1//===- HexagonBitSimplify.cpp ---------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "BitTracker.h"
10#include "HexagonBitTracker.h"
11#include "HexagonInstrInfo.h"
12#include "HexagonRegisterInfo.h"
13#include "HexagonSubtarget.h"
14#include "llvm/ADT/BitVector.h"
15#include "llvm/ADT/DenseMap.h"
16#include "llvm/ADT/GraphTraits.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/ADT/StringRef.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineDominators.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineFunctionPass.h"
24#include "llvm/CodeGen/MachineInstr.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineOperand.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/TargetRegisterInfo.h"
29#include "llvm/IR/DebugLoc.h"
30#include "llvm/InitializePasses.h"
31#include "llvm/MC/MCInstrDesc.h"
32#include "llvm/Pass.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Compiler.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/raw_ostream.h"
39#include <algorithm>
40#include <cassert>
41#include <cstdint>
42#include <deque>
43#include <iterator>
44#include <limits>
45#include <utility>
46#include <vector>
47
48#define DEBUG_TYPE "hexbit"
49
50using namespace llvm;
51
52static cl::opt<bool> PreserveTiedOps("hexbit-keep-tied", cl::Hidden,
53  cl::init(true), cl::desc("Preserve subregisters in tied operands"));
54static cl::opt<bool> GenExtract("hexbit-extract", cl::Hidden,
55  cl::init(true), cl::desc("Generate extract instructions"));
56static cl::opt<bool> GenBitSplit("hexbit-bitsplit", cl::Hidden,
57  cl::init(true), cl::desc("Generate bitsplit instructions"));
58
59static cl::opt<unsigned> MaxExtract("hexbit-max-extract", cl::Hidden,
60  cl::init(std::numeric_limits<unsigned>::max()));
61static unsigned CountExtract = 0;
62static cl::opt<unsigned> MaxBitSplit("hexbit-max-bitsplit", cl::Hidden,
63  cl::init(std::numeric_limits<unsigned>::max()));
64static unsigned CountBitSplit = 0;
65
66static cl::opt<unsigned> RegisterSetLimit("hexbit-registerset-limit",
67  cl::Hidden, cl::init(1000));
68
69namespace llvm {
70
71  void initializeHexagonBitSimplifyPass(PassRegistry& Registry);
72  FunctionPass *createHexagonBitSimplify();
73
74} // end namespace llvm
75
76namespace {
77
78  // Set of virtual registers, based on BitVector.
79  struct RegisterSet {
80    RegisterSet() = default;
81    explicit RegisterSet(unsigned s, bool t = false) : Bits(s, t) {}
82    RegisterSet(const RegisterSet &RS) = default;
83
84    void clear() {
85      Bits.clear();
86      LRU.clear();
87    }
88
89    unsigned count() const {
90      return Bits.count();
91    }
92
93    unsigned find_first() const {
94      int First = Bits.find_first();
95      if (First < 0)
96        return 0;
97      return x2v(First);
98    }
99
100    unsigned find_next(unsigned Prev) const {
101      int Next = Bits.find_next(v2x(Prev));
102      if (Next < 0)
103        return 0;
104      return x2v(Next);
105    }
106
107    RegisterSet &insert(unsigned R) {
108      unsigned Idx = v2x(R);
109      ensure(Idx);
110      bool Exists = Bits.test(Idx);
111      Bits.set(Idx);
112      if (!Exists) {
113        LRU.push_back(Idx);
114        if (LRU.size() > RegisterSetLimit) {
115          unsigned T = LRU.front();
116          Bits.reset(T);
117          LRU.pop_front();
118        }
119      }
120      return *this;
121    }
122    RegisterSet &remove(unsigned R) {
123      unsigned Idx = v2x(R);
124      if (Idx < Bits.size()) {
125        bool Exists = Bits.test(Idx);
126        Bits.reset(Idx);
127        if (Exists) {
128          auto F = llvm::find(LRU, Idx);
129          assert(F != LRU.end());
130          LRU.erase(F);
131        }
132      }
133      return *this;
134    }
135
136    RegisterSet &insert(const RegisterSet &Rs) {
137      for (unsigned R = Rs.find_first(); R; R = Rs.find_next(R))
138        insert(R);
139      return *this;
140    }
141    RegisterSet &remove(const RegisterSet &Rs) {
142      for (unsigned R = Rs.find_first(); R; R = Rs.find_next(R))
143        remove(R);
144      return *this;
145    }
146
147    bool operator[](unsigned R) const {
148      unsigned Idx = v2x(R);
149      return Idx < Bits.size() ? Bits[Idx] : false;
150    }
151    bool has(unsigned R) const {
152      unsigned Idx = v2x(R);
153      if (Idx >= Bits.size())
