1//===- InstCombineCasts.cpp -----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the visit functions for cast operations.
10//
11//===----------------------------------------------------------------------===//
12
13#include "InstCombineInternal.h"
14#include "llvm/ADT/SetVector.h"
15#include "llvm/Analysis/ConstantFolding.h"
16#include "llvm/IR/DataLayout.h"
17#include "llvm/IR/DebugInfo.h"
18#include "llvm/IR/PatternMatch.h"
19#include "llvm/Support/KnownBits.h"
20#include "llvm/Transforms/InstCombine/InstCombiner.h"
21#include <optional>
22
23using namespace llvm;
24using namespace PatternMatch;
25
26#define DEBUG_TYPE "instcombine"
27
28/// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
29/// true for, actually insert the code to evaluate the expression.
30Value *InstCombinerImpl::EvaluateInDifferentType(Value *V, Type *Ty,
31                                                 bool isSigned) {
32  if (Constant *C = dyn_cast<Constant>(V))
33    return ConstantFoldIntegerCast(C, Ty, isSigned, DL);
34
35  // Otherwise, it must be an instruction.
36  Instruction *I = cast<Instruction>(V);
37  Instruction *Res = nullptr;
38  unsigned Opc = I->getOpcode();
39  switch (Opc) {
40  case Instruction::Add:
41  case Instruction::Sub:
42  case Instruction::Mul:
43  case Instruction::And:
44  case Instruction::Or:
45  case Instruction::Xor:
46  case Instruction::AShr:
47  case Instruction::LShr:
48  case Instruction::Shl:
49  case Instruction::UDiv:
50  case Instruction::URem: {
51    Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
52    Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
53    Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
54    break;
55  }
56  case Instruction::Trunc:
57  case Instruction::ZExt:
58  case Instruction::SExt:
59    // If the source type of the cast is the type we're trying for then we can
60    // just return the source.  There's no need to insert it because it is not
61    // new.
62    if (I->getOperand(0)->getType() == Ty)
63      return I->getOperand(0);
64
65    // Otherwise, must be the same type of cast, so just reinsert a new one.
66    // This also handles the case of zext(trunc(x)) -> zext(x).
67    Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
68                                      Opc == Instruction::SExt);
69    break;
70  case Instruction::Select: {
71    Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
72    Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
73    Res = SelectInst::Create(I->getOperand(0), True, False);
74    break;
75  }
76  case Instruction::PHI: {
77    PHINode *OPN = cast<PHINode>(I);
78    PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
79    for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
80      Value *V =
81          EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
82      NPN->addIncoming(V, OPN->getIncomingBlock(i));
83    }
84    Res = NPN;
85    break;
86  }
87  case Instruction::FPToUI:
88  case Instruction::FPToSI:
89    Res = CastInst::Create(
90      static_cast<Instruction::CastOps>(Opc), I->getOperand(0), Ty);
91    break;
92  case Instruction::Call:
93    if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
94      switch (II->getIntrinsicID()) {
95      default:
96        llvm_unreachable("Unsupported call!");
97      case Intrinsic::vscale: {
98        Function *Fn =
99            Intrinsic::getDeclaration(I->getModule(), Intrinsic::vscale, {Ty});
100        Res = CallInst::Create(Fn->getFunctionType(), Fn);
101        break;
102      }
103      }
104    }
105    break;
106  case Instruction::ShuffleVector: {
107    auto *ScalarTy = cast<VectorType>(Ty)->getElementType();
108    auto *VTy = cast<VectorType>(I->getOperand(0)->getType());
109    auto *FixedTy = VectorType::get(ScalarTy, VTy->getElementCount());
110    Value *Op0 = EvaluateInDifferentType(I->getOperand(0), FixedTy, isSigned);
111    Value *Op1 = EvaluateInDifferentType(I->getOperand(1), FixedTy, isSigned);
112    Res = new ShuffleVectorInst(Op0, Op1,
113                                cast<ShuffleVectorInst>(I)->getShuffleMask());
114    break;
115  }
116  default:
117    // TODO: Can handle more cases here.
118    llvm_unreachable("Unreachable!");
119  }
120
121  Res->takeName(I);
122  return InsertNewInstWith(Res, I->getIterator());
123}
124
125Instruction::CastOps
126InstCombinerImpl::isEliminableCastPair(const CastInst *CI1,
127                                       const CastInst *CI2) {
128  Type *SrcTy = CI1->getSrcTy();
129  Type *MidTy = CI1->getDestTy();
130  Type *DstTy = CI2->getDestTy();
131
132  Instruction::CastOps firstOp = CI1->getOpcode();
133  Instruction::CastOps secondOp = CI2->getOpcode();
134  Type *SrcIntPtrTy =
135      SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
136  Type *MidIntPtrTy =
137      MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
138  Type *DstIntPtrTy =
139      DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
140  unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
141                                                DstTy, SrcIntPtrTy, MidIntPtrTy,
142                                                DstIntPtrTy);
143
144  // We don't want to form an inttoptr or ptrtoint that converts to an integer
145  // type that differs from the pointer size.
146  if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
147      (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
148    Res = 0;
149
150  return Instruction::CastOps(Res);
151}
152
153/// Implement the transforms common to all CastInst visitors.
154Instruction *InstCombinerImpl::commonCastTransforms(CastInst &CI) {
155  Value *Src = CI.getOperand(0);
156  Type *Ty = CI.getType();
157
158  if (auto *SrcC = dyn_cast<Constant>(Src))
159    if (Constant *Res = ConstantFoldCastOperand(CI.getOpcode(), SrcC, Ty, DL))
160      return replaceInstUsesWith(CI, Res);
161
162  // Try to eliminate a cast of a cast.
163  if (auto *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
164    if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
165      // The first cast (CSrc) is eliminable so we need to fix up or replace
166      // the second cast (CI). CSrc will then have a good chance of being dead.
167      auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty);
168      // Point debug users of the dying cast to the new one.
169      if (CSrc->hasOneUse())
170        replaceAllDbgUsesWith(*CSrc, *Res, CI, DT);
171      return Res;
172    }
173  }
174
175  if (auto *Sel = dyn_cast<SelectInst>(Src)) {
176    // We are casting a select. Try to fold the cast into the select if the
177    // select does not have a compare instruction with matching operand types
178    // or the select is likely better done in a narrow type.
179    // Creating a select with operands that are different sizes than its
180    // condition may inhibit other folds and lead to worse codegen.
181    auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition());
182    if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType() ||
183        (CI.getOpcode() == Instruction::Trunc &&
184         shouldChangeType(CI.getSrcTy(), CI.getType()))) {
185      if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) {
186        replaceAllDbgUsesWith(*Sel, *NV, CI, DT);
187        return NV;
188      }
189    }
190  }
191
192  // If we are casting a PHI, then fold the cast into the PHI.
193  if (auto *PN = dyn_cast<PHINode>(Src)) {
194    // Don't do this if it would create a PHI node with an illegal type from a
195    // legal type.
196    if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
197        shouldChangeType(CI.getSrcTy(), CI.getType()))
198      if (Instruction *NV = foldOpIntoPhi(CI, PN))
199        return NV;
200  }
201
202  // Canonicalize a unary shuffle after the cast if neither operation changes
203  // the size or element size of the input vector.
204  // TODO: We could allow size-changing ops if that doesn't harm codegen.
205  // cast (shuffle X, Mask) --> shuffle (cast X), Mask
206  Value *X;
207  ArrayRef<int> Mask;
208  if (match(Src, m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(Mask))))) {
209    // TODO: Allow scalable vectors?
210    auto *SrcTy = dyn_cast<FixedVectorType>(X->getType());
211    auto *DestTy = dyn_cast<FixedVectorType>(Ty);
212    if (SrcTy && DestTy &&
213        SrcTy->getNumElements() == DestTy->getNumElements() &&
214        SrcTy->getPrimitiveSizeInBits() == DestTy->getPrimitiveSizeInBits()) {
215      Value *CastX = Builder.CreateCast(CI.getOpcode(), X, DestTy);
216      return new ShuffleVectorInst(CastX, Mask);
217    }
218  }
219
220  return nullptr;
221}
222
223/// Constants and extensions/truncates from the destination type are always
224/// free to be evaluated in that type. This is a helper for canEvaluate*.
225static bool canAlwaysEvaluateInType(Value *V, Type *Ty) {
226  if (isa<Constant>(V))
227    return match(V, m_ImmConstant());
228
229  Value *X;
230  if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) &&
231      X->getType() == Ty)
232    return true;
233
234  return false;
235}
236
237/// Filter out values that we can not evaluate in the destination type for free.
238/// This is a helper for canEvaluate*.
239static bool canNotEvaluateInType(Value *V, Type *Ty) {
240  if (!isa<Instruction>(V))
241    return true;
242  // We don't extend or shrink something that has multiple uses --  doing so
243  // would require duplicating the instruction which isn't profitable.
244  if (!V->hasOneUse())
245    return true;
246
247  return false;
248}
249
250/// Return true if we can evaluate the specified expression tree as type Ty
251/// instead of its larger type, and arrive with the same value.
252/// This is used by code that tries to eliminate truncates.
253///
254/// Ty will always be a type smaller than V.  We should return true if trunc(V)
255/// can be computed by computing V in the smaller type.  If V is an instruction,
256/// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
257/// makes sense if x and y can be efficiently truncated.
258///
259/// This function works on both vectors and scalars.
260///
261static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombinerImpl &IC,
262                                 Instruction *CxtI) {
263  if (canAlwaysEvaluateInType(V, Ty))
264    return true;
265  if (canNotEvaluateInType(V, Ty))
266    return false;
267
268  auto *I = cast<Instruction>(V);
269  Type *OrigTy = V->getType();
270  switch (I->getOpcode()) {
271  case Instruction::Add:
272  case Instruction::Sub:
273  case Instruction::Mul:
274  case Instruction::And:
275  case Instruction::Or:
276  case Instruction::Xor:
277    // These operators can all arbitrarily be extended or truncated.
278    return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
279           canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
280
281  case Instruction::UDiv:
282  case Instruction::URem: {
283    // UDiv and URem can be truncated if all the truncated bits are zero.
284    uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
285    uint32_t BitWidth = Ty->getScalarSizeInBits();
286    assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!");
287    APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
288    if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
289        IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
290      return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
291             canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
292    }
293    break;
294  }
295  case Instruction::Shl: {
296    // If we are truncating the result of this SHL, and if it's a shift of an
297    // inrange amount, we can always perform a SHL in a smaller type.
298    uint32_t BitWidth = Ty->getScalarSizeInBits();
299    KnownBits AmtKnownBits =
300        llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
301    if (AmtKnownBits.getMaxValue().ult(BitWidth))
302      return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
303             canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
304    break;
305  }
306  case Instruction::LShr: {
307    // If this is a truncate of a logical shr, we can truncate it to a smaller
308    // lshr iff we know that the bits we would otherwise be shifting in are
309    // already zeros.
310    // TODO: It is enough to check that the bits we would be shifting in are
311    //       zero - use AmtKnownBits.getMaxValue().
312    uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
313    uint32_t BitWidth = Ty->getScalarSizeInBits();
314    KnownBits AmtKnownBits =
315        llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
316    APInt ShiftedBits = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
317    if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
318        IC.MaskedValueIsZero(I->getOperand(0), ShiftedBits, 0, CxtI)) {
319      return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
320             canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
321    }
322    break;
323  }
324  case Instruction::AShr: {
325    // If this is a truncate of an arithmetic shr, we can truncate it to a
326    // smaller ashr iff we know that all the bits from the sign bit of the
327    // original type and the sign bit of the truncate type are similar.
328    // TODO: It is enough to check that the bits we would be shifting in are
329    //       similar to sign bit of the truncate type.
330    uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
331    uint32_t BitWidth = Ty->getScalarSizeInBits();
332    KnownBits AmtKnownBits =
333        llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
334    unsigned ShiftedBits = OrigBitWidth - BitWidth;
335    if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
336        ShiftedBits < IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI))
337      return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
338             canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
339    break;
340  }
341  case Instruction::Trunc:
342    // trunc(trunc(x)) -> trunc(x)
343    return true;
344  case Instruction::ZExt:
345  case Instruction::SExt:
346    // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
347    // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
348    return true;
349  case Instruction::Select: {
350    SelectInst *SI = cast<SelectInst>(I);
351    return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
352           canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
353  }
354  case Instruction::PHI: {
355    // We can change a phi if we can change all operands.  Note that we never
356    // get into trouble with cyclic PHIs here because we only consider
357    // instructions with a single use.
358    PHINode *PN = cast<PHINode>(I);
359    for (Value *IncValue : PN->incoming_values())
360      if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
361        return false;
362    return true;
363  }
364  case Instruction::FPToUI:
365  case Instruction::FPToSI: {
366    // If the integer type can hold the max FP value, it is safe to cast
367    // directly to that type. Otherwise, we may create poison via overflow
368    // that did not exist in the original code.
369    Type *InputTy = I->getOperand(0)->getType()->getScalarType();
370    const fltSemantics &Semantics = InputTy->getFltSemantics();
371    uint32_t MinBitWidth =
372      APFloatBase::semanticsIntSizeInBits(Semantics,
373          I->getOpcode() == Instruction::FPToSI);
374    return Ty->getScalarSizeInBits() >= MinBitWidth;
375  }
376  case Instruction::ShuffleVector:
377    return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
378           canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
379  default:
380    // TODO: Can handle more cases here.
381    break;
382  }
383
384  return false;
385}
386
387/// Given a vector that is bitcast to an integer, optionally logically
388/// right-shifted, and truncated, convert it to an extractelement.
