1//===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass performs a simple dominator tree walk that eliminates trivially
10// redundant instructions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Transforms/Scalar/EarlyCSE.h"
15#include "llvm/ADT/DenseMapInfo.h"
16#include "llvm/ADT/Hashing.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/ScopedHashTable.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/Analysis/AssumptionCache.h"
22#include "llvm/Analysis/GlobalsModRef.h"
23#include "llvm/Analysis/GuardUtils.h"
24#include "llvm/Analysis/InstructionSimplify.h"
25#include "llvm/Analysis/MemorySSA.h"
26#include "llvm/Analysis/MemorySSAUpdater.h"
27#include "llvm/Analysis/TargetLibraryInfo.h"
28#include "llvm/Analysis/TargetTransformInfo.h"
29#include "llvm/Analysis/ValueTracking.h"
30#include "llvm/IR/BasicBlock.h"
31#include "llvm/IR/Constants.h"
32#include "llvm/IR/Dominators.h"
33#include "llvm/IR/Function.h"
34#include "llvm/IR/InstrTypes.h"
35#include "llvm/IR/Instruction.h"
36#include "llvm/IR/Instructions.h"
37#include "llvm/IR/IntrinsicInst.h"
38#include "llvm/IR/LLVMContext.h"
39#include "llvm/IR/PassManager.h"
40#include "llvm/IR/PatternMatch.h"
41#include "llvm/IR/Type.h"
42#include "llvm/IR/Value.h"
43#include "llvm/InitializePasses.h"
44#include "llvm/Pass.h"
45#include "llvm/Support/Allocator.h"
46#include "llvm/Support/AtomicOrdering.h"
47#include "llvm/Support/Casting.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/DebugCounter.h"
50#include "llvm/Support/RecyclingAllocator.h"
51#include "llvm/Support/raw_ostream.h"
52#include "llvm/Transforms/Scalar.h"
53#include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
54#include "llvm/Transforms/Utils/Local.h"
55#include <cassert>
56#include <deque>
57#include <memory>
58#include <utility>
59
60using namespace llvm;
61using namespace llvm::PatternMatch;
62
63#define DEBUG_TYPE "early-cse"
64
65STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
66STATISTIC(NumCSE,      "Number of instructions CSE'd");
67STATISTIC(NumCSECVP,   "Number of compare instructions CVP'd");
68STATISTIC(NumCSELoad,  "Number of load instructions CSE'd");
69STATISTIC(NumCSECall,  "Number of call instructions CSE'd");
70STATISTIC(NumCSEGEP, "Number of GEP instructions CSE'd");
71STATISTIC(NumDSE,      "Number of trivial dead stores removed");
72
73DEBUG_COUNTER(CSECounter, "early-cse",
74              "Controls which instructions are removed");
75
76static cl::opt<unsigned> EarlyCSEMssaOptCap(
77    "earlycse-mssa-optimization-cap", cl::init(500), cl::Hidden,
78    cl::desc("Enable imprecision in EarlyCSE in pathological cases, in exchange "
79             "for faster compile. Caps the MemorySSA clobbering calls."));
80
81static cl::opt<bool> EarlyCSEDebugHash(
82    "earlycse-debug-hash", cl::init(false), cl::Hidden,
83    cl::desc("Perform extra assertion checking to verify that SimpleValue's hash "
84             "function is well-behaved w.r.t. its isEqual predicate"));
85
86//===----------------------------------------------------------------------===//
87// SimpleValue
88//===----------------------------------------------------------------------===//
89
90namespace {
91
92/// Struct representing the available values in the scoped hash table.
93struct SimpleValue {
94  Instruction *Inst;
95
96  SimpleValue(Instruction *I) : Inst(I) {
97    assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
98  }
99
100  bool isSentinel() const {
101    return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
102           Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
103  }
104
105  static bool canHandle(Instruction *Inst) {
106    // This can only handle non-void readnone functions.
107    // Also handled are constrained intrinsic that look like the types
108    // of instruction handled below (UnaryOperator, etc.).
109    if (CallInst *CI = dyn_cast<CallInst>(Inst)) {
110      if (Function *F = CI->getCalledFunction()) {
111        switch ((Intrinsic::ID)F->getIntrinsicID()) {
112        case Intrinsic::experimental_constrained_fadd:
113        case Intrinsic::experimental_constrained_fsub:
114        case Intrinsic::experimental_constrained_fmul:
115        case Intrinsic::experimental_constrained_fdiv:
116        case Intrinsic::experimental_constrained_frem:
117        case Intrinsic::experimental_constrained_fptosi:
118        case Intrinsic::experimental_constrained_sitofp:
119        case Intrinsic::experimental_constrained_fptoui:
120        case Intrinsic::experimental_constrained_uitofp:
121        case Intrinsic::experimental_constrained_fcmp:
122        case Intrinsic::experimental_constrained_fcmps: {
123          auto *CFP = cast<ConstrainedFPIntrinsic>(CI);
124          if (CFP->getExceptionBehavior() &&
125              CFP->getExceptionBehavior() == fp::ebStrict)
126            return false;
127          // Since we CSE across function calls we must not allow
128          // the rounding mode to change.
129          if (CFP->getRoundingMode() &&
130              CFP->getRoundingMode() == RoundingMode::Dynamic)
131            return false;
132          return true;
133        }
134        }
135      }
136      return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy() &&
137             // FIXME: Currently the calls which may access the thread id may
138             // be considered as not accessing the memory. But this is
139             // problematic for coroutines, since coroutines may resume in a
140             // different thread. So we disable the optimization here for the
141             // correctness. However, it may block many other correct
142             // optimizations. Revert this one when we detect the memory
143             // accessing kind more precisely.
144             !CI->getFunction()->isPresplitCoroutine();
145    }
146    return isa<CastInst>(Inst) || isa<UnaryOperator>(Inst) ||
147           isa<BinaryOperator>(Inst) || isa<CmpInst>(Inst) ||
148           isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
149           isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) ||
150           isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst) ||
151           isa<FreezeInst>(Inst);
152  }
153};
154
155} // end anonymous namespace
156
157namespace llvm {
158
159template <> struct DenseMapInfo<SimpleValue> {
160  static inline SimpleValue getEmptyKey() {
161    return DenseMapInfo<Instruction *>::getEmptyKey();
162  }
163
164  static inline SimpleValue getTombstoneKey() {
165    return DenseMapInfo<Instruction *>::getTombstoneKey();
166  }
167
168  static unsigned getHashValue(SimpleValue Val);
169  static bool isEqual(SimpleValue LHS, SimpleValue RHS);
170};
171
172} // end namespace llvm
173
174/// Match a 'select' including an optional 'not's of the condition.
175static bool matchSelectWithOptionalNotCond(Value *V, Value *&Cond, Value *&A,
176                                           Value *&B,
177                                           SelectPatternFlavor &Flavor) {
178  // Return false if V is not even a select.
179  if (!match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B))))
180    return false;
181
182  // Look through a 'not' of the condition operand by swapping A/B.
183  Value *CondNot;
184  if (match(Cond, m_Not(m_Value(CondNot)))) {
185    Cond = CondNot;
186    std::swap(A, B);
187  }
188
189  // Match canonical forms of min/max. We are not using ValueTracking's
190  // more powerful matchSelectPattern() because it may rely on instruction flags
191  // such as "nsw". That would be incompatible with the current hashing
192  // mechanism that may remove flags to increase the likelihood of CSE.
193
194  Flavor = SPF_UNKNOWN;
195  CmpInst::Predicate Pred;
196
197  if (!match(Cond, m_ICmp(Pred, m_Specific(A), m_Specific(B)))) {
198    // Check for commuted variants of min/max by swapping predicate.
199    // If we do not match the standard or commuted patterns, this is not a
200    // recognized form of min/max, but it is still a select, so return true.
201    if (!match(Cond, m_ICmp(Pred, m_Specific(B), m_Specific(A))))
202      return true;
203    Pred = ICmpInst::getSwappedPredicate(Pred);
204  }
205
206  switch (Pred) {
207  case CmpInst::ICMP_UGT: Flavor = SPF_UMAX; break;
208  case CmpInst::ICMP_ULT: Flavor = SPF_UMIN; break;
209  case CmpInst::ICMP_SGT: Flavor = SPF_SMAX; break;
210  case CmpInst::ICMP_SLT: Flavor = SPF_SMIN; break;
211  // Non-strict inequalities.
212  case CmpInst::ICMP_ULE: Flavor = SPF_UMIN; break;
213  case CmpInst::ICMP_UGE: Flavor = SPF_UMAX; break;
214  case CmpInst::ICMP_SLE: Flavor = SPF_SMIN; break;
215  case CmpInst::ICMP_SGE: Flavor = SPF_SMAX; break;
216  default: break;
217  }
218
219  return true;
220}
221
222static unsigned hashCallInst(CallInst *CI) {
223  // Don't CSE convergent calls in different basic blocks, because they
224  // implicitly depend on the set of threads that is currently executing.
225  if (CI->isConvergent()) {
226    return hash_combine(
227        CI->getOpcode(), CI->getParent(),
228        hash_combine_range(CI->value_op_begin(), CI->value_op_end()));
229  }
230  return hash_combine(
231      CI->getOpcode(),
232      hash_combine_range(CI->value_op_begin(), CI->value_op_end()));
233}
234
235static unsigned getHashValueImpl(SimpleValue Val) {
236  Instruction *Inst = Val.Inst;
237  // Hash in all of the operands as pointers.
238  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) {
239    Value *LHS = BinOp->getOperand(0);
240    Value *RHS = BinOp->getOperand(1);
241    if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1))
242      std::swap(LHS, RHS);
243
244    return hash_combine(BinOp->getOpcode(), LHS, RHS);
245  }
246
247  if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) {
248    // Compares can be commuted by swapping the comparands and
249    // updating the predicate.  Choose the form that has the
250    // comparands in sorted order, or in the case of a tie, the
251    // one with the lower predicate.