154        return false;
155      return Bits.test(Idx);
156    }
157
158    bool empty() const {
159      return !Bits.any();
160    }
161    bool includes(const RegisterSet &Rs) const {
162      // A.test(B)  <=>  A-B != {}
163      return !Rs.Bits.test(Bits);
164    }
165    bool intersects(const RegisterSet &Rs) const {
166      return Bits.anyCommon(Rs.Bits);
167    }
168
169  private:
170    BitVector Bits;
171    std::deque<unsigned> LRU;
172
173    void ensure(unsigned Idx) {
174      if (Bits.size() <= Idx)
175        Bits.resize(std::max(Idx+1, 32U));
176    }
177
178    static inline unsigned v2x(unsigned v) {
179      return Register::virtReg2Index(v);
180    }
181
182    static inline unsigned x2v(unsigned x) {
183      return Register::index2VirtReg(x);
184    }
185  };
186
187  struct PrintRegSet {
188    PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
189      : RS(S), TRI(RI) {}
190
191    friend raw_ostream &operator<< (raw_ostream &OS,
192          const PrintRegSet &P);
193
194  private:
195    const RegisterSet &RS;
196    const TargetRegisterInfo *TRI;
197  };
198
199  raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P)
200    LLVM_ATTRIBUTE_UNUSED;
201  raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
202    OS << '{';
203    for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
204      OS << ' ' << printReg(R, P.TRI);
205    OS << " }";
206    return OS;
207  }
208
209  class Transformation;
210
211  class HexagonBitSimplify : public MachineFunctionPass {
212  public:
213    static char ID;
214
215    HexagonBitSimplify() : MachineFunctionPass(ID) {}
216
217    StringRef getPassName() const override {
218      return "Hexagon bit simplification";
219    }
220
221    void getAnalysisUsage(AnalysisUsage &AU) const override {
222      AU.addRequired<MachineDominatorTree>();
223      AU.addPreserved<MachineDominatorTree>();
224      MachineFunctionPass::getAnalysisUsage(AU);
225    }
226
227    bool runOnMachineFunction(MachineFunction &MF) override;
228
229    static void getInstrDefs(const MachineInstr &MI, RegisterSet &Defs);
230    static void getInstrUses(const MachineInstr &MI, RegisterSet &Uses);
231    static bool isEqual(const BitTracker::RegisterCell &RC1, uint16_t B1,
232        const BitTracker::RegisterCell &RC2, uint16_t B2, uint16_t W);
233    static bool isZero(const BitTracker::RegisterCell &RC, uint16_t B,
234        uint16_t W);
235    static bool getConst(const BitTracker::RegisterCell &RC, uint16_t B,
236        uint16_t W, uint64_t &U);
237    static bool replaceReg(Register OldR, Register NewR,
238                           MachineRegisterInfo &MRI);
239    static bool getSubregMask(const BitTracker::RegisterRef &RR,
240        unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI);
241    static bool replaceRegWithSub(Register OldR, Register NewR, unsigned NewSR,
242                                  MachineRegisterInfo &MRI);
243    static bool replaceSubWithSub(Register OldR, unsigned OldSR, Register NewR,
244                                  unsigned NewSR, MachineRegisterInfo &MRI);
245    static bool parseRegSequence(const MachineInstr &I,
246        BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH,
247        const MachineRegisterInfo &MRI);
248
249    static bool getUsedBitsInStore(unsigned Opc, BitVector &Bits,
250        uint16_t Begin);
251    static bool getUsedBits(unsigned Opc, unsigned OpN, BitVector &Bits,
252        uint16_t Begin, const HexagonInstrInfo &HII);
253
254    static const TargetRegisterClass *getFinalVRegClass(
255        const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI);
256    static bool isTransparentCopy(const BitTracker::RegisterRef &RD,
257        const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI);
258
259  private:
260    MachineDominatorTree *MDT = nullptr;
261
262    bool visitBlock(MachineBasicBlock &B, Transformation &T, RegisterSet &AVs);
263    static bool hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI,
264        unsigned NewSub = Hexagon::NoSubRegister);
265  };
266
267  using HBS = HexagonBitSimplify;
268
269  // The purpose of this class is to provide a common facility to traverse
270  // the function top-down or bottom-up via the dominator tree, and keep
271  // track of the available registers.
