1//===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the SystemZTargetLowering class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "SystemZISelLowering.h"
14#include "SystemZCallingConv.h"
15#include "SystemZConstantPoolValue.h"
16#include "SystemZMachineFunctionInfo.h"
17#include "SystemZTargetMachine.h"
18#include "llvm/CodeGen/CallingConvLower.h"
19#include "llvm/CodeGen/MachineInstrBuilder.h"
20#include "llvm/CodeGen/MachineRegisterInfo.h"
21#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22#include "llvm/IR/IntrinsicInst.h"
23#include "llvm/IR/Intrinsics.h"
24#include "llvm/IR/IntrinsicsS390.h"
25#include "llvm/Support/CommandLine.h"
26#include "llvm/Support/KnownBits.h"
27#include <cctype>
28#include <optional>
29
30using namespace llvm;
31
32#define DEBUG_TYPE "systemz-lower"
33
34namespace {
35// Represents information about a comparison.
36struct Comparison {
37  Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn)
38    : Op0(Op0In), Op1(Op1In), Chain(ChainIn),
39      Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
40
41  // The operands to the comparison.
42  SDValue Op0, Op1;
43
44  // Chain if this is a strict floating-point comparison.
45  SDValue Chain;
46
47  // The opcode that should be used to compare Op0 and Op1.
48  unsigned Opcode;
49
50  // A SystemZICMP value.  Only used for integer comparisons.
51  unsigned ICmpType;
52
53  // The mask of CC values that Opcode can produce.
54  unsigned CCValid;
55
56  // The mask of CC values for which the original condition is true.
57  unsigned CCMask;
58};
59} // end anonymous namespace
60
61// Classify VT as either 32 or 64 bit.
62static bool is32Bit(EVT VT) {
63  switch (VT.getSimpleVT().SimpleTy) {
64  case MVT::i32:
65    return true;
66  case MVT::i64:
67    return false;
68  default:
69    llvm_unreachable("Unsupported type");
70  }
71}
72
73// Return a version of MachineOperand that can be safely used before the
74// final use.
75static MachineOperand earlyUseOperand(MachineOperand Op) {
76  if (Op.isReg())
77    Op.setIsKill(false);
78  return Op;
79}
80
81SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
82                                             const SystemZSubtarget &STI)
83    : TargetLowering(TM), Subtarget(STI) {
84  MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0));
85
86  auto *Regs = STI.getSpecialRegisters();
87
88  // Set up the register classes.
89  if (Subtarget.hasHighWord())
90    addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
91  else
92    addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
93  addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
94  if (!useSoftFloat()) {
95    if (Subtarget.hasVector()) {
96      addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
97      addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
98    } else {
99      addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
100      addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
101    }
102    if (Subtarget.hasVectorEnhancements1())
103      addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
104    else
105      addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
106
107    if (Subtarget.hasVector()) {
108      addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
109      addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
110      addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
111      addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
112      addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
113      addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
114    }
115
116    if (Subtarget.hasVector())
117      addRegisterClass(MVT::i128, &SystemZ::VR128BitRegClass);
118  }
119
120  // Compute derived properties from the register classes
121  computeRegisterProperties(Subtarget.getRegisterInfo());
122
123  // Set up special registers.
124  setStackPointerRegisterToSaveRestore(Regs->getStackPointerRegister());
125
126  // TODO: It may be better to default to latency-oriented scheduling, however
127  // LLVM's current latency-oriented scheduler can't handle physreg definitions
128  // such as SystemZ has with CC, so set this to the register-pressure
129  // scheduler, because it can.
130  setSchedulingPreference(Sched::RegPressure);
131
132  setBooleanContents(ZeroOrOneBooleanContent);
133  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
134
135  setMaxAtomicSizeInBitsSupported(128);
136
137  // Instructions are strings of 2-byte aligned 2-byte values.
138  setMinFunctionAlignment(Align(2));
139  // For performance reasons we prefer 16-byte alignment.
140  setPrefFunctionAlignment(Align(16));
141
142  // Handle operations that are handled in a similar way for all types.
143  for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
144       I <= MVT::LAST_FP_VALUETYPE;
145       ++I) {
146    MVT VT = MVT::SimpleValueType(I);
147    if (isTypeLegal(VT)) {
148      // Lower SET_CC into an IPM-based sequence.
149      setOperationAction(ISD::SETCC, VT, Custom);
150      setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
151      setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
152
153      // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
154      setOperationAction(ISD::SELECT, VT, Expand);
155
156      // Lower SELECT_CC and BR_CC into separate comparisons and branches.
157      setOperationAction(ISD::SELECT_CC, VT, Custom);
158      setOperationAction(ISD::BR_CC,     VT, Custom);
159    }
160  }
161
162  // Expand jump table branches as address arithmetic followed by an
163  // indirect jump.
164  setOperationAction(ISD::BR_JT, MVT::Other, Expand);
165
166  // Expand BRCOND into a BR_CC (see above).
167  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
168
169  // Handle integer types except i128.
170  for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
171       I <= MVT::LAST_INTEGER_VALUETYPE;
172       ++I) {
173    MVT VT = MVT::SimpleValueType(I);
174    if (isTypeLegal(VT) && VT != MVT::i128) {
175      setOperationAction(ISD::ABS, VT, Legal);
176
177      // Expand individual DIV and REMs into DIVREMs.
178      setOperationAction(ISD::SDIV, VT, Expand);
179      setOperationAction(ISD::UDIV, VT, Expand);
180      setOperationAction(ISD::SREM, VT, Expand);
181      setOperationAction(ISD::UREM, VT, Expand);
182      setOperationAction(ISD::SDIVREM, VT, Custom);
183      setOperationAction(ISD::UDIVREM, VT, Custom);
184
185      // Support addition/subtraction with overflow.
186      setOperationAction(ISD::SADDO, VT, Custom);
187      setOperationAction(ISD::SSUBO, VT, Custom);
188
189      // Support addition/subtraction with carry.
190      setOperationAction(ISD::UADDO, VT, Custom);
191      setOperationAction(ISD::USUBO, VT, Custom);
192
193      // Support carry in as value rather than glue.
194      setOperationAction(ISD::UADDO_CARRY, VT, Custom);
195      setOperationAction(ISD::USUBO_CARRY, VT, Custom);
196
197      // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
198      // stores, putting a serialization instruction after the stores.
199      setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
200      setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
201
202      // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
203      // available, or if the operand is constant.
204      setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
205
206      // Use POPCNT on z196 and above.
207      if (Subtarget.hasPopulationCount())
208        setOperationAction(ISD::CTPOP, VT, Custom);
209      else
210        setOperationAction(ISD::CTPOP, VT, Expand);
211
212      // No special instructions for these.
213      setOperationAction(ISD::CTTZ,            VT, Expand);
214      setOperationAction(ISD::ROTR,            VT, Expand);
215
216      // Use *MUL_LOHI where possible instead of MULH*.
217      setOperationAction(ISD::MULHS, VT, Expand);
218      setOperationAction(ISD::MULHU, VT, Expand);
219      setOperationAction(ISD::SMUL_LOHI, VT, Custom);
220      setOperationAction(ISD::UMUL_LOHI, VT, Custom);
221
222      // Only z196 and above have native support for conversions to unsigned.
223      // On z10, promoting to i64 doesn't generate an inexact condition for
224      // values that are outside the i32 range but in the i64 range, so use
225      // the default expansion.
226      if (!Subtarget.hasFPExtension())
227        setOperationAction(ISD::FP_TO_UINT, VT, Expand);
228
229      // Mirror those settings for STRICT_FP_TO_[SU]INT.  Note that these all
230      // default to Expand, so need to be modified to Legal where appropriate.
231      setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
232      if (Subtarget.hasFPExtension())
233        setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
234
235      // And similarly for STRICT_[SU]INT_TO_FP.
236      setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal);
237      if (Subtarget.hasFPExtension())
238        setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal);
239    }
240  }
241
242  // Handle i128 if legal.
243  if (isTypeLegal(MVT::i128)) {
244    // No special instructions for these.
245    setOperationAction(ISD::SDIVREM,   MVT::i128, Expand);
246    setOperationAction(ISD::UDIVREM,   MVT::i128, Expand);
247    setOperationAction(ISD::SMUL_LOHI, MVT::i128, Expand);
248    setOperationAction(ISD::UMUL_LOHI, MVT::i128, Expand);
249    setOperationAction(ISD::ROTR,      MVT::i128, Expand);
250    setOperationAction(ISD::ROTL,      MVT::i128, Expand);
251    setOperationAction(ISD::MUL,       MVT::i128, Expand);
252    setOperationAction(ISD::MULHS,     MVT::i128, Expand);
253    setOperationAction(ISD::MULHU,     MVT::i128, Expand);
254    setOperationAction(ISD::SDIV,      MVT::i128, Expand);
255    setOperationAction(ISD::UDIV,      MVT::i128, Expand);
256    setOperationAction(ISD::SREM,      MVT::i128, Expand);
257    setOperationAction(ISD::UREM,      MVT::i128, Expand);
258    setOperationAction(ISD::CTLZ,      MVT::i128, Expand);
259    setOperationAction(ISD::CTTZ,      MVT::i128, Expand);
260
261    // Support addition/subtraction with carry.
262    setOperationAction(ISD::UADDO, MVT::i128, Custom);
263    setOperationAction(ISD::USUBO, MVT::i128, Custom);
264    setOperationAction(ISD::UADDO_CARRY, MVT::i128, Custom);
265    setOperationAction(ISD::USUBO_CARRY, MVT::i128, Custom);
266
267    // Use VPOPCT and add up partial results.
268    setOperationAction(ISD::CTPOP, MVT::i128, Custom);
269
270    // We have to use libcalls for these.
271    setOperationAction(ISD::FP_TO_UINT, MVT::i128, LibCall);
272    setOperationAction(ISD::FP_TO_SINT, MVT::i128, LibCall);
273    setOperationAction(ISD::UINT_TO_FP, MVT::i128, LibCall);
274    setOperationAction(ISD::SINT_TO_FP, MVT::i128, LibCall);
275    setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i128, LibCall);
276    setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i128, LibCall);
277    setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i128, LibCall);
278    setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i128, LibCall);
279  }
280
281  // Type legalization will convert 8- and 16-bit atomic operations into
282  // forms that operate on i32s (but still keeping the original memory VT).
283  // Lower them into full i32 operations.
284  setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
285  setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
286  setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
287  setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
288  setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
289  setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
290  setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
291  setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
292  setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
293  setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
294  setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
295
296  // Whether or not i128 is not a legal type, we need to custom lower
297  // the atomic operations in order to exploit SystemZ instructions.
298  setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
299  setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
300
301  // We can use the CC result of compare-and-swap to implement
302  // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
303  setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
304  setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
305  setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
306
307  setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
308
309  // Traps are legal, as we will convert them to "j .+2".
310  setOperationAction(ISD::TRAP, MVT::Other, Legal);
311
312  // z10 has instructions for signed but not unsigned FP conversion.
313  // Handle unsigned 32-bit types as signed 64-bit types.
314  if (!Subtarget.hasFPExtension()) {
315    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
316    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
317    setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote);
318    setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
319  }
320
321  // We have native support for a 64-bit CTLZ, via FLOGR.
322  setOperationAction(ISD::CTLZ, MVT::i32, Promote);
323  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
324  setOperationAction(ISD::CTLZ, MVT::i64, Legal);
325
326  // On z15 we have native support for a 64-bit CTPOP.
327  if (Subtarget.hasMiscellaneousExtensions3()) {
328    setOperationAction(ISD::CTPOP, MVT::i32, Promote);
329    setOperationAction(ISD::CTPOP, MVT::i64, Legal);
330  }
331
332  // Give LowerOperation the chance to replace 64-bit ORs with subregs.
333  setOperationAction(ISD::OR, MVT::i64, Custom);
334
335  // Expand 128 bit shifts without using a libcall.
336  setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
337  setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
338  setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
339  setLibcallName(RTLIB::SRL_I128, nullptr);
340  setLibcallName(RTLIB::SHL_I128, nullptr);
341  setLibcallName(RTLIB::SRA_I128, nullptr);
342
343  // Also expand 256 bit shifts if i128 is a legal type.
344  if (isTypeLegal(MVT::i128)) {
345    setOperationAction(ISD::SRL_PARTS, MVT::i128, Expand);
346    setOperationAction(ISD::SHL_PARTS, MVT::i128, Expand);
347    setOperationAction(ISD::SRA_PARTS, MVT::i128, Expand);
348  }
349
350  // Handle bitcast from fp128 to i128.
351  if (!isTypeLegal(MVT::i128))
352    setOperationAction(ISD::BITCAST, MVT::i128, Custom);
353
354  // We have native instructions for i8, i16 and i32 extensions, but not i1.
355  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
356  for (MVT VT : MVT::integer_valuetypes()) {
357    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
358    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
359    setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
360  }
361
362  // Handle the various types of symbolic address.
363  setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
364  setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
365  setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
366  setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
367  setOperationAction(ISD::JumpTable,        PtrVT, Custom);
368
369  // We need to handle dynamic allocations specially because of the
370  // 160-byte area at the bottom of the stack.
371  setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
372  setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
373
374  setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
375  setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
376
377  // Handle prefetches with PFD or PFDRL.
378  setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
379
380  for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
381    // Assume by default that all vector operations need to be expanded.
382    for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
383      if (getOperationAction(Opcode, VT) == Legal)
384        setOperationAction(Opcode, VT, Expand);
385
386    // Likewise all truncating stores and extending loads.
387    for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
388      setTruncStoreAction(VT, InnerVT, Expand);
389      setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
390      setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
391      setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
392    }
393
394    if (isTypeLegal(VT)) {
395      // These operations are legal for anything that can be stored in a
396      // vector register, even if there is no native support for the format
397      // as such.  In particular, we can do these for v4f32 even though there
398      // are no specific instructions for that format.
399      setOperationAction(ISD::LOAD, VT, Legal);
400      setOperationAction(ISD::STORE, VT, Legal);
401      setOperationAction(ISD::VSELECT, VT, Legal);
402      setOperationAction(ISD::BITCAST, VT, Legal);
403      setOperationAction(ISD::UNDEF, VT, Legal);
404
405      // Likewise, except that we need to replace the nodes with something
406      // more specific.
407      setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
408      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
409    }
410  }
411
412  // Handle integer vector types.
413  for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
414    if (isTypeLegal(VT)) {
415      // These operations have direct equivalents.
416      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
417      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
418      setOperationAction(ISD::ADD, VT, Legal);
419      setOperationAction(ISD::SUB, VT, Legal);
420      if (VT != MVT::v2i64)
421        setOperationAction(ISD::MUL, VT, Legal);
422      setOperationAction(ISD::ABS, VT, Legal);
423      setOperationAction(ISD::AND, VT, Legal);
424      setOperationAction(ISD::OR, VT, Legal);
425      setOperationAction(ISD::XOR, VT, Legal);
426      if (Subtarget.hasVectorEnhancements1())
427        setOperationAction(ISD::CTPOP, VT, Legal);
428      else
429        setOperationAction(ISD::CTPOP, VT, Custom);
430      setOperationAction(ISD::CTTZ, VT, Legal);
431      setOperationAction(ISD::CTLZ, VT, Legal);
432
433      // Convert a GPR scalar to a vector by inserting it into element 0.
434      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
435
436      // Use a series of unpacks for extensions.
437      setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
438      setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
439
440      // Detect shifts/rotates by a scalar amount and convert them into
441      // V*_BY_SCALAR.
442      setOperationAction(ISD::SHL, VT, Custom);
443      setOperationAction(ISD::SRA, VT, Custom);
444      setOperationAction(ISD::SRL, VT, Custom);
445      setOperationAction(ISD::ROTL, VT, Custom);
446
447      // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
448      // and inverting the result as necessary.
449      setOperationAction(ISD::SETCC, VT, Custom);
450    }
451  }
452
453  if (Subtarget.hasVector()) {
454    // There should be no need to check for float types other than v2f64
455    // since <2 x f32> isn't a legal type.
456    setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
457    setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
458    setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
459    setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
460    setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
461    setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
462    setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
463    setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
464
465    setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
466    setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
467    setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
468    setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
469    setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
470    setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal);
471    setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
472    setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal);
473  }
474
475  if (Subtarget.hasVectorEnhancements2()) {
476    setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
477    setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
478    setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
479    setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
480    setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
481    setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
482    setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
483    setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
484
485    setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
486    setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
487    setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
488    setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
489    setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
490    setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal);
491    setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
492    setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal);
493  }
494
495  // Handle floating-point types.
496  for (unsigned I = MVT::FIRST_FP_VALUETYPE;
497       I <= MVT::LAST_FP_VALUETYPE;
498       ++I) {
499    MVT VT = MVT::SimpleValueType(I);
500    if (isTypeLegal(VT)) {
501      // We can use FI for FRINT.
502      setOperationAction(ISD::FRINT, VT, Legal);
503
504      // We can use the extended form of FI for other rounding operations.
505      if (Subtarget.hasFPExtension()) {
506        setOperationAction(ISD::FNEARBYINT, VT, Legal);
507        setOperationAction(ISD::FFLOOR, VT, Legal);
508        setOperationAction(ISD::FCEIL, VT, Legal);
509        setOperationAction(ISD::FTRUNC, VT, Legal);
510        setOperationAction(ISD::FROUND, VT, Legal);
511      }
512
513      // No special instructions for these.
514      setOperationAction(ISD::FSIN, VT, Expand);
515      setOperationAction(ISD::FCOS, VT, Expand);
516      setOperationAction(ISD::FSINCOS, VT, Expand);
517      setOperationAction(ISD::FREM, VT, Expand);
518      setOperationAction(ISD::FPOW, VT, Expand);
519
520      // Special treatment.
521      setOperationAction(ISD::IS_FPCLASS, VT, Custom);
522
523      // Handle constrained floating-point operations.
524      setOperationAction(ISD::STRICT_FADD, VT, Legal);
525      setOperationAction(ISD::STRICT_FSUB, VT, Legal);
526      setOperationAction(ISD::STRICT_FMUL, VT, Legal);
527      setOperationAction(ISD::STRICT_FDIV, VT, Legal);
528      setOperationAction(ISD::STRICT_FMA, VT, Legal);
529      setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
530      setOperationAction(ISD::STRICT_FRINT, VT, Legal);
531      setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
532      setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
533      if (Subtarget.hasFPExtension()) {
534        setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
535        setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
536        setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
537        setOperationAction(ISD::STRICT_FROUND, VT, Legal);
538        setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
539      }
540    }
541  }
542
543  // Handle floating-point vector types.
544  if (Subtarget.hasVector()) {
545    // Scalar-to-vector conversion is just a subreg.
546    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
547    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
548
549    // Some insertions and extractions can be done directly but others
550    // need to go via integers.
551    setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
552    setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
553    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
554    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
555
556    // These operations have direct equivalents.
557    setOperationAction(ISD::FADD, MVT::v2f64, Legal);
558    setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
559    setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
560    setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
561    setOperationAction(ISD::FMA, MVT::v2f64, Legal);
562    setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
563    setOperationAction(ISD::FABS, MVT::v2f64, Legal);
564    setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
565    setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
566    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
567    setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
568    setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
569    setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
570    setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
571
572    // Handle constrained floating-point operations.
573    setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
574    setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
575    setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
576    setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
577    setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
578    setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
579    setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
580    setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
581    setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
582    setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
583    setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
584    setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
585
586    setOperationAction(ISD::SETCC, MVT::v2f64, Custom);
587    setOperationAction(ISD::SETCC, MVT::v4f32, Custom);
588    setOperationAction(ISD::STRICT_FSETCC, MVT::v2f64, Custom);
589    setOperationAction(ISD::STRICT_FSETCC, MVT::v4f32, Custom);
590    if (Subtarget.hasVectorEnhancements1()) {
591      setOperationAction(ISD::STRICT_FSETCCS, MVT::v2f64, Custom);
592      setOperationAction(ISD::STRICT_FSETCCS, MVT::v4f32, Custom);
593    }
594  }
595
596  // The vector enhancements facility 1 has instructions for these.
597  if (Subtarget.hasVectorEnhancements1()) {
598    setOperationAction(ISD::FADD, MVT::v4f32, Legal);
599    setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
600    setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
601    setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
602    setOperationAction(ISD::FMA, MVT::v4f32, Legal);
603    setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
604    setOperationAction(ISD::FABS, MVT::v4f32, Legal);
605    setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
606    setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
607    setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
608    setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
609    setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
610    setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
611    setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
612
613    setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
614    setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
615    setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
616    setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
617
618    setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
619    setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
620    setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
621    setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
622
623    setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
624    setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
625    setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
626    setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
627
628    setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
629    setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
630    setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
631    setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
632
633    setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
634    setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
635    setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
636    setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
637
638    // Handle constrained floating-point operations.
639    setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
640    setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
641    setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
642    setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
643    setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
644    setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
645    setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
646    setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
647    setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
648    setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
649    setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
650    setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
651    for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
652                     MVT::v4f32, MVT::v2f64 }) {
653      setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
654      setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
655      setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal);
656      setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal);
657    }
658  }
659
660  // We only have fused f128 multiply-addition on vector registers.
661  if (!Subtarget.hasVectorEnhancements1()) {
662    setOperationAction(ISD::FMA, MVT::f128, Expand);
663    setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand);
664  }
665
666  // We don't have a copysign instruction on vector registers.
667  if (Subtarget.hasVectorEnhancements1())
668    setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
669
670  // Needed so that we don't try to implement f128 constant loads using
671  // a load-and-extend of a f80 constant (in cases where the constant
672  // would fit in an f80).
673  for (MVT VT : MVT::fp_valuetypes())
674    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
675
676  // We don't have extending load instruction on vector registers.
677  if (Subtarget.hasVectorEnhancements1()) {
678    setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
679    setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
680  }
681
682  // Floating-point truncation and stores need to be done separately.
683  setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
684  setTruncStoreAction(MVT::f128, MVT::f32, Expand);
685  setTruncStoreAction(MVT::f128, MVT::f64, Expand);
686
687  // We have 64-bit FPR<->GPR moves, but need special handling for
688  // 32-bit forms.
689  if (!Subtarget.hasVector()) {
690    setOperationAction(ISD::BITCAST, MVT::i32, Custom);
691    setOperationAction(ISD::BITCAST, MVT::f32, Custom);
692  }
693
694  // VASTART and VACOPY need to deal with the SystemZ-specific varargs
695  // structure, but VAEND is a no-op.
696  setOperationAction(ISD::VASTART, MVT::Other, Custom);
697  setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
698  setOperationAction(ISD::VAEND,   MVT::Other, Expand);
699
700  setOperationAction(ISD::GET_ROUNDING, MVT::i32, Custom);
701
702  // Codes for which we want to perform some z-specific combinations.
703  setTargetDAGCombine({ISD::ZERO_EXTEND,
704                       ISD::SIGN_EXTEND,
705                       ISD::SIGN_EXTEND_INREG,
706                       ISD::LOAD,
707                       ISD::STORE,
708                       ISD::VECTOR_SHUFFLE,
709                       ISD::EXTRACT_VECTOR_ELT,
710                       ISD::FP_ROUND,
711                       ISD::STRICT_FP_ROUND,
712                       ISD::FP_EXTEND,
713                       ISD::SINT_TO_FP,
714                       ISD::UINT_TO_FP,
715                       ISD::STRICT_FP_EXTEND,
716                       ISD::BSWAP,
717                       ISD::SDIV,
718                       ISD::UDIV,
719                       ISD::SREM,
720                       ISD::UREM,
721                       ISD::INTRINSIC_VOID,
722                       ISD::INTRINSIC_W_CHAIN});
723
724  // Handle intrinsics.
725  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
726  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
727
728  // We want to use MVC in preference to even a single load/store pair.
729  MaxStoresPerMemcpy = Subtarget.hasVector() ? 2 : 0;
730  MaxStoresPerMemcpyOptSize = 0;
731
732  // The main memset sequence is a byte store followed by an MVC.
733  // Two STC or MV..I stores win over that, but the kind of fused stores
734  // generated by target-independent code don't when the byte value is
735  // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
736  // than "STC;MVC".  Handle the choice in target-specific code instead.
737  MaxStoresPerMemset = Subtarget.hasVector() ? 2 : 0;
738  MaxStoresPerMemsetOptSize = 0;
739
740  // Default to having -disable-strictnode-mutation on
741  IsStrictFPEnabled = true;
742
743  if (Subtarget.isTargetzOS()) {
744    struct RTLibCallMapping {
745      RTLIB::Libcall Code;
746      const char *Name;
747    };
748    static RTLibCallMapping RTLibCallCommon[] = {
749#define HANDLE_LIBCALL(code, name) {RTLIB::code, name},
750#include "ZOSLibcallNames.def"
751    };
752    for (auto &E : RTLibCallCommon)
753      setLibcallName(E.Code, E.Name);
754  }
755}
756
757bool SystemZTargetLowering::useSoftFloat() const {
758  return Subtarget.hasSoftFloat();
759}
760
761EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
762                                              LLVMContext &, EVT VT) const {
763  if (!VT.isVector())
764    return MVT::i32;
765  return VT.changeVectorElementTypeToInteger();
766}
767
768bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
769    const MachineFunction &MF, EVT VT) const {
770  VT = VT.getScalarType();
771
772  if (!VT.isSimple())
773    return false;
774
775  switch (VT.getSimpleVT().SimpleTy) {
776  case MVT::f32:
777  case MVT::f64:
778    return true;
779  case MVT::f128:
780    return Subtarget.hasVectorEnhancements1();
781  default:
782    break;
783  }
784
785  return false;
786}
787
788// Return true if the constant can be generated with a vector instruction,
789// such as VGM, VGMB or VREPI.
790bool SystemZVectorConstantInfo::isVectorConstantLegal(
791    const SystemZSubtarget &Subtarget) {
792  const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
793  if (!Subtarget.hasVector() ||
794      (isFP128 && !Subtarget.hasVectorEnhancements1()))
795    return false;
796
797  // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
798  // preferred way of creating all-zero and all-one vectors so give it
799  // priority over other methods below.
800  unsigned Mask = 0;
801  unsigned I = 0;
802  for (; I < SystemZ::VectorBytes; ++I) {
803    uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
804    if (Byte == 0xff)
805      Mask |= 1ULL << I;
806    else if (Byte != 0)
807      break;
808  }
809  if (I == SystemZ::VectorBytes) {
810    Opcode = SystemZISD::BYTE_MASK;
811    OpVals.push_back(Mask);
812    VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
813    return true;
814  }
815
816  if (SplatBitSize > 64)
817    return false;
818
819  auto tryValue = [&](uint64_t Value) -> bool {
820    // Try VECTOR REPLICATE IMMEDIATE
821    int64_t SignedValue = SignExtend64(Value, SplatBitSize);
822    if (isInt<16>(SignedValue)) {
823      OpVals.push_back(((unsigned) SignedValue));
824      Opcode = SystemZISD::REPLICATE;
825      VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
826                               SystemZ::VectorBits / SplatBitSize);
827      return true;
828    }
829    // Try VECTOR GENERATE MASK
830    unsigned Start, End;
831    if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
832      // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
833      // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for
834      // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
835      OpVals.push_back(Start - (64 - SplatBitSize));
836      OpVals.push_back(End - (64 - SplatBitSize));
837      Opcode = SystemZISD::ROTATE_MASK;
838      VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
839                               SystemZ::VectorBits / SplatBitSize);
840      return true;
841    }
842    return false;
843  };
844
845  // First try assuming that any undefined bits above the highest set bit
846  // and below the lowest set bit are 1s.  This increases the likelihood of
847  // being able to use a sign-extended element value in VECTOR REPLICATE
848  // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
849  uint64_t SplatBitsZ = SplatBits.getZExtValue();
850  uint64_t SplatUndefZ = SplatUndef.getZExtValue();
851  unsigned LowerBits = llvm::countr_zero(SplatBitsZ);
852  unsigned UpperBits = llvm::countl_zero(SplatBitsZ);
853  uint64_t Lower = SplatUndefZ & maskTrailingOnes<uint64_t>(LowerBits);
854  uint64_t Upper = SplatUndefZ & maskLeadingOnes<uint64_t>(UpperBits);
855  if (tryValue(SplatBitsZ | Upper | Lower))
856    return true;
857
858  // Now try assuming that any undefined bits between the first and
859  // last defined set bits are set.  This increases the chances of
860  // using a non-wraparound mask.
861  uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
862  return tryValue(SplatBitsZ | Middle);
863}
864
865SystemZVectorConstantInfo::SystemZVectorConstantInfo(APInt IntImm) {
866  if (IntImm.isSingleWord()) {
867    IntBits = APInt(128, IntImm.getZExtValue());
868    IntBits <<= (SystemZ::VectorBits - IntImm.getBitWidth());
869  } else
870    IntBits = IntImm;
871  assert(IntBits.getBitWidth() == 128 && "Unsupported APInt.");
872
873  // Find the smallest splat.
874  SplatBits = IntImm;
875  unsigned Width = SplatBits.getBitWidth();
876  while (Width > 8) {
877    unsigned HalfSize = Width / 2;
878    APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
879    APInt LowValue = SplatBits.trunc(HalfSize);
880
881    // If the two halves do not match, stop here.
882    if (HighValue != LowValue || 8 > HalfSize)
883      break;
884
885    SplatBits = HighValue;
886    Width = HalfSize;
887  }
888  SplatUndef = 0;
889  SplatBitSize = Width;
890}
891
892SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
893  assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
894  bool HasAnyUndefs;
895
896  // Get IntBits by finding the 128 bit splat.
897  BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
898                       true);
899
900  // Get SplatBits by finding the 8 bit or greater splat.
901  BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
902                       true);
903}
904
905bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
906                                         bool ForCodeSize) const {
907  // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
908  if (Imm.isZero() || Imm.isNegZero())
909    return true;
910
911  return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
912}
913
914/// Returns true if stack probing through inline assembly is requested.
915bool SystemZTargetLowering::hasInlineStackProbe(const MachineFunction &MF) const {
916  // If the function specifically requests inline stack probes, emit them.
917  if (MF.getFunction().hasFnAttribute("probe-stack"))
918    return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
919           "inline-asm";
920  return false;
921}
922
923TargetLowering::AtomicExpansionKind
924SystemZTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
925  // Don't expand subword operations as they require special treatment.
926  if (RMW->getType()->isIntegerTy(8) || RMW->getType()->isIntegerTy(16))
927    return AtomicExpansionKind::None;
928
929  // Don't expand if there is a target instruction available.
930  if (Subtarget.hasInterlockedAccess1() &&
931      (RMW->getType()->isIntegerTy(32) || RMW->getType()->isIntegerTy(64)) &&
932      (RMW->getOperation() == AtomicRMWInst::BinOp::Add ||
933       RMW->getOperation() == AtomicRMWInst::BinOp::Sub ||
934       RMW->getOperation() == AtomicRMWInst::BinOp::And ||
935       RMW->getOperation() == AtomicRMWInst::BinOp::Or ||
936       RMW->getOperation() == AtomicRMWInst::BinOp::Xor))
937    return AtomicExpansionKind::None;
938
939  return AtomicExpansionKind::CmpXChg;
940}
941
942bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
943  // We can use CGFI or CLGFI.
944  return isInt<32>(Imm) || isUInt<32>(Imm);
945}
946
947bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
948  // We can use ALGFI or SLGFI.
949  return isUInt<32>(Imm) || isUInt<32>(-Imm);
950}
951
952bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
953    EVT VT, unsigned, Align, MachineMemOperand::Flags, unsigned *Fast) const {
954  // Unaligned accesses should never be slower than the expanded version.
955  // We check specifically for aligned accesses in the few cases where
956  // they are required.
957  if (Fast)
958    *Fast = 1;
959  return true;
960}
961
962// Information about the addressing mode for a memory access.
963struct AddressingMode {
964  // True if a long displacement is supported.
965  bool LongDisplacement;
966
967  // True if use of index register is supported.
968  bool IndexReg;
969
970  AddressingMode(bool LongDispl, bool IdxReg) :
971    LongDisplacement(LongDispl), IndexReg(IdxReg) {}
972};
973
974// Return the desired addressing mode for a Load which has only one use (in
975// the same block) which is a Store.
976static AddressingMode getLoadStoreAddrMode(bool HasVector,
977                                          Type *Ty) {
978  // With vector support a Load->Store combination may be combined to either
979  // an MVC or vector operations and it seems to work best to allow the
980  // vector addressing mode.
981  if (HasVector)
982    return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
983
984  // Otherwise only the MVC case is special.
985  bool MVC = Ty->isIntegerTy(8);
986  return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
987}
988
989// Return the addressing mode which seems most desirable given an LLVM
990// Instruction pointer.
991static AddressingMode
992supportedAddressingMode(Instruction *I, bool HasVector) {
993  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
994    switch (II->getIntrinsicID()) {
995    default: break;
996    case Intrinsic::memset:
997    case Intrinsic::memmove:
998    case Intrinsic::memcpy:
999      return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
1000    }
1001  }
1002
1003  if (isa<LoadInst>(I) && I->hasOneUse()) {
1004    auto *SingleUser = cast<Instruction>(*I->user_begin());
1005    if (SingleUser->getParent() == I->getParent()) {
1006      if (isa<ICmpInst>(SingleUser)) {
1007        if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
1008          if (C->getBitWidth() <= 64 &&
1009              (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
1010            // Comparison of memory with 16 bit signed / unsigned immediate
1011            return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
1012      } else if (isa<StoreInst>(SingleUser))
1013        // Load->Store
1014        return getLoadStoreAddrMode(HasVector, I->getType());
1015    }
1016  } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
1017    if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
1018      if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
1019        // Load->Store
1020        return getLoadStoreAddrMode(HasVector, LoadI->getType());
1021  }
1022
1023  if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
1024
1025    // * Use LDE instead of LE/LEY for z13 to avoid partial register
1026    //   dependencies (LDE only supports small offsets).
1027    // * Utilize the vector registers to hold floating point
1028    //   values (vector load / store instructions only support small
1029    //   offsets).
1030
1031    Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
1032                         I->getOperand(0)->getType());
1033    bool IsFPAccess = MemAccessTy->isFloatingPointTy();
1034    bool IsVectorAccess = MemAccessTy->isVectorTy();
1035
1036    // A store of an extracted vector element will be combined into a VSTE type
1037    // instruction.
1038    if (!IsVectorAccess && isa<StoreInst>(I)) {
1039      Value *DataOp = I->getOperand(0);
1040      if (isa<ExtractElementInst>(DataOp))
1041        IsVectorAccess = true;
1042    }
1043
1044    // A load which gets inserted into a vector element will be combined into a
1045    // VLE type instruction.
1046    if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
1047      User *LoadUser = *I->user_begin();
1048      if (isa<InsertElementInst>(LoadUser))
1049        IsVectorAccess = true;
1050    }
1051
1052    if (IsFPAccess || IsVectorAccess)
1053      return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
1054  }
1055
1056  return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
1057}
1058
1059bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1060       const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
1061  // Punt on globals for now, although they can be used in limited
1062  // RELATIVE LONG cases.
1063  if (AM.BaseGV)
1064    return false;
1065
1066  // Require a 20-bit signed offset.
1067  if (!isInt<20>(AM.BaseOffs))
1068    return false;
1069
1070  bool RequireD12 =
1071      Subtarget.hasVector() && (Ty->isVectorTy() || Ty->isIntegerTy(128));
1072  AddressingMode SupportedAM(!RequireD12, true);
1073  if (I != nullptr)
1074    SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
1075
1076  if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
1077    return false;
1078
1079  if (!SupportedAM.IndexReg)
1080    // No indexing allowed.
1081    return AM.Scale == 0;
1082  else
1083    // Indexing is OK but no scale factor can be applied.
1084    return AM.Scale == 0 || AM.Scale == 1;
1085}
1086
1087bool SystemZTargetLowering::findOptimalMemOpLowering(
1088    std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
1089    unsigned SrcAS, const AttributeList &FuncAttributes) const {
1090  const int MVCFastLen = 16;
1091
1092  if (Limit != ~unsigned(0)) {
1093    // Don't expand Op into scalar loads/stores in these cases:
1094    if (Op.isMemcpy() && Op.allowOverlap() && Op.size() <= MVCFastLen)
1095      return false; // Small memcpy: Use MVC
1096    if (Op.isMemset() && Op.size() - 1 <= MVCFastLen)
1097      return false; // Small memset (first byte with STC/MVI): Use MVC
1098    if (Op.isZeroMemset())
1099      return false; // Memset zero: Use XC
1100  }
1101
1102  return TargetLowering::findOptimalMemOpLowering(MemOps, Limit, Op, DstAS,
1103                                                  SrcAS, FuncAttributes);
1104}
1105
1106EVT SystemZTargetLowering::getOptimalMemOpType(const MemOp &Op,
1107                                   const AttributeList &FuncAttributes) const {
1108  return Subtarget.hasVector() ? MVT::v2i64 : MVT::Other;
1109}
1110
1111bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
1112  if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
1113    return false;
1114  unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedValue();
1115  unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedValue();
1116  return FromBits > ToBits;
1117}
1118
1119bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
1120  if (!FromVT.isInteger() || !ToVT.isInteger())
1121    return false;
1122  unsigned FromBits = FromVT.getFixedSizeInBits();
1123  unsigned ToBits = ToVT.getFixedSizeInBits();
1124  return FromBits > ToBits;
1125}
1126
1127//===----------------------------------------------------------------------===//
1128// Inline asm support
1129//===----------------------------------------------------------------------===//
1130
1131TargetLowering::ConstraintType
1132SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
1133  if (Constraint.size() == 1) {
1134    switch (Constraint[0]) {
1135    case 'a': // Address register
1136    case 'd': // Data register (equivalent to 'r')
1137    case 'f': // Floating-point register
1138    case 'h': // High-part register
1139    case 'r': // General-purpose register
1140    case 'v': // Vector register
1141      return C_RegisterClass;
1142
1143    case 'Q': // Memory with base and unsigned 12-bit displacement
1144    case 'R': // Likewise, plus an index
1145    case 'S': // Memory with base and signed 20-bit displacement
1146    case 'T': // Likewise, plus an index
1147    case 'm': // Equivalent to 'T'.
1148      return C_Memory;
1149
1150    case 'I': // Unsigned 8-bit constant
1151    case 'J': // Unsigned 12-bit constant
1152    case 'K': // Signed 16-bit constant
1153    case 'L': // Signed 20-bit displacement (on all targets we support)
1154    case 'M': // 0x7fffffff
1155      return C_Immediate;
1156
1157    default:
1158      break;
1159    }
1160  } else if (Constraint.size() == 2 && Constraint[0] == 'Z') {
1161    switch (Constraint[1]) {
1162    case 'Q': // Address with base and unsigned 12-bit displacement
1163    case 'R': // Likewise, plus an index
1164    case 'S': // Address with base and signed 20-bit displacement
1165    case 'T': // Likewise, plus an index
1166      return C_Address;
1167
1168    default:
1169      break;
1170    }
1171  }
1172  return TargetLowering::getConstraintType(Constraint);
1173}
1174
1175TargetLowering::ConstraintWeight SystemZTargetLowering::
1176getSingleConstraintMatchWeight(AsmOperandInfo &info,
1177                               const char *constraint) const {
1178  ConstraintWeight weight = CW_Invalid;
1179  Value *CallOperandVal = info.CallOperandVal;
1180  // If we don't have a value, we can't do a match,
1181  // but allow it at the lowest weight.
1182  if (!CallOperandVal)
1183    return CW_Default;
1184  Type *type = CallOperandVal->getType();
1185  // Look at the constraint type.
1186  switch (*constraint) {
1187  default:
1188    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1189    break;
1190
1191  case 'a': // Address register
1192  case 'd': // Data register (equivalent to 'r')
1193  case 'h': // High-part register
1194  case 'r': // General-purpose register
1195    weight = CallOperandVal->getType()->isIntegerTy() ? CW_Register : CW_Default;
1196    break;
1197
1198  case 'f': // Floating-point register
1199    if (!useSoftFloat())
1200      weight = type->isFloatingPointTy() ? CW_Register : CW_Default;
1201    break;
1202
1203  case 'v': // Vector register
1204    if (Subtarget.hasVector())
1205      weight = (type->isVectorTy() || type->isFloatingPointTy()) ? CW_Register
1206                                                                 : CW_Default;
1207    break;
1208
1209  case 'I': // Unsigned 8-bit constant
1210    if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1211      if (isUInt<8>(C->getZExtValue()))
1212        weight = CW_Constant;
1213    break;
1214
1215  case 'J': // Unsigned 12-bit constant
1216    if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1217      if (isUInt<12>(C->getZExtValue()))
1218        weight = CW_Constant;
1219    break;
1220
1221  case 'K': // Signed 16-bit constant
1222    if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1223      if (isInt<16>(C->getSExtValue()))
1224        weight = CW_Constant;
1225    break;
1226
1227  case 'L': // Signed 20-bit displacement (on all targets we support)
1228    if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1229      if (isInt<20>(C->getSExtValue()))
1230        weight = CW_Constant;
1231    break;
1232
1233  case 'M': // 0x7fffffff
1234    if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1235      if (C->getZExtValue() == 0x7fffffff)
1236        weight = CW_Constant;
1237    break;
1238  }
1239  return weight;
1240}
1241
1242// Parse a "{tNNN}" register constraint for which the register type "t"
1243// has already been verified.  MC is the class associated with "t" and
1244// Map maps 0-based register numbers to LLVM register numbers.
1245static std::pair<unsigned, const TargetRegisterClass *>
1246parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1247                    const unsigned *Map, unsigned Size) {
1248  assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1249  if (isdigit(Constraint[2])) {
1250    unsigned Index;
1251    bool Failed =
1252        Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1253    if (!Failed && Index < Size && Map[Index])
1254      return std::make_pair(Map[Index], RC);
1255  }
1256  return std::make_pair(0U, nullptr);
1257}
1258
1259std::pair<unsigned, const TargetRegisterClass *>
1260SystemZTargetLowering::getRegForInlineAsmConstraint(
1261    const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1262  if (Constraint.size() == 1) {
1263    // GCC Constraint Letters
1264    switch (Constraint[0]) {
1265    default: break;
1266    case 'd': // Data register (equivalent to 'r')
1267    case 'r': // General-purpose register
1268      if (VT.getSizeInBits() == 64)
1269        return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1270      else if (VT.getSizeInBits() == 128)
1271        return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1272      return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1273
1274    case 'a': // Address register
1275      if (VT == MVT::i64)
1276        return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1277      else if (VT == MVT::i128)
1278        return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1279      return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1280
1281    case 'h': // High-part register (an LLVM extension)
1282      return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1283
1284    case 'f': // Floating-point register
1285      if (!useSoftFloat()) {
1286        if (VT.getSizeInBits() == 64)
1287          return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1288        else if (VT.getSizeInBits() == 128)
1289          return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1290        return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1291      }
1292      break;
1293
1294    case 'v': // Vector register
1295      if (Subtarget.hasVector()) {
1296        if (VT.getSizeInBits() == 32)
1297          return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1298        if (VT.getSizeInBits() == 64)
1299          return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1300        return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1301      }
1302      break;
1303    }
1304  }
1305  if (Constraint.size() > 0 && Constraint[0] == '{') {
1306
1307    // A clobber constraint (e.g. ~{f0}) will have MVT::Other which is illegal
1308    // to check the size on.
1309    auto getVTSizeInBits = [&VT]() {
1310      return VT == MVT::Other ? 0 : VT.getSizeInBits();
1311    };
1312
1313    // We need to override the default register parsing for GPRs and FPRs
1314    // because the interpretation depends on VT.  The internal names of
1315    // the registers are also different from the external names
1316    // (F0D and F0S instead of F0, etc.).