252    Value *LHS = CI->getOperand(0);
253    Value *RHS = CI->getOperand(1);
254    CmpInst::Predicate Pred = CI->getPredicate();
255    CmpInst::Predicate SwappedPred = CI->getSwappedPredicate();
256    if (std::tie(LHS, Pred) > std::tie(RHS, SwappedPred)) {
257      std::swap(LHS, RHS);
258      Pred = SwappedPred;
259    }
260    return hash_combine(Inst->getOpcode(), Pred, LHS, RHS);
261  }
262
263  // Hash general selects to allow matching commuted true/false operands.
264  SelectPatternFlavor SPF;
265  Value *Cond, *A, *B;
266  if (matchSelectWithOptionalNotCond(Inst, Cond, A, B, SPF)) {
267    // Hash min/max (cmp + select) to allow for commuted operands.
268    // Min/max may also have non-canonical compare predicate (eg, the compare for
269    // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the
270    // compare.
271    // TODO: We should also detect FP min/max.
272    if (SPF == SPF_SMIN || SPF == SPF_SMAX ||
273        SPF == SPF_UMIN || SPF == SPF_UMAX) {
274      if (A > B)
275        std::swap(A, B);
276      return hash_combine(Inst->getOpcode(), SPF, A, B);
277    }
278
279    // Hash general selects to allow matching commuted true/false operands.
280
281    // If we do not have a compare as the condition, just hash in the condition.
282    CmpInst::Predicate Pred;
283    Value *X, *Y;
284    if (!match(Cond, m_Cmp(Pred, m_Value(X), m_Value(Y))))
285      return hash_combine(Inst->getOpcode(), Cond, A, B);
286
287    // Similar to cmp normalization (above) - canonicalize the predicate value:
288    // select (icmp Pred, X, Y), A, B --> select (icmp InvPred, X, Y), B, A
289    if (CmpInst::getInversePredicate(Pred) < Pred) {
290      Pred = CmpInst::getInversePredicate(Pred);
291      std::swap(A, B);
292    }
293    return hash_combine(Inst->getOpcode(), Pred, X, Y, A, B);
294  }
295
296  if (CastInst *CI = dyn_cast<CastInst>(Inst))
297    return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0));
298
299  if (FreezeInst *FI = dyn_cast<FreezeInst>(Inst))
300    return hash_combine(FI->getOpcode(), FI->getOperand(0));
301
302  if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst))
303    return hash_combine(EVI->getOpcode(), EVI->getOperand(0),
304                        hash_combine_range(EVI->idx_begin(), EVI->idx_end()));
305
306  if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst))
307    return hash_combine(IVI->getOpcode(), IVI->getOperand(0),
308                        IVI->getOperand(1),
309                        hash_combine_range(IVI->idx_begin(), IVI->idx_end()));
310
311  assert((isa<CallInst>(Inst) || isa<ExtractElementInst>(Inst) ||
312          isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) ||
313          isa<UnaryOperator>(Inst) || isa<FreezeInst>(Inst)) &&
314         "Invalid/unknown instruction");
315
316  // Handle intrinsics with commutative operands.
317  auto *II = dyn_cast<IntrinsicInst>(Inst);
318  if (II && II->isCommutative() && II->arg_size() >= 2) {
319    Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
320    if (LHS > RHS)
321      std::swap(LHS, RHS);
322    return hash_combine(
323        II->getOpcode(), LHS, RHS,
324        hash_combine_range(II->value_op_begin() + 2, II->value_op_end()));
325  }
326
327  // gc.relocate is 'special' call: its second and third operands are
328  // not real values, but indices into statepoint's argument list.
329  // Get values they point to.
330  if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(Inst))
331    return hash_combine(GCR->getOpcode(), GCR->getOperand(0),
332                        GCR->getBasePtr(), GCR->getDerivedPtr());
333
334  // Don't CSE convergent calls in different basic blocks, because they
335  // implicitly depend on the set of threads that is currently executing.
336  if (CallInst *CI = dyn_cast<CallInst>(Inst))
337    return hashCallInst(CI);
338
339  // Mix in the opcode.
340  return hash_combine(
341      Inst->getOpcode(),
342      hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
343}
344
345unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
346#ifndef NDEBUG
347  // If -earlycse-debug-hash was specified, return a constant -- this
348  // will force all hashing to collide, so we'll exhaustively search
349  // the table for a match, and the assertion in isEqual will fire if
350  // there's a bug causing equal keys to hash differently.
351  if (EarlyCSEDebugHash)
352    return 0;
353#endif
354  return getHashValueImpl(Val);
355}
356
357static bool isEqualImpl(SimpleValue LHS, SimpleValue RHS) {
358  Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
359
360  if (LHS.isSentinel() || RHS.isSentinel())
361    return LHSI == RHSI;
362
363  if (LHSI->getOpcode() != RHSI->getOpcode())
364    return false;
365  if (LHSI->isIdenticalToWhenDefined(RHSI)) {
366    // Convergent calls implicitly depend on the set of threads that is
367    // currently executing, so conservatively return false if they are in
368    // different basic blocks.
369    if (CallInst *CI = dyn_cast<CallInst>(LHSI);
370        CI && CI->isConvergent() && LHSI->getParent() != RHSI->getParent())
371      return false;
372
373    return true;
374  }
375
376  // If we're not strictly identical, we still might be a commutable instruction
377  if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) {
378    if (!LHSBinOp->isCommutative())
379      return false;
380
381    assert(isa<BinaryOperator>(RHSI) &&
382           "same opcode, but different instruction type?");
383    BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI);
384
385    // Commuted equality
386    return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) &&
387           LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0);
388  }
389  if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) {
390    assert(isa<CmpInst>(RHSI) &&
391           "same opcode, but different instruction type?");
392    CmpInst *RHSCmp = cast<CmpInst>(RHSI);
393    // Commuted equality
394    return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) &&
395           LHSCmp->getOperand(1) == RHSCmp->getOperand(0) &&
396           LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate();
397  }
398
399  auto *LII = dyn_cast<IntrinsicInst>(LHSI);
400  auto *RII = dyn_cast<IntrinsicInst>(RHSI);
401  if (LII && RII && LII->getIntrinsicID() == RII->getIntrinsicID() &&
402      LII->isCommutative() && LII->arg_size() >= 2) {
403    return LII->getArgOperand(0) == RII->getArgOperand(1) &&
404           LII->getArgOperand(1) == RII->getArgOperand(0) &&
405           std::equal(LII->arg_begin() + 2, LII->arg_end(),
406                      RII->arg_begin() + 2, RII->arg_end());
407  }
408
409  // See comment above in `getHashValue()`.
410  if (const GCRelocateInst *GCR1 = dyn_cast<GCRelocateInst>(LHSI))
411    if (const GCRelocateInst *GCR2 = dyn_cast<GCRelocateInst>(RHSI))
412      return GCR1->getOperand(0) == GCR2->getOperand(0) &&
413             GCR1->getBasePtr() == GCR2->getBasePtr() &&
414             GCR1->getDerivedPtr() == GCR2->getDerivedPtr();
415
416  // Min/max can occur with commuted operands, non-canonical predicates,
417  // and/or non-canonical operands.
418  // Selects can be non-trivially equivalent via inverted conditions and swaps.
419  SelectPatternFlavor LSPF, RSPF;
420  Value *CondL, *CondR, *LHSA, *RHSA, *LHSB, *RHSB;
421  if (matchSelectWithOptionalNotCond(LHSI, CondL, LHSA, LHSB, LSPF) &&
422      matchSelectWithOptionalNotCond(RHSI, CondR, RHSA, RHSB, RSPF)) {
423    if (LSPF == RSPF) {
424      // TODO: We should also detect FP min/max.
425      if (LSPF == SPF_SMIN || LSPF == SPF_SMAX ||
426          LSPF == SPF_UMIN || LSPF == SPF_UMAX)
427        return ((LHSA == RHSA && LHSB == RHSB) ||
428                (LHSA == RHSB && LHSB == RHSA));
429
430      // select Cond, A, B <--> select not(Cond), B, A
431      if (CondL == CondR && LHSA == RHSA && LHSB == RHSB)
432        return true;
433    }
434
435    // If the true/false operands are swapped and the conditions are compares
436    // with inverted predicates, the selects are equal:
437    // select (icmp Pred, X, Y), A, B <--> select (icmp InvPred, X, Y), B, A
438    //
439    // This also handles patterns with a double-negation in the sense of not +
440    // inverse, because we looked through a 'not' in the matching function and
441    // swapped A/B:
442    // select (cmp Pred, X, Y), A, B <--> select (not (cmp InvPred, X, Y)), B, A
443    //
444    // This intentionally does NOT handle patterns with a double-negation in
445    // the sense of not + not, because doing so could result in values
446    // comparing
447    // as equal that hash differently in the min/max cases like:
448    // select (cmp slt, X, Y), X, Y <--> select (not (not (cmp slt, X, Y))), X, Y
449    //   ^ hashes as min                  ^ would not hash as min
450    // In the context of the EarlyCSE pass, however, such cases never reach
451    // this code, as we simplify the double-negation before hashing the second
452    // select (and so still succeed at CSEing them).
453    if (LHSA == RHSB && LHSB == RHSA) {
454      CmpInst::Predicate PredL, PredR;
455      Value *X, *Y;
456      if (match(CondL, m_Cmp(PredL, m_Value(X), m_Value(Y))) &&
457          match(CondR, m_Cmp(PredR, m_Specific(X), m_Specific(Y))) &&
458          CmpInst::getInversePredicate(PredL) == PredR)
459        return true;
460    }
461  }
462
463  return false;
464}
465
466bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
467  // These comparisons are nontrivial, so assert that equality implies
468  // hash equality (DenseMap demands this as an invariant).