272  class Transformation {
273  public:
274    bool TopDown;
275
276    Transformation(bool TD) : TopDown(TD) {}
277    virtual ~Transformation() = default;
278
279    virtual bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) = 0;
280  };
281
282} // end anonymous namespace
283
284char HexagonBitSimplify::ID = 0;
285
286INITIALIZE_PASS_BEGIN(HexagonBitSimplify, "hexagon-bit-simplify",
287      "Hexagon bit simplification", false, false)
288INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
289INITIALIZE_PASS_END(HexagonBitSimplify, "hexagon-bit-simplify",
290      "Hexagon bit simplification", false, false)
291
292bool HexagonBitSimplify::visitBlock(MachineBasicBlock &B, Transformation &T,
293      RegisterSet &AVs) {
294  bool Changed = false;
295
296  if (T.TopDown)
297    Changed = T.processBlock(B, AVs);
298
299  RegisterSet Defs;
300  for (auto &I : B)
301    getInstrDefs(I, Defs);
302  RegisterSet NewAVs = AVs;
303  NewAVs.insert(Defs);
304
305  for (auto *DTN : children<MachineDomTreeNode*>(MDT->getNode(&B)))
306    Changed |= visitBlock(*(DTN->getBlock()), T, NewAVs);
307
308  if (!T.TopDown)
309    Changed |= T.processBlock(B, AVs);
310
311  return Changed;
312}
313
314//
315// Utility functions:
316//
317void HexagonBitSimplify::getInstrDefs(const MachineInstr &MI,
318      RegisterSet &Defs) {
319  for (auto &Op : MI.operands()) {
320    if (!Op.isReg() || !Op.isDef())
321      continue;
322    Register R = Op.getReg();
323    if (!R.isVirtual())
324      continue;
325    Defs.insert(R);
326  }
327}
328
329void HexagonBitSimplify::getInstrUses(const MachineInstr &MI,
330      RegisterSet &Uses) {
331  for (auto &Op : MI.operands()) {
332    if (!Op.isReg() || !Op.isUse())
333      continue;
334    Register R = Op.getReg();
335    if (!R.isVirtual())
336      continue;
337    Uses.insert(R);
338  }
339}
340
341// Check if all the bits in range [B, E) in both cells are equal.
342bool HexagonBitSimplify::isEqual(const BitTracker::RegisterCell &RC1,
343      uint16_t B1, const BitTracker::RegisterCell &RC2, uint16_t B2,
344      uint16_t W) {
345  for (uint16_t i = 0; i < W; ++i) {
346    // If RC1[i] is "bottom", it cannot be proven equal to RC2[i].
347    if (RC1[B1+i].Type == BitTracker::BitValue::Ref && RC1[B1+i].RefI.Reg == 0)
348      return false;
349    // Same for RC2[i].