389/// Example (big endian):
390///   trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
391///   --->
392///   extractelement <4 x i32> %X, 1
393static Instruction *foldVecTruncToExtElt(TruncInst &Trunc,
394                                         InstCombinerImpl &IC) {
395  Value *TruncOp = Trunc.getOperand(0);
396  Type *DestType = Trunc.getType();
397  if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
398    return nullptr;
399
400  Value *VecInput = nullptr;
401  ConstantInt *ShiftVal = nullptr;
402  if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
403                                  m_LShr(m_BitCast(m_Value(VecInput)),
404                                         m_ConstantInt(ShiftVal)))) ||
405      !isa<VectorType>(VecInput->getType()))
406    return nullptr;
407
408  VectorType *VecType = cast<VectorType>(VecInput->getType());
409  unsigned VecWidth = VecType->getPrimitiveSizeInBits();
410  unsigned DestWidth = DestType->getPrimitiveSizeInBits();
411  unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
412
413  if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
414    return nullptr;
415
416  // If the element type of the vector doesn't match the result type,
417  // bitcast it to a vector type that we can extract from.
418  unsigned NumVecElts = VecWidth / DestWidth;
419  if (VecType->getElementType() != DestType) {
420    VecType = FixedVectorType::get(DestType, NumVecElts);
421    VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
422  }
423
424  unsigned Elt = ShiftAmount / DestWidth;
425  if (IC.getDataLayout().isBigEndian())
426    Elt = NumVecElts - 1 - Elt;
427
428  return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
429}
430
431/// Funnel/Rotate left/right may occur in a wider type than necessary because of
432/// type promotion rules. Try to narrow the inputs and convert to funnel shift.
433Instruction *InstCombinerImpl::narrowFunnelShift(TruncInst &Trunc) {
434  assert((isa<VectorType>(Trunc.getSrcTy()) ||
435          shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) &&
436         "Don't narrow to an illegal scalar type");
437
438  // Bail out on strange types. It is possible to handle some of these patterns
439  // even with non-power-of-2 sizes, but it is not a likely scenario.
440  Type *DestTy = Trunc.getType();
441  unsigned NarrowWidth = DestTy->getScalarSizeInBits();
442  unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits();
443  if (!isPowerOf2_32(NarrowWidth))
444    return nullptr;
445
446  // First, find an or'd pair of opposite shifts:
447  // trunc (or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1))
448  BinaryOperator *Or0, *Or1;
449  if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1)))))
450    return nullptr;
451
452  Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1;
453  if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) ||
454      !match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) ||
455      Or0->getOpcode() == Or1->getOpcode())
456    return nullptr;
457
458  // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)).
459  if (Or0->getOpcode() == BinaryOperator::LShr) {
460    std::swap(Or0, Or1);
461    std::swap(ShVal0, ShVal1);
462    std::swap(ShAmt0, ShAmt1);
463  }
464  assert(Or0->getOpcode() == BinaryOperator::Shl &&
465         Or1->getOpcode() == BinaryOperator::LShr &&
466         "Illegal or(shift,shift) pair");
467
468  // Match the shift amount operands for a funnel/rotate pattern. This always
469  // matches a subtraction on the R operand.
470  auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * {
471    // The shift amounts may add up to the narrow bit width:
472    // (shl ShVal0, L) | (lshr ShVal1, Width - L)
473    // If this is a funnel shift (different operands are shifted), then the
474    // shift amount can not over-shift (create poison) in the narrow type.
475    unsigned MaxShiftAmountWidth = Log2_32(NarrowWidth);
476    APInt HiBitMask = ~APInt::getLowBitsSet(WideWidth, MaxShiftAmountWidth);
477    if (ShVal0 == ShVal1 || MaskedValueIsZero(L, HiBitMask))
478      if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L)))))
479        return L;
480
481    // The following patterns currently only work for rotation patterns.
482    // TODO: Add more general funnel-shift compatible patterns.
483    if (ShVal0 != ShVal1)
484      return nullptr;
485
486    // The shift amount may be masked with negation:
487    // (shl ShVal0, (X & (Width - 1))) | (lshr ShVal1, ((-X) & (Width - 1)))
488    Value *X;
489    unsigned Mask = Width - 1;
490    if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
491        match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
492      return X;
493
494    // Same as above, but the shift amount may be extended after masking:
495    if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
496        match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))))
497      return X;
498
499    return nullptr;
500  };
501
502  Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth);
503  bool IsFshl = true; // Sub on LSHR.
504  if (!ShAmt) {
505    ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth);
506    IsFshl = false; // Sub on SHL.
507  }
508  if (!ShAmt)
509    return nullptr;
510
511  // The right-shifted value must have high zeros in the wide type (for example
512  // from 'zext', 'and' or 'shift'). High bits of the left-shifted value are
513  // truncated, so those do not matter.
514  APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth);
515  if (!MaskedValueIsZero(ShVal1, HiBitMask, 0, &Trunc))
516    return nullptr;
517
518  // Adjust the width of ShAmt for narrowed funnel shift operation:
519  // - Zero-extend if ShAmt is narrower than the destination type.
520  // - Truncate if ShAmt is wider, discarding non-significant high-order bits.
521  // This prepares ShAmt for llvm.fshl.i8(trunc(ShVal), trunc(ShVal),
522  // zext/trunc(ShAmt)).
523  Value *NarrowShAmt = Builder.CreateZExtOrTrunc(ShAmt, DestTy);
524
525  Value *X, *Y;
526  X = Y = Builder.CreateTrunc(ShVal0, DestTy);
527  if (ShVal0 != ShVal1)
528    Y = Builder.CreateTrunc(ShVal1, DestTy);
529  Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
530  Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy);
531  return CallInst::Create(F, {X, Y, NarrowShAmt});
532}
533
534/// Try to narrow the width of math or bitwise logic instructions by pulling a
535/// truncate ahead of binary operators.
536Instruction *InstCombinerImpl::narrowBinOp(TruncInst &Trunc) {
537  Type *SrcTy = Trunc.getSrcTy();
538  Type *DestTy = Trunc.getType();
539  unsigned SrcWidth = SrcTy->getScalarSizeInBits();
540  unsigned DestWidth = DestTy->getScalarSizeInBits();
541
542  if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
543    return nullptr;
544
545  BinaryOperator *BinOp;
546  if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp))))
547    return nullptr;
548
549  Value *BinOp0 = BinOp->getOperand(0);
550  Value *BinOp1 = BinOp->getOperand(1);
551  switch (BinOp->getOpcode()) {
552  case Instruction::And:
553  case Instruction::Or:
554  case Instruction::Xor:
555  case Instruction::Add:
556  case Instruction::Sub:
557  case Instruction::Mul: {
558    Constant *C;
559    if (match(BinOp0, m_Constant(C))) {
560      // trunc (binop C, X) --> binop (trunc C', X)
561      Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
562      Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy);
563      return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX);
564    }
565    if (match(BinOp1, m_Constant(C))) {
566      // trunc (binop X, C) --> binop (trunc X, C')
567      Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
568      Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy);
569      return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC);
570    }
571    Value *X;
572    if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
573      // trunc (binop (ext X), Y) --> binop X, (trunc Y)
574      Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy);
575      return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1);
576    }
577    if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
578      // trunc (binop Y, (ext X)) --> binop (trunc Y), X
579      Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy);
580      return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X);
581    }
582    break;
583  }
584  case Instruction::LShr:
585  case Instruction::AShr: {
586    // trunc (*shr (trunc A), C) --> trunc(*shr A, C)
587    Value *A;
588    Constant *C;
589    if (match(BinOp0, m_Trunc(m_Value(A))) && match(BinOp1, m_Constant(C))) {
590      unsigned MaxShiftAmt = SrcWidth - DestWidth;
591      // If the shift is small enough, all zero/sign bits created by the shift
592      // are removed by the trunc.
593      if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE,
594                                      APInt(SrcWidth, MaxShiftAmt)))) {
595        auto *OldShift = cast<Instruction>(Trunc.getOperand(0));
596        bool IsExact = OldShift->isExact();
597        if (Constant *ShAmt = ConstantFoldIntegerCast(C, A->getType(),
598                                                      /*IsSigned*/ true, DL)) {
599          ShAmt = Constant::mergeUndefsWith(ShAmt, C);
600          Value *Shift =
601              OldShift->getOpcode() == Instruction::AShr
602                  ? Builder.CreateAShr(A, ShAmt, OldShift->getName(), IsExact)
603                  : Builder.CreateLShr(A, ShAmt, OldShift->getName(), IsExact);
604          return CastInst::CreateTruncOrBitCast(Shift, DestTy);
605        }
606      }
607    }
608    break;
609  }
610  default: break;
611  }
612
613  if (Instruction *NarrowOr = narrowFunnelShift(Trunc))
614    return NarrowOr;
615
616  return nullptr;
617}
618
619/// Try to narrow the width of a splat shuffle. This could be generalized to any
620/// shuffle with a constant operand, but we limit the transform to avoid
621/// creating a shuffle type that targets may not be able to lower effectively.
622static Instruction *shrinkSplatShuffle(TruncInst &Trunc,
623                                       InstCombiner::BuilderTy &Builder) {
624  auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
625  if (Shuf && Shuf->hasOneUse() && match(Shuf->getOperand(1), m_Undef()) &&
626      all_equal(Shuf->getShuffleMask()) &&
627      Shuf->getType() == Shuf->getOperand(0)->getType()) {
628    // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Poison, SplatMask
629    // trunc (shuf X, Poison, SplatMask) --> shuf (trunc X), Poison, SplatMask
630    Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
631    return new ShuffleVectorInst(NarrowOp, Shuf->getShuffleMask());
632  }
633
634  return nullptr;
635}
636
637/// Try to narrow the width of an insert element. This could be generalized for
638/// any vector constant, but we limit the transform to insertion into undef to
639/// avoid potential backend problems from unsupported insertion widths. This
640/// could also be extended to handle the case of inserting a scalar constant
641/// into a vector variable.
642static Instruction *shrinkInsertElt(CastInst &Trunc,
643                                    InstCombiner::BuilderTy &Builder) {
644  Instruction::CastOps Opcode = Trunc.getOpcode();
645  assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
646         "Unexpected instruction for shrinking");
647
648  auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
649  if (!InsElt || !InsElt->hasOneUse())
650    return nullptr;
651
652  Type *DestTy = Trunc.getType();
653  Type *DestScalarTy = DestTy->getScalarType();
654  Value *VecOp = InsElt->getOperand(0);
655  Value *ScalarOp = InsElt->getOperand(1);
656  Value *Index = InsElt->getOperand(2);
657
658  if (match(VecOp, m_Undef())) {
659    // trunc   (inselt undef, X, Index) --> inselt undef,   (trunc X), Index
660    // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
661    UndefValue *NarrowUndef = UndefValue::get(DestTy);
662    Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
663    return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
664  }
665
666  return nullptr;
667}
668
669Instruction *InstCombinerImpl::visitTrunc(TruncInst &Trunc) {
670  if (Instruction *Result = commonCastTransforms(Trunc))
671    return Result;
672
673  Value *Src = Trunc.getOperand(0);
674  Type *DestTy = Trunc.getType(), *SrcTy = Src->getType();
675  unsigned DestWidth = DestTy->getScalarSizeInBits();
676  unsigned SrcWidth = SrcTy->getScalarSizeInBits();
677
678  // Attempt to truncate the entire input expression tree to the destination
679  // type.   Only do this if the dest type is a simple type, don't convert the
680  // expression tree to something weird like i93 unless the source is also
681  // strange.
682  if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
683      canEvaluateTruncated(Src, DestTy, *this, &Trunc)) {
684
685    // If this cast is a truncate, evaluting in a different type always
686    // eliminates the cast, so it is always a win.
687    LLVM_DEBUG(
688        dbgs() << "ICE: EvaluateInDifferentType converting expression type"
689                  " to avoid cast: "
690               << Trunc << '\n');
691    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
692    assert(Res->getType() == DestTy);
693    return replaceInstUsesWith(Trunc, Res);
694  }
695
696  // For integer types, check if we can shorten the entire input expression to
697  // DestWidth * 2, which won't allow removing the truncate, but reducing the
698  // width may enable further optimizations, e.g. allowing for larger
699  // vectorization factors.
700  if (auto *DestITy = dyn_cast<IntegerType>(DestTy)) {
701    if (DestWidth * 2 < SrcWidth) {
702      auto *NewDestTy = DestITy->getExtendedType();
703      if (shouldChangeType(SrcTy, NewDestTy) &&
704          canEvaluateTruncated(Src, NewDestTy, *this, &Trunc)) {
705        LLVM_DEBUG(
706            dbgs() << "ICE: EvaluateInDifferentType converting expression type"
707                      " to reduce the width of operand of"
708                   << Trunc << '\n');
709        Value *Res = EvaluateInDifferentType(Src, NewDestTy, false);
710        return new TruncInst(Res, DestTy);
711      }
712    }
713  }
714
715  // Test if the trunc is the user of a select which is part of a
716  // minimum or maximum operation. If so, don't do any more simplification.
717  // Even simplifying demanded bits can break the canonical form of a
718  // min/max.
719  Value *LHS, *RHS;
720  if (SelectInst *Sel = dyn_cast<SelectInst>(Src))
721    if (matchSelectPattern(Sel, LHS, RHS).Flavor != SPF_UNKNOWN)
722      return nullptr;
723
724  // See if we can simplify any instructions used by the input whose sole
725  // purpose is to compute bits we don't care about.
726  if (SimplifyDemandedInstructionBits(Trunc))
727    return &Trunc;
728
729  if (DestWidth == 1) {
730    Value *Zero = Constant::getNullValue(SrcTy);
731    if (DestTy->isIntegerTy()) {
732      // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only).
733      // TODO: We canonicalize to more instructions here because we are probably
734      // lacking equivalent analysis for trunc relative to icmp. There may also
735      // be codegen concerns. If those trunc limitations were removed, we could
736      // remove this transform.
737      Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1));
738      return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
739    }
740
741    // For vectors, we do not canonicalize all truncs to icmp, so optimize
742    // patterns that would be covered within visitICmpInst.
