1//===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file implements a register stacking pass.
11///
12/// This pass reorders instructions to put register uses and defs in an order
13/// such that they form single-use expression trees. Registers fitting this form
14/// are then marked as "stackified", meaning references to them are replaced by
15/// "push" and "pop" from the value stack.
16///
17/// This is primarily a code size optimization, since temporary values on the
18/// value stack don't need to be named.
19///
20//===----------------------------------------------------------------------===//
21
22#include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_*
23#include "WebAssembly.h"
24#include "WebAssemblyDebugValueManager.h"
25#include "WebAssemblyMachineFunctionInfo.h"
26#include "WebAssemblySubtarget.h"
27#include "WebAssemblyUtilities.h"
28#include "llvm/Analysis/AliasAnalysis.h"
29#include "llvm/CodeGen/LiveIntervals.h"
30#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
31#include "llvm/CodeGen/MachineDominators.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineModuleInfoImpls.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/Passes.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/raw_ostream.h"
38#include <iterator>
39using namespace llvm;
40
41#define DEBUG_TYPE "wasm-reg-stackify"
42
43namespace {
44class WebAssemblyRegStackify final : public MachineFunctionPass {
45  StringRef getPassName() const override {
46    return "WebAssembly Register Stackify";
47  }
48
49  void getAnalysisUsage(AnalysisUsage &AU) const override {
50    AU.setPreservesCFG();
51    AU.addRequired<MachineDominatorTree>();
52    AU.addRequired<LiveIntervals>();
53    AU.addPreserved<MachineBlockFrequencyInfo>();
54    AU.addPreserved<SlotIndexes>();
55    AU.addPreserved<LiveIntervals>();
56    AU.addPreservedID(LiveVariablesID);
57    AU.addPreserved<MachineDominatorTree>();
58    MachineFunctionPass::getAnalysisUsage(AU);
59  }
60
61  bool runOnMachineFunction(MachineFunction &MF) override;
62
63public:
64  static char ID; // Pass identification, replacement for typeid
65  WebAssemblyRegStackify() : MachineFunctionPass(ID) {}
66};
67} // end anonymous namespace
68
69char WebAssemblyRegStackify::ID = 0;
70INITIALIZE_PASS(WebAssemblyRegStackify, DEBUG_TYPE,
71                "Reorder instructions to use the WebAssembly value stack",
72                false, false)
73
74FunctionPass *llvm::createWebAssemblyRegStackify() {
75  return new WebAssemblyRegStackify();
76}
77
78// Decorate the given instruction with implicit operands that enforce the
79// expression stack ordering constraints for an instruction which is on
80// the expression stack.
81static void imposeStackOrdering(MachineInstr *MI) {
82  // Write the opaque VALUE_STACK register.
83  if (!MI->definesRegister(WebAssembly::VALUE_STACK))
84    MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK,
85                                             /*isDef=*/true,
86                                             /*isImp=*/true));
87
88  // Also read the opaque VALUE_STACK register.
89  if (!MI->readsRegister(WebAssembly::VALUE_STACK))
90    MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK,
91                                             /*isDef=*/false,
92                                             /*isImp=*/true));
93}
94
95// Convert an IMPLICIT_DEF instruction into an instruction which defines
96// a constant zero value.
97static void convertImplicitDefToConstZero(MachineInstr *MI,
98                                          MachineRegisterInfo &MRI,
99                                          const TargetInstrInfo *TII,
100                                          MachineFunction &MF,
101                                          LiveIntervals &LIS) {
102  assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF);
103
104  const auto *RegClass = MRI.getRegClass(MI->getOperand(0).getReg());
105  if (RegClass == &WebAssembly::I32RegClass) {
106    MI->setDesc(TII->get(WebAssembly::CONST_I32));
107    MI->addOperand(MachineOperand::CreateImm(0));
108  } else if (RegClass == &WebAssembly::I64RegClass) {
109    MI->setDesc(TII->get(WebAssembly::CONST_I64));
110    MI->addOperand(MachineOperand::CreateImm(0));
111  } else if (RegClass == &WebAssembly::F32RegClass) {
112    MI->setDesc(TII->get(WebAssembly::CONST_F32));
113    auto *Val = cast<ConstantFP>(Constant::getNullValue(
114        Type::getFloatTy(MF.getFunction().getContext())));
115    MI->addOperand(MachineOperand::CreateFPImm(Val));
116  } else if (RegClass == &WebAssembly::F64RegClass) {
117    MI->setDesc(TII->get(WebAssembly::CONST_F64));
118    auto *Val = cast<ConstantFP>(Constant::getNullValue(
119        Type::getDoubleTy(MF.getFunction().getContext())));
120    MI->addOperand(MachineOperand::CreateFPImm(Val));
121  } else if (RegClass == &WebAssembly::V128RegClass) {
122    MI->setDesc(TII->get(WebAssembly::CONST_V128_I64x2));
123    MI->addOperand(MachineOperand::CreateImm(0));
124    MI->addOperand(MachineOperand::CreateImm(0));
125  } else {
126    llvm_unreachable("Unexpected reg class");
127  }
128}
129
130// Determine whether a call to the callee referenced by
131// MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side
132// effects.
