH);
6549      LocationOpIndexMap[i] = NewLocationOps.size() - 1;
6550      LLVM_DEBUG(dbgs() << "scev-salvage: Location index " << i
6551                        << " now at index " << LocationOpIndexMap[i] << "\n");
6552      continue;
6553    }
6554
6555    // It's possible that a value referred to in the SCEV may have been
6556    // optimised out by LSR.
6557    if (SE.containsErasedValue(DVIRec.SCEVs[i]) ||
6558        SE.containsUndefs(DVIRec.SCEVs[i])) {
6559      LLVM_DEBUG(dbgs() << "scev-salvage: SCEV for location at index: " << i
6560                        << " refers to a location that is now undef or erased. "
6561                           "Salvage abandoned.\n");
6562      return false;
6563    }
6564
6565    LLVM_DEBUG(dbgs() << "scev-salvage: salvaging location at index " << i
6566                      << " with SCEV: " << *DVIRec.SCEVs[i] << "\n");
6567
6568    DVIRec.RecoveryExprs[i] = std::make_unique<SCEVDbgValueBuilder>();
6569    SCEVDbgValueBuilder *SalvageExpr = DVIRec.RecoveryExprs[i].get();
6570
6571    // Create an offset-based salvage expression if possible, as it requires
6572    // less DWARF ops than an iteration count-based expression.
6573    if (std::optional<APInt> Offset =
6574            SE.computeConstantDifference(DVIRec.SCEVs[i], SCEVInductionVar)) {
6575      if (Offset->getSignificantBits() <= 64)
6576        SalvageExpr->createOffsetExpr(Offset->getSExtValue(), LSRInductionVar);
6577    } else if (!SalvageExpr->createIterCountExpr(DVIRec.SCEVs[i], IterCountExpr,
6578                                                 SE))
6579      return false;
6580  }
6581
6582  // Merge the DbgValueBuilder generated expressions and the original
6583  // DIExpression, place the result into an new vector.
6584  SmallVector<uint64_t, 3> NewExpr;
6585  if (DVIRec.Expr->getNumElements() == 0) {
6586    assert(DVIRec.RecoveryExprs.size() == 1 &&
6587           "Expected only a single recovery expression for an empty "
6588           "DIExpression.");
6589    assert(DVIRec.RecoveryExprs[0] &&
6590           "Expected a SCEVDbgSalvageBuilder for location 0");
6591    SCEVDbgValueBuilder *B = DVIRec.RecoveryExprs[0].get();
6592    B->appendToVectors(NewExpr, NewLocationOps);
6593  }
6594  for (const auto &Op : DVIRec.Expr->expr_ops()) {
6595    // Most Ops needn't be updated.
6596    if (Op.getOp() != dwarf::DW_OP_LLVM_arg) {
6597      Op.appendToVector(NewExpr);
6598      continue;
6599    }
6600
6601    uint64_t LocationArgIndex = Op.getArg(0);
6602    SCEVDbgValueBuilder *DbgBuilder =
6603        DVIRec.RecoveryExprs[LocationArgIndex].get();
6604    // The location doesn't have s SCEVDbgValueBuilder, so LSR did not
6605    // optimise it away. So just translate the argument to the updated
6606    // location index.
6607    if (!DbgBuilder) {
6608      NewExpr.push_back(dwarf::DW_OP_LLVM_arg);
6609      assert(LocationOpIndexMap[Op.getArg(0)] != -1 &&
6610             "Expected a positive index for the location-op position.");
6611      NewExpr.push_back(LocationOpIndexMap[Op.getArg(0)]);
6612      continue;
6613    }
6614    // The location has a recovery expression.
6615    DbgBuilder->appendToVectors(NewExpr, NewLocationOps);
6616  }
6617
6618  UpdateDbgValueInst(DVIRec, NewLocationOps, NewExpr);
6619  if (isa<DbgValueInst *>(DVIRec.DbgRef))
6620    LLVM_DEBUG(dbgs() << "scev-salvage: Updated DVI: "
6621                      << *cast<DbgValueInst *>(DVIRec.DbgRef) << "\n");
6622  else
6623    LLVM_DEBUG(dbgs() << "scev-salvage: Updated DVI: "
6624                      << *cast<DPValue *>(DVIRec.DbgRef) << "\n");
6625  return true;
6626}
6627
6628/// Obtain an expression for the iteration count, then attempt to salvage the
6629/// dbg.value intrinsics.