1317    if (Constraint[1] == 'r') {
1318      if (getVTSizeInBits() == 32)
1319        return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1320                                   SystemZMC::GR32Regs, 16);
1321      if (getVTSizeInBits() == 128)
1322        return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1323                                   SystemZMC::GR128Regs, 16);
1324      return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1325                                 SystemZMC::GR64Regs, 16);
1326    }
1327    if (Constraint[1] == 'f') {
1328      if (useSoftFloat())
1329        return std::make_pair(
1330            0u, static_cast<const TargetRegisterClass *>(nullptr));
1331      if (getVTSizeInBits() == 32)
1332        return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1333                                   SystemZMC::FP32Regs, 16);
1334      if (getVTSizeInBits() == 128)
1335        return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1336                                   SystemZMC::FP128Regs, 16);
1337      return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1338                                 SystemZMC::FP64Regs, 16);
1339    }
1340    if (Constraint[1] == 'v') {
1341      if (!Subtarget.hasVector())
1342        return std::make_pair(
1343            0u, static_cast<const TargetRegisterClass *>(nullptr));
1344      if (getVTSizeInBits() == 32)
1345        return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1346                                   SystemZMC::VR32Regs, 32);
1347      if (getVTSizeInBits() == 64)
1348        return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1349                                   SystemZMC::VR64Regs, 32);
1350      return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1351                                 SystemZMC::VR128Regs, 32);
1352    }
1353  }
1354  return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1355}
1356
1357// FIXME? Maybe this could be a TableGen attribute on some registers and
1358// this table could be generated automatically from RegInfo.
1359Register
1360SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT,
1361                                         const MachineFunction &MF) const {
1362  Register Reg =
1363      StringSwitch<Register>(RegName)
1364          .Case("r4", Subtarget.isTargetXPLINK64() ? SystemZ::R4D : 0)
1365          .Case("r15", Subtarget.isTargetELF() ? SystemZ::R15D : 0)
1366          .Default(0);
1367
1368  if (Reg)
1369    return Reg;
1370  report_fatal_error("Invalid register name global variable");
1371}
1372
1373Register SystemZTargetLowering::getExceptionPointerRegister(
1374    const Constant *PersonalityFn) const {
1375  return Subtarget.isTargetXPLINK64() ? SystemZ::R1D : SystemZ::R6D;
1376}
1377
1378Register SystemZTargetLowering::getExceptionSelectorRegister(
1379    const Constant *PersonalityFn) const {
1380  return Subtarget.isTargetXPLINK64() ? SystemZ::R2D : SystemZ::R7D;
1381}
1382
1383void SystemZTargetLowering::LowerAsmOperandForConstraint(
1384    SDValue Op, StringRef Constraint, std::vector<SDValue> &Ops,
1385    SelectionDAG &DAG) const {
1386  // Only support length 1 constraints for now.
1387  if (Constraint.size() == 1) {
1388    switch (Constraint[0]) {
1389    case 'I': // Unsigned 8-bit constant
1390      if (auto *C = dyn_cast<ConstantSDNode>(Op))
1391        if (isUInt<8>(C->getZExtValue()))
1392          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1393                                              Op.getValueType()));
1394      return;
1395
1396    case 'J': // Unsigned 12-bit constant
1397      if (auto *C = dyn_cast<ConstantSDNode>(Op))
1398        if (isUInt<12>(C->getZExtValue()))
1399          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1400                                              Op.getValueType()));
1401      return;
1402
1403    case 'K': // Signed 16-bit constant
1404      if (auto *C = dyn_cast<ConstantSDNode>(Op))
1405        if (isInt<16>(C->getSExtValue()))
1406          Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1407                                              Op.getValueType()));
1408      return;
1409
1410    case 'L': // Signed 20-bit displacement (on all targets we support)
1411      if (auto *C = dyn_cast<ConstantSDNode>(Op))
1412        if (isInt<20>(C->getSExtValue()))
1413          Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1414                                              Op.getValueType()));
1415      return;
1416
1417    case 'M': // 0x7fffffff
1418      if (auto *C = dyn_cast<ConstantSDNode>(Op))
1419        if (C->getZExtValue() == 0x7fffffff)
1420          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1421                                              Op.getValueType()));
1422      return;
1423    }
1424  }
1425  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1426}
1427
1428//===----------------------------------------------------------------------===//
1429// Calling conventions
1430//===----------------------------------------------------------------------===//
1431
1432#include "SystemZGenCallingConv.inc"
1433
1434const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1435  CallingConv::ID) const {
1436  static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1437                                           SystemZ::R14D, 0 };
1438  return ScratchRegs;
1439}
1440
1441bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1442                                                     Type *ToType) const {
1443  return isTruncateFree(FromType, ToType);
1444}
1445
1446bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1447  return CI->isTailCall();
1448}
1449
1450// Value is a value that has been passed to us in the location described by VA
1451// (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1452// any loads onto Chain.
1453static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1454                                   CCValAssign &VA, SDValue Chain,
1455                                   SDValue Value) {
1456  // If the argument has been promoted from a smaller type, insert an
1457  // assertion to capture this.
1458  if (VA.getLocInfo() == CCValAssign::SExt)
1459    Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1460                        DAG.getValueType(VA.getValVT()));
1461  else if (VA.getLocInfo() == CCValAssign::ZExt)
1462    Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1463                        DAG.getValueType(VA.getValVT()));
1464
1465  if (VA.isExtInLoc())
1466    Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1467  else if (VA.getLocInfo() == CCValAssign::BCvt) {
1468    // If this is a short vector argument loaded from the stack,
1469    // extend from i64 to full vector size and then bitcast.
1470    assert(VA.getLocVT() == MVT::i64);
1471    assert(VA.getValVT().isVector());
1472    Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1473    Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1474  } else
1475    assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1476  return Value;
1477}
1478
1479// Value is a value of type VA.getValVT() that we need to copy into
1480// the location described by VA.  Return a copy of Value converted to
1481// VA.getValVT().  The caller is responsible for handling indirect values.
1482static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1483                                   CCValAssign &VA, SDValue Value) {
1484  switch (VA.getLocInfo()) {
1485  case CCValAssign::SExt:
1486    return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1487  case CCValAssign::ZExt:
1488    return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1489  case CCValAssign::AExt:
1490    return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1491  case CCValAssign::BCvt: {
1492    assert(VA.getLocVT() == MVT::i64 || VA.getLocVT() == MVT::i128);
1493    assert(VA.getValVT().isVector() || VA.getValVT() == MVT::f32 ||
1494           VA.getValVT() == MVT::f64 || VA.getValVT() == MVT::f128);
1495    // For an f32 vararg we need to first promote it to an f64 and then
1496    // bitcast it to an i64.
1497    if (VA.getValVT() == MVT::f32 && VA.getLocVT() == MVT::i64)
1498      Value = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f64, Value);
1499    MVT BitCastToType = VA.getValVT().isVector() && VA.getLocVT() == MVT::i64
1500                            ? MVT::v2i64
1501                            : VA.getLocVT();
1502    Value = DAG.getNode(ISD::BITCAST, DL, BitCastToType, Value);
1503    // For ELF, this is a short vector argument to be stored to the stack,
1504    // bitcast to v2i64 and then extract first element.
1505    if (BitCastToType == MVT::v2i64)
1506      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1507                         DAG.getConstant(0, DL, MVT::i32));
1508    return Value;
1509  }
1510  case CCValAssign::Full:
1511    return Value;
1512  default:
1513    llvm_unreachable("Unhandled getLocInfo()");
1514  }
1515}
1516
1517static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
1518  SDLoc DL(In);
1519  SDValue Lo, Hi;
1520  if (DAG.getTargetLoweringInfo().isTypeLegal(MVT::i128)) {
1521    Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, In);
1522    Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64,
1523                     DAG.getNode(ISD::SRL, DL, MVT::i128, In,
1524                                 DAG.getConstant(64, DL, MVT::i32)));
1525  } else {
1526    std::tie(Lo, Hi) = DAG.SplitScalar(In, DL, MVT::i64, MVT::i64);
1527  }
1528
1529  SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
1530                                    MVT::Untyped, Hi, Lo);
1531  return SDValue(Pair, 0);
1532}
1533
1534static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
1535  SDLoc DL(In);
1536  SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
1537                                          DL, MVT::i64, In);
1538  SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
1539                                          DL, MVT::i64, In);
1540
1541  if (DAG.getTargetLoweringInfo().isTypeLegal(MVT::i128)) {
1542    Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i128, Lo);
1543    Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i128, Hi);
1544    Hi = DAG.getNode(ISD::SHL, DL, MVT::i128, Hi,
1545                     DAG.getConstant(64, DL, MVT::i32));
1546    return DAG.getNode(ISD::OR, DL, MVT::i128, Lo, Hi);
1547  } else {
1548    return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
1549  }
1550}
1551
1552bool SystemZTargetLowering::splitValueIntoRegisterParts(
1553    SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
1554    unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const {
1555  EVT ValueVT = Val.getValueType();
1556  if (ValueVT.getSizeInBits() == 128 && NumParts == 1 && PartVT == MVT::Untyped) {
1557    // Inline assembly operand.
1558    Parts[0] = lowerI128ToGR128(DAG, DAG.getBitcast(MVT::i128, Val));
1559    return true;
1560  }
1561
1562  return false;
1563}
1564
1565SDValue SystemZTargetLowering::joinRegisterPartsIntoValue(
1566    SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
1567    MVT PartVT, EVT ValueVT, std::optional<CallingConv::ID> CC) const {
1568  if (ValueVT.getSizeInBits() == 128 && NumParts == 1 && PartVT == MVT::Untyped) {
1569    // Inline assembly operand.
1570    SDValue Res = lowerGR128ToI128(DAG, Parts[0]);
1571    return DAG.getBitcast(ValueVT, Res);
1572  }
1573
1574  return SDValue();
1575}
1576
1577SDValue SystemZTargetLowering::LowerFormalArguments(
1578    SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1579    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1580    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1581  MachineFunction &MF = DAG.getMachineFunction();
1582  MachineFrameInfo &MFI = MF.getFrameInfo();
1583  MachineRegisterInfo &MRI = MF.getRegInfo();
1584  SystemZMachineFunctionInfo *FuncInfo =
1585      MF.getInfo<SystemZMachineFunctionInfo>();
1586  auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
1587  EVT PtrVT = getPointerTy(DAG.getDataLayout());
1588
1589  // Assign locations to all of the incoming arguments.
1590  SmallVector<CCValAssign, 16> ArgLocs;
1591  SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1592  CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1593  FuncInfo->setSizeOfFnParams(CCInfo.getStackSize());
1594
1595  unsigned NumFixedGPRs = 0;
1596  unsigned NumFixedFPRs = 0;
1597  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1598    SDValue ArgValue;
1599    CCValAssign &VA = ArgLocs[I];
1600    EVT LocVT = VA.getLocVT();
1601    if (VA.isRegLoc()) {
1602      // Arguments passed in registers
1603      const TargetRegisterClass *RC;
1604      switch (LocVT.getSimpleVT().SimpleTy) {
1605      default:
1606        // Integers smaller than i64 should be promoted to i64.
1607        llvm_unreachable("Unexpected argument type");
1608      case MVT::i32:
1609        NumFixedGPRs += 1;
1610        RC = &SystemZ::GR32BitRegClass;
1611        break;
1612      case MVT::i64:
1613        NumFixedGPRs += 1;
1614        RC = &SystemZ::GR64BitRegClass;
1615        break;
1616      case MVT::f32:
1617        NumFixedFPRs += 1;
1618        RC = &SystemZ::FP32BitRegClass;
1619        break;
1620      case MVT::f64:
1621        NumFixedFPRs += 1;
1622        RC = &SystemZ::FP64BitRegClass;
1623        break;
1624      case MVT::f128:
1625        NumFixedFPRs += 2;
1626        RC = &SystemZ::FP128BitRegClass;
1627        break;
1628      case MVT::v16i8:
1629      case MVT::v8i16:
1630      case MVT::v4i32:
1631      case MVT::v2i64:
1632      case MVT::v4f32:
1633      case MVT::v2f64:
1634        RC = &SystemZ::VR128BitRegClass;
1635        break;
1636      }
1637
1638      Register VReg = MRI.createVirtualRegister(RC);
1639      MRI.addLiveIn(VA.getLocReg(), VReg);
1640      ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1641    } else {
1642      assert(VA.isMemLoc() && "Argument not register or memory");
1643
1644      // Create the frame index object for this incoming parameter.
1645      // FIXME: Pre-include call frame size in the offset, should not
1646      // need to manually add it here.
1647      int64_t ArgSPOffset = VA.getLocMemOffset();
1648      if (Subtarget.isTargetXPLINK64()) {
1649        auto &XPRegs =
1650            Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
1651        ArgSPOffset += XPRegs.getCallFrameSize();
1652      }
1653      int FI =
1654          MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, ArgSPOffset, true);
1655
1656      // Create the SelectionDAG nodes corresponding to a load
1657      // from this parameter.  Unpromoted ints and floats are
1658      // passed as right-justified 8-byte values.
1659      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1660      if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1661        FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1662                          DAG.getIntPtrConstant(4, DL));
1663      ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1664                             MachinePointerInfo::getFixedStack(MF, FI));
1665    }
1666
1667    // Convert the value of the argument register into the value that's
1668    // being passed.
1669    if (VA.getLocInfo() == CCValAssign::Indirect) {
1670      InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1671                                   MachinePointerInfo()));
1672      // If the original argument was split (e.g. i128), we need
1673      // to load all parts of it here (using the same address).
1674      unsigned ArgIndex = Ins[I].OrigArgIndex;
1675      assert (Ins[I].PartOffset == 0);
1676      while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1677        CCValAssign &PartVA = ArgLocs[I + 1];
1678        unsigned PartOffset = Ins[I + 1].PartOffset;
1679        SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1680                                      DAG.getIntPtrConstant(PartOffset, DL));
1681        InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1682                                     MachinePointerInfo()));
1683        ++I;
1684      }
1685    } else
1686      InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1687  }
1688
1689  if (IsVarArg && Subtarget.isTargetXPLINK64()) {
1690    // Save the number of non-varargs registers for later use by va_start, etc.
1691    FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1692    FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1693
1694    auto *Regs = static_cast<SystemZXPLINK64Registers *>(
1695        Subtarget.getSpecialRegisters());
1696
1697    // Likewise the address (in the form of a frame index) of where the
1698    // first stack vararg would be.  The 1-byte size here is arbitrary.
1699    // FIXME: Pre-include call frame size in the offset, should not
1700    // need to manually add it here.
1701    int64_t VarArgOffset = CCInfo.getStackSize() + Regs->getCallFrameSize();
1702    int FI = MFI.CreateFixedObject(1, VarArgOffset, true);
1703    FuncInfo->setVarArgsFrameIndex(FI);
1704  }
1705
1706  if (IsVarArg && Subtarget.isTargetELF()) {
1707    // Save the number of non-varargs registers for later use by va_start, etc.
1708    FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1709    FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1710
1711    // Likewise the address (in the form of a frame index) of where the
1712    // first stack vararg would be.  The 1-byte size here is arbitrary.
1713    int64_t VarArgsOffset = CCInfo.getStackSize();
1714    FuncInfo->setVarArgsFrameIndex(
1715        MFI.CreateFixedObject(1, VarArgsOffset, true));
1716
1717    // ...and a similar frame index for the caller-allocated save area
1718    // that will be used to store the incoming registers.
1719    int64_t RegSaveOffset =
1720      -SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16;
1721    unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1722    FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1723
1724    // Store the FPR varargs in the reserved frame slots.  (We store the
1725    // GPRs as part of the prologue.)
1726    if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) {
1727      SDValue MemOps[SystemZ::ELFNumArgFPRs];
1728      for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) {
1729        unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ELFArgFPRs[I]);
1730        int FI =
1731          MFI.CreateFixedObject(8, -SystemZMC::ELFCallFrameSize + Offset, true);
1732        SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1733        Register VReg = MF.addLiveIn(SystemZ::ELFArgFPRs[I],
1734                                     &SystemZ::FP64BitRegClass);
1735        SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1736        MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1737                                 MachinePointerInfo::getFixedStack(MF, FI));
1738      }
1739      // Join the stores, which are independent of one another.
1740      Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1741                          ArrayRef(&MemOps[NumFixedFPRs],
1742                                   SystemZ::ELFNumArgFPRs - NumFixedFPRs));
1743    }
1744  }
1745
1746  if (Subtarget.isTargetXPLINK64()) {
1747    // Create virual register  for handling incoming "ADA" special register (R5)
1748    const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
1749    Register ADAvReg = MRI.createVirtualRegister(RC);
1750    auto *Regs = static_cast<SystemZXPLINK64Registers *>(
1751        Subtarget.getSpecialRegisters());
1752    MRI.addLiveIn(Regs->getADARegister(), ADAvReg);
1753    FuncInfo->setADAVirtualRegister(ADAvReg);
1754  }
1755  return Chain;
1756}
1757
1758static bool canUseSiblingCall(const CCState &ArgCCInfo,
1759                              SmallVectorImpl<CCValAssign> &ArgLocs,
1760                              SmallVectorImpl<ISD::OutputArg> &Outs) {
1761  // Punt if there are any indirect or stack arguments, or if the call
1762  // needs the callee-saved argument register R6, or if the call uses
1763  // the callee-saved register arguments SwiftSelf and SwiftError.
1764  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1765    CCValAssign &VA = ArgLocs[I];
1766    if (VA.getLocInfo() == CCValAssign::Indirect)
1767      return false;
1768    if (!VA.isRegLoc())
1769      return false;
1770    Register Reg = VA.getLocReg();
1771    if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1772      return false;
1773    if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1774      return false;
1775  }
1776  return true;
1777}
1778
1779static SDValue getADAEntry(SelectionDAG &DAG, SDValue Val, SDLoc DL,
1780                           unsigned Offset, bool LoadAdr = false) {
1781  MachineFunction &MF = DAG.getMachineFunction();
1782  SystemZMachineFunctionInfo *MFI = MF.getInfo<SystemZMachineFunctionInfo>();
1783  unsigned ADAvReg = MFI->getADAVirtualRegister();
1784  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1785
1786  SDValue Reg = DAG.getRegister(ADAvReg, PtrVT);
1787  SDValue Ofs = DAG.getTargetConstant(Offset, DL, PtrVT);
1788
1789  SDValue Result = DAG.getNode(SystemZISD::ADA_ENTRY, DL, PtrVT, Val, Reg, Ofs);
1790  if (!LoadAdr)
1791    Result = DAG.getLoad(
1792        PtrVT, DL, DAG.getEntryNode(), Result, MachinePointerInfo(), Align(8),
1793        MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant);
1794
1795  return Result;
1796}
1797
1798// ADA access using Global value
1799// Note: for functions, address of descriptor is returned
1800static SDValue getADAEntry(SelectionDAG &DAG, const GlobalValue *GV, SDLoc DL,
1801                           EVT PtrVT) {
1802  unsigned ADAtype;
1803  bool LoadAddr = false;
1804  const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV);
1805  bool IsFunction =
1806      (isa<Function>(GV)) || (GA && isa<Function>(GA->getAliaseeObject()));
1807  bool IsInternal = (GV->hasInternalLinkage() || GV->hasPrivateLinkage());
1808
1809  if (IsFunction) {
1810    if (IsInternal) {
1811      ADAtype = SystemZII::MO_ADA_DIRECT_FUNC_DESC;
1812      LoadAddr = true;
1813    } else
1814      ADAtype = SystemZII::MO_ADA_INDIRECT_FUNC_DESC;
1815  } else {
1816    ADAtype = SystemZII::MO_ADA_DATA_SYMBOL_ADDR;
1817  }
1818  SDValue Val = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, ADAtype);
1819
1820  return getADAEntry(DAG, Val, DL, 0, LoadAddr);
1821}
1822
1823static bool getzOSCalleeAndADA(SelectionDAG &DAG, SDValue &Callee, SDValue &ADA,
1824                               SDLoc &DL, SDValue &Chain) {
1825  unsigned ADADelta = 0; // ADA offset in desc.
1826  unsigned EPADelta = 8; // EPA offset in desc.
1827  MachineFunction &MF = DAG.getMachineFunction();
1828  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1829
1830  // XPLink calling convention.
1831  if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1832    bool IsInternal = (G->getGlobal()->hasInternalLinkage() ||
1833                       G->getGlobal()->hasPrivateLinkage());
1834    if (IsInternal) {
1835      SystemZMachineFunctionInfo *MFI =
1836          MF.getInfo<SystemZMachineFunctionInfo>();
1837      unsigned ADAvReg = MFI->getADAVirtualRegister();
1838      ADA = DAG.getCopyFromReg(Chain, DL, ADAvReg, PtrVT);
1839      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1840      Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1841      return true;
1842    } else {
1843      SDValue GA = DAG.getTargetGlobalAddress(
1844          G->getGlobal(), DL, PtrVT, 0, SystemZII::MO_ADA_DIRECT_FUNC_DESC);
1845      ADA = getADAEntry(DAG, GA, DL, ADADelta);
1846      Callee = getADAEntry(DAG, GA, DL, EPADelta);
1847    }
1848  } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1849    SDValue ES = DAG.getTargetExternalSymbol(
1850        E->getSymbol(), PtrVT, SystemZII::MO_ADA_DIRECT_FUNC_DESC);
1851    ADA = getADAEntry(DAG, ES, DL, ADADelta);
1852    Callee = getADAEntry(DAG, ES, DL, EPADelta);
1853  } else {
1854    // Function pointer case
1855    ADA = DAG.getNode(ISD::ADD, DL, PtrVT, Callee,
1856                      DAG.getConstant(ADADelta, DL, PtrVT));
1857    ADA = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), ADA,
1858                      MachinePointerInfo::getGOT(DAG.getMachineFunction()));
1859    Callee = DAG.getNode(ISD::ADD, DL, PtrVT, Callee,
1860                         DAG.getConstant(EPADelta, DL, PtrVT));
1861    Callee = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Callee,
1862                         MachinePointerInfo::getGOT(DAG.getMachineFunction()));
1863  }
1864  return false;
1865}
1866
1867SDValue
1868SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1869                                 SmallVectorImpl<SDValue> &InVals) const {
1870  SelectionDAG &DAG = CLI.DAG;
1871  SDLoc &DL = CLI.DL;
1872  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1873  SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1874  SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1875  SDValue Chain = CLI.Chain;
1876  SDValue Callee = CLI.Callee;
1877  bool &IsTailCall = CLI.IsTailCall;
1878  CallingConv::ID CallConv = CLI.CallConv;
1879  bool IsVarArg = CLI.IsVarArg;
1880  MachineFunction &MF = DAG.getMachineFunction();
1881  EVT PtrVT = getPointerTy(MF.getDataLayout());
1882  LLVMContext &Ctx = *DAG.getContext();
1883  SystemZCallingConventionRegisters *Regs = Subtarget.getSpecialRegisters();
1884
1885  // FIXME: z/OS support to be added in later.
1886  if (Subtarget.isTargetXPLINK64())
1887    IsTailCall = false;
1888
1889  // Analyze the operands of the call, assigning locations to each operand.
1890  SmallVector<CCValAssign, 16> ArgLocs;
1891  SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx);
1892  ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1893
1894  // We don't support GuaranteedTailCallOpt, only automatically-detected
1895  // sibling calls.
1896  if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1897    IsTailCall = false;
1898
1899  // Get a count of how many bytes are to be pushed on the stack.
1900  unsigned NumBytes = ArgCCInfo.getStackSize();
1901
1902  // Mark the start of the call.
1903  if (!IsTailCall)
1904    Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1905
1906  // Copy argument values to their designated locations.
1907  SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1908  SmallVector<SDValue, 8> MemOpChains;
1909  SDValue StackPtr;
1910  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1911    CCValAssign &VA = ArgLocs[I];
1912    SDValue ArgValue = OutVals[I];
1913
1914    if (VA.getLocInfo() == CCValAssign::Indirect) {
1915      // Store the argument in a stack slot and pass its address.
1916      unsigned ArgIndex = Outs[I].OrigArgIndex;
1917      EVT SlotVT;
1918      if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1919        // Allocate the full stack space for a promoted (and split) argument.
1920        Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty;
1921        EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType);
1922        MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1923        unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1924        SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N);
1925      } else {
1926        SlotVT = Outs[I].VT;
1927      }
1928      SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT);
1929      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1930      MemOpChains.push_back(
1931          DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1932                       MachinePointerInfo::getFixedStack(MF, FI)));
1933      // If the original argument was split (e.g. i128), we need
1934      // to store all parts of it here (and pass just one address).
1935      assert (Outs[I].PartOffset == 0);
1936      while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1937        SDValue PartValue = OutVals[I + 1];
1938        unsigned PartOffset = Outs[I + 1].PartOffset;
1939        SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1940                                      DAG.getIntPtrConstant(PartOffset, DL));
1941        MemOpChains.push_back(
1942            DAG.getStore(Chain, DL, PartValue, Address,
1943                         MachinePointerInfo::getFixedStack(MF, FI)));
1944        assert((PartOffset + PartValue.getValueType().getStoreSize() <=
1945                SlotVT.getStoreSize()) && "Not enough space for argument part!");
1946        ++I;
1947      }
1948      ArgValue = SpillSlot;
1949    } else
1950      ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1951
1952    if (VA.isRegLoc()) {
1953      // In XPLINK64, for the 128-bit vararg case, ArgValue is bitcasted to a
1954      // MVT::i128 type. We decompose the 128-bit type to a pair of its high
1955      // and low values.
1956      if (VA.getLocVT() == MVT::i128)
1957        ArgValue = lowerI128ToGR128(DAG, ArgValue);
1958      // Queue up the argument copies and emit them at the end.
1959      RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1960    } else {
1961      assert(VA.isMemLoc() && "Argument not register or memory");
1962
1963      // Work out the address of the stack slot.  Unpromoted ints and
1964      // floats are passed as right-justified 8-byte values.
1965      if (!StackPtr.getNode())
1966        StackPtr = DAG.getCopyFromReg(Chain, DL,
1967                                      Regs->getStackPointerRegister(), PtrVT);
1968      unsigned Offset = Regs->getStackPointerBias() + Regs->getCallFrameSize() +
1969                        VA.getLocMemOffset();
1970      if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1971        Offset += 4;
1972      SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1973                                    DAG.getIntPtrConstant(Offset, DL));
1974
1975      // Emit the store.
1976      MemOpChains.push_back(
1977          DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1978
1979      // Although long doubles or vectors are passed through the stack when
1980      // they are vararg (non-fixed arguments), if a long double or vector
1981      // occupies the third and fourth slot of the argument list GPR3 should
1982      // still shadow the third slot of the argument list.
1983      if (Subtarget.isTargetXPLINK64() && VA.needsCustom()) {
1984        SDValue ShadowArgValue =
1985            DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, ArgValue,
1986                        DAG.getIntPtrConstant(1, DL));
1987        RegsToPass.push_back(std::make_pair(SystemZ::R3D, ShadowArgValue));
1988      }
1989    }
1990  }
1991
1992  // Join the stores, which are independent of one another.
1993  if (!MemOpChains.empty())
1994    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1995
1996  // Accept direct calls by converting symbolic call addresses to the
1997  // associated Target* opcodes.  Force %r1 to be used for indirect
1998  // tail calls.
1999  SDValue Glue;
2000
2001  if (Subtarget.isTargetXPLINK64()) {
2002    SDValue ADA;
2003    bool IsBRASL = getzOSCalleeAndADA(DAG, Callee, ADA, DL, Chain);
2004    if (!IsBRASL) {
2005      unsigned CalleeReg = static_cast<SystemZXPLINK64Registers *>(Regs)
2006                               ->getAddressOfCalleeRegister();
2007      Chain = DAG.getCopyToReg(Chain, DL, CalleeReg, Callee, Glue);
2008      Glue = Chain.getValue(1);
2009      Callee = DAG.getRegister(CalleeReg, Callee.getValueType());
2010    }
2011    RegsToPass.push_back(std::make_pair(
2012        static_cast<SystemZXPLINK64Registers *>(Regs)->getADARegister(), ADA));
2013  } else {
2014    if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2015      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
2016      Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
2017    } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2018      Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
2019      Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
2020    } else if (IsTailCall) {
2021      Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
2022      Glue = Chain.getValue(1);
2023      Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
2024    }
2025  }
2026
2027  // Build a sequence of copy-to-reg nodes, chained and glued together.
2028  for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
2029    Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
2030                             RegsToPass[I].second, Glue);
2031    Glue = Chain.getValue(1);
2032  }
2033
2034  // The first call operand is the chain and the second is the target address.
2035  SmallVector<SDValue, 8> Ops;
2036  Ops.push_back(Chain);
2037  Ops.push_back(Callee);
2038
2039  // Add argument registers to the end of the list so that they are
2040  // known live into the call.
2041  for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
2042    Ops.push_back(DAG.getRegister(RegsToPass[I].first,
2043                                  RegsToPass[I].second.getValueType()));
2044
2045  // Add a register mask operand representing the call-preserved registers.
2046  const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2047  const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
2048  assert(Mask && "Missing call preserved mask for calling convention");
2049  Ops.push_back(DAG.getRegisterMask(Mask));
2050
2051  // Glue the call to the argument copies, if any.
2052  if (Glue.getNode())
2053    Ops.push_back(Glue);
2054
2055  // Emit the call.
2056  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2057  if (IsTailCall) {
2058    SDValue Ret = DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
2059    DAG.addNoMergeSiteInfo(Ret.getNode(), CLI.NoMerge);
2060    return Ret;
2061  }
2062  Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
2063  DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
2064  Glue = Chain.getValue(1);
2065
2066  // Mark the end of the call, which is glued to the call itself.
2067  Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, Glue, DL);
2068  Glue = Chain.getValue(1);
2069
2070  // Assign locations to each value returned by this call.
2071  SmallVector<CCValAssign, 16> RetLocs;
2072  CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx);
2073  RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
2074
2075  // Copy all of the result registers out of their specified physreg.
2076  for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
2077    CCValAssign &VA = RetLocs[I];
2078
2079    // Copy the value out, gluing the copy to the end of the call sequence.
2080    SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
2081                                          VA.getLocVT(), Glue);
2082    Chain = RetValue.getValue(1);
2083    Glue = RetValue.getValue(2);
2084
2085    // Convert the value of the return register into the value that's
2086    // being returned.
2087    InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
2088  }
2089
2090  return Chain;
2091}
2092
2093// Generate a call taking the given operands as arguments and returning a
2094// result of type RetVT.
2095std::pair<SDValue, SDValue> SystemZTargetLowering::makeExternalCall(
2096    SDValue Chain, SelectionDAG &DAG, const char *CalleeName, EVT RetVT,
2097    ArrayRef<SDValue> Ops, CallingConv::ID CallConv, bool IsSigned, SDLoc DL,
2098    bool DoesNotReturn, bool IsReturnValueUsed) const {
2099  TargetLowering::ArgListTy Args;
2100  Args.reserve(Ops.size());
2101
2102  TargetLowering::ArgListEntry Entry;
2103  for (SDValue Op : Ops) {
2104    Entry.Node = Op;
2105    Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
2106    Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned);
2107    Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned);
2108    Args.push_back(Entry);
2109  }
2110
2111  SDValue Callee =
2112      DAG.getExternalSymbol(CalleeName, getPointerTy(DAG.getDataLayout()));
2113
2114  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2115  TargetLowering::CallLoweringInfo CLI(DAG);
2116  bool SignExtend = shouldSignExtendTypeInLibCall(RetVT, IsSigned);
2117  CLI.setDebugLoc(DL)
2118      .setChain(Chain)
2119      .setCallee(CallConv, RetTy, Callee, std::move(Args))
2120      .setNoReturn(DoesNotReturn)
2121      .setDiscardResult(!IsReturnValueUsed)
2122      .setSExtResult(SignExtend)
2123      .setZExtResult(!SignExtend);
2124  return LowerCallTo(CLI);
2125}
2126
2127bool SystemZTargetLowering::
2128CanLowerReturn(CallingConv::ID CallConv,
2129               MachineFunction &MF, bool isVarArg,
2130               const SmallVectorImpl<ISD::OutputArg> &Outs,
2131               LLVMContext &Context) const {
2132  // Special case that we cannot easily detect in RetCC_SystemZ since
2133  // i128 may not be a legal type.
2134  for (auto &Out : Outs)
2135    if (Out.ArgVT == MVT::i128)
2136      return false;
2137
2138  SmallVector<CCValAssign, 16> RetLocs;
2139  CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
2140  return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
2141}
2142
2143SDValue
2144SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2145                                   bool IsVarArg,
2146                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
2147                                   const SmallVectorImpl<SDValue> &OutVals,
2148                                   const SDLoc &DL, SelectionDAG &DAG) const {
2149  MachineFunction &MF = DAG.getMachineFunction();
2150
2151  // Assign locations to each returned value.
2152  SmallVector<CCValAssign, 16> RetLocs;
2153  CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
2154  RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
2155
2156  // Quick exit for void returns
2157  if (RetLocs.empty())
2158    return DAG.getNode(SystemZISD::RET_GLUE, DL, MVT::Other, Chain);
2159
2160  if (CallConv == CallingConv::GHC)
2161    report_fatal_error("GHC functions return void only");
2162
2163  // Copy the result values into the output registers.
2164  SDValue Glue;
2165  SmallVector<SDValue, 4> RetOps;
2166  RetOps.push_back(Chain);
2167  for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
2168    CCValAssign &VA = RetLocs[I];
2169    SDValue RetValue = OutVals[I];
2170
2171    // Make the return register live on exit.
2172    assert(VA.isRegLoc() && "Can only return in registers!");
2173
2174    // Promote the value as required.
2175    RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
2176
2177    // Chain and glue the copies together.
2178    Register Reg = VA.getLocReg();
2179    Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
2180    Glue = Chain.getValue(1);
2181    RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
2182  }
2183
2184  // Update chain and glue.
2185  RetOps[0] = Chain;
2186  if (Glue.getNode())
2187    RetOps.push_back(Glue);
2188
2189  return DAG.getNode(SystemZISD::RET_GLUE, DL, MVT::Other, RetOps);
2190}
2191
2192// Return true if Op is an intrinsic node with chain that returns the CC value
2193// as its only (other) argument.  Provide the associated SystemZISD opcode and
2194// the mask of valid CC values if so.
2195static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
2196                                      unsigned &CCValid) {
2197  unsigned Id = Op.getConstantOperandVal(1);
2198  switch (Id) {
2199  case Intrinsic::s390_tbegin:
2200    Opcode = SystemZISD::TBEGIN;
2201    CCValid = SystemZ::CCMASK_TBEGIN;
2202    return true;
2203
2204  case Intrinsic::s390_tbegin_nofloat:
2205    Opcode = SystemZISD::TBEGIN_NOFLOAT;
2206    CCValid = SystemZ::CCMASK_TBEGIN;
2207    return true;
2208
2209  case Intrinsic::s390_tend:
2210    Opcode = SystemZISD::TEND;
2211    CCValid = SystemZ::CCMASK_TEND;
2212    return true;
2213
2214  default:
2215    return false;
2216  }
2217}
2218
2219// Return true if Op is an intrinsic node without chain that returns the
2220// CC value as its final argument.  Provide the associated SystemZISD
2221// opcode and the mask of valid CC values if so.
2222static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
2223  unsigned Id = Op.getConstantOperandVal(0);
2224  switch (Id) {
2225  case Intrinsic::s390_vpkshs:
2226  case Intrinsic::s390_vpksfs:
2227  case Intrinsic::s390_vpksgs:
2228    Opcode = SystemZISD::PACKS_CC;
2229    CCValid = SystemZ::CCMASK_VCMP;
2230    return true;
2231
2232  case Intrinsic::s390_vpklshs:
2233  case Intrinsic::s390_vpklsfs:
2234  case Intrinsic::s390_vpklsgs:
2235    Opcode = SystemZISD::PACKLS_CC;
2236    CCValid = SystemZ::CCMASK_VCMP;
2237    return true;
2238
2239  case Intrinsic::s390_vceqbs:
2240  case Intrinsic::s390_vceqhs:
2241  case Intrinsic::s390_vceqfs:
2242  case Intrinsic::s390_vceqgs:
2243    Opcode = SystemZISD::VICMPES;
2244    CCValid = SystemZ::CCMASK_VCMP;
2245    return true;
2246
2247  case Intrinsic::s390_vchbs:
2248  case Intrinsic::s390_vchhs:
2249  case Intrinsic::s390_vchfs:
2250  case Intrinsic::s390_vchgs:
2251    Opcode = SystemZISD::VICMPHS;
2252    CCValid = SystemZ::CCMASK_VCMP;
2253    return true;
2254
2255  case Intrinsic::s390_vchlbs:
2256  case Intrinsic::s390_vchlhs:
2257  case Intrinsic::s390_vchlfs:
2258  case Intrinsic::s390_vchlgs:
2259    Opcode = SystemZISD::VICMPHLS;
2260    CCValid = SystemZ::CCMASK_VCMP;
2261    return true;
2262
2263  case Intrinsic::s390_vtm:
2264    Opcode = SystemZISD::VTM;
2265    CCValid = SystemZ::CCMASK_VCMP;
2266    return true;
2267
2268  case Intrinsic::s390_vfaebs:
2269  case Intrinsic::s390_vfaehs:
2270  case Intrinsic::s390_vfaefs:
2271    Opcode = SystemZISD::VFAE_CC;
2272    CCValid = SystemZ::CCMASK_ANY;
2273    return true;
2274
2275  case Intrinsic::s390_vfaezbs:
2276  case Intrinsic::s390_vfaezhs:
2277  case Intrinsic::s390_vfaezfs:
2278    Opcode = SystemZISD::VFAEZ_CC;
2279    CCValid = SystemZ::CCMASK_ANY;
2280    return true;
2281
2282  case Intrinsic::s390_vfeebs:
2283  case Intrinsic::s390_vfeehs:
2284  case Intrinsic::s390_vfeefs:
2285    Opcode = SystemZISD::VFEE_CC;
2286    CCValid = SystemZ::CCMASK_ANY;
2287    return true;
2288
2289  case Intrinsic::s390_vfeezbs:
2290  case Intrinsic::s390_vfeezhs:
2291  case Intrinsic::s390_vfeezfs:
2292    Opcode = SystemZISD::VFEEZ_CC;
2293    CCValid = SystemZ::CCMASK_ANY;
2294    return true;
2295
2296  case Intrinsic::s390_vfenebs:
2297  case Intrinsic::s390_vfenehs:
2298  case Intrinsic::s390_vfenefs:
2299    Opcode = SystemZISD::VFENE_CC;
2300    CCValid = SystemZ::CCMASK_ANY;
2301    return true;
2302
2303  case Intrinsic::s390_vfenezbs:
2304  case Intrinsic::s390_vfenezhs:
2305  case Intrinsic::s390_vfenezfs:
2306    Opcode = SystemZISD::VFENEZ_CC;
2307    CCValid = SystemZ::CCMASK_ANY;
2308    return true;
2309
2310  case Intrinsic::s390_vistrbs:
2311  case Intrinsic::s390_vistrhs:
2312  case Intrinsic::s390_vistrfs:
2313    Opcode = SystemZISD::VISTR_CC;
2314    CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
2315    return true;
2316
2317  case Intrinsic::s390_vstrcbs:
2318  case Intrinsic::s390_vstrchs:
2319  case Intrinsic::s390_vstrcfs:
2320    Opcode = SystemZISD::VSTRC_CC;
2321    CCValid = SystemZ::CCMASK_ANY;
2322    return true;
2323
2324  case Intrinsic::s390_vstrczbs:
2325  case Intrinsic::s390_vstrczhs:
2326  case Intrinsic::s390_vstrczfs:
2327    Opcode = SystemZISD::VSTRCZ_CC;
2328    CCValid = SystemZ::CCMASK_ANY;
2329    return true;
2330
2331  case Intrinsic::s390_vstrsb:
2332  case Intrinsic::s390_vstrsh:
2333  case Intrinsic::s390_vstrsf:
2334    Opcode = SystemZISD::VSTRS_CC;
2335    CCValid = SystemZ::CCMASK_ANY;
2336    return true;
2337
2338  case Intrinsic::s390_vstrszb:
2339  case Intrinsic::s390_vstrszh:
2340  case Intrinsic::s390_vstrszf:
2341    Opcode = SystemZISD::VSTRSZ_CC;
2342    CCValid = SystemZ::CCMASK_ANY;
2343    return true;
2344
2345  case Intrinsic::s390_vfcedbs:
2346  case Intrinsic::s390_vfcesbs:
2347    Opcode = SystemZISD::VFCMPES;
2348    CCValid = SystemZ::CCMASK_VCMP;
2349    return true;
2350
2351  case Intrinsic::s390_vfchdbs:
2352  case Intrinsic::s390_vfchsbs:
2353    Opcode = SystemZISD::VFCMPHS;
2354    CCValid = SystemZ::CCMASK_VCMP;
2355    return true;
2356
2357  case Intrinsic::s390_vfchedbs:
2358  case Intrinsic::s390_vfchesbs:
2359    Opcode = SystemZISD::VFCMPHES;
2360    CCValid = SystemZ::CCMASK_VCMP;
2361    return true;
2362
2363  case Intrinsic::s390_vftcidb:
2364  case Intrinsic::s390_vftcisb:
2365    Opcode = SystemZISD::VFTCI;
2366    CCValid = SystemZ::CCMASK_VCMP;
2367    return true;
2368
2369  case Intrinsic::s390_tdc:
2370    Opcode = SystemZISD::TDC;
2371    CCValid = SystemZ::CCMASK_TDC;
2372    return true;
2373
2374  default:
2375    return false;
2376  }
2377}
2378
2379// Emit an intrinsic with chain and an explicit CC register result.
2380static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
2381                                           unsigned Opcode) {
2382  // Copy all operands except the intrinsic ID.
2383  unsigned NumOps = Op.getNumOperands();
2384  SmallVector<SDValue, 6> Ops;
2385  Ops.reserve(NumOps - 1);
2386  Ops.push_back(Op.getOperand(0));
2387  for (unsigned I = 2; I < NumOps; ++I)
2388    Ops.push_back(Op.getOperand(I));
2389
2390  assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
2391  SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
2392  SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
2393  SDValue OldChain = SDValue(Op.getNode(), 1);
2394  SDValue NewChain = SDValue(Intr.getNode(), 1);
2395  DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
2396  return Intr.getNode();
2397}
2398
2399// Emit an intrinsic with an explicit CC register result.
2400static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
2401                                   unsigned Opcode) {
2402  // Copy all operands except the intrinsic ID.
2403  unsigned NumOps = Op.getNumOperands();
2404  SmallVector<SDValue, 6> Ops;
2405  Ops.reserve(NumOps - 1);
2406  for (unsigned I = 1; I < NumOps; ++I)
2407    Ops.push_back(Op.getOperand(I));
2408
2409  SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
2410  return Intr.getNode();
2411}
2412
2413// CC is a comparison that will be implemented using an integer or
2414// floating-point comparison.  Return the condition code mask for
2415// a branch on true.  In the integer case, CCMASK_CMP_UO is set for
2416// unsigned comparisons and clear for signed ones.  In the floating-point
2417// case, CCMASK_CMP_UO has its normal mask meaning (unordered).
2418static unsigned CCMaskForCondCode(ISD::CondCode CC) {
2419#define CONV(X) \
2420  case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
2421  case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
2422  case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
2423
2424  switch (CC) {
2425  default:
2426    llvm_unreachable("Invalid integer condition!");
2427
2428  CONV(EQ);
2429  CONV(NE);
2430  CONV(GT);
2431  CONV(GE);
2432  CONV(LT);
2433  CONV(LE);
2434
2435  case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
2436  case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
2437  }
2438#undef CONV
2439}
2440
2441// If C can be converted to a comparison against zero, adjust the operands
2442// as necessary.