350    if (RC2[B2+i].Type == BitTracker::BitValue::Ref && RC2[B2+i].RefI.Reg == 0)
351      return false;
352    if (RC1[B1+i] != RC2[B2+i])
353      return false;
354  }
355  return true;
356}
357
358bool HexagonBitSimplify::isZero(const BitTracker::RegisterCell &RC,
359      uint16_t B, uint16_t W) {
360  assert(B < RC.width() && B+W <= RC.width());
361  for (uint16_t i = B; i < B+W; ++i)
362    if (!RC[i].is(0))
363      return false;
364  return true;
365}
366
367bool HexagonBitSimplify::getConst(const BitTracker::RegisterCell &RC,
368        uint16_t B, uint16_t W, uint64_t &U) {
369  assert(B < RC.width() && B+W <= RC.width());
370  int64_t T = 0;
371  for (uint16_t i = B+W; i > B; --i) {
372    const BitTracker::BitValue &BV = RC[i-1];
373    T <<= 1;
374    if (BV.is(1))
375      T |= 1;
376    else if (!BV.is(0))
377      return false;
378  }
379  U = T;
380  return true;
381}
382
383bool HexagonBitSimplify::replaceReg(Register OldR, Register NewR,
384                                    MachineRegisterInfo &MRI) {
385  if (!OldR.isVirtual() || !NewR.isVirtual())
386    return false;
387  auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
388  decltype(End) NextI;
389  for (auto I = Begin; I != End; I = NextI) {
390    NextI = std::next(I);
391    I->setReg(NewR);
392  }
393  return Begin != End;
394}
395
396bool HexagonBitSimplify::replaceRegWithSub(Register OldR, Register NewR,
397                                           unsigned NewSR,
398                                           MachineRegisterInfo &MRI) {
399  if (!OldR.isVirtual() || !NewR.isVirtual())
400    return false;
401  if (hasTiedUse(OldR, MRI, NewSR))
402    return false;
403  auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
404  decltype(End) NextI;
405  for (auto I = Begin; I != End; I = NextI) {
406    NextI = std::next(I);
407    I->setReg(NewR);
408    I->setSubReg(NewSR);
409  }
410  return Begin != End;
411}
412
413bool HexagonBitSimplify::replaceSubWithSub(Register OldR, unsigned OldSR,
414                                           Register NewR, unsigned NewSR,
415                                           MachineRegisterInfo &MRI) {
416  if (!OldR.isVirtual() || !NewR.isVirtual())
417    return false;
418  if (OldSR != NewSR && hasTiedUse(OldR, MRI, NewSR))
419    return false;
420  auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
421  decltype(End) NextI;
422  for (auto I = Begin; I != End; I = NextI) {
423    NextI = std::next(I);
424    if (I->getSubReg() != OldSR)
425      continue;
426    I->setReg(NewR);
427    I->setSubReg(NewSR);
428  }
429  return Begin != End;
430}
431
432// For a register ref (pair Reg:Sub), set Begin to the position of the LSB
433// of Sub in Reg, and set Width to the size of Sub in bits. Return true,
434// if this succeeded, otherwise return false.
435bool HexagonBitSimplify::getSubregMask(const BitTracker::RegisterRef &RR,
436      unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI) {
437  const TargetRegisterClass *RC = MRI.getRegClass(RR.Reg);
438  if (RR.Sub == 0) {
439    Begin = 0;
440    Width = MRI.getTargetRegisterInfo()->getRegSizeInBits(*RC);
441    return true;
442  }
443
444  Begin = 0;
445
446  switch (RC->getID()) {
447    case Hexagon::DoubleRegsRegClassID:
448    case Hexagon::HvxWRRegClassID:
449      Width = MRI.getTargetRegisterInfo()->getRegSizeInBits(*RC) / 2;
450      if (RR.Sub == Hexagon::isub_hi || RR.Sub == Hexagon::vsub_hi)
451        Begin = Width;
452      break;
453    default:
454      return false;
455  }
456  return true;
457}
458
459
460// For a REG_SEQUENCE, set SL to the low subregister and SH to the high
461// subregister.
462bool HexagonBitSimplify::parseRegSequence(const MachineInstr &I,
463      BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH,
464      const MachineRegisterInfo &MRI) {
465  assert(I.getOpcode() == TargetOpcode::REG_SEQUENCE);
466  unsigned Sub1 = I.getOperand(2).getImm(), Sub2 = I.getOperand(4).getImm();
467  auto &DstRC = *MRI.getRegClass(I.getOperand(0).getReg());
468  auto &HRI = static_cast<const HexagonRegisterInfo&>(
469                  *MRI.getTargetRegisterInfo());
470  unsigned SubLo = HRI.getHexagonSubRegIndex(DstRC, Hexagon::ps_sub_lo);
471  unsigned SubHi = HRI.getHexagonSubRegIndex(DstRC, Hexagon::ps_sub_hi);
472  assert((Sub1 == SubLo && Sub2 == SubHi) || (Sub1 == SubHi && Sub2 == SubLo));
473  if (Sub1 == SubLo && Sub2 == SubHi) {
474    SL = I.getOperand(1);
475    SH = I.getOperand(3);
476    return true;
477  }
478  if (Sub1 == SubHi && Sub2 == SubLo) {
479    SH = I.getOperand(1);
480    SL = I.getOperand(3);
481    return true;
482  }
483  return false;
484}
485
486// All stores (except 64-bit stores) take a 32-bit register as the source
487// of the value to be stored. If the instruction stores into a location
488// that is shorter than 32 bits, some bits of the source register are not
489// used. For each store instruction, calculate the set of used bits in
490// the source register, and set appropriate bits in Bits. Return true if
491// the bits are calculated, false otherwise.