743    Value *X;
744    Constant *C;
745    if (match(Src, m_OneUse(m_LShr(m_Value(X), m_Constant(C))))) {
746      // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0
747      Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
748      Constant *MaskC = ConstantExpr::getShl(One, C);
749      Value *And = Builder.CreateAnd(X, MaskC);
750      return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
751    }
752    if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_ImmConstant(C)),
753                                   m_Deferred(X))))) {
754      // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0
755      Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
756      Constant *MaskC = ConstantExpr::getShl(One, C);
757      Value *And = Builder.CreateAnd(X, Builder.CreateOr(MaskC, One));
758      return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
759    }
760  }
761
762  Value *A, *B;
763  Constant *C;
764  if (match(Src, m_LShr(m_SExt(m_Value(A)), m_Constant(C)))) {
765    unsigned AWidth = A->getType()->getScalarSizeInBits();
766    unsigned MaxShiftAmt = SrcWidth - std::max(DestWidth, AWidth);
767    auto *OldSh = cast<Instruction>(Src);
768    bool IsExact = OldSh->isExact();
769
770    // If the shift is small enough, all zero bits created by the shift are
771    // removed by the trunc.
772    if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE,
773                                    APInt(SrcWidth, MaxShiftAmt)))) {
774      auto GetNewShAmt = [&](unsigned Width) {
775        Constant *MaxAmt = ConstantInt::get(SrcTy, Width - 1, false);
776        Constant *Cmp =
777            ConstantFoldCompareInstOperands(ICmpInst::ICMP_ULT, C, MaxAmt, DL);
778        Constant *ShAmt = ConstantFoldSelectInstruction(Cmp, C, MaxAmt);
779        return ConstantFoldCastOperand(Instruction::Trunc, ShAmt, A->getType(),
780                                       DL);
781      };
782
783      // trunc (lshr (sext A), C) --> ashr A, C
784      if (A->getType() == DestTy) {
785        Constant *ShAmt = GetNewShAmt(DestWidth);
786        ShAmt = Constant::mergeUndefsWith(ShAmt, C);
787        return IsExact ? BinaryOperator::CreateExactAShr(A, ShAmt)
788                       : BinaryOperator::CreateAShr(A, ShAmt);
789      }
790      // The types are mismatched, so create a cast after shifting:
791      // trunc (lshr (sext A), C) --> sext/trunc (ashr A, C)
792      if (Src->hasOneUse()) {
793        Constant *ShAmt = GetNewShAmt(AWidth);
794        Value *Shift = Builder.CreateAShr(A, ShAmt, "", IsExact);
795        return CastInst::CreateIntegerCast(Shift, DestTy, true);
796      }
797    }
798    // TODO: Mask high bits with 'and'.
799  }
800
801  if (Instruction *I = narrowBinOp(Trunc))
802    return I;
803
804  if (Instruction *I = shrinkSplatShuffle(Trunc, Builder))
805    return I;
806
807  if (Instruction *I = shrinkInsertElt(Trunc, Builder))
808    return I;
809
810  if (Src->hasOneUse() &&
811      (isa<VectorType>(SrcTy) || shouldChangeType(SrcTy, DestTy))) {
812    // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
813    // dest type is native and cst < dest size.
814    if (match(Src, m_Shl(m_Value(A), m_Constant(C))) &&
815        !match(A, m_Shr(m_Value(), m_Constant()))) {
816      // Skip shifts of shift by constants. It undoes a combine in
817      // FoldShiftByConstant and is the extend in reg pattern.
818      APInt Threshold = APInt(C->getType()->getScalarSizeInBits(), DestWidth);
819      if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold))) {
820        Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");
821        return BinaryOperator::Create(Instruction::Shl, NewTrunc,
822                                      ConstantExpr::getTrunc(C, DestTy));
823      }
824    }
825  }
826
827  if (Instruction *I = foldVecTruncToExtElt(Trunc, *this))
828    return I;
829
830  // Whenever an element is extracted from a vector, and then truncated,
831  // canonicalize by converting it to a bitcast followed by an
832  // extractelement.
833  //
834  // Example (little endian):
835  //   trunc (extractelement <4 x i64> %X, 0) to i32
836  //   --->
837  //   extractelement <8 x i32> (bitcast <4 x i64> %X to <8 x i32>), i32 0
838  Value *VecOp;
839  ConstantInt *Cst;
840  if (match(Src, m_OneUse(m_ExtractElt(m_Value(VecOp), m_ConstantInt(Cst))))) {
841    auto *VecOpTy = cast<VectorType>(VecOp->getType());
842    auto VecElts = VecOpTy->getElementCount();
843
844    // A badly fit destination size would result in an invalid cast.
845    if (SrcWidth % DestWidth == 0) {
846      uint64_t TruncRatio = SrcWidth / DestWidth;
847      uint64_t BitCastNumElts = VecElts.getKnownMinValue() * TruncRatio;
848      uint64_t VecOpIdx = Cst->getZExtValue();
849      uint64_t NewIdx = DL.isBigEndian() ? (VecOpIdx + 1) * TruncRatio - 1
850                                         : VecOpIdx * TruncRatio;
851      assert(BitCastNumElts <= std::numeric_limits<uint32_t>::max() &&
852             "overflow 32-bits");
853
854      auto *BitCastTo =
855          VectorType::get(DestTy, BitCastNumElts, VecElts.isScalable());
856      Value *BitCast = Builder.CreateBitCast(VecOp, BitCastTo);
857      return ExtractElementInst::Create(BitCast, Builder.getInt32(NewIdx));
858    }
859  }
860
861  // trunc (ctlz_i32(zext(A), B) --> add(ctlz_i16(A, B), C)
862  if (match(Src, m_OneUse(m_Intrinsic<Intrinsic::ctlz>(m_ZExt(m_Value(A)),
863                                                       m_Value(B))))) {
864    unsigned AWidth = A->getType()->getScalarSizeInBits();
865    if (AWidth == DestWidth && AWidth > Log2_32(SrcWidth)) {
866      Value *WidthDiff = ConstantInt::get(A->getType(), SrcWidth - AWidth);
867      Value *NarrowCtlz =
868          Builder.CreateIntrinsic(Intrinsic::ctlz, {Trunc.getType()}, {A, B});
869      return BinaryOperator::CreateAdd(NarrowCtlz, WidthDiff);
870    }
871  }
872
873  if (match(Src, m_VScale())) {
874    if (Trunc.getFunction() &&
875        Trunc.getFunction()->hasFnAttribute(Attribute::VScaleRange)) {
876      Attribute Attr =
877          Trunc.getFunction()->getFnAttribute(Attribute::VScaleRange);
878      if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) {
879        if (Log2_32(*MaxVScale) < DestWidth) {
880          Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1));
881          return replaceInstUsesWith(Trunc, VScale);
882        }
883      }
884    }
885  }
886
887  return nullptr;
888}
889
890Instruction *InstCombinerImpl::transformZExtICmp(ICmpInst *Cmp,
891                                                 ZExtInst &Zext) {
892  // If we are just checking for a icmp eq of a single bit and zext'ing it
893  // to an integer, then shift the bit to the appropriate place and then
894  // cast to integer to avoid the comparison.
895
896  // FIXME: This set of transforms does not check for extra uses and/or creates
897  //        an extra instruction (an optional final cast is not included
898  //        in the transform comments). We may also want to favor icmp over
899  //        shifts in cases of equal instructions because icmp has better
900  //        analysis in general (invert the transform).
901
902  const APInt *Op1CV;
903  if (match(Cmp->getOperand(1), m_APInt(Op1CV))) {
904
905    // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
906    if (Cmp->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isZero()) {
907      Value *In = Cmp->getOperand(0);
908      Value *Sh = ConstantInt::get(In->getType(),
909                                   In->getType()->getScalarSizeInBits() - 1);
910      In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
911      if (In->getType() != Zext.getType())
912        In = Builder.CreateIntCast(In, Zext.getType(), false /*ZExt*/);
913
914      return replaceInstUsesWith(Zext, In);
915    }
916
917    // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
918    // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
919    // zext (X != 0) to i32 --> X        iff X has only the low bit set.
920    // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
921
922    if (Op1CV->isZero() && Cmp->isEquality()) {
923      // Exactly 1 possible 1? But not the high-bit because that is
924      // canonicalized to this form.
925      KnownBits Known = computeKnownBits(Cmp->getOperand(0), 0, &Zext);
926      APInt KnownZeroMask(~Known.Zero);
927      uint32_t ShAmt = KnownZeroMask.logBase2();
928      bool IsExpectShAmt = KnownZeroMask.isPowerOf2() &&
929                           (Zext.getType()->getScalarSizeInBits() != ShAmt + 1);
930      if (IsExpectShAmt &&
931          (Cmp->getOperand(0)->getType() == Zext.getType() ||
932           Cmp->getPredicate() == ICmpInst::ICMP_NE || ShAmt == 0)) {
933        Value *In = Cmp->getOperand(0);
934        if (ShAmt) {
935          // Perform a logical shr by shiftamt.
936          // Insert the shift to put the result in the low bit.
937          In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
938                                  In->getName() + ".lobit");
939        }
940
941        // Toggle the low bit for "X == 0".
942        if (Cmp->getPredicate() == ICmpInst::ICMP_EQ)
943          In = Builder.CreateXor(In, ConstantInt::get(In->getType(), 1));
944
945        if (Zext.getType() == In->getType())
946          return replaceInstUsesWith(Zext, In);
947
948        Value *IntCast = Builder.CreateIntCast(In, Zext.getType(), false);
949        return replaceInstUsesWith(Zext, IntCast);
950      }
951    }
952  }
953
954  if (Cmp->isEquality() && Zext.getType() == Cmp->getOperand(0)->getType()) {
955    // Test if a bit is clear/set using a shifted-one mask:
956    // zext (icmp eq (and X, (1 << ShAmt)), 0) --> and (lshr (not X), ShAmt), 1
957    // zext (icmp ne (and X, (1 << ShAmt)), 0) --> and (lshr X, ShAmt), 1
958    Value *X, *ShAmt;
959    if (Cmp->hasOneUse() && match(Cmp->getOperand(1), m_ZeroInt()) &&
960        match(Cmp->getOperand(0),
961              m_OneUse(m_c_And(m_Shl(m_One(), m_Value(ShAmt)), m_Value(X))))) {
962      if (Cmp->getPredicate() == ICmpInst::ICMP_EQ)
963        X = Builder.CreateNot(X);
964      Value *Lshr = Builder.CreateLShr(X, ShAmt);
965      Value *And1 = Builder.CreateAnd(Lshr, ConstantInt::get(X->getType(), 1));
966      return replaceInstUsesWith(Zext, And1);
967    }
968  }
969
970  return nullptr;
971}
972
973/// Determine if the specified value can be computed in the specified wider type
974/// and produce the same low bits. If not, return false.
975///
976/// If this function returns true, it can also return a non-zero number of bits
977/// (in BitsToClear) which indicates that the value it computes is correct for
978/// the zero extend, but that the additional BitsToClear bits need to be zero'd
979/// out.  For example, to promote something like:
980///
981///   %B = trunc i64 %A to i32
982///   %C = lshr i32 %B, 8
983///   %E = zext i32 %C to i64
984///
985/// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
986/// set to 8 to indicate that the promoted value needs to have bits 24-31
987/// cleared in addition to bits 32-63.  Since an 'and' will be generated to
988/// clear the top bits anyway, doing this has no extra cost.
989///
990/// This function works on both vectors and scalars.
991static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
992                             InstCombinerImpl &IC, Instruction *CxtI) {
993  BitsToClear = 0;
994  if (canAlwaysEvaluateInType(V, Ty))
995    return true;
996  if (canNotEvaluateInType(V, Ty))
997    return false;
998
999  auto *I = cast<Instruction>(V);
1000  unsigned Tmp;
1001  switch (I->getOpcode()) {
1002  case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
1003  case Instruction::SExt:  // zext(sext(x)) -> sext(x).
1004  case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
1005    return true;
1006  case Instruction::And:
1007  case Instruction::Or:
1008  case Instruction::Xor:
1009  case Instruction::Add:
1010  case Instruction::Sub:
1011  case Instruction::Mul:
1012    if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
1013        !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
1014      return false;
1015    // These can all be promoted if neither operand has 'bits to clear'.
1016    if (BitsToClear == 0 && Tmp == 0)
1017      return true;
1018
1019    // If the operation is an AND/OR/XOR and the bits to clear are zero in the
1020    // other side, BitsToClear is ok.
1021    if (Tmp == 0 && I->isBitwiseLogicOp()) {
1022      // We use MaskedValueIsZero here for generality, but the case we care
1023      // about the most is constant RHS.
1024      unsigned VSize = V->getType()->getScalarSizeInBits();
1025      if (IC.MaskedValueIsZero(I->getOperand(1),
1026                               APInt::getHighBitsSet(VSize, BitsToClear),
1027                               0, CxtI)) {
1028        // If this is an And instruction and all of the BitsToClear are
1029        // known to be zero we can reset BitsToClear.
1030        if (I->getOpcode() == Instruction::And)
1031          BitsToClear = 0;
1032        return true;
1033      }
1034    }
1035
1036    // Otherwise, we don't know how to analyze this BitsToClear case yet.
1037    return false;
1038
1039  case Instruction::Shl: {
1040    // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
1041    // upper bits we can reduce BitsToClear by the shift amount.
1042    const APInt *Amt;
1043    if (match(I->getOperand(1), m_APInt(Amt))) {
1044      if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1045        return false;
1046      uint64_t ShiftAmt = Amt->getZExtValue();
1047      BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
1048      return true;
1049    }
1050    return false;
1051  }
1052  case Instruction::LShr: {
1053    // We can promote lshr(x, cst) if we can promote x.  This requires the
1054    // ultimate 'and' to clear out the high zero bits we're clearing out though.
1055    const APInt *Amt;
1056    if (match(I->getOperand(1), m_APInt(Amt))) {
1057      if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1058        return false;
1059      BitsToClear += Amt->getZExtValue();
1060      if (BitsToClear > V->getType()->getScalarSizeInBits())
1061        BitsToClear = V->getType()->getScalarSizeInBits();
1062      return true;
1063    }
1064    // Cannot promote variable LSHR.
1065    return false;
1066  }
1067  case Instruction::Select:
1068    if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
1069        !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
1070        // TODO: If important, we could handle the case when the BitsToClear are
1071        // known zero in the disagreeing side.