6630static void DbgRewriteSalvageableDVIs(
6631    llvm::Loop *L, ScalarEvolution &SE, llvm::PHINode *LSRInductionVar,
6632    SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> &DVIToUpdate) {
6633  if (DVIToUpdate.empty())
6634    return;
6635
6636  const llvm::SCEV *SCEVInductionVar = SE.getSCEV(LSRInductionVar);
6637  assert(SCEVInductionVar &&
6638         "Anticipated a SCEV for the post-LSR induction variable");
6639
6640  if (const SCEVAddRecExpr *IVAddRec =
6641          dyn_cast<SCEVAddRecExpr>(SCEVInductionVar)) {
6642    if (!IVAddRec->isAffine())
6643      return;
6644
6645    // Prevent translation using excessive resources.
6646    if (IVAddRec->getExpressionSize() > MaxSCEVSalvageExpressionSize)
6647      return;
6648
6649    // The iteration count is required to recover location values.
6650    SCEVDbgValueBuilder IterCountExpr;
6651    IterCountExpr.pushLocation(LSRInductionVar);
6652    if (!IterCountExpr.SCEVToIterCountExpr(*IVAddRec, SE))
6653      return;
6654
6655    LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV: " << *SCEVInductionVar
6656                      << '\n');
6657
6658    for (auto &DVIRec : DVIToUpdate) {
6659      SalvageDVI(L, SE, LSRInductionVar, *DVIRec, SCEVInductionVar,
6660                 IterCountExpr);
6661    }
6662  }
6663}
6664
6665/// Identify and cache salvageable DVI locations and expressions along with the
6666/// corresponding SCEV(s). Also ensure that the DVI is not deleted between
6667/// cacheing and salvaging.
6668static void DbgGatherSalvagableDVI(
6669    Loop *L, ScalarEvolution &SE,
6670    SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> &SalvageableDVISCEVs,
6671    SmallSet<AssertingVH<DbgValueInst>, 2> &DVIHandles) {
6672  for (const auto &B : L->getBlocks()) {
6673    for (auto &I : *B) {
6674      auto ProcessDbgValue = [&](auto *DbgVal) -> bool {
6675        // Ensure that if any location op is undef that the dbg.vlue is not
6676        // cached.
6677        if (DbgVal->isKillLocation())
6678          return false;
6679
6680        // Check that the location op SCEVs are suitable for translation to
6681        // DIExpression.
6682        const auto &HasTranslatableLocationOps =
6683            [&](const auto *DbgValToTranslate) -> bool {
6684          for (const auto LocOp : DbgValToTranslate->location_ops()) {
6685            if (!LocOp)
6686              return false;
6687
6688            if (!SE.isSCEVable(LocOp->getType()))
6689              return false;
6690
6691            const SCEV *S = SE.getSCEV(LocOp);
6692            if (SE.containsUndefs(S))
6693              return false;
6694          }
6695          return true;
6696        };
6697
6698        if (!HasTranslatableLocationOps(DbgVal))
6699          return false;
6700
6701        std::unique_ptr<DVIRecoveryRec> NewRec =
6702            std::make_unique<DVIRecoveryRec>(DbgVal);
6703        // Each location Op may need a SCEVDbgValueBuilder in order to recover
6704        // it. Pre-allocating a vector will enable quick lookups of the builder
6705        // later during the salvage.
6706        NewRec->RecoveryExprs.resize(DbgVal->getNumVariableLocationOps());
6707        for (const auto LocOp : DbgVal->location_ops()) {
6708          NewRec->SCEVs.push_back(SE.getSCEV(LocOp));
6709          NewRec->LocationOps.push_back(LocOp);
6710          NewRec->HadLocationArgList = DbgVal->hasArgList();
6711        }
6712        SalvageableDVISCEVs.push_back(std::move(NewRec));
6713        return true;
6714      };
6715      for (auto &DPV : I.getDbgValueRange()) {
6716        if (DPV.isDbgValue() || DPV.isDbgAssign())
6717          ProcessDbgValue(&DPV);
6718      }
6719      auto DVI = dyn_cast<DbgValueInst>(&I);
6720      if (!DVI)
6721        continue;
6722      if (ProcessDbgValue(DVI))
6723        DVIHandles.insert(DVI);
6724    }
6725  }
6726}
6727
6728/// Ideally pick the PHI IV inserted by ScalarEvolutionExpander. As a fallback
6729/// any PHi from the loop header is usable, but may have less chance of
6730/// surviving subsequent transforms.