469  bool Result = isEqualImpl(LHS, RHS);
470  assert(!Result || (LHS.isSentinel() && LHS.Inst == RHS.Inst) ||
471         getHashValueImpl(LHS) == getHashValueImpl(RHS));
472  return Result;
473}
474
475//===----------------------------------------------------------------------===//
476// CallValue
477//===----------------------------------------------------------------------===//
478
479namespace {
480
481/// Struct representing the available call values in the scoped hash
482/// table.
483struct CallValue {
484  Instruction *Inst;
485
486  CallValue(Instruction *I) : Inst(I) {
487    assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
488  }
489
490  bool isSentinel() const {
491    return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
492           Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
493  }
494
495  static bool canHandle(Instruction *Inst) {
496    // Don't value number anything that returns void.
497    if (Inst->getType()->isVoidTy())
498      return false;
499
500    CallInst *CI = dyn_cast<CallInst>(Inst);
501    if (!CI || !CI->onlyReadsMemory() ||
502        // FIXME: Currently the calls which may access the thread id may
503        // be considered as not accessing the memory. But this is
504        // problematic for coroutines, since coroutines may resume in a
505        // different thread. So we disable the optimization here for the
506        // correctness. However, it may block many other correct
507        // optimizations. Revert this one when we detect the memory
508        // accessing kind more precisely.
509        CI->getFunction()->isPresplitCoroutine())
510      return false;
511    return true;
512  }
513};
514
515} // end anonymous namespace
516
517namespace llvm {
518
519template <> struct DenseMapInfo<CallValue> {
520  static inline CallValue getEmptyKey() {
521    return DenseMapInfo<Instruction *>::getEmptyKey();
522  }
523
524  static inline CallValue getTombstoneKey() {
525    return DenseMapInfo<Instruction *>::getTombstoneKey();
526  }
527
528  static unsigned getHashValue(CallValue Val);
529  static bool isEqual(CallValue LHS, CallValue RHS);
530};
531
532} // end namespace llvm
533
534unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
535  Instruction *Inst = Val.Inst;
536
537  // Hash all of the operands as pointers and mix in the opcode.
538  return hashCallInst(cast<CallInst>(Inst));
539}
540
541bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
542  if (LHS.isSentinel() || RHS.isSentinel())
543    return LHS.Inst == RHS.Inst;
544
545  CallInst *LHSI = cast<CallInst>(LHS.Inst);
546  CallInst *RHSI = cast<CallInst>(RHS.Inst);
547
548  // Convergent calls implicitly depend on the set of threads that is
549  // currently executing, so conservatively return false if they are in
550  // different basic blocks.
551  if (LHSI->isConvergent() && LHSI->getParent() != RHSI->getParent())
552    return false;
553
554  return LHSI->isIdenticalTo(RHSI);
555}
556
557//===----------------------------------------------------------------------===//
558// GEPValue
559//===----------------------------------------------------------------------===//
560
561namespace {
562
563struct GEPValue {
564  Instruction *Inst;
565  std::optional<int64_t> ConstantOffset;
566
567  GEPValue(Instruction *I) : Inst(I) {
568    assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
569  }
570
571  GEPValue(Instruction *I, std::optional<int64_t> ConstantOffset)
572      : Inst(I), ConstantOffset(ConstantOffset) {
573    assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
574  }
575
576  bool isSentinel() const {
577    return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
578           Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
579  }
580
581  static bool canHandle(Instruction *Inst) {
582    return isa<GetElementPtrInst>(Inst);
583  }
584};
585
586} // namespace
587
588namespace llvm {
589
590template <> struct DenseMapInfo<GEPValue> {
591  static inline GEPValue getEmptyKey() {
592    return DenseMapInfo<Instruction *>::getEmptyKey();
593  }
594
595  static inline GEPValue getTombstoneKey() {
596    return DenseMapInfo<Instruction *>::getTombstoneKey();
597  }
598
599  static unsigned getHashValue(const GEPValue &Val);
600  static bool isEqual(const GEPValue &LHS, const GEPValue &RHS);
601};
602
603} // end namespace llvm
604
605unsigned DenseMapInfo<GEPValue>::getHashValue(const GEPValue &Val) {
606  auto *GEP = cast<GetElementPtrInst>(Val.Inst);
607  if (Val.ConstantOffset.has_value())
608    return hash_combine(GEP->getOpcode(), GEP->getPointerOperand(),
609                        Val.ConstantOffset.value());
610  return hash_combine(
611      GEP->getOpcode(),
612      hash_combine_range(GEP->value_op_begin(), GEP->value_op_end()));
613}
614
615bool DenseMapInfo<GEPValue>::isEqual(const GEPValue &LHS, const GEPValue &RHS) {
616  if (LHS.isSentinel() || RHS.isSentinel())
617    return LHS.Inst == RHS.Inst;
618  auto *LGEP = cast<GetElementPtrInst>(LHS.Inst);
619  auto *RGEP = cast<GetElementPtrInst>(RHS.Inst);
620  if (LGEP->getPointerOperand() != RGEP->getPointerOperand())
621    return false;
622  if (LHS.ConstantOffset.has_value() && RHS.ConstantOffset.has_value())
623    return LHS.ConstantOffset.value() == RHS.ConstantOffset.value();
624  return LGEP->isIdenticalToWhenDefined(RGEP);
625}
626
627//===----------------------------------------------------------------------===//
628// EarlyCSE implementation
629//===----------------------------------------------------------------------===//
630
631namespace {
632
633/// A simple and fast domtree-based CSE pass.
634///
635/// This pass does a simple depth-first walk over the dominator tree,
636/// eliminating trivially redundant instructions and using instsimplify to
637/// canonicalize things as it goes. It is intended to be fast and catch obvious
638/// cases so that instcombine and other passes are more effective. It is
639/// expected that a later pass of GVN will catch the interesting/hard cases.
640class EarlyCSE {
641public:
642  const TargetLibraryInfo &TLI;
643  const TargetTransformInfo &TTI;
644  DominatorTree &DT;
645  AssumptionCache &AC;
646  const SimplifyQuery SQ;
647  MemorySSA *MSSA;
648  std::unique_ptr<MemorySSAUpdater> MSSAUpdater;
649
650  using AllocatorTy =
651      RecyclingAllocator<BumpPtrAllocator,
652                         ScopedHashTableVal<SimpleValue, Value *>>;
653  using ScopedHTType =
654      ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>,
655                      AllocatorTy>;
656
657  /// A scoped hash table of the current values of all of our simple
658  /// scalar expressions.
659  ///
660  /// As we walk down the domtree, we look to see if instructions are in this:
661  /// if so, we replace them with what we find, otherwise we insert them so
662  /// that dominated values can succeed in their lookup.
663  ScopedHTType AvailableValues;
664
665  /// A scoped hash table of the current values of previously encountered
666  /// memory locations.
667  ///
668  /// This allows us to get efficient access to dominating loads or stores when
669  /// we have a fully redundant load.  In addition to the most recent load, we
670  /// keep track of a generation count of the read, which is compared against
671  /// the current generation count.  The current generation count is incremented
672  /// after every possibly writing memory operation, which ensures that we only
673  /// CSE loads with other loads that have no intervening store.  Ordering
674  /// events (such as fences or atomic instructions) increment the generation
675  /// count as well; essentially, we model these as writes to all possible
676  /// locations.  Note that atomic and/or volatile loads and stores can be
677  /// present the table; it is the responsibility of the consumer to inspect
678  /// the atomicity/volatility if needed.
679  struct LoadValue {
680    Instruction *DefInst = nullptr;
681    unsigned Generation = 0;
682    int MatchingId = -1;
683    bool IsAtomic = false;
684    bool IsLoad = false;
685
686    LoadValue() = default;
687    LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId,
688              bool IsAtomic, bool IsLoad)
689        : DefInst(Inst), Generation(Generation), MatchingId(MatchingId),
690          IsAtomic(IsAtomic), IsLoad(IsLoad) {}
691  };
692
693  using LoadMapAllocator =
694      RecyclingAllocator<BumpPtrAllocator,
695                         ScopedHashTableVal<Value *, LoadValue>>;
696  using LoadHTType =
697      ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>,
698                      LoadMapAllocator>;
699
700  LoadHTType AvailableLoads;
701
702  // A scoped hash table mapping memory locations (represented as typed
703  // addresses) to generation numbers at which that memory location became
704  // (henceforth indefinitely) invariant.
705  using InvariantMapAllocator =
706      RecyclingAllocator<BumpPtrAllocator,
707                         ScopedHashTableVal<MemoryLocation, unsigned>>;
708  using InvariantHTType =
709      ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>,
710                      InvariantMapAllocator>;
711  InvariantHTType AvailableInvariants;
712
713  /// A scoped hash table of the current values of read-only call
714  /// values.
715  ///
716  /// It uses the same generation count as loads.
717  using CallHTType =
718      ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>;
719  CallHTType AvailableCalls;
720
721  using GEPMapAllocatorTy =
722      RecyclingAllocator<BumpPtrAllocator,
723                         ScopedHashTableVal<GEPValue, Value *>>;
724  using GEPHTType = ScopedHashTable<GEPValue, Value *, DenseMapInfo<GEPValue>,
725                                    GEPMapAllocatorTy>;
726  GEPHTType AvailableGEPs;
727
728  /// This is the current generation of the memory value.
729  unsigned CurrentGeneration = 0;
730
731  /// Set up the EarlyCSE runner for a particular function.