133static void queryCallee(const MachineInstr &MI, bool &Read, bool &Write,
134                        bool &Effects, bool &StackPointer) {
135  // All calls can use the stack pointer.
136  StackPointer = true;
137
138  const MachineOperand &MO = WebAssembly::getCalleeOp(MI);
139  if (MO.isGlobal()) {
140    const Constant *GV = MO.getGlobal();
141    if (const auto *GA = dyn_cast<GlobalAlias>(GV))
142      if (!GA->isInterposable())
143        GV = GA->getAliasee();
144
145    if (const auto *F = dyn_cast<Function>(GV)) {
146      if (!F->doesNotThrow())
147        Effects = true;
148      if (F->doesNotAccessMemory())
149        return;
150      if (F->onlyReadsMemory()) {
151        Read = true;
152        return;
153      }
154    }
155  }
156
157  // Assume the worst.
158  Write = true;
159  Read = true;
160  Effects = true;
161}
162
163// Determine whether MI reads memory, writes memory, has side effects,
164// and/or uses the stack pointer value.
165static void query(const MachineInstr &MI, bool &Read, bool &Write,
166                  bool &Effects, bool &StackPointer) {
167  assert(!MI.isTerminator());
168
169  if (MI.isDebugInstr() || MI.isPosition())
170    return;
171
172  // Check for loads.
173  if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad())
174    Read = true;
175
176  // Check for stores.
177  if (MI.mayStore()) {
178    Write = true;
179  } else if (MI.hasOrderedMemoryRef()) {
180    switch (MI.getOpcode()) {
181    case WebAssembly::DIV_S_I32:
182    case WebAssembly::DIV_S_I64:
183    case WebAssembly::REM_S_I32:
184    case WebAssembly::REM_S_I64:
185    case WebAssembly::DIV_U_I32:
186    case WebAssembly::DIV_U_I64:
187    case WebAssembly::REM_U_I32:
188    case WebAssembly::REM_U_I64:
189    case WebAssembly::I32_TRUNC_S_F32:
190    case WebAssembly::I64_TRUNC_S_F32:
191    case WebAssembly::I32_TRUNC_S_F64:
192    case WebAssembly::I64_TRUNC_S_F64:
193    case WebAssembly::I32_TRUNC_U_F32:
194    case WebAssembly::I64_TRUNC_U_F32:
195    case WebAssembly::I32_TRUNC_U_F64:
196    case WebAssembly::I64_TRUNC_U_F64:
197      // These instruction have hasUnmodeledSideEffects() returning true
198      // because they trap on overflow and invalid so they can't be arbitrarily
199      // moved, however hasOrderedMemoryRef() interprets this plus their lack
200      // of memoperands as having a potential unknown memory reference.
201      break;
202    default:
203      // Record volatile accesses, unless it's a call, as calls are handled
204      // specially below.
205      if (!MI.isCall()) {
206        Write = true;
207        Effects = true;
208      }
209      break;
210    }
211  }
212
213  // Check for side effects.
214  if (MI.hasUnmodeledSideEffects()) {
215    switch (MI.getOpcode()) {
216    case WebAssembly::DIV_S_I32:
217    case WebAssembly::DIV_S_I64:
218    case WebAssembly::REM_S_I32:
219    case WebAssembly::REM_S_I64:
220    case WebAssembly::DIV_U_I32:
221    case WebAssembly::DIV_U_I64:
222    case WebAssembly::REM_U_I32:
223    case WebAssembly::REM_U_I64:
224    case WebAssembly::I32_TRUNC_S_F32:
225    case WebAssembly::I64_TRUNC_S_F32:
226    case WebAssembly::I32_TRUNC_S_F64:
227    case WebAssembly::I64_TRUNC_S_F64:
228    case WebAssembly::I32_TRUNC_U_F32:
229    case WebAssembly::I64_TRUNC_U_F32:
230    case WebAssembly::I32_TRUNC_U_F64:
231    case WebAssembly::I64_TRUNC_U_F64:
232      // These instructions have hasUnmodeledSideEffects() returning true
233      // because they trap on overflow and invalid so they can't be arbitrarily
234      // moved, however in the specific case of register stackifying, it is safe
235      // to move them because overflow and invalid are Undefined Behavior.
236      break;
237    default:
238      Effects = true;
239      break;
240    }
241  }
242
243  // Check for writes to __stack_pointer global.
244  if ((MI.getOpcode() == WebAssembly::GLOBAL_SET_I32 ||
245       MI.getOpcode() == WebAssembly::GLOBAL_SET_I64) &&
246      strcmp(MI.getOperand(0).getSymbolName(), "__stack_pointer") == 0)
247    StackPointer = true;
248
249  // Analyze calls.