2443static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2444  if (C.ICmpType == SystemZICMP::UnsignedOnly)
2445    return;
2446
2447  auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
2448  if (!ConstOp1 || ConstOp1->getValueSizeInBits(0) > 64)
2449    return;
2450
2451  int64_t Value = ConstOp1->getSExtValue();
2452  if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
2453      (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
2454      (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
2455      (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
2456    C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2457    C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
2458  }
2459}
2460
2461// If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
2462// adjust the operands as necessary.
2463static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
2464                             Comparison &C) {
2465  // For us to make any changes, it must a comparison between a single-use
2466  // load and a constant.
2467  if (!C.Op0.hasOneUse() ||
2468      C.Op0.getOpcode() != ISD::LOAD ||
2469      C.Op1.getOpcode() != ISD::Constant)
2470    return;
2471
2472  // We must have an 8- or 16-bit load.
2473  auto *Load = cast<LoadSDNode>(C.Op0);
2474  unsigned NumBits = Load->getMemoryVT().getSizeInBits();
2475  if ((NumBits != 8 && NumBits != 16) ||
2476      NumBits != Load->getMemoryVT().getStoreSizeInBits())
2477    return;
2478
2479  // The load must be an extending one and the constant must be within the
2480  // range of the unextended value.
2481  auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
2482  if (!ConstOp1 || ConstOp1->getValueSizeInBits(0) > 64)
2483    return;
2484  uint64_t Value = ConstOp1->getZExtValue();
2485  uint64_t Mask = (1 << NumBits) - 1;
2486  if (Load->getExtensionType() == ISD::SEXTLOAD) {
2487    // Make sure that ConstOp1 is in range of C.Op0.
2488    int64_t SignedValue = ConstOp1->getSExtValue();
2489    if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
2490      return;
2491    if (C.ICmpType != SystemZICMP::SignedOnly) {
2492      // Unsigned comparison between two sign-extended values is equivalent
2493      // to unsigned comparison between two zero-extended values.
2494      Value &= Mask;
2495    } else if (NumBits == 8) {
2496      // Try to treat the comparison as unsigned, so that we can use CLI.
2497      // Adjust CCMask and Value as necessary.
2498      if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
2499        // Test whether the high bit of the byte is set.
2500        Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
2501      else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
2502        // Test whether the high bit of the byte is clear.
2503        Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
2504      else
2505        // No instruction exists for this combination.
2506        return;
2507      C.ICmpType = SystemZICMP::UnsignedOnly;
2508    }
2509  } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
2510    if (Value > Mask)
2511      return;
2512    // If the constant is in range, we can use any comparison.
2513    C.ICmpType = SystemZICMP::Any;
2514  } else
2515    return;
2516
2517  // Make sure that the first operand is an i32 of the right extension type.
2518  ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
2519                              ISD::SEXTLOAD :
2520                              ISD::ZEXTLOAD);
2521  if (C.Op0.getValueType() != MVT::i32 ||
2522      Load->getExtensionType() != ExtType) {
2523    C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
2524                           Load->getBasePtr(), Load->getPointerInfo(),
2525                           Load->getMemoryVT(), Load->getAlign(),
2526                           Load->getMemOperand()->getFlags());
2527    // Update the chain uses.
2528    DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
2529  }
2530
2531  // Make sure that the second operand is an i32 with the right value.
2532  if (C.Op1.getValueType() != MVT::i32 ||
2533      Value != ConstOp1->getZExtValue())
2534    C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
2535}
2536
2537// Return true if Op is either an unextended load, or a load suitable
2538// for integer register-memory comparisons of type ICmpType.
2539static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2540  auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2541  if (Load) {
2542    // There are no instructions to compare a register with a memory byte.
2543    if (Load->getMemoryVT() == MVT::i8)
2544      return false;
2545    // Otherwise decide on extension type.
2546    switch (Load->getExtensionType()) {
2547    case ISD::NON_EXTLOAD:
2548      return true;
2549    case ISD::SEXTLOAD:
2550      return ICmpType != SystemZICMP::UnsignedOnly;
2551    case ISD::ZEXTLOAD:
2552      return ICmpType != SystemZICMP::SignedOnly;
2553    default:
2554      break;
2555    }
2556  }
2557  return false;
2558}
2559
2560// Return true if it is better to swap the operands of C.
2561static bool shouldSwapCmpOperands(const Comparison &C) {
2562  // Leave i128 and f128 comparisons alone, since they have no memory forms.
2563  if (C.Op0.getValueType() == MVT::i128)
2564    return false;
2565  if (C.Op0.getValueType() == MVT::f128)
2566    return false;
2567
2568  // Always keep a floating-point constant second, since comparisons with
2569  // zero can use LOAD TEST and comparisons with other constants make a
2570  // natural memory operand.
2571  if (isa<ConstantFPSDNode>(C.Op1))
2572    return false;
2573
2574  // Never swap comparisons with zero since there are many ways to optimize
2575  // those later.
2576  auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2577  if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2578    return false;
2579
2580  // Also keep natural memory operands second if the loaded value is
2581  // only used here.  Several comparisons have memory forms.
2582  if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2583    return false;
2584
2585  // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2586  // In that case we generally prefer the memory to be second.
2587  if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2588    // The only exceptions are when the second operand is a constant and
2589    // we can use things like CHHSI.
2590    if (!ConstOp1)
2591      return true;
2592    // The unsigned memory-immediate instructions can handle 16-bit
2593    // unsigned integers.
2594    if (C.ICmpType != SystemZICMP::SignedOnly &&
2595        isUInt<16>(ConstOp1->getZExtValue()))
2596      return false;
2597    // The signed memory-immediate instructions can handle 16-bit
2598    // signed integers.
2599    if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2600        isInt<16>(ConstOp1->getSExtValue()))
2601      return false;
2602    return true;
2603  }
2604
2605  // Try to promote the use of CGFR and CLGFR.
2606  unsigned Opcode0 = C.Op0.getOpcode();
2607  if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2608    return true;
2609  if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2610    return true;
2611  if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::AND &&
2612      C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2613      C.Op0.getConstantOperandVal(1) == 0xffffffff)
2614    return true;
2615
2616  return false;
2617}
2618
2619// Check whether C tests for equality between X and Y and whether X - Y
2620// or Y - X is also computed.  In that case it's better to compare the
2621// result of the subtraction against zero.
2622static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2623                                 Comparison &C) {
2624  if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2625      C.CCMask == SystemZ::CCMASK_CMP_NE) {
2626    for (SDNode *N : C.Op0->uses()) {
2627      if (N->getOpcode() == ISD::SUB &&
2628          ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2629           (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2630        // Disable the nsw and nuw flags: the backend needs to handle
2631        // overflow as well during comparison elimination.
2632        SDNodeFlags Flags = N->getFlags();
2633        Flags.setNoSignedWrap(false);
2634        Flags.setNoUnsignedWrap(false);
2635        N->setFlags(Flags);
2636        C.Op0 = SDValue(N, 0);
2637        C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2638        return;
2639      }
2640    }
2641  }
2642}
2643
2644// Check whether C compares a floating-point value with zero and if that
2645// floating-point value is also negated.  In this case we can use the
2646// negation to set CC, so avoiding separate LOAD AND TEST and
2647// LOAD (NEGATIVE/COMPLEMENT) instructions.
2648static void adjustForFNeg(Comparison &C) {
2649  // This optimization is invalid for strict comparisons, since FNEG
2650  // does not raise any exceptions.
2651  if (C.Chain)
2652    return;
2653  auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2654  if (C1 && C1->isZero()) {
2655    for (SDNode *N : C.Op0->uses()) {
2656      if (N->getOpcode() == ISD::FNEG) {
2657        C.Op0 = SDValue(N, 0);
2658        C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2659        return;
2660      }
2661    }
2662  }
2663}
2664
2665// Check whether C compares (shl X, 32) with 0 and whether X is
2666// also sign-extended.  In that case it is better to test the result
2667// of the sign extension using LTGFR.
2668//
2669// This case is important because InstCombine transforms a comparison
2670// with (sext (trunc X)) into a comparison with (shl X, 32).
2671static void adjustForLTGFR(Comparison &C) {
2672  // Check for a comparison between (shl X, 32) and 0.
2673  if (C.Op0.getOpcode() == ISD::SHL && C.Op0.getValueType() == MVT::i64 &&
2674      C.Op1.getOpcode() == ISD::Constant && C.Op1->getAsZExtVal() == 0) {
2675    auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2676    if (C1 && C1->getZExtValue() == 32) {
2677      SDValue ShlOp0 = C.Op0.getOperand(0);
2678      // See whether X has any SIGN_EXTEND_INREG uses.
2679      for (SDNode *N : ShlOp0->uses()) {
2680        if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2681            cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2682          C.Op0 = SDValue(N, 0);
2683          return;
2684        }
2685      }
2686    }
2687  }
2688}
2689
2690// If C compares the truncation of an extending load, try to compare
2691// the untruncated value instead.  This exposes more opportunities to
2692// reuse CC.
2693static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2694                               Comparison &C) {
2695  if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2696      C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2697      C.Op1.getOpcode() == ISD::Constant &&
2698      cast<ConstantSDNode>(C.Op1)->getValueSizeInBits(0) <= 64 &&
2699      C.Op1->getAsZExtVal() == 0) {
2700    auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2701    if (L->getMemoryVT().getStoreSizeInBits().getFixedValue() <=
2702        C.Op0.getValueSizeInBits().getFixedValue()) {
2703      unsigned Type = L->getExtensionType();
2704      if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2705          (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2706        C.Op0 = C.Op0.getOperand(0);
2707        C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2708      }
2709    }
2710  }
2711}
2712
2713// Return true if shift operation N has an in-range constant shift value.
2714// Store it in ShiftVal if so.
2715static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2716  auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2717  if (!Shift)
2718    return false;
2719
2720  uint64_t Amount = Shift->getZExtValue();
2721  if (Amount >= N.getValueSizeInBits())
2722    return false;
2723
2724  ShiftVal = Amount;
2725  return true;
2726}
2727
2728// Check whether an AND with Mask is suitable for a TEST UNDER MASK
2729// instruction and whether the CC value is descriptive enough to handle
2730// a comparison of type Opcode between the AND result and CmpVal.
2731// CCMask says which comparison result is being tested and BitSize is
2732// the number of bits in the operands.  If TEST UNDER MASK can be used,
2733// return the corresponding CC mask, otherwise return 0.
2734static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2735                                     uint64_t Mask, uint64_t CmpVal,
2736                                     unsigned ICmpType) {
2737  assert(Mask != 0 && "ANDs with zero should have been removed by now");
2738
2739  // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2740  if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2741      !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2742    return 0;
2743
2744  // Work out the masks for the lowest and highest bits.
2745  uint64_t High = llvm::bit_floor(Mask);
2746  uint64_t Low = uint64_t(1) << llvm::countr_zero(Mask);
2747
2748  // Signed ordered comparisons are effectively unsigned if the sign
2749  // bit is dropped.
2750  bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2751
2752  // Check for equality comparisons with 0, or the equivalent.
2753  if (CmpVal == 0) {
2754    if (CCMask == SystemZ::CCMASK_CMP_EQ)
2755      return SystemZ::CCMASK_TM_ALL_0;
2756    if (CCMask == SystemZ::CCMASK_CMP_NE)
2757      return SystemZ::CCMASK_TM_SOME_1;
2758  }
2759  if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2760    if (CCMask == SystemZ::CCMASK_CMP_LT)
2761      return SystemZ::CCMASK_TM_ALL_0;
2762    if (CCMask == SystemZ::CCMASK_CMP_GE)
2763      return SystemZ::CCMASK_TM_SOME_1;
2764  }
2765  if (EffectivelyUnsigned && CmpVal < Low) {
2766    if (CCMask == SystemZ::CCMASK_CMP_LE)
2767      return SystemZ::CCMASK_TM_ALL_0;
2768    if (CCMask == SystemZ::CCMASK_CMP_GT)
2769      return SystemZ::CCMASK_TM_SOME_1;
2770  }
2771
2772  // Check for equality comparisons with the mask, or the equivalent.
2773  if (CmpVal == Mask) {
2774    if (CCMask == SystemZ::CCMASK_CMP_EQ)
2775      return SystemZ::CCMASK_TM_ALL_1;
2776    if (CCMask == SystemZ::CCMASK_CMP_NE)
2777      return SystemZ::CCMASK_TM_SOME_0;
2778  }
2779  if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2780    if (CCMask == SystemZ::CCMASK_CMP_GT)
2781      return SystemZ::CCMASK_TM_ALL_1;
2782    if (CCMask == SystemZ::CCMASK_CMP_LE)
2783      return SystemZ::CCMASK_TM_SOME_0;
2784  }
2785  if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2786    if (CCMask == SystemZ::CCMASK_CMP_GE)
2787      return SystemZ::CCMASK_TM_ALL_1;
2788    if (CCMask == SystemZ::CCMASK_CMP_LT)
2789      return SystemZ::CCMASK_TM_SOME_0;
2790  }
2791
2792  // Check for ordered comparisons with the top bit.
2793  if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2794    if (CCMask == SystemZ::CCMASK_CMP_LE)
2795      return SystemZ::CCMASK_TM_MSB_0;
2796    if (CCMask == SystemZ::CCMASK_CMP_GT)
2797      return SystemZ::CCMASK_TM_MSB_1;
2798  }
2799  if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2800    if (CCMask == SystemZ::CCMASK_CMP_LT)
2801      return SystemZ::CCMASK_TM_MSB_0;
2802    if (CCMask == SystemZ::CCMASK_CMP_GE)
2803      return SystemZ::CCMASK_TM_MSB_1;
2804  }
2805
2806  // If there are just two bits, we can do equality checks for Low and High
2807  // as well.
2808  if (Mask == Low + High) {
2809    if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2810      return SystemZ::CCMASK_TM_MIXED_MSB_0;
2811    if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2812      return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2813    if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2814      return SystemZ::CCMASK_TM_MIXED_MSB_1;
2815    if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2816      return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2817  }
2818
2819  // Looks like we've exhausted our options.
2820  return 0;
2821}
2822
2823// See whether C can be implemented as a TEST UNDER MASK instruction.
2824// Update the arguments with the TM version if so.
2825static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2826                                   Comparison &C) {
2827  // Use VECTOR TEST UNDER MASK for i128 operations.
2828  if (C.Op0.getValueType() == MVT::i128) {
2829    // We can use VTM for EQ/NE comparisons of x & y against 0.
2830    if (C.Op0.getOpcode() == ISD::AND &&
2831        (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2832         C.CCMask == SystemZ::CCMASK_CMP_NE)) {
2833      auto *Mask = dyn_cast<ConstantSDNode>(C.Op1);
2834      if (Mask && Mask->getAPIntValue() == 0) {
2835        C.Opcode = SystemZISD::VTM;
2836        C.Op1 = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, C.Op0.getOperand(1));
2837        C.Op0 = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, C.Op0.getOperand(0));
2838        C.CCValid = SystemZ::CCMASK_VCMP;
2839        if (C.CCMask == SystemZ::CCMASK_CMP_EQ)
2840          C.CCMask = SystemZ::CCMASK_VCMP_ALL;
2841        else
2842          C.CCMask = SystemZ::CCMASK_VCMP_ALL ^ C.CCValid;
2843      }
2844    }
2845    return;
2846  }
2847
2848  // Check that we have a comparison with a constant.
2849  auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2850  if (!ConstOp1)
2851    return;
2852  uint64_t CmpVal = ConstOp1->getZExtValue();
2853
2854  // Check whether the nonconstant input is an AND with a constant mask.
2855  Comparison NewC(C);
2856  uint64_t MaskVal;
2857  ConstantSDNode *Mask = nullptr;
2858  if (C.Op0.getOpcode() == ISD::AND) {
2859    NewC.Op0 = C.Op0.getOperand(0);
2860    NewC.Op1 = C.Op0.getOperand(1);
2861    Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2862    if (!Mask)
2863      return;
2864    MaskVal = Mask->getZExtValue();
2865  } else {
2866    // There is no instruction to compare with a 64-bit immediate
2867    // so use TMHH instead if possible.  We need an unsigned ordered
2868    // comparison with an i64 immediate.
2869    if (NewC.Op0.getValueType() != MVT::i64 ||
2870        NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2871        NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2872        NewC.ICmpType == SystemZICMP::SignedOnly)
2873      return;
2874    // Convert LE and GT comparisons into LT and GE.
2875    if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2876        NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2877      if (CmpVal == uint64_t(-1))
2878        return;
2879      CmpVal += 1;
2880      NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2881    }
2882    // If the low N bits of Op1 are zero than the low N bits of Op0 can
2883    // be masked off without changing the result.
2884    MaskVal = -(CmpVal & -CmpVal);
2885    NewC.ICmpType = SystemZICMP::UnsignedOnly;
2886  }
2887  if (!MaskVal)
2888    return;
2889
2890  // Check whether the combination of mask, comparison value and comparison
2891  // type are suitable.
2892  unsigned BitSize = NewC.Op0.getValueSizeInBits();
2893  unsigned NewCCMask, ShiftVal;
2894  if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2895      NewC.Op0.getOpcode() == ISD::SHL &&
2896      isSimpleShift(NewC.Op0, ShiftVal) &&
2897      (MaskVal >> ShiftVal != 0) &&
2898      ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2899      (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2900                                        MaskVal >> ShiftVal,
2901                                        CmpVal >> ShiftVal,
2902                                        SystemZICMP::Any))) {
2903    NewC.Op0 = NewC.Op0.getOperand(0);
2904    MaskVal >>= ShiftVal;
2905  } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2906             NewC.Op0.getOpcode() == ISD::SRL &&
2907             isSimpleShift(NewC.Op0, ShiftVal) &&
2908             (MaskVal << ShiftVal != 0) &&
2909             ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2910             (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2911                                               MaskVal << ShiftVal,
2912                                               CmpVal << ShiftVal,
2913                                               SystemZICMP::UnsignedOnly))) {
2914    NewC.Op0 = NewC.Op0.getOperand(0);
2915    MaskVal <<= ShiftVal;
2916  } else {
2917    NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2918                                     NewC.ICmpType);
2919    if (!NewCCMask)
2920      return;
2921  }
2922
2923  // Go ahead and make the change.
2924  C.Opcode = SystemZISD::TM;
2925  C.Op0 = NewC.Op0;
2926  if (Mask && Mask->getZExtValue() == MaskVal)
2927    C.Op1 = SDValue(Mask, 0);
2928  else
2929    C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2930  C.CCValid = SystemZ::CCMASK_TM;
2931  C.CCMask = NewCCMask;
2932}
2933
2934// Implement i128 comparison in vector registers.
2935static void adjustICmp128(SelectionDAG &DAG, const SDLoc &DL,
2936                          Comparison &C) {
2937  if (C.Opcode != SystemZISD::ICMP)
2938    return;
2939  if (C.Op0.getValueType() != MVT::i128)
2940    return;
2941
2942  // (In-)Equality comparisons can be implemented via VCEQGS.
2943  if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2944      C.CCMask == SystemZ::CCMASK_CMP_NE) {
2945    C.Opcode = SystemZISD::VICMPES;
2946    C.Op0 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, C.Op0);
2947    C.Op1 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, C.Op1);
2948    C.CCValid = SystemZ::CCMASK_VCMP;
2949    if (C.CCMask == SystemZ::CCMASK_CMP_EQ)
2950      C.CCMask = SystemZ::CCMASK_VCMP_ALL;
2951    else
2952      C.CCMask = SystemZ::CCMASK_VCMP_ALL ^ C.CCValid;
2953    return;
2954  }
2955
2956  // Normalize other comparisons to GT.
2957  bool Swap = false, Invert = false;
2958  switch (C.CCMask) {
2959    case SystemZ::CCMASK_CMP_GT: break;
2960    case SystemZ::CCMASK_CMP_LT: Swap = true; break;
2961    case SystemZ::CCMASK_CMP_LE: Invert = true; break;
2962    case SystemZ::CCMASK_CMP_GE: Swap = Invert = true; break;
2963    default: llvm_unreachable("Invalid integer condition!");
2964  }
2965  if (Swap)
2966    std::swap(C.Op0, C.Op1);
2967
2968  if (C.ICmpType == SystemZICMP::UnsignedOnly)
2969    C.Opcode = SystemZISD::UCMP128HI;
2970  else
2971    C.Opcode = SystemZISD::SCMP128HI;
2972  C.CCValid = SystemZ::CCMASK_ANY;
2973  C.CCMask = SystemZ::CCMASK_1;
2974
2975  if (Invert)
2976    C.CCMask ^= C.CCValid;
2977}
2978
2979// See whether the comparison argument contains a redundant AND
2980// and remove it if so.  This sometimes happens due to the generic
2981// BRCOND expansion.
2982static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2983                                  Comparison &C) {
2984  if (C.Op0.getOpcode() != ISD::AND)
2985    return;
2986  auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2987  if (!Mask || Mask->getValueSizeInBits(0) > 64)
2988    return;
2989  KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
2990  if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2991    return;
2992
2993  C.Op0 = C.Op0.getOperand(0);
2994}
2995
2996// Return a Comparison that tests the condition-code result of intrinsic
2997// node Call against constant integer CC using comparison code Cond.
2998// Opcode is the opcode of the SystemZISD operation for the intrinsic
2999// and CCValid is the set of possible condition-code results.
3000static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
3001                                  SDValue Call, unsigned CCValid, uint64_t CC,
3002                                  ISD::CondCode Cond) {
3003  Comparison C(Call, SDValue(), SDValue());
3004  C.Opcode = Opcode;
3005  C.CCValid = CCValid;
3006  if (Cond == ISD::SETEQ)
3007    // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
3008    C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
3009  else if (Cond == ISD::SETNE)
3010    // ...and the inverse of that.
3011    C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
3012  else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
3013    // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
3014    // always true for CC>3.
3015    C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
3016  else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
3017    // ...and the inverse of that.
3018    C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
3019  else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
3020    // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
3021    // always true for CC>3.
3022    C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
3023  else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
3024    // ...and the inverse of that.
3025    C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
3026  else
3027    llvm_unreachable("Unexpected integer comparison type");
3028  C.CCMask &= CCValid;
3029  return C;
3030}
3031
3032// Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
3033static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
3034                         ISD::CondCode Cond, const SDLoc &DL,
3035                         SDValue Chain = SDValue(),
3036                         bool IsSignaling = false) {
3037  if (CmpOp1.getOpcode() == ISD::Constant) {
3038    assert(!Chain);
3039    unsigned Opcode, CCValid;
3040    if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
3041        CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
3042        isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
3043      return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid,
3044                             CmpOp1->getAsZExtVal(), Cond);
3045    if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
3046        CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
3047        isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
3048      return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid,
3049                             CmpOp1->getAsZExtVal(), Cond);
3050  }
3051  Comparison C(CmpOp0, CmpOp1, Chain);
3052  C.CCMask = CCMaskForCondCode(Cond);
3053  if (C.Op0.getValueType().isFloatingPoint()) {
3054    C.CCValid = SystemZ::CCMASK_FCMP;
3055    if (!C.Chain)
3056      C.Opcode = SystemZISD::FCMP;
3057    else if (!IsSignaling)
3058      C.Opcode = SystemZISD::STRICT_FCMP;
3059    else
3060      C.Opcode = SystemZISD::STRICT_FCMPS;
3061    adjustForFNeg(C);
3062  } else {
3063    assert(!C.Chain);
3064    C.CCValid = SystemZ::CCMASK_ICMP;
3065    C.Opcode = SystemZISD::ICMP;
3066    // Choose the type of comparison.  Equality and inequality tests can
3067    // use either signed or unsigned comparisons.  The choice also doesn't
3068    // matter if both sign bits are known to be clear.  In those cases we
3069    // want to give the main isel code the freedom to choose whichever
3070    // form fits best.
3071    if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
3072        C.CCMask == SystemZ::CCMASK_CMP_NE ||
3073        (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
3074      C.ICmpType = SystemZICMP::Any;
3075    else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
3076      C.ICmpType = SystemZICMP::UnsignedOnly;
3077    else
3078      C.ICmpType = SystemZICMP::SignedOnly;
3079    C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
3080    adjustForRedundantAnd(DAG, DL, C);
3081    adjustZeroCmp(DAG, DL, C);
3082    adjustSubwordCmp(DAG, DL, C);
3083    adjustForSubtraction(DAG, DL, C);
3084    adjustForLTGFR(C);
3085    adjustICmpTruncate(DAG, DL, C);
3086  }
3087
3088  if (shouldSwapCmpOperands(C)) {
3089    std::swap(C.Op0, C.Op1);
3090    C.CCMask = SystemZ::reverseCCMask(C.CCMask);
3091  }
3092
3093  adjustForTestUnderMask(DAG, DL, C);
3094  adjustICmp128(DAG, DL, C);
3095  return C;
3096}
3097
3098// Emit the comparison instruction described by C.
3099static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
3100  if (!C.Op1.getNode()) {
3101    SDNode *Node;
3102    switch (C.Op0.getOpcode()) {
3103    case ISD::INTRINSIC_W_CHAIN:
3104      Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
3105      return SDValue(Node, 0);
3106    case ISD::INTRINSIC_WO_CHAIN:
3107      Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
3108      return SDValue(Node, Node->getNumValues() - 1);
3109    default:
3110      llvm_unreachable("Invalid comparison operands");
3111    }
3112  }
3113  if (C.Opcode == SystemZISD::ICMP)
3114    return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
3115                       DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
3116  if (C.Opcode == SystemZISD::TM) {
3117    bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
3118                         bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
3119    return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
3120                       DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
3121  }
3122  if (C.Opcode == SystemZISD::VICMPES) {
3123    SDVTList VTs = DAG.getVTList(C.Op0.getValueType(), MVT::i32);
3124    SDValue Val = DAG.getNode(C.Opcode, DL, VTs, C.Op0, C.Op1);
3125    return SDValue(Val.getNode(), 1);
3126  }
3127  if (C.Chain) {
3128    SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
3129    return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1);
3130  }
3131  return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
3132}
3133
3134// Implement a 32-bit *MUL_LOHI operation by extending both operands to
3135// 64 bits.  Extend is the extension type to use.  Store the high part
3136// in Hi and the low part in Lo.
3137static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
3138                            SDValue Op0, SDValue Op1, SDValue &Hi,
3139                            SDValue &Lo) {
3140  Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
3141  Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
3142  SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
3143  Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
3144                   DAG.getConstant(32, DL, MVT::i64));
3145  Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
3146  Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
3147}
3148
3149// Lower a binary operation that produces two VT results, one in each
3150// half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
3151// and Opcode performs the GR128 operation.  Store the even register result
3152// in Even and the odd register result in Odd.
3153static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
3154                             unsigned Opcode, SDValue Op0, SDValue Op1,
3155                             SDValue &Even, SDValue &Odd) {
3156  SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
3157  bool Is32Bit = is32Bit(VT);
3158  Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
3159  Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
3160}
3161
3162// Return an i32 value that is 1 if the CC value produced by CCReg is
3163// in the mask CCMask and 0 otherwise.  CC is known to have a value
3164// in CCValid, so other values can be ignored.
3165static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
3166                         unsigned CCValid, unsigned CCMask) {
3167  SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
3168                   DAG.getConstant(0, DL, MVT::i32),
3169                   DAG.getTargetConstant(CCValid, DL, MVT::i32),
3170                   DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
3171  return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
3172}
3173
3174// Return the SystemISD vector comparison operation for CC, or 0 if it cannot
3175// be done directly.  Mode is CmpMode::Int for integer comparisons, CmpMode::FP
3176// for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet)
3177// floating-point comparisons, and CmpMode::SignalingFP for strict signaling
3178// floating-point comparisons.
3179enum class CmpMode { Int, FP, StrictFP, SignalingFP };
3180static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) {
3181  switch (CC) {
3182  case ISD::SETOEQ:
3183  case ISD::SETEQ:
3184    switch (Mode) {
3185    case CmpMode::Int:         return SystemZISD::VICMPE;
3186    case CmpMode::FP:          return SystemZISD::VFCMPE;
3187    case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPE;
3188    case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES;
3189    }
3190    llvm_unreachable("Bad mode");
3191
3192  case ISD::SETOGE:
3193  case ISD::SETGE:
3194    switch (Mode) {
3195    case CmpMode::Int:         return 0;
3196    case CmpMode::FP:          return SystemZISD::VFCMPHE;
3197    case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPHE;
3198    case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES;
3199    }
3200    llvm_unreachable("Bad mode");
3201
3202  case ISD::SETOGT:
3203  case ISD::SETGT:
3204    switch (Mode) {
3205    case CmpMode::Int:         return SystemZISD::VICMPH;
3206    case CmpMode::FP:          return SystemZISD::VFCMPH;
3207    case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPH;
3208    case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS;
3209    }
3210    llvm_unreachable("Bad mode");
3211
3212  case ISD::SETUGT:
3213    switch (Mode) {
3214    case CmpMode::Int:         return SystemZISD::VICMPHL;
3215    case CmpMode::FP:          return 0;
3216    case CmpMode::StrictFP:    return 0;
3217    case CmpMode::SignalingFP: return 0;
3218    }
3219    llvm_unreachable("Bad mode");
3220
3221  default:
3222    return 0;
3223  }
3224}
3225
3226// Return the SystemZISD vector comparison operation for CC or its inverse,
3227// or 0 if neither can be done directly.  Indicate in Invert whether the
3228// result is for the inverse of CC.  Mode is as above.
3229static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode,
3230                                            bool &Invert) {
3231  if (unsigned Opcode = getVectorComparison(CC, Mode)) {
3232    Invert = false;
3233    return Opcode;
3234  }
3235
3236  CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32);
3237  if (unsigned Opcode = getVectorComparison(CC, Mode)) {
3238    Invert = true;
3239    return Opcode;
3240  }
3241
3242  return 0;
3243}
3244
3245// Return a v2f64 that contains the extended form of elements Start and Start+1
3246// of v4f32 value Op.  If Chain is nonnull, return the strict form.
3247static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
3248                                  SDValue Op, SDValue Chain) {
3249  int Mask[] = { Start, -1, Start + 1, -1 };
3250  Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
3251  if (Chain) {
3252    SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other);
3253    return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op);
3254  }
3255  return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
3256}
3257
3258// Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
3259// producing a result of type VT.  If Chain is nonnull, return the strict form.
3260SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
3261                                            const SDLoc &DL, EVT VT,
3262                                            SDValue CmpOp0,
3263                                            SDValue CmpOp1,
3264                                            SDValue Chain) const {
3265  // There is no hardware support for v4f32 (unless we have the vector
3266  // enhancements facility 1), so extend the vector into two v2f64s
3267  // and compare those.
3268  if (CmpOp0.getValueType() == MVT::v4f32 &&
3269      !Subtarget.hasVectorEnhancements1()) {
3270    SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain);
3271    SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain);
3272    SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain);
3273    SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain);
3274    if (Chain) {
3275      SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other);
3276      SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1);
3277      SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1);
3278      SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
3279      SDValue Chains[6] = { H0.getValue(1), L0.getValue(1),
3280                            H1.getValue(1), L1.getValue(1),
3281                            HRes.getValue(1), LRes.getValue(1) };
3282      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
3283      SDValue Ops[2] = { Res, NewChain };
3284      return DAG.getMergeValues(Ops, DL);
3285    }
3286    SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
3287    SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
3288    return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
3289  }
3290  if (Chain) {
3291    SDVTList VTs = DAG.getVTList(VT, MVT::Other);
3292    return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1);
3293  }
3294  return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
3295}
3296
3297// Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
3298// an integer mask of type VT.  If Chain is nonnull, we have a strict
3299// floating-point comparison.  If in addition IsSignaling is true, we have
3300// a strict signaling floating-point comparison.
3301SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
3302                                                const SDLoc &DL, EVT VT,
3303                                                ISD::CondCode CC,
3304                                                SDValue CmpOp0,
3305                                                SDValue CmpOp1,
3306                                                SDValue Chain,
3307                                                bool IsSignaling) const {
3308  bool IsFP = CmpOp0.getValueType().isFloatingPoint();
3309  assert (!Chain || IsFP);
3310  assert (!IsSignaling || Chain);
3311  CmpMode Mode = IsSignaling ? CmpMode::SignalingFP :
3312                 Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int;
3313  bool Invert = false;
3314  SDValue Cmp;
3315  switch (CC) {
3316    // Handle tests for order using (or (ogt y x) (oge x y)).
3317  case ISD::SETUO:
3318    Invert = true;
3319    [[fallthrough]];
3320  case ISD::SETO: {
3321    assert(IsFP && "Unexpected integer comparison");
3322    SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3323                              DL, VT, CmpOp1, CmpOp0, Chain);
3324    SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode),
3325                              DL, VT, CmpOp0, CmpOp1, Chain);
3326    Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
3327    if (Chain)
3328      Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
3329                          LT.getValue(1), GE.getValue(1));
3330    break;
3331  }
3332
3333    // Handle <> tests using (or (ogt y x) (ogt x y)).
3334  case ISD::SETUEQ:
3335    Invert = true;
3336    [[fallthrough]];
3337  case ISD::SETONE: {
3338    assert(IsFP && "Unexpected integer comparison");
3339    SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3340                              DL, VT, CmpOp1, CmpOp0, Chain);
3341    SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3342                              DL, VT, CmpOp0, CmpOp1, Chain);
3343    Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
3344    if (Chain)
3345      Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
3346                          LT.getValue(1), GT.getValue(1));
3347    break;
3348  }
3349
3350    // Otherwise a single comparison is enough.  It doesn't really
3351    // matter whether we try the inversion or the swap first, since
3352    // there are no cases where both work.
3353  default:
3354    if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
3355      Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain);
3356    else {
3357      CC = ISD::getSetCCSwappedOperands(CC);
3358      if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
3359        Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain);
3360      else
3361        llvm_unreachable("Unhandled comparison");
3362    }
3363    if (Chain)
3364      Chain = Cmp.getValue(1);
3365    break;
3366  }
3367  if (Invert) {
3368    SDValue Mask =
3369      DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
3370    Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
3371  }
3372  if (Chain && Chain.getNode() != Cmp.getNode()) {
3373    SDValue Ops[2] = { Cmp, Chain };
3374    Cmp = DAG.getMergeValues(Ops, DL);
3375  }
3376  return Cmp;
3377}
3378
3379SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
3380                                          SelectionDAG &DAG) const {
3381  SDValue CmpOp0   = Op.getOperand(0);
3382  SDValue CmpOp1   = Op.getOperand(1);
3383  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3384  SDLoc DL(Op);
3385  EVT VT = Op.getValueType();
3386  if (VT.isVector())
3387    return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
3388
3389  Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3390  SDValue CCReg = emitCmp(DAG, DL, C);
3391  return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
3392}
3393
3394SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op,
3395                                                  SelectionDAG &DAG,
3396                                                  bool IsSignaling) const {
3397  SDValue Chain    = Op.getOperand(0);
3398  SDValue CmpOp0   = Op.getOperand(1);
3399  SDValue CmpOp1   = Op.getOperand(2);
3400  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
3401  SDLoc DL(Op);
3402  EVT VT = Op.getNode()->getValueType(0);
3403  if (VT.isVector()) {
3404    SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1,
3405                                   Chain, IsSignaling);
3406    return Res.getValue(Op.getResNo());
3407  }
3408
3409  Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling));
3410  SDValue CCReg = emitCmp(DAG, DL, C);
3411  CCReg->setFlags(Op->getFlags());
3412  SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
3413  SDValue Ops[2] = { Result, CCReg.getValue(1) };
3414  return DAG.getMergeValues(Ops, DL);
3415}
3416
3417SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3418  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3419  SDValue CmpOp0   = Op.getOperand(2);
3420  SDValue CmpOp1   = Op.getOperand(3);
3421  SDValue Dest     = Op.getOperand(4);
3422  SDLoc DL(Op);
3423
3424  Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3425  SDValue CCReg = emitCmp(DAG, DL, C);
3426  return DAG.getNode(
3427      SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
3428      DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3429      DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
3430}
3431
3432// Return true if Pos is CmpOp and Neg is the negative of CmpOp,
3433// allowing Pos and Neg to be wider than CmpOp.
3434static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
3435  return (Neg.getOpcode() == ISD::SUB &&
3436          Neg.getOperand(0).getOpcode() == ISD::Constant &&
3437          Neg.getConstantOperandVal(0) == 0 && Neg.getOperand(1) == Pos &&
3438          (Pos == CmpOp || (Pos.getOpcode() == ISD::SIGN_EXTEND &&
3439                            Pos.getOperand(0) == CmpOp)));
3440}
3441
3442// Return the absolute or negative absolute of Op; IsNegative decides which.
3443static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
3444                           bool IsNegative) {
3445  Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op);
3446  if (IsNegative)
3447    Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
3448                     DAG.getConstant(0, DL, Op.getValueType()), Op);
3449  return Op;
3450}
3451
3452SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
3453                                              SelectionDAG &DAG) const {
3454  SDValue CmpOp0   = Op.getOperand(0);
3455  SDValue CmpOp1   = Op.getOperand(1);
3456  SDValue TrueOp   = Op.getOperand(2);
3457  SDValue FalseOp  = Op.getOperand(3);
3458  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3459  SDLoc DL(Op);
3460
3461  Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3462
3463  // Check for absolute and negative-absolute selections, including those
3464  // where the comparison value is sign-extended (for LPGFR and LNGFR).
3465  // This check supplements the one in DAGCombiner.
3466  if (C.Opcode == SystemZISD::ICMP && C.CCMask != SystemZ::CCMASK_CMP_EQ &&
3467      C.CCMask != SystemZ::CCMASK_CMP_NE &&
3468      C.Op1.getOpcode() == ISD::Constant &&
3469      cast<ConstantSDNode>(C.Op1)->getValueSizeInBits(0) <= 64 &&
3470      C.Op1->getAsZExtVal() == 0) {
3471    if (isAbsolute(C.Op0, TrueOp, FalseOp))
3472      return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
3473    if (isAbsolute(C.Op0, FalseOp, TrueOp))
3474      return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
3475  }
3476
3477  SDValue CCReg = emitCmp(DAG, DL, C);
3478  SDValue Ops[] = {TrueOp, FalseOp,
3479                   DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3480                   DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
3481
3482  return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
3483}
3484
3485SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
3486                                                  SelectionDAG &DAG) const {
3487  SDLoc DL(Node);
3488  const GlobalValue *GV = Node->getGlobal();
3489  int64_t Offset = Node->getOffset();
3490  EVT PtrVT = getPointerTy(DAG.getDataLayout());
3491  CodeModel::Model CM = DAG.getTarget().getCodeModel();
3492
3493  SDValue Result;
3494  if (Subtarget.isPC32DBLSymbol(GV, CM)) {
3495    if (isInt<32>(Offset)) {
3496      // Assign anchors at 1<<12 byte boundaries.
3497      uint64_t Anchor = Offset & ~uint64_t(0xfff);
3498      Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
3499      Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3500
3501      // The offset can be folded into the address if it is aligned to a
3502      // halfword.
3503      Offset -= Anchor;
3504      if (Offset != 0 && (Offset & 1) == 0) {
3505        SDValue Full =
3506          DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
3507        Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
3508        Offset = 0;
3509      }
3510    } else {
3511      // Conservatively load a constant offset greater than 32 bits into a
3512      // register below.
3513      Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
3514      Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3515    }
3516  } else if (Subtarget.isTargetELF()) {
3517    Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
3518    Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3519    Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3520                         MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3521  } else if (Subtarget.isTargetzOS()) {
3522    Result = getADAEntry(DAG, GV, DL, PtrVT);
3523  } else
3524    llvm_unreachable("Unexpected Subtarget");
3525
3526  // If there was a non-zero offset that we didn't fold, create an explicit
3527  // addition for it.
3528  if (Offset != 0)
3529    Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3530                         DAG.getConstant(Offset, DL, PtrVT));
3531
3532  return Result;
3533}
3534
3535SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
3536                                                 SelectionDAG &DAG,
3537                                                 unsigned Opcode,
3538                                                 SDValue GOTOffset) const {
3539  SDLoc DL(Node);
3540  EVT PtrVT = getPointerTy(DAG.getDataLayout());
3541  SDValue Chain = DAG.getEntryNode();
3542  SDValue Glue;
3543
3544  if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3545      CallingConv::GHC)
3546    report_fatal_error("In GHC calling convention TLS is not supported");
3547
3548  // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
3549  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
3550  Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
3551  Glue = Chain.getValue(1);
3552  Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
3553  Glue = Chain.getValue(1);
3554
3555  // The first call operand is the chain and the second is the TLS symbol.
3556  SmallVector<SDValue, 8> Ops;
3557  Ops.push_back(Chain);
3558  Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
3559                                           Node->getValueType(0),
3560                                           0, 0));
3561
3562  // Add argument registers to the end of the list so that they are
3563  // known live into the call.
3564  Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
3565  Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
3566
3567  // Add a register mask operand representing the call-preserved registers.
3568  const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3569  const uint32_t *Mask =
3570      TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3571  assert(Mask && "Missing call preserved mask for calling convention");
3572  Ops.push_back(DAG.getRegisterMask(Mask));
3573
3574  // Glue the call to the argument copies.
3575  Ops.push_back(Glue);
3576
3577  // Emit the call.
3578  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3579  Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
3580  Glue = Chain.getValue(1);
3581
3582  // Copy the return value from %r2.
3583  return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
3584}
3585
3586SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
3587                                                  SelectionDAG &DAG) const {
3588  SDValue Chain = DAG.getEntryNode();
3589  EVT PtrVT = getPointerTy(DAG.getDataLayout());
3590
3591  // The high part of the thread pointer is in access register 0.
3592  SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
3593  TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
3594
3595  // The low part of the thread pointer is in access register 1.
3596  SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
3597  TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
3598
3599  // Merge them into a single 64-bit address.
3600  SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
3601                                    DAG.getConstant(32, DL, PtrVT));
3602  return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
3603}
3604
3605SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
3606                                                     SelectionDAG &DAG) const {
3607  if (DAG.getTarget().useEmulatedTLS())
3608    return LowerToTLSEmulatedModel(Node, DAG);
3609  SDLoc DL(Node);
3610  const GlobalValue *GV = Node->getGlobal();
3611  EVT PtrVT = getPointerTy(DAG.getDataLayout());
3612  TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
3613
3614  if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3615      CallingConv::GHC)
3616    report_fatal_error("In GHC calling convention TLS is not supported");
3617
3618  SDValue TP = lowerThreadPointer(DL, DAG);
3619
3620  // Get the offset of GA from the thread pointer, based on the TLS model.
3621  SDValue Offset;
3622  switch (model) {
3623    case TLSModel::GeneralDynamic: {
3624      // Load the GOT offset of the tls_index (module ID / per-symbol offset).
3625      SystemZConstantPoolValue *CPV =
3626        SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
3627
3628      Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3629      Offset = DAG.getLoad(
3630          PtrVT, DL, DAG.getEntryNode(), Offset,
3631          MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3632
3633      // Call __tls_get_offset to retrieve the offset.
3634      Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
3635      break;
3636    }
3637
3638    case TLSModel::LocalDynamic: {
3639      // Load the GOT offset of the module ID.
3640      SystemZConstantPoolValue *CPV =
3641        SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
3642
3643      Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3644      Offset = DAG.getLoad(
3645          PtrVT, DL, DAG.getEntryNode(), Offset,
3646          MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3647
3648      // Call __tls_get_offset to retrieve the module base offset.
3649      Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
3650
3651      // Note: The SystemZLDCleanupPass will remove redundant computations
3652      // of the module base offset.  Count total number of local-dynamic
3653      // accesses to trigger execution of that pass.
3654      SystemZMachineFunctionInfo* MFI =
3655        DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
3656      MFI->incNumLocalDynamicTLSAccesses();
3657
3658      // Add the per-symbol offset.
3659      CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
3660
3661      SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3662      DTPOffset = DAG.getLoad(
3663          PtrVT, DL, DAG.getEntryNode(), DTPOffset,
3664          MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3665
3666      Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
3667      break;
3668    }
3669
3670    case TLSModel::InitialExec: {
3671      // Load the offset from the GOT.