732  EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI,
733           const TargetTransformInfo &TTI, DominatorTree &DT,
734           AssumptionCache &AC, MemorySSA *MSSA)
735      : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA),
736        MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) {}
737
738  bool run();
739
740private:
741  unsigned ClobberCounter = 0;
742  // Almost a POD, but needs to call the constructors for the scoped hash
743  // tables so that a new scope gets pushed on. These are RAII so that the
744  // scope gets popped when the NodeScope is destroyed.
745  class NodeScope {
746  public:
747    NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
748              InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls,
749              GEPHTType &AvailableGEPs)
750        : Scope(AvailableValues), LoadScope(AvailableLoads),
751          InvariantScope(AvailableInvariants), CallScope(AvailableCalls),
752          GEPScope(AvailableGEPs) {}
753    NodeScope(const NodeScope &) = delete;
754    NodeScope &operator=(const NodeScope &) = delete;
755
756  private:
757    ScopedHTType::ScopeTy Scope;
758    LoadHTType::ScopeTy LoadScope;
759    InvariantHTType::ScopeTy InvariantScope;
760    CallHTType::ScopeTy CallScope;
761    GEPHTType::ScopeTy GEPScope;
762  };
763
764  // Contains all the needed information to create a stack for doing a depth
765  // first traversal of the tree. This includes scopes for values, loads, and
766  // calls as well as the generation. There is a child iterator so that the
767  // children do not need to be store separately.
768  class StackNode {
769  public:
770    StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
771              InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls,
772              GEPHTType &AvailableGEPs, unsigned cg, DomTreeNode *n,
773              DomTreeNode::const_iterator child,
774              DomTreeNode::const_iterator end)
775        : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child),
776          EndIter(end),
777          Scopes(AvailableValues, AvailableLoads, AvailableInvariants,
778                 AvailableCalls, AvailableGEPs) {}
779    StackNode(const StackNode &) = delete;
780    StackNode &operator=(const StackNode &) = delete;
781
782    // Accessors.
783    unsigned currentGeneration() const { return CurrentGeneration; }
784    unsigned childGeneration() const { return ChildGeneration; }
785    void childGeneration(unsigned generation) { ChildGeneration = generation; }
786    DomTreeNode *node() { return Node; }
787    DomTreeNode::const_iterator childIter() const { return ChildIter; }
788
789    DomTreeNode *nextChild() {
790      DomTreeNode *child = *ChildIter;
791      ++ChildIter;
792      return child;
793    }
794
795    DomTreeNode::const_iterator end() const { return EndIter; }
796    bool isProcessed() const { return Processed; }
797    void process() { Processed = true; }
798
799  private:
800    unsigned CurrentGeneration;
801    unsigned ChildGeneration;
802    DomTreeNode *Node;
803    DomTreeNode::const_iterator ChildIter;
804    DomTreeNode::const_iterator EndIter;
805    NodeScope Scopes;
806    bool Processed = false;
807  };
808
809  /// Wrapper class to handle memory instructions, including loads,
810  /// stores and intrinsic loads and stores defined by the target.
811  class ParseMemoryInst {
812  public:
813    ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI)
814      : Inst(Inst) {
815      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
816        IntrID = II->getIntrinsicID();
817        if (TTI.getTgtMemIntrinsic(II, Info))
818          return;
819        if (isHandledNonTargetIntrinsic(IntrID)) {
820          switch (IntrID) {
821          case Intrinsic::masked_load:
822            Info.PtrVal = Inst->getOperand(0);
823            Info.MatchingId = Intrinsic::masked_load;
824            Info.ReadMem = true;
825            Info.WriteMem = false;
826            Info.IsVolatile = false;
827            break;
828          case Intrinsic::masked_store:
829            Info.PtrVal = Inst->getOperand(1);
830            // Use the ID of masked load as the "matching id". This will
831            // prevent matching non-masked loads/stores with masked ones
832            // (which could be done), but at the moment, the code here
833            // does not support matching intrinsics with non-intrinsics,
834            // so keep the MatchingIds specific to masked instructions
835            // for now (TODO).
836            Info.MatchingId = Intrinsic::masked_load;
837            Info.ReadMem = false;
838            Info.WriteMem = true;
839            Info.IsVolatile = false;
840            break;
841          }
842        }
843      }
844    }
845
846    Instruction *get() { return Inst; }
847    const Instruction *get() const { return Inst; }
848
849    bool isLoad() const {
850      if (IntrID != 0)
851        return Info.ReadMem;
852      return isa<LoadInst>(Inst);
853    }
854
855    bool isStore() const {
856      if (IntrID != 0)
857        return Info.WriteMem;
858      return isa<StoreInst>(Inst);
859    }
860
861    bool isAtomic() const {
862      if (IntrID != 0)
863        return Info.Ordering != AtomicOrdering::NotAtomic;
864      return Inst->isAtomic();
865    }
866
867    bool isUnordered() const {
868      if (IntrID != 0)
869        return Info.isUnordered();
870
871      if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
872        return LI->isUnordered();
873      } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
874        return SI->isUnordered();
875      }
876      // Conservative answer
877      return !Inst->isAtomic();
878    }
879
880    bool isVolatile() const {
881      if (IntrID != 0)
882        return Info.IsVolatile;
883
884      if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
885        return LI->isVolatile();
886      } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
887        return SI->isVolatile();
888      }
889      // Conservative answer
890      return true;
891    }
892
893    bool isInvariantLoad() const {
894      if (auto *LI = dyn_cast<LoadInst>(Inst))
895        return LI->hasMetadata(LLVMContext::MD_invariant_load);
896      return false;
897    }
898
899    bool isValid() const { return getPointerOperand() != nullptr; }
900
901    // For regular (non-intrinsic) loads/stores, this is set to -1. For
902    // intrinsic loads/stores, the id is retrieved from the corresponding
903    // field in the MemIntrinsicInfo structure.  That field contains
904    // non-negative values only.
905    int getMatchingId() const {
906      if (IntrID != 0)
907        return Info.MatchingId;
908      return -1;
909    }
910
911    Value *getPointerOperand() const {
912      if (IntrID != 0)
913        return Info.PtrVal;
914      return getLoadStorePointerOperand(Inst);
915    }
916
917    Type *getValueType() const {
918      // TODO: handle target-specific intrinsics.
919      return Inst->getAccessType();
920    }
921
922    bool mayReadFromMemory() const {
923      if (IntrID != 0)
924        return Info.ReadMem;
925      return Inst->mayReadFromMemory();
926    }
927
928    bool mayWriteToMemory() const {
929      if (IntrID != 0)
930        return Info.WriteMem;
931      return Inst->mayWriteToMemory();
932    }
933
934  private:
935    Intrinsic::ID IntrID = 0;
936    MemIntrinsicInfo Info;
937    Instruction *Inst;
938  };
939
940  // This function is to prevent accidentally passing a non-target
941  // intrinsic ID to TargetTransformInfo.
942  static bool isHandledNonTargetIntrinsic(Intrinsic::ID ID) {
943    switch (ID) {
944    case Intrinsic::masked_load:
945    case Intrinsic::masked_store:
946      return true;
947    }
948    return false;
949  }
950  static bool isHandledNonTargetIntrinsic(const Value *V) {
951    if (auto *II = dyn_cast<IntrinsicInst>(V))
952      return isHandledNonTargetIntrinsic(II->getIntrinsicID());
953    return false;
954  }
955
956  bool processNode(DomTreeNode *Node);
957
958  bool handleBranchCondition(Instruction *CondInst, const BranchInst *BI,
959                             const BasicBlock *BB, const BasicBlock *Pred);
960
961  Value *getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst,
962                          unsigned CurrentGeneration);
963
964  bool overridingStores(const ParseMemoryInst &Earlier,
965                        const ParseMemoryInst &Later);
966
967  Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const {
968    // TODO: We could insert relevant casts on type mismatch here.
969    if (auto *LI = dyn_cast<LoadInst>(Inst))
970      return LI->getType() == ExpectedType ? LI : nullptr;
971    if (auto *SI = dyn_cast<StoreInst>(Inst)) {
972      Value *V = SI->getValueOperand();
973      return V->getType() == ExpectedType ? V : nullptr;
974    }
975    assert(isa<IntrinsicInst>(Inst) && "Instruction not supported");
976    auto *II = cast<IntrinsicInst>(Inst);
977    if (isHandledNonTargetIntrinsic(II->getIntrinsicID()))
978      return getOrCreateResultNonTargetMemIntrinsic(II, ExpectedType);
979    return TTI.getOrCreateResultFromMemIntrinsic(II, ExpectedType);
980  }
981
982  Value *getOrCreateResultNonTargetMemIntrinsic(IntrinsicInst *II,
983                                                Type *ExpectedType) const {
984    // TODO: We could insert relevant casts on type mismatch here.
985    switch (II->getIntrinsicID()) {
986    case Intrinsic::masked_load:
987      return II->getType() == ExpectedType ? II : nullptr;
988    case Intrinsic::masked_store: {
989      Value *V = II->getOperand(0);
990      return V->getType() == ExpectedType ? V : nullptr;
991    }
992    }
993    return nullptr;
994  }
995
996  /// Return true if the instruction is known to only operate on memory
997  /// provably invariant in the given "generation".
998  bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt);
999
1000  bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration,
1001                           Instruction *EarlierInst, Instruction *LaterInst);
1002
1003  bool isNonTargetIntrinsicMatch(const IntrinsicInst *Earlier,
1004                                 const IntrinsicInst *Later) {
1005    auto IsSubmask = [](const Value *Mask0, const Value *Mask1) {
1006      // Is Mask0 a submask of Mask1?