492bool HexagonBitSimplify::getUsedBitsInStore(unsigned Opc, BitVector &Bits,
493      uint16_t Begin) {
494  using namespace Hexagon;
495
496  switch (Opc) {
497    // Store byte
498    case S2_storerb_io:           // memb(Rs32+#s11:0)=Rt32
499    case S2_storerbnew_io:        // memb(Rs32+#s11:0)=Nt8.new
500    case S2_pstorerbt_io:         // if (Pv4) memb(Rs32+#u6:0)=Rt32
501    case S2_pstorerbf_io:         // if (!Pv4) memb(Rs32+#u6:0)=Rt32
502    case S4_pstorerbtnew_io:      // if (Pv4.new) memb(Rs32+#u6:0)=Rt32
503    case S4_pstorerbfnew_io:      // if (!Pv4.new) memb(Rs32+#u6:0)=Rt32
504    case S2_pstorerbnewt_io:      // if (Pv4) memb(Rs32+#u6:0)=Nt8.new
505    case S2_pstorerbnewf_io:      // if (!Pv4) memb(Rs32+#u6:0)=Nt8.new
506    case S4_pstorerbnewtnew_io:   // if (Pv4.new) memb(Rs32+#u6:0)=Nt8.new
507    case S4_pstorerbnewfnew_io:   // if (!Pv4.new) memb(Rs32+#u6:0)=Nt8.new
508    case S2_storerb_pi:           // memb(Rx32++#s4:0)=Rt32
509    case S2_storerbnew_pi:        // memb(Rx32++#s4:0)=Nt8.new
510    case S2_pstorerbt_pi:         // if (Pv4) memb(Rx32++#s4:0)=Rt32
511    case S2_pstorerbf_pi:         // if (!Pv4) memb(Rx32++#s4:0)=Rt32
512    case S2_pstorerbtnew_pi:      // if (Pv4.new) memb(Rx32++#s4:0)=Rt32
513    case S2_pstorerbfnew_pi:      // if (!Pv4.new) memb(Rx32++#s4:0)=Rt32
514    case S2_pstorerbnewt_pi:      // if (Pv4) memb(Rx32++#s4:0)=Nt8.new
515    case S2_pstorerbnewf_pi:      // if (!Pv4) memb(Rx32++#s4:0)=Nt8.new
516    case S2_pstorerbnewtnew_pi:   // if (Pv4.new) memb(Rx32++#s4:0)=Nt8.new
517    case S2_pstorerbnewfnew_pi:   // if (!Pv4.new) memb(Rx32++#s4:0)=Nt8.new
518    case S4_storerb_ap:           // memb(Re32=#U6)=Rt32
519    case S4_storerbnew_ap:        // memb(Re32=#U6)=Nt8.new
520    case S2_storerb_pr:           // memb(Rx32++Mu2)=Rt32
521    case S2_storerbnew_pr:        // memb(Rx32++Mu2)=Nt8.new
522    case S4_storerb_ur:           // memb(Ru32<<#u2+#U6)=Rt32
523    case S4_storerbnew_ur:        // memb(Ru32<<#u2+#U6)=Nt8.new
524    case S2_storerb_pbr:          // memb(Rx32++Mu2:brev)=Rt32
525    case S2_storerbnew_pbr:       // memb(Rx32++Mu2:brev)=Nt8.new
526    case S2_storerb_pci:          // memb(Rx32++#s4:0:circ(Mu2))=Rt32
527    case S2_storerbnew_pci:       // memb(Rx32++#s4:0:circ(Mu2))=Nt8.new
528    case S2_storerb_pcr:          // memb(Rx32++I:circ(Mu2))=Rt32
529    case S2_storerbnew_pcr:       // memb(Rx32++I:circ(Mu2))=Nt8.new
530    case S4_storerb_rr:           // memb(Rs32+Ru32<<#u2)=Rt32
531    case S4_storerbnew_rr:        // memb(Rs32+Ru32<<#u2)=Nt8.new
532    case S4_pstorerbt_rr:         // if (Pv4) memb(Rs32+Ru32<<#u2)=Rt32
533    case S4_pstorerbf_rr:         // if (!Pv4) memb(Rs32+Ru32<<#u2)=Rt32
534    case S4_pstorerbtnew_rr:      // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
535    case S4_pstorerbfnew_rr:      // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
536    case S4_pstorerbnewt_rr:      // if (Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
537    case S4_pstorerbnewf_rr:      // if (!Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
538    case S4_pstorerbnewtnew_rr:   // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