3672      Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3673                                          SystemZII::MO_INDNTPOFF);
3674      Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
3675      Offset =
3676          DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
3677                      MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3678      break;
3679    }
3680
3681    case TLSModel::LocalExec: {
3682      // Force the offset into the constant pool and load it from there.
3683      SystemZConstantPoolValue *CPV =
3684        SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
3685
3686      Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3687      Offset = DAG.getLoad(
3688          PtrVT, DL, DAG.getEntryNode(), Offset,
3689          MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3690      break;
3691    }
3692  }
3693
3694  // Add the base and offset together.
3695  return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
3696}
3697
3698SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
3699                                                 SelectionDAG &DAG) const {
3700  SDLoc DL(Node);
3701  const BlockAddress *BA = Node->getBlockAddress();
3702  int64_t Offset = Node->getOffset();
3703  EVT PtrVT = getPointerTy(DAG.getDataLayout());
3704
3705  SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
3706  Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3707  return Result;
3708}
3709
3710SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
3711                                              SelectionDAG &DAG) const {
3712  SDLoc DL(JT);
3713  EVT PtrVT = getPointerTy(DAG.getDataLayout());
3714  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3715
3716  // Use LARL to load the address of the table.
3717  return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3718}
3719
3720SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
3721                                                 SelectionDAG &DAG) const {
3722  SDLoc DL(CP);
3723  EVT PtrVT = getPointerTy(DAG.getDataLayout());
3724
3725  SDValue Result;
3726  if (CP->isMachineConstantPoolEntry())
3727    Result =
3728        DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign());
3729  else
3730    Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
3731                                       CP->getOffset());
3732
3733  // Use LARL to load the address of the constant pool entry.
3734  return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3735}
3736
3737SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
3738                                              SelectionDAG &DAG) const {
3739  auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
3740  MachineFunction &MF = DAG.getMachineFunction();
3741  MachineFrameInfo &MFI = MF.getFrameInfo();
3742  MFI.setFrameAddressIsTaken(true);
3743
3744  SDLoc DL(Op);
3745  unsigned Depth = Op.getConstantOperandVal(0);
3746  EVT PtrVT = getPointerTy(DAG.getDataLayout());
3747
3748  // By definition, the frame address is the address of the back chain.  (In
3749  // the case of packed stack without backchain, return the address where the
3750  // backchain would have been stored. This will either be an unused space or
3751  // contain a saved register).
3752  int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF);
3753  SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
3754
3755  if (Depth > 0) {
3756    // FIXME The frontend should detect this case.
3757    if (!MF.getSubtarget<SystemZSubtarget>().hasBackChain())
3758      report_fatal_error("Unsupported stack frame traversal count");
3759
3760    SDValue Offset = DAG.getConstant(TFL->getBackchainOffset(MF), DL, PtrVT);
3761    while (Depth--) {
3762      BackChain = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), BackChain,
3763                              MachinePointerInfo());
3764      BackChain = DAG.getNode(ISD::ADD, DL, PtrVT, BackChain, Offset);
3765    }
3766  }
3767
3768  return BackChain;
3769}
3770
3771SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
3772                                               SelectionDAG &DAG) const {
3773  MachineFunction &MF = DAG.getMachineFunction();
3774  MachineFrameInfo &MFI = MF.getFrameInfo();
3775  MFI.setReturnAddressIsTaken(true);
3776
3777  if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3778    return SDValue();
3779
3780  SDLoc DL(Op);
3781  unsigned Depth = Op.getConstantOperandVal(0);
3782  EVT PtrVT = getPointerTy(DAG.getDataLayout());
3783
3784  if (Depth > 0) {
3785    // FIXME The frontend should detect this case.
3786    if (!MF.getSubtarget<SystemZSubtarget>().hasBackChain())
3787      report_fatal_error("Unsupported stack frame traversal count");
3788
3789    SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
3790    auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
3791    int Offset = (TFL->usePackedStack(MF) ? -2 : 14) *
3792                 getTargetMachine().getPointerSize(0);
3793    SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, FrameAddr,
3794                              DAG.getConstant(Offset, DL, PtrVT));
3795    return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr,
3796                       MachinePointerInfo());
3797  }
3798
3799  // Return R14D, which has the return address. Mark it an implicit live-in.
3800  Register LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
3801  return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3802}
3803
3804SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3805                                            SelectionDAG &DAG) const {
3806  SDLoc DL(Op);
3807  SDValue In = Op.getOperand(0);
3808  EVT InVT = In.getValueType();
3809  EVT ResVT = Op.getValueType();
3810
3811  // Convert loads directly.  This is normally done by DAGCombiner,
3812  // but we need this case for bitcasts that are created during lowering
3813  // and which are then lowered themselves.
3814  if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3815    if (ISD::isNormalLoad(LoadN)) {
3816      SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3817                                    LoadN->getBasePtr(), LoadN->getMemOperand());
3818      // Update the chain uses.
3819      DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3820      return NewLoad;
3821    }
3822
3823  if (InVT == MVT::i32 && ResVT == MVT::f32) {
3824    SDValue In64;
3825    if (Subtarget.hasHighWord()) {
3826      SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3827                                       MVT::i64);
3828      In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3829                                       MVT::i64, SDValue(U64, 0), In);
3830    } else {
3831      In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3832      In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3833                         DAG.getConstant(32, DL, MVT::i64));
3834    }
3835    SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3836    return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3837                                      DL, MVT::f32, Out64);
3838  }
3839  if (InVT == MVT::f32 && ResVT == MVT::i32) {
3840    SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3841    SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3842                                             MVT::f64, SDValue(U64, 0), In);
3843    SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3844    if (Subtarget.hasHighWord())
3845      return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3846                                        MVT::i32, Out64);
3847    SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3848                                DAG.getConstant(32, DL, MVT::i64));
3849    return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3850  }
3851  llvm_unreachable("Unexpected bitcast combination");
3852}
3853
3854SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3855                                            SelectionDAG &DAG) const {
3856
3857  if (Subtarget.isTargetXPLINK64())
3858    return lowerVASTART_XPLINK(Op, DAG);
3859  else
3860    return lowerVASTART_ELF(Op, DAG);
3861}
3862
3863SDValue SystemZTargetLowering::lowerVASTART_XPLINK(SDValue Op,
3864                                                   SelectionDAG &DAG) const {
3865  MachineFunction &MF = DAG.getMachineFunction();
3866  SystemZMachineFunctionInfo *FuncInfo =
3867      MF.getInfo<SystemZMachineFunctionInfo>();
3868
3869  SDLoc DL(Op);
3870
3871  // vastart just stores the address of the VarArgsFrameIndex slot into the
3872  // memory location argument.
3873  EVT PtrVT = getPointerTy(DAG.getDataLayout());
3874  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3875  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3876  return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
3877                      MachinePointerInfo(SV));
3878}
3879
3880SDValue SystemZTargetLowering::lowerVASTART_ELF(SDValue Op,
3881                                                SelectionDAG &DAG) const {
3882  MachineFunction &MF = DAG.getMachineFunction();
3883  SystemZMachineFunctionInfo *FuncInfo =
3884    MF.getInfo<SystemZMachineFunctionInfo>();
3885  EVT PtrVT = getPointerTy(DAG.getDataLayout());
3886
3887  SDValue Chain   = Op.getOperand(0);
3888  SDValue Addr    = Op.getOperand(1);
3889  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3890  SDLoc DL(Op);
3891
3892  // The initial values of each field.
3893  const unsigned NumFields = 4;
3894  SDValue Fields[NumFields] = {
3895    DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3896    DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3897    DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3898    DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3899  };
3900
3901  // Store each field into its respective slot.
3902  SDValue MemOps[NumFields];
3903  unsigned Offset = 0;
3904  for (unsigned I = 0; I < NumFields; ++I) {
3905    SDValue FieldAddr = Addr;
3906    if (Offset != 0)
3907      FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3908                              DAG.getIntPtrConstant(Offset, DL));
3909    MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3910                             MachinePointerInfo(SV, Offset));
3911    Offset += 8;
3912  }
3913  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3914}
3915
3916SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3917                                           SelectionDAG &DAG) const {
3918  SDValue Chain      = Op.getOperand(0);
3919  SDValue DstPtr     = Op.getOperand(1);
3920  SDValue SrcPtr     = Op.getOperand(2);
3921  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3922  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3923  SDLoc DL(Op);
3924
3925  uint32_t Sz =
3926      Subtarget.isTargetXPLINK64() ? getTargetMachine().getPointerSize(0) : 32;
3927  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(Sz, DL),
3928                       Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false,
3929                       /*isTailCall*/ false, MachinePointerInfo(DstSV),
3930                       MachinePointerInfo(SrcSV));
3931}
3932
3933SDValue
3934SystemZTargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op,
3935                                               SelectionDAG &DAG) const {
3936  if (Subtarget.isTargetXPLINK64())
3937    return lowerDYNAMIC_STACKALLOC_XPLINK(Op, DAG);
3938  else
3939    return lowerDYNAMIC_STACKALLOC_ELF(Op, DAG);
3940}
3941
3942SDValue
3943SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_XPLINK(SDValue Op,
3944                                                      SelectionDAG &DAG) const {
3945  const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3946  MachineFunction &MF = DAG.getMachineFunction();
3947  bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3948  SDValue Chain = Op.getOperand(0);
3949  SDValue Size = Op.getOperand(1);
3950  SDValue Align = Op.getOperand(2);
3951  SDLoc DL(Op);
3952
3953  // If user has set the no alignment function attribute, ignore
3954  // alloca alignments.
3955  uint64_t AlignVal = (RealignOpt ? Align->getAsZExtVal() : 0);
3956
3957  uint64_t StackAlign = TFI->getStackAlignment();
3958  uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3959  uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3960
3961  SDValue NeededSpace = Size;
3962
3963  // Add extra space for alignment if needed.
3964  EVT PtrVT = getPointerTy(MF.getDataLayout());
3965  if (ExtraAlignSpace)
3966    NeededSpace = DAG.getNode(ISD::ADD, DL, PtrVT, NeededSpace,
3967                              DAG.getConstant(ExtraAlignSpace, DL, PtrVT));
3968
3969  bool IsSigned = false;
3970  bool DoesNotReturn = false;
3971  bool IsReturnValueUsed = false;
3972  EVT VT = Op.getValueType();
3973  SDValue AllocaCall =
3974      makeExternalCall(Chain, DAG, "@@ALCAXP", VT, ArrayRef(NeededSpace),
3975                       CallingConv::C, IsSigned, DL, DoesNotReturn,
3976                       IsReturnValueUsed)
3977          .first;
3978
3979  // Perform a CopyFromReg from %GPR4 (stack pointer register). Chain and Glue
3980  // to end of call in order to ensure it isn't broken up from the call
3981  // sequence.
3982  auto &Regs = Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
3983  Register SPReg = Regs.getStackPointerRegister();
3984  Chain = AllocaCall.getValue(1);
3985  SDValue Glue = AllocaCall.getValue(2);
3986  SDValue NewSPRegNode = DAG.getCopyFromReg(Chain, DL, SPReg, PtrVT, Glue);
3987  Chain = NewSPRegNode.getValue(1);
3988
3989  MVT PtrMVT = getPointerMemTy(MF.getDataLayout());
3990  SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, PtrMVT);
3991  SDValue Result = DAG.getNode(ISD::ADD, DL, PtrMVT, NewSPRegNode, ArgAdjust);
3992
3993  // Dynamically realign if needed.
3994  if (ExtraAlignSpace) {
3995    Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3996                         DAG.getConstant(ExtraAlignSpace, DL, PtrVT));
3997    Result = DAG.getNode(ISD::AND, DL, PtrVT, Result,
3998                         DAG.getConstant(~(RequiredAlign - 1), DL, PtrVT));
3999  }
4000
4001  SDValue Ops[2] = {Result, Chain};
4002  return DAG.getMergeValues(Ops, DL);
4003}
4004
4005SDValue
4006SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_ELF(SDValue Op,
4007                                                   SelectionDAG &DAG) const {
4008  const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
4009  MachineFunction &MF = DAG.getMachineFunction();
4010  bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
4011  bool StoreBackchain = MF.getSubtarget<SystemZSubtarget>().hasBackChain();
4012
4013  SDValue Chain = Op.getOperand(0);
4014  SDValue Size  = Op.getOperand(1);
4015  SDValue Align = Op.getOperand(2);
4016  SDLoc DL(Op);
4017
4018  // If user has set the no alignment function attribute, ignore
4019  // alloca alignments.
4020  uint64_t AlignVal = (RealignOpt ? Align->getAsZExtVal() : 0);
4021
4022  uint64_t StackAlign = TFI->getStackAlignment();
4023  uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
4024  uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
4025
4026  Register SPReg = getStackPointerRegisterToSaveRestore();
4027  SDValue NeededSpace = Size;
4028
4029  // Get a reference to the stack pointer.
4030  SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
4031
4032  // If we need a backchain, save it now.
4033  SDValue Backchain;
4034  if (StoreBackchain)
4035    Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
4036                            MachinePointerInfo());
4037
4038  // Add extra space for alignment if needed.
4039  if (ExtraAlignSpace)
4040    NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
4041                              DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
4042
4043  // Get the new stack pointer value.
4044  SDValue NewSP;
4045  if (hasInlineStackProbe(MF)) {
4046    NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL,
4047                DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace);
4048    Chain = NewSP.getValue(1);
4049  }
4050  else {
4051    NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
4052    // Copy the new stack pointer back.
4053    Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
4054  }
4055
4056  // The allocated data lives above the 160 bytes allocated for the standard
4057  // frame, plus any outgoing stack arguments.  We don't know how much that
4058  // amounts to yet, so emit a special ADJDYNALLOC placeholder.
4059  SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
4060  SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
4061
4062  // Dynamically realign if needed.
4063  if (RequiredAlign > StackAlign) {
4064    Result =
4065      DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
4066                  DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
4067    Result =
4068      DAG.getNode(ISD::AND, DL, MVT::i64, Result,
4069                  DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
4070  }
4071
4072  if (StoreBackchain)
4073    Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
4074                         MachinePointerInfo());
4075
4076  SDValue Ops[2] = { Result, Chain };
4077  return DAG.getMergeValues(Ops, DL);
4078}
4079
4080SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
4081    SDValue Op, SelectionDAG &DAG) const {
4082  SDLoc DL(Op);
4083
4084  return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
4085}
4086
4087SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
4088                                              SelectionDAG &DAG) const {
4089  EVT VT = Op.getValueType();
4090  SDLoc DL(Op);
4091  SDValue Ops[2];
4092  if (is32Bit(VT))
4093    // Just do a normal 64-bit multiplication and extract the results.
4094    // We define this so that it can be used for constant division.
4095    lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
4096                    Op.getOperand(1), Ops[1], Ops[0]);
4097  else if (Subtarget.hasMiscellaneousExtensions2())
4098    // SystemZISD::SMUL_LOHI returns the low result in the odd register and
4099    // the high result in the even register.  ISD::SMUL_LOHI is defined to
4100    // return the low half first, so the results are in reverse order.
4101    lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
4102                     Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
4103  else {
4104    // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
4105    //
4106    //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
4107    //
4108    // but using the fact that the upper halves are either all zeros
4109    // or all ones:
4110    //
4111    //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
4112    //
4113    // and grouping the right terms together since they are quicker than the
4114    // multiplication:
4115    //
4116    //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
4117    SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
4118    SDValue LL = Op.getOperand(0);
4119    SDValue RL = Op.getOperand(1);
4120    SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
4121    SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
4122    // SystemZISD::UMUL_LOHI returns the low result in the odd register and
4123    // the high result in the even register.  ISD::SMUL_LOHI is defined to
4124    // return the low half first, so the results are in reverse order.
4125    lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
4126                     LL, RL, Ops[1], Ops[0]);
4127    SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
4128    SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
4129    SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
4130    Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
4131  }
4132  return DAG.getMergeValues(Ops, DL);
4133}
4134
4135SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
4136                                              SelectionDAG &DAG) const {
4137  EVT VT = Op.getValueType();
4138  SDLoc DL(Op);
4139  SDValue Ops[2];
4140  if (is32Bit(VT))
4141    // Just do a normal 64-bit multiplication and extract the results.
4142    // We define this so that it can be used for constant division.
4143    lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
4144                    Op.getOperand(1), Ops[1], Ops[0]);
4145  else
4146    // SystemZISD::UMUL_LOHI returns the low result in the odd register and
4147    // the high result in the even register.  ISD::UMUL_LOHI is defined to
4148    // return the low half first, so the results are in reverse order.
4149    lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
4150                     Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
4151  return DAG.getMergeValues(Ops, DL);
4152}
4153
4154SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
4155                                            SelectionDAG &DAG) const {
4156  SDValue Op0 = Op.getOperand(0);
4157  SDValue Op1 = Op.getOperand(1);
4158  EVT VT = Op.getValueType();
4159  SDLoc DL(Op);
4160
4161  // We use DSGF for 32-bit division.  This means the first operand must
4162  // always be 64-bit, and the second operand should be 32-bit whenever
4163  // that is possible, to improve performance.
4164  if (is32Bit(VT))
4165    Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
4166  else if (DAG.ComputeNumSignBits(Op1) > 32)
4167    Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
4168
4169  // DSG(F) returns the remainder in the even register and the
4170  // quotient in the odd register.
4171  SDValue Ops[2];
4172  lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
4173  return DAG.getMergeValues(Ops, DL);
4174}
4175
4176SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
4177                                            SelectionDAG &DAG) const {
4178  EVT VT = Op.getValueType();
4179  SDLoc DL(Op);
4180
4181  // DL(G) returns the remainder in the even register and the
4182  // quotient in the odd register.
4183  SDValue Ops[2];
4184  lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
4185                   Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
4186  return DAG.getMergeValues(Ops, DL);
4187}
4188
4189SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
4190  assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
4191
4192  // Get the known-zero masks for each operand.
4193  SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
4194  KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
4195                        DAG.computeKnownBits(Ops[1])};
4196
4197  // See if the upper 32 bits of one operand and the lower 32 bits of the
4198  // other are known zero.  They are the low and high operands respectively.
4199  uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
4200                       Known[1].Zero.getZExtValue() };
4201  unsigned High, Low;
4202  if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
4203    High = 1, Low = 0;
4204  else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
4205    High = 0, Low = 1;
4206  else
4207    return Op;
4208
4209  SDValue LowOp = Ops[Low];
4210  SDValue HighOp = Ops[High];
4211
4212  // If the high part is a constant, we're better off using IILH.
4213  if (HighOp.getOpcode() == ISD::Constant)
4214    return Op;
4215
4216  // If the low part is a constant that is outside the range of LHI,
4217  // then we're better off using IILF.
4218  if (LowOp.getOpcode() == ISD::Constant) {
4219    int64_t Value = int32_t(LowOp->getAsZExtVal());
4220    if (!isInt<16>(Value))
4221      return Op;
4222  }
4223
4224  // Check whether the high part is an AND that doesn't change the
4225  // high 32 bits and just masks out low bits.  We can skip it if so.
4226  if (HighOp.getOpcode() == ISD::AND &&
4227      HighOp.getOperand(1).getOpcode() == ISD::Constant) {
4228    SDValue HighOp0 = HighOp.getOperand(0);
4229    uint64_t Mask = HighOp.getConstantOperandVal(1);
4230    if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
4231      HighOp = HighOp0;
4232  }
4233
4234  // Take advantage of the fact that all GR32 operations only change the
4235  // low 32 bits by truncating Low to an i32 and inserting it directly
4236  // using a subreg.  The interesting cases are those where the truncation
4237  // can be folded.
4238  SDLoc DL(Op);
4239  SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
4240  return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
4241                                   MVT::i64, HighOp, Low32);
4242}
4243
4244// Lower SADDO/SSUBO/UADDO/USUBO nodes.
4245SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
4246                                          SelectionDAG &DAG) const {
4247  SDNode *N = Op.getNode();
4248  SDValue LHS = N->getOperand(0);
4249  SDValue RHS = N->getOperand(1);
4250  SDLoc DL(N);
4251
4252  if (N->getValueType(0) == MVT::i128) {
4253    unsigned BaseOp = 0;
4254    unsigned FlagOp = 0;
4255    bool IsBorrow = false;
4256    switch (Op.getOpcode()) {
4257    default: llvm_unreachable("Unknown instruction!");
4258    case ISD::UADDO:
4259      BaseOp = ISD::ADD;
4260      FlagOp = SystemZISD::VACC;
4261      break;
4262    case ISD::USUBO:
4263      BaseOp = ISD::SUB;
4264      FlagOp = SystemZISD::VSCBI;
4265      IsBorrow = true;
4266      break;
4267    }
4268    SDValue Result = DAG.getNode(BaseOp, DL, MVT::i128, LHS, RHS);
4269    SDValue Flag = DAG.getNode(FlagOp, DL, MVT::i128, LHS, RHS);
4270    Flag = DAG.getNode(ISD::AssertZext, DL, MVT::i128, Flag,
4271                       DAG.getValueType(MVT::i1));
4272    Flag = DAG.getZExtOrTrunc(Flag, DL, N->getValueType(1));
4273    if (IsBorrow)
4274      Flag = DAG.getNode(ISD::XOR, DL, Flag.getValueType(),
4275                         Flag, DAG.getConstant(1, DL, Flag.getValueType()));
4276    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Flag);
4277  }
4278
4279  unsigned BaseOp = 0;
4280  unsigned CCValid = 0;
4281  unsigned CCMask = 0;
4282
4283  switch (Op.getOpcode()) {
4284  default: llvm_unreachable("Unknown instruction!");
4285  case ISD::SADDO:
4286    BaseOp = SystemZISD::SADDO;
4287    CCValid = SystemZ::CCMASK_ARITH;
4288    CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
4289    break;
4290  case ISD::SSUBO:
4291    BaseOp = SystemZISD::SSUBO;
4292    CCValid = SystemZ::CCMASK_ARITH;
4293    CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
4294    break;
4295  case ISD::UADDO:
4296    BaseOp = SystemZISD::UADDO;
4297    CCValid = SystemZ::CCMASK_LOGICAL;
4298    CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
4299    break;
4300  case ISD::USUBO:
4301    BaseOp = SystemZISD::USUBO;
4302    CCValid = SystemZ::CCMASK_LOGICAL;
4303    CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
4304    break;
4305  }
4306
4307  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
4308  SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
4309
4310  SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
4311  if (N->getValueType(1) == MVT::i1)
4312    SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
4313
4314  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
4315}
4316
4317static bool isAddCarryChain(SDValue Carry) {
4318  while (Carry.getOpcode() == ISD::UADDO_CARRY)
4319    Carry = Carry.getOperand(2);
4320  return Carry.getOpcode() == ISD::UADDO;
4321}
4322
4323static bool isSubBorrowChain(SDValue Carry) {
4324  while (Carry.getOpcode() == ISD::USUBO_CARRY)
4325    Carry = Carry.getOperand(2);
4326  return Carry.getOpcode() == ISD::USUBO;
4327}
4328
4329// Lower UADDO_CARRY/USUBO_CARRY nodes.
4330SDValue SystemZTargetLowering::lowerUADDSUBO_CARRY(SDValue Op,
4331                                                   SelectionDAG &DAG) const {
4332
4333  SDNode *N = Op.getNode();
4334  MVT VT = N->getSimpleValueType(0);
4335
4336  // Let legalize expand this if it isn't a legal type yet.
4337  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
4338    return SDValue();
4339
4340  SDValue LHS = N->getOperand(0);
4341  SDValue RHS = N->getOperand(1);
4342  SDValue Carry = Op.getOperand(2);
4343  SDLoc DL(N);
4344
4345  if (VT == MVT::i128) {
4346    unsigned BaseOp = 0;
4347    unsigned FlagOp = 0;
4348    bool IsBorrow = false;
4349    switch (Op.getOpcode()) {
4350    default: llvm_unreachable("Unknown instruction!");
4351    case ISD::UADDO_CARRY:
4352      BaseOp = SystemZISD::VAC;
4353      FlagOp = SystemZISD::VACCC;
4354      break;
4355    case ISD::USUBO_CARRY:
4356      BaseOp = SystemZISD::VSBI;
4357      FlagOp = SystemZISD::VSBCBI;
4358      IsBorrow = true;
4359      break;
4360    }
4361    if (IsBorrow)
4362      Carry = DAG.getNode(ISD::XOR, DL, Carry.getValueType(),
4363                          Carry, DAG.getConstant(1, DL, Carry.getValueType()));
4364    Carry = DAG.getZExtOrTrunc(Carry, DL, MVT::i128);
4365    SDValue Result = DAG.getNode(BaseOp, DL, MVT::i128, LHS, RHS, Carry);
4366    SDValue Flag = DAG.getNode(FlagOp, DL, MVT::i128, LHS, RHS, Carry);
4367    Flag = DAG.getNode(ISD::AssertZext, DL, MVT::i128, Flag,
4368                       DAG.getValueType(MVT::i1));
4369    Flag = DAG.getZExtOrTrunc(Flag, DL, N->getValueType(1));
4370    if (IsBorrow)
4371      Flag = DAG.getNode(ISD::XOR, DL, Flag.getValueType(),
4372                         Flag, DAG.getConstant(1, DL, Flag.getValueType()));
4373    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Flag);
4374  }
4375
4376  unsigned BaseOp = 0;
4377  unsigned CCValid = 0;
4378  unsigned CCMask = 0;
4379
4380  switch (Op.getOpcode()) {
4381  default: llvm_unreachable("Unknown instruction!");
4382  case ISD::UADDO_CARRY:
4383    if (!isAddCarryChain(Carry))
4384      return SDValue();
4385
4386    BaseOp = SystemZISD::ADDCARRY;
4387    CCValid = SystemZ::CCMASK_LOGICAL;
4388    CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
4389    break;
4390  case ISD::USUBO_CARRY:
4391    if (!isSubBorrowChain(Carry))
4392      return SDValue();
4393
4394    BaseOp = SystemZISD::SUBCARRY;
4395    CCValid = SystemZ::CCMASK_LOGICAL;
4396    CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
4397    break;
4398  }
4399
4400  // Set the condition code from the carry flag.
4401  Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
4402                      DAG.getConstant(CCValid, DL, MVT::i32),
4403                      DAG.getConstant(CCMask, DL, MVT::i32));
4404
4405  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4406  SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
4407
4408  SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
4409  if (N->getValueType(1) == MVT::i1)
4410    SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
4411
4412  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
4413}
4414
4415SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
4416                                          SelectionDAG &DAG) const {
4417  EVT VT = Op.getValueType();
4418  SDLoc DL(Op);
4419  Op = Op.getOperand(0);
4420
4421  if (VT.getScalarSizeInBits() == 128) {
4422    Op = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op);
4423    Op = DAG.getNode(ISD::CTPOP, DL, MVT::v2i64, Op);
4424    SDValue Tmp = DAG.getSplatBuildVector(MVT::v2i64, DL,
4425                                          DAG.getConstant(0, DL, MVT::i64));
4426    Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
4427    return Op;
4428  }
4429
4430  // Handle vector types via VPOPCT.
4431  if (VT.isVector()) {
4432    Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
4433    Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
4434    switch (VT.getScalarSizeInBits()) {
4435    case 8:
4436      break;
4437    case 16: {
4438      Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
4439      SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
4440      SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
4441      Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
4442      Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
4443      break;
4444    }
4445    case 32: {
4446      SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
4447                                            DAG.getConstant(0, DL, MVT::i32));
4448      Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
4449      break;
4450    }
4451    case 64: {
4452      SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
4453                                            DAG.getConstant(0, DL, MVT::i32));
4454      Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
4455      Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
4456      break;
4457    }
4458    default:
4459      llvm_unreachable("Unexpected type");
4460    }
4461    return Op;
4462  }
4463
4464  // Get the known-zero mask for the operand.
4465  KnownBits Known = DAG.computeKnownBits(Op);
4466  unsigned NumSignificantBits = Known.getMaxValue().getActiveBits();
4467  if (NumSignificantBits == 0)
4468    return DAG.getConstant(0, DL, VT);
4469
4470  // Skip known-zero high parts of the operand.
4471  int64_t OrigBitSize = VT.getSizeInBits();
4472  int64_t BitSize = llvm::bit_ceil(NumSignificantBits);
4473  BitSize = std::min(BitSize, OrigBitSize);
4474
4475  // The POPCNT instruction counts the number of bits in each byte.
4476  Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
4477  Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
4478  Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
4479
4480  // Add up per-byte counts in a binary tree.  All bits of Op at
4481  // position larger than BitSize remain zero throughout.
4482  for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
4483    SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
4484    if (BitSize != OrigBitSize)
4485      Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
4486                        DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
4487    Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
4488  }
4489
4490  // Extract overall result from high byte.
4491  if (BitSize > 8)
4492    Op = DAG.getNode(ISD::SRL, DL, VT, Op,
4493                     DAG.getConstant(BitSize - 8, DL, VT));
4494
4495  return Op;
4496}
4497
4498SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
4499                                                 SelectionDAG &DAG) const {
4500  SDLoc DL(Op);
4501  AtomicOrdering FenceOrdering =
4502      static_cast<AtomicOrdering>(Op.getConstantOperandVal(1));
4503  SyncScope::ID FenceSSID =
4504      static_cast<SyncScope::ID>(Op.getConstantOperandVal(2));
4505
4506  // The only fence that needs an instruction is a sequentially-consistent
4507  // cross-thread fence.
4508  if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
4509      FenceSSID == SyncScope::System) {
4510    return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
4511                                      Op.getOperand(0)),
4512                   0);
4513  }
4514
4515  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
4516  return DAG.getNode(ISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
4517}
4518
4519// Op is an atomic load.  Lower it into a normal volatile load.
4520SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
4521                                                SelectionDAG &DAG) const {
4522  auto *Node = cast<AtomicSDNode>(Op.getNode());
4523  if (Node->getMemoryVT() == MVT::i128) {
4524    // Use same code to handle both legal and non-legal i128 types.
4525    SmallVector<SDValue, 2> Results;
4526    LowerOperationWrapper(Node, Results, DAG);
4527    return DAG.getMergeValues(Results, SDLoc(Op));
4528  }
4529  return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
4530                        Node->getChain(), Node->getBasePtr(),
4531                        Node->getMemoryVT(), Node->getMemOperand());
4532}
4533
4534// Op is an atomic store.  Lower it into a normal volatile store.
4535SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
4536                                                 SelectionDAG &DAG) const {
4537  auto *Node = cast<AtomicSDNode>(Op.getNode());
4538  if (Node->getMemoryVT() == MVT::i128) {
4539    // Use same code to handle both legal and non-legal i128 types.
4540    SmallVector<SDValue, 1> Results;
4541    LowerOperationWrapper(Node, Results, DAG);
4542    return DAG.getMergeValues(Results, SDLoc(Op));
4543  }
4544  SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
4545                                    Node->getBasePtr(), Node->getMemoryVT(),
4546                                    Node->getMemOperand());
4547  // We have to enforce sequential consistency by performing a
4548  // serialization operation after the store.
4549  if (Node->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent)
4550    Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
4551                                       MVT::Other, Chain), 0);
4552  return Chain;
4553}
4554
4555// Prepare for a Compare And Swap for a subword operation. This needs to be
4556// done in memory with 4 bytes at natural alignment.
4557static void getCSAddressAndShifts(SDValue Addr, SelectionDAG &DAG, SDLoc DL,
4558                                  SDValue &AlignedAddr, SDValue &BitShift,
4559                                  SDValue &NegBitShift) {
4560  EVT PtrVT = Addr.getValueType();
4561  EVT WideVT = MVT::i32;
4562
4563  // Get the address of the containing word.
4564  AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4565                            DAG.getConstant(-4, DL, PtrVT));
4566
4567  // Get the number of bits that the word must be rotated left in order
4568  // to bring the field to the top bits of a GR32.
4569  BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4570                         DAG.getConstant(3, DL, PtrVT));
4571  BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4572
4573  // Get the complementing shift amount, for rotating a field in the top
4574  // bits back to its proper position.
4575  NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4576                            DAG.getConstant(0, DL, WideVT), BitShift);
4577
4578}
4579
4580// Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
4581// two into the fullword ATOMIC_LOADW_* operation given by Opcode.
4582SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
4583                                                   SelectionDAG &DAG,
4584                                                   unsigned Opcode) const {
4585  auto *Node = cast<AtomicSDNode>(Op.getNode());
4586
4587  // 32-bit operations need no special handling.
4588  EVT NarrowVT = Node->getMemoryVT();
4589  EVT WideVT = MVT::i32;
4590  if (NarrowVT == WideVT)
4591    return Op;
4592
4593  int64_t BitSize = NarrowVT.getSizeInBits();
4594  SDValue ChainIn = Node->getChain();
4595  SDValue Addr = Node->getBasePtr();
4596  SDValue Src2 = Node->getVal();
4597  MachineMemOperand *MMO = Node->getMemOperand();
4598  SDLoc DL(Node);
4599
4600  // Convert atomic subtracts of constants into additions.
4601  if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
4602    if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
4603      Opcode = SystemZISD::ATOMIC_LOADW_ADD;
4604      Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
4605    }
4606
4607  SDValue AlignedAddr, BitShift, NegBitShift;
4608  getCSAddressAndShifts(Addr, DAG, DL, AlignedAddr, BitShift, NegBitShift);
4609
4610  // Extend the source operand to 32 bits and prepare it for the inner loop.
4611  // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
4612  // operations require the source to be shifted in advance.  (This shift
4613  // can be folded if the source is constant.)  For AND and NAND, the lower
4614  // bits must be set, while for other opcodes they should be left clear.
4615  if (Opcode != SystemZISD::ATOMIC_SWAPW)
4616    Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
4617                       DAG.getConstant(32 - BitSize, DL, WideVT));
4618  if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
4619      Opcode == SystemZISD::ATOMIC_LOADW_NAND)
4620    Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
4621                       DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
4622
4623  // Construct the ATOMIC_LOADW_* node.
4624  SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
4625  SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
4626                    DAG.getConstant(BitSize, DL, WideVT) };
4627  SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
4628                                             NarrowVT, MMO);
4629
4630  // Rotate the result of the final CS so that the field is in the lower
4631  // bits of a GR32, then truncate it.
4632  SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
4633                                    DAG.getConstant(BitSize, DL, WideVT));
4634  SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
4635
4636  SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
4637  return DAG.getMergeValues(RetOps, DL);
4638}
4639
4640// Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations into
4641// ATOMIC_LOADW_SUBs and convert 32- and 64-bit operations into additions.
4642SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
4643                                                    SelectionDAG &DAG) const {
4644  auto *Node = cast<AtomicSDNode>(Op.getNode());
4645  EVT MemVT = Node->getMemoryVT();
4646  if (MemVT == MVT::i32 || MemVT == MVT::i64) {
4647    // A full-width operation: negate and use LAA(G).
4648    assert(Op.getValueType() == MemVT && "Mismatched VTs");
4649    assert(Subtarget.hasInterlockedAccess1() &&
4650           "Should have been expanded by AtomicExpand pass.");
4651    SDValue Src2 = Node->getVal();
4652    SDLoc DL(Src2);
4653    SDValue NegSrc2 =
4654      DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), Src2);
4655    return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
4656                         Node->getChain(), Node->getBasePtr(), NegSrc2,
4657                         Node->getMemOperand());
4658  }
4659
4660  return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
4661}
4662
4663// Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
4664SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
4665                                                    SelectionDAG &DAG) const {
4666  auto *Node = cast<AtomicSDNode>(Op.getNode());
4667  SDValue ChainIn = Node->getOperand(0);
4668  SDValue Addr = Node->getOperand(1);
4669  SDValue CmpVal = Node->getOperand(2);
4670  SDValue SwapVal = Node->getOperand(3);
4671  MachineMemOperand *MMO = Node->getMemOperand();
4672  SDLoc DL(Node);
4673
4674  if (Node->getMemoryVT() == MVT::i128) {
4675    // Use same code to handle both legal and non-legal i128 types.
4676    SmallVector<SDValue, 3> Results;
4677    LowerOperationWrapper(Node, Results, DAG);
4678    return DAG.getMergeValues(Results, DL);
4679  }
4680
4681  // We have native support for 32-bit and 64-bit compare and swap, but we
4682  // still need to expand extracting the "success" result from the CC.
4683  EVT NarrowVT = Node->getMemoryVT();
4684  EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
4685  if (NarrowVT == WideVT) {
4686    SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4687    SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
4688    SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
4689                                               DL, Tys, Ops, NarrowVT, MMO);
4690    SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4691                                SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4692
4693    DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4694    DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4695    DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4696    return SDValue();
4697  }
4698
4699  // Convert 8-bit and 16-bit compare and swap to a loop, implemented
4700  // via a fullword ATOMIC_CMP_SWAPW operation.
4701  int64_t BitSize = NarrowVT.getSizeInBits();
4702
4703  SDValue AlignedAddr, BitShift, NegBitShift;
4704  getCSAddressAndShifts(Addr, DAG, DL, AlignedAddr, BitShift, NegBitShift);
4705
4706  // Construct the ATOMIC_CMP_SWAPW node.
4707  SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4708  SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
4709                    NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
4710  SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
4711                                             VTList, Ops, NarrowVT, MMO);
4712  SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4713                              SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
4714
4715  // emitAtomicCmpSwapW() will zero extend the result (original value).
4716  SDValue OrigVal = DAG.getNode(ISD::AssertZext, DL, WideVT, AtomicOp.getValue(0),
4717                                DAG.getValueType(NarrowVT));
4718  DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), OrigVal);
4719  DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4720  DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4721  return SDValue();
4722}
4723
4724MachineMemOperand::Flags
4725SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const {
4726  // Because of how we convert atomic_load and atomic_store to normal loads and
4727  // stores in the DAG, we need to ensure that the MMOs are marked volatile
4728  // since DAGCombine hasn't been updated to account for atomic, but non
4729  // volatile loads.  (See D57601)
4730  if (auto *SI = dyn_cast<StoreInst>(&I))
4731    if (SI->isAtomic())
4732      return MachineMemOperand::MOVolatile;
4733  if (auto *LI = dyn_cast<LoadInst>(&I))
4734    if (LI->isAtomic())
4735      return MachineMemOperand::MOVolatile;
4736  if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
4737    if (AI->isAtomic())
4738      return MachineMemOperand::MOVolatile;
4739  if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
4740    if (AI->isAtomic())
4741      return MachineMemOperand::MOVolatile;
4742  return MachineMemOperand::MONone;
4743}
4744
4745SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
4746                                              SelectionDAG &DAG) const {
4747  MachineFunction &MF = DAG.getMachineFunction();
4748  auto *Regs = Subtarget.getSpecialRegisters();
4749  if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4750    report_fatal_error("Variable-sized stack allocations are not supported "
4751                       "in GHC calling convention");
4752  return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
4753                            Regs->getStackPointerRegister(), Op.getValueType());
4754}
4755
4756SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
4757                                                 SelectionDAG &DAG) const {
4758  MachineFunction &MF = DAG.getMachineFunction();
4759  auto *Regs = Subtarget.getSpecialRegisters();
4760  bool StoreBackchain = MF.getSubtarget<SystemZSubtarget>().hasBackChain();
4761
4762  if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4763    report_fatal_error("Variable-sized stack allocations are not supported "
4764                       "in GHC calling convention");
4765
4766  SDValue Chain = Op.getOperand(0);
4767  SDValue NewSP = Op.getOperand(1);
4768  SDValue Backchain;
4769  SDLoc DL(Op);
4770
4771  if (StoreBackchain) {
4772    SDValue OldSP = DAG.getCopyFromReg(
4773        Chain, DL, Regs->getStackPointerRegister(), MVT::i64);
4774    Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
4775                            MachinePointerInfo());
4776  }
4777
4778  Chain = DAG.getCopyToReg(Chain, DL, Regs->getStackPointerRegister(), NewSP);
4779
4780  if (StoreBackchain)
4781    Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
4782                         MachinePointerInfo());
4783
4784  return Chain;
4785}
4786
4787SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
4788                                             SelectionDAG &DAG) const {
4789  bool IsData = Op.getConstantOperandVal(4);
4790  if (!IsData)
4791    // Just preserve the chain.
4792    return Op.getOperand(0);
4793
4794  SDLoc DL(Op);
4795  bool IsWrite = Op.getConstantOperandVal(2);
4796  unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
4797  auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
4798  SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
4799                   Op.getOperand(1)};
4800  return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
4801                                 Node->getVTList(), Ops,
4802                                 Node->getMemoryVT(), Node->getMemOperand());
4803}
4804
4805// Convert condition code in CCReg to an i32 value.
4806static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
4807  SDLoc DL(CCReg);
4808  SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
4809  return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
4810                     DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
4811}
4812
4813SDValue
4814SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
4815                                              SelectionDAG &DAG) const {
4816  unsigned Opcode, CCValid;
4817  if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
4818    assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
4819    SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
4820    SDValue CC = getCCResult(DAG, SDValue(Node, 0));
4821    DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
4822    return SDValue();
4823  }
4824
4825  return SDValue();
4826}
4827
4828SDValue
4829SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
4830                                               SelectionDAG &DAG) const {
4831  unsigned Opcode, CCValid;
4832  if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
4833    SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
4834    if (Op->getNumValues() == 1)
4835      return getCCResult(DAG, SDValue(Node, 0));
4836    assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
4837    return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
4838                       SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
4839  }
4840
4841  unsigned Id = Op.getConstantOperandVal(0);
4842  switch (Id) {
4843  case Intrinsic::thread_pointer:
4844    return lowerThreadPointer(SDLoc(Op), DAG);
4845
4846  case Intrinsic::s390_vpdi:
4847    return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
4848                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4849
4850  case Intrinsic::s390_vperm:
4851    return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
4852                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4853
4854  case Intrinsic::s390_vuphb:
4855  case Intrinsic::s390_vuphh:
4856  case Intrinsic::s390_vuphf:
4857    return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
4858                       Op.getOperand(1));
4859
4860  case Intrinsic::s390_vuplhb:
4861  case Intrinsic::s390_vuplhh:
4862  case Intrinsic::s390_vuplhf:
4863    return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
4864                       Op.getOperand(1));
4865
4866  case Intrinsic::s390_vuplb:
4867  case Intrinsic::s390_vuplhw:
4868  case Intrinsic::s390_vuplf:
4869    return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
4870                       Op.getOperand(1));
4871
4872  case Intrinsic::s390_vupllb:
4873  case Intrinsic::s390_vupllh:
4874  case Intrinsic::s390_vupllf:
4875    return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
4876                       Op.getOperand(1));
4877
4878  case Intrinsic::s390_vsumb:
4879  case Intrinsic::s390_vsumh:
4880  case Intrinsic::s390_vsumgh:
4881  case Intrinsic::s390_vsumgf:
4882  case Intrinsic::s390_vsumqf:
4883  case Intrinsic::s390_vsumqg:
4884    return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
4885                       Op.getOperand(1), Op.getOperand(2));
4886
4887  case Intrinsic::s390_vaq:
4888    return DAG.getNode(ISD::ADD, SDLoc(Op), Op.getValueType(),
4889                       Op.getOperand(1), Op.getOperand(2));
4890  case Intrinsic::s390_vaccb:
4891  case Intrinsic::s390_vacch:
4892  case Intrinsic::s390_vaccf:
4893  case Intrinsic::s390_vaccg:
4894  case Intrinsic::s390_vaccq:
4895    return DAG.getNode(SystemZISD::VACC, SDLoc(Op), Op.getValueType(),
4896                       Op.getOperand(1), Op.getOperand(2));
4897  case Intrinsic::s390_vacq:
4898    return DAG.getNode(SystemZISD::VAC, SDLoc(Op), Op.getValueType(),
4899                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4900  case Intrinsic::s390_vacccq:
4901    return DAG.getNode(SystemZISD::VACCC, SDLoc(Op), Op.getValueType(),
4902                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4903
4904  case Intrinsic::s390_vsq:
4905    return DAG.getNode(ISD::SUB, SDLoc(Op), Op.getValueType(),
4906                       Op.getOperand(1), Op.getOperand(2));
4907  case Intrinsic::s390_vscbib:
4908  case Intrinsic::s390_vscbih:
4909  case Intrinsic::s390_vscbif:
4910  case Intrinsic::s390_vscbig:
4911  case Intrinsic::s390_vscbiq:
4912    return DAG.getNode(SystemZISD::VSCBI, SDLoc(Op), Op.getValueType(),
4913                       Op.getOperand(1), Op.getOperand(2));
4914  case Intrinsic::s390_vsbiq:
4915    return DAG.getNode(SystemZISD::VSBI, SDLoc(Op), Op.getValueType(),
4916                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4917  case Intrinsic::s390_vsbcbiq:
4918    return DAG.getNode(SystemZISD::VSBCBI, SDLoc(Op), Op.getValueType(),
4919                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4920  }
4921
4922  return SDValue();
4923}
4924
4925namespace {
4926// Says that SystemZISD operation Opcode can be used to perform the equivalent
4927// of a VPERM with permute vector Bytes.  If Opcode takes three operands,
4928// Operand is the constant third operand, otherwise it is the number of
4929// bytes in each element of the result.