250  if (MI.isCall()) {
251    queryCallee(MI, Read, Write, Effects, StackPointer);
252  }
253}
254
255// Test whether Def is safe and profitable to rematerialize.
256static bool shouldRematerialize(const MachineInstr &Def,
257                                const WebAssemblyInstrInfo *TII) {
258  return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def);
259}
260
261// Identify the definition for this register at this point. This is a
262// generalization of MachineRegisterInfo::getUniqueVRegDef that uses
263// LiveIntervals to handle complex cases.
264static MachineInstr *getVRegDef(unsigned Reg, const MachineInstr *Insert,
265                                const MachineRegisterInfo &MRI,
266                                const LiveIntervals &LIS) {
267  // Most registers are in SSA form here so we try a quick MRI query first.
268  if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg))
269    return Def;
270
271  // MRI doesn't know what the Def is. Try asking LIS.
272  if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore(
273          LIS.getInstructionIndex(*Insert)))
274    return LIS.getInstructionFromIndex(ValNo->def);
275
276  return nullptr;
277}
278
279// Test whether Reg, as defined at Def, has exactly one use. This is a
280// generalization of MachineRegisterInfo::hasOneNonDBGUse that uses
281// LiveIntervals to handle complex cases.
282static bool hasOneNonDBGUse(unsigned Reg, MachineInstr *Def,
283                            MachineRegisterInfo &MRI, MachineDominatorTree &MDT,
284                            LiveIntervals &LIS) {
285  // Most registers are in SSA form here so we try a quick MRI query first.
286  if (MRI.hasOneNonDBGUse(Reg))
287    return true;
288
289  bool HasOne = false;
290  const LiveInterval &LI = LIS.getInterval(Reg);
291  const VNInfo *DefVNI =
292      LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot());
293  assert(DefVNI);
294  for (auto &I : MRI.use_nodbg_operands(Reg)) {
295    const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent()));
296    if (Result.valueIn() == DefVNI) {
297      if (!Result.isKill())
298        return false;
299      if (HasOne)
300        return false;
301      HasOne = true;
302    }
303  }
304  return HasOne;
305}
306
307// Test whether it's safe to move Def to just before Insert.
308// TODO: Compute memory dependencies in a way that doesn't require always
309// walking the block.
310// TODO: Compute memory dependencies in a way that uses AliasAnalysis to be
311// more precise.
312static bool isSafeToMove(const MachineOperand *Def, const MachineOperand *Use,
313                         const MachineInstr *Insert,
314                         const WebAssemblyFunctionInfo &MFI,
315                         const MachineRegisterInfo &MRI) {
316  const MachineInstr *DefI = Def->getParent();
317  const MachineInstr *UseI = Use->getParent();
318  assert(DefI->getParent() == Insert->getParent());
319  assert(UseI->getParent() == Insert->getParent());
320
321  // The first def of a multivalue instruction can be stackified by moving,
322  // since the later defs can always be placed into locals if necessary. Later
323  // defs can only be stackified if all previous defs are already stackified
324  // since ExplicitLocals will not know how to place a def in a local if a
325  // subsequent def is stackified. But only one def can be stackified by moving
326  // the instruction, so it must be the first one.
327  //
328  // TODO: This could be loosened to be the first *live* def, but care would
329  // have to be taken to ensure the drops of the initial dead defs can be
330  // placed. This would require checking that no previous defs are used in the
331  // same instruction as subsequent defs.
332  if (Def != DefI->defs().begin())
333    return false;
334
335  // If any subsequent def is used prior to the current value by the same
336  // instruction in which the current value is used, we cannot
337  // stackify. Stackifying in this case would require that def moving below the
338  // current def in the stack, which cannot be achieved, even with locals.
339  // Also ensure we don't sink the def past any other prior uses.
340  for (const auto &SubsequentDef : drop_begin(DefI->defs())) {
341    auto I = std::next(MachineBasicBlock::const_iterator(DefI));
342    auto E = std::next(MachineBasicBlock::const_iterator(UseI));
343    for (; I != E; ++I) {
344      for (const auto &PriorUse : I->uses()) {
345        if (&PriorUse == Use)
346          break;
347        if (PriorUse.isReg() && SubsequentDef.getReg() == PriorUse.getReg())
348          return false;
349      }
350    }
351  }
352
353  // If moving is a semantic nop, it is always allowed
354  const MachineBasicBlock *MBB = DefI->getParent();
355  auto NextI = std::next(MachineBasicBlock::const_iterator(DefI));
356  for (auto E = MBB->end(); NextI != E && NextI->isDebugInstr(); ++NextI)
357    ;
358  if (NextI == Insert)
359    return true;
360
361  // 'catch' and 'catch_all' should be the first instruction of a BB and cannot
362  // move.
363  if (WebAssembly::isCatch(DefI->getOpcode()))
364    return false;
365
366  // Check for register dependencies.