1072        Tmp != BitsToClear)
1073      return false;
1074    return true;
1075
1076  case Instruction::PHI: {
1077    // We can change a phi if we can change all operands.  Note that we never
1078    // get into trouble with cyclic PHIs here because we only consider
1079    // instructions with a single use.
1080    PHINode *PN = cast<PHINode>(I);
1081    if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
1082      return false;
1083    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
1084      if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
1085          // TODO: If important, we could handle the case when the BitsToClear
1086          // are known zero in the disagreeing input.
1087          Tmp != BitsToClear)
1088        return false;
1089    return true;
1090  }
1091  case Instruction::Call:
1092    // llvm.vscale() can always be executed in larger type, because the
1093    // value is automatically zero-extended.
1094    if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1095      if (II->getIntrinsicID() == Intrinsic::vscale)
1096        return true;
1097    return false;
1098  default:
1099    // TODO: Can handle more cases here.
1100    return false;
1101  }
1102}
1103
1104Instruction *InstCombinerImpl::visitZExt(ZExtInst &Zext) {
1105  // If this zero extend is only used by a truncate, let the truncate be
1106  // eliminated before we try to optimize this zext.
1107  if (Zext.hasOneUse() && isa<TruncInst>(Zext.user_back()) &&
1108      !isa<Constant>(Zext.getOperand(0)))
1109    return nullptr;
1110
1111  // If one of the common conversion will work, do it.
1112  if (Instruction *Result = commonCastTransforms(Zext))
1113    return Result;
1114
1115  Value *Src = Zext.getOperand(0);
1116  Type *SrcTy = Src->getType(), *DestTy = Zext.getType();
1117
1118  // Try to extend the entire expression tree to the wide destination type.
1119  unsigned BitsToClear;
1120  if (shouldChangeType(SrcTy, DestTy) &&
1121      canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &Zext)) {
1122    assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
1123           "Can't clear more bits than in SrcTy");
1124
1125    // Okay, we can transform this!  Insert the new expression now.
1126    LLVM_DEBUG(
1127        dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1128                  " to avoid zero extend: "
1129               << Zext << '\n');
1130    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
1131    assert(Res->getType() == DestTy);
1132
1133    // Preserve debug values referring to Src if the zext is its last use.
1134    if (auto *SrcOp = dyn_cast<Instruction>(Src))
1135      if (SrcOp->hasOneUse())
1136        replaceAllDbgUsesWith(*SrcOp, *Res, Zext, DT);
1137
1138    uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits() - BitsToClear;
1139    uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1140
1141    // If the high bits are already filled with zeros, just replace this
1142    // cast with the result.
1143    if (MaskedValueIsZero(Res,
1144                          APInt::getHighBitsSet(DestBitSize,
1145                                                DestBitSize - SrcBitsKept),
1146                             0, &Zext))
1147      return replaceInstUsesWith(Zext, Res);
1148
1149    // We need to emit an AND to clear the high bits.
1150    Constant *C = ConstantInt::get(Res->getType(),
1151                               APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
1152    return BinaryOperator::CreateAnd(Res, C);
1153  }
1154
1155  // If this is a TRUNC followed by a ZEXT then we are dealing with integral
1156  // types and if the sizes are just right we can convert this into a logical
1157  // 'and' which will be much cheaper than the pair of casts.
1158  if (auto *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
1159    // TODO: Subsume this into EvaluateInDifferentType.
1160
1161    // Get the sizes of the types involved.  We know that the intermediate type
1162    // will be smaller than A or C, but don't know the relation between A and C.
1163    Value *A = CSrc->getOperand(0);
1164    unsigned SrcSize = A->getType()->getScalarSizeInBits();
1165    unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
1166    unsigned DstSize = DestTy->getScalarSizeInBits();
1167    // If we're actually extending zero bits, then if
1168    // SrcSize <  DstSize: zext(a & mask)
1169    // SrcSize == DstSize: a & mask
1170    // SrcSize  > DstSize: trunc(a) & mask
1171    if (SrcSize < DstSize) {
1172      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1173      Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
1174      Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
1175      return new ZExtInst(And, DestTy);
1176    }
1177
1178    if (SrcSize == DstSize) {
1179      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1180      return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
1181                                                           AndValue));
1182    }
1183    if (SrcSize > DstSize) {
1184      Value *Trunc = Builder.CreateTrunc(A, DestTy);
1185      APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
1186      return BinaryOperator::CreateAnd(Trunc,
1187                                       ConstantInt::get(Trunc->getType(),
1188                                                        AndValue));
1189    }
1190  }
1191
1192  if (auto *Cmp = dyn_cast<ICmpInst>(Src))
1193    return transformZExtICmp(Cmp, Zext);
1194
1195  // zext(trunc(X) & C) -> (X & zext(C)).
1196  Constant *C;
1197  Value *X;
1198  if (match(Src, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
1199      X->getType() == DestTy)
1200    return BinaryOperator::CreateAnd(X, Builder.CreateZExt(C, DestTy));
1201
1202  // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
1203  Value *And;
1204  if (match(Src, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
1205      match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
1206      X->getType() == DestTy) {
1207    Value *ZC = Builder.CreateZExt(C, DestTy);
1208    return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
1209  }
1210
1211  // If we are truncating, masking, and then zexting back to the original type,
1212  // that's just a mask. This is not handled by canEvaluateZextd if the
1213  // intermediate values have extra uses. This could be generalized further for
1214  // a non-constant mask operand.
1215  // zext (and (trunc X), C) --> and X, (zext C)
1216  if (match(Src, m_And(m_Trunc(m_Value(X)), m_Constant(C))) &&
1217      X->getType() == DestTy) {
1218    Value *ZextC = Builder.CreateZExt(C, DestTy);
1219    return BinaryOperator::CreateAnd(X, ZextC);
1220  }
1221
1222  if (match(Src, m_VScale())) {
1223    if (Zext.getFunction() &&
1224        Zext.getFunction()->hasFnAttribute(Attribute::VScaleRange)) {
1225      Attribute Attr =
1226          Zext.getFunction()->getFnAttribute(Attribute::VScaleRange);
1227      if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) {
1228        unsigned TypeWidth = Src->getType()->getScalarSizeInBits();
1229        if (Log2_32(*MaxVScale) < TypeWidth) {
1230          Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1));
1231          return replaceInstUsesWith(Zext, VScale);
1232        }
1233      }
1234    }
1235  }
1236
1237  if (!Zext.hasNonNeg()) {
1238    // If this zero extend is only used by a shift, add nneg flag.
1239    if (Zext.hasOneUse() &&
1240        SrcTy->getScalarSizeInBits() >
1241            Log2_64_Ceil(DestTy->getScalarSizeInBits()) &&
1242        match(Zext.user_back(), m_Shift(m_Value(), m_Specific(&Zext)))) {
1243      Zext.setNonNeg();
1244      return &Zext;
1245    }
1246
1247    if (isKnownNonNegative(Src, SQ.getWithInstruction(&Zext))) {
1248      Zext.setNonNeg();
1249      return &Zext;
1250    }
1251  }
1252
1253  return nullptr;
1254}
1255
1256/// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
1257Instruction *InstCombinerImpl::transformSExtICmp(ICmpInst *Cmp,
1258                                                 SExtInst &Sext) {
1259  Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
1260  ICmpInst::Predicate Pred = Cmp->getPredicate();
1261
1262  // Don't bother if Op1 isn't of vector or integer type.
1263  if (!Op1->getType()->isIntOrIntVectorTy())
1264    return nullptr;
1265
1266  if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) {
1267    // sext (x <s 0) --> ashr x, 31 (all ones if negative)
1268    Value *Sh = ConstantInt::get(Op0->getType(),
1269                                 Op0->getType()->getScalarSizeInBits() - 1);
1270    Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
1271    if (In->getType() != Sext.getType())
1272      In = Builder.CreateIntCast(In, Sext.getType(), true /*SExt*/);
1273
1274    return replaceInstUsesWith(Sext, In);
1275  }
1276
1277  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1278    // If we know that only one bit of the LHS of the icmp can be set and we
1279    // have an equality comparison with zero or a power of 2, we can transform
1280    // the icmp and sext into bitwise/integer operations.
1281    if (Cmp->hasOneUse() &&
1282        Cmp->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
1283      KnownBits Known = computeKnownBits(Op0, 0, &Sext);
1284
1285      APInt KnownZeroMask(~Known.Zero);
1286      if (KnownZeroMask.isPowerOf2()) {
1287        Value *In = Cmp->getOperand(0);
1288
1289        // If the icmp tests for a known zero bit we can constant fold it.
1290        if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
1291          Value *V = Pred == ICmpInst::ICMP_NE ?
1292                       ConstantInt::getAllOnesValue(Sext.getType()) :
1293                       ConstantInt::getNullValue(Sext.getType());
1294          return replaceInstUsesWith(Sext, V);
1295        }
1296
1297        if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
1298          // sext ((x & 2^n) == 0)   -> (x >> n) - 1
1299          // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
1300          unsigned ShiftAmt = KnownZeroMask.countr_zero();
1301          // Perform a right shift to place the desired bit in the LSB.
1302          if (ShiftAmt)
1303            In = Builder.CreateLShr(In,
1304                                    ConstantInt::get(In->getType(), ShiftAmt));
1305
1306          // At this point "In" is either 1 or 0. Subtract 1 to turn
1307          // {1, 0} -> {0, -1}.
1308          In = Builder.CreateAdd(In,
1309                                 ConstantInt::getAllOnesValue(In->getType()),
1310                                 "sext");
1311        } else {
1312          // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
1313          // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
1314          unsigned ShiftAmt = KnownZeroMask.countl_zero();
1315          // Perform a left shift to place the desired bit in the MSB.
1316          if (ShiftAmt)
1317            In = Builder.CreateShl(In,
1318                                   ConstantInt::get(In->getType(), ShiftAmt));
1319
1320          // Distribute the bit over the whole bit width.
1321          In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
1322                                  KnownZeroMask.getBitWidth() - 1), "sext");
1323        }
1324
1325        if (Sext.getType() == In->getType())
1326          return replaceInstUsesWith(Sext, In);
1327        return CastInst::CreateIntegerCast(In, Sext.getType(), true/*SExt*/);
1328      }
1329    }
1330  }
1331
1332  return nullptr;
1333}
1334
1335/// Return true if we can take the specified value and return it as type Ty
1336/// without inserting any new casts and without changing the value of the common
1337/// low bits.  This is used by code that tries to promote integer operations to
1338/// a wider types will allow us to eliminate the extension.
1339///
1340/// This function works on both vectors and scalars.
1341///
1342static bool canEvaluateSExtd(Value *V, Type *Ty) {
1343  assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
1344         "Can't sign extend type to a smaller type");
1345  if (canAlwaysEvaluateInType(V, Ty))
1346    return true;
1347  if (canNotEvaluateInType(V, Ty))
1348    return false;
1349
1350  auto *I = cast<Instruction>(V);
1351  switch (I->getOpcode()) {
1352  case Instruction::SExt:  // sext(sext(x)) -> sext(x)
1353  case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
1354  case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1355    return true;
1356  case Instruction::And:
1357  case Instruction::Or:
1358  case Instruction::Xor:
1359  case Instruction::Add:
1360  case Instruction::Sub:
1361  case Instruction::Mul:
1362    // These operators can all arbitrarily be extended if their inputs can.
1363    return canEvaluateSExtd(I->getOperand(0), Ty) &&
1364           canEvaluateSExtd(I->getOperand(1), Ty);
1365
1366  //case Instruction::Shl:   TODO
1367  //case Instruction::LShr:  TODO
1368
1369  case Instruction::Select:
1370    return canEvaluateSExtd(I->getOperand(1), Ty) &&
1371           canEvaluateSExtd(I->getOperand(2), Ty);
1372
1373  case Instruction::PHI: {
1374    // We can change a phi if we can change all operands.  Note that we never
1375    // get into trouble with cyclic PHIs here because we only consider
1376    // instructions with a single use.
1377    PHINode *PN = cast<PHINode>(I);
1378    for (Value *IncValue : PN->incoming_values())
1379      if (!canEvaluateSExtd(IncValue, Ty)) return false;
1380    return true;
1381  }
1382  default:
1383    // TODO: Can handle more cases here.
1384    break;
1385  }
1386
1387  return false;
1388}
1389
1390Instruction *InstCombinerImpl::visitSExt(SExtInst &Sext) {
1391  // If this sign extend is only used by a truncate, let the truncate be
1392  // eliminated before we try to optimize this sext.
1393  if (Sext.hasOneUse() && isa<TruncInst>(Sext.user_back()))
1394    return nullptr;
1395
1396  if (Instruction *I = commonCastTransforms(Sext))
1397    return I;
1398
1399  Value *Src = Sext.getOperand(0);
1400  Type *SrcTy = Src->getType(), *DestTy = Sext.getType();
1401  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1402  unsigned DestBitSize = DestTy->getScalarSizeInBits();
1403
1404  // If the value being extended is zero or positive, use a zext instead.
1405  if (isKnownNonNegative(Src, SQ.getWithInstruction(&Sext))) {
1406    auto CI = CastInst::Create(Instruction::ZExt, Src, DestTy);
1407    CI->setNonNeg(true);
1408    return CI;
1409  }
1410
1411  // Try to extend the entire expression tree to the wide destination type.
1412  if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) {
1413    // Okay, we can transform this!  Insert the new expression now.
1414    LLVM_DEBUG(
1415        dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1416                  " to avoid sign extend: "
1417               << Sext << '\n');
1418    Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1419    assert(Res->getType() == DestTy);
1420
1421    // If the high bits are already filled with sign bit, just replace this
1422    // cast with the result.
1423    if (ComputeNumSignBits(Res, 0, &Sext) > DestBitSize - SrcBitSize)
1424      return replaceInstUsesWith(Sext, Res);
1425
1426    // We need to emit a shl + ashr to do the sign extend.
1427    Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1428    return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
1429                                      ShAmt);
1430  }
1431
1432  Value *X;
1433  if (match(Src, m_Trunc(m_Value(X)))) {
1434    // If the input has more sign bits than bits truncated, then convert
1435    // directly to final type.