539    case S4_pstorerbnewfnew_rr:   // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
540    case S2_storerbgp:            // memb(gp+#u16:0)=Rt32
541    case S2_storerbnewgp:         // memb(gp+#u16:0)=Nt8.new
542    case S4_pstorerbt_abs:        // if (Pv4) memb(#u6)=Rt32
543    case S4_pstorerbf_abs:        // if (!Pv4) memb(#u6)=Rt32
544    case S4_pstorerbtnew_abs:     // if (Pv4.new) memb(#u6)=Rt32
545    case S4_pstorerbfnew_abs:     // if (!Pv4.new) memb(#u6)=Rt32
546    case S4_pstorerbnewt_abs:     // if (Pv4) memb(#u6)=Nt8.new
547    case S4_pstorerbnewf_abs:     // if (!Pv4) memb(#u6)=Nt8.new
548    case S4_pstorerbnewtnew_abs:  // if (Pv4.new) memb(#u6)=Nt8.new
549    case S4_pstorerbnewfnew_abs:  // if (!Pv4.new) memb(#u6)=Nt8.new
550      Bits.set(Begin, Begin+8);
551      return true;
552
553    // Store low half
554    case S2_storerh_io:           // memh(Rs32+#s11:1)=Rt32
555    case S2_storerhnew_io:        // memh(Rs32+#s11:1)=Nt8.new
556    case S2_pstorerht_io:         // if (Pv4) memh(Rs32+#u6:1)=Rt32
557    case S2_pstorerhf_io:         // if (!Pv4) memh(Rs32+#u6:1)=Rt32
558    case S4_pstorerhtnew_io:      // if (Pv4.new) memh(Rs32+#u6:1)=Rt32
559    case S4_pstorerhfnew_io:      // if (!Pv4.new) memh(Rs32+#u6:1)=Rt32
560    case S2_pstorerhnewt_io:      // if (Pv4) memh(Rs32+#u6:1)=Nt8.new
561    case S2_pstorerhnewf_io:      // if (!Pv4) memh(Rs32+#u6:1)=Nt8.new
562    case S4_pstorerhnewtnew_io:   // if (Pv4.new) memh(Rs32+#u6:1)=Nt8.new
563    case S4_pstorerhnewfnew_io:   // if (!Pv4.new) memh(Rs32+#u6:1)=Nt8.new
564    case S2_storerh_pi:           // memh(Rx32++#s4:1)=Rt32
565    case S2_storerhnew_pi:        // memh(Rx32++#s4:1)=Nt8.new
566    case S2_pstorerht_pi:         // if (Pv4) memh(Rx32++#s4:1)=Rt32
567    case S2_pstorerhf_pi:         // if (!Pv4) memh(Rx32++#s4:1)=Rt32
568    case S2_pstorerhtnew_pi:      // if (Pv4.new) memh(Rx32++#s4:1)=Rt32
569    case S2_pstorerhfnew_pi:      // if (!Pv4.new) memh(Rx32++#s4:1)=Rt32
570    case S2_pstorerhnewt_pi:      // if (Pv4) memh(Rx32++#s4:1)=Nt8.new
571    case S2_pstorerhnewf_pi:      // if (!Pv4) memh(Rx32++#s4:1)=Nt8.new
572    case S2_pstorerhnewtnew_pi:   // if (Pv4.new) memh(Rx32++#s4:1)=Nt8.new
573    case S2_pstorerhnewfnew_pi:   // if (!Pv4.new) memh(Rx32++#s4:1)=Nt8.new
574    case S4_storerh_ap:           // memh(Re32=#U6)=Rt32
575    case S4_storerhnew_ap:        // memh(Re32=#U6)=Nt8.new
576    case S2_storerh_pr:           // memh(Rx32++Mu2)=Rt32
577    case S2_storerhnew_pr:        // memh(Rx32++Mu2)=Nt8.new
578    case S4_storerh_ur:           // memh(Ru32<<#u2+#U6)=Rt32
579    case S4_storerhnew_ur:        // memh(Ru32<<#u2+#U6)=Nt8.new
580    case S2_storerh_pbr:          // memh(Rx32++Mu2:brev)=Rt32
581    case S2_storerhnew_pbr:       // memh(Rx32++Mu2:brev)=Nt8.new
582    case S2_storerh_pci:          // memh(Rx32++#s4:1:circ(Mu2))=Rt32
583    case S2_storerhnew_pci:       // memh(Rx32++#s4:1:circ(Mu2))=Nt8.new
584    case S2_storerh_pcr:          // memh(Rx32++I:circ(Mu2))=Rt32
585    case S2_storerhnew_pcr:       // memh(Rx32++I:circ(Mu2))=Nt8.new