367  SmallVector<unsigned, 4> MutableRegisters;
368  for (const MachineOperand &MO : DefI->operands()) {
369    if (!MO.isReg() || MO.isUndef())
370      continue;
371    Register Reg = MO.getReg();
372
373    // If the register is dead here and at Insert, ignore it.
374    if (MO.isDead() && Insert->definesRegister(Reg) &&
375        !Insert->readsRegister(Reg))
376      continue;
377
378    if (Reg.isPhysical()) {
379      // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions
380      // from moving down, and we've already checked for that.
381      if (Reg == WebAssembly::ARGUMENTS)
382        continue;
383      // If the physical register is never modified, ignore it.
384      if (!MRI.isPhysRegModified(Reg))
385        continue;
386      // Otherwise, it's a physical register with unknown liveness.
387      return false;
388    }
389
390    // If one of the operands isn't in SSA form, it has different values at
391    // different times, and we need to make sure we don't move our use across
392    // a different def.
393    if (!MO.isDef() && !MRI.hasOneDef(Reg))
394      MutableRegisters.push_back(Reg);
395  }
396
397  bool Read = false, Write = false, Effects = false, StackPointer = false;
398  query(*DefI, Read, Write, Effects, StackPointer);
399
400  // If the instruction does not access memory and has no side effects, it has
401  // no additional dependencies.
402  bool HasMutableRegisters = !MutableRegisters.empty();
403  if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters)
404    return true;
405
406  // Scan through the intervening instructions between DefI and Insert.
407  MachineBasicBlock::const_iterator D(DefI), I(Insert);
408  for (--I; I != D; --I) {
409    bool InterveningRead = false;
410    bool InterveningWrite = false;
411    bool InterveningEffects = false;
412    bool InterveningStackPointer = false;
413    query(*I, InterveningRead, InterveningWrite, InterveningEffects,
414          InterveningStackPointer);
415    if (Effects && InterveningEffects)
416      return false;
417    if (Read && InterveningWrite)
418      return false;
419    if (Write && (InterveningRead || InterveningWrite))
420      return false;
421    if (StackPointer && InterveningStackPointer)
422      return false;
423
424    for (unsigned Reg : MutableRegisters)
425      for (const MachineOperand &MO : I->operands())
426        if (MO.isReg() && MO.isDef() && MO.getReg() == Reg)
427          return false;
428  }
429
430  return true;
431}
432
433/// Test whether OneUse, a use of Reg, dominates all of Reg's other uses.
434static bool oneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse,
435                                     const MachineBasicBlock &MBB,
436                                     const MachineRegisterInfo &MRI,
437                                     const MachineDominatorTree &MDT,
438                                     LiveIntervals &LIS,
439                                     WebAssemblyFunctionInfo &MFI) {
440  const LiveInterval &LI = LIS.getInterval(Reg);
441
442  const MachineInstr *OneUseInst = OneUse.getParent();
443  VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst));
444
445  for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) {
446    if (&Use == &OneUse)
447      continue;
448
449    const MachineInstr *UseInst = Use.getParent();
450    VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst));
451
452    if (UseVNI != OneUseVNI)
453      continue;
454
455    if (UseInst == OneUseInst) {
456      // Another use in the same instruction. We need to ensure that the one
457      // selected use happens "before" it.
458      if (&OneUse > &Use)
459        return false;
460    } else {
461      // Test that the use is dominated by the one selected use.
462      while (!MDT.dominates(OneUseInst, UseInst)) {
463        // Actually, dominating is over-conservative. Test that the use would
464        // happen after the one selected use in the stack evaluation order.
465        //
466        // This is needed as a consequence of using implicit local.gets for
467        // uses and implicit local.sets for defs.
468        if (UseInst->getDesc().getNumDefs() == 0)
469          return false;
470        const MachineOperand &MO = UseInst->getOperand(0);
471        if (!MO.isReg())
472          return false;
473        Register DefReg = MO.getReg();
474        if (!DefReg.isVirtual() || !MFI.isVRegStackified(DefReg))
475          return false;
476        assert(MRI.hasOneNonDBGUse(DefReg));
477        const MachineOperand &NewUse = *MRI.use_nodbg_begin(DefReg);
478        const MachineInstr *NewUseInst = NewUse.getParent();
479        if (NewUseInst == OneUseInst) {
480          if (&OneUse > &NewUse)
481            return false;
482          break;
483        }
484        UseInst = NewUseInst;
485      }
486    }
487  }
488  return true;
489}
490
491/// Get the appropriate tee opcode for the given register class.