6731static llvm::PHINode *GetInductionVariable(const Loop &L, ScalarEvolution &SE,
6732                                           const LSRInstance &LSR) {
6733
6734  auto IsSuitableIV = [&](PHINode *P) {
6735    if (!SE.isSCEVable(P->getType()))
6736      return false;
6737    if (const SCEVAddRecExpr *Rec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(P)))
6738      return Rec->isAffine() && !SE.containsUndefs(SE.getSCEV(P));
6739    return false;
6740  };
6741
6742  // For now, just pick the first IV that was generated and inserted by
6743  // ScalarEvolution. Ideally pick an IV that is unlikely to be optimised away
6744  // by subsequent transforms.
6745  for (const WeakVH &IV : LSR.getScalarEvolutionIVs()) {
6746    if (!IV)
6747      continue;
6748
6749    // There should only be PHI node IVs.
6750    PHINode *P = cast<PHINode>(&*IV);
6751
6752    if (IsSuitableIV(P))
6753      return P;
6754  }
6755
6756  for (PHINode &P : L.getHeader()->phis()) {
6757    if (IsSuitableIV(&P))
6758      return &P;
6759  }
6760  return nullptr;
6761}
6762
6763static std::optional<std::tuple<PHINode *, PHINode *, const SCEV *, bool>>
6764canFoldTermCondOfLoop(Loop *L, ScalarEvolution &SE, DominatorTree &DT,
6765                      const LoopInfo &LI) {
6766  if (!L->isInnermost()) {
6767    LLVM_DEBUG(dbgs() << "Cannot fold on non-innermost loop\n");
6768    return std::nullopt;
6769  }
6770  // Only inspect on simple loop structure
6771  if (!L->isLoopSimplifyForm()) {
6772    LLVM_DEBUG(dbgs() << "Cannot fold on non-simple loop\n");
6773    return std::nullopt;
6774  }
6775
6776  if (!SE.hasLoopInvariantBackedgeTakenCount(L)) {
6777    LLVM_DEBUG(dbgs() << "Cannot fold on backedge that is loop variant\n");
6778    return std::nullopt;
6779  }
6780
6781  BasicBlock *LoopLatch = L->getLoopLatch();
6782  BranchInst *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator());
6783  if (!BI || BI->isUnconditional())
6784    return std::nullopt;
6785  auto *TermCond = dyn_cast<ICmpInst>(BI->getCondition());
6786  if (!TermCond) {
6787    LLVM_DEBUG(
6788        dbgs() << "Cannot fold on branching condition that is not an ICmpInst");
6789    return std::nullopt;
6790  }
6791  if (!TermCond->hasOneUse()) {
6792    LLVM_DEBUG(
6793        dbgs()
6794        << "Cannot replace terminating condition with more than one use\n");
6795    return std::nullopt;
6796  }
6797
6798  BinaryOperator *LHS = dyn_cast<BinaryOperator>(TermCond->getOperand(0));
6799  Value *RHS = TermCond->getOperand(1);
6800  if (!LHS || !L->isLoopInvariant(RHS))
6801    // We could pattern match the inverse form of the icmp, but that is
6802    // non-canonical, and this pass is running *very* late in the pipeline.
6803    return std::nullopt;
6804
6805  // Find the IV used by the current exit condition.
6806  PHINode *ToFold;
6807  Value *ToFoldStart, *ToFoldStep;
6808  if (!matchSimpleRecurrence(LHS, ToFold, ToFoldStart, ToFoldStep))
6809    return std::nullopt;
6810
6811  // If that IV isn't dead after we rewrite the exit condition in terms of
6812  // another IV, there's no point in doing the transform.