1007      if (Mask0 == Mask1)
1008        return true;
1009      if (isa<UndefValue>(Mask0) || isa<UndefValue>(Mask1))
1010        return false;
1011      auto *Vec0 = dyn_cast<ConstantVector>(Mask0);
1012      auto *Vec1 = dyn_cast<ConstantVector>(Mask1);
1013      if (!Vec0 || !Vec1)
1014        return false;
1015      if (Vec0->getType() != Vec1->getType())
1016        return false;
1017      for (int i = 0, e = Vec0->getNumOperands(); i != e; ++i) {
1018        Constant *Elem0 = Vec0->getOperand(i);
1019        Constant *Elem1 = Vec1->getOperand(i);
1020        auto *Int0 = dyn_cast<ConstantInt>(Elem0);
1021        if (Int0 && Int0->isZero())
1022          continue;
1023        auto *Int1 = dyn_cast<ConstantInt>(Elem1);
1024        if (Int1 && !Int1->isZero())
1025          continue;
1026        if (isa<UndefValue>(Elem0) || isa<UndefValue>(Elem1))
1027          return false;
1028        if (Elem0 == Elem1)
1029          continue;
1030        return false;
1031      }
1032      return true;
1033    };
1034    auto PtrOp = [](const IntrinsicInst *II) {
1035      if (II->getIntrinsicID() == Intrinsic::masked_load)
1036        return II->getOperand(0);
1037      if (II->getIntrinsicID() == Intrinsic::masked_store)
1038        return II->getOperand(1);
1039      llvm_unreachable("Unexpected IntrinsicInst");
1040    };
1041    auto MaskOp = [](const IntrinsicInst *II) {
1042      if (II->getIntrinsicID() == Intrinsic::masked_load)
1043        return II->getOperand(2);
1044      if (II->getIntrinsicID() == Intrinsic::masked_store)
1045        return II->getOperand(3);
1046      llvm_unreachable("Unexpected IntrinsicInst");
1047    };
1048    auto ThruOp = [](const IntrinsicInst *II) {
1049      if (II->getIntrinsicID() == Intrinsic::masked_load)
1050        return II->getOperand(3);
1051      llvm_unreachable("Unexpected IntrinsicInst");
1052    };
1053
1054    if (PtrOp(Earlier) != PtrOp(Later))
1055      return false;
1056
1057    Intrinsic::ID IDE = Earlier->getIntrinsicID();
1058    Intrinsic::ID IDL = Later->getIntrinsicID();
1059    // We could really use specific intrinsic classes for masked loads
1060    // and stores in IntrinsicInst.h.
1061    if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_load) {
1062      // Trying to replace later masked load with the earlier one.
1063      // Check that the pointers are the same, and
1064      // - masks and pass-throughs are the same, or
1065      // - replacee's pass-through is "undef" and replacer's mask is a
1066      //   super-set of the replacee's mask.
1067      if (MaskOp(Earlier) == MaskOp(Later) && ThruOp(Earlier) == ThruOp(Later))
1068        return true;
1069      if (!isa<UndefValue>(ThruOp(Later)))
1070        return false;
1071      return IsSubmask(MaskOp(Later), MaskOp(Earlier));
1072    }
1073    if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_load) {
1074      // Trying to replace a load of a stored value with the store's value.
1075      // Check that the pointers are the same, and
1076      // - load's mask is a subset of store's mask, and
1077      // - load's pass-through is "undef".
1078      if (!IsSubmask(MaskOp(Later), MaskOp(Earlier)))
1079        return false;
1080      return isa<UndefValue>(ThruOp(Later));
1081    }
1082    if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_store) {
1083      // Trying to remove a store of the loaded value.
1084      // Check that the pointers are the same, and
1085      // - store's mask is a subset of the load's mask.
1086      return IsSubmask(MaskOp(Later), MaskOp(Earlier));
1087    }
1088    if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_store) {
1089      // Trying to remove a dead store (earlier).
1090      // Check that the pointers are the same,
1091      // - the to-be-removed store's mask is a subset of the other store's
1092      //   mask.
1093      return IsSubmask(MaskOp(Earlier), MaskOp(Later));
1094    }
1095    return false;
1096  }
1097
1098  void removeMSSA(Instruction &Inst) {
1099    if (!MSSA)
1100      return;
1101    if (VerifyMemorySSA)
1102      MSSA->verifyMemorySSA();
1103    // Removing a store here can leave MemorySSA in an unoptimized state by
1104    // creating MemoryPhis that have identical arguments and by creating
1105    // MemoryUses whose defining access is not an actual clobber. The phi case
1106    // is handled by MemorySSA when passing OptimizePhis = true to
1107    // removeMemoryAccess.  The non-optimized MemoryUse case is lazily updated
1108    // by MemorySSA's getClobberingMemoryAccess.
1109    MSSAUpdater->removeMemoryAccess(&Inst, true);
1110  }
1111};
1112
1113} // end anonymous namespace
1114
1115/// Determine if the memory referenced by LaterInst is from the same heap
1116/// version as EarlierInst.
1117/// This is currently called in two scenarios:
1118///
1119///   load p
1120///   ...
1121///   load p
1122///
1123/// and
1124///
1125///   x = load p
1126///   ...
1127///   store x, p
1128///
1129/// in both cases we want to verify that there are no possible writes to the
1130/// memory referenced by p between the earlier and later instruction.
1131bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration,
1132                                   unsigned LaterGeneration,
1133                                   Instruction *EarlierInst,
1134                                   Instruction *LaterInst) {
1135  // Check the simple memory generation tracking first.
1136  if (EarlierGeneration == LaterGeneration)
1137    return true;
1138
1139  if (!MSSA)
1140    return false;
1141
1142  // If MemorySSA has determined that one of EarlierInst or LaterInst does not
1143  // read/write memory, then we can safely return true here.
1144  // FIXME: We could be more aggressive when checking doesNotAccessMemory(),
1145  // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass
1146  // by also checking the MemorySSA MemoryAccess on the instruction.  Initial
1147  // experiments suggest this isn't worthwhile, at least for C/C++ code compiled
1148  // with the default optimization pipeline.
1149  auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst);
1150  if (!EarlierMA)
1151    return true;
1152  auto *LaterMA = MSSA->getMemoryAccess(LaterInst);
1153  if (!LaterMA)
1154    return true;
1155
1156  // Since we know LaterDef dominates LaterInst and EarlierInst dominates
1157  // LaterInst, if LaterDef dominates EarlierInst then it can't occur between
1158  // EarlierInst and LaterInst and neither can any other write that potentially
1159  // clobbers LaterInst.
1160  MemoryAccess *LaterDef;
1161  if (ClobberCounter < EarlyCSEMssaOptCap) {
1162    LaterDef = MSSA->getWalker()->getClobberingMemoryAccess(LaterInst);
1163    ClobberCounter++;
1164  } else
1165    LaterDef = LaterMA->getDefiningAccess();
1166
1167  return MSSA->dominates(LaterDef, EarlierMA);
1168}
1169
1170bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) {
1171  // A location loaded from with an invariant_load is assumed to *never* change
1172  // within the visible scope of the compilation.
1173  if (auto *LI = dyn_cast<LoadInst>(I))
1174    if (LI->hasMetadata(LLVMContext::MD_invariant_load))
1175      return true;
1176
1177  auto MemLocOpt = MemoryLocation::getOrNone(I);
1178  if (!MemLocOpt)
1179    // "target" intrinsic forms of loads aren't currently known to
1180    // MemoryLocation::get.  TODO
1181    return false;
1182  MemoryLocation MemLoc = *MemLocOpt;
1183  if (!AvailableInvariants.count(MemLoc))
1184    return false;
1185
1186  // Is the generation at which this became invariant older than the
1187  // current one?
1188  return AvailableInvariants.lookup(MemLoc) <= GenAt;
1189}
1190
1191bool EarlyCSE::handleBranchCondition(Instruction *CondInst,
1192                                     const BranchInst *BI, const BasicBlock *BB,
1193                                     const BasicBlock *Pred) {
1194  assert(BI->isConditional() && "Should be a conditional branch!");
1195  assert(BI->getCondition() == CondInst && "Wrong condition?");
1196  assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB);
1197  auto *TorF = (BI->getSuccessor(0) == BB)
1198                   ? ConstantInt::getTrue(BB->getContext())
1199                   : ConstantInt::getFalse(BB->getContext());
1200  auto MatchBinOp = [](Instruction *I, unsigned Opcode, Value *&LHS,
1201                       Value *&RHS) {
1202    if (Opcode == Instruction::And &&
1203        match(I, m_LogicalAnd(m_Value(LHS), m_Value(RHS))))
1204      return true;
1205    else if (Opcode == Instruction::Or &&
1206             match(I, m_LogicalOr(m_Value(LHS), m_Value(RHS))))
1207      return true;
1208    return false;
1209  };
1210  // If the condition is AND operation, we can propagate its operands into the
1211  // true branch. If it is OR operation, we can propagate them into the false
1212  // branch.
1213  unsigned PropagateOpcode =
1214      (BI->getSuccessor(0) == BB) ? Instruction::And : Instruction::Or;
1215
1216  bool MadeChanges = false;
1217  SmallVector<Instruction *, 4> WorkList;
1218  SmallPtrSet<Instruction *, 4> Visited;
1219  WorkList.push_back(CondInst);
1220  while (!WorkList.empty()) {
1221    Instruction *Curr = WorkList.pop_back_val();
1222
1223    AvailableValues.insert(Curr, TorF);
1224    LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '"
1225                      << Curr->getName() << "' as " << *TorF << " in "
1226                      << BB->getName() << "\n");
1227    if (!DebugCounter::shouldExecute(CSECounter)) {
1228      LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1229    } else {
1230      // Replace all dominated uses with the known value.