1436    unsigned XBitSize = X->getType()->getScalarSizeInBits();
1437    if (ComputeNumSignBits(X, 0, &Sext) > XBitSize - SrcBitSize)
1438      return CastInst::CreateIntegerCast(X, DestTy, /* isSigned */ true);
1439
1440    // If input is a trunc from the destination type, then convert into shifts.
1441    if (Src->hasOneUse() && X->getType() == DestTy) {
1442      // sext (trunc X) --> ashr (shl X, C), C
1443      Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
1444      return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
1445    }
1446
1447    // If we are replacing shifted-in high zero bits with sign bits, convert
1448    // the logic shift to arithmetic shift and eliminate the cast to
1449    // intermediate type:
1450    // sext (trunc (lshr Y, C)) --> sext/trunc (ashr Y, C)
1451    Value *Y;
1452    if (Src->hasOneUse() &&
1453        match(X, m_LShr(m_Value(Y),
1454                        m_SpecificIntAllowUndef(XBitSize - SrcBitSize)))) {
1455      Value *Ashr = Builder.CreateAShr(Y, XBitSize - SrcBitSize);
1456      return CastInst::CreateIntegerCast(Ashr, DestTy, /* isSigned */ true);
1457    }
1458  }
1459
1460  if (auto *Cmp = dyn_cast<ICmpInst>(Src))
1461    return transformSExtICmp(Cmp, Sext);
1462
1463  // If the input is a shl/ashr pair of a same constant, then this is a sign
1464  // extension from a smaller value.  If we could trust arbitrary bitwidth
1465  // integers, we could turn this into a truncate to the smaller bit and then
1466  // use a sext for the whole extension.  Since we don't, look deeper and check
1467  // for a truncate.  If the source and dest are the same type, eliminate the
1468  // trunc and extend and just do shifts.  For example, turn:
1469  //   %a = trunc i32 %i to i8
1470  //   %b = shl i8 %a, C
1471  //   %c = ashr i8 %b, C
1472  //   %d = sext i8 %c to i32
1473  // into:
1474  //   %a = shl i32 %i, 32-(8-C)
1475  //   %d = ashr i32 %a, 32-(8-C)
1476  Value *A = nullptr;
1477  // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1478  Constant *BA = nullptr, *CA = nullptr;
1479  if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_Constant(BA)),
1480                        m_ImmConstant(CA))) &&
1481      BA->isElementWiseEqual(CA) && A->getType() == DestTy) {
1482    Constant *WideCurrShAmt =
1483        ConstantFoldCastOperand(Instruction::SExt, CA, DestTy, DL);
1484    assert(WideCurrShAmt && "Constant folding of ImmConstant cannot fail");
1485    Constant *NumLowbitsLeft = ConstantExpr::getSub(
1486        ConstantInt::get(DestTy, SrcTy->getScalarSizeInBits()), WideCurrShAmt);
1487    Constant *NewShAmt = ConstantExpr::getSub(
1488        ConstantInt::get(DestTy, DestTy->getScalarSizeInBits()),
1489        NumLowbitsLeft);
1490    NewShAmt =
1491        Constant::mergeUndefsWith(Constant::mergeUndefsWith(NewShAmt, BA), CA);
1492    A = Builder.CreateShl(A, NewShAmt, Sext.getName());
1493    return BinaryOperator::CreateAShr(A, NewShAmt);
1494  }
1495
1496  // Splatting a bit of constant-index across a value:
1497  // sext (ashr (trunc iN X to iM), M-1) to iN --> ashr (shl X, N-M), N-1
1498  // If the dest type is different, use a cast (adjust use check).
1499  if (match(Src, m_OneUse(m_AShr(m_Trunc(m_Value(X)),
1500                                 m_SpecificInt(SrcBitSize - 1))))) {
1501    Type *XTy = X->getType();
1502    unsigned XBitSize = XTy->getScalarSizeInBits();
1503    Constant *ShlAmtC = ConstantInt::get(XTy, XBitSize - SrcBitSize);
1504    Constant *AshrAmtC = ConstantInt::get(XTy, XBitSize - 1);
1505    if (XTy == DestTy)
1506      return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShlAmtC),
1507                                        AshrAmtC);
1508    if (cast<BinaryOperator>(Src)->getOperand(0)->hasOneUse()) {
1509      Value *Ashr = Builder.CreateAShr(Builder.CreateShl(X, ShlAmtC), AshrAmtC);
1510      return CastInst::CreateIntegerCast(Ashr, DestTy, /* isSigned */ true);
1511    }
1512  }
1513
1514  if (match(Src, m_VScale())) {
1515    if (Sext.getFunction() &&
1516        Sext.getFunction()->hasFnAttribute(Attribute::VScaleRange)) {
1517      Attribute Attr =
1518          Sext.getFunction()->getFnAttribute(Attribute::VScaleRange);
1519      if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) {
1520        if (Log2_32(*MaxVScale) < (SrcBitSize - 1)) {
1521          Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1));
1522          return replaceInstUsesWith(Sext, VScale);
1523        }
1524      }
1525    }
1526  }
1527
1528  return nullptr;
1529}
1530
1531/// Return a Constant* for the specified floating-point constant if it fits
1532/// in the specified FP type without changing its value.
1533static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1534  bool losesInfo;
1535  APFloat F = CFP->getValueAPF();
1536  (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1537  return !losesInfo;
1538}
1539
1540static Type *shrinkFPConstant(ConstantFP *CFP) {
1541  if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext()))
1542    return nullptr;  // No constant folding of this.
1543  // See if the value can be truncated to half and then reextended.
1544  if (fitsInFPType(CFP, APFloat::IEEEhalf()))
1545    return Type::getHalfTy(CFP->getContext());
1546  // See if the value can be truncated to float and then reextended.
1547  if (fitsInFPType(CFP, APFloat::IEEEsingle()))
1548    return Type::getFloatTy(CFP->getContext());
1549  if (CFP->getType()->isDoubleTy())
1550    return nullptr;  // Won't shrink.
1551  if (fitsInFPType(CFP, APFloat::IEEEdouble()))
1552    return Type::getDoubleTy(CFP->getContext());
1553  // Don't try to shrink to various long double types.
1554  return nullptr;
1555}
1556
1557// Determine if this is a vector of ConstantFPs and if so, return the minimal
1558// type we can safely truncate all elements to.
1559static Type *shrinkFPConstantVector(Value *V) {
1560  auto *CV = dyn_cast<Constant>(V);
1561  auto *CVVTy = dyn_cast<FixedVectorType>(V->getType());
1562  if (!CV || !CVVTy)
1563    return nullptr;
1564
1565  Type *MinType = nullptr;
1566
1567  unsigned NumElts = CVVTy->getNumElements();
1568
1569  // For fixed-width vectors we find the minimal type by looking
1570  // through the constant values of the vector.
1571  for (unsigned i = 0; i != NumElts; ++i) {
1572    if (isa<UndefValue>(CV->getAggregateElement(i)))
1573      continue;
1574
1575    auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
1576    if (!CFP)
1577      return nullptr;
1578
1579    Type *T = shrinkFPConstant(CFP);
1580    if (!T)
1581      return nullptr;
1582
1583    // If we haven't found a type yet or this type has a larger mantissa than
1584    // our previous type, this is our new minimal type.
1585    if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth())
1586      MinType = T;
1587  }
1588
1589  // Make a vector type from the minimal type.
1590  return MinType ? FixedVectorType::get(MinType, NumElts) : nullptr;
1591}
1592
1593/// Find the minimum FP type we can safely truncate to.
1594static Type *getMinimumFPType(Value *V) {
1595  if (auto *FPExt = dyn_cast<FPExtInst>(V))
1596    return FPExt->getOperand(0)->getType();
1597
1598  // If this value is a constant, return the constant in the smallest FP type
1599  // that can accurately represent it.  This allows us to turn
1600  // (float)((double)X+2.0) into x+2.0f.
1601  if (auto *CFP = dyn_cast<ConstantFP>(V))
1602    if (Type *T = shrinkFPConstant(CFP))
1603      return T;
1604
1605  // We can only correctly find a minimum type for a scalable vector when it is
1606  // a splat. For splats of constant values the fpext is wrapped up as a
1607  // ConstantExpr.
1608  if (auto *FPCExt = dyn_cast<ConstantExpr>(V))
1609    if (FPCExt->getOpcode() == Instruction::FPExt)
1610      return FPCExt->getOperand(0)->getType();
1611
1612  // Try to shrink a vector of FP constants. This returns nullptr on scalable
1613  // vectors
1614  if (Type *T = shrinkFPConstantVector(V))
1615    return T;
1616
1617  return V->getType();
1618}
1619
1620/// Return true if the cast from integer to FP can be proven to be exact for all
1621/// possible inputs (the conversion does not lose any precision).
1622static bool isKnownExactCastIntToFP(CastInst &I, InstCombinerImpl &IC) {
1623  CastInst::CastOps Opcode = I.getOpcode();
1624  assert((Opcode == CastInst::SIToFP || Opcode == CastInst::UIToFP) &&
1625         "Unexpected cast");
1626  Value *Src = I.getOperand(0);
1627  Type *SrcTy = Src->getType();
1628  Type *FPTy = I.getType();
1629  bool IsSigned = Opcode == Instruction::SIToFP;
1630  int SrcSize = (int)SrcTy->getScalarSizeInBits() - IsSigned;
1631
1632  // Easy case - if the source integer type has less bits than the FP mantissa,
1633  // then the cast must be exact.
1634  int DestNumSigBits = FPTy->getFPMantissaWidth();
1635  if (SrcSize <= DestNumSigBits)
1636    return true;
1637
1638  // Cast from FP to integer and back to FP is independent of the intermediate
1639  // integer width because of poison on overflow.
1640  Value *F;
1641  if (match(Src, m_FPToSI(m_Value(F))) || match(Src, m_FPToUI(m_Value(F)))) {
1642    // If this is uitofp (fptosi F), the source needs an extra bit to avoid
1643    // potential rounding of negative FP input values.
1644    int SrcNumSigBits = F->getType()->getFPMantissaWidth();
1645    if (!IsSigned && match(Src, m_FPToSI(m_Value())))
1646      SrcNumSigBits++;
1647
1648    // [su]itofp (fpto[su]i F) --> exact if the source type has less or equal
1649    // significant bits than the destination (and make sure neither type is
1650    // weird -- ppc_fp128).
1651    if (SrcNumSigBits > 0 && DestNumSigBits > 0 &&
1652        SrcNumSigBits <= DestNumSigBits)
1653      return true;
1654  }
1655
1656  // TODO:
1657  // Try harder to find if the source integer type has less significant bits.
1658  // For example, compute number of sign bits.
1659  KnownBits SrcKnown = IC.computeKnownBits(Src, 0, &I);
1660  int SigBits = (int)SrcTy->getScalarSizeInBits() -
1661                SrcKnown.countMinLeadingZeros() -
1662                SrcKnown.countMinTrailingZeros();
1663  if (SigBits <= DestNumSigBits)
1664    return true;
1665
1666  return false;
1667}
1668
1669Instruction *InstCombinerImpl::visitFPTrunc(FPTruncInst &FPT) {
1670  if (Instruction *I = commonCastTransforms(FPT))
1671    return I;
1672
1673  // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1674  // simplify this expression to avoid one or more of the trunc/extend
1675  // operations if we can do so without changing the numerical results.
1676  //
1677  // The exact manner in which the widths of the operands interact to limit
1678  // what we can and cannot do safely varies from operation to operation, and
1679  // is explained below in the various case statements.
1680  Type *Ty = FPT.getType();
1681  auto *BO = dyn_cast<BinaryOperator>(FPT.getOperand(0));
1682  if (BO && BO->hasOneUse()) {
1683    Type *LHSMinType = getMinimumFPType(BO->getOperand(0));
1684    Type *RHSMinType = getMinimumFPType(BO->getOperand(1));
1685    unsigned OpWidth = BO->getType()->getFPMantissaWidth();
1686    unsigned LHSWidth = LHSMinType->getFPMantissaWidth();
1687    unsigned RHSWidth = RHSMinType->getFPMantissaWidth();
1688    unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1689    unsigned DstWidth = Ty->getFPMantissaWidth();
1690    switch (BO->getOpcode()) {
1691      default: break;
1692      case Instruction::FAdd:
1693      case Instruction::FSub:
1694        // For addition and subtraction, the infinitely precise result can
1695        // essentially be arbitrarily wide; proving that double rounding
1696        // will not occur because the result of OpI is exact (as we will for
1697        // FMul, for example) is hopeless.  However, we *can* nonetheless
1698        // frequently know that double rounding cannot occur (or that it is
1699        // innocuous) by taking advantage of the specific structure of
1700        // infinitely-precise results that admit double rounding.
1701        //
1702        // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1703        // to represent both sources, we can guarantee that the double
1704        // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1705        // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1706        // for proof of this fact).
1707        //
1708        // Note: Figueroa does not consider the case where DstFormat !=
1709        // SrcFormat.  It's possible (likely even!) that this analysis
1710        // could be tightened for those cases, but they are rare (the main
1711        // case of interest here is (float)((double)float + float)).
1712        if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1713          Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1714          Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1715          Instruction *RI = BinaryOperator::Create(BO->getOpcode(), LHS, RHS);
1716          RI->copyFastMathFlags(BO);
1717          return RI;
1718        }
1719        break;
1720      case Instruction::FMul:
1721        // For multiplication, the infinitely precise result has at most
1722        // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1723        // that such a value can be exactly represented, then no double
1724        // rounding can possibly occur; we can safely perform the operation
1725        // in the destination format if it can represent both sources.
1726        if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1727          Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1728          Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1729          return BinaryOperator::CreateFMulFMF(LHS, RHS, BO);
1730        }
1731        break;
1732      case Instruction::FDiv:
1733        // For division, we use again use the bound from Figueroa's
1734        // dissertation.  I am entirely certain that this bound can be
1735        // tightened in the unbalanced operand case by an analysis based on
1736        // the diophantine rational approximation bound, but the well-known
1737        // condition used here is a good conservative first pass.