4930struct Permute {
4931  unsigned Opcode;
4932  unsigned Operand;
4933  unsigned char Bytes[SystemZ::VectorBytes];
4934};
4935}
4936
4937static const Permute PermuteForms[] = {
4938  // VMRHG
4939  { SystemZISD::MERGE_HIGH, 8,
4940    { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
4941  // VMRHF
4942  { SystemZISD::MERGE_HIGH, 4,
4943    { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
4944  // VMRHH
4945  { SystemZISD::MERGE_HIGH, 2,
4946    { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
4947  // VMRHB
4948  { SystemZISD::MERGE_HIGH, 1,
4949    { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
4950  // VMRLG
4951  { SystemZISD::MERGE_LOW, 8,
4952    { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
4953  // VMRLF
4954  { SystemZISD::MERGE_LOW, 4,
4955    { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
4956  // VMRLH
4957  { SystemZISD::MERGE_LOW, 2,
4958    { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
4959  // VMRLB
4960  { SystemZISD::MERGE_LOW, 1,
4961    { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
4962  // VPKG
4963  { SystemZISD::PACK, 4,
4964    { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
4965  // VPKF
4966  { SystemZISD::PACK, 2,
4967    { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
4968  // VPKH
4969  { SystemZISD::PACK, 1,
4970    { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
4971  // VPDI V1, V2, 4  (low half of V1, high half of V2)
4972  { SystemZISD::PERMUTE_DWORDS, 4,
4973    { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
4974  // VPDI V1, V2, 1  (high half of V1, low half of V2)
4975  { SystemZISD::PERMUTE_DWORDS, 1,
4976    { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
4977};
4978
4979// Called after matching a vector shuffle against a particular pattern.
4980// Both the original shuffle and the pattern have two vector operands.
4981// OpNos[0] is the operand of the original shuffle that should be used for
4982// operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
4983// OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
4984// set OpNo0 and OpNo1 to the shuffle operands that should actually be used
4985// for operands 0 and 1 of the pattern.
4986static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
4987  if (OpNos[0] < 0) {
4988    if (OpNos[1] < 0)
4989      return false;
4990    OpNo0 = OpNo1 = OpNos[1];
4991  } else if (OpNos[1] < 0) {
4992    OpNo0 = OpNo1 = OpNos[0];
4993  } else {
4994    OpNo0 = OpNos[0];
4995    OpNo1 = OpNos[1];
4996  }
4997  return true;
4998}
4999
5000// Bytes is a VPERM-like permute vector, except that -1 is used for
5001// undefined bytes.  Return true if the VPERM can be implemented using P.
5002// When returning true set OpNo0 to the VPERM operand that should be
5003// used for operand 0 of P and likewise OpNo1 for operand 1 of P.
5004//
5005// For example, if swapping the VPERM operands allows P to match, OpNo0
5006// will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
5007// operand, but rewriting it to use two duplicated operands allows it to
5008// match P, then OpNo0 and OpNo1 will be the same.
5009static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
5010                         unsigned &OpNo0, unsigned &OpNo1) {
5011  int OpNos[] = { -1, -1 };
5012  for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
5013    int Elt = Bytes[I];
5014    if (Elt >= 0) {
5015      // Make sure that the two permute vectors use the same suboperand
5016      // byte number.  Only the operand numbers (the high bits) are
5017      // allowed to differ.
5018      if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
5019        return false;
5020      int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
5021      int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
5022      // Make sure that the operand mappings are consistent with previous
5023      // elements.
5024      if (OpNos[ModelOpNo] == 1 - RealOpNo)
5025        return false;
5026      OpNos[ModelOpNo] = RealOpNo;
5027    }
5028  }
5029  return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
5030}
5031
5032// As above, but search for a matching permute.
5033static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
5034                                   unsigned &OpNo0, unsigned &OpNo1) {
5035  for (auto &P : PermuteForms)
5036    if (matchPermute(Bytes, P, OpNo0, OpNo1))
5037      return &P;
5038  return nullptr;
5039}
5040
5041// Bytes is a VPERM-like permute vector, except that -1 is used for
5042// undefined bytes.  This permute is an operand of an outer permute.
5043// See whether redistributing the -1 bytes gives a shuffle that can be
5044// implemented using P.  If so, set Transform to a VPERM-like permute vector
5045// that, when applied to the result of P, gives the original permute in Bytes.
5046static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
5047                               const Permute &P,
5048                               SmallVectorImpl<int> &Transform) {
5049  unsigned To = 0;
5050  for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
5051    int Elt = Bytes[From];
5052    if (Elt < 0)
5053      // Byte number From of the result is undefined.
5054      Transform[From] = -1;
5055    else {
5056      while (P.Bytes[To] != Elt) {
5057        To += 1;
5058        if (To == SystemZ::VectorBytes)
5059          return false;
5060      }
5061      Transform[From] = To;
5062    }
5063  }
5064  return true;
5065}
5066
5067// As above, but search for a matching permute.
5068static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
5069                                         SmallVectorImpl<int> &Transform) {
5070  for (auto &P : PermuteForms)
5071    if (matchDoublePermute(Bytes, P, Transform))
5072      return &P;
5073  return nullptr;
5074}
5075
5076// Convert the mask of the given shuffle op into a byte-level mask,
5077// as if it had type vNi8.
5078static bool getVPermMask(SDValue ShuffleOp,
5079                         SmallVectorImpl<int> &Bytes) {
5080  EVT VT = ShuffleOp.getValueType();
5081  unsigned NumElements = VT.getVectorNumElements();
5082  unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
5083
5084  if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
5085    Bytes.resize(NumElements * BytesPerElement, -1);
5086    for (unsigned I = 0; I < NumElements; ++I) {
5087      int Index = VSN->getMaskElt(I);
5088      if (Index >= 0)
5089        for (unsigned J = 0; J < BytesPerElement; ++J)
5090          Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
5091    }
5092    return true;
5093  }
5094  if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
5095      isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
5096    unsigned Index = ShuffleOp.getConstantOperandVal(1);
5097    Bytes.resize(NumElements * BytesPerElement, -1);
5098    for (unsigned I = 0; I < NumElements; ++I)
5099      for (unsigned J = 0; J < BytesPerElement; ++J)
5100        Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
5101    return true;
5102  }
5103  return false;
5104}
5105
5106// Bytes is a VPERM-like permute vector, except that -1 is used for
5107// undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
5108// the result come from a contiguous sequence of bytes from one input.
5109// Set Base to the selector for the first byte if so.
5110static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
5111                            unsigned BytesPerElement, int &Base) {
5112  Base = -1;
5113  for (unsigned I = 0; I < BytesPerElement; ++I) {
5114    if (Bytes[Start + I] >= 0) {
5115      unsigned Elem = Bytes[Start + I];
5116      if (Base < 0) {
5117        Base = Elem - I;
5118        // Make sure the bytes would come from one input operand.
5119        if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
5120          return false;
5121      } else if (unsigned(Base) != Elem - I)
5122        return false;
5123    }
5124  }
5125  return true;
5126}
5127
5128// Bytes is a VPERM-like permute vector, except that -1 is used for
5129// undefined bytes.  Return true if it can be performed using VSLDB.
5130// When returning true, set StartIndex to the shift amount and OpNo0
5131// and OpNo1 to the VPERM operands that should be used as the first
5132// and second shift operand respectively.
5133static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
5134                               unsigned &StartIndex, unsigned &OpNo0,
5135                               unsigned &OpNo1) {
5136  int OpNos[] = { -1, -1 };
5137  int Shift = -1;
5138  for (unsigned I = 0; I < 16; ++I) {
5139    int Index = Bytes[I];
5140    if (Index >= 0) {
5141      int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
5142      int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
5143      int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
5144      if (Shift < 0)
5145        Shift = ExpectedShift;
5146      else if (Shift != ExpectedShift)
5147        return false;
5148      // Make sure that the operand mappings are consistent with previous
5149      // elements.
5150      if (OpNos[ModelOpNo] == 1 - RealOpNo)
5151        return false;
5152      OpNos[ModelOpNo] = RealOpNo;
5153    }
5154  }
5155  StartIndex = Shift;
5156  return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
5157}
5158
5159// Create a node that performs P on operands Op0 and Op1, casting the
5160// operands to the appropriate type.  The type of the result is determined by P.
5161static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
5162                              const Permute &P, SDValue Op0, SDValue Op1) {
5163  // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
5164  // elements of a PACK are twice as wide as the outputs.
5165  unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
5166                      P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
5167                      P.Operand);
5168  // Cast both operands to the appropriate type.
5169  MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
5170                              SystemZ::VectorBytes / InBytes);
5171  Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
5172  Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
5173  SDValue Op;
5174  if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
5175    SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
5176    Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
5177  } else if (P.Opcode == SystemZISD::PACK) {
5178    MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
5179                                 SystemZ::VectorBytes / P.Operand);
5180    Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
5181  } else {
5182    Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
5183  }
5184  return Op;
5185}
5186
5187static bool isZeroVector(SDValue N) {
5188  if (N->getOpcode() == ISD::BITCAST)
5189    N = N->getOperand(0);
5190  if (N->getOpcode() == ISD::SPLAT_VECTOR)
5191    if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0)))
5192      return Op->getZExtValue() == 0;
5193  return ISD::isBuildVectorAllZeros(N.getNode());
5194}
5195
5196// Return the index of the zero/undef vector, or UINT32_MAX if not found.
5197static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) {
5198  for (unsigned I = 0; I < Num ; I++)
5199    if (isZeroVector(Ops[I]))
5200      return I;
5201  return UINT32_MAX;
5202}
5203
5204// Bytes is a VPERM-like permute vector, except that -1 is used for
5205// undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
5206// VSLDB or VPERM.
5207static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
5208                                     SDValue *Ops,
5209                                     const SmallVectorImpl<int> &Bytes) {
5210  for (unsigned I = 0; I < 2; ++I)
5211    Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
5212
5213  // First see whether VSLDB can be used.
5214  unsigned StartIndex, OpNo0, OpNo1;
5215  if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
5216    return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
5217                       Ops[OpNo1],
5218                       DAG.getTargetConstant(StartIndex, DL, MVT::i32));
5219
5220  // Fall back on VPERM.  Construct an SDNode for the permute vector.  Try to
5221  // eliminate a zero vector by reusing any zero index in the permute vector.
5222  unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2);
5223  if (ZeroVecIdx != UINT32_MAX) {
5224    bool MaskFirst = true;
5225    int ZeroIdx = -1;
5226    for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
5227      unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
5228      unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
5229      if (OpNo == ZeroVecIdx && I == 0) {
5230        // If the first byte is zero, use mask as first operand.
5231        ZeroIdx = 0;
5232        break;
5233      }
5234      if (OpNo != ZeroVecIdx && Byte == 0) {
5235        // If mask contains a zero, use it by placing that vector first.
5236        ZeroIdx = I + SystemZ::VectorBytes;
5237        MaskFirst = false;
5238        break;
5239      }
5240    }
5241    if (ZeroIdx != -1) {
5242      SDValue IndexNodes[SystemZ::VectorBytes];
5243      for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
5244        if (Bytes[I] >= 0) {
5245          unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
5246          unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
5247          if (OpNo == ZeroVecIdx)
5248            IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32);
5249          else {
5250            unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte;
5251            IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32);
5252          }
5253        } else
5254          IndexNodes[I] = DAG.getUNDEF(MVT::i32);
5255      }
5256      SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
5257      SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0];
5258      if (MaskFirst)
5259        return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src,
5260                           Mask);
5261      else
5262        return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask,
5263                           Mask);
5264    }
5265  }
5266
5267  SDValue IndexNodes[SystemZ::VectorBytes];
5268  for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
5269    if (Bytes[I] >= 0)
5270      IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
5271    else
5272      IndexNodes[I] = DAG.getUNDEF(MVT::i32);
5273  SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
5274  return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0],
5275                     (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2);
5276}
5277
5278namespace {
5279// Describes a general N-operand vector shuffle.
5280struct GeneralShuffle {
5281  GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {}
5282  void addUndef();
5283  bool add(SDValue, unsigned);
5284  SDValue getNode(SelectionDAG &, const SDLoc &);
5285  void tryPrepareForUnpack();
5286  bool unpackWasPrepared() { return UnpackFromEltSize <= 4; }
5287  SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op);
5288
5289  // The operands of the shuffle.
5290  SmallVector<SDValue, SystemZ::VectorBytes> Ops;
5291
5292  // Index I is -1 if byte I of the result is undefined.  Otherwise the
5293  // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
5294  // Bytes[I] / SystemZ::VectorBytes.
5295  SmallVector<int, SystemZ::VectorBytes> Bytes;
5296
5297  // The type of the shuffle result.
5298  EVT VT;
5299
5300  // Holds a value of 1, 2 or 4 if a final unpack has been prepared for.
5301  unsigned UnpackFromEltSize;
5302};
5303}
5304
5305// Add an extra undefined element to the shuffle.
5306void GeneralShuffle::addUndef() {
5307  unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
5308  for (unsigned I = 0; I < BytesPerElement; ++I)
5309    Bytes.push_back(-1);
5310}
5311
5312// Add an extra element to the shuffle, taking it from element Elem of Op.
5313// A null Op indicates a vector input whose value will be calculated later;
5314// there is at most one such input per shuffle and it always has the same
5315// type as the result. Aborts and returns false if the source vector elements
5316// of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
5317// LLVM they become implicitly extended, but this is rare and not optimized.
5318bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
5319  unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
5320
5321  // The source vector can have wider elements than the result,
5322  // either through an explicit TRUNCATE or because of type legalization.
5323  // We want the least significant part.
5324  EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
5325  unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
5326
5327  // Return false if the source elements are smaller than their destination
5328  // elements.
5329  if (FromBytesPerElement < BytesPerElement)
5330    return false;
5331
5332  unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
5333                   (FromBytesPerElement - BytesPerElement));
5334
5335  // Look through things like shuffles and bitcasts.
5336  while (Op.getNode()) {
5337    if (Op.getOpcode() == ISD::BITCAST)
5338      Op = Op.getOperand(0);
5339    else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
5340      // See whether the bytes we need come from a contiguous part of one
5341      // operand.
5342      SmallVector<int, SystemZ::VectorBytes> OpBytes;
5343      if (!getVPermMask(Op, OpBytes))
5344        break;
5345      int NewByte;
5346      if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
5347        break;
5348      if (NewByte < 0) {
5349        addUndef();
5350        return true;
5351      }
5352      Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
5353      Byte = unsigned(NewByte) % SystemZ::VectorBytes;
5354    } else if (Op.isUndef()) {
5355      addUndef();
5356      return true;
5357    } else
5358      break;
5359  }
5360
5361  // Make sure that the source of the extraction is in Ops.
5362  unsigned OpNo = 0;
5363  for (; OpNo < Ops.size(); ++OpNo)
5364    if (Ops[OpNo] == Op)
5365      break;
5366  if (OpNo == Ops.size())
5367    Ops.push_back(Op);
5368
5369  // Add the element to Bytes.
5370  unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
5371  for (unsigned I = 0; I < BytesPerElement; ++I)
5372    Bytes.push_back(Base + I);
5373
5374  return true;
5375}
5376
5377// Return SDNodes for the completed shuffle.
5378SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
5379  assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
5380
5381  if (Ops.size() == 0)
5382    return DAG.getUNDEF(VT);
5383
5384  // Use a single unpack if possible as the last operation.
5385  tryPrepareForUnpack();
5386
5387  // Make sure that there are at least two shuffle operands.
5388  if (Ops.size() == 1)
5389    Ops.push_back(DAG.getUNDEF(MVT::v16i8));
5390
5391  // Create a tree of shuffles, deferring root node until after the loop.
5392  // Try to redistribute the undefined elements of non-root nodes so that
5393  // the non-root shuffles match something like a pack or merge, then adjust
5394  // the parent node's permute vector to compensate for the new order.
5395  // Among other things, this copes with vectors like <2 x i16> that were
5396  // padded with undefined elements during type legalization.
5397  //
5398  // In the best case this redistribution will lead to the whole tree
5399  // using packs and merges.  It should rarely be a loss in other cases.
5400  unsigned Stride = 1;
5401  for (; Stride * 2 < Ops.size(); Stride *= 2) {
5402    for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
5403      SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
5404
5405      // Create a mask for just these two operands.
5406      SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
5407      for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
5408        unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
5409        unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
5410        if (OpNo == I)
5411          NewBytes[J] = Byte;
5412        else if (OpNo == I + Stride)
5413          NewBytes[J] = SystemZ::VectorBytes + Byte;
5414        else
5415          NewBytes[J] = -1;
5416      }
5417      // See if it would be better to reorganize NewMask to avoid using VPERM.
5418      SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
5419      if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
5420        Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
5421        // Applying NewBytesMap to Ops[I] gets back to NewBytes.
5422        for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
5423          if (NewBytes[J] >= 0) {
5424            assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
5425                   "Invalid double permute");
5426            Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
5427          } else
5428            assert(NewBytesMap[J] < 0 && "Invalid double permute");
5429        }
5430      } else {
5431        // Just use NewBytes on the operands.
5432        Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
5433        for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
5434          if (NewBytes[J] >= 0)
5435            Bytes[J] = I * SystemZ::VectorBytes + J;
5436      }
5437    }
5438  }
5439
5440  // Now we just have 2 inputs.  Put the second operand in Ops[1].
5441  if (Stride > 1) {
5442    Ops[1] = Ops[Stride];
5443    for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
5444      if (Bytes[I] >= int(SystemZ::VectorBytes))
5445        Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
5446  }
5447
5448  // Look for an instruction that can do the permute without resorting
5449  // to VPERM.
5450  unsigned OpNo0, OpNo1;
5451  SDValue Op;
5452  if (unpackWasPrepared() && Ops[1].isUndef())
5453    Op = Ops[0];
5454  else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
5455    Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
5456  else
5457    Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
5458
5459  Op = insertUnpackIfPrepared(DAG, DL, Op);
5460
5461  return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5462}
5463
5464#ifndef NDEBUG
5465static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) {
5466  dbgs() << Msg.c_str() << " { ";
5467  for (unsigned i = 0; i < Bytes.size(); i++)
5468    dbgs() << Bytes[i] << " ";
5469  dbgs() << "}\n";
5470}
5471#endif
5472
5473// If the Bytes vector matches an unpack operation, prepare to do the unpack
5474// after all else by removing the zero vector and the effect of the unpack on
5475// Bytes.
5476void GeneralShuffle::tryPrepareForUnpack() {
5477  uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size());
5478  if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1)
5479    return;
5480
5481  // Only do this if removing the zero vector reduces the depth, otherwise
5482  // the critical path will increase with the final unpack.
5483  if (Ops.size() > 2 &&
5484      Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1))
5485    return;
5486
5487  // Find an unpack that would allow removing the zero vector from Ops.
5488  UnpackFromEltSize = 1;
5489  for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) {
5490    bool MatchUnpack = true;
5491    SmallVector<int, SystemZ::VectorBytes> SrcBytes;
5492    for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) {
5493      unsigned ToEltSize = UnpackFromEltSize * 2;
5494      bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize;
5495      if (!IsZextByte)
5496        SrcBytes.push_back(Bytes[Elt]);
5497      if (Bytes[Elt] != -1) {
5498        unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes;
5499        if (IsZextByte != (OpNo == ZeroVecOpNo)) {
5500          MatchUnpack = false;
5501          break;
5502        }
5503      }
5504    }
5505    if (MatchUnpack) {
5506      if (Ops.size() == 2) {
5507        // Don't use unpack if a single source operand needs rearrangement.
5508        for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++)
5509          if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) {
5510            UnpackFromEltSize = UINT_MAX;
5511            return;
5512          }
5513      }
5514      break;
5515    }
5516  }
5517  if (UnpackFromEltSize > 4)
5518    return;
5519
5520  LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size "
5521             << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo
5522             << ".\n";
5523             dumpBytes(Bytes, "Original Bytes vector:"););
5524
5525  // Apply the unpack in reverse to the Bytes array.
5526  unsigned B = 0;
5527  for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) {
5528    Elt += UnpackFromEltSize;
5529    for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++)
5530      Bytes[B] = Bytes[Elt];
5531  }
5532  while (B < SystemZ::VectorBytes)
5533    Bytes[B++] = -1;
5534
5535  // Remove the zero vector from Ops
5536  Ops.erase(&Ops[ZeroVecOpNo]);
5537  for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
5538    if (Bytes[I] >= 0) {
5539      unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
5540      if (OpNo > ZeroVecOpNo)
5541        Bytes[I] -= SystemZ::VectorBytes;
5542    }
5543
5544  LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:");
5545             dbgs() << "\n";);
5546}
5547
5548SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG,
5549                                               const SDLoc &DL,
5550                                               SDValue Op) {
5551  if (!unpackWasPrepared())
5552    return Op;
5553  unsigned InBits = UnpackFromEltSize * 8;
5554  EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits),
5555                                SystemZ::VectorBits / InBits);
5556  SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op);
5557  unsigned OutBits = InBits * 2;
5558  EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits),
5559                               SystemZ::VectorBits / OutBits);
5560  return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp);
5561}
5562
5563// Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
5564static bool isScalarToVector(SDValue Op) {
5565  for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
5566    if (!Op.getOperand(I).isUndef())
5567      return false;
5568  return true;
5569}
5570
5571// Return a vector of type VT that contains Value in the first element.
5572// The other elements don't matter.
5573static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5574                                   SDValue Value) {
5575  // If we have a constant, replicate it to all elements and let the
5576  // BUILD_VECTOR lowering take care of it.
5577  if (Value.getOpcode() == ISD::Constant ||
5578      Value.getOpcode() == ISD::ConstantFP) {
5579    SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
5580    return DAG.getBuildVector(VT, DL, Ops);
5581  }
5582  if (Value.isUndef())
5583    return DAG.getUNDEF(VT);
5584  return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
5585}
5586
5587// Return a vector of type VT in which Op0 is in element 0 and Op1 is in
5588// element 1.  Used for cases in which replication is cheap.
5589static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5590                                 SDValue Op0, SDValue Op1) {
5591  if (Op0.isUndef()) {
5592    if (Op1.isUndef())
5593      return DAG.getUNDEF(VT);
5594    return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
5595  }
5596  if (Op1.isUndef())
5597    return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
5598  return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
5599                     buildScalarToVector(DAG, DL, VT, Op0),
5600                     buildScalarToVector(DAG, DL, VT, Op1));
5601}
5602
5603// Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
5604// vector for them.
5605static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
5606                          SDValue Op1) {
5607  if (Op0.isUndef() && Op1.isUndef())
5608    return DAG.getUNDEF(MVT::v2i64);
5609  // If one of the two inputs is undefined then replicate the other one,
5610  // in order to avoid using another register unnecessarily.
5611  if (Op0.isUndef())
5612    Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
5613  else if (Op1.isUndef())
5614    Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
5615  else {
5616    Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
5617    Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
5618  }
5619  return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
5620}
5621
5622// If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
5623// better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
5624// the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
5625// would benefit from this representation and return it if so.
5626static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
5627                                     BuildVectorSDNode *BVN) {
5628  EVT VT = BVN->getValueType(0);
5629  unsigned NumElements = VT.getVectorNumElements();
5630
5631  // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
5632  // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
5633  // need a BUILD_VECTOR, add an additional placeholder operand for that
5634  // BUILD_VECTOR and store its operands in ResidueOps.
5635  GeneralShuffle GS(VT);
5636  SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
5637  bool FoundOne = false;
5638  for (unsigned I = 0; I < NumElements; ++I) {
5639    SDValue Op = BVN->getOperand(I);
5640    if (Op.getOpcode() == ISD::TRUNCATE)
5641      Op = Op.getOperand(0);
5642    if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5643        Op.getOperand(1).getOpcode() == ISD::Constant) {
5644      unsigned Elem = Op.getConstantOperandVal(1);
5645      if (!GS.add(Op.getOperand(0), Elem))
5646        return SDValue();
5647      FoundOne = true;
5648    } else if (Op.isUndef()) {
5649      GS.addUndef();
5650    } else {
5651      if (!GS.add(SDValue(), ResidueOps.size()))
5652        return SDValue();
5653      ResidueOps.push_back(BVN->getOperand(I));
5654    }
5655  }
5656
5657  // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
5658  if (!FoundOne)
5659    return SDValue();
5660
5661  // Create the BUILD_VECTOR for the remaining elements, if any.
5662  if (!ResidueOps.empty()) {
5663    while (ResidueOps.size() < NumElements)
5664      ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
5665    for (auto &Op : GS.Ops) {
5666      if (!Op.getNode()) {
5667        Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
5668        break;
5669      }
5670    }
5671  }
5672  return GS.getNode(DAG, SDLoc(BVN));
5673}
5674
5675bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
5676  if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
5677    return true;
5678  if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
5679    return true;
5680  return false;
5681}
5682
5683// Combine GPR scalar values Elems into a vector of type VT.
5684SDValue
5685SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5686                                   SmallVectorImpl<SDValue> &Elems) const {
5687  // See whether there is a single replicated value.
5688  SDValue Single;
5689  unsigned int NumElements = Elems.size();
5690  unsigned int Count = 0;
5691  for (auto Elem : Elems) {
5692    if (!Elem.isUndef()) {
5693      if (!Single.getNode())
5694        Single = Elem;
5695      else if (Elem != Single) {
5696        Single = SDValue();
5697        break;
5698      }
5699      Count += 1;
5700    }
5701  }
5702  // There are three cases here:
5703  //
5704  // - if the only defined element is a loaded one, the best sequence
5705  //   is a replicating load.
5706  //
5707  // - otherwise, if the only defined element is an i64 value, we will
5708  //   end up with the same VLVGP sequence regardless of whether we short-cut
5709  //   for replication or fall through to the later code.
5710  //
5711  // - otherwise, if the only defined element is an i32 or smaller value,
5712  //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
5713  //   This is only a win if the single defined element is used more than once.
5714  //   In other cases we're better off using a single VLVGx.
5715  if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
5716    return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
5717
5718  // If all elements are loads, use VLREP/VLEs (below).
5719  bool AllLoads = true;
5720  for (auto Elem : Elems)
5721    if (!isVectorElementLoad(Elem)) {
5722      AllLoads = false;
5723      break;
5724    }
5725
5726  // The best way of building a v2i64 from two i64s is to use VLVGP.
5727  if (VT == MVT::v2i64 && !AllLoads)
5728    return joinDwords(DAG, DL, Elems[0], Elems[1]);
5729
5730  // Use a 64-bit merge high to combine two doubles.
5731  if (VT == MVT::v2f64 && !AllLoads)
5732    return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5733
5734  // Build v4f32 values directly from the FPRs:
5735  //
5736  //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
5737  //         V              V         VMRHF
5738  //      <ABxx>         <CDxx>
5739  //                V                 VMRHG
5740  //              <ABCD>
5741  if (VT == MVT::v4f32 && !AllLoads) {
5742    SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5743    SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
5744    // Avoid unnecessary undefs by reusing the other operand.
5745    if (Op01.isUndef())
5746      Op01 = Op23;
5747    else if (Op23.isUndef())
5748      Op23 = Op01;
5749    // Merging identical replications is a no-op.
5750    if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
5751      return Op01;
5752    Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
5753    Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
5754    SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
5755                             DL, MVT::v2i64, Op01, Op23);
5756    return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5757  }
5758
5759  // Collect the constant terms.
5760  SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
5761  SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
5762
5763  unsigned NumConstants = 0;
5764  for (unsigned I = 0; I < NumElements; ++I) {
5765    SDValue Elem = Elems[I];
5766    if (Elem.getOpcode() == ISD::Constant ||
5767        Elem.getOpcode() == ISD::ConstantFP) {
5768      NumConstants += 1;
5769      Constants[I] = Elem;
5770      Done[I] = true;
5771    }
5772  }
5773  // If there was at least one constant, fill in the other elements of
5774  // Constants with undefs to get a full vector constant and use that
5775  // as the starting point.
5776  SDValue Result;
5777  SDValue ReplicatedVal;
5778  if (NumConstants > 0) {
5779    for (unsigned I = 0; I < NumElements; ++I)
5780      if (!Constants[I].getNode())
5781        Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
5782    Result = DAG.getBuildVector(VT, DL, Constants);
5783  } else {
5784    // Otherwise try to use VLREP or VLVGP to start the sequence in order to
5785    // avoid a false dependency on any previous contents of the vector
5786    // register.
5787
5788    // Use a VLREP if at least one element is a load. Make sure to replicate
5789    // the load with the most elements having its value.
5790    std::map<const SDNode*, unsigned> UseCounts;
5791    SDNode *LoadMaxUses = nullptr;
5792    for (unsigned I = 0; I < NumElements; ++I)
5793      if (isVectorElementLoad(Elems[I])) {
5794        SDNode *Ld = Elems[I].getNode();
5795        UseCounts[Ld]++;
5796        if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
5797          LoadMaxUses = Ld;
5798      }
5799    if (LoadMaxUses != nullptr) {
5800      ReplicatedVal = SDValue(LoadMaxUses, 0);
5801      Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
5802    } else {
5803      // Try to use VLVGP.
5804      unsigned I1 = NumElements / 2 - 1;
5805      unsigned I2 = NumElements - 1;
5806      bool Def1 = !Elems[I1].isUndef();
5807      bool Def2 = !Elems[I2].isUndef();
5808      if (Def1 || Def2) {
5809        SDValue Elem1 = Elems[Def1 ? I1 : I2];
5810        SDValue Elem2 = Elems[Def2 ? I2 : I1];
5811        Result = DAG.getNode(ISD::BITCAST, DL, VT,
5812                             joinDwords(DAG, DL, Elem1, Elem2));
5813        Done[I1] = true;
5814        Done[I2] = true;
5815      } else
5816        Result = DAG.getUNDEF(VT);
5817    }
5818  }
5819
5820  // Use VLVGx to insert the other elements.
5821  for (unsigned I = 0; I < NumElements; ++I)
5822    if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
5823      Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
5824                           DAG.getConstant(I, DL, MVT::i32));
5825  return Result;
5826}
5827
5828SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
5829                                                 SelectionDAG &DAG) const {
5830  auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
5831  SDLoc DL(Op);
5832  EVT VT = Op.getValueType();
5833
5834  if (BVN->isConstant()) {
5835    if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
5836      return Op;
5837
5838    // Fall back to loading it from memory.
5839    return SDValue();
5840  }
5841
5842  // See if we should use shuffles to construct the vector from other vectors.
5843  if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
5844    return Res;
5845
5846  // Detect SCALAR_TO_VECTOR conversions.
5847  if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
5848    return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
5849
5850  // Otherwise use buildVector to build the vector up from GPRs.
5851  unsigned NumElements = Op.getNumOperands();
5852  SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
5853  for (unsigned I = 0; I < NumElements; ++I)
5854    Ops[I] = Op.getOperand(I);
5855  return buildVector(DAG, DL, VT, Ops);
5856}
5857
5858SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5859                                                   SelectionDAG &DAG) const {
5860  auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
5861  SDLoc DL(Op);
5862  EVT VT = Op.getValueType();
5863  unsigned NumElements = VT.getVectorNumElements();
5864
5865  if (VSN->isSplat()) {
5866    SDValue Op0 = Op.getOperand(0);
5867    unsigned Index = VSN->getSplatIndex();
5868    assert(Index < VT.getVectorNumElements() &&
5869           "Splat index should be defined and in first operand");
5870    // See whether the value we're splatting is directly available as a scalar.
5871    if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5872        Op0.getOpcode() == ISD::BUILD_VECTOR)
5873      return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
5874    // Otherwise keep it as a vector-to-vector operation.
5875    return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
5876                       DAG.getTargetConstant(Index, DL, MVT::i32));
5877  }
5878
5879  GeneralShuffle GS(VT);
5880  for (unsigned I = 0; I < NumElements; ++I) {
5881    int Elt = VSN->getMaskElt(I);
5882    if (Elt < 0)
5883      GS.addUndef();
5884    else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
5885                     unsigned(Elt) % NumElements))
5886      return SDValue();
5887  }
5888  return GS.getNode(DAG, SDLoc(VSN));
5889}
5890
5891SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
5892                                                     SelectionDAG &DAG) const {
5893  SDLoc DL(Op);
5894  // Just insert the scalar into element 0 of an undefined vector.
5895  return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
5896                     Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
5897                     Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
5898}
5899
5900SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5901                                                      SelectionDAG &DAG) const {
5902  // Handle insertions of floating-point values.
5903  SDLoc DL(Op);
5904  SDValue Op0 = Op.getOperand(0);
5905  SDValue Op1 = Op.getOperand(1);
5906  SDValue Op2 = Op.getOperand(2);
5907  EVT VT = Op.getValueType();
5908
5909  // Insertions into constant indices of a v2f64 can be done using VPDI.
5910  // However, if the inserted value is a bitcast or a constant then it's
5911  // better to use GPRs, as below.
5912  if (VT == MVT::v2f64 &&
5913      Op1.getOpcode() != ISD::BITCAST &&
5914      Op1.getOpcode() != ISD::ConstantFP &&
5915      Op2.getOpcode() == ISD::Constant) {
5916    uint64_t Index = Op2->getAsZExtVal();
5917    unsigned Mask = VT.getVectorNumElements() - 1;
5918    if (Index <= Mask)
5919      return Op;
5920  }
5921
5922  // Otherwise bitcast to the equivalent integer form and insert via a GPR.
5923  MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
5924  MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
5925  SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
5926                            DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
5927                            DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
5928  return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5929}
5930
5931SDValue
5932SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5933                                               SelectionDAG &DAG) const {
5934  // Handle extractions of floating-point values.
5935  SDLoc DL(Op);
5936  SDValue Op0 = Op.getOperand(0);
5937  SDValue Op1 = Op.getOperand(1);
5938  EVT VT = Op.getValueType();
5939  EVT VecVT = Op0.getValueType();
5940
5941  // Extractions of constant indices can be done directly.
5942  if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
5943    uint64_t Index = CIndexN->getZExtValue();
5944    unsigned Mask = VecVT.getVectorNumElements() - 1;
5945    if (Index <= Mask)
5946      return Op;
5947  }
5948
5949  // Otherwise bitcast to the equivalent integer form and extract via a GPR.
5950  MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
5951  MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
5952  SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
5953                            DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
5954  return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5955}
5956
5957SDValue SystemZTargetLowering::
5958lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5959  SDValue PackedOp = Op.getOperand(0);
5960  EVT OutVT = Op.getValueType();
5961  EVT InVT = PackedOp.getValueType();
5962  unsigned ToBits = OutVT.getScalarSizeInBits();
5963  unsigned FromBits = InVT.getScalarSizeInBits();
5964  do {
5965    FromBits *= 2;
5966    EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
5967                                 SystemZ::VectorBits / FromBits);
5968    PackedOp =
5969      DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp);
5970  } while (FromBits != ToBits);
5971  return PackedOp;
5972}
5973
5974// Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector.
5975SDValue SystemZTargetLowering::
5976lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5977  SDValue PackedOp = Op.getOperand(0);
5978  SDLoc DL(Op);
5979  EVT OutVT = Op.getValueType();
5980  EVT InVT = PackedOp.getValueType();
5981  unsigned InNumElts = InVT.getVectorNumElements();
5982  unsigned OutNumElts = OutVT.getVectorNumElements();
5983  unsigned NumInPerOut = InNumElts / OutNumElts;
5984
5985  SDValue ZeroVec =
5986    DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType()));
5987
5988  SmallVector<int, 16> Mask(InNumElts);
5989  unsigned ZeroVecElt = InNumElts;
5990  for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) {
5991    unsigned MaskElt = PackedElt * NumInPerOut;
5992    unsigned End = MaskElt + NumInPerOut - 1;
5993    for (; MaskElt < End; MaskElt++)
5994      Mask[MaskElt] = ZeroVecElt++;
5995    Mask[MaskElt] = PackedElt;
5996  }
5997  SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask);
5998  return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf);
5999}
6000
6001SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
6002                                          unsigned ByScalar) const {
6003  // Look for cases where a vector shift can use the *_BY_SCALAR form.
6004  SDValue Op0 = Op.getOperand(0);
6005  SDValue Op1 = Op.getOperand(1);
6006  SDLoc DL(Op);
6007  EVT VT = Op.getValueType();
6008  unsigned ElemBitSize = VT.getScalarSizeInBits();
6009
6010  // See whether the shift vector is a splat represented as BUILD_VECTOR.
6011  if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
6012    APInt SplatBits, SplatUndef;
6013    unsigned SplatBitSize;
6014    bool HasAnyUndefs;
6015    // Check for constant splats.  Use ElemBitSize as the minimum element
6016    // width and reject splats that need wider elements.
6017    if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
6018                             ElemBitSize, true) &&
6019        SplatBitSize == ElemBitSize) {
6020      SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
6021                                      DL, MVT::i32);
6022      return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
6023    }
6024    // Check for variable splats.
6025    BitVector UndefElements;
6026    SDValue Splat = BVN->getSplatValue(&UndefElements);
6027    if (Splat) {
6028      // Since i32 is the smallest legal type, we either need a no-op
6029      // or a truncation.
6030      SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
6031      return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
6032    }
6033  }
6034
6035  // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
6036  // and the shift amount is directly available in a GPR.
6037  if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
6038    if (VSN->isSplat()) {
6039      SDValue VSNOp0 = VSN->getOperand(0);
6040      unsigned Index = VSN->getSplatIndex();
6041      assert(Index < VT.getVectorNumElements() &&
6042             "Splat index should be defined and in first operand");
6043      if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
6044          VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
6045        // Since i32 is the smallest legal type, we either need a no-op
6046        // or a truncation.
6047        SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
6048                                    VSNOp0.getOperand(Index));
6049        return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
6050      }
6051    }
6052  }
6053
6054  // Otherwise just treat the current form as legal.
6055  return Op;
6056}
6057
6058SDValue SystemZTargetLowering::lowerIS_FPCLASS(SDValue Op,
6059                                               SelectionDAG &DAG) const {
6060  SDLoc DL(Op);
6061  MVT ResultVT = Op.getSimpleValueType();
6062  SDValue Arg = Op.getOperand(0);
6063  unsigned Check = Op.getConstantOperandVal(1);
6064
6065  unsigned TDCMask = 0;
6066  if (Check & fcSNan)
6067    TDCMask |= SystemZ::TDCMASK_SNAN_PLUS | SystemZ::TDCMASK_SNAN_MINUS;
6068  if (Check & fcQNan)
6069    TDCMask |= SystemZ::TDCMASK_QNAN_PLUS | SystemZ::TDCMASK_QNAN_MINUS;
6070  if (Check & fcPosInf)
6071    TDCMask |= SystemZ::TDCMASK_INFINITY_PLUS;
6072  if (Check & fcNegInf)
6073    TDCMask |= SystemZ::TDCMASK_INFINITY_MINUS;
6074  if (Check & fcPosNormal)
6075    TDCMask |= SystemZ::TDCMASK_NORMAL_PLUS;
6076  if (Check & fcNegNormal)
6077    TDCMask |= SystemZ::TDCMASK_NORMAL_MINUS;
6078  if (Check & fcPosSubnormal)
6079    TDCMask |= SystemZ::TDCMASK_SUBNORMAL_PLUS;
6080  if (Check & fcNegSubnormal)
6081    TDCMask |= SystemZ::TDCMASK_SUBNORMAL_MINUS;
6082  if (Check & fcPosZero)
6083    TDCMask |= SystemZ::TDCMASK_ZERO_PLUS;
6084  if (Check & fcNegZero)
6085    TDCMask |= SystemZ::TDCMASK_ZERO_MINUS;
6086  SDValue TDCMaskV = DAG.getConstant(TDCMask, DL, MVT::i64);
6087
6088  SDValue Intr = DAG.getNode(SystemZISD::TDC, DL, ResultVT, Arg, TDCMaskV);
6089  return getCCResult(DAG, Intr);
6090}
6091
6092SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
6093                                              SelectionDAG &DAG) const {
6094  switch (Op.getOpcode()) {
6095  case ISD::FRAMEADDR:
6096    return lowerFRAMEADDR(Op, DAG);
6097  case ISD::RETURNADDR:
6098    return lowerRETURNADDR(Op, DAG);
6099  case ISD::BR_CC:
6100    return lowerBR_CC(Op, DAG);
6101  case ISD::SELECT_CC:
6102    return lowerSELECT_CC(Op, DAG);
6103  case ISD::SETCC:
6104    return lowerSETCC(Op, DAG);
6105  case ISD::STRICT_FSETCC:
6106    return lowerSTRICT_FSETCC(Op, DAG, false);
6107  case ISD::STRICT_FSETCCS:
6108    return lowerSTRICT_FSETCC(Op, DAG, true);
6109  case ISD::GlobalAddress:
6110    return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
6111  case ISD::GlobalTLSAddress:
6112    return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
6113  case ISD::BlockAddress:
6114    return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
6115  case ISD::JumpTable:
6116    return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
6117  case ISD::ConstantPool:
6118    return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
6119  case ISD::BITCAST:
6120    return lowerBITCAST(Op, DAG);
6121  case ISD::VASTART:
6122    return lowerVASTART(Op, DAG);
6123  case ISD::VACOPY:
6124    return lowerVACOPY(Op, DAG);
6125  case ISD::DYNAMIC_STACKALLOC:
6126    return lowerDYNAMIC_STACKALLOC(Op, DAG);
6127  case ISD::GET_DYNAMIC_AREA_OFFSET:
6128    return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
6129  case ISD::SMUL_LOHI:
6130    return lowerSMUL_LOHI(Op, DAG);
6131  case ISD::UMUL_LOHI:
6132    return lowerUMUL_LOHI(Op, DAG);
6133  case ISD::SDIVREM:
6134    return lowerSDIVREM(Op, DAG);
6135  case ISD::UDIVREM:
6136    return lowerUDIVREM(Op, DAG);
6137  case ISD::SADDO:
6138  case ISD::SSUBO:
6139  case ISD::UADDO:
6140  case ISD::USUBO:
6141    return lowerXALUO(Op, DAG);
6142  case ISD::UADDO_CARRY:
6143  case ISD::USUBO_CARRY:
6144    return lowerUADDSUBO_CARRY(Op, DAG);
6145  case ISD::OR:
6146    return lowerOR(Op, DAG);
6147  case ISD::CTPOP:
6148    return lowerCTPOP(Op, DAG);
6149  case ISD::ATOMIC_FENCE:
6150    return lowerATOMIC_FENCE(Op, DAG);
6151  case ISD::ATOMIC_SWAP:
6152    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
6153  case ISD::ATOMIC_STORE:
6154    return lowerATOMIC_STORE(Op, DAG);
6155  case ISD::ATOMIC_LOAD:
6156    return lowerATOMIC_LOAD(Op, DAG);
6157  case ISD::ATOMIC_LOAD_ADD:
6158    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
6159  case ISD::ATOMIC_LOAD_SUB:
6160    return lowerATOMIC_LOAD_SUB(Op, DAG);
6161  case ISD::ATOMIC_LOAD_AND:
6162    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
6163  case ISD::ATOMIC_LOAD_OR:
6164    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
6165  case ISD::ATOMIC_LOAD_XOR:
6166    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
6167  case ISD::ATOMIC_LOAD_NAND:
6168    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
6169  case ISD::ATOMIC_LOAD_MIN:
6170    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
6171  case ISD::ATOMIC_LOAD_MAX:
6172    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
6173  case ISD::ATOMIC_LOAD_UMIN:
6174    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
6175  case ISD::ATOMIC_LOAD_UMAX:
6176    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
6177  case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
6178    return lowerATOMIC_CMP_SWAP(Op, DAG);
6179  case ISD::STACKSAVE:
6180    return lowerSTACKSAVE(Op, DAG);
6181  case ISD::STACKRESTORE:
6182    return lowerSTACKRESTORE(Op, DAG);
6183  case ISD::PREFETCH:
6184    return lowerPREFETCH(Op, DAG);
6185  case ISD::INTRINSIC_W_CHAIN:
6186    return lowerINTRINSIC_W_CHAIN(Op, DAG);
6187  case ISD::INTRINSIC_WO_CHAIN:
6188    return lowerINTRINSIC_WO_CHAIN(Op, DAG);
6189  case ISD::BUILD_VECTOR:
6190    return lowerBUILD_VECTOR(Op, DAG);
6191  case ISD::VECTOR_SHUFFLE:
6192    return lowerVECTOR_SHUFFLE(Op, DAG);
6193  case ISD::SCALAR_TO_VECTOR:
6194    return lowerSCALAR_TO_VECTOR(Op, DAG);
6195  case ISD::INSERT_VECTOR_ELT:
6196    return lowerINSERT_VECTOR_ELT(Op, DAG);
6197  case ISD::EXTRACT_VECTOR_ELT:
6198    return lowerEXTRACT_VECTOR_ELT(Op, DAG);
6199  case ISD::SIGN_EXTEND_VECTOR_INREG:
6200    return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG);
6201  case ISD::ZERO_EXTEND_VECTOR_INREG:
6202    return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG);
6203  case ISD::SHL:
6204    return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
6205  case ISD::SRL:
6206    return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
6207  case ISD::SRA:
6208    return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
6209  case ISD::ROTL:
6210    return lowerShift(Op, DAG, SystemZISD::VROTL_BY_SCALAR);
6211  case ISD::IS_FPCLASS:
6212    return lowerIS_FPCLASS(Op, DAG);
6213  case ISD::GET_ROUNDING:
6214    return lowerGET_ROUNDING(Op, DAG);
6215  default:
6216    llvm_unreachable("Unexpected node to lower");
6217  }
6218}
6219
6220// Lower operations with invalid operand or result types (currently used
6221// only for 128-bit integer types).