1231      if (unsigned Count = replaceDominatedUsesWith(Curr, TorF, DT,
1232                                                    BasicBlockEdge(Pred, BB))) {
1233        NumCSECVP += Count;
1234        MadeChanges = true;
1235      }
1236    }
1237
1238    Value *LHS, *RHS;
1239    if (MatchBinOp(Curr, PropagateOpcode, LHS, RHS))
1240      for (auto *Op : { LHS, RHS })
1241        if (Instruction *OPI = dyn_cast<Instruction>(Op))
1242          if (SimpleValue::canHandle(OPI) && Visited.insert(OPI).second)
1243            WorkList.push_back(OPI);
1244  }
1245
1246  return MadeChanges;
1247}
1248
1249Value *EarlyCSE::getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst,
1250                                  unsigned CurrentGeneration) {
1251  if (InVal.DefInst == nullptr)
1252    return nullptr;
1253  if (InVal.MatchingId != MemInst.getMatchingId())
1254    return nullptr;
1255  // We don't yet handle removing loads with ordering of any kind.
1256  if (MemInst.isVolatile() || !MemInst.isUnordered())
1257    return nullptr;
1258  // We can't replace an atomic load with one which isn't also atomic.
1259  if (MemInst.isLoad() && !InVal.IsAtomic && MemInst.isAtomic())
1260    return nullptr;
1261  // The value V returned from this function is used differently depending
1262  // on whether MemInst is a load or a store. If it's a load, we will replace
1263  // MemInst with V, if it's a store, we will check if V is the same as the
1264  // available value.
1265  bool MemInstMatching = !MemInst.isLoad();
1266  Instruction *Matching = MemInstMatching ? MemInst.get() : InVal.DefInst;
1267  Instruction *Other = MemInstMatching ? InVal.DefInst : MemInst.get();
1268
1269  // For stores check the result values before checking memory generation
1270  // (otherwise isSameMemGeneration may crash).
1271  Value *Result = MemInst.isStore()
1272                      ? getOrCreateResult(Matching, Other->getType())
1273                      : nullptr;
1274  if (MemInst.isStore() && InVal.DefInst != Result)
1275    return nullptr;
1276
1277  // Deal with non-target memory intrinsics.
1278  bool MatchingNTI = isHandledNonTargetIntrinsic(Matching);
1279  bool OtherNTI = isHandledNonTargetIntrinsic(Other);
1280  if (OtherNTI != MatchingNTI)
1281    return nullptr;
1282  if (OtherNTI && MatchingNTI) {
1283    if (!isNonTargetIntrinsicMatch(cast<IntrinsicInst>(InVal.DefInst),
1284                                   cast<IntrinsicInst>(MemInst.get())))
1285      return nullptr;
1286  }
1287
1288  if (!isOperatingOnInvariantMemAt(MemInst.get(), InVal.Generation) &&
1289      !isSameMemGeneration(InVal.Generation, CurrentGeneration, InVal.DefInst,
1290                           MemInst.get()))
1291    return nullptr;
1292
1293  if (!Result)
1294    Result = getOrCreateResult(Matching, Other->getType());
1295  return Result;
1296}
1297
1298static void combineIRFlags(Instruction &From, Value *To) {
1299  if (auto *I = dyn_cast<Instruction>(To)) {
1300    // If I being poison triggers UB, there is no need to drop those
1301    // flags. Otherwise, only retain flags present on both I and Inst.
1302    // TODO: Currently some fast-math flags are not treated as
1303    // poison-generating even though they should. Until this is fixed,
1304    // always retain flags present on both I and Inst for floating point
1305    // instructions.
1306    if (isa<FPMathOperator>(I) ||
1307        (I->hasPoisonGeneratingFlags() && !programUndefinedIfPoison(I)))
1308      I->andIRFlags(&From);
1309  }
1310}
1311
1312bool EarlyCSE::overridingStores(const ParseMemoryInst &Earlier,
1313                                const ParseMemoryInst &Later) {
1314  // Can we remove Earlier store because of Later store?
1315
1316  assert(Earlier.isUnordered() && !Earlier.isVolatile() &&
1317         "Violated invariant");
1318  if (Earlier.getPointerOperand() != Later.getPointerOperand())
1319    return false;
1320  if (!Earlier.getValueType() || !Later.getValueType() ||
1321      Earlier.getValueType() != Later.getValueType())
1322    return false;
1323  if (Earlier.getMatchingId() != Later.getMatchingId())
1324    return false;
1325  // At the moment, we don't remove ordered stores, but do remove
1326  // unordered atomic stores.  There's no special requirement (for
1327  // unordered atomics) about removing atomic stores only in favor of
1328  // other atomic stores since we were going to execute the non-atomic
1329  // one anyway and the atomic one might never have become visible.
1330  if (!Earlier.isUnordered() || !Later.isUnordered())
1331    return false;
1332
1333  // Deal with non-target memory intrinsics.
1334  bool ENTI = isHandledNonTargetIntrinsic(Earlier.get());
1335  bool LNTI = isHandledNonTargetIntrinsic(Later.get());
1336  if (ENTI && LNTI)
1337    return isNonTargetIntrinsicMatch(cast<IntrinsicInst>(Earlier.get()),
1338                                     cast<IntrinsicInst>(Later.get()));
1339
1340  // Because of the check above, at least one of them is false.
1341  // For now disallow matching intrinsics with non-intrinsics,
1342  // so assume that the stores match if neither is an intrinsic.
1343  return ENTI == LNTI;
1344}
1345
1346bool EarlyCSE::processNode(DomTreeNode *Node) {
1347  bool Changed = false;
1348  BasicBlock *BB = Node->getBlock();
1349
1350  // If this block has a single predecessor, then the predecessor is the parent
1351  // of the domtree node and all of the live out memory values are still current
1352  // in this block.  If this block has multiple predecessors, then they could
1353  // have invalidated the live-out memory values of our parent value.  For now,
1354  // just be conservative and invalidate memory if this block has multiple
1355  // predecessors.
1356  if (!BB->getSinglePredecessor())
1357    ++CurrentGeneration;
1358
1359  // If this node has a single predecessor which ends in a conditional branch,
1360  // we can infer the value of the branch condition given that we took this
1361  // path.  We need the single predecessor to ensure there's not another path
1362  // which reaches this block where the condition might hold a different
1363  // value.  Since we're adding this to the scoped hash table (like any other
1364  // def), it will have been popped if we encounter a future merge block.
1365  if (BasicBlock *Pred = BB->getSinglePredecessor()) {
1366    auto *BI = dyn_cast<BranchInst>(Pred->getTerminator());
1367    if (BI && BI->isConditional()) {
1368      auto *CondInst = dyn_cast<Instruction>(BI->getCondition());
1369      if (CondInst && SimpleValue::canHandle(CondInst))
1370        Changed |= handleBranchCondition(CondInst, BI, BB, Pred);
1371    }
1372  }
1373
1374  /// LastStore - Keep track of the last non-volatile store that we saw... for
1375  /// as long as there in no instruction that reads memory.  If we see a store
1376  /// to the same location, we delete the dead store.  This zaps trivial dead
1377  /// stores which can occur in bitfield code among other things.
1378  Instruction *LastStore = nullptr;
1379
1380  // See if any instructions in the block can be eliminated.  If so, do it.  If
1381  // not, add them to AvailableValues.
1382  for (Instruction &Inst : make_early_inc_range(*BB)) {
1383    // Dead instructions should just be removed.
1384    if (isInstructionTriviallyDead(&Inst, &TLI)) {
1385      LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << Inst << '\n');
1386      if (!DebugCounter::shouldExecute(CSECounter)) {
1387        LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1388        continue;
1389      }
1390
1391      salvageKnowledge(&Inst, &AC);
1392      salvageDebugInfo(Inst);
1393      removeMSSA(Inst);
1394      Inst.eraseFromParent();
1395      Changed = true;
1396      ++NumSimplify;
1397      continue;
1398    }
1399
1400    // Skip assume intrinsics, they don't really have side effects (although
1401    // they're marked as such to ensure preservation of control dependencies),
1402    // and this pass will not bother with its removal. However, we should mark
1403    // its condition as true for all dominated blocks.
1404    if (auto *Assume = dyn_cast<AssumeInst>(&Inst)) {
1405      auto *CondI = dyn_cast<Instruction>(Assume->getArgOperand(0));
1406      if (CondI && SimpleValue::canHandle(CondI)) {
1407        LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << Inst
1408                          << '\n');
1409        AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext()));
1410      } else
1411        LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << Inst << '\n');
1412      continue;
1413    }
1414
1415    // Likewise, noalias intrinsics don't actually write.
1416    if (match(&Inst,
1417              m_Intrinsic<Intrinsic::experimental_noalias_scope_decl>())) {
1418      LLVM_DEBUG(dbgs() << "EarlyCSE skipping noalias intrinsic: " << Inst
1419                        << '\n');
1420      continue;
1421    }
1422
1423    // Skip sideeffect intrinsics, for the same reason as assume intrinsics.
1424    if (match(&Inst, m_Intrinsic<Intrinsic::sideeffect>())) {
1425      LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << Inst << '\n');
1426      continue;
1427    }
1428
1429    // Skip pseudoprobe intrinsics, for the same reason as assume intrinsics.
1430    if (match(&Inst, m_Intrinsic<Intrinsic::pseudoprobe>())) {
1431      LLVM_DEBUG(dbgs() << "EarlyCSE skipping pseudoprobe: " << Inst << '\n');
1432      continue;
1433    }
1434
1435    // We can skip all invariant.start intrinsics since they only read memory,
1436    // and we can forward values across it. For invariant starts without
1437    // invariant ends, we can use the fact that the invariantness never ends to
1438    // start a scope in the current generaton which is true for all future
1439    // generations.  Also, we dont need to consume the last store since the
1440    // semantics of invariant.start allow us to perform   DSE of the last
1441    // store, if there was a store following invariant.start. Consider:
1442    //
1443    // store 30, i8* p
1444    // invariant.start(p)
1445    // store 40, i8* p
1446    // We can DSE the store to 30, since the store 40 to invariant location p
1447    // causes undefined behaviour.