6813  if (!isAlmostDeadIV(ToFold, LoopLatch, TermCond))
6814    return std::nullopt;
6815
6816  const SCEV *BECount = SE.getBackedgeTakenCount(L);
6817  const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
6818  SCEVExpander Expander(SE, DL, "lsr_fold_term_cond");
6819
6820  PHINode *ToHelpFold = nullptr;
6821  const SCEV *TermValueS = nullptr;
6822  bool MustDropPoison = false;
6823  for (PHINode &PN : L->getHeader()->phis()) {
6824    if (ToFold == &PN)
6825      continue;
6826
6827    if (!SE.isSCEVable(PN.getType())) {
6828      LLVM_DEBUG(dbgs() << "IV of phi '" << PN
6829                        << "' is not SCEV-able, not qualified for the "
6830                           "terminating condition folding.\n");
6831      continue;
6832    }
6833    const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
6834    // Only speculate on affine AddRec
6835    if (!AddRec || !AddRec->isAffine()) {
6836      LLVM_DEBUG(dbgs() << "SCEV of phi '" << PN
6837                        << "' is not an affine add recursion, not qualified "
6838                           "for the terminating condition folding.\n");
6839      continue;
6840    }
6841
6842    // Check that we can compute the value of AddRec on the exiting iteration
6843    // without soundness problems.  evaluateAtIteration internally needs
6844    // to multiply the stride of the iteration number - which may wrap around.
6845    // The issue here is subtle because computing the result accounting for
6846    // wrap is insufficient. In order to use the result in an exit test, we
6847    // must also know that AddRec doesn't take the same value on any previous
6848    // iteration. The simplest case to consider is a candidate IV which is
6849    // narrower than the trip count (and thus original IV), but this can
6850    // also happen due to non-unit strides on the candidate IVs.
6851    if (!AddRec->hasNoSelfWrap() ||
6852        !SE.isKnownNonZero(AddRec->getStepRecurrence(SE)))
6853      continue;
6854
6855    const SCEVAddRecExpr *PostInc = AddRec->getPostIncExpr(SE);
6856    const SCEV *TermValueSLocal = PostInc->evaluateAtIteration(BECount, SE);
6857    if (!Expander.isSafeToExpand(TermValueSLocal)) {
6858      LLVM_DEBUG(
6859          dbgs() << "Is not safe to expand terminating value for phi node" << PN
6860                 << "\n");
6861      continue;
6862    }
6863
6864    // The candidate IV may have been otherwise dead and poison from the
6865    // very first iteration.  If we can't disprove that, we can't use the IV.
6866    if (!mustExecuteUBIfPoisonOnPathTo(&PN, LoopLatch->getTerminator(), &DT)) {
6867      LLVM_DEBUG(dbgs() << "Can not prove poison safety for IV "
6868                        << PN << "\n");
6869      continue;
6870    }
6871
6872    // The candidate IV may become poison on the last iteration.  If this
6873    // value is not branched on, this is a well defined program.  We're
6874    // about to add a new use to this IV, and we have to ensure we don't
6875    // insert UB which didn't previously exist.
6876    bool MustDropPoisonLocal = false;
6877    Instruction *PostIncV =
6878      cast<Instruction>(PN.getIncomingValueForBlock(LoopLatch));
6879    if (!mustExecuteUBIfPoisonOnPathTo(PostIncV, LoopLatch->getTerminator(),
6880                                       &DT)) {
6881      LLVM_DEBUG(dbgs() << "Can not prove poison safety to insert use"
6882                        << PN << "\n");
6883
6884      // If this is a complex recurrance with multiple instructions computing
6885      // the backedge value, we might need to strip poison flags from all of
6886      // them.
6887      if (PostIncV->getOperand(0) != &PN)
6888        continue;
6889
6890      // In order to perform the transform, we need to drop the poison generating
6891      // flags on this instruction (if any).
6892      MustDropPoisonLocal = PostIncV->hasPoisonGeneratingFlags();
6893    }
6894
6895    // We pick the last legal alternate IV.  We could expore choosing an optimal
6896    // alternate IV if we had a decent heuristic to do so.