6222void
6223SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
6224                                             SmallVectorImpl<SDValue> &Results,
6225                                             SelectionDAG &DAG) const {
6226  switch (N->getOpcode()) {
6227  case ISD::ATOMIC_LOAD: {
6228    SDLoc DL(N);
6229    SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
6230    SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
6231    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
6232    SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
6233                                          DL, Tys, Ops, MVT::i128, MMO);
6234    Results.push_back(lowerGR128ToI128(DAG, Res));
6235    Results.push_back(Res.getValue(1));
6236    break;
6237  }
6238  case ISD::ATOMIC_STORE: {
6239    SDLoc DL(N);
6240    SDVTList Tys = DAG.getVTList(MVT::Other);
6241    SDValue Ops[] = {N->getOperand(0), lowerI128ToGR128(DAG, N->getOperand(1)),
6242                     N->getOperand(2)};
6243    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
6244    SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
6245                                          DL, Tys, Ops, MVT::i128, MMO);
6246    // We have to enforce sequential consistency by performing a
6247    // serialization operation after the store.
6248    if (cast<AtomicSDNode>(N)->getSuccessOrdering() ==
6249        AtomicOrdering::SequentiallyConsistent)
6250      Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
6251                                       MVT::Other, Res), 0);
6252    Results.push_back(Res);
6253    break;
6254  }
6255  case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
6256    SDLoc DL(N);
6257    SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
6258    SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
6259                      lowerI128ToGR128(DAG, N->getOperand(2)),
6260                      lowerI128ToGR128(DAG, N->getOperand(3)) };
6261    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
6262    SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
6263                                          DL, Tys, Ops, MVT::i128, MMO);
6264    SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
6265                                SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
6266    Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
6267    Results.push_back(lowerGR128ToI128(DAG, Res));
6268    Results.push_back(Success);
6269    Results.push_back(Res.getValue(2));
6270    break;
6271  }
6272  case ISD::BITCAST: {
6273    SDValue Src = N->getOperand(0);
6274    if (N->getValueType(0) == MVT::i128 && Src.getValueType() == MVT::f128 &&
6275        !useSoftFloat()) {
6276      SDLoc DL(N);
6277      SDValue Lo, Hi;
6278      if (getRepRegClassFor(MVT::f128) == &SystemZ::VR128BitRegClass) {
6279        SDValue VecBC = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Src);
6280        Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC,
6281                         DAG.getConstant(1, DL, MVT::i32));
6282        Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC,
6283                         DAG.getConstant(0, DL, MVT::i32));
6284      } else {
6285        assert(getRepRegClassFor(MVT::f128) == &SystemZ::FP128BitRegClass &&
6286               "Unrecognized register class for f128.");
6287        SDValue LoFP = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
6288                                                  DL, MVT::f64, Src);
6289        SDValue HiFP = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
6290                                                  DL, MVT::f64, Src);
6291        Lo = DAG.getNode(ISD::BITCAST, DL, MVT::i64, LoFP);
6292        Hi = DAG.getNode(ISD::BITCAST, DL, MVT::i64, HiFP);
6293      }
6294      Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi));
6295    }
6296    break;
6297  }
6298  default:
6299    llvm_unreachable("Unexpected node to lower");
6300  }
6301}
6302
6303void
6304SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
6305                                          SmallVectorImpl<SDValue> &Results,
6306                                          SelectionDAG &DAG) const {
6307  return LowerOperationWrapper(N, Results, DAG);
6308}
6309
6310const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
6311#define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
6312  switch ((SystemZISD::NodeType)Opcode) {
6313    case SystemZISD::FIRST_NUMBER: break;
6314    OPCODE(RET_GLUE);
6315    OPCODE(CALL);
6316    OPCODE(SIBCALL);
6317    OPCODE(TLS_GDCALL);
6318    OPCODE(TLS_LDCALL);
6319    OPCODE(PCREL_WRAPPER);
6320    OPCODE(PCREL_OFFSET);
6321    OPCODE(ICMP);
6322    OPCODE(FCMP);
6323    OPCODE(STRICT_FCMP);
6324    OPCODE(STRICT_FCMPS);
6325    OPCODE(TM);
6326    OPCODE(BR_CCMASK);
6327    OPCODE(SELECT_CCMASK);
6328    OPCODE(ADJDYNALLOC);
6329    OPCODE(PROBED_ALLOCA);
6330    OPCODE(POPCNT);
6331    OPCODE(SMUL_LOHI);
6332    OPCODE(UMUL_LOHI);
6333    OPCODE(SDIVREM);
6334    OPCODE(UDIVREM);
6335    OPCODE(SADDO);
6336    OPCODE(SSUBO);
6337    OPCODE(UADDO);
6338    OPCODE(USUBO);
6339    OPCODE(ADDCARRY);
6340    OPCODE(SUBCARRY);
6341    OPCODE(GET_CCMASK);
6342    OPCODE(MVC);
6343    OPCODE(NC);
6344    OPCODE(OC);
6345    OPCODE(XC);
6346    OPCODE(CLC);
6347    OPCODE(MEMSET_MVC);
6348    OPCODE(STPCPY);
6349    OPCODE(STRCMP);
6350    OPCODE(SEARCH_STRING);
6351    OPCODE(IPM);
6352    OPCODE(TBEGIN);
6353    OPCODE(TBEGIN_NOFLOAT);
6354    OPCODE(TEND);
6355    OPCODE(BYTE_MASK);
6356    OPCODE(ROTATE_MASK);
6357    OPCODE(REPLICATE);
6358    OPCODE(JOIN_DWORDS);
6359    OPCODE(SPLAT);
6360    OPCODE(MERGE_HIGH);
6361    OPCODE(MERGE_LOW);
6362    OPCODE(SHL_DOUBLE);
6363    OPCODE(PERMUTE_DWORDS);
6364    OPCODE(PERMUTE);
6365    OPCODE(PACK);
6366    OPCODE(PACKS_CC);
6367    OPCODE(PACKLS_CC);
6368    OPCODE(UNPACK_HIGH);
6369    OPCODE(UNPACKL_HIGH);
6370    OPCODE(UNPACK_LOW);
6371    OPCODE(UNPACKL_LOW);
6372    OPCODE(VSHL_BY_SCALAR);
6373    OPCODE(VSRL_BY_SCALAR);
6374    OPCODE(VSRA_BY_SCALAR);
6375    OPCODE(VROTL_BY_SCALAR);
6376    OPCODE(VSUM);
6377    OPCODE(VACC);
6378    OPCODE(VSCBI);
6379    OPCODE(VAC);
6380    OPCODE(VSBI);
6381    OPCODE(VACCC);
6382    OPCODE(VSBCBI);
6383    OPCODE(VICMPE);
6384    OPCODE(VICMPH);
6385    OPCODE(VICMPHL);
6386    OPCODE(VICMPES);
6387    OPCODE(VICMPHS);
6388    OPCODE(VICMPHLS);
6389    OPCODE(VFCMPE);
6390    OPCODE(STRICT_VFCMPE);
6391    OPCODE(STRICT_VFCMPES);
6392    OPCODE(VFCMPH);
6393    OPCODE(STRICT_VFCMPH);
6394    OPCODE(STRICT_VFCMPHS);
6395    OPCODE(VFCMPHE);
6396    OPCODE(STRICT_VFCMPHE);
6397    OPCODE(STRICT_VFCMPHES);
6398    OPCODE(VFCMPES);
6399    OPCODE(VFCMPHS);
6400    OPCODE(VFCMPHES);
6401    OPCODE(VFTCI);
6402    OPCODE(VEXTEND);
6403    OPCODE(STRICT_VEXTEND);
6404    OPCODE(VROUND);
6405    OPCODE(STRICT_VROUND);
6406    OPCODE(VTM);
6407    OPCODE(SCMP128HI);
6408    OPCODE(UCMP128HI);
6409    OPCODE(VFAE_CC);
6410    OPCODE(VFAEZ_CC);
6411    OPCODE(VFEE_CC);
6412    OPCODE(VFEEZ_CC);
6413    OPCODE(VFENE_CC);
6414    OPCODE(VFENEZ_CC);
6415    OPCODE(VISTR_CC);
6416    OPCODE(VSTRC_CC);
6417    OPCODE(VSTRCZ_CC);
6418    OPCODE(VSTRS_CC);
6419    OPCODE(VSTRSZ_CC);
6420    OPCODE(TDC);
6421    OPCODE(ATOMIC_SWAPW);
6422    OPCODE(ATOMIC_LOADW_ADD);
6423    OPCODE(ATOMIC_LOADW_SUB);
6424    OPCODE(ATOMIC_LOADW_AND);
6425    OPCODE(ATOMIC_LOADW_OR);
6426    OPCODE(ATOMIC_LOADW_XOR);
6427    OPCODE(ATOMIC_LOADW_NAND);
6428    OPCODE(ATOMIC_LOADW_MIN);
6429    OPCODE(ATOMIC_LOADW_MAX);
6430    OPCODE(ATOMIC_LOADW_UMIN);
6431    OPCODE(ATOMIC_LOADW_UMAX);
6432    OPCODE(ATOMIC_CMP_SWAPW);
6433    OPCODE(ATOMIC_CMP_SWAP);
6434    OPCODE(ATOMIC_LOAD_128);
6435    OPCODE(ATOMIC_STORE_128);
6436    OPCODE(ATOMIC_CMP_SWAP_128);
6437    OPCODE(LRV);
6438    OPCODE(STRV);
6439    OPCODE(VLER);
6440    OPCODE(VSTER);
6441    OPCODE(PREFETCH);
6442    OPCODE(ADA_ENTRY);
6443  }
6444  return nullptr;
6445#undef OPCODE
6446}
6447
6448// Return true if VT is a vector whose elements are a whole number of bytes
6449// in width. Also check for presence of vector support.
6450bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
6451  if (!Subtarget.hasVector())
6452    return false;
6453
6454  return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
6455}
6456
6457// Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
6458// producing a result of type ResVT.  Op is a possibly bitcast version
6459// of the input vector and Index is the index (based on type VecVT) that
6460// should be extracted.  Return the new extraction if a simplification
6461// was possible or if Force is true.
6462SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
6463                                              EVT VecVT, SDValue Op,
6464                                              unsigned Index,
6465                                              DAGCombinerInfo &DCI,
6466                                              bool Force) const {
6467  SelectionDAG &DAG = DCI.DAG;
6468
6469  // The number of bytes being extracted.
6470  unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
6471
6472  for (;;) {
6473    unsigned Opcode = Op.getOpcode();
6474    if (Opcode == ISD::BITCAST)
6475      // Look through bitcasts.
6476      Op = Op.getOperand(0);
6477    else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
6478             canTreatAsByteVector(Op.getValueType())) {
6479      // Get a VPERM-like permute mask and see whether the bytes covered
6480      // by the extracted element are a contiguous sequence from one
6481      // source operand.
6482      SmallVector<int, SystemZ::VectorBytes> Bytes;
6483      if (!getVPermMask(Op, Bytes))
6484        break;
6485      int First;
6486      if (!getShuffleInput(Bytes, Index * BytesPerElement,
6487                           BytesPerElement, First))
6488        break;
6489      if (First < 0)
6490        return DAG.getUNDEF(ResVT);
6491      // Make sure the contiguous sequence starts at a multiple of the
6492      // original element size.
6493      unsigned Byte = unsigned(First) % Bytes.size();
6494      if (Byte % BytesPerElement != 0)
6495        break;
6496      // We can get the extracted value directly from an input.
6497      Index = Byte / BytesPerElement;
6498      Op = Op.getOperand(unsigned(First) / Bytes.size());
6499      Force = true;
6500    } else if (Opcode == ISD::BUILD_VECTOR &&
6501               canTreatAsByteVector(Op.getValueType())) {
6502      // We can only optimize this case if the BUILD_VECTOR elements are
6503      // at least as wide as the extracted value.
6504      EVT OpVT = Op.getValueType();
6505      unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
6506      if (OpBytesPerElement < BytesPerElement)
6507        break;
6508      // Make sure that the least-significant bit of the extracted value
6509      // is the least significant bit of an input.
6510      unsigned End = (Index + 1) * BytesPerElement;
6511      if (End % OpBytesPerElement != 0)
6512        break;
6513      // We're extracting the low part of one operand of the BUILD_VECTOR.
6514      Op = Op.getOperand(End / OpBytesPerElement - 1);
6515      if (!Op.getValueType().isInteger()) {
6516        EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
6517        Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
6518        DCI.AddToWorklist(Op.getNode());
6519      }
6520      EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
6521      Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
6522      if (VT != ResVT) {
6523        DCI.AddToWorklist(Op.getNode());
6524        Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
6525      }
6526      return Op;
6527    } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
6528                Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
6529                Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
6530               canTreatAsByteVector(Op.getValueType()) &&
6531               canTreatAsByteVector(Op.getOperand(0).getValueType())) {
6532      // Make sure that only the unextended bits are significant.
6533      EVT ExtVT = Op.getValueType();
6534      EVT OpVT = Op.getOperand(0).getValueType();
6535      unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
6536      unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
6537      unsigned Byte = Index * BytesPerElement;
6538      unsigned SubByte = Byte % ExtBytesPerElement;
6539      unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
6540      if (SubByte < MinSubByte ||
6541          SubByte + BytesPerElement > ExtBytesPerElement)
6542        break;
6543      // Get the byte offset of the unextended element
6544      Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
6545      // ...then add the byte offset relative to that element.
6546      Byte += SubByte - MinSubByte;
6547      if (Byte % BytesPerElement != 0)
6548        break;
6549      Op = Op.getOperand(0);
6550      Index = Byte / BytesPerElement;
6551      Force = true;
6552    } else
6553      break;
6554  }
6555  if (Force) {
6556    if (Op.getValueType() != VecVT) {
6557      Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
6558      DCI.AddToWorklist(Op.getNode());
6559    }
6560    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
6561                       DAG.getConstant(Index, DL, MVT::i32));
6562  }
6563  return SDValue();
6564}
6565
6566// Optimize vector operations in scalar value Op on the basis that Op
6567// is truncated to TruncVT.
6568SDValue SystemZTargetLowering::combineTruncateExtract(
6569    const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
6570  // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
6571  // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
6572  // of type TruncVT.
6573  if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6574      TruncVT.getSizeInBits() % 8 == 0) {
6575    SDValue Vec = Op.getOperand(0);
6576    EVT VecVT = Vec.getValueType();
6577    if (canTreatAsByteVector(VecVT)) {
6578      if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
6579        unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
6580        unsigned TruncBytes = TruncVT.getStoreSize();
6581        if (BytesPerElement % TruncBytes == 0) {
6582          // Calculate the value of Y' in the above description.  We are
6583          // splitting the original elements into Scale equal-sized pieces
6584          // and for truncation purposes want the last (least-significant)
6585          // of these pieces for IndexN.  This is easiest to do by calculating
6586          // the start index of the following element and then subtracting 1.
6587          unsigned Scale = BytesPerElement / TruncBytes;
6588          unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
6589
6590          // Defer the creation of the bitcast from X to combineExtract,
6591          // which might be able to optimize the extraction.
6592          VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
6593                                   VecVT.getStoreSize() / TruncBytes);
6594          EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
6595          return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
6596        }
6597      }
6598    }
6599  }
6600  return SDValue();
6601}
6602
6603SDValue SystemZTargetLowering::combineZERO_EXTEND(
6604    SDNode *N, DAGCombinerInfo &DCI) const {
6605  // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
6606  SelectionDAG &DAG = DCI.DAG;
6607  SDValue N0 = N->getOperand(0);
6608  EVT VT = N->getValueType(0);
6609  if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
6610    auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
6611    auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6612    if (TrueOp && FalseOp) {
6613      SDLoc DL(N0);
6614      SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
6615                        DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
6616                        N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
6617      SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
6618      // If N0 has multiple uses, change other uses as well.
6619      if (!N0.hasOneUse()) {
6620        SDValue TruncSelect =
6621          DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
6622        DCI.CombineTo(N0.getNode(), TruncSelect);
6623      }
6624      return NewSelect;
6625    }
6626  }
6627  // Convert (zext (xor (trunc X), C)) into (xor (trunc X), C') if the size
6628  // of the result is smaller than the size of X and all the truncated bits
6629  // of X are already zero.
6630  if (N0.getOpcode() == ISD::XOR &&
6631      N0.hasOneUse() && N0.getOperand(0).hasOneUse() &&
6632      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
6633      N0.getOperand(1).getOpcode() == ISD::Constant) {
6634    SDValue X = N0.getOperand(0).getOperand(0);
6635    if (VT.isScalarInteger() && VT.getSizeInBits() < X.getValueSizeInBits()) {
6636      KnownBits Known = DAG.computeKnownBits(X);
6637      APInt TruncatedBits = APInt::getBitsSet(X.getValueSizeInBits(),
6638                                              N0.getValueSizeInBits(),
6639                                              VT.getSizeInBits());
6640      if (TruncatedBits.isSubsetOf(Known.Zero)) {
6641        X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
6642        APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits());
6643        return DAG.getNode(ISD::XOR, SDLoc(N0), VT,
6644                           X, DAG.getConstant(Mask, SDLoc(N0), VT));
6645      }
6646    }
6647  }
6648  return SDValue();
6649}
6650
6651SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
6652    SDNode *N, DAGCombinerInfo &DCI) const {
6653  // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
6654  // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
6655  // into (select_cc LHS, RHS, -1, 0, COND)
6656  SelectionDAG &DAG = DCI.DAG;
6657  SDValue N0 = N->getOperand(0);
6658  EVT VT = N->getValueType(0);
6659  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
6660  if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
6661    N0 = N0.getOperand(0);
6662  if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
6663    SDLoc DL(N0);
6664    SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
6665                      DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
6666                      N0.getOperand(2) };
6667    return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
6668  }
6669  return SDValue();
6670}
6671
6672SDValue SystemZTargetLowering::combineSIGN_EXTEND(
6673    SDNode *N, DAGCombinerInfo &DCI) const {
6674  // Convert (sext (ashr (shl X, C1), C2)) to
6675  // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
6676  // cheap as narrower ones.
6677  SelectionDAG &DAG = DCI.DAG;
6678  SDValue N0 = N->getOperand(0);
6679  EVT VT = N->getValueType(0);
6680  if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
6681    auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6682    SDValue Inner = N0.getOperand(0);
6683    if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
6684      if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
6685        unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
6686        unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
6687        unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
6688        EVT ShiftVT = N0.getOperand(1).getValueType();
6689        SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
6690                                  Inner.getOperand(0));
6691        SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
6692                                  DAG.getConstant(NewShlAmt, SDLoc(Inner),
6693                                                  ShiftVT));
6694        return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
6695                           DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
6696      }
6697    }
6698  }
6699  return SDValue();
6700}
6701
6702SDValue SystemZTargetLowering::combineMERGE(
6703    SDNode *N, DAGCombinerInfo &DCI) const {
6704  SelectionDAG &DAG = DCI.DAG;
6705  unsigned Opcode = N->getOpcode();
6706  SDValue Op0 = N->getOperand(0);
6707  SDValue Op1 = N->getOperand(1);
6708  if (Op0.getOpcode() == ISD::BITCAST)
6709    Op0 = Op0.getOperand(0);
6710  if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
6711    // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
6712    // for v4f32.
6713    if (Op1 == N->getOperand(0))
6714      return Op1;
6715    // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
6716    EVT VT = Op1.getValueType();
6717    unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
6718    if (ElemBytes <= 4) {
6719      Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
6720                SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
6721      EVT InVT = VT.changeVectorElementTypeToInteger();
6722      EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
6723                                   SystemZ::VectorBytes / ElemBytes / 2);
6724      if (VT != InVT) {
6725        Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
6726        DCI.AddToWorklist(Op1.getNode());
6727      }
6728      SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
6729      DCI.AddToWorklist(Op.getNode());
6730      return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
6731    }
6732  }
6733  return SDValue();
6734}
6735
6736SDValue SystemZTargetLowering::combineLOAD(
6737    SDNode *N, DAGCombinerInfo &DCI) const {
6738  SelectionDAG &DAG = DCI.DAG;
6739  EVT LdVT = N->getValueType(0);
6740  SDLoc DL(N);
6741
6742  // Replace an i128 load that is used solely to move its value into GPRs
6743  // by separate loads of both halves.
6744  if (LdVT == MVT::i128) {
6745    LoadSDNode *LD = cast<LoadSDNode>(N);
6746    if (!LD->isSimple() || !ISD::isNormalLoad(LD))
6747      return SDValue();
6748
6749    // Scan through all users.
6750    SmallVector<std::pair<SDNode *, int>, 2> Users;
6751    int UsedElements = 0;
6752    for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end();
6753         UI != UIEnd; ++UI) {
6754      // Skip the uses of the chain.
6755      if (UI.getUse().getResNo() != 0)
6756        continue;
6757
6758      // Verify every user is a TRUNCATE to i64 of the low or high half ...
6759      SDNode *User = *UI;
6760      int Index = 1;
6761      if (User->getOpcode() == ISD::SRL &&
6762          User->getOperand(1).getOpcode() == ISD::Constant &&
6763          User->getConstantOperandVal(1) == 64 && User->hasOneUse()) {
6764        User = *User->use_begin();
6765        Index = 0;
6766      }
6767      if (User->getOpcode() != ISD::TRUNCATE ||
6768          User->getValueType(0) != MVT::i64)
6769        return SDValue();
6770
6771      // ... and no half is extracted twice.
6772      if (UsedElements & (1 << Index))
6773        return SDValue();
6774
6775      UsedElements |= 1 << Index;
6776      Users.push_back(std::make_pair(User, Index));
6777    }
6778
6779    // Rewrite each extraction as an independent load.
6780    SmallVector<SDValue, 2> ArgChains;
6781    for (auto UserAndIndex : Users) {
6782      SDNode *User = UserAndIndex.first;
6783      unsigned Offset = User->getValueType(0).getStoreSize() * UserAndIndex.second;
6784      SDValue Ptr =
6785        DAG.getMemBasePlusOffset(LD->getBasePtr(), TypeSize::getFixed(Offset), DL);
6786      SDValue EltLoad =
6787        DAG.getLoad(User->getValueType(0), DL, LD->getChain(), Ptr,
6788                    LD->getPointerInfo().getWithOffset(Offset),
6789                    LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
6790                    LD->getAAInfo());
6791
6792      DCI.CombineTo(User, EltLoad, true);
6793      ArgChains.push_back(EltLoad.getValue(1));
6794    }
6795
6796    // Collect all chains via TokenFactor.
6797    SDValue Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
6798                                ArgChains);
6799    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
6800    DCI.AddToWorklist(Chain.getNode());
6801    return SDValue(N, 0);
6802  }
6803
6804  if (LdVT.isVector() || LdVT.isInteger())
6805    return SDValue();
6806  // Transform a scalar load that is REPLICATEd as well as having other
6807  // use(s) to the form where the other use(s) use the first element of the
6808  // REPLICATE instead of the load. Otherwise instruction selection will not
6809  // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
6810  // point loads.
6811
6812  SDValue Replicate;
6813  SmallVector<SDNode*, 8> OtherUses;
6814  for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
6815       UI != UE; ++UI) {
6816    if (UI->getOpcode() == SystemZISD::REPLICATE) {
6817      if (Replicate)
6818        return SDValue(); // Should never happen
6819      Replicate = SDValue(*UI, 0);
6820    }
6821    else if (UI.getUse().getResNo() == 0)
6822      OtherUses.push_back(*UI);
6823  }
6824  if (!Replicate || OtherUses.empty())
6825    return SDValue();
6826
6827  SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
6828                              Replicate, DAG.getConstant(0, DL, MVT::i32));
6829  // Update uses of the loaded Value while preserving old chains.
6830  for (SDNode *U : OtherUses) {
6831    SmallVector<SDValue, 8> Ops;
6832    for (SDValue Op : U->ops())
6833      Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
6834    DAG.UpdateNodeOperands(U, Ops);
6835  }
6836  return SDValue(N, 0);
6837}
6838
6839bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
6840  if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
6841    return true;
6842  if (Subtarget.hasVectorEnhancements2())
6843    if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64 || VT == MVT::i128)
6844      return true;
6845  return false;
6846}
6847
6848static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
6849  if (!VT.isVector() || !VT.isSimple() ||
6850      VT.getSizeInBits() != 128 ||
6851      VT.getScalarSizeInBits() % 8 != 0)
6852    return false;
6853
6854  unsigned NumElts = VT.getVectorNumElements();
6855  for (unsigned i = 0; i < NumElts; ++i) {
6856    if (M[i] < 0) continue; // ignore UNDEF indices
6857    if ((unsigned) M[i] != NumElts - 1 - i)
6858      return false;
6859  }
6860
6861  return true;
6862}
6863
6864static bool isOnlyUsedByStores(SDValue StoredVal, SelectionDAG &DAG) {
6865  for (auto *U : StoredVal->uses()) {
6866    if (StoreSDNode *ST = dyn_cast<StoreSDNode>(U)) {
6867      EVT CurrMemVT = ST->getMemoryVT().getScalarType();
6868      if (CurrMemVT.isRound() && CurrMemVT.getStoreSize() <= 16)
6869        continue;
6870    } else if (isa<BuildVectorSDNode>(U)) {
6871      SDValue BuildVector = SDValue(U, 0);
6872      if (DAG.isSplatValue(BuildVector, true/*AllowUndefs*/) &&
6873          isOnlyUsedByStores(BuildVector, DAG))
6874        continue;
6875    }
6876    return false;
6877  }
6878  return true;
6879}
6880
6881static bool isMovedFromParts(SDValue Val, SDValue &LoPart, SDValue &HiPart) {
6882  if (Val.getOpcode() != ISD::OR || !Val.getNode()->hasOneUse())
6883    return false;
6884
6885  SDValue Op0 = Val.getOperand(0);
6886  SDValue Op1 = Val.getOperand(1);
6887
6888  if (Op0.getOpcode() == ISD::SHL)
6889    std::swap(Op0, Op1);
6890  if (Op1.getOpcode() != ISD::SHL || !Op1.getNode()->hasOneUse() ||
6891      Op1.getOperand(1).getOpcode() != ISD::Constant ||
6892      Op1.getConstantOperandVal(1) != 64)
6893    return false;
6894  Op1 = Op1.getOperand(0);
6895
6896  if (Op0.getOpcode() != ISD::ZERO_EXTEND || !Op0.getNode()->hasOneUse() ||
6897      Op0.getOperand(0).getValueType() != MVT::i64)
6898    return false;
6899  if (Op1.getOpcode() != ISD::ANY_EXTEND || !Op1.getNode()->hasOneUse() ||
6900      Op1.getOperand(0).getValueType() != MVT::i64)
6901    return false;
6902
6903  LoPart = Op0.getOperand(0);
6904  HiPart = Op1.getOperand(0);
6905  return true;
6906}
6907
6908SDValue SystemZTargetLowering::combineSTORE(
6909    SDNode *N, DAGCombinerInfo &DCI) const {
6910  SelectionDAG &DAG = DCI.DAG;
6911  auto *SN = cast<StoreSDNode>(N);
6912  auto &Op1 = N->getOperand(1);
6913  EVT MemVT = SN->getMemoryVT();
6914  // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
6915  // for the extraction to be done on a vMiN value, so that we can use VSTE.
6916  // If X has wider elements then convert it to:
6917  // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
6918  if (MemVT.isInteger() && SN->isTruncatingStore()) {
6919    if (SDValue Value =
6920            combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
6921      DCI.AddToWorklist(Value.getNode());
6922
6923      // Rewrite the store with the new form of stored value.
6924      return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
6925                               SN->getBasePtr(), SN->getMemoryVT(),
6926                               SN->getMemOperand());
6927    }
6928  }
6929  // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
6930  if (!SN->isTruncatingStore() &&
6931      Op1.getOpcode() == ISD::BSWAP &&
6932      Op1.getNode()->hasOneUse() &&
6933      canLoadStoreByteSwapped(Op1.getValueType())) {
6934
6935      SDValue BSwapOp = Op1.getOperand(0);
6936
6937      if (BSwapOp.getValueType() == MVT::i16)
6938        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
6939
6940      SDValue Ops[] = {
6941        N->getOperand(0), BSwapOp, N->getOperand(2)
6942      };
6943
6944      return
6945        DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
6946                                Ops, MemVT, SN->getMemOperand());
6947    }
6948  // Combine STORE (element-swap) into VSTER
6949  if (!SN->isTruncatingStore() &&
6950      Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
6951      Op1.getNode()->hasOneUse() &&
6952      Subtarget.hasVectorEnhancements2()) {
6953    ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
6954    ArrayRef<int> ShuffleMask = SVN->getMask();
6955    if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
6956      SDValue Ops[] = {
6957        N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
6958      };
6959
6960      return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
6961                                     DAG.getVTList(MVT::Other),
6962                                     Ops, MemVT, SN->getMemOperand());
6963    }
6964  }
6965
6966  // Transform a store of an i128 moved from GPRs into two separate stores.
6967  if (MemVT == MVT::i128 && SN->isSimple() && ISD::isNormalStore(SN)) {
6968    SDValue LoPart, HiPart;
6969    if (isMovedFromParts(Op1, LoPart, HiPart)) {
6970      SDLoc DL(SN);
6971      SDValue Chain0 =
6972        DAG.getStore(SN->getChain(), DL, HiPart, SN->getBasePtr(),
6973                     SN->getPointerInfo(), SN->getOriginalAlign(),
6974                     SN->getMemOperand()->getFlags(), SN->getAAInfo());
6975      SDValue Chain1 =
6976        DAG.getStore(SN->getChain(), DL, LoPart,
6977                     DAG.getObjectPtrOffset(DL, SN->getBasePtr(),
6978                                                TypeSize::getFixed(8)),
6979                     SN->getPointerInfo().getWithOffset(8),
6980                     SN->getOriginalAlign(),
6981                     SN->getMemOperand()->getFlags(), SN->getAAInfo());
6982
6983      return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chain0, Chain1);
6984    }
6985  }
6986
6987  // Replicate a reg or immediate with VREP instead of scalar multiply or
6988  // immediate load. It seems best to do this during the first DAGCombine as
6989  // it is straight-forward to handle the zero-extend node in the initial
6990  // DAG, and also not worry about the keeping the new MemVT legal (e.g. when
6991  // extracting an i16 element from a v16i8 vector).
6992  if (Subtarget.hasVector() && DCI.Level == BeforeLegalizeTypes &&
6993      isOnlyUsedByStores(Op1, DAG)) {
6994    SDValue Word = SDValue();
6995    EVT WordVT;
6996
6997    // Find a replicated immediate and return it if found in Word and its
6998    // type in WordVT.
6999    auto FindReplicatedImm = [&](ConstantSDNode *C, unsigned TotBytes) {
7000      // Some constants are better handled with a scalar store.
7001      if (C->getAPIntValue().getBitWidth() > 64 || C->isAllOnes() ||
7002          isInt<16>(C->getSExtValue()) || MemVT.getStoreSize() <= 2)
7003        return;
7004      SystemZVectorConstantInfo VCI(APInt(TotBytes * 8, C->getZExtValue()));
7005      if (VCI.isVectorConstantLegal(Subtarget) &&
7006          VCI.Opcode == SystemZISD::REPLICATE) {
7007        Word = DAG.getConstant(VCI.OpVals[0], SDLoc(SN), MVT::i32);
7008        WordVT = VCI.VecVT.getScalarType();
7009      }
7010    };
7011
7012    // Find a replicated register and return it if found in Word and its type
7013    // in WordVT.
7014    auto FindReplicatedReg = [&](SDValue MulOp) {
7015      EVT MulVT = MulOp.getValueType();
7016      if (MulOp->getOpcode() == ISD::MUL &&
7017          (MulVT == MVT::i16 || MulVT == MVT::i32 || MulVT == MVT::i64)) {
7018        // Find a zero extended value and its type.
7019        SDValue LHS = MulOp->getOperand(0);
7020        if (LHS->getOpcode() == ISD::ZERO_EXTEND)
7021          WordVT = LHS->getOperand(0).getValueType();
7022        else if (LHS->getOpcode() == ISD::AssertZext)
7023          WordVT = cast<VTSDNode>(LHS->getOperand(1))->getVT();
7024        else
7025          return;
7026        // Find a replicating constant, e.g. 0x00010001.
7027        if (auto *C = dyn_cast<ConstantSDNode>(MulOp->getOperand(1))) {
7028          SystemZVectorConstantInfo VCI(
7029              APInt(MulVT.getSizeInBits(), C->getZExtValue()));
7030          if (VCI.isVectorConstantLegal(Subtarget) &&
7031              VCI.Opcode == SystemZISD::REPLICATE && VCI.OpVals[0] == 1 &&
7032              WordVT == VCI.VecVT.getScalarType())
7033            Word = DAG.getZExtOrTrunc(LHS->getOperand(0), SDLoc(SN), WordVT);
7034        }
7035      }
7036    };
7037
7038    if (isa<BuildVectorSDNode>(Op1) &&
7039        DAG.isSplatValue(Op1, true/*AllowUndefs*/)) {
7040      SDValue SplatVal = Op1->getOperand(0);
7041      if (auto *C = dyn_cast<ConstantSDNode>(SplatVal))
7042        FindReplicatedImm(C, SplatVal.getValueType().getStoreSize());
7043      else
7044        FindReplicatedReg(SplatVal);
7045    } else {
7046      if (auto *C = dyn_cast<ConstantSDNode>(Op1))
7047        FindReplicatedImm(C, MemVT.getStoreSize());
7048      else
7049        FindReplicatedReg(Op1);
7050    }
7051
7052    if (Word != SDValue()) {
7053      assert(MemVT.getSizeInBits() % WordVT.getSizeInBits() == 0 &&
7054             "Bad type handling");
7055      unsigned NumElts = MemVT.getSizeInBits() / WordVT.getSizeInBits();
7056      EVT SplatVT = EVT::getVectorVT(*DAG.getContext(), WordVT, NumElts);
7057      SDValue SplatVal = DAG.getSplatVector(SplatVT, SDLoc(SN), Word);
7058      return DAG.getStore(SN->getChain(), SDLoc(SN), SplatVal,
7059                          SN->getBasePtr(), SN->getMemOperand());
7060    }
7061  }
7062
7063  return SDValue();
7064}
7065
7066SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
7067    SDNode *N, DAGCombinerInfo &DCI) const {
7068  SelectionDAG &DAG = DCI.DAG;
7069  // Combine element-swap (LOAD) into VLER
7070  if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
7071      N->getOperand(0).hasOneUse() &&
7072      Subtarget.hasVectorEnhancements2()) {
7073    ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
7074    ArrayRef<int> ShuffleMask = SVN->getMask();
7075    if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
7076      SDValue Load = N->getOperand(0);
7077      LoadSDNode *LD = cast<LoadSDNode>(Load);
7078
7079      // Create the element-swapping load.
7080      SDValue Ops[] = {
7081        LD->getChain(),    // Chain
7082        LD->getBasePtr()   // Ptr
7083      };
7084      SDValue ESLoad =
7085        DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
7086                                DAG.getVTList(LD->getValueType(0), MVT::Other),
7087                                Ops, LD->getMemoryVT(), LD->getMemOperand());
7088
7089      // First, combine the VECTOR_SHUFFLE away.  This makes the value produced
7090      // by the load dead.
7091      DCI.CombineTo(N, ESLoad);
7092
7093      // Next, combine the load away, we give it a bogus result value but a real
7094      // chain result.  The result value is dead because the shuffle is dead.
7095      DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
7096
7097      // Return N so it doesn't get rechecked!
7098      return SDValue(N, 0);
7099    }
7100  }
7101
7102  return SDValue();
7103}
7104
7105SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
7106    SDNode *N, DAGCombinerInfo &DCI) const {
7107  SelectionDAG &DAG = DCI.DAG;
7108
7109  if (!Subtarget.hasVector())
7110    return SDValue();
7111
7112  // Look through bitcasts that retain the number of vector elements.
7113  SDValue Op = N->getOperand(0);
7114  if (Op.getOpcode() == ISD::BITCAST &&
7115      Op.getValueType().isVector() &&
7116      Op.getOperand(0).getValueType().isVector() &&
7117      Op.getValueType().getVectorNumElements() ==
7118      Op.getOperand(0).getValueType().getVectorNumElements())
7119    Op = Op.getOperand(0);
7120
7121  // Pull BSWAP out of a vector extraction.
7122  if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
7123    EVT VecVT = Op.getValueType();
7124    EVT EltVT = VecVT.getVectorElementType();
7125    Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
7126                     Op.getOperand(0), N->getOperand(1));
7127    DCI.AddToWorklist(Op.getNode());
7128    Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
7129    if (EltVT != N->getValueType(0)) {
7130      DCI.AddToWorklist(Op.getNode());
7131      Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
7132    }
7133    return Op;
7134  }
7135
7136  // Try to simplify a vector extraction.
7137  if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
7138    SDValue Op0 = N->getOperand(0);
7139    EVT VecVT = Op0.getValueType();
7140    return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
7141                          IndexN->getZExtValue(), DCI, false);
7142  }
7143  return SDValue();
7144}
7145
7146SDValue SystemZTargetLowering::combineJOIN_DWORDS(
7147    SDNode *N, DAGCombinerInfo &DCI) const {
7148  SelectionDAG &DAG = DCI.DAG;
7149  // (join_dwords X, X) == (replicate X)
7150  if (N->getOperand(0) == N->getOperand(1))
7151    return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
7152                       N->getOperand(0));
7153  return SDValue();
7154}
7155
7156static SDValue MergeInputChains(SDNode *N1, SDNode *N2) {
7157  SDValue Chain1 = N1->getOperand(0);
7158  SDValue Chain2 = N2->getOperand(0);
7159
7160  // Trivial case: both nodes take the same chain.
7161  if (Chain1 == Chain2)
7162    return Chain1;
7163
7164  // FIXME - we could handle more complex cases via TokenFactor,
7165  // assuming we can verify that this would not create a cycle.
7166  return SDValue();
7167}
7168
7169SDValue SystemZTargetLowering::combineFP_ROUND(
7170    SDNode *N, DAGCombinerInfo &DCI) const {
7171
7172  if (!Subtarget.hasVector())
7173    return SDValue();
7174
7175  // (fpround (extract_vector_elt X 0))
7176  // (fpround (extract_vector_elt X 1)) ->
7177  // (extract_vector_elt (VROUND X) 0)
7178  // (extract_vector_elt (VROUND X) 2)
7179  //
7180  // This is a special case since the target doesn't really support v2f32s.
7181  unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
7182  SelectionDAG &DAG = DCI.DAG;
7183  SDValue Op0 = N->getOperand(OpNo);
7184  if (N->getValueType(0) == MVT::f32 && Op0.hasOneUse() &&
7185      Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7186      Op0.getOperand(0).getValueType() == MVT::v2f64 &&
7187      Op0.getOperand(1).getOpcode() == ISD::Constant &&
7188      Op0.getConstantOperandVal(1) == 0) {
7189    SDValue Vec = Op0.getOperand(0);
7190    for (auto *U : Vec->uses()) {
7191      if (U != Op0.getNode() && U->hasOneUse() &&
7192          U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7193          U->getOperand(0) == Vec &&
7194          U->getOperand(1).getOpcode() == ISD::Constant &&
7195          U->getConstantOperandVal(1) == 1) {
7196        SDValue OtherRound = SDValue(*U->use_begin(), 0);
7197        if (OtherRound.getOpcode() == N->getOpcode() &&
7198            OtherRound.getOperand(OpNo) == SDValue(U, 0) &&
7199            OtherRound.getValueType() == MVT::f32) {
7200          SDValue VRound, Chain;
7201          if (N->isStrictFPOpcode()) {
7202            Chain = MergeInputChains(N, OtherRound.getNode());
7203            if (!Chain)
7204              continue;
7205            VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N),
7206                                 {MVT::v4f32, MVT::Other}, {Chain, Vec});
7207            Chain = VRound.getValue(1);
7208          } else
7209            VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
7210                                 MVT::v4f32, Vec);
7211          DCI.AddToWorklist(VRound.getNode());
7212          SDValue Extract1 =
7213            DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
7214                        VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
7215          DCI.AddToWorklist(Extract1.getNode());
7216          DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
7217          if (Chain)
7218            DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain);
7219          SDValue Extract0 =
7220            DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
7221                        VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
7222          if (Chain)
7223            return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
7224                               N->getVTList(), Extract0, Chain);
7225          return Extract0;
7226        }
7227      }
7228    }
7229  }
7230  return SDValue();
7231}
7232
7233SDValue SystemZTargetLowering::combineFP_EXTEND(
7234    SDNode *N, DAGCombinerInfo &DCI) const {
7235
7236  if (!Subtarget.hasVector())
7237    return SDValue();
7238
7239  // (fpextend (extract_vector_elt X 0))
7240  // (fpextend (extract_vector_elt X 2)) ->
7241  // (extract_vector_elt (VEXTEND X) 0)
7242  // (extract_vector_elt (VEXTEND X) 1)
7243  //
7244  // This is a special case since the target doesn't really support v2f32s.