1448    if (match(&Inst, m_Intrinsic<Intrinsic::invariant_start>())) {
1449      // If there are any uses, the scope might end.
1450      if (!Inst.use_empty())
1451        continue;
1452      MemoryLocation MemLoc =
1453          MemoryLocation::getForArgument(&cast<CallInst>(Inst), 1, TLI);
1454      // Don't start a scope if we already have a better one pushed
1455      if (!AvailableInvariants.count(MemLoc))
1456        AvailableInvariants.insert(MemLoc, CurrentGeneration);
1457      continue;
1458    }
1459
1460    if (isGuard(&Inst)) {
1461      if (auto *CondI =
1462              dyn_cast<Instruction>(cast<CallInst>(Inst).getArgOperand(0))) {
1463        if (SimpleValue::canHandle(CondI)) {
1464          // Do we already know the actual value of this condition?
1465          if (auto *KnownCond = AvailableValues.lookup(CondI)) {
1466            // Is the condition known to be true?
1467            if (isa<ConstantInt>(KnownCond) &&
1468                cast<ConstantInt>(KnownCond)->isOne()) {
1469              LLVM_DEBUG(dbgs()
1470                         << "EarlyCSE removing guard: " << Inst << '\n');
1471              salvageKnowledge(&Inst, &AC);
1472              removeMSSA(Inst);
1473              Inst.eraseFromParent();
1474              Changed = true;
1475              continue;
1476            } else
1477              // Use the known value if it wasn't true.
1478              cast<CallInst>(Inst).setArgOperand(0, KnownCond);
1479          }
1480          // The condition we're on guarding here is true for all dominated
1481          // locations.
1482          AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext()));
1483        }
1484      }
1485
1486      // Guard intrinsics read all memory, but don't write any memory.
1487      // Accordingly, don't update the generation but consume the last store (to
1488      // avoid an incorrect DSE).
1489      LastStore = nullptr;
1490      continue;
1491    }
1492
1493    // If the instruction can be simplified (e.g. X+0 = X) then replace it with
1494    // its simpler value.
1495    if (Value *V = simplifyInstruction(&Inst, SQ)) {
1496      LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << Inst << "  to: " << *V
1497                        << '\n');
1498      if (!DebugCounter::shouldExecute(CSECounter)) {
1499        LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1500      } else {
1501        bool Killed = false;
1502        if (!Inst.use_empty()) {
1503          Inst.replaceAllUsesWith(V);
1504          Changed = true;
1505        }
1506        if (isInstructionTriviallyDead(&Inst, &TLI)) {
1507          salvageKnowledge(&Inst, &AC);
1508          removeMSSA(Inst);
1509          Inst.eraseFromParent();
1510          Changed = true;
1511          Killed = true;
1512        }
1513        if (Changed)
1514          ++NumSimplify;
1515        if (Killed)
1516          continue;
1517      }
1518    }
1519
1520    // If this is a simple instruction that we can value number, process it.
1521    if (SimpleValue::canHandle(&Inst)) {
1522      if ([[maybe_unused]] auto *CI = dyn_cast<ConstrainedFPIntrinsic>(&Inst)) {
1523        assert(CI->getExceptionBehavior() != fp::ebStrict &&
1524               "Unexpected ebStrict from SimpleValue::canHandle()");
1525        assert((!CI->getRoundingMode() ||
1526                CI->getRoundingMode() != RoundingMode::Dynamic) &&
1527               "Unexpected dynamic rounding from SimpleValue::canHandle()");
1528      }
1529      // See if the instruction has an available value.  If so, use it.
1530      if (Value *V = AvailableValues.lookup(&Inst)) {
1531        LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << Inst << "  to: " << *V
1532                          << '\n');
1533        if (!DebugCounter::shouldExecute(CSECounter)) {
1534          LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1535          continue;
1536        }
1537        combineIRFlags(Inst, V);
1538        Inst.replaceAllUsesWith(V);
1539        salvageKnowledge(&Inst, &AC);
1540        removeMSSA(Inst);
1541        Inst.eraseFromParent();
1542        Changed = true;
1543        ++NumCSE;
1544        continue;
1545      }
1546
1547      // Otherwise, just remember that this value is available.
1548      AvailableValues.insert(&Inst, &Inst);
1549      continue;
1550    }
1551
1552    ParseMemoryInst MemInst(&Inst, TTI);
1553    // If this is a non-volatile load, process it.
1554    if (MemInst.isValid() && MemInst.isLoad()) {
1555      // (conservatively) we can't peak past the ordering implied by this
1556      // operation, but we can add this load to our set of available values
1557      if (MemInst.isVolatile() || !MemInst.isUnordered()) {
1558        LastStore = nullptr;
1559        ++CurrentGeneration;
1560      }
1561
1562      if (MemInst.isInvariantLoad()) {
1563        // If we pass an invariant load, we know that memory location is
1564        // indefinitely constant from the moment of first dereferenceability.
1565        // We conservatively treat the invariant_load as that moment.  If we
1566        // pass a invariant load after already establishing a scope, don't
1567        // restart it since we want to preserve the earliest point seen.
1568        auto MemLoc = MemoryLocation::get(&Inst);
1569        if (!AvailableInvariants.count(MemLoc))
1570          AvailableInvariants.insert(MemLoc, CurrentGeneration);
1571      }
1572
1573      // If we have an available version of this load, and if it is the right
1574      // generation or the load is known to be from an invariant location,
1575      // replace this instruction.
1576      //
1577      // If either the dominating load or the current load are invariant, then
1578      // we can assume the current load loads the same value as the dominating
1579      // load.
1580      LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
1581      if (Value *Op = getMatchingValue(InVal, MemInst, CurrentGeneration)) {
1582        LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << Inst
1583                          << "  to: " << *InVal.DefInst << '\n');
1584        if (!DebugCounter::shouldExecute(CSECounter)) {
1585          LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1586          continue;
1587        }
1588        if (InVal.IsLoad)
1589          if (auto *I = dyn_cast<Instruction>(Op))
1590            combineMetadataForCSE(I, &Inst, false);
1591        if (!Inst.use_empty())
1592          Inst.replaceAllUsesWith(Op);
1593        salvageKnowledge(&Inst, &AC);
1594        removeMSSA(Inst);
1595        Inst.eraseFromParent();
1596        Changed = true;
1597        ++NumCSELoad;
1598        continue;
1599      }
1600
1601      // Otherwise, remember that we have this instruction.
1602      AvailableLoads.insert(MemInst.getPointerOperand(),
1603                            LoadValue(&Inst, CurrentGeneration,
1604                                      MemInst.getMatchingId(),
1605                                      MemInst.isAtomic(),
1606                                      MemInst.isLoad()));
1607      LastStore = nullptr;
1608      continue;
1609    }
1610
1611    // If this instruction may read from memory or throw (and potentially read
1612    // from memory in the exception handler), forget LastStore.  Load/store
1613    // intrinsics will indicate both a read and a write to memory.  The target
1614    // may override this (e.g. so that a store intrinsic does not read from
1615    // memory, and thus will be treated the same as a regular store for
1616    // commoning purposes).
1617    if ((Inst.mayReadFromMemory() || Inst.mayThrow()) &&
1618        !(MemInst.isValid() && !MemInst.mayReadFromMemory()))
1619      LastStore = nullptr;
1620
1621    // If this is a read-only call, process it.
1622    if (CallValue::canHandle(&Inst)) {
1623      // If we have an available version of this call, and if it is the right
1624      // generation, replace this instruction.
1625      std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(&Inst);
1626      if (InVal.first != nullptr &&
1627          isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first,
1628                              &Inst)) {
1629        LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << Inst
1630                          << "  to: " << *InVal.first << '\n');
1631        if (!DebugCounter::shouldExecute(CSECounter)) {
1632          LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1633          continue;
1634        }
1635        if (!Inst.use_empty())
1636          Inst.replaceAllUsesWith(InVal.first);
1637        salvageKnowledge(&Inst, &AC);
1638        removeMSSA(Inst);
1639        Inst.eraseFromParent();
1640        Changed = true;
1641        ++NumCSECall;
1642        continue;
1643      }
1644
1645      // Otherwise, remember that we have this instruction.
1646      AvailableCalls.insert(&Inst, std::make_pair(&Inst, CurrentGeneration));
1647      continue;
1648    }
1649
1650    // Compare GEP instructions based on offset.
1651    if (GEPValue::canHandle(&Inst)) {
1652      auto *GEP = cast<GetElementPtrInst>(&Inst);
1653      APInt Offset = APInt(SQ.DL.getIndexTypeSizeInBits(GEP->getType()), 0);
1654      GEPValue GEPVal(GEP, GEP->accumulateConstantOffset(SQ.DL, Offset)
1655                               ? Offset.trySExtValue()
1656                               : std::nullopt);
1657      if (Value *V = AvailableGEPs.lookup(GEPVal)) {
1658        LLVM_DEBUG(dbgs() << "EarlyCSE CSE GEP: " << Inst << "  to: " << *V
1659                          << '\n');
1660        combineIRFlags(Inst, V);
1661        Inst.replaceAllUsesWith(V);
1662        salvageKnowledge(&Inst, &AC);
1663        removeMSSA(Inst);
1664        Inst.eraseFromParent();
1665        Changed = true;
1666        ++NumCSEGEP;
1667        continue;
1668      }
1669
1670      // Otherwise, just remember that we have this GEP.
1671      AvailableGEPs.insert(GEPVal, &Inst);
1672      continue;
1673    }
1674
1675    // A release fence requires that all stores complete before it, but does
1676    // not prevent the reordering of following loads 'before' the fence.  As a
1677    // result, we don't need to consider it as writing to memory and don't need
1678    // to advance the generation.  We do need to prevent DSE across the fence,
1679    // but that's handled above.