586    case S4_storerh_rr:           // memh(Rs32+Ru32<<#u2)=Rt32
587    case S4_pstorerht_rr:         // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt32
588    case S4_pstorerhf_rr:         // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt32
589    case S4_pstorerhtnew_rr:      // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
590    case S4_pstorerhfnew_rr:      // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
591    case S4_storerhnew_rr:        // memh(Rs32+Ru32<<#u2)=Nt8.new
592    case S4_pstorerhnewt_rr:      // if (Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
593    case S4_pstorerhnewf_rr:      // if (!Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
594    case S4_pstorerhnewtnew_rr:   // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
595    case S4_pstorerhnewfnew_rr:   // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
596    case S2_storerhgp:            // memh(gp+#u16:1)=Rt32
597    case S2_storerhnewgp:         // memh(gp+#u16:1)=Nt8.new
598    case S4_pstorerht_abs:        // if (Pv4) memh(#u6)=Rt32
599    case S4_pstorerhf_abs:        // if (!Pv4) memh(#u6)=Rt32
600    case S4_pstorerhtnew_abs:     // if (Pv4.new) memh(#u6)=Rt32
601    case S4_pstorerhfnew_abs:     // if (!Pv4.new) memh(#u6)=Rt32
602    case S4_pstorerhnewt_abs:     // if (Pv4) memh(#u6)=Nt8.new
603    case S4_pstorerhnewf_abs:     // if (!Pv4) memh(#u6)=Nt8.new
604    case S4_pstorerhnewtnew_abs:  // if (Pv4.new) memh(#u6)=Nt8.new
605    case S4_pstorerhnewfnew_abs:  // if (!Pv4.new) memh(#u6)=Nt8.new
606      Bits.set(Begin, Begin+16);
607      return true;
608
609    // Store high half
610    case S2_storerf_io:           // memh(Rs32+#s11:1)=Rt.H32
611    case S2_pstorerft_io:         // if (Pv4) memh(Rs32+#u6:1)=Rt.H32
612    case S2_pstorerff_io:         // if (!Pv4) memh(Rs32+#u6:1)=Rt.H32
613    case S4_pstorerftnew_io:      // if (Pv4.new) memh(Rs32+#u6:1)=Rt.H32
614    case S4_pstorerffnew_io:      // if (!Pv4.new) memh(Rs32+#u6:1)=Rt.H32
615    case S2_storerf_pi:           // memh(Rx32++#s4:1)=Rt.H32
616    case S2_pstorerft_pi:         // if (Pv4) memh(Rx32++#s4:1)=Rt.H32
617    case S2_pstorerff_pi:         // if (!Pv4) memh(Rx32++#s4:1)=Rt.H32
618    case S2_pstorerftnew_pi:      // if (Pv4.new) memh(Rx32++#s4:1)=Rt.H32
619    case S2_pstorerffnew_pi:      // if (!Pv4.new) memh(Rx32++#s4:1)=Rt.H32
620    case S4_storerf_ap:           // memh(Re32=#U6)=Rt.H32
621    case S2_storerf_pr:           // memh(Rx32++Mu2)=Rt.H32
622    case S4_storerf_ur:           // memh(Ru32<<#u2+#U6)=Rt.H32
623    case S2_storerf_pbr:          // memh(Rx32++Mu2:brev)=Rt.H32
624    case S2_storerf_pci:          // memh(Rx32++#s4:1:circ(Mu2))=Rt.H32
625    case S2_storerf_pcr:          // memh(Rx32++I:circ(Mu2))=Rt.H32
626    case S4_storerf_rr:           // memh(Rs32+Ru32<<#u2)=Rt.H32
627    case S4_pstorerft_rr:         // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
628    case S4_pstorerff_rr:         // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
629    case S4_pstorerftnew_rr:      // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
630    case S4_pstorerffnew_rr:      // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