492static unsigned getTeeOpcode(const TargetRegisterClass *RC) {
493  if (RC == &WebAssembly::I32RegClass)
494    return WebAssembly::TEE_I32;
495  if (RC == &WebAssembly::I64RegClass)
496    return WebAssembly::TEE_I64;
497  if (RC == &WebAssembly::F32RegClass)
498    return WebAssembly::TEE_F32;
499  if (RC == &WebAssembly::F64RegClass)
500    return WebAssembly::TEE_F64;
501  if (RC == &WebAssembly::V128RegClass)
502    return WebAssembly::TEE_V128;
503  if (RC == &WebAssembly::EXTERNREFRegClass)
504    return WebAssembly::TEE_EXTERNREF;
505  if (RC == &WebAssembly::FUNCREFRegClass)
506    return WebAssembly::TEE_FUNCREF;
507  llvm_unreachable("Unexpected register class");
508}
509
510// Shrink LI to its uses, cleaning up LI.
511static void shrinkToUses(LiveInterval &LI, LiveIntervals &LIS) {
512  if (LIS.shrinkToUses(&LI)) {
513    SmallVector<LiveInterval *, 4> SplitLIs;
514    LIS.splitSeparateComponents(LI, SplitLIs);
515  }
516}
517
518/// A single-use def in the same block with no intervening memory or register
519/// dependencies; move the def down and nest it with the current instruction.
520static MachineInstr *moveForSingleUse(unsigned Reg, MachineOperand &Op,
521                                      MachineInstr *Def, MachineBasicBlock &MBB,
522                                      MachineInstr *Insert, LiveIntervals &LIS,
523                                      WebAssemblyFunctionInfo &MFI,
524                                      MachineRegisterInfo &MRI) {
525  LLVM_DEBUG(dbgs() << "Move for single use: "; Def->dump());
526
527  WebAssemblyDebugValueManager DefDIs(Def);
528  DefDIs.sink(Insert);
529  LIS.handleMove(*Def);
530
531  if (MRI.hasOneDef(Reg) && MRI.hasOneNonDBGUse(Reg)) {
532    // No one else is using this register for anything so we can just stackify
533    // it in place.
534    MFI.stackifyVReg(MRI, Reg);
535  } else {
536    // The register may have unrelated uses or defs; create a new register for
537    // just our one def and use so that we can stackify it.
538    Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
539    Op.setReg(NewReg);
540    DefDIs.updateReg(NewReg);
541
542    // Tell LiveIntervals about the new register.
543    LIS.createAndComputeVirtRegInterval(NewReg);
544
545    // Tell LiveIntervals about the changes to the old register.
546    LiveInterval &LI = LIS.getInterval(Reg);
547    LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(),
548                     LIS.getInstructionIndex(*Op.getParent()).getRegSlot(),
549                     /*RemoveDeadValNo=*/true);
550
551    MFI.stackifyVReg(MRI, NewReg);
552
553    LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump());
554  }
555
556  imposeStackOrdering(Def);
557  return Def;
558}
559
560static MachineInstr *getPrevNonDebugInst(MachineInstr *MI) {
561  for (auto *I = MI->getPrevNode(); I; I = I->getPrevNode())
562    if (!I->isDebugInstr())
563      return I;
564  return nullptr;
565}
566
567/// A trivially cloneable instruction; clone it and nest the new copy with the
568/// current instruction.
569static MachineInstr *rematerializeCheapDef(
570    unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB,
571    MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS,
572    WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI,
573    const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) {
574  LLVM_DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump());
575  LLVM_DEBUG(dbgs() << " - for use in "; Op.getParent()->dump());
576
577  WebAssemblyDebugValueManager DefDIs(&Def);
578
579  Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
580  DefDIs.cloneSink(&*Insert, NewReg);
581  Op.setReg(NewReg);
582  MachineInstr *Clone = getPrevNonDebugInst(&*Insert);
583  assert(Clone);
584  LIS.InsertMachineInstrInMaps(*Clone);
585  LIS.createAndComputeVirtRegInterval(NewReg);
586  MFI.stackifyVReg(MRI, NewReg);
587  imposeStackOrdering(Clone);
588
589  LLVM_DEBUG(dbgs() << " - Cloned to "; Clone->dump());
590
591  // Shrink the interval.
592  bool IsDead = MRI.use_empty(Reg);
593  if (!IsDead) {
594    LiveInterval &LI = LIS.getInterval(Reg);
595    shrinkToUses(LI, LIS);
596    IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot());
597  }
598
599  // If that was the last use of the original, delete the original.
600  if (IsDead) {
601    LLVM_DEBUG(dbgs() << " - Deleting original\n");
602    SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot();
603    LIS.removePhysRegDefAt(MCRegister::from(WebAssembly::ARGUMENTS), Idx);
604    LIS.removeInterval(Reg);
605    LIS.RemoveMachineInstrFromMaps(Def);
606    DefDIs.removeDef();
607  }
608
609  return Clone;
610}
611
612/// A multiple-use def in the same block with no intervening memory or register
613/// dependencies; move the def down, nest it with the current instruction, and
614/// insert a tee to satisfy the rest of the uses. As an illustration, rewrite
615/// this:
616///
617///    Reg = INST ...        // Def
618///    INST ..., Reg, ...    // Insert
619///    INST ..., Reg, ...
620///    INST ..., Reg, ...