6897    ToHelpFold = &PN;
6898    TermValueS = TermValueSLocal;
6899    MustDropPoison = MustDropPoisonLocal;
6900  }
6901
6902  LLVM_DEBUG(if (ToFold && !ToHelpFold) dbgs()
6903                 << "Cannot find other AddRec IV to help folding\n";);
6904
6905  LLVM_DEBUG(if (ToFold && ToHelpFold) dbgs()
6906             << "\nFound loop that can fold terminating condition\n"
6907             << "  BECount (SCEV): " << *SE.getBackedgeTakenCount(L) << "\n"
6908             << "  TermCond: " << *TermCond << "\n"
6909             << "  BrandInst: " << *BI << "\n"
6910             << "  ToFold: " << *ToFold << "\n"
6911             << "  ToHelpFold: " << *ToHelpFold << "\n");
6912
6913  if (!ToFold || !ToHelpFold)
6914    return std::nullopt;
6915  return std::make_tuple(ToFold, ToHelpFold, TermValueS, MustDropPoison);
6916}
6917
6918static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
6919                               DominatorTree &DT, LoopInfo &LI,
6920                               const TargetTransformInfo &TTI,
6921                               AssumptionCache &AC, TargetLibraryInfo &TLI,
6922                               MemorySSA *MSSA) {
6923
6924  // Debug preservation - before we start removing anything identify which DVI
6925  // meet the salvageable criteria and store their DIExpression and SCEVs.
6926  SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> SalvageableDVIRecords;
6927  SmallSet<AssertingVH<DbgValueInst>, 2> DVIHandles;
6928  DbgGatherSalvagableDVI(L, SE, SalvageableDVIRecords, DVIHandles);
6929
6930  bool Changed = false;
6931  std::unique_ptr<MemorySSAUpdater> MSSAU;
6932  if (MSSA)
6933    MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
6934
6935  // Run the main LSR transformation.
6936  const LSRInstance &Reducer =
6937      LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get());
6938  Changed |= Reducer.getChanged();
6939
6940  // Remove any extra phis created by processing inner loops.
6941  Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
6942  if (EnablePhiElim && L->isLoopSimplifyForm()) {
6943    SmallVector<WeakTrackingVH, 16> DeadInsts;
6944    const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
6945    SCEVExpander Rewriter(SE, DL, "lsr", false);
6946#ifndef NDEBUG
6947    Rewriter.setDebugType(DEBUG_TYPE);
6948#endif
6949    unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
6950    if (numFolded) {
6951      Changed = true;
6952      RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI,
6953                                                           MSSAU.get());
6954      DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
6955    }
6956  }
6957  // LSR may at times remove all uses of an induction variable from a loop.
6958  // The only remaining use is the PHI in the exit block.
6959  // When this is the case, if the exit value of the IV can be calculated using
6960  // SCEV, we can replace the exit block PHI with the final value of the IV and
6961  // skip the updates in each loop iteration.
6962  if (L->isRecursivelyLCSSAForm(DT, LI) && L->getExitBlock()) {
6963    SmallVector<WeakTrackingVH, 16> DeadInsts;
6964    const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
6965    SCEVExpander Rewriter(SE, DL, "lsr", true);
6966    int Rewrites = rewriteLoopExitValues(L, &LI, &TLI, &SE, &TTI, Rewriter, &DT,
6967                                         UnusedIndVarInLoop, DeadInsts);
6968    if (Rewrites) {
6969      Changed = true;
6970      RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI,
6971                                                           MSSAU.get());
6972      DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
6973    }
6974  }
6975
6976  const bool EnableFormTerm = [&] {
6977    switch (AllowTerminatingConditionFoldingAfterLSR) {
6978    case cl::BOU_TRUE:
6979      return true;
6980    case cl::BOU_FALSE:
6981      return false;
6982    case cl::BOU_UNSET:
6983      return TTI.shouldFoldTerminatingConditionAfterLSR();
6984    }
6985    llvm_unreachable("Unhandled cl::boolOrDefault enum");
6986  }();
6987
6988  if (EnableFormTerm) {
6989    if (auto Opt = canFoldTermCondOfLoop(L, SE, DT, LI)) {
6990      auto [ToFold, ToHelpFold, TermValueS, MustDrop] = *Opt;
6991
6992      Changed = true;
6993      NumTermFold++;
6994
6995      BasicBlock *LoopPreheader = L->getLoopPreheader();
6996      BasicBlock *LoopLatch = L->getLoopLatch();
6997
6998      (void)ToFold;
6999      LLVM_DEBUG(dbgs() << "To fold phi-node:\n"
7000                        << *ToFold << "\n"
7001                        << "New term-cond phi-node:\n"
7002                        << *ToHelpFold << "\n");
7003
7004      Value *StartValue = ToHelpFold->getIncomingValueForBlock(LoopPreheader);
7005      (void)StartValue;
7006      Value *LoopValue = ToHelpFold->getIncomingValueForBlock(LoopLatch);
7007
7008      // See comment in canFoldTermCondOfLoop on why this is sufficient.