7245  unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
7246  SelectionDAG &DAG = DCI.DAG;
7247  SDValue Op0 = N->getOperand(OpNo);
7248  if (N->getValueType(0) == MVT::f64 && Op0.hasOneUse() &&
7249      Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7250      Op0.getOperand(0).getValueType() == MVT::v4f32 &&
7251      Op0.getOperand(1).getOpcode() == ISD::Constant &&
7252      Op0.getConstantOperandVal(1) == 0) {
7253    SDValue Vec = Op0.getOperand(0);
7254    for (auto *U : Vec->uses()) {
7255      if (U != Op0.getNode() && U->hasOneUse() &&
7256          U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7257          U->getOperand(0) == Vec &&
7258          U->getOperand(1).getOpcode() == ISD::Constant &&
7259          U->getConstantOperandVal(1) == 2) {
7260        SDValue OtherExtend = SDValue(*U->use_begin(), 0);
7261        if (OtherExtend.getOpcode() == N->getOpcode() &&
7262            OtherExtend.getOperand(OpNo) == SDValue(U, 0) &&
7263            OtherExtend.getValueType() == MVT::f64) {
7264          SDValue VExtend, Chain;
7265          if (N->isStrictFPOpcode()) {
7266            Chain = MergeInputChains(N, OtherExtend.getNode());
7267            if (!Chain)
7268              continue;
7269            VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N),
7270                                  {MVT::v2f64, MVT::Other}, {Chain, Vec});
7271            Chain = VExtend.getValue(1);
7272          } else
7273            VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
7274                                  MVT::v2f64, Vec);
7275          DCI.AddToWorklist(VExtend.getNode());
7276          SDValue Extract1 =
7277            DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
7278                        VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
7279          DCI.AddToWorklist(Extract1.getNode());
7280          DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
7281          if (Chain)
7282            DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain);
7283          SDValue Extract0 =
7284            DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
7285                        VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
7286          if (Chain)
7287            return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
7288                               N->getVTList(), Extract0, Chain);
7289          return Extract0;
7290        }
7291      }
7292    }
7293  }
7294  return SDValue();
7295}
7296
7297SDValue SystemZTargetLowering::combineINT_TO_FP(
7298    SDNode *N, DAGCombinerInfo &DCI) const {
7299  if (DCI.Level != BeforeLegalizeTypes)
7300    return SDValue();
7301  SelectionDAG &DAG = DCI.DAG;
7302  LLVMContext &Ctx = *DAG.getContext();
7303  unsigned Opcode = N->getOpcode();
7304  EVT OutVT = N->getValueType(0);
7305  Type *OutLLVMTy = OutVT.getTypeForEVT(Ctx);
7306  SDValue Op = N->getOperand(0);
7307  unsigned OutScalarBits = OutLLVMTy->getScalarSizeInBits();
7308  unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits();
7309
7310  // Insert an extension before type-legalization to avoid scalarization, e.g.:
7311  // v2f64 = uint_to_fp v2i16
7312  // =>
7313  // v2f64 = uint_to_fp (v2i64 zero_extend v2i16)
7314  if (OutLLVMTy->isVectorTy() && OutScalarBits > InScalarBits &&
7315      OutScalarBits <= 64) {
7316    unsigned NumElts = cast<FixedVectorType>(OutLLVMTy)->getNumElements();
7317    EVT ExtVT = EVT::getVectorVT(
7318        Ctx, EVT::getIntegerVT(Ctx, OutLLVMTy->getScalarSizeInBits()), NumElts);
7319    unsigned ExtOpcode =
7320        (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND);
7321    SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op);
7322    return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp);
7323  }
7324  return SDValue();
7325}
7326
7327SDValue SystemZTargetLowering::combineBSWAP(
7328    SDNode *N, DAGCombinerInfo &DCI) const {
7329  SelectionDAG &DAG = DCI.DAG;
7330  // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
7331  if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
7332      N->getOperand(0).hasOneUse() &&
7333      canLoadStoreByteSwapped(N->getValueType(0))) {
7334      SDValue Load = N->getOperand(0);
7335      LoadSDNode *LD = cast<LoadSDNode>(Load);
7336
7337      // Create the byte-swapping load.
7338      SDValue Ops[] = {
7339        LD->getChain(),    // Chain
7340        LD->getBasePtr()   // Ptr
7341      };
7342      EVT LoadVT = N->getValueType(0);
7343      if (LoadVT == MVT::i16)
7344        LoadVT = MVT::i32;
7345      SDValue BSLoad =
7346        DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
7347                                DAG.getVTList(LoadVT, MVT::Other),
7348                                Ops, LD->getMemoryVT(), LD->getMemOperand());
7349
7350      // If this is an i16 load, insert the truncate.
7351      SDValue ResVal = BSLoad;
7352      if (N->getValueType(0) == MVT::i16)
7353        ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
7354
7355      // First, combine the bswap away.  This makes the value produced by the
7356      // load dead.
7357      DCI.CombineTo(N, ResVal);
7358
7359      // Next, combine the load away, we give it a bogus result value but a real
7360      // chain result.  The result value is dead because the bswap is dead.
7361      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
7362
7363      // Return N so it doesn't get rechecked!
7364      return SDValue(N, 0);
7365    }
7366
7367  // Look through bitcasts that retain the number of vector elements.
7368  SDValue Op = N->getOperand(0);
7369  if (Op.getOpcode() == ISD::BITCAST &&
7370      Op.getValueType().isVector() &&
7371      Op.getOperand(0).getValueType().isVector() &&
7372      Op.getValueType().getVectorNumElements() ==
7373      Op.getOperand(0).getValueType().getVectorNumElements())
7374    Op = Op.getOperand(0);
7375
7376  // Push BSWAP into a vector insertion if at least one side then simplifies.
7377  if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
7378    SDValue Vec = Op.getOperand(0);
7379    SDValue Elt = Op.getOperand(1);
7380    SDValue Idx = Op.getOperand(2);
7381
7382    if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
7383        Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
7384        DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
7385        Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
7386        (canLoadStoreByteSwapped(N->getValueType(0)) &&
7387         ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
7388      EVT VecVT = N->getValueType(0);
7389      EVT EltVT = N->getValueType(0).getVectorElementType();
7390      if (VecVT != Vec.getValueType()) {
7391        Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
7392        DCI.AddToWorklist(Vec.getNode());
7393      }
7394      if (EltVT != Elt.getValueType()) {
7395        Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
7396        DCI.AddToWorklist(Elt.getNode());
7397      }
7398      Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
7399      DCI.AddToWorklist(Vec.getNode());
7400      Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
7401      DCI.AddToWorklist(Elt.getNode());
7402      return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
7403                         Vec, Elt, Idx);
7404    }
7405  }
7406
7407  // Push BSWAP into a vector shuffle if at least one side then simplifies.
7408  ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
7409  if (SV && Op.hasOneUse()) {
7410    SDValue Op0 = Op.getOperand(0);
7411    SDValue Op1 = Op.getOperand(1);
7412
7413    if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
7414        Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
7415        DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
7416        Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
7417      EVT VecVT = N->getValueType(0);
7418      if (VecVT != Op0.getValueType()) {
7419        Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
7420        DCI.AddToWorklist(Op0.getNode());
7421      }
7422      if (VecVT != Op1.getValueType()) {
7423        Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
7424        DCI.AddToWorklist(Op1.getNode());
7425      }
7426      Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
7427      DCI.AddToWorklist(Op0.getNode());
7428      Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
7429      DCI.AddToWorklist(Op1.getNode());
7430      return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
7431    }
7432  }
7433
7434  return SDValue();
7435}
7436
7437static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
7438  // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
7439  // set by the CCReg instruction using the CCValid / CCMask masks,
7440  // If the CCReg instruction is itself a ICMP testing the condition
7441  // code set by some other instruction, see whether we can directly
7442  // use that condition code.
7443
7444  // Verify that we have an ICMP against some constant.
7445  if (CCValid != SystemZ::CCMASK_ICMP)
7446    return false;
7447  auto *ICmp = CCReg.getNode();
7448  if (ICmp->getOpcode() != SystemZISD::ICMP)
7449    return false;
7450  auto *CompareLHS = ICmp->getOperand(0).getNode();
7451  auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
7452  if (!CompareRHS)
7453    return false;
7454
7455  // Optimize the case where CompareLHS is a SELECT_CCMASK.
7456  if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
7457    // Verify that we have an appropriate mask for a EQ or NE comparison.
7458    bool Invert = false;
7459    if (CCMask == SystemZ::CCMASK_CMP_NE)
7460      Invert = !Invert;
7461    else if (CCMask != SystemZ::CCMASK_CMP_EQ)
7462      return false;
7463
7464    // Verify that the ICMP compares against one of select values.
7465    auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
7466    if (!TrueVal)
7467      return false;
7468    auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
7469    if (!FalseVal)
7470      return false;
7471    if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
7472      Invert = !Invert;
7473    else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
7474      return false;
7475
7476    // Compute the effective CC mask for the new branch or select.
7477    auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
7478    auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
7479    if (!NewCCValid || !NewCCMask)
7480      return false;
7481    CCValid = NewCCValid->getZExtValue();
7482    CCMask = NewCCMask->getZExtValue();
7483    if (Invert)
7484      CCMask ^= CCValid;
7485
7486    // Return the updated CCReg link.
7487    CCReg = CompareLHS->getOperand(4);
7488    return true;
7489  }
7490
7491  // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
7492  if (CompareLHS->getOpcode() == ISD::SRA) {
7493    auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
7494    if (!SRACount || SRACount->getZExtValue() != 30)
7495      return false;
7496    auto *SHL = CompareLHS->getOperand(0).getNode();
7497    if (SHL->getOpcode() != ISD::SHL)
7498      return false;
7499    auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
7500    if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
7501      return false;
7502    auto *IPM = SHL->getOperand(0).getNode();
7503    if (IPM->getOpcode() != SystemZISD::IPM)
7504      return false;
7505
7506    // Avoid introducing CC spills (because SRA would clobber CC).
7507    if (!CompareLHS->hasOneUse())
7508      return false;
7509    // Verify that the ICMP compares against zero.
7510    if (CompareRHS->getZExtValue() != 0)
7511      return false;
7512
7513    // Compute the effective CC mask for the new branch or select.
7514    CCMask = SystemZ::reverseCCMask(CCMask);
7515
7516    // Return the updated CCReg link.
7517    CCReg = IPM->getOperand(0);
7518    return true;
7519  }
7520
7521  return false;
7522}
7523
7524SDValue SystemZTargetLowering::combineBR_CCMASK(
7525    SDNode *N, DAGCombinerInfo &DCI) const {
7526  SelectionDAG &DAG = DCI.DAG;
7527
7528  // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
7529  auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
7530  auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
7531  if (!CCValid || !CCMask)
7532    return SDValue();
7533
7534  int CCValidVal = CCValid->getZExtValue();
7535  int CCMaskVal = CCMask->getZExtValue();
7536  SDValue Chain = N->getOperand(0);
7537  SDValue CCReg = N->getOperand(4);
7538
7539  if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
7540    return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
7541                       Chain,
7542                       DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
7543                       DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
7544                       N->getOperand(3), CCReg);
7545  return SDValue();
7546}
7547
7548SDValue SystemZTargetLowering::combineSELECT_CCMASK(
7549    SDNode *N, DAGCombinerInfo &DCI) const {
7550  SelectionDAG &DAG = DCI.DAG;
7551
7552  // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
7553  auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
7554  auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
7555  if (!CCValid || !CCMask)
7556    return SDValue();
7557
7558  int CCValidVal = CCValid->getZExtValue();
7559  int CCMaskVal = CCMask->getZExtValue();
7560  SDValue CCReg = N->getOperand(4);
7561
7562  if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
7563    return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
7564                       N->getOperand(0), N->getOperand(1),
7565                       DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
7566                       DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
7567                       CCReg);
7568  return SDValue();
7569}
7570
7571
7572SDValue SystemZTargetLowering::combineGET_CCMASK(
7573    SDNode *N, DAGCombinerInfo &DCI) const {
7574
7575  // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
7576  auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
7577  auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
7578  if (!CCValid || !CCMask)
7579    return SDValue();
7580  int CCValidVal = CCValid->getZExtValue();
7581  int CCMaskVal = CCMask->getZExtValue();
7582
7583  SDValue Select = N->getOperand(0);
7584  if (Select->getOpcode() == ISD::TRUNCATE)
7585    Select = Select->getOperand(0);
7586  if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
7587    return SDValue();
7588
7589  auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
7590  auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
7591  if (!SelectCCValid || !SelectCCMask)
7592    return SDValue();
7593  int SelectCCValidVal = SelectCCValid->getZExtValue();
7594  int SelectCCMaskVal = SelectCCMask->getZExtValue();
7595
7596  auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
7597  auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
7598  if (!TrueVal || !FalseVal)
7599    return SDValue();
7600  if (TrueVal->getZExtValue() == 1 && FalseVal->getZExtValue() == 0)
7601    ;
7602  else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() == 1)
7603    SelectCCMaskVal ^= SelectCCValidVal;
7604  else
7605    return SDValue();
7606
7607  if (SelectCCValidVal & ~CCValidVal)
7608    return SDValue();
7609  if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
7610    return SDValue();
7611
7612  return Select->getOperand(4);
7613}
7614
7615SDValue SystemZTargetLowering::combineIntDIVREM(
7616    SDNode *N, DAGCombinerInfo &DCI) const {
7617  SelectionDAG &DAG = DCI.DAG;
7618  EVT VT = N->getValueType(0);
7619  // In the case where the divisor is a vector of constants a cheaper
7620  // sequence of instructions can replace the divide. BuildSDIV is called to
7621  // do this during DAG combining, but it only succeeds when it can build a
7622  // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
7623  // since it is not Legal but Custom it can only happen before
7624  // legalization. Therefore we must scalarize this early before Combine
7625  // 1. For widened vectors, this is already the result of type legalization.
7626  if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
7627      DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
7628    return DAG.UnrollVectorOp(N);
7629  return SDValue();
7630}
7631
7632SDValue SystemZTargetLowering::combineINTRINSIC(
7633    SDNode *N, DAGCombinerInfo &DCI) const {
7634  SelectionDAG &DAG = DCI.DAG;
7635
7636  unsigned Id = N->getConstantOperandVal(1);
7637  switch (Id) {
7638  // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15
7639  // or larger is simply a vector load.
7640  case Intrinsic::s390_vll:
7641  case Intrinsic::s390_vlrl:
7642    if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
7643      if (C->getZExtValue() >= 15)
7644        return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0),
7645                           N->getOperand(3), MachinePointerInfo());
7646    break;
7647  // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH.
7648  case Intrinsic::s390_vstl:
7649  case Intrinsic::s390_vstrl:
7650    if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
7651      if (C->getZExtValue() >= 15)
7652        return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2),
7653                            N->getOperand(4), MachinePointerInfo());
7654    break;
7655  }
7656
7657  return SDValue();
7658}
7659
7660SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
7661  if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
7662    return N->getOperand(0);
7663  return N;
7664}
7665
7666SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
7667                                                 DAGCombinerInfo &DCI) const {
7668  switch(N->getOpcode()) {
7669  default: break;
7670  case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
7671  case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
7672  case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
7673  case SystemZISD::MERGE_HIGH:
7674  case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
7675  case ISD::LOAD:               return combineLOAD(N, DCI);
7676  case ISD::STORE:              return combineSTORE(N, DCI);
7677  case ISD::VECTOR_SHUFFLE:     return combineVECTOR_SHUFFLE(N, DCI);
7678  case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
7679  case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
7680  case ISD::STRICT_FP_ROUND:
7681  case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
7682  case ISD::STRICT_FP_EXTEND:
7683  case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI);
7684  case ISD::SINT_TO_FP:
7685  case ISD::UINT_TO_FP:         return combineINT_TO_FP(N, DCI);
7686  case ISD::BSWAP:              return combineBSWAP(N, DCI);
7687  case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
7688  case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
7689  case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
7690  case ISD::SDIV:
7691  case ISD::UDIV:
7692  case ISD::SREM:
7693  case ISD::UREM:               return combineIntDIVREM(N, DCI);
7694  case ISD::INTRINSIC_W_CHAIN:
7695  case ISD::INTRINSIC_VOID:     return combineINTRINSIC(N, DCI);
7696  }
7697
7698  return SDValue();
7699}
7700
7701// Return the demanded elements for the OpNo source operand of Op. DemandedElts
7702// are for Op.
7703static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
7704                                    unsigned OpNo) {
7705  EVT VT = Op.getValueType();
7706  unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
7707  APInt SrcDemE;
7708  unsigned Opcode = Op.getOpcode();
7709  if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7710    unsigned Id = Op.getConstantOperandVal(0);
7711    switch (Id) {
7712    case Intrinsic::s390_vpksh:   // PACKS
7713    case Intrinsic::s390_vpksf:
7714    case Intrinsic::s390_vpksg:
7715    case Intrinsic::s390_vpkshs:  // PACKS_CC
7716    case Intrinsic::s390_vpksfs:
7717    case Intrinsic::s390_vpksgs:
7718    case Intrinsic::s390_vpklsh:  // PACKLS
7719    case Intrinsic::s390_vpklsf:
7720    case Intrinsic::s390_vpklsg:
7721    case Intrinsic::s390_vpklshs: // PACKLS_CC
7722    case Intrinsic::s390_vpklsfs:
7723    case Intrinsic::s390_vpklsgs:
7724      // VECTOR PACK truncates the elements of two source vectors into one.
7725      SrcDemE = DemandedElts;
7726      if (OpNo == 2)
7727        SrcDemE.lshrInPlace(NumElts / 2);
7728      SrcDemE = SrcDemE.trunc(NumElts / 2);
7729      break;
7730      // VECTOR UNPACK extends half the elements of the source vector.
7731    case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
7732    case Intrinsic::s390_vuphh:
7733    case Intrinsic::s390_vuphf:
7734    case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
7735    case Intrinsic::s390_vuplhh:
7736    case Intrinsic::s390_vuplhf:
7737      SrcDemE = APInt(NumElts * 2, 0);
7738      SrcDemE.insertBits(DemandedElts, 0);
7739      break;
7740    case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
7741    case Intrinsic::s390_vuplhw:
7742    case Intrinsic::s390_vuplf:
7743    case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
7744    case Intrinsic::s390_vupllh:
7745    case Intrinsic::s390_vupllf:
7746      SrcDemE = APInt(NumElts * 2, 0);
7747      SrcDemE.insertBits(DemandedElts, NumElts);
7748      break;
7749    case Intrinsic::s390_vpdi: {
7750      // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
7751      SrcDemE = APInt(NumElts, 0);
7752      if (!DemandedElts[OpNo - 1])
7753        break;
7754      unsigned Mask = Op.getConstantOperandVal(3);
7755      unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
7756      // Demand input element 0 or 1, given by the mask bit value.
7757      SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
7758      break;
7759    }
7760    case Intrinsic::s390_vsldb: {
7761      // VECTOR SHIFT LEFT DOUBLE BY BYTE
7762      assert(VT == MVT::v16i8 && "Unexpected type.");
7763      unsigned FirstIdx = Op.getConstantOperandVal(3);
7764      assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
7765      unsigned NumSrc0Els = 16 - FirstIdx;
7766      SrcDemE = APInt(NumElts, 0);
7767      if (OpNo == 1) {
7768        APInt DemEls = DemandedElts.trunc(NumSrc0Els);
7769        SrcDemE.insertBits(DemEls, FirstIdx);
7770      } else {
7771        APInt DemEls = DemandedElts.lshr(NumSrc0Els);
7772        SrcDemE.insertBits(DemEls, 0);
7773      }
7774      break;
7775    }
7776    case Intrinsic::s390_vperm:
7777      SrcDemE = APInt(NumElts, 1);
7778      break;
7779    default:
7780      llvm_unreachable("Unhandled intrinsic.");
7781      break;
7782    }
7783  } else {
7784    switch (Opcode) {
7785    case SystemZISD::JOIN_DWORDS:
7786      // Scalar operand.
7787      SrcDemE = APInt(1, 1);
7788      break;
7789    case SystemZISD::SELECT_CCMASK:
7790      SrcDemE = DemandedElts;
7791      break;
7792    default:
7793      llvm_unreachable("Unhandled opcode.");
7794      break;
7795    }
7796  }
7797  return SrcDemE;
7798}
7799
7800static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
7801                                  const APInt &DemandedElts,
7802                                  const SelectionDAG &DAG, unsigned Depth,
7803                                  unsigned OpNo) {
7804  APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
7805  APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
7806  KnownBits LHSKnown =
7807      DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
7808  KnownBits RHSKnown =
7809      DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
7810  Known = LHSKnown.intersectWith(RHSKnown);
7811}
7812
7813void
7814SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
7815                                                     KnownBits &Known,
7816                                                     const APInt &DemandedElts,
7817                                                     const SelectionDAG &DAG,
7818                                                     unsigned Depth) const {
7819  Known.resetAll();
7820
7821  // Intrinsic CC result is returned in the two low bits.
7822  unsigned tmp0, tmp1; // not used
7823  if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
7824    Known.Zero.setBitsFrom(2);
7825    return;
7826  }
7827  EVT VT = Op.getValueType();
7828  if (Op.getResNo() != 0 || VT == MVT::Untyped)
7829    return;
7830  assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
7831          "KnownBits does not match VT in bitwidth");
7832  assert ((!VT.isVector() ||
7833           (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
7834          "DemandedElts does not match VT number of elements");
7835  unsigned BitWidth = Known.getBitWidth();
7836  unsigned Opcode = Op.getOpcode();
7837  if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7838    bool IsLogical = false;
7839    unsigned Id = Op.getConstantOperandVal(0);
7840    switch (Id) {
7841    case Intrinsic::s390_vpksh:   // PACKS
7842    case Intrinsic::s390_vpksf:
7843    case Intrinsic::s390_vpksg:
7844    case Intrinsic::s390_vpkshs:  // PACKS_CC
7845    case Intrinsic::s390_vpksfs:
7846    case Intrinsic::s390_vpksgs:
7847    case Intrinsic::s390_vpklsh:  // PACKLS
7848    case Intrinsic::s390_vpklsf:
7849    case Intrinsic::s390_vpklsg:
7850    case Intrinsic::s390_vpklshs: // PACKLS_CC
7851    case Intrinsic::s390_vpklsfs:
7852    case Intrinsic::s390_vpklsgs:
7853    case Intrinsic::s390_vpdi:
7854    case Intrinsic::s390_vsldb:
7855    case Intrinsic::s390_vperm:
7856      computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
7857      break;
7858    case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
7859    case Intrinsic::s390_vuplhh:
7860    case Intrinsic::s390_vuplhf:
7861    case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
7862    case Intrinsic::s390_vupllh:
7863    case Intrinsic::s390_vupllf:
7864      IsLogical = true;
7865      [[fallthrough]];
7866    case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
7867    case Intrinsic::s390_vuphh:
7868    case Intrinsic::s390_vuphf:
7869    case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
7870    case Intrinsic::s390_vuplhw:
7871    case Intrinsic::s390_vuplf: {
7872      SDValue SrcOp = Op.getOperand(1);
7873      APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
7874      Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
7875      if (IsLogical) {
7876        Known = Known.zext(BitWidth);
7877      } else
7878        Known = Known.sext(BitWidth);
7879      break;
7880    }
7881    default:
7882      break;
7883    }
7884  } else {
7885    switch (Opcode) {
7886    case SystemZISD::JOIN_DWORDS:
7887    case SystemZISD::SELECT_CCMASK:
7888      computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
7889      break;
7890    case SystemZISD::REPLICATE: {
7891      SDValue SrcOp = Op.getOperand(0);
7892      Known = DAG.computeKnownBits(SrcOp, Depth + 1);
7893      if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
7894        Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
7895      break;
7896    }
7897    default:
7898      break;
7899    }
7900  }
7901
7902  // Known has the width of the source operand(s). Adjust if needed to match
7903  // the passed bitwidth.
7904  if (Known.getBitWidth() != BitWidth)
7905    Known = Known.anyextOrTrunc(BitWidth);
7906}
7907
7908static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
7909                                        const SelectionDAG &DAG, unsigned Depth,
7910                                        unsigned OpNo) {
7911  APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
7912  unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
7913  if (LHS == 1) return 1; // Early out.
7914  APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
7915  unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
7916  if (RHS == 1) return 1; // Early out.
7917  unsigned Common = std::min(LHS, RHS);
7918  unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
7919  EVT VT = Op.getValueType();
7920  unsigned VTBits = VT.getScalarSizeInBits();
7921  if (SrcBitWidth > VTBits) { // PACK
7922    unsigned SrcExtraBits = SrcBitWidth - VTBits;
7923    if (Common > SrcExtraBits)
7924      return (Common - SrcExtraBits);
7925    return 1;
7926  }
7927  assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
7928  return Common;
7929}
7930
7931unsigned
7932SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
7933    SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
7934    unsigned Depth) const {
7935  if (Op.getResNo() != 0)
7936    return 1;
7937  unsigned Opcode = Op.getOpcode();
7938  if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7939    unsigned Id = Op.getConstantOperandVal(0);
7940    switch (Id) {
7941    case Intrinsic::s390_vpksh:   // PACKS
7942    case Intrinsic::s390_vpksf:
7943    case Intrinsic::s390_vpksg:
7944    case Intrinsic::s390_vpkshs:  // PACKS_CC
7945    case Intrinsic::s390_vpksfs:
7946    case Intrinsic::s390_vpksgs:
7947    case Intrinsic::s390_vpklsh:  // PACKLS
7948    case Intrinsic::s390_vpklsf:
7949    case Intrinsic::s390_vpklsg:
7950    case Intrinsic::s390_vpklshs: // PACKLS_CC
7951    case Intrinsic::s390_vpklsfs:
7952    case Intrinsic::s390_vpklsgs:
7953    case Intrinsic::s390_vpdi:
7954    case Intrinsic::s390_vsldb:
7955    case Intrinsic::s390_vperm:
7956      return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
7957    case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
7958    case Intrinsic::s390_vuphh:
7959    case Intrinsic::s390_vuphf:
7960    case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
7961    case Intrinsic::s390_vuplhw:
7962    case Intrinsic::s390_vuplf: {
7963      SDValue PackedOp = Op.getOperand(1);
7964      APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
7965      unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
7966      EVT VT = Op.getValueType();
7967      unsigned VTBits = VT.getScalarSizeInBits();
7968      Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
7969      return Tmp;
7970    }
7971    default:
7972      break;
7973    }
7974  } else {
7975    switch (Opcode) {
7976    case SystemZISD::SELECT_CCMASK:
7977      return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
7978    default:
7979      break;
7980    }
7981  }
7982
7983  return 1;
7984}
7985
7986bool SystemZTargetLowering::
7987isGuaranteedNotToBeUndefOrPoisonForTargetNode(SDValue Op,
7988         const APInt &DemandedElts, const SelectionDAG &DAG,
7989         bool PoisonOnly, unsigned Depth) const {
7990  switch (Op->getOpcode()) {
7991  case SystemZISD::PCREL_WRAPPER:
7992  case SystemZISD::PCREL_OFFSET:
7993    return true;
7994  }
7995  return false;
7996}
7997
7998unsigned
7999SystemZTargetLowering::getStackProbeSize(const MachineFunction &MF) const {
8000  const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
8001  unsigned StackAlign = TFI->getStackAlignment();
8002  assert(StackAlign >=1 && isPowerOf2_32(StackAlign) &&
8003         "Unexpected stack alignment");
8004  // The default stack probe size is 4096 if the function has no
8005  // stack-probe-size attribute.
8006  unsigned StackProbeSize =
8007      MF.getFunction().getFnAttributeAsParsedInteger("stack-probe-size", 4096);
8008  // Round down to the stack alignment.
8009  StackProbeSize &= ~(StackAlign - 1);
8010  return StackProbeSize ? StackProbeSize : StackAlign;
8011}
8012
8013//===----------------------------------------------------------------------===//
8014// Custom insertion
8015//===----------------------------------------------------------------------===//
8016
8017// Force base value Base into a register before MI.  Return the register.
8018static Register forceReg(MachineInstr &MI, MachineOperand &Base,
8019                         const SystemZInstrInfo *TII) {
8020  MachineBasicBlock *MBB = MI.getParent();
8021  MachineFunction &MF = *MBB->getParent();
8022  MachineRegisterInfo &MRI = MF.getRegInfo();
8023
8024  if (Base.isReg()) {
8025    // Copy Base into a new virtual register to help register coalescing in
8026    // cases with multiple uses.
8027    Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8028    BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::COPY), Reg)
8029      .add(Base);
8030    return Reg;
8031  }
8032
8033  Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8034  BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
8035      .add(Base)
8036      .addImm(0)
8037      .addReg(0);
8038  return Reg;
8039}
8040
8041// The CC operand of MI might be missing a kill marker because there
8042// were multiple uses of CC, and ISel didn't know which to mark.
8043// Figure out whether MI should have had a kill marker.
8044static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
8045  // Scan forward through BB for a use/def of CC.
8046  MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
8047  for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
8048    const MachineInstr& mi = *miI;
8049    if (mi.readsRegister(SystemZ::CC))
8050      return false;
8051    if (mi.definesRegister(SystemZ::CC))
8052      break; // Should have kill-flag - update below.
8053  }
8054
8055  // If we hit the end of the block, check whether CC is live into a
8056  // successor.
8057  if (miI == MBB->end()) {
8058    for (const MachineBasicBlock *Succ : MBB->successors())
8059      if (Succ->isLiveIn(SystemZ::CC))
8060        return false;
8061  }
8062
8063  return true;
8064}
8065
8066// Return true if it is OK for this Select pseudo-opcode to be cascaded
8067// together with other Select pseudo-opcodes into a single basic-block with
8068// a conditional jump around it.
8069static bool isSelectPseudo(MachineInstr &MI) {
8070  switch (MI.getOpcode()) {
8071  case SystemZ::Select32:
8072  case SystemZ::Select64:
8073  case SystemZ::Select128:
8074  case SystemZ::SelectF32:
8075  case SystemZ::SelectF64:
8076  case SystemZ::SelectF128:
8077  case SystemZ::SelectVR32:
8078  case SystemZ::SelectVR64:
8079  case SystemZ::SelectVR128:
8080    return true;
8081
8082  default:
8083    return false;
8084  }
8085}
8086
8087// Helper function, which inserts PHI functions into SinkMBB:
8088//   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
8089// where %FalseValue(i) and %TrueValue(i) are taken from Selects.
8090static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
8091                                 MachineBasicBlock *TrueMBB,
8092                                 MachineBasicBlock *FalseMBB,
8093                                 MachineBasicBlock *SinkMBB) {
8094  MachineFunction *MF = TrueMBB->getParent();
8095  const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
8096
8097  MachineInstr *FirstMI = Selects.front();
8098  unsigned CCValid = FirstMI->getOperand(3).getImm();
8099  unsigned CCMask = FirstMI->getOperand(4).getImm();
8100
8101  MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
8102
8103  // As we are creating the PHIs, we have to be careful if there is more than
8104  // one.  Later Selects may reference the results of earlier Selects, but later
8105  // PHIs have to reference the individual true/false inputs from earlier PHIs.
8106  // That also means that PHI construction must work forward from earlier to
8107  // later, and that the code must maintain a mapping from earlier PHI's
8108  // destination registers, and the registers that went into the PHI.
8109  DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
8110
8111  for (auto *MI : Selects) {
8112    Register DestReg = MI->getOperand(0).getReg();
8113    Register TrueReg = MI->getOperand(1).getReg();
8114    Register FalseReg = MI->getOperand(2).getReg();
8115
8116    // If this Select we are generating is the opposite condition from
8117    // the jump we generated, then we have to swap the operands for the
8118    // PHI that is going to be generated.
8119    if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
8120      std::swap(TrueReg, FalseReg);
8121
8122    if (RegRewriteTable.contains(TrueReg))
8123      TrueReg = RegRewriteTable[TrueReg].first;
8124
8125    if (RegRewriteTable.contains(FalseReg))
8126      FalseReg = RegRewriteTable[FalseReg].second;
8127
8128    DebugLoc DL = MI->getDebugLoc();
8129    BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
8130      .addReg(TrueReg).addMBB(TrueMBB)
8131      .addReg(FalseReg).addMBB(FalseMBB);
8132
8133    // Add this PHI to the rewrite table.
8134    RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
8135  }
8136
8137  MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
8138}
8139
8140// Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
8141MachineBasicBlock *
8142SystemZTargetLowering::emitSelect(MachineInstr &MI,
8143                                  MachineBasicBlock *MBB) const {
8144  assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
8145  const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8146
8147  unsigned CCValid = MI.getOperand(3).getImm();
8148  unsigned CCMask = MI.getOperand(4).getImm();
8149
8150  // If we have a sequence of Select* pseudo instructions using the
8151  // same condition code value, we want to expand all of them into
8152  // a single pair of basic blocks using the same condition.
8153  SmallVector<MachineInstr*, 8> Selects;
8154  SmallVector<MachineInstr*, 8> DbgValues;
8155  Selects.push_back(&MI);
8156  unsigned Count = 0;
8157  for (MachineInstr &NextMI : llvm::make_range(
8158           std::next(MachineBasicBlock::iterator(MI)), MBB->end())) {
8159    if (isSelectPseudo(NextMI)) {
8160      assert(NextMI.getOperand(3).getImm() == CCValid &&
8161             "Bad CCValid operands since CC was not redefined.");
8162      if (NextMI.getOperand(4).getImm() == CCMask ||
8163          NextMI.getOperand(4).getImm() == (CCValid ^ CCMask)) {
8164        Selects.push_back(&NextMI);
8165        continue;
8166      }
8167      break;
8168    }
8169    if (NextMI.definesRegister(SystemZ::CC) || NextMI.usesCustomInsertionHook())
8170      break;
8171    bool User = false;
8172    for (auto *SelMI : Selects)
8173      if (NextMI.readsVirtualRegister(SelMI->getOperand(0).getReg())) {
8174        User = true;
8175        break;
8176      }
8177    if (NextMI.isDebugInstr()) {
8178      if (User) {
8179        assert(NextMI.isDebugValue() && "Unhandled debug opcode.");
8180        DbgValues.push_back(&NextMI);
8181      }
8182    } else if (User || ++Count > 20)
8183      break;
8184  }
8185
8186  MachineInstr *LastMI = Selects.back();
8187  bool CCKilled =
8188      (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB));
8189  MachineBasicBlock *StartMBB = MBB;
8190  MachineBasicBlock *JoinMBB  = SystemZ::splitBlockAfter(LastMI, MBB);
8191  MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
8192
8193  // Unless CC was killed in the last Select instruction, mark it as
8194  // live-in to both FalseMBB and JoinMBB.
8195  if (!CCKilled) {
8196    FalseMBB->addLiveIn(SystemZ::CC);
8197    JoinMBB->addLiveIn(SystemZ::CC);
8198  }
8199
8200  //  StartMBB:
8201  //   BRC CCMask, JoinMBB
8202  //   # fallthrough to FalseMBB
8203  MBB = StartMBB;
8204  BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
8205    .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
8206  MBB->addSuccessor(JoinMBB);
8207  MBB->addSuccessor(FalseMBB);
8208
8209  //  FalseMBB:
8210  //   # fallthrough to JoinMBB
8211  MBB = FalseMBB;
8212  MBB->addSuccessor(JoinMBB);
8213
8214  //  JoinMBB:
8215  //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
8216  //  ...
8217  MBB = JoinMBB;
8218  createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
8219  for (auto *SelMI : Selects)
8220    SelMI->eraseFromParent();
8221
8222  MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
8223  for (auto *DbgMI : DbgValues)
8224    MBB->splice(InsertPos, StartMBB, DbgMI);
8225
8226  return JoinMBB;
8227}
8228
8229// Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
8230// StoreOpcode is the store to use and Invert says whether the store should
8231// happen when the condition is false rather than true.  If a STORE ON
8232// CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
8233MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
8234                                                        MachineBasicBlock *MBB,
8235                                                        unsigned StoreOpcode,
8236                                                        unsigned STOCOpcode,
8237                                                        bool Invert) const {
8238  const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8239
8240  Register SrcReg = MI.getOperand(0).getReg();
8241  MachineOperand Base = MI.getOperand(1);
8242  int64_t Disp = MI.getOperand(2).getImm();
8243  Register IndexReg = MI.getOperand(3).getReg();
8244  unsigned CCValid = MI.getOperand(4).getImm();
8245  unsigned CCMask = MI.getOperand(5).getImm();
8246  DebugLoc DL = MI.getDebugLoc();
8247
8248  StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
8249
8250  // ISel pattern matching also adds a load memory operand of the same
8251  // address, so take special care to find the storing memory operand.
8252  MachineMemOperand *MMO = nullptr;
8253  for (auto *I : MI.memoperands())
8254    if (I->isStore()) {
8255      MMO = I;
8256      break;
8257    }
8258
8259  // Use STOCOpcode if possible.  We could use different store patterns in
8260  // order to avoid matching the index register, but the performance trade-offs
8261  // might be more complicated in that case.
8262  if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
8263    if (Invert)
8264      CCMask ^= CCValid;
8265
8266    BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
8267      .addReg(SrcReg)
8268      .add(Base)
8269      .addImm(Disp)
8270      .addImm(CCValid)
8271      .addImm(CCMask)
8272      .addMemOperand(MMO);
8273
8274    MI.eraseFromParent();
8275    return MBB;
8276  }
8277
8278  // Get the condition needed to branch around the store.
8279  if (!Invert)
8280    CCMask ^= CCValid;
8281
8282  MachineBasicBlock *StartMBB = MBB;
8283  MachineBasicBlock *JoinMBB  = SystemZ::splitBlockBefore(MI, MBB);
8284  MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
8285
8286  // Unless CC was killed in the CondStore instruction, mark it as
8287  // live-in to both FalseMBB and JoinMBB.
8288  if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
8289    FalseMBB->addLiveIn(SystemZ::CC);
8290    JoinMBB->addLiveIn(SystemZ::CC);
8291  }
8292
8293  //  StartMBB:
8294  //   BRC CCMask, JoinMBB
8295  //   # fallthrough to FalseMBB
8296  MBB = StartMBB;
8297  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8298    .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
8299  MBB->addSuccessor(JoinMBB);
8300  MBB->addSuccessor(FalseMBB);
8301
8302  //  FalseMBB:
8303  //   store %SrcReg, %Disp(%Index,%Base)
8304  //   # fallthrough to JoinMBB
8305  MBB = FalseMBB;
8306  BuildMI(MBB, DL, TII->get(StoreOpcode))
8307      .addReg(SrcReg)
8308      .add(Base)
8309      .addImm(Disp)
8310      .addReg(IndexReg)
8311      .addMemOperand(MMO);
8312  MBB->addSuccessor(JoinMBB);
8313
8314  MI.eraseFromParent();
8315  return JoinMBB;
8316}
8317
8318// Implement EmitInstrWithCustomInserter for pseudo [SU]Cmp128Hi instruction MI.
8319MachineBasicBlock *
8320SystemZTargetLowering::emitICmp128Hi(MachineInstr &MI,
8321                                     MachineBasicBlock *MBB,
8322                                     bool Unsigned) const {
8323  MachineFunction &MF = *MBB->getParent();
8324  const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8325  MachineRegisterInfo &MRI = MF.getRegInfo();
8326
8327  // Synthetic instruction to compare 128-bit values.
8328  // Sets CC 1 if Op0 > Op1, sets a different CC otherwise.
8329  Register Op0 = MI.getOperand(0).getReg();
8330  Register Op1 = MI.getOperand(1).getReg();
8331
8332  MachineBasicBlock *StartMBB = MBB;
8333  MachineBasicBlock *JoinMBB  = SystemZ::splitBlockAfter(MI, MBB);
8334  MachineBasicBlock *HiEqMBB = SystemZ::emitBlockAfter(StartMBB);
8335
8336  //  StartMBB:
8337  //
8338  //  Use VECTOR ELEMENT COMPARE [LOGICAL] to compare the high parts.
8339  //  Swap the inputs to get:
8340  //    CC 1 if high(Op0) > high(Op1)
8341  //    CC 2 if high(Op0) < high(Op1)
8342  //    CC 0 if high(Op0) == high(Op1)
8343  //
8344  //  If CC != 0, we'd done, so jump over the next instruction.
8345  //
8346  //   VEC[L]G Op1, Op0
8347  //   JNE JoinMBB
8348  //   # fallthrough to HiEqMBB
8349  MBB = StartMBB;
8350  int HiOpcode = Unsigned? SystemZ::VECLG : SystemZ::VECG;
8351  BuildMI(MBB, MI.getDebugLoc(), TII->get(HiOpcode))
8352    .addReg(Op1).addReg(Op0);
8353  BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
8354    .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE).addMBB(JoinMBB);
8355  MBB->addSuccessor(JoinMBB);
8356  MBB->addSuccessor(HiEqMBB);
8357
8358  //  HiEqMBB:
8359  //
8360  //  Otherwise, use VECTOR COMPARE HIGH LOGICAL.
8361  //  Since we already know the high parts are equal, the CC
8362  //  result will only depend on the low parts:
8363  //     CC 1 if low(Op0) > low(Op1)
8364  //     CC 3 if low(Op0) <= low(Op1)
8365  //
8366  //   VCHLGS Tmp, Op0, Op1
8367  //   # fallthrough to JoinMBB
8368  MBB = HiEqMBB;
8369  Register Temp = MRI.createVirtualRegister(&SystemZ::VR128BitRegClass);
8370  BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::VCHLGS), Temp)
8371    .addReg(Op0).addReg(Op1);
8372  MBB->addSuccessor(JoinMBB);
8373
8374  // Mark CC as live-in to JoinMBB.
8375  JoinMBB->addLiveIn(SystemZ::CC);
8376
8377  MI.eraseFromParent();
8378  return JoinMBB;
8379}
8380
8381// Implement EmitInstrWithCustomInserter for subword pseudo ATOMIC_LOADW_* or
8382// ATOMIC_SWAPW instruction MI.  BinOpcode is the instruction that performs
8383// the binary operation elided by "*", or 0 for ATOMIC_SWAPW.  Invert says
8384// whether the field should be inverted after performing BinOpcode (e.g. for
8385// NAND).
8386MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
8387    MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
8388    bool Invert) const {
8389  MachineFunction &MF = *MBB->getParent();
8390  const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8391  MachineRegisterInfo &MRI = MF.getRegInfo();
8392
8393  // Extract the operands.  Base can be a register or a frame index.
8394  // Src2 can be a register or immediate.
8395  Register Dest = MI.getOperand(0).getReg();
8396  MachineOperand Base = earlyUseOperand(MI.getOperand(1));
8397  int64_t Disp = MI.getOperand(2).getImm();
8398  MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
8399  Register BitShift = MI.getOperand(4).getReg();
8400  Register NegBitShift = MI.getOperand(5).getReg();
8401  unsigned BitSize = MI.getOperand(6).getImm();
8402  DebugLoc DL = MI.getDebugLoc();
8403
8404  // Get the right opcodes for the displacement.
8405  unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
8406  unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
8407  assert(LOpcode && CSOpcode && "Displacement out of range");
8408
8409  // Create virtual registers for temporary results.
8410  Register OrigVal       = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8411  Register OldVal        = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8412  Register NewVal        = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8413  Register RotatedOldVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8414  Register RotatedNewVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8415
8416  // Insert a basic block for the main loop.
8417  MachineBasicBlock *StartMBB = MBB;
8418  MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
8419  MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
8420
8421  //  StartMBB:
8422  //   ...