621///
622/// to this:
623///
624///    DefReg = INST ...     // Def (to become the new Insert)
625///    TeeReg, Reg = TEE_... DefReg
626///    INST ..., TeeReg, ... // Insert
627///    INST ..., Reg, ...
628///    INST ..., Reg, ...
629///
630/// with DefReg and TeeReg stackified. This eliminates a local.get from the
631/// resulting code.
632static MachineInstr *moveAndTeeForMultiUse(
633    unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB,
634    MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI,
635    MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) {
636  LLVM_DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump());
637
638  const auto *RegClass = MRI.getRegClass(Reg);
639  Register TeeReg = MRI.createVirtualRegister(RegClass);
640  Register DefReg = MRI.createVirtualRegister(RegClass);
641
642  // Move Def into place.
643  WebAssemblyDebugValueManager DefDIs(Def);
644  DefDIs.sink(Insert);
645  LIS.handleMove(*Def);
646
647  // Create the Tee and attach the registers.
648  MachineOperand &DefMO = Def->getOperand(0);
649  MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(),
650                              TII->get(getTeeOpcode(RegClass)), TeeReg)
651                          .addReg(Reg, RegState::Define)
652                          .addReg(DefReg, getUndefRegState(DefMO.isDead()));
653  Op.setReg(TeeReg);
654  DefDIs.updateReg(DefReg);
655  SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot();
656  SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot();
657
658  // Tell LiveIntervals we moved the original vreg def from Def to Tee.
659  LiveInterval &LI = LIS.getInterval(Reg);
660  LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx);
661  VNInfo *ValNo = LI.getVNInfoAt(DefIdx);
662  I->start = TeeIdx;
663  ValNo->def = TeeIdx;
664  shrinkToUses(LI, LIS);
665
666  // Finish stackifying the new regs.
667  LIS.createAndComputeVirtRegInterval(TeeReg);
668  LIS.createAndComputeVirtRegInterval(DefReg);
669  MFI.stackifyVReg(MRI, DefReg);
670  MFI.stackifyVReg(MRI, TeeReg);
671  imposeStackOrdering(Def);
672  imposeStackOrdering(Tee);
673
674  // Even though 'TeeReg, Reg = TEE ...', has two defs, we don't need to clone
675  // DBG_VALUEs for both of them, given that the latter will cancel the former
676  // anyway. Here we only clone DBG_VALUEs for TeeReg, which will be converted
677  // to a local index in ExplicitLocals pass.
678  DefDIs.cloneSink(Insert, TeeReg, /* CloneDef */ false);
679
680  LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump());
681  LLVM_DEBUG(dbgs() << " - Tee instruction: "; Tee->dump());
682  return Def;
683}
684
685namespace {
686/// A stack for walking the tree of instructions being built, visiting the
687/// MachineOperands in DFS order.
688class TreeWalkerState {
689  using mop_iterator = MachineInstr::mop_iterator;
690  using mop_reverse_iterator = std::reverse_iterator<mop_iterator>;
691  using RangeTy = iterator_range<mop_reverse_iterator>;
692  SmallVector<RangeTy, 4> Worklist;
693
694public:
695  explicit TreeWalkerState(MachineInstr *Insert) {
696    const iterator_range<mop_iterator> &Range = Insert->explicit_uses();
697    if (!Range.empty())
698      Worklist.push_back(reverse(Range));
699  }
700
701  bool done() const { return Worklist.empty(); }
702
703  MachineOperand &pop() {
704    RangeTy &Range = Worklist.back();
705    MachineOperand &Op = *Range.begin();
706    Range = drop_begin(Range);
707    if (Range.empty())
708      Worklist.pop_back();
709    assert((Worklist.empty() || !Worklist.back().empty()) &&
710           "Empty ranges shouldn't remain in the worklist");
711    return Op;
712  }
713
714  /// Push Instr's operands onto the stack to be visited.
715  void pushOperands(MachineInstr *Instr) {
716    const iterator_range<mop_iterator> &Range(Instr->explicit_uses());
717    if (!Range.empty())
718      Worklist.push_back(reverse(Range));
719  }
720
721  /// Some of Instr's operands are on the top of the stack; remove them and
722  /// re-insert them starting from the beginning (because we've commuted them).
723  void resetTopOperands(MachineInstr *Instr) {
724    assert(hasRemainingOperands(Instr) &&
725           "Reseting operands should only be done when the instruction has "
726           "an operand still on the stack");
727    Worklist.back() = reverse(Instr->explicit_uses());
728  }
729
730  /// Test whether Instr has operands remaining to be visited at the top of
731  /// the stack.
732  bool hasRemainingOperands(const MachineInstr *Instr) const {
733    if (Worklist.empty())
734      return false;
735    const RangeTy &Range = Worklist.back();
736    return !Range.empty() && Range.begin()->getParent() == Instr;
737  }
738
739  /// Test whether the given register is present on the stack, indicating an
740  /// operand in the tree that we haven't visited yet. Moving a definition of
741  /// Reg to a point in the tree after that would change its value.