7009      if (MustDrop)
7010        cast<Instruction>(LoopValue)->dropPoisonGeneratingFlags();
7011
7012      // SCEVExpander for both use in preheader and latch
7013      const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
7014      SCEVExpander Expander(SE, DL, "lsr_fold_term_cond");
7015      SCEVExpanderCleaner ExpCleaner(Expander);
7016
7017      assert(Expander.isSafeToExpand(TermValueS) &&
7018             "Terminating value was checked safe in canFoldTerminatingCondition");
7019
7020      // Create new terminating value at loop preheader
7021      Value *TermValue = Expander.expandCodeFor(TermValueS, ToHelpFold->getType(),
7022                                                LoopPreheader->getTerminator());
7023
7024      LLVM_DEBUG(dbgs() << "Start value of new term-cond phi-node:\n"
7025                        << *StartValue << "\n"
7026                        << "Terminating value of new term-cond phi-node:\n"
7027                        << *TermValue << "\n");
7028
7029      // Create new terminating condition at loop latch
7030      BranchInst *BI = cast<BranchInst>(LoopLatch->getTerminator());
7031      ICmpInst *OldTermCond = cast<ICmpInst>(BI->getCondition());
7032      IRBuilder<> LatchBuilder(LoopLatch->getTerminator());
7033      Value *NewTermCond =
7034          LatchBuilder.CreateICmp(CmpInst::ICMP_EQ, LoopValue, TermValue,
7035                                  "lsr_fold_term_cond.replaced_term_cond");
7036      // Swap successors to exit loop body if IV equals to new TermValue
7037      if (BI->getSuccessor(0) == L->getHeader())
7038        BI->swapSuccessors();
7039
7040      LLVM_DEBUG(dbgs() << "Old term-cond:\n"
7041                        << *OldTermCond << "\n"
7042                        << "New term-cond:\n" << *NewTermCond << "\n");
7043
7044      BI->setCondition(NewTermCond);
7045
7046      OldTermCond->eraseFromParent();
7047      DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
7048
7049      ExpCleaner.markResultUsed();
7050    }
7051  }
7052
7053  if (SalvageableDVIRecords.empty())
7054    return Changed;
7055
7056  // Obtain relevant IVs and attempt to rewrite the salvageable DVIs with
7057  // expressions composed using the derived iteration count.
7058  // TODO: Allow for multiple IV references for nested AddRecSCEVs
7059  for (const auto &L : LI) {
7060    if (llvm::PHINode *IV = GetInductionVariable(*L, SE, Reducer))
7061      DbgRewriteSalvageableDVIs(L, SE, IV, SalvageableDVIRecords);
7062    else {
7063      LLVM_DEBUG(dbgs() << "scev-salvage: SCEV salvaging not possible. An IV "
7064                           "could not be identified.\n");
7065    }
7066  }
7067
7068  for (auto &Rec : SalvageableDVIRecords)
7069    Rec->clear();
7070  SalvageableDVIRecords.clear();
7071  DVIHandles.clear();
7072  return Changed;
7073}
7074
7075bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
7076  if (skipLoop(L))
7077    return false;
7078
7079  auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
7080  auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
7081  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
7082  auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
7083  const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
7084      *L->getHeader()->getParent());
7085  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
7086      *L->getHeader()->getParent());
7087  auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
7088      *L->getHeader()->getParent());
7089  auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
7090  MemorySSA *MSSA = nullptr;
7091  if (MSSAAnalysis)
7092    MSSA = &MSSAAnalysis->getMSSA();
7093  return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA);
7094}
7095
7096PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
7097                                              LoopStandardAnalysisResults &AR,
7098                                              LPMUpdater &) {
7099  if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
7100                          AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA))
7101    return PreservedAnalyses::all();
7102
7103  auto PA = getLoopPassPreservedAnalyses();
7104  if (AR.MSSA)
7105    PA.preserve<MemorySSAAnalysis>();
7106  return PA;
7107}
7108
7109char LoopStrengthReduce::ID = 0;
7110
7111INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
7112                      "Loop Strength Reduction", false, false)
7113INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7114INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7115INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7116INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
7117INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7118INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
7119INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
7120                    "Loop Strength Reduction", false, false)
7121
7122Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
7123