1738        // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1739        if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1740          Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1741          Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1742          return BinaryOperator::CreateFDivFMF(LHS, RHS, BO);
1743        }
1744        break;
1745      case Instruction::FRem: {
1746        // Remainder is straightforward.  Remainder is always exact, so the
1747        // type of OpI doesn't enter into things at all.  We simply evaluate
1748        // in whichever source type is larger, then convert to the
1749        // destination type.
1750        if (SrcWidth == OpWidth)
1751          break;
1752        Value *LHS, *RHS;
1753        if (LHSWidth == SrcWidth) {
1754           LHS = Builder.CreateFPTrunc(BO->getOperand(0), LHSMinType);
1755           RHS = Builder.CreateFPTrunc(BO->getOperand(1), LHSMinType);
1756        } else {
1757           LHS = Builder.CreateFPTrunc(BO->getOperand(0), RHSMinType);
1758           RHS = Builder.CreateFPTrunc(BO->getOperand(1), RHSMinType);
1759        }
1760
1761        Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, BO);
1762        return CastInst::CreateFPCast(ExactResult, Ty);
1763      }
1764    }
1765  }
1766
1767  // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1768  Value *X;
1769  Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0));
1770  if (Op && Op->hasOneUse()) {
1771    // FIXME: The FMF should propagate from the fptrunc, not the source op.
1772    IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1773    if (isa<FPMathOperator>(Op))
1774      Builder.setFastMathFlags(Op->getFastMathFlags());
1775
1776    if (match(Op, m_FNeg(m_Value(X)))) {
1777      Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty);
1778
1779      return UnaryOperator::CreateFNegFMF(InnerTrunc, Op);
1780    }
1781
1782    // If we are truncating a select that has an extended operand, we can
1783    // narrow the other operand and do the select as a narrow op.
1784    Value *Cond, *X, *Y;
1785    if (match(Op, m_Select(m_Value(Cond), m_FPExt(m_Value(X)), m_Value(Y))) &&
1786        X->getType() == Ty) {
1787      // fptrunc (select Cond, (fpext X), Y --> select Cond, X, (fptrunc Y)
1788      Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
1789      Value *Sel = Builder.CreateSelect(Cond, X, NarrowY, "narrow.sel", Op);
1790      return replaceInstUsesWith(FPT, Sel);
1791    }
1792    if (match(Op, m_Select(m_Value(Cond), m_Value(Y), m_FPExt(m_Value(X)))) &&
1793        X->getType() == Ty) {
1794      // fptrunc (select Cond, Y, (fpext X) --> select Cond, (fptrunc Y), X
1795      Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
1796      Value *Sel = Builder.CreateSelect(Cond, NarrowY, X, "narrow.sel", Op);
1797      return replaceInstUsesWith(FPT, Sel);
1798    }
1799  }
1800
1801  if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) {
1802    switch (II->getIntrinsicID()) {
1803    default: break;
1804    case Intrinsic::ceil:
1805    case Intrinsic::fabs:
1806    case Intrinsic::floor:
1807    case Intrinsic::nearbyint:
1808    case Intrinsic::rint:
1809    case Intrinsic::round:
1810    case Intrinsic::roundeven:
1811    case Intrinsic::trunc: {
1812      Value *Src = II->getArgOperand(0);
1813      if (!Src->hasOneUse())
1814        break;
1815
1816      // Except for fabs, this transformation requires the input of the unary FP
1817      // operation to be itself an fpext from the type to which we're
1818      // truncating.
1819      if (II->getIntrinsicID() != Intrinsic::fabs) {
1820        FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
1821        if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty)
1822          break;
1823      }
1824
1825      // Do unary FP operation on smaller type.
1826      // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1827      Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty);
1828      Function *Overload = Intrinsic::getDeclaration(FPT.getModule(),
1829                                                     II->getIntrinsicID(), Ty);
1830      SmallVector<OperandBundleDef, 1> OpBundles;
1831      II->getOperandBundlesAsDefs(OpBundles);
1832      CallInst *NewCI =
1833          CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName());
1834      NewCI->copyFastMathFlags(II);
1835      return NewCI;
1836    }
1837    }
1838  }
1839
1840  if (Instruction *I = shrinkInsertElt(FPT, Builder))
1841    return I;
1842
1843  Value *Src = FPT.getOperand(0);
1844  if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
1845    auto *FPCast = cast<CastInst>(Src);
1846    if (isKnownExactCastIntToFP(*FPCast, *this))
1847      return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
1848  }
1849
1850  return nullptr;
1851}
1852
1853Instruction *InstCombinerImpl::visitFPExt(CastInst &FPExt) {
1854  // If the source operand is a cast from integer to FP and known exact, then
1855  // cast the integer operand directly to the destination type.
1856  Type *Ty = FPExt.getType();
1857  Value *Src = FPExt.getOperand(0);
1858  if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
1859    auto *FPCast = cast<CastInst>(Src);
1860    if (isKnownExactCastIntToFP(*FPCast, *this))
1861      return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
1862  }
1863
1864  return commonCastTransforms(FPExt);
1865}
1866
1867/// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
1868/// This is safe if the intermediate type has enough bits in its mantissa to
1869/// accurately represent all values of X.  For example, this won't work with
1870/// i64 -> float -> i64.
1871Instruction *InstCombinerImpl::foldItoFPtoI(CastInst &FI) {
1872  if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
1873    return nullptr;
1874
1875  auto *OpI = cast<CastInst>(FI.getOperand(0));
1876  Value *X = OpI->getOperand(0);
1877  Type *XType = X->getType();
1878  Type *DestType = FI.getType();
1879  bool IsOutputSigned = isa<FPToSIInst>(FI);
1880
1881  // Since we can assume the conversion won't overflow, our decision as to
1882  // whether the input will fit in the float should depend on the minimum
1883  // of the input range and output range.
1884
1885  // This means this is also safe for a signed input and unsigned output, since
1886  // a negative input would lead to undefined behavior.
1887  if (!isKnownExactCastIntToFP(*OpI, *this)) {
1888    // The first cast may not round exactly based on the source integer width
1889    // and FP width, but the overflow UB rules can still allow this to fold.
1890    // If the destination type is narrow, that means the intermediate FP value
1891    // must be large enough to hold the source value exactly.
1892    // For example, (uint8_t)((float)(uint32_t 16777217) is undefined behavior.
1893    int OutputSize = (int)DestType->getScalarSizeInBits();
1894    if (OutputSize > OpI->getType()->getFPMantissaWidth())
1895      return nullptr;
1896  }
1897
1898  if (DestType->getScalarSizeInBits() > XType->getScalarSizeInBits()) {
1899    bool IsInputSigned = isa<SIToFPInst>(OpI);
1900    if (IsInputSigned && IsOutputSigned)
1901      return new SExtInst(X, DestType);
1902    return new ZExtInst(X, DestType);
1903  }
1904  if (DestType->getScalarSizeInBits() < XType->getScalarSizeInBits())
1905    return new TruncInst(X, DestType);
1906
1907  assert(XType == DestType && "Unexpected types for int to FP to int casts");
1908  return replaceInstUsesWith(FI, X);
1909}
1910
1911Instruction *InstCombinerImpl::visitFPToUI(FPToUIInst &FI) {
1912  if (Instruction *I = foldItoFPtoI(FI))
1913    return I;
1914
1915  return commonCastTransforms(FI);
1916}
1917
1918Instruction *InstCombinerImpl::visitFPToSI(FPToSIInst &FI) {
1919  if (Instruction *I = foldItoFPtoI(FI))
1920    return I;
1921
1922  return commonCastTransforms(FI);
1923}
1924
1925Instruction *InstCombinerImpl::visitUIToFP(CastInst &CI) {
1926  return commonCastTransforms(CI);
1927}
1928
1929Instruction *InstCombinerImpl::visitSIToFP(CastInst &CI) {
1930  return commonCastTransforms(CI);
1931}
1932
1933Instruction *InstCombinerImpl::visitIntToPtr(IntToPtrInst &CI) {
1934  // If the source integer type is not the intptr_t type for this target, do a
1935  // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
1936  // cast to be exposed to other transforms.
1937  unsigned AS = CI.getAddressSpace();
1938  if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
1939      DL.getPointerSizeInBits(AS)) {
1940    Type *Ty = CI.getOperand(0)->getType()->getWithNewType(
1941        DL.getIntPtrType(CI.getContext(), AS));
1942    Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty);
1943    return new IntToPtrInst(P, CI.getType());
1944  }
1945
1946  if (Instruction *I = commonCastTransforms(CI))
1947    return I;
1948
1949  return nullptr;
1950}
1951
1952Instruction *InstCombinerImpl::visitPtrToInt(PtrToIntInst &CI) {
1953  // If the destination integer type is not the intptr_t type for this target,
1954  // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
1955  // to be exposed to other transforms.
1956  Value *SrcOp = CI.getPointerOperand();
1957  Type *SrcTy = SrcOp->getType();
1958  Type *Ty = CI.getType();
1959  unsigned AS = CI.getPointerAddressSpace();
1960  unsigned TySize = Ty->getScalarSizeInBits();
1961  unsigned PtrSize = DL.getPointerSizeInBits(AS);
1962  if (TySize != PtrSize) {
1963    Type *IntPtrTy =
1964        SrcTy->getWithNewType(DL.getIntPtrType(CI.getContext(), AS));
1965    Value *P = Builder.CreatePtrToInt(SrcOp, IntPtrTy);
1966    return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
1967  }
1968
1969  // (ptrtoint (ptrmask P, M))
1970  //    -> (and (ptrtoint P), M)
1971  // This is generally beneficial as `and` is better supported than `ptrmask`.
1972  Value *Ptr, *Mask;
1973  if (match(SrcOp, m_OneUse(m_Intrinsic<Intrinsic::ptrmask>(m_Value(Ptr),
1974                                                            m_Value(Mask)))) &&
1975      Mask->getType() == Ty)
1976    return BinaryOperator::CreateAnd(Builder.CreatePtrToInt(Ptr, Ty), Mask);
1977
1978  if (auto *GEP = dyn_cast<GetElementPtrInst>(SrcOp)) {
1979    // Fold ptrtoint(gep null, x) to multiply + constant if the GEP has one use.
1980    // While this can increase the number of instructions it doesn't actually
1981    // increase the overall complexity since the arithmetic is just part of
1982    // the GEP otherwise.
1983    if (GEP->hasOneUse() &&
1984        isa<ConstantPointerNull>(GEP->getPointerOperand())) {
1985      return replaceInstUsesWith(CI,
1986                                 Builder.CreateIntCast(EmitGEPOffset(GEP), Ty,
1987                                                       /*isSigned=*/false));
1988    }
1989  }
1990
1991  Value *Vec, *Scalar, *Index;
1992  if (match(SrcOp, m_OneUse(m_InsertElt(m_IntToPtr(m_Value(Vec)),
1993                                        m_Value(Scalar), m_Value(Index)))) &&
1994      Vec->getType() == Ty) {
1995    assert(Vec->getType()->getScalarSizeInBits() == PtrSize && "Wrong type");
1996    // Convert the scalar to int followed by insert to eliminate one cast:
1997    // p2i (ins (i2p Vec), Scalar, Index --> ins Vec, (p2i Scalar), Index
1998    Value *NewCast = Builder.CreatePtrToInt(Scalar, Ty->getScalarType());
1999    return InsertElementInst::Create(Vec, NewCast, Index);
2000  }
2001
2002  return commonCastTransforms(CI);
2003}
2004
2005/// This input value (which is known to have vector type) is being zero extended
2006/// or truncated to the specified vector type. Since the zext/trunc is done
2007/// using an integer type, we have a (bitcast(cast(bitcast))) pattern,
2008/// endianness will impact which end of the vector that is extended or
2009/// truncated.
2010///
2011/// A vector is always stored with index 0 at the lowest address, which
2012/// corresponds to the most significant bits for a big endian stored integer and
2013/// the least significant bits for little endian. A trunc/zext of an integer
2014/// impacts the big end of the integer. Thus, we need to add/remove elements at
2015/// the front of the vector for big endian targets, and the back of the vector
2016/// for little endian targets.
2017///
2018/// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
2019///
2020/// The source and destination vector types may have different element types.
2021static Instruction *
2022optimizeVectorResizeWithIntegerBitCasts(Value *InVal, VectorType *DestTy,
2023                                        InstCombinerImpl &IC) {
2024  // We can only do this optimization if the output is a multiple of the input
2025  // element size, or the input is a multiple of the output element size.
2026  // Convert the input type to have the same element type as the output.
2027  VectorType *SrcTy = cast<VectorType>(InVal->getType());
2028
2029  if (SrcTy->getElementType() != DestTy->getElementType()) {
2030    // The input types don't need to be identical, but for now they must be the
2031    // same size.  There is no specific reason we couldn't handle things like
2032    // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
2033    // there yet.
2034    if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
2035        DestTy->getElementType()->getPrimitiveSizeInBits())
2036      return nullptr;
2037
2038    SrcTy =
2039        FixedVectorType::get(DestTy->getElementType(),
2040                             cast<FixedVectorType>(SrcTy)->getNumElements());
2041    InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
2042  }
2043
2044  bool IsBigEndian = IC.getDataLayout().isBigEndian();
2045  unsigned SrcElts = cast<FixedVectorType>(SrcTy)->getNumElements();
2046  unsigned DestElts = cast<FixedVectorType>(DestTy)->getNumElements();
2047
2048  assert(SrcElts != DestElts && "Element counts should be different.");
2049
2050  // Now that the element types match, get the shuffle mask and RHS of the
2051  // shuffle to use, which depends on whether we're increasing or decreasing the
2052  // size of the input.
2053  auto ShuffleMaskStorage = llvm::to_vector<16>(llvm::seq<int>(0, SrcElts));
2054  ArrayRef<int> ShuffleMask;
2055  Value *V2;
2056
2057  if (SrcElts > DestElts) {
2058    // If we're shrinking the number of elements (rewriting an integer
2059    // truncate), just shuffle in the elements corresponding to the least
2060    // significant bits from the input and use poison as the second shuffle
2061    // input.