8423  //   %OrigVal = L Disp(%Base)
8424  //   # fall through to LoopMBB
8425  MBB = StartMBB;
8426  BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
8427  MBB->addSuccessor(LoopMBB);
8428
8429  //  LoopMBB:
8430  //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
8431  //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
8432  //   %RotatedNewVal = OP %RotatedOldVal, %Src2
8433  //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
8434  //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
8435  //   JNE LoopMBB
8436  //   # fall through to DoneMBB
8437  MBB = LoopMBB;
8438  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
8439    .addReg(OrigVal).addMBB(StartMBB)
8440    .addReg(Dest).addMBB(LoopMBB);
8441  BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
8442    .addReg(OldVal).addReg(BitShift).addImm(0);
8443  if (Invert) {
8444    // Perform the operation normally and then invert every bit of the field.
8445    Register Tmp = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8446    BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
8447    // XILF with the upper BitSize bits set.
8448    BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
8449      .addReg(Tmp).addImm(-1U << (32 - BitSize));
8450  } else if (BinOpcode)
8451    // A simply binary operation.
8452    BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
8453        .addReg(RotatedOldVal)
8454        .add(Src2);
8455  else
8456    // Use RISBG to rotate Src2 into position and use it to replace the
8457    // field in RotatedOldVal.
8458    BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
8459      .addReg(RotatedOldVal).addReg(Src2.getReg())
8460      .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
8461  BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
8462    .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
8463  BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
8464      .addReg(OldVal)
8465      .addReg(NewVal)
8466      .add(Base)
8467      .addImm(Disp);
8468  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8469    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
8470  MBB->addSuccessor(LoopMBB);
8471  MBB->addSuccessor(DoneMBB);
8472
8473  MI.eraseFromParent();
8474  return DoneMBB;
8475}
8476
8477// Implement EmitInstrWithCustomInserter for subword pseudo
8478// ATOMIC_LOADW_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
8479// instruction that should be used to compare the current field with the
8480// minimum or maximum value.  KeepOldMask is the BRC condition-code mask
8481// for when the current field should be kept.
8482MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
8483    MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
8484    unsigned KeepOldMask) const {
8485  MachineFunction &MF = *MBB->getParent();
8486  const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8487  MachineRegisterInfo &MRI = MF.getRegInfo();
8488
8489  // Extract the operands.  Base can be a register or a frame index.
8490  Register Dest = MI.getOperand(0).getReg();
8491  MachineOperand Base = earlyUseOperand(MI.getOperand(1));
8492  int64_t Disp = MI.getOperand(2).getImm();
8493  Register Src2 = MI.getOperand(3).getReg();
8494  Register BitShift = MI.getOperand(4).getReg();
8495  Register NegBitShift = MI.getOperand(5).getReg();
8496  unsigned BitSize = MI.getOperand(6).getImm();
8497  DebugLoc DL = MI.getDebugLoc();
8498
8499  // Get the right opcodes for the displacement.
8500  unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
8501  unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
8502  assert(LOpcode && CSOpcode && "Displacement out of range");
8503
8504  // Create virtual registers for temporary results.
8505  Register OrigVal       = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8506  Register OldVal        = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8507  Register NewVal        = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8508  Register RotatedOldVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8509  Register RotatedAltVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8510  Register RotatedNewVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8511
8512  // Insert 3 basic blocks for the loop.
8513  MachineBasicBlock *StartMBB  = MBB;
8514  MachineBasicBlock *DoneMBB   = SystemZ::splitBlockBefore(MI, MBB);
8515  MachineBasicBlock *LoopMBB   = SystemZ::emitBlockAfter(StartMBB);
8516  MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB);
8517  MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB);
8518
8519  //  StartMBB:
8520  //   ...
8521  //   %OrigVal     = L Disp(%Base)
8522  //   # fall through to LoopMBB
8523  MBB = StartMBB;
8524  BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
8525  MBB->addSuccessor(LoopMBB);
8526
8527  //  LoopMBB:
8528  //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
8529  //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
8530  //   CompareOpcode %RotatedOldVal, %Src2
8531  //   BRC KeepOldMask, UpdateMBB
8532  MBB = LoopMBB;
8533  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
8534    .addReg(OrigVal).addMBB(StartMBB)
8535    .addReg(Dest).addMBB(UpdateMBB);
8536  BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
8537    .addReg(OldVal).addReg(BitShift).addImm(0);
8538  BuildMI(MBB, DL, TII->get(CompareOpcode))
8539    .addReg(RotatedOldVal).addReg(Src2);
8540  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8541    .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
8542  MBB->addSuccessor(UpdateMBB);
8543  MBB->addSuccessor(UseAltMBB);
8544
8545  //  UseAltMBB:
8546  //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
8547  //   # fall through to UpdateMBB
8548  MBB = UseAltMBB;
8549  BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
8550    .addReg(RotatedOldVal).addReg(Src2)
8551    .addImm(32).addImm(31 + BitSize).addImm(0);
8552  MBB->addSuccessor(UpdateMBB);
8553
8554  //  UpdateMBB:
8555  //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
8556  //                        [ %RotatedAltVal, UseAltMBB ]
8557  //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
8558  //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
8559  //   JNE LoopMBB
8560  //   # fall through to DoneMBB
8561  MBB = UpdateMBB;
8562  BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
8563    .addReg(RotatedOldVal).addMBB(LoopMBB)
8564    .addReg(RotatedAltVal).addMBB(UseAltMBB);
8565  BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
8566    .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
8567  BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
8568      .addReg(OldVal)
8569      .addReg(NewVal)
8570      .add(Base)
8571      .addImm(Disp);
8572  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8573    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
8574  MBB->addSuccessor(LoopMBB);
8575  MBB->addSuccessor(DoneMBB);
8576
8577  MI.eraseFromParent();
8578  return DoneMBB;
8579}
8580
8581// Implement EmitInstrWithCustomInserter for subword pseudo ATOMIC_CMP_SWAPW
8582// instruction MI.
8583MachineBasicBlock *
8584SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
8585                                          MachineBasicBlock *MBB) const {
8586  MachineFunction &MF = *MBB->getParent();
8587  const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8588  MachineRegisterInfo &MRI = MF.getRegInfo();
8589
8590  // Extract the operands.  Base can be a register or a frame index.
8591  Register Dest = MI.getOperand(0).getReg();
8592  MachineOperand Base = earlyUseOperand(MI.getOperand(1));
8593  int64_t Disp = MI.getOperand(2).getImm();
8594  Register CmpVal = MI.getOperand(3).getReg();
8595  Register OrigSwapVal = MI.getOperand(4).getReg();
8596  Register BitShift = MI.getOperand(5).getReg();
8597  Register NegBitShift = MI.getOperand(6).getReg();
8598  int64_t BitSize = MI.getOperand(7).getImm();
8599  DebugLoc DL = MI.getDebugLoc();
8600
8601  const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
8602
8603  // Get the right opcodes for the displacement and zero-extension.
8604  unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
8605  unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
8606  unsigned ZExtOpcode  = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR;
8607  assert(LOpcode && CSOpcode && "Displacement out of range");
8608
8609  // Create virtual registers for temporary results.
8610  Register OrigOldVal = MRI.createVirtualRegister(RC);
8611  Register OldVal = MRI.createVirtualRegister(RC);
8612  Register SwapVal = MRI.createVirtualRegister(RC);
8613  Register StoreVal = MRI.createVirtualRegister(RC);
8614  Register OldValRot = MRI.createVirtualRegister(RC);
8615  Register RetryOldVal = MRI.createVirtualRegister(RC);
8616  Register RetrySwapVal = MRI.createVirtualRegister(RC);
8617
8618  // Insert 2 basic blocks for the loop.
8619  MachineBasicBlock *StartMBB = MBB;
8620  MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
8621  MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
8622  MachineBasicBlock *SetMBB   = SystemZ::emitBlockAfter(LoopMBB);
8623
8624  //  StartMBB:
8625  //   ...
8626  //   %OrigOldVal     = L Disp(%Base)
8627  //   # fall through to LoopMBB
8628  MBB = StartMBB;
8629  BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
8630      .add(Base)
8631      .addImm(Disp)
8632      .addReg(0);
8633  MBB->addSuccessor(LoopMBB);
8634
8635  //  LoopMBB:
8636  //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
8637  //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
8638  //   %OldValRot     = RLL %OldVal, BitSize(%BitShift)
8639  //                      ^^ The low BitSize bits contain the field
8640  //                         of interest.
8641  //   %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0
8642  //                      ^^ Replace the upper 32-BitSize bits of the
8643  //                         swap value with those that we loaded and rotated.
8644  //   %Dest = LL[CH] %OldValRot
8645  //   CR %Dest, %CmpVal
8646  //   JNE DoneMBB
8647  //   # Fall through to SetMBB
8648  MBB = LoopMBB;
8649  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
8650    .addReg(OrigOldVal).addMBB(StartMBB)
8651    .addReg(RetryOldVal).addMBB(SetMBB);
8652  BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
8653    .addReg(OrigSwapVal).addMBB(StartMBB)
8654    .addReg(RetrySwapVal).addMBB(SetMBB);
8655  BuildMI(MBB, DL, TII->get(SystemZ::RLL), OldValRot)
8656    .addReg(OldVal).addReg(BitShift).addImm(BitSize);
8657  BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
8658    .addReg(SwapVal).addReg(OldValRot).addImm(32).addImm(63 - BitSize).addImm(0);
8659  BuildMI(MBB, DL, TII->get(ZExtOpcode), Dest)
8660    .addReg(OldValRot);
8661  BuildMI(MBB, DL, TII->get(SystemZ::CR))
8662    .addReg(Dest).addReg(CmpVal);
8663  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8664    .addImm(SystemZ::CCMASK_ICMP)
8665    .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
8666  MBB->addSuccessor(DoneMBB);
8667  MBB->addSuccessor(SetMBB);
8668
8669  //  SetMBB:
8670  //   %StoreVal     = RLL %RetrySwapVal, -BitSize(%NegBitShift)
8671  //                      ^^ Rotate the new field to its proper position.
8672  //   %RetryOldVal  = CS %OldVal, %StoreVal, Disp(%Base)
8673  //   JNE LoopMBB
8674  //   # fall through to ExitMBB
8675  MBB = SetMBB;
8676  BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
8677    .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
8678  BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
8679      .addReg(OldVal)
8680      .addReg(StoreVal)
8681      .add(Base)
8682      .addImm(Disp);
8683  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8684    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
8685  MBB->addSuccessor(LoopMBB);
8686  MBB->addSuccessor(DoneMBB);
8687
8688  // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
8689  // to the block after the loop.  At this point, CC may have been defined
8690  // either by the CR in LoopMBB or by the CS in SetMBB.
8691  if (!MI.registerDefIsDead(SystemZ::CC))
8692    DoneMBB->addLiveIn(SystemZ::CC);
8693
8694  MI.eraseFromParent();
8695  return DoneMBB;
8696}
8697
8698// Emit a move from two GR64s to a GR128.
8699MachineBasicBlock *
8700SystemZTargetLowering::emitPair128(MachineInstr &MI,
8701                                   MachineBasicBlock *MBB) const {
8702  MachineFunction &MF = *MBB->getParent();
8703  const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8704  MachineRegisterInfo &MRI = MF.getRegInfo();
8705  DebugLoc DL = MI.getDebugLoc();
8706
8707  Register Dest = MI.getOperand(0).getReg();
8708  Register Hi = MI.getOperand(1).getReg();
8709  Register Lo = MI.getOperand(2).getReg();
8710  Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8711  Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8712
8713  BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
8714  BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
8715    .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
8716  BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
8717    .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
8718
8719  MI.eraseFromParent();
8720  return MBB;
8721}
8722
8723// Emit an extension from a GR64 to a GR128.  ClearEven is true
8724// if the high register of the GR128 value must be cleared or false if
8725// it's "don't care".
8726MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
8727                                                     MachineBasicBlock *MBB,
8728                                                     bool ClearEven) const {
8729  MachineFunction &MF = *MBB->getParent();
8730  const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8731  MachineRegisterInfo &MRI = MF.getRegInfo();
8732  DebugLoc DL = MI.getDebugLoc();
8733
8734  Register Dest = MI.getOperand(0).getReg();
8735  Register Src = MI.getOperand(1).getReg();
8736  Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8737
8738  BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
8739  if (ClearEven) {
8740    Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8741    Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
8742
8743    BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
8744      .addImm(0);
8745    BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
8746      .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
8747    In128 = NewIn128;
8748  }
8749  BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
8750    .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
8751
8752  MI.eraseFromParent();
8753  return MBB;
8754}
8755
8756MachineBasicBlock *
8757SystemZTargetLowering::emitMemMemWrapper(MachineInstr &MI,
8758                                         MachineBasicBlock *MBB,
8759                                         unsigned Opcode, bool IsMemset) const {
8760  MachineFunction &MF = *MBB->getParent();
8761  const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8762  MachineRegisterInfo &MRI = MF.getRegInfo();
8763  DebugLoc DL = MI.getDebugLoc();
8764
8765  MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
8766  uint64_t DestDisp = MI.getOperand(1).getImm();
8767  MachineOperand SrcBase = MachineOperand::CreateReg(0U, false);
8768  uint64_t SrcDisp;
8769
8770  // Fold the displacement Disp if it is out of range.
8771  auto foldDisplIfNeeded = [&](MachineOperand &Base, uint64_t &Disp) -> void {
8772    if (!isUInt<12>(Disp)) {
8773      Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8774      unsigned Opcode = TII->getOpcodeForOffset(SystemZ::LA, Disp);
8775      BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(Opcode), Reg)
8776        .add(Base).addImm(Disp).addReg(0);
8777      Base = MachineOperand::CreateReg(Reg, false);
8778      Disp = 0;
8779    }
8780  };
8781
8782  if (!IsMemset) {
8783    SrcBase = earlyUseOperand(MI.getOperand(2));
8784    SrcDisp = MI.getOperand(3).getImm();
8785  } else {
8786    SrcBase = DestBase;
8787    SrcDisp = DestDisp++;
8788    foldDisplIfNeeded(DestBase, DestDisp);
8789  }
8790
8791  MachineOperand &LengthMO = MI.getOperand(IsMemset ? 2 : 4);
8792  bool IsImmForm = LengthMO.isImm();
8793  bool IsRegForm = !IsImmForm;
8794
8795  // Build and insert one Opcode of Length, with special treatment for memset.
8796  auto insertMemMemOp = [&](MachineBasicBlock *InsMBB,
8797                            MachineBasicBlock::iterator InsPos,
8798                            MachineOperand DBase, uint64_t DDisp,
8799                            MachineOperand SBase, uint64_t SDisp,
8800                            unsigned Length) -> void {
8801    assert(Length > 0 && Length <= 256 && "Building memory op with bad length.");
8802    if (IsMemset) {
8803      MachineOperand ByteMO = earlyUseOperand(MI.getOperand(3));
8804      if (ByteMO.isImm())
8805        BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::MVI))
8806          .add(SBase).addImm(SDisp).add(ByteMO);
8807      else
8808        BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::STC))
8809          .add(ByteMO).add(SBase).addImm(SDisp).addReg(0);
8810      if (--Length == 0)
8811        return;
8812    }
8813    BuildMI(*MBB, InsPos, DL, TII->get(Opcode))
8814      .add(DBase).addImm(DDisp).addImm(Length)
8815      .add(SBase).addImm(SDisp)
8816      .setMemRefs(MI.memoperands());
8817  };
8818
8819  bool NeedsLoop = false;
8820  uint64_t ImmLength = 0;
8821  Register LenAdjReg = SystemZ::NoRegister;
8822  if (IsImmForm) {
8823    ImmLength = LengthMO.getImm();
8824    ImmLength += IsMemset ? 2 : 1; // Add back the subtracted adjustment.
8825    if (ImmLength == 0) {
8826      MI.eraseFromParent();
8827      return MBB;
8828    }
8829    if (Opcode == SystemZ::CLC) {
8830      if (ImmLength > 3 * 256)
8831        // A two-CLC sequence is a clear win over a loop, not least because
8832        // it needs only one branch.  A three-CLC sequence needs the same
8833        // number of branches as a loop (i.e. 2), but is shorter.  That
8834        // brings us to lengths greater than 768 bytes.  It seems relatively
8835        // likely that a difference will be found within the first 768 bytes,
8836        // so we just optimize for the smallest number of branch
8837        // instructions, in order to avoid polluting the prediction buffer
8838        // too much.
8839        NeedsLoop = true;
8840    } else if (ImmLength > 6 * 256)
8841      // The heuristic we use is to prefer loops for anything that would
8842      // require 7 or more MVCs.  With these kinds of sizes there isn't much
8843      // to choose between straight-line code and looping code, since the
8844      // time will be dominated by the MVCs themselves.
8845      NeedsLoop = true;
8846  } else {
8847    NeedsLoop = true;
8848    LenAdjReg = LengthMO.getReg();
8849  }
8850
8851  // When generating more than one CLC, all but the last will need to
8852  // branch to the end when a difference is found.
8853  MachineBasicBlock *EndMBB =
8854      (Opcode == SystemZ::CLC && (ImmLength > 256 || NeedsLoop)
8855           ? SystemZ::splitBlockAfter(MI, MBB)
8856           : nullptr);
8857
8858  if (NeedsLoop) {
8859    Register StartCountReg =
8860      MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
8861    if (IsImmForm) {
8862      TII->loadImmediate(*MBB, MI, StartCountReg, ImmLength / 256);
8863      ImmLength &= 255;
8864    } else {
8865      BuildMI(*MBB, MI, DL, TII->get(SystemZ::SRLG), StartCountReg)
8866        .addReg(LenAdjReg)
8867        .addReg(0)
8868        .addImm(8);
8869    }
8870
8871    bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
8872    auto loadZeroAddress = [&]() -> MachineOperand {
8873      Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8874      BuildMI(*MBB, MI, DL, TII->get(SystemZ::LGHI), Reg).addImm(0);
8875      return MachineOperand::CreateReg(Reg, false);
8876    };
8877    if (DestBase.isReg() && DestBase.getReg() == SystemZ::NoRegister)
8878      DestBase = loadZeroAddress();
8879    if (SrcBase.isReg() && SrcBase.getReg() == SystemZ::NoRegister)
8880      SrcBase = HaveSingleBase ? DestBase : loadZeroAddress();
8881
8882    MachineBasicBlock *StartMBB = nullptr;
8883    MachineBasicBlock *LoopMBB = nullptr;
8884    MachineBasicBlock *NextMBB = nullptr;
8885    MachineBasicBlock *DoneMBB = nullptr;
8886    MachineBasicBlock *AllDoneMBB = nullptr;
8887
8888    Register StartSrcReg = forceReg(MI, SrcBase, TII);
8889    Register StartDestReg =
8890        (HaveSingleBase ? StartSrcReg : forceReg(MI, DestBase, TII));
8891
8892    const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
8893    Register ThisSrcReg  = MRI.createVirtualRegister(RC);
8894    Register ThisDestReg =
8895        (HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RC));
8896    Register NextSrcReg  = MRI.createVirtualRegister(RC);
8897    Register NextDestReg =
8898        (HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RC));
8899    RC = &SystemZ::GR64BitRegClass;
8900    Register ThisCountReg = MRI.createVirtualRegister(RC);
8901    Register NextCountReg = MRI.createVirtualRegister(RC);
8902
8903    if (IsRegForm) {
8904      AllDoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8905      StartMBB = SystemZ::emitBlockAfter(MBB);
8906      LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8907      NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
8908      DoneMBB = SystemZ::emitBlockAfter(NextMBB);
8909
8910      //  MBB:
8911      //   # Jump to AllDoneMBB if LenAdjReg means 0, or fall thru to StartMBB.
8912      BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8913        .addReg(LenAdjReg).addImm(IsMemset ? -2 : -1);
8914      BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8915        .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8916        .addMBB(AllDoneMBB);
8917      MBB->addSuccessor(AllDoneMBB);
8918      if (!IsMemset)
8919        MBB->addSuccessor(StartMBB);
8920      else {
8921        // MemsetOneCheckMBB:
8922        // # Jump to MemsetOneMBB for a memset of length 1, or
8923        // # fall thru to StartMBB.
8924        MachineBasicBlock *MemsetOneCheckMBB = SystemZ::emitBlockAfter(MBB);
8925        MachineBasicBlock *MemsetOneMBB = SystemZ::emitBlockAfter(&*MF.rbegin());
8926        MBB->addSuccessor(MemsetOneCheckMBB);
8927        MBB = MemsetOneCheckMBB;
8928        BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8929          .addReg(LenAdjReg).addImm(-1);
8930        BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8931          .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8932          .addMBB(MemsetOneMBB);
8933        MBB->addSuccessor(MemsetOneMBB, {10, 100});
8934        MBB->addSuccessor(StartMBB, {90, 100});
8935
8936        // MemsetOneMBB:
8937        // # Jump back to AllDoneMBB after a single MVI or STC.
8938        MBB = MemsetOneMBB;
8939        insertMemMemOp(MBB, MBB->end(),
8940                       MachineOperand::CreateReg(StartDestReg, false), DestDisp,
8941                       MachineOperand::CreateReg(StartSrcReg, false), SrcDisp,
8942                       1);
8943        BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(AllDoneMBB);
8944        MBB->addSuccessor(AllDoneMBB);
8945      }
8946
8947      // StartMBB:
8948      // # Jump to DoneMBB if %StartCountReg is zero, or fall through to LoopMBB.
8949      MBB = StartMBB;
8950      BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8951        .addReg(StartCountReg).addImm(0);
8952      BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8953        .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8954        .addMBB(DoneMBB);
8955      MBB->addSuccessor(DoneMBB);
8956      MBB->addSuccessor(LoopMBB);
8957    }
8958    else {
8959      StartMBB = MBB;
8960      DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8961      LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8962      NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
8963
8964      //  StartMBB:
8965      //   # fall through to LoopMBB
8966      MBB->addSuccessor(LoopMBB);
8967
8968      DestBase = MachineOperand::CreateReg(NextDestReg, false);
8969      SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
8970      if (EndMBB && !ImmLength)
8971        // If the loop handled the whole CLC range, DoneMBB will be empty with
8972        // CC live-through into EndMBB, so add it as live-in.
8973        DoneMBB->addLiveIn(SystemZ::CC);
8974    }
8975
8976    //  LoopMBB:
8977    //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
8978    //                      [ %NextDestReg, NextMBB ]
8979    //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
8980    //                     [ %NextSrcReg, NextMBB ]
8981    //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
8982    //                       [ %NextCountReg, NextMBB ]
8983    //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
8984    //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
8985    //   ( JLH EndMBB )
8986    //
8987    // The prefetch is used only for MVC.  The JLH is used only for CLC.
8988    MBB = LoopMBB;
8989    BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
8990      .addReg(StartDestReg).addMBB(StartMBB)
8991      .addReg(NextDestReg).addMBB(NextMBB);
8992    if (!HaveSingleBase)
8993      BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
8994        .addReg(StartSrcReg).addMBB(StartMBB)
8995        .addReg(NextSrcReg).addMBB(NextMBB);
8996    BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
8997      .addReg(StartCountReg).addMBB(StartMBB)
8998      .addReg(NextCountReg).addMBB(NextMBB);
8999    if (Opcode == SystemZ::MVC)
9000      BuildMI(MBB, DL, TII->get(SystemZ::PFD))
9001        .addImm(SystemZ::PFD_WRITE)
9002        .addReg(ThisDestReg).addImm(DestDisp - IsMemset + 768).addReg(0);
9003    insertMemMemOp(MBB, MBB->end(),
9004                   MachineOperand::CreateReg(ThisDestReg, false), DestDisp,
9005                   MachineOperand::CreateReg(ThisSrcReg, false), SrcDisp, 256);
9006    if (EndMBB) {
9007      BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9008        .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
9009        .addMBB(EndMBB);
9010      MBB->addSuccessor(EndMBB);
9011      MBB->addSuccessor(NextMBB);
9012    }
9013
9014    // NextMBB:
9015    //   %NextDestReg = LA 256(%ThisDestReg)
9016    //   %NextSrcReg = LA 256(%ThisSrcReg)
9017    //   %NextCountReg = AGHI %ThisCountReg, -1
9018    //   CGHI %NextCountReg, 0
9019    //   JLH LoopMBB
9020    //   # fall through to DoneMBB
9021    //
9022    // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
9023    MBB = NextMBB;
9024    BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
9025      .addReg(ThisDestReg).addImm(256).addReg(0);
9026    if (!HaveSingleBase)
9027      BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
9028        .addReg(ThisSrcReg).addImm(256).addReg(0);
9029    BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
9030      .addReg(ThisCountReg).addImm(-1);
9031    BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
9032      .addReg(NextCountReg).addImm(0);
9033    BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9034      .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
9035      .addMBB(LoopMBB);
9036    MBB->addSuccessor(LoopMBB);
9037    MBB->addSuccessor(DoneMBB);
9038
9039    MBB = DoneMBB;
9040    if (IsRegForm) {
9041      // DoneMBB:
9042      // # Make PHIs for RemDestReg/RemSrcReg as the loop may or may not run.
9043      // # Use EXecute Relative Long for the remainder of the bytes. The target
9044      //   instruction of the EXRL will have a length field of 1 since 0 is an
9045      //   illegal value. The number of bytes processed becomes (%LenAdjReg &
9046      //   0xff) + 1.
9047      // # Fall through to AllDoneMBB.
9048      Register RemSrcReg  = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
9049      Register RemDestReg = HaveSingleBase ? RemSrcReg
9050        : MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
9051      BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemDestReg)
9052        .addReg(StartDestReg).addMBB(StartMBB)
9053        .addReg(NextDestReg).addMBB(NextMBB);
9054      if (!HaveSingleBase)
9055        BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemSrcReg)
9056          .addReg(StartSrcReg).addMBB(StartMBB)
9057          .addReg(NextSrcReg).addMBB(NextMBB);
9058      if (IsMemset)
9059        insertMemMemOp(MBB, MBB->end(),
9060                       MachineOperand::CreateReg(RemDestReg, false), DestDisp,
9061                       MachineOperand::CreateReg(RemSrcReg, false), SrcDisp, 1);
9062      MachineInstrBuilder EXRL_MIB =
9063        BuildMI(MBB, DL, TII->get(SystemZ::EXRL_Pseudo))
9064          .addImm(Opcode)
9065          .addReg(LenAdjReg)
9066          .addReg(RemDestReg).addImm(DestDisp)
9067          .addReg(RemSrcReg).addImm(SrcDisp);
9068      MBB->addSuccessor(AllDoneMBB);
9069      MBB = AllDoneMBB;
9070      if (Opcode != SystemZ::MVC) {
9071        EXRL_MIB.addReg(SystemZ::CC, RegState::ImplicitDefine);
9072        if (EndMBB)
9073          MBB->addLiveIn(SystemZ::CC);
9074      }
9075    }
9076    MF.getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
9077  }
9078
9079  // Handle any remaining bytes with straight-line code.
9080  while (ImmLength > 0) {
9081    uint64_t ThisLength = std::min(ImmLength, uint64_t(256));
9082    // The previous iteration might have created out-of-range displacements.
9083    // Apply them using LA/LAY if so.
9084    foldDisplIfNeeded(DestBase, DestDisp);
9085    foldDisplIfNeeded(SrcBase, SrcDisp);
9086    insertMemMemOp(MBB, MI, DestBase, DestDisp, SrcBase, SrcDisp, ThisLength);
9087    DestDisp += ThisLength;
9088    SrcDisp += ThisLength;
9089    ImmLength -= ThisLength;
9090    // If there's another CLC to go, branch to the end if a difference
9091    // was found.
9092    if (EndMBB && ImmLength > 0) {
9093      MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB);
9094      BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9095        .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
9096        .addMBB(EndMBB);
9097      MBB->addSuccessor(EndMBB);
9098      MBB->addSuccessor(NextMBB);
9099      MBB = NextMBB;
9100    }
9101  }
9102  if (EndMBB) {
9103    MBB->addSuccessor(EndMBB);
9104    MBB = EndMBB;
9105    MBB->addLiveIn(SystemZ::CC);
9106  }
9107
9108  MI.eraseFromParent();
9109  return MBB;
9110}
9111
9112// Decompose string pseudo-instruction MI into a loop that continually performs
9113// Opcode until CC != 3.
9114MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
9115    MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
9116  MachineFunction &MF = *MBB->getParent();
9117  const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
9118  MachineRegisterInfo &MRI = MF.getRegInfo();
9119  DebugLoc DL = MI.getDebugLoc();
9120
9121  uint64_t End1Reg = MI.getOperand(0).getReg();
9122  uint64_t Start1Reg = MI.getOperand(1).getReg();
9123  uint64_t Start2Reg = MI.getOperand(2).getReg();
9124  uint64_t CharReg = MI.getOperand(3).getReg();
9125
9126  const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
9127  uint64_t This1Reg = MRI.createVirtualRegister(RC);
9128  uint64_t This2Reg = MRI.createVirtualRegister(RC);
9129  uint64_t End2Reg  = MRI.createVirtualRegister(RC);
9130
9131  MachineBasicBlock *StartMBB = MBB;
9132  MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
9133  MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
9134
9135  //  StartMBB:
9136  //   # fall through to LoopMBB
9137  MBB->addSuccessor(LoopMBB);
9138
9139  //  LoopMBB:
9140  //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
9141  //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
9142  //   R0L = %CharReg
9143  //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
9144  //   JO LoopMBB
9145  //   # fall through to DoneMBB
9146  //
9147  // The load of R0L can be hoisted by post-RA LICM.
9148  MBB = LoopMBB;
9149
9150  BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
9151    .addReg(Start1Reg).addMBB(StartMBB)
9152    .addReg(End1Reg).addMBB(LoopMBB);
9153  BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
9154    .addReg(Start2Reg).addMBB(StartMBB)
9155    .addReg(End2Reg).addMBB(LoopMBB);
9156  BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
9157  BuildMI(MBB, DL, TII->get(Opcode))
9158    .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
9159    .addReg(This1Reg).addReg(This2Reg);
9160  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9161    .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
9162  MBB->addSuccessor(LoopMBB);
9163  MBB->addSuccessor(DoneMBB);
9164
9165  DoneMBB->addLiveIn(SystemZ::CC);
9166
9167  MI.eraseFromParent();
9168  return DoneMBB;
9169}
9170
9171// Update TBEGIN instruction with final opcode and register clobbers.
9172MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
9173    MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
9174    bool NoFloat) const {
9175  MachineFunction &MF = *MBB->getParent();
9176  const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
9177  const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
9178
9179  // Update opcode.
9180  MI.setDesc(TII->get(Opcode));
9181
9182  // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
9183  // Make sure to add the corresponding GRSM bits if they are missing.
9184  uint64_t Control = MI.getOperand(2).getImm();
9185  static const unsigned GPRControlBit[16] = {
9186    0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
9187    0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
9188  };
9189  Control |= GPRControlBit[15];
9190  if (TFI->hasFP(MF))
9191    Control |= GPRControlBit[11];
9192  MI.getOperand(2).setImm(Control);
9193
9194  // Add GPR clobbers.
9195  for (int I = 0; I < 16; I++) {
9196    if ((Control & GPRControlBit[I]) == 0) {
9197      unsigned Reg = SystemZMC::GR64Regs[I];
9198      MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
9199    }
9200  }
9201
9202  // Add FPR/VR clobbers.
9203  if (!NoFloat && (Control & 4) != 0) {
9204    if (Subtarget.hasVector()) {
9205      for (unsigned Reg : SystemZMC::VR128Regs) {
9206        MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
9207      }
9208    } else {
9209      for (unsigned Reg : SystemZMC::FP64Regs) {
9210        MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
9211      }
9212    }
9213  }
9214
9215  return MBB;
9216}
9217
9218MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
9219    MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
9220  MachineFunction &MF = *MBB->getParent();
9221  MachineRegisterInfo *MRI = &MF.getRegInfo();
9222  const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
9223  DebugLoc DL = MI.getDebugLoc();
9224
9225  Register SrcReg = MI.getOperand(0).getReg();
9226
9227  // Create new virtual register of the same class as source.
9228  const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
9229  Register DstReg = MRI->createVirtualRegister(RC);
9230
9231  // Replace pseudo with a normal load-and-test that models the def as
9232  // well.
9233  BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
9234    .addReg(SrcReg)
9235    .setMIFlags(MI.getFlags());
9236  MI.eraseFromParent();
9237
9238  return MBB;
9239}
9240
9241MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca(
9242    MachineInstr &MI, MachineBasicBlock *MBB) const {
9243  MachineFunction &MF = *MBB->getParent();
9244  MachineRegisterInfo *MRI = &MF.getRegInfo();
9245  const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
9246  DebugLoc DL = MI.getDebugLoc();
9247  const unsigned ProbeSize = getStackProbeSize(MF);
9248  Register DstReg = MI.getOperand(0).getReg();
9249  Register SizeReg = MI.getOperand(2).getReg();
9250
9251  MachineBasicBlock *StartMBB = MBB;
9252  MachineBasicBlock *DoneMBB  = SystemZ::splitBlockAfter(MI, MBB);
9253  MachineBasicBlock *LoopTestMBB  = SystemZ::emitBlockAfter(StartMBB);
9254  MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB);
9255  MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB);
9256  MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB);
9257
9258  MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(),
9259    MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1));
9260
9261  Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
9262  Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
9263
9264  //  LoopTestMBB
9265  //  BRC TailTestMBB
9266  //  # fallthrough to LoopBodyMBB
9267  StartMBB->addSuccessor(LoopTestMBB);
9268  MBB = LoopTestMBB;
9269  BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg)
9270    .addReg(SizeReg)
9271    .addMBB(StartMBB)
9272    .addReg(IncReg)
9273    .addMBB(LoopBodyMBB);
9274  BuildMI(MBB, DL, TII->get(SystemZ::CLGFI))
9275    .addReg(PHIReg)
9276    .addImm(ProbeSize);
9277  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9278    .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT)
9279    .addMBB(TailTestMBB);
9280  MBB->addSuccessor(LoopBodyMBB);
9281  MBB->addSuccessor(TailTestMBB);
9282
9283  //  LoopBodyMBB: Allocate and probe by means of a volatile compare.
9284  //  J LoopTestMBB
9285  MBB = LoopBodyMBB;
9286  BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg)
9287    .addReg(PHIReg)
9288    .addImm(ProbeSize);
9289  BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D)
9290    .addReg(SystemZ::R15D)
9291    .addImm(ProbeSize);
9292  BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
9293    .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0)
9294    .setMemRefs(VolLdMMO);
9295  BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB);
9296  MBB->addSuccessor(LoopTestMBB);
9297
9298  //  TailTestMBB
9299  //  BRC DoneMBB
9300  //  # fallthrough to TailMBB
9301  MBB = TailTestMBB;
9302  BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
9303    .addReg(PHIReg)
9304    .addImm(0);
9305  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9306    .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
9307    .addMBB(DoneMBB);
9308  MBB->addSuccessor(TailMBB);
9309  MBB->addSuccessor(DoneMBB);
9310
9311  //  TailMBB
9312  //  # fallthrough to DoneMBB
9313  MBB = TailMBB;
9314  BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D)
9315    .addReg(SystemZ::R15D)
9316    .addReg(PHIReg);
9317  BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
9318    .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg)
9319    .setMemRefs(VolLdMMO);
9320  MBB->addSuccessor(DoneMBB);
9321
9322  //  DoneMBB
9323  MBB = DoneMBB;
9324  BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg)
9325    .addReg(SystemZ::R15D);
9326
9327  MI.eraseFromParent();
9328  return DoneMBB;
9329}
9330
9331SDValue SystemZTargetLowering::
9332getBackchainAddress(SDValue SP, SelectionDAG &DAG) const {
9333  MachineFunction &MF = DAG.getMachineFunction();
9334  auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
9335  SDLoc DL(SP);
9336  return DAG.getNode(ISD::ADD, DL, MVT::i64, SP,
9337                     DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL));
9338}
9339
9340MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
9341    MachineInstr &MI, MachineBasicBlock *MBB) const {
9342  switch (MI.getOpcode()) {
9343  case SystemZ::Select32:
9344  case SystemZ::Select64:
9345  case SystemZ::Select128:
9346  case SystemZ::SelectF32:
9347  case SystemZ::SelectF64:
9348  case SystemZ::SelectF128:
9349  case SystemZ::SelectVR32:
9350  case SystemZ::SelectVR64:
9351  case SystemZ::SelectVR128:
9352    return emitSelect(MI, MBB);
9353
9354  case SystemZ::CondStore8Mux:
9355    return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
9356  case SystemZ::CondStore8MuxInv:
9357    return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
9358  case SystemZ::CondStore16Mux:
9359    return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
9360  case SystemZ::CondStore16MuxInv:
9361    return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
9362  case SystemZ::CondStore32Mux:
9363    return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
9364  case SystemZ::CondStore32MuxInv:
9365    return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
9366  case SystemZ::CondStore8:
9367    return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
9368  case SystemZ::CondStore8Inv:
9369    return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
9370  case SystemZ::CondStore16:
9371    return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
9372  case SystemZ::CondStore16Inv:
9373    return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
9374  case SystemZ::CondStore32:
9375    return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
9376  case SystemZ::CondStore32Inv:
9377    return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
9378  case SystemZ::CondStore64:
9379    return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
9380  case SystemZ::CondStore64Inv:
9381    return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
9382  case SystemZ::CondStoreF32:
9383    return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
9384  case SystemZ::CondStoreF32Inv:
9385    return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
9386  case SystemZ::CondStoreF64:
9387    return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
9388  case SystemZ::CondStoreF64Inv:
9389    return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
9390
9391  case SystemZ::SCmp128Hi:
9392    return emitICmp128Hi(MI, MBB, false);
9393  case SystemZ::UCmp128Hi:
9394    return emitICmp128Hi(MI, MBB, true);
9395
9396  case SystemZ::PAIR128:
9397    return emitPair128(MI, MBB);
9398  case SystemZ::AEXT128:
9399    return emitExt128(MI, MBB, false);
9400  case SystemZ::ZEXT128:
9401    return emitExt128(MI, MBB, true);
9402
9403  case SystemZ::ATOMIC_SWAPW:
9404    return emitAtomicLoadBinary(MI, MBB, 0);
9405
9406  case SystemZ::ATOMIC_LOADW_AR:
9407    return emitAtomicLoadBinary(MI, MBB, SystemZ::AR);
9408  case SystemZ::ATOMIC_LOADW_AFI:
9409    return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI);
9410
9411  case SystemZ::ATOMIC_LOADW_SR:
9412    return emitAtomicLoadBinary(MI, MBB, SystemZ::SR);
9413
9414  case SystemZ::ATOMIC_LOADW_NR:
9415    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR);
9416  case SystemZ::ATOMIC_LOADW_NILH:
9417    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH);
9418
9419  case SystemZ::ATOMIC_LOADW_OR:
9420    return emitAtomicLoadBinary(MI, MBB, SystemZ::OR);
9421  case SystemZ::ATOMIC_LOADW_OILH:
9422    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH);
9423
9424  case SystemZ::ATOMIC_LOADW_XR:
9425    return emitAtomicLoadBinary(MI, MBB, SystemZ::XR);
9426  case SystemZ::ATOMIC_LOADW_XILF:
9427    return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF);
9428
9429  case SystemZ::ATOMIC_LOADW_NRi:
9430    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, true);
9431  case SystemZ::ATOMIC_LOADW_NILHi:
9432    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, true);
9433
9434  case SystemZ::ATOMIC_LOADW_MIN:
9435    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, SystemZ::CCMASK_CMP_LE);
9436  case SystemZ::ATOMIC_LOADW_MAX:
9437    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, SystemZ::CCMASK_CMP_GE);
9438  case SystemZ::ATOMIC_LOADW_UMIN:
9439    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, SystemZ::CCMASK_CMP_LE);
9440  case SystemZ::ATOMIC_LOADW_UMAX:
9441    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, SystemZ::CCMASK_CMP_GE);
9442
9443  case SystemZ::ATOMIC_CMP_SWAPW:
9444    return emitAtomicCmpSwapW(MI, MBB);
9445  case SystemZ::MVCImm:
9446  case SystemZ::MVCReg:
9447    return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
9448  case SystemZ::NCImm:
9449    return emitMemMemWrapper(MI, MBB, SystemZ::NC);
9450  case SystemZ::OCImm:
9451    return emitMemMemWrapper(MI, MBB, SystemZ::OC);
9452  case SystemZ::XCImm:
9453  case SystemZ::XCReg:
9454    return emitMemMemWrapper(MI, MBB, SystemZ::XC);
9455  case SystemZ::CLCImm:
9456  case SystemZ::CLCReg:
9457    return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
9458  case SystemZ::MemsetImmImm:
9459  case SystemZ::MemsetImmReg:
9460  case SystemZ::MemsetRegImm:
9461  case SystemZ::MemsetRegReg:
9462    return emitMemMemWrapper(MI, MBB, SystemZ::MVC, true/*IsMemset*/);
9463  case SystemZ::CLSTLoop:
9464    return emitStringWrapper(MI, MBB, SystemZ::CLST);
9465  case SystemZ::MVSTLoop:
9466    return emitStringWrapper(MI, MBB, SystemZ::MVST);
9467  case SystemZ::SRSTLoop:
9468    return emitStringWrapper(MI, MBB, SystemZ::SRST);
9469  case SystemZ::TBEGIN:
9470    return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
9471  case SystemZ::TBEGIN_nofloat:
9472    return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
9473  case SystemZ::TBEGINC:
9474    return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
9475  case SystemZ::LTEBRCompare_Pseudo:
9476    return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
9477  case SystemZ::LTDBRCompare_Pseudo:
9478    return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
9479  case SystemZ::LTXBRCompare_Pseudo:
9480    return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
9481
9482  case SystemZ::PROBED_ALLOCA:
9483    return emitProbedAlloca(MI, MBB);
9484
9485  case TargetOpcode::STACKMAP:
9486  case TargetOpcode::PATCHPOINT:
9487    return emitPatchPoint(MI, MBB);
9488
9489  default:
9490    llvm_unreachable("Unexpected instr type to insert");
9491  }
9492}
9493
9494// This is only used by the isel schedulers, and is needed only to prevent
9495// compiler from crashing when list-ilp is used.
9496const TargetRegisterClass *
9497SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
9498  if (VT == MVT::Untyped)
9499    return &SystemZ::ADDR128BitRegClass;
9500  return TargetLowering::getRepRegClassFor(VT);
9501}
9502
9503SDValue SystemZTargetLowering::lowerGET_ROUNDING(SDValue Op,
9504                                                 SelectionDAG &DAG) const {
9505  SDLoc dl(Op);
9506  /*
9507   The rounding method is in FPC Byte 3 bits 6-7, and has the following
9508   settings:
9509     00 Round to nearest
9510     01 Round to 0
9511     10 Round to +inf
9512     11 Round to -inf
9513
9514  FLT_ROUNDS, on the other hand, expects the following:
9515    -1 Undefined
9516     0 Round to 0
9517     1 Round to nearest
9518     2 Round to +inf
9519     3 Round to -inf
9520  */
9521
9522  // Save FPC to register.
9523  SDValue Chain = Op.getOperand(0);
9524  SDValue EFPC(
9525      DAG.getMachineNode(SystemZ::EFPC, dl, {MVT::i32, MVT::Other}, Chain), 0);
9526  Chain = EFPC.getValue(1);
9527
9528  // Transform as necessary
9529  SDValue CWD1 = DAG.getNode(ISD::AND, dl, MVT::i32, EFPC,
9530                             DAG.getConstant(3, dl, MVT::i32));
9531  // RetVal = (CWD1 ^ (CWD1 >> 1)) ^ 1
9532  SDValue CWD2 = DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1,
9533                             DAG.getNode(ISD::SRL, dl, MVT::i32, CWD1,
9534                                         DAG.getConstant(1, dl, MVT::i32)));
9535
9536  SDValue RetVal = DAG.getNode(ISD::XOR, dl, MVT::i32, CWD2,
9537                               DAG.getConstant(1, dl, MVT::i32));
9538  RetVal = DAG.getZExtOrTrunc(RetVal, dl, Op.getValueType());
9539
9540  return DAG.getMergeValues({RetVal, Chain}, dl);
9541}
9542