742  ///
743  /// This is needed as a consequence of using implicit local.gets for
744  /// uses and implicit local.sets for defs.
745  bool isOnStack(unsigned Reg) const {
746    for (const RangeTy &Range : Worklist)
747      for (const MachineOperand &MO : Range)
748        if (MO.isReg() && MO.getReg() == Reg)
749          return true;
750    return false;
751  }
752};
753
754/// State to keep track of whether commuting is in flight or whether it's been
755/// tried for the current instruction and didn't work.
756class CommutingState {
757  /// There are effectively three states: the initial state where we haven't
758  /// started commuting anything and we don't know anything yet, the tentative
759  /// state where we've commuted the operands of the current instruction and are
760  /// revisiting it, and the declined state where we've reverted the operands
761  /// back to their original order and will no longer commute it further.
762  bool TentativelyCommuting = false;
763  bool Declined = false;
764
765  /// During the tentative state, these hold the operand indices of the commuted
766  /// operands.
767  unsigned Operand0, Operand1;
768
769public:
770  /// Stackification for an operand was not successful due to ordering
771  /// constraints. If possible, and if we haven't already tried it and declined
772  /// it, commute Insert's operands and prepare to revisit it.
773  void maybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker,
774                    const WebAssemblyInstrInfo *TII) {
775    if (TentativelyCommuting) {
776      assert(!Declined &&
777             "Don't decline commuting until you've finished trying it");
778      // Commuting didn't help. Revert it.
779      TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
780      TentativelyCommuting = false;
781      Declined = true;
782    } else if (!Declined && TreeWalker.hasRemainingOperands(Insert)) {
783      Operand0 = TargetInstrInfo::CommuteAnyOperandIndex;
784      Operand1 = TargetInstrInfo::CommuteAnyOperandIndex;
785      if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) {
786        // Tentatively commute the operands and try again.
787        TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
788        TreeWalker.resetTopOperands(Insert);
789        TentativelyCommuting = true;
790        Declined = false;
791      }
792    }
793  }
794
795  /// Stackification for some operand was successful. Reset to the default
796  /// state.
797  void reset() {
798    TentativelyCommuting = false;
799    Declined = false;
800  }
801};
802} // end anonymous namespace
803
804bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) {
805  LLVM_DEBUG(dbgs() << "********** Register Stackifying **********\n"
806                       "********** Function: "
807                    << MF.getName() << '\n');
808
809  bool Changed = false;
810  MachineRegisterInfo &MRI = MF.getRegInfo();
811  WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
812  const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
813  const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo();
814  auto &MDT = getAnalysis<MachineDominatorTree>();
815  auto &LIS = getAnalysis<LiveIntervals>();
816
817  // Walk the instructions from the bottom up. Currently we don't look past
818  // block boundaries, and the blocks aren't ordered so the block visitation
819  // order isn't significant, but we may want to change this in the future.
820  for (MachineBasicBlock &MBB : MF) {
821    // Don't use a range-based for loop, because we modify the list as we're
822    // iterating over it and the end iterator may change.
823    for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) {
824      MachineInstr *Insert = &*MII;
825      // Don't nest anything inside an inline asm, because we don't have
826      // constraints for $push inputs.
827      if (Insert->isInlineAsm())
828        continue;
829
830      // Ignore debugging intrinsics.
831      if (Insert->isDebugValue())
832        continue;
833
834      // Iterate through the inputs in reverse order, since we'll be pulling
835      // operands off the stack in LIFO order.
836      CommutingState Commuting;
837      TreeWalkerState TreeWalker(Insert);
838      while (!TreeWalker.done()) {
839        MachineOperand &Use = TreeWalker.pop();
840
841        // We're only interested in explicit virtual register operands.
842        if (!Use.isReg())
843          continue;
844
845        Register Reg = Use.getReg();
846        assert(Use.isUse() && "explicit_uses() should only iterate over uses");
847        assert(!Use.isImplicit() &&
848               "explicit_uses() should only iterate over explicit operands");
849        if (Reg.isPhysical())
850          continue;
851
852        // Identify the definition for this register at this point.
853        MachineInstr *DefI = getVRegDef(Reg, Insert, MRI, LIS);
854        if (!DefI)
855          continue;
856
857        // Don't nest an INLINE_ASM def into anything, because we don't have
858        // constraints for $pop outputs.
859        if (DefI->isInlineAsm())
860          continue;
861
862        // Argument instructions represent live-in registers and not real
863        // instructions.
864        if (WebAssembly::isArgument(DefI->getOpcode()))
865          continue;
866
867        MachineOperand *Def = DefI->findRegisterDefOperand(Reg);
868        assert(Def != nullptr);
869
870        // Decide which strategy to take. Prefer to move a single-use value
871        // over cloning it, and prefer cloning over introducing a tee.