1680    if (auto *FI = dyn_cast<FenceInst>(&Inst))
1681      if (FI->getOrdering() == AtomicOrdering::Release) {
1682        assert(Inst.mayReadFromMemory() && "relied on to prevent DSE above");
1683        continue;
1684      }
1685
1686    // write back DSE - If we write back the same value we just loaded from
1687    // the same location and haven't passed any intervening writes or ordering
1688    // operations, we can remove the write.  The primary benefit is in allowing
1689    // the available load table to remain valid and value forward past where
1690    // the store originally was.
1691    if (MemInst.isValid() && MemInst.isStore()) {
1692      LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
1693      if (InVal.DefInst &&
1694          InVal.DefInst == getMatchingValue(InVal, MemInst, CurrentGeneration)) {
1695        // It is okay to have a LastStore to a different pointer here if MemorySSA
1696        // tells us that the load and store are from the same memory generation.
1697        // In that case, LastStore should keep its present value since we're
1698        // removing the current store.
1699        assert((!LastStore ||
1700                ParseMemoryInst(LastStore, TTI).getPointerOperand() ==
1701                    MemInst.getPointerOperand() ||
1702                MSSA) &&
1703               "can't have an intervening store if not using MemorySSA!");
1704        LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << Inst << '\n');
1705        if (!DebugCounter::shouldExecute(CSECounter)) {
1706          LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1707          continue;
1708        }
1709        salvageKnowledge(&Inst, &AC);
1710        removeMSSA(Inst);
1711        Inst.eraseFromParent();
1712        Changed = true;
1713        ++NumDSE;
1714        // We can avoid incrementing the generation count since we were able
1715        // to eliminate this store.
1716        continue;
1717      }
1718    }
1719
1720    // Okay, this isn't something we can CSE at all.  Check to see if it is
1721    // something that could modify memory.  If so, our available memory values
1722    // cannot be used so bump the generation count.
1723    if (Inst.mayWriteToMemory()) {
1724      ++CurrentGeneration;
1725
1726      if (MemInst.isValid() && MemInst.isStore()) {
1727        // We do a trivial form of DSE if there are two stores to the same
1728        // location with no intervening loads.  Delete the earlier store.
1729        if (LastStore) {
1730          if (overridingStores(ParseMemoryInst(LastStore, TTI), MemInst)) {
1731            LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore
1732                              << "  due to: " << Inst << '\n');
1733            if (!DebugCounter::shouldExecute(CSECounter)) {
1734              LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1735            } else {
1736              salvageKnowledge(&Inst, &AC);
1737              removeMSSA(*LastStore);
1738              LastStore->eraseFromParent();
1739              Changed = true;
1740              ++NumDSE;
1741              LastStore = nullptr;
1742            }
1743          }
1744          // fallthrough - we can exploit information about this store
1745        }
1746
1747        // Okay, we just invalidated anything we knew about loaded values.  Try
1748        // to salvage *something* by remembering that the stored value is a live
1749        // version of the pointer.  It is safe to forward from volatile stores
1750        // to non-volatile loads, so we don't have to check for volatility of
1751        // the store.
1752        AvailableLoads.insert(MemInst.getPointerOperand(),
1753                              LoadValue(&Inst, CurrentGeneration,
1754                                        MemInst.getMatchingId(),
1755                                        MemInst.isAtomic(),
1756                                        MemInst.isLoad()));
1757
1758        // Remember that this was the last unordered store we saw for DSE. We
1759        // don't yet handle DSE on ordered or volatile stores since we don't
1760        // have a good way to model the ordering requirement for following
1761        // passes  once the store is removed.  We could insert a fence, but
1762        // since fences are slightly stronger than stores in their ordering,
1763        // it's not clear this is a profitable transform. Another option would
1764        // be to merge the ordering with that of the post dominating store.
1765        if (MemInst.isUnordered() && !MemInst.isVolatile())
1766          LastStore = &Inst;
1767        else
1768          LastStore = nullptr;
1769      }
1770    }
1771  }
1772
1773  return Changed;
1774}
1775
1776bool EarlyCSE::run() {
1777  // Note, deque is being used here because there is significant performance
1778  // gains over vector when the container becomes very large due to the
1779  // specific access patterns. For more information see the mailing list
1780  // discussion on this:
1781  // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
1782  std::deque<StackNode *> nodesToProcess;
1783
1784  bool Changed = false;
1785
1786  // Process the root node.
1787  nodesToProcess.push_back(new StackNode(
1788      AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls,
1789      AvailableGEPs, CurrentGeneration, DT.getRootNode(),
1790      DT.getRootNode()->begin(), DT.getRootNode()->end()));
1791
1792  assert(!CurrentGeneration && "Create a new EarlyCSE instance to rerun it.");
1793
1794  // Process the stack.
1795  while (!nodesToProcess.empty()) {
1796    // Grab the first item off the stack. Set the current generation, remove
1797    // the node from the stack, and process it.
1798    StackNode *NodeToProcess = nodesToProcess.back();
1799
1800    // Initialize class members.
1801    CurrentGeneration = NodeToProcess->currentGeneration();
1802
1803    // Check if the node needs to be processed.
1804    if (!NodeToProcess->isProcessed()) {
1805      // Process the node.
1806      Changed |= processNode(NodeToProcess->node());
1807      NodeToProcess->childGeneration(CurrentGeneration);
1808      NodeToProcess->process();
1809    } else if (NodeToProcess->childIter() != NodeToProcess->end()) {
1810      // Push the next child onto the stack.
1811      DomTreeNode *child = NodeToProcess->nextChild();
1812      nodesToProcess.push_back(new StackNode(
1813          AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls,
1814          AvailableGEPs, NodeToProcess->childGeneration(), child,
1815          child->begin(), child->end()));
1816    } else {
1817      // It has been processed, and there are no more children to process,
1818      // so delete it and pop it off the stack.
1819      delete NodeToProcess;
1820      nodesToProcess.pop_back();
1821    }
1822  } // while (!nodes...)
1823
1824  return Changed;
1825}
1826
1827PreservedAnalyses EarlyCSEPass::run(Function &F,
1828                                    FunctionAnalysisManager &AM) {
1829  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1830  auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1831  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1832  auto &AC = AM.getResult<AssumptionAnalysis>(F);
1833  auto *MSSA =
1834      UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr;
1835
1836  EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA);
1837
1838  if (!CSE.run())
1839    return PreservedAnalyses::all();
1840
1841  PreservedAnalyses PA;
1842  PA.preserveSet<CFGAnalyses>();
1843  if (UseMemorySSA)
1844    PA.preserve<MemorySSAAnalysis>();
1845  return PA;
1846}
1847
1848void EarlyCSEPass::printPipeline(
1849    raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
1850  static_cast<PassInfoMixin<EarlyCSEPass> *>(this)->printPipeline(
1851      OS, MapClassName2PassName);
1852  OS << '<';
1853  if (UseMemorySSA)
1854    OS << "memssa";
1855  OS << '>';
1856}
1857
1858namespace {
1859
1860/// A simple and fast domtree-based CSE pass.
1861///
1862/// This pass does a simple depth-first walk over the dominator tree,
1863/// eliminating trivially redundant instructions and using instsimplify to
1864/// canonicalize things as it goes. It is intended to be fast and catch obvious
1865/// cases so that instcombine and other passes are more effective. It is
1866/// expected that a later pass of GVN will catch the interesting/hard cases.
1867template<bool UseMemorySSA>
1868class EarlyCSELegacyCommonPass : public FunctionPass {
1869public:
1870  static char ID;
1871
1872  EarlyCSELegacyCommonPass() : FunctionPass(ID) {
1873    if (UseMemorySSA)
1874      initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry());
1875    else
1876      initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry());
1877  }
1878
1879  bool runOnFunction(Function &F) override {
1880    if (skipFunction(F))
1881      return false;
1882
1883    auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1884    auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1885    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1886    auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1887    auto *MSSA =
1888        UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr;
1889
1890    EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA);
1891
1892    return CSE.run();
1893  }
1894
1895  void getAnalysisUsage(AnalysisUsage &AU) const override {
1896    AU.addRequired<AssumptionCacheTracker>();
1897    AU.addRequired<DominatorTreeWrapperPass>();
1898    AU.addRequired<TargetLibraryInfoWrapperPass>();
1899    AU.addRequired<TargetTransformInfoWrapperPass>();
1900    if (UseMemorySSA) {
1901      AU.addRequired<AAResultsWrapperPass>();
1902      AU.addRequired<MemorySSAWrapperPass>();
1903      AU.addPreserved<MemorySSAWrapperPass>();
1904    }
1905    AU.addPreserved<GlobalsAAWrapperPass>();
1906    AU.addPreserved<AAResultsWrapperPass>();
1907    AU.setPreservesCFG();
1908  }
1909};
1910
1911} // end anonymous namespace
1912
1913using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>;
1914
1915template<>
1916char EarlyCSELegacyPass::ID = 0;
1917
1918INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false,
1919                      false)
1920INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1921INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1922INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1923INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1924INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false)
1925
1926using EarlyCSEMemSSALegacyPass =
1927    EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>;
1928
1929template<>
1930char EarlyCSEMemSSALegacyPass::ID = 0;
1931
1932FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) {
1933  if (UseMemorySSA)
1934    return new EarlyCSEMemSSALegacyPass();
1935  else
1936    return new EarlyCSELegacyPass();
1937}
1938
1939INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa",
1940                      "Early CSE w/ MemorySSA", false, false)
1941INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1942INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1943INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1944INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1945INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1946INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
1947INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa",
1948                    "Early CSE w/ MemorySSA", false, false)
1949