2062    V2 = PoisonValue::get(SrcTy);
2063    // Make sure the shuffle mask selects the "least significant bits" by
2064    // keeping elements from back of the src vector for big endian, and from the
2065    // front for little endian.
2066    ShuffleMask = ShuffleMaskStorage;
2067    if (IsBigEndian)
2068      ShuffleMask = ShuffleMask.take_back(DestElts);
2069    else
2070      ShuffleMask = ShuffleMask.take_front(DestElts);
2071  } else {
2072    // If we're increasing the number of elements (rewriting an integer zext),
2073    // shuffle in all of the elements from InVal. Fill the rest of the result
2074    // elements with zeros from a constant zero.
2075    V2 = Constant::getNullValue(SrcTy);
2076    // Use first elt from V2 when indicating zero in the shuffle mask.
2077    uint32_t NullElt = SrcElts;
2078    // Extend with null values in the "most significant bits" by adding elements
2079    // in front of the src vector for big endian, and at the back for little
2080    // endian.
2081    unsigned DeltaElts = DestElts - SrcElts;
2082    if (IsBigEndian)
2083      ShuffleMaskStorage.insert(ShuffleMaskStorage.begin(), DeltaElts, NullElt);
2084    else
2085      ShuffleMaskStorage.append(DeltaElts, NullElt);
2086    ShuffleMask = ShuffleMaskStorage;
2087  }
2088
2089  return new ShuffleVectorInst(InVal, V2, ShuffleMask);
2090}
2091
2092static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
2093  return Value % Ty->getPrimitiveSizeInBits() == 0;
2094}
2095
2096static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
2097  return Value / Ty->getPrimitiveSizeInBits();
2098}
2099
2100/// V is a value which is inserted into a vector of VecEltTy.
2101/// Look through the value to see if we can decompose it into
2102/// insertions into the vector.  See the example in the comment for
2103/// OptimizeIntegerToVectorInsertions for the pattern this handles.
2104/// The type of V is always a non-zero multiple of VecEltTy's size.
2105/// Shift is the number of bits between the lsb of V and the lsb of
2106/// the vector.
2107///
2108/// This returns false if the pattern can't be matched or true if it can,
2109/// filling in Elements with the elements found here.
2110static bool collectInsertionElements(Value *V, unsigned Shift,
2111                                     SmallVectorImpl<Value *> &Elements,
2112                                     Type *VecEltTy, bool isBigEndian) {
2113  assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
2114         "Shift should be a multiple of the element type size");
2115
2116  // Undef values never contribute useful bits to the result.
2117  if (isa<UndefValue>(V)) return true;
2118
2119  // If we got down to a value of the right type, we win, try inserting into the
2120  // right element.
2121  if (V->getType() == VecEltTy) {
2122    // Inserting null doesn't actually insert any elements.
2123    if (Constant *C = dyn_cast<Constant>(V))
2124      if (C->isNullValue())
2125        return true;
2126
2127    unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
2128    if (isBigEndian)
2129      ElementIndex = Elements.size() - ElementIndex - 1;
2130
2131    // Fail if multiple elements are inserted into this slot.
2132    if (Elements[ElementIndex])
2133      return false;
2134
2135    Elements[ElementIndex] = V;
2136    return true;
2137  }
2138
2139  if (Constant *C = dyn_cast<Constant>(V)) {
2140    // Figure out the # elements this provides, and bitcast it or slice it up
2141    // as required.
2142    unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
2143                                        VecEltTy);
2144    // If the constant is the size of a vector element, we just need to bitcast
2145    // it to the right type so it gets properly inserted.
2146    if (NumElts == 1)
2147      return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
2148                                      Shift, Elements, VecEltTy, isBigEndian);
2149
2150    // Okay, this is a constant that covers multiple elements.  Slice it up into
2151    // pieces and insert each element-sized piece into the vector.
2152    if (!isa<IntegerType>(C->getType()))
2153      C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
2154                                       C->getType()->getPrimitiveSizeInBits()));
2155    unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
2156    Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
2157
2158    for (unsigned i = 0; i != NumElts; ++i) {
2159      unsigned ShiftI = i * ElementSize;
2160      Constant *Piece = ConstantFoldBinaryInstruction(
2161          Instruction::LShr, C, ConstantInt::get(C->getType(), ShiftI));
2162      if (!Piece)
2163        return false;
2164
2165      Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
2166      if (!collectInsertionElements(Piece, ShiftI + Shift, Elements, VecEltTy,
2167                                    isBigEndian))
2168        return false;
2169    }
2170    return true;
2171  }
2172
2173  if (!V->hasOneUse()) return false;
2174
2175  Instruction *I = dyn_cast<Instruction>(V);
2176  if (!I) return false;
2177  switch (I->getOpcode()) {
2178  default: return false; // Unhandled case.
2179  case Instruction::BitCast:
2180    if (I->getOperand(0)->getType()->isVectorTy())
2181      return false;
2182    return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2183                                    isBigEndian);
2184  case Instruction::ZExt:
2185    if (!isMultipleOfTypeSize(
2186                          I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
2187                              VecEltTy))
2188      return false;
2189    return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2190                                    isBigEndian);
2191  case Instruction::Or:
2192    return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2193                                    isBigEndian) &&
2194           collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
2195                                    isBigEndian);
2196  case Instruction::Shl: {
2197    // Must be shifting by a constant that is a multiple of the element size.
2198    ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
2199    if (!CI) return false;
2200    Shift += CI->getZExtValue();
2201    if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
2202    return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2203                                    isBigEndian);
2204  }
2205
2206  }
2207}
2208
2209
2210/// If the input is an 'or' instruction, we may be doing shifts and ors to
2211/// assemble the elements of the vector manually.
2212/// Try to rip the code out and replace it with insertelements.  This is to
2213/// optimize code like this:
2214///
2215///    %tmp37 = bitcast float %inc to i32
2216///    %tmp38 = zext i32 %tmp37 to i64
2217///    %tmp31 = bitcast float %inc5 to i32
2218///    %tmp32 = zext i32 %tmp31 to i64
2219///    %tmp33 = shl i64 %tmp32, 32
2220///    %ins35 = or i64 %tmp33, %tmp38
2221///    %tmp43 = bitcast i64 %ins35 to <2 x float>
2222///
2223/// Into two insertelements that do "buildvector{%inc, %inc5}".
2224static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
2225                                                InstCombinerImpl &IC) {
2226  auto *DestVecTy = cast<FixedVectorType>(CI.getType());
2227  Value *IntInput = CI.getOperand(0);
2228
2229  SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
2230  if (!collectInsertionElements(IntInput, 0, Elements,
2231                                DestVecTy->getElementType(),
2232                                IC.getDataLayout().isBigEndian()))
2233    return nullptr;
2234
2235  // If we succeeded, we know that all of the element are specified by Elements
2236  // or are zero if Elements has a null entry.  Recast this as a set of
2237  // insertions.
2238  Value *Result = Constant::getNullValue(CI.getType());
2239  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
2240    if (!Elements[i]) continue;  // Unset element.
2241
2242    Result = IC.Builder.CreateInsertElement(Result, Elements[i],
2243                                            IC.Builder.getInt32(i));
2244  }
2245
2246  return Result;
2247}
2248
2249/// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
2250/// vector followed by extract element. The backend tends to handle bitcasts of
2251/// vectors better than bitcasts of scalars because vector registers are
2252/// usually not type-specific like scalar integer or scalar floating-point.
2253static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
2254                                              InstCombinerImpl &IC) {
2255  Value *VecOp, *Index;
2256  if (!match(BitCast.getOperand(0),
2257             m_OneUse(m_ExtractElt(m_Value(VecOp), m_Value(Index)))))
2258    return nullptr;
2259
2260  // The bitcast must be to a vectorizable type, otherwise we can't make a new
2261  // type to extract from.
2262  Type *DestType = BitCast.getType();
2263  VectorType *VecType = cast<VectorType>(VecOp->getType());
2264  if (VectorType::isValidElementType(DestType)) {
2265    auto *NewVecType = VectorType::get(DestType, VecType);
2266    auto *NewBC = IC.Builder.CreateBitCast(VecOp, NewVecType, "bc");
2267    return ExtractElementInst::Create(NewBC, Index);
2268  }
2269
2270  // Only solve DestType is vector to avoid inverse transform in visitBitCast.
2271  // bitcast (extractelement <1 x elt>, dest) -> bitcast(<1 x elt>, dest)
2272  auto *FixedVType = dyn_cast<FixedVectorType>(VecType);
2273  if (DestType->isVectorTy() && FixedVType && FixedVType->getNumElements() == 1)
2274    return CastInst::Create(Instruction::BitCast, VecOp, DestType);
2275
2276  return nullptr;
2277}
2278
2279/// Change the type of a bitwise logic operation if we can eliminate a bitcast.
2280static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
2281                                            InstCombiner::BuilderTy &Builder) {
2282  Type *DestTy = BitCast.getType();
2283  BinaryOperator *BO;
2284
2285  if (!match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
2286      !BO->isBitwiseLogicOp())
2287    return nullptr;
2288
2289  // FIXME: This transform is restricted to vector types to avoid backend
2290  // problems caused by creating potentially illegal operations. If a fix-up is
2291  // added to handle that situation, we can remove this check.
2292  if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
2293    return nullptr;
2294
2295  if (DestTy->isFPOrFPVectorTy()) {
2296    Value *X, *Y;
2297    // bitcast(logic(bitcast(X), bitcast(Y))) -> bitcast'(logic(bitcast'(X), Y))
2298    if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
2299        match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(Y))))) {
2300      if (X->getType()->isFPOrFPVectorTy() &&
2301          Y->getType()->isIntOrIntVectorTy()) {
2302        Value *CastedOp =
2303            Builder.CreateBitCast(BO->getOperand(0), Y->getType());
2304        Value *NewBO = Builder.CreateBinOp(BO->getOpcode(), CastedOp, Y);
2305        return CastInst::CreateBitOrPointerCast(NewBO, DestTy);
2306      }
2307      if (X->getType()->isIntOrIntVectorTy() &&
2308          Y->getType()->isFPOrFPVectorTy()) {
2309        Value *CastedOp =
2310            Builder.CreateBitCast(BO->getOperand(1), X->getType());
2311        Value *NewBO = Builder.CreateBinOp(BO->getOpcode(), CastedOp, X);
2312        return CastInst::CreateBitOrPointerCast(NewBO, DestTy);
2313      }
2314    }
2315    return nullptr;
2316  }
2317
2318  if (!DestTy->isIntOrIntVectorTy())
2319    return nullptr;
2320
2321  Value *X;
2322  if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
2323      X->getType() == DestTy && !isa<Constant>(X)) {
2324    // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
2325    Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
2326    return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
2327  }
2328
2329  if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
2330      X->getType() == DestTy && !isa<Constant>(X)) {
2331    // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
2332    Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2333    return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
2334  }
2335
2336  // Canonicalize vector bitcasts to come before vector bitwise logic with a
2337  // constant. This eases recognition of special constants for later ops.
2338  // Example:
2339  // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
2340  Constant *C;
2341  if (match(BO->getOperand(1), m_Constant(C))) {
2342    // bitcast (logic X, C) --> logic (bitcast X, C')
2343    Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2344    Value *CastedC = Builder.CreateBitCast(C, DestTy);
2345    return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
2346  }
2347
2348  return nullptr;
2349}
2350
2351/// Change the type of a select if we can eliminate a bitcast.
2352static Instruction *foldBitCastSelect(BitCastInst &BitCast,
2353                                      InstCombiner::BuilderTy &Builder) {
2354  Value *Cond, *TVal, *FVal;
2355  if (!match(BitCast.getOperand(0),
2356             m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
2357    return nullptr;
2358
2359  // A vector select must maintain the same number of elements in its operands.
2360  Type *CondTy = Cond->getType();
2361  Type *DestTy = BitCast.getType();
2362  if (auto *CondVTy = dyn_cast<VectorType>(CondTy))
2363    if (!DestTy->isVectorTy() ||
2364        CondVTy->getElementCount() !=
2365            cast<VectorType>(DestTy)->getElementCount())
2366      return nullptr;
2367
2368  // FIXME: This transform is restricted from changing the select between
2369  // scalars and vectors to avoid backend problems caused by creating
2370  // potentially illegal operations. If a fix-up is added to handle that
2371  // situation, we can remove this check.
2372  if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
2373    return nullptr;
2374
2375  auto *Sel = cast<Instruction>(BitCast.getOperand(0));
2376  Value *X;
2377  if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2378      !isa<Constant>(X)) {
2379    // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
2380    Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
2381    return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
2382  }
2383
2384  if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2385      !isa<Constant>(X)) {
2386    // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
2387    Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
2388    return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
2389  }
2390
2391  return nullptr;
2392}
2393
2394/// Check if all users of CI are StoreInsts.
2395static bool hasStoreUsersOnly(CastInst &CI) {
2396  for (User *U : CI.users()) {
2397    if (!isa<StoreInst>(U))
2398      return false;
2399  }
2400  return true;
2401}
2402
2403/// This function handles following case
2404///
2405///     A  ->  B    cast
2406///     PHI
2407///     B  ->  A    cast
2408///
2409/// All the related PHI nodes can be replaced by new PHI nodes with type A.
2410/// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
2411Instruction *InstCombinerImpl::optimizeBitCastFromPhi(CastInst &CI,
2412                                                      PHINode *PN) {
2413  // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
2414  if (hasStoreUsersOnly(CI))
2415    return nullptr;
2416
2417  Value *Src = CI.getOperand(0);
2418  Type *SrcTy = Src->getType();         // Type B
2419  Type *DestTy = CI.getType();          // Type A
2420
2421  SmallVector<PHINode *, 4> PhiWorklist;
2422  SmallSetVector<PHINode *, 4> OldPhiNodes;
2423
2424  // Find all of the A->B casts and PHI nodes.