872        // For moving, we require the def to be in the same block as the use;
873        // this makes things simpler (LiveIntervals' handleMove function only
874        // supports intra-block moves) and it's MachineSink's job to catch all
875        // the sinking opportunities anyway.
876        bool SameBlock = DefI->getParent() == &MBB;
877        bool CanMove = SameBlock && isSafeToMove(Def, &Use, Insert, MFI, MRI) &&
878                       !TreeWalker.isOnStack(Reg);
879        if (CanMove && hasOneNonDBGUse(Reg, DefI, MRI, MDT, LIS)) {
880          Insert = moveForSingleUse(Reg, Use, DefI, MBB, Insert, LIS, MFI, MRI);
881
882          // If we are removing the frame base reg completely, remove the debug
883          // info as well.
884          // TODO: Encode this properly as a stackified value.
885          if (MFI.isFrameBaseVirtual() && MFI.getFrameBaseVreg() == Reg)
886            MFI.clearFrameBaseVreg();
887        } else if (shouldRematerialize(*DefI, TII)) {
888          Insert =
889              rematerializeCheapDef(Reg, Use, *DefI, MBB, Insert->getIterator(),
890                                    LIS, MFI, MRI, TII, TRI);
891        } else if (CanMove && oneUseDominatesOtherUses(Reg, Use, MBB, MRI, MDT,
892                                                       LIS, MFI)) {
893          Insert = moveAndTeeForMultiUse(Reg, Use, DefI, MBB, Insert, LIS, MFI,
894                                         MRI, TII);
895        } else {
896          // We failed to stackify the operand. If the problem was ordering
897          // constraints, Commuting may be able to help.
898          if (!CanMove && SameBlock)
899            Commuting.maybeCommute(Insert, TreeWalker, TII);
900          // Proceed to the next operand.
901          continue;
902        }
903
904        // Stackifying a multivalue def may unlock in-place stackification of
905        // subsequent defs. TODO: Handle the case where the consecutive uses are
906        // not all in the same instruction.
907        auto *SubsequentDef = Insert->defs().begin();
908        auto *SubsequentUse = &Use;
909        while (SubsequentDef != Insert->defs().end() &&
910               SubsequentUse != Use.getParent()->uses().end()) {
911          if (!SubsequentDef->isReg() || !SubsequentUse->isReg())
912            break;
913          Register DefReg = SubsequentDef->getReg();
914          Register UseReg = SubsequentUse->getReg();
915          // TODO: This single-use restriction could be relaxed by using tees
916          if (DefReg != UseReg || !MRI.hasOneNonDBGUse(DefReg))
917            break;
918          MFI.stackifyVReg(MRI, DefReg);
919          ++SubsequentDef;
920          ++SubsequentUse;
921        }
922
923        // If the instruction we just stackified is an IMPLICIT_DEF, convert it
924        // to a constant 0 so that the def is explicit, and the push/pop
925        // correspondence is maintained.
926        if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF)
927          convertImplicitDefToConstZero(Insert, MRI, TII, MF, LIS);
928
929        // We stackified an operand. Add the defining instruction's operands to
930        // the worklist stack now to continue to build an ever deeper tree.
931        Commuting.reset();
932        TreeWalker.pushOperands(Insert);
933      }
934
935      // If we stackified any operands, skip over the tree to start looking for
936      // the next instruction we can build a tree on.
937      if (Insert != &*MII) {
938        imposeStackOrdering(&*MII);
939        MII = MachineBasicBlock::iterator(Insert).getReverse();
940        Changed = true;
941      }
942    }
943  }
944
945  // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so
946  // that it never looks like a use-before-def.
947  if (Changed) {
948    MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK);
949    for (MachineBasicBlock &MBB : MF)
950      MBB.addLiveIn(WebAssembly::VALUE_STACK);
951  }
952
953#ifndef NDEBUG
954  // Verify that pushes and pops are performed in LIFO order.
955  SmallVector<unsigned, 0> Stack;
956  for (MachineBasicBlock &MBB : MF) {
957    for (MachineInstr &MI : MBB) {
958      if (MI.isDebugInstr())
959        continue;
960      for (MachineOperand &MO : reverse(MI.explicit_uses())) {
961        if (!MO.isReg())
962          continue;
963        Register Reg = MO.getReg();
964        if (MFI.isVRegStackified(Reg))
965          assert(Stack.pop_back_val() == Reg &&
966                 "Register stack pop should be paired with a push");
967      }
968      for (MachineOperand &MO : MI.defs()) {
969        if (!MO.isReg())
970          continue;
971        Register Reg = MO.getReg();
972        if (MFI.isVRegStackified(Reg))
973          Stack.push_back(MO.getReg());
974      }
975    }
976    // TODO: Generalize this code to support keeping values on the stack across
977    // basic block boundaries.
978    assert(Stack.empty() &&
979           "Register stack pushes and pops should be balanced");
980  }
981#endif
982
983  return Changed;
984}
985