2425  // We need to inspect all related PHI nodes, but PHIs can be cyclic, so
2426  // OldPhiNodes is used to track all known PHI nodes, before adding a new
2427  // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
2428  PhiWorklist.push_back(PN);
2429  OldPhiNodes.insert(PN);
2430  while (!PhiWorklist.empty()) {
2431    auto *OldPN = PhiWorklist.pop_back_val();
2432    for (Value *IncValue : OldPN->incoming_values()) {
2433      if (isa<Constant>(IncValue))
2434        continue;
2435
2436      if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
2437        // If there is a sequence of one or more load instructions, each loaded
2438        // value is used as address of later load instruction, bitcast is
2439        // necessary to change the value type, don't optimize it. For
2440        // simplicity we give up if the load address comes from another load.
2441        Value *Addr = LI->getOperand(0);
2442        if (Addr == &CI || isa<LoadInst>(Addr))
2443          return nullptr;
2444        // Don't tranform "load <256 x i32>, <256 x i32>*" to
2445        // "load x86_amx, x86_amx*", because x86_amx* is invalid.
2446        // TODO: Remove this check when bitcast between vector and x86_amx
2447        // is replaced with a specific intrinsic.
2448        if (DestTy->isX86_AMXTy())
2449          return nullptr;
2450        if (LI->hasOneUse() && LI->isSimple())
2451          continue;
2452        // If a LoadInst has more than one use, changing the type of loaded
2453        // value may create another bitcast.
2454        return nullptr;
2455      }
2456
2457      if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
2458        if (OldPhiNodes.insert(PNode))
2459          PhiWorklist.push_back(PNode);
2460        continue;
2461      }
2462
2463      auto *BCI = dyn_cast<BitCastInst>(IncValue);
2464      // We can't handle other instructions.
2465      if (!BCI)
2466        return nullptr;
2467
2468      // Verify it's a A->B cast.
2469      Type *TyA = BCI->getOperand(0)->getType();
2470      Type *TyB = BCI->getType();
2471      if (TyA != DestTy || TyB != SrcTy)
2472        return nullptr;
2473    }
2474  }
2475
2476  // Check that each user of each old PHI node is something that we can
2477  // rewrite, so that all of the old PHI nodes can be cleaned up afterwards.
2478  for (auto *OldPN : OldPhiNodes) {
2479    for (User *V : OldPN->users()) {
2480      if (auto *SI = dyn_cast<StoreInst>(V)) {
2481        if (!SI->isSimple() || SI->getOperand(0) != OldPN)
2482          return nullptr;
2483      } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2484        // Verify it's a B->A cast.
2485        Type *TyB = BCI->getOperand(0)->getType();
2486        Type *TyA = BCI->getType();
2487        if (TyA != DestTy || TyB != SrcTy)
2488          return nullptr;
2489      } else if (auto *PHI = dyn_cast<PHINode>(V)) {
2490        // As long as the user is another old PHI node, then even if we don't
2491        // rewrite it, the PHI web we're considering won't have any users
2492        // outside itself, so it'll be dead.
2493        if (!OldPhiNodes.contains(PHI))
2494          return nullptr;
2495      } else {
2496        return nullptr;
2497      }
2498    }
2499  }
2500
2501  // For each old PHI node, create a corresponding new PHI node with a type A.
2502  SmallDenseMap<PHINode *, PHINode *> NewPNodes;
2503  for (auto *OldPN : OldPhiNodes) {
2504    Builder.SetInsertPoint(OldPN);
2505    PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
2506    NewPNodes[OldPN] = NewPN;
2507  }
2508
2509  // Fill in the operands of new PHI nodes.
2510  for (auto *OldPN : OldPhiNodes) {
2511    PHINode *NewPN = NewPNodes[OldPN];
2512    for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
2513      Value *V = OldPN->getOperand(j);
2514      Value *NewV = nullptr;
2515      if (auto *C = dyn_cast<Constant>(V)) {
2516        NewV = ConstantExpr::getBitCast(C, DestTy);
2517      } else if (auto *LI = dyn_cast<LoadInst>(V)) {
2518        // Explicitly perform load combine to make sure no opposing transform
2519        // can remove the bitcast in the meantime and trigger an infinite loop.
2520        Builder.SetInsertPoint(LI);
2521        NewV = combineLoadToNewType(*LI, DestTy);
2522        // Remove the old load and its use in the old phi, which itself becomes
2523        // dead once the whole transform finishes.
2524        replaceInstUsesWith(*LI, PoisonValue::get(LI->getType()));
2525        eraseInstFromFunction(*LI);
2526      } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2527        NewV = BCI->getOperand(0);
2528      } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
2529        NewV = NewPNodes[PrevPN];
2530      }
2531      assert(NewV);
2532      NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
2533    }
2534  }
2535
2536  // Traverse all accumulated PHI nodes and process its users,
2537  // which are Stores and BitcCasts. Without this processing
2538  // NewPHI nodes could be replicated and could lead to extra
2539  // moves generated after DeSSA.
2540  // If there is a store with type B, change it to type A.
2541
2542
2543  // Replace users of BitCast B->A with NewPHI. These will help
2544  // later to get rid off a closure formed by OldPHI nodes.
2545  Instruction *RetVal = nullptr;
2546  for (auto *OldPN : OldPhiNodes) {
2547    PHINode *NewPN = NewPNodes[OldPN];
2548    for (User *V : make_early_inc_range(OldPN->users())) {
2549      if (auto *SI = dyn_cast<StoreInst>(V)) {
2550        assert(SI->isSimple() && SI->getOperand(0) == OldPN);
2551        Builder.SetInsertPoint(SI);
2552        auto *NewBC =
2553          cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy));
2554        SI->setOperand(0, NewBC);
2555        Worklist.push(SI);
2556        assert(hasStoreUsersOnly(*NewBC));
2557      }
2558      else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2559        Type *TyB = BCI->getOperand(0)->getType();
2560        Type *TyA = BCI->getType();
2561        assert(TyA == DestTy && TyB == SrcTy);
2562        (void) TyA;
2563        (void) TyB;
2564        Instruction *I = replaceInstUsesWith(*BCI, NewPN);
2565        if (BCI == &CI)
2566          RetVal = I;
2567      } else if (auto *PHI = dyn_cast<PHINode>(V)) {
2568        assert(OldPhiNodes.contains(PHI));
2569        (void) PHI;
2570      } else {
2571        llvm_unreachable("all uses should be handled");
2572      }
2573    }
2574  }
2575
2576  return RetVal;
2577}
2578
2579Instruction *InstCombinerImpl::visitBitCast(BitCastInst &CI) {
2580  // If the operands are integer typed then apply the integer transforms,
2581  // otherwise just apply the common ones.
2582  Value *Src = CI.getOperand(0);
2583  Type *SrcTy = Src->getType();
2584  Type *DestTy = CI.getType();
2585
2586  // Get rid of casts from one type to the same type. These are useless and can
2587  // be replaced by the operand.
2588  if (DestTy == Src->getType())
2589    return replaceInstUsesWith(CI, Src);
2590
2591  if (FixedVectorType *DestVTy = dyn_cast<FixedVectorType>(DestTy)) {
2592    // Beware: messing with this target-specific oddity may cause trouble.
2593    if (DestVTy->getNumElements() == 1 && SrcTy->isX86_MMXTy()) {
2594      Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
2595      return InsertElementInst::Create(PoisonValue::get(DestTy), Elem,
2596                     Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2597    }
2598
2599    if (isa<IntegerType>(SrcTy)) {
2600      // If this is a cast from an integer to vector, check to see if the input
2601      // is a trunc or zext of a bitcast from vector.  If so, we can replace all
2602      // the casts with a shuffle and (potentially) a bitcast.
2603      if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
2604        CastInst *SrcCast = cast<CastInst>(Src);
2605        if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
2606          if (isa<VectorType>(BCIn->getOperand(0)->getType()))
2607            if (Instruction *I = optimizeVectorResizeWithIntegerBitCasts(
2608                    BCIn->getOperand(0), cast<VectorType>(DestTy), *this))
2609              return I;
2610      }
2611
2612      // If the input is an 'or' instruction, we may be doing shifts and ors to
2613      // assemble the elements of the vector manually.  Try to rip the code out
2614      // and replace it with insertelements.
2615      if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
2616        return replaceInstUsesWith(CI, V);
2617    }
2618  }
2619
2620  if (FixedVectorType *SrcVTy = dyn_cast<FixedVectorType>(SrcTy)) {
2621    if (SrcVTy->getNumElements() == 1) {
2622      // If our destination is not a vector, then make this a straight
2623      // scalar-scalar cast.
2624      if (!DestTy->isVectorTy()) {
2625        Value *Elem =
2626          Builder.CreateExtractElement(Src,
2627                     Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2628        return CastInst::Create(Instruction::BitCast, Elem, DestTy);
2629      }
2630
2631      // Otherwise, see if our source is an insert. If so, then use the scalar
2632      // component directly:
2633      // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m>
2634      if (auto *InsElt = dyn_cast<InsertElementInst>(Src))
2635        return new BitCastInst(InsElt->getOperand(1), DestTy);
2636    }
2637
2638    // Convert an artificial vector insert into more analyzable bitwise logic.
2639    unsigned BitWidth = DestTy->getScalarSizeInBits();
2640    Value *X, *Y;
2641    uint64_t IndexC;
2642    if (match(Src, m_OneUse(m_InsertElt(m_OneUse(m_BitCast(m_Value(X))),
2643                                        m_Value(Y), m_ConstantInt(IndexC)))) &&
2644        DestTy->isIntegerTy() && X->getType() == DestTy &&
2645        Y->getType()->isIntegerTy() && isDesirableIntType(BitWidth)) {
2646      // Adjust for big endian - the LSBs are at the high index.
2647      if (DL.isBigEndian())
2648        IndexC = SrcVTy->getNumElements() - 1 - IndexC;
2649
2650      // We only handle (endian-normalized) insert to index 0. Any other insert
2651      // would require a left-shift, so that is an extra instruction.
2652      if (IndexC == 0) {
2653        // bitcast (inselt (bitcast X), Y, 0) --> or (and X, MaskC), (zext Y)
2654        unsigned EltWidth = Y->getType()->getScalarSizeInBits();
2655        APInt MaskC = APInt::getHighBitsSet(BitWidth, BitWidth - EltWidth);
2656        Value *AndX = Builder.CreateAnd(X, MaskC);
2657        Value *ZextY = Builder.CreateZExt(Y, DestTy);
2658        return BinaryOperator::CreateOr(AndX, ZextY);
2659      }
2660    }
2661  }
2662
2663  if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Src)) {
2664    // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
2665    // a bitcast to a vector with the same # elts.
2666    Value *ShufOp0 = Shuf->getOperand(0);
2667    Value *ShufOp1 = Shuf->getOperand(1);
2668    auto ShufElts = cast<VectorType>(Shuf->getType())->getElementCount();
2669    auto SrcVecElts = cast<VectorType>(ShufOp0->getType())->getElementCount();
2670    if (Shuf->hasOneUse() && DestTy->isVectorTy() &&
2671        cast<VectorType>(DestTy)->getElementCount() == ShufElts &&
2672        ShufElts == SrcVecElts) {
2673      BitCastInst *Tmp;
2674      // If either of the operands is a cast from CI.getType(), then
2675      // evaluating the shuffle in the casted destination's type will allow
2676      // us to eliminate at least one cast.
2677      if (((Tmp = dyn_cast<BitCastInst>(ShufOp0)) &&
2678           Tmp->getOperand(0)->getType() == DestTy) ||
2679          ((Tmp = dyn_cast<BitCastInst>(ShufOp1)) &&
2680           Tmp->getOperand(0)->getType() == DestTy)) {
2681        Value *LHS = Builder.CreateBitCast(ShufOp0, DestTy);
2682        Value *RHS = Builder.CreateBitCast(ShufOp1, DestTy);
2683        // Return a new shuffle vector.  Use the same element ID's, as we
2684        // know the vector types match #elts.
2685        return new ShuffleVectorInst(LHS, RHS, Shuf->getShuffleMask());
2686      }
2687    }
2688
2689    // A bitcasted-to-scalar and byte/bit reversing shuffle is better recognized
2690    // as a byte/bit swap:
2691    // bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) -> bswap (bitcast X)
2692    // bitcast <N x i1> (shuf X, undef, <N, N-1,...0>) -> bitreverse (bitcast X)
2693    if (DestTy->isIntegerTy() && ShufElts.getKnownMinValue() % 2 == 0 &&
2694        Shuf->hasOneUse() && Shuf->isReverse()) {
2695      unsigned IntrinsicNum = 0;
2696      if (DL.isLegalInteger(DestTy->getScalarSizeInBits()) &&
2697          SrcTy->getScalarSizeInBits() == 8) {
2698        IntrinsicNum = Intrinsic::bswap;
2699      } else if (SrcTy->getScalarSizeInBits() == 1) {
2700        IntrinsicNum = Intrinsic::bitreverse;
2701      }
2702      if (IntrinsicNum != 0) {
2703        assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask");
2704        assert(match(ShufOp1, m_Undef()) && "Unexpected shuffle op");
2705        Function *BswapOrBitreverse =
2706            Intrinsic::getDeclaration(CI.getModule(), IntrinsicNum, DestTy);
2707        Value *ScalarX = Builder.CreateBitCast(ShufOp0, DestTy);
2708        return CallInst::Create(BswapOrBitreverse, {ScalarX});
2709      }
2710    }
2711  }
2712
2713  // Handle the A->B->A cast, and there is an intervening PHI node.
2714  if (PHINode *PN = dyn_cast<PHINode>(Src))
2715    if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
2716      return I;
2717
2718  if (Instruction *I = canonicalizeBitCastExtElt(CI, *this))
2719    return I;
2720
2721  if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder))
2722    return I;
2723
2724  if (Instruction *I = foldBitCastSelect(CI, Builder))
2725    return I;
2726
2727  return commonCastTransforms(CI);
2728}
2729
2730Instruction *InstCombinerImpl::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
2731  return commonCastTransforms(CI);
2732}
2733