631    case S2_storerfgp:            // memh(gp+#u16:1)=Rt.H32
632    case S4_pstorerft_abs:        // if (Pv4) memh(#u6)=Rt.H32
633    case S4_pstorerff_abs:        // if (!Pv4) memh(#u6)=Rt.H32
634    case S4_pstorerftnew_abs:     // if (Pv4.new) memh(#u6)=Rt.H32
635    case S4_pstorerffnew_abs:     // if (!Pv4.new) memh(#u6)=Rt.H32
636      Bits.set(Begin+16, Begin+32);
637      return true;
638  }
639
640  return false;
641}
642
643// For an instruction with opcode Opc, calculate the set of bits that it
644// uses in a register in operand OpN. This only calculates the set of used
645// bits for cases where it does not depend on any operands (as is the case
646// in shifts, for example). For concrete instructions from a program, the
647// operand may be a subregister of a larger register, while Bits would
648// correspond to the larger register in its entirety. Because of that,
649// the parameter Begin can be used to indicate which bit of Bits should be
650// considered the LSB of the operand.
651bool HexagonBitSimplify::getUsedBits(unsigned Opc, unsigned OpN,
652      BitVector &Bits, uint16_t Begin, const HexagonInstrInfo &HII) {
653  using namespace Hexagon;
654
655  const MCInstrDesc &D = HII.get(Opc);
656  if (D.mayStore()) {
657    if (OpN == D.getNumOperands()-1)
658      return getUsedBitsInStore(Opc, Bits, Begin);
659    return false;
660  }
661
662  switch (Opc) {
663    // One register source. Used bits: R1[0-7].
664    case A2_sxtb:
665    case A2_zxtb:
666    case A4_cmpbeqi:
667    case A4_cmpbgti:
668    case A4_cmpbgtui:
669      if (OpN == 1) {
670        Bits.set(Begin, Begin+8);
671        return true;
672      }
673      break;
674
675    // One register source. Used bits: R1[0-15].
676    case A2_aslh:
677    case A2_sxth:
678    case A2_zxth:
679    case A4_cmpheqi:
680    case A4_cmphgti:
681    case A4_cmphgtui:
682      if (OpN == 1) {
683        Bits.set(Begin, Begin+16);
684        return true;
685      }
686      break;
687
688    // One register source. Used bits: R1[16-31].
689    case A2_asrh:
690      if (OpN == 1) {
691        Bits.set(Begin+16, Begin+32);
692        return true;
693      }
694      break;
695
696    // Two register sources. Used bits: R1[0-7], R2[0-7].
697    case A4_cmpbeq:
698    case A4_cmpbgt:
699    case A4_cmpbgtu:
700      if (OpN == 1) {
701        Bits.set(Begin, Begin+8);
702        return true;
703      }
704      break;
705
706    // Two register sources. Used bits: R1[0-15], R2[0-15].
707    case A4_cmpheq:
708    case A4_cmphgt:
709    case A4_cmphgtu:
710    case A2_addh_h16_ll:
711    case A2_addh_h16_sat_ll:
712    case A2_addh_l16_ll:
713    case A2_addh_l16_sat_ll:
714    case A2_combine_ll:
715    case A2_subh_h16_ll:
716    case A2_subh_h16_sat_ll:
717    case A2_subh_l16_ll:
718    case A2_subh_l16_sat_ll:
719    case M2_mpy_acc_ll_s0:
720    case M2_mpy_acc_ll_s1:
721    case M2_mpy_acc_sat_ll_s0:
722    case M2_mpy_acc_sat_ll_s1:
723    case M2_mpy_ll_s0:
724    case M2_mpy_ll_s1:
725    case M2_mpy_nac_ll_s0:
726    case M2_mpy_nac_ll_s1:
727    case M2_mpy_nac_sat_ll_s0:
728    case M2_mpy_nac_sat_ll_s1:
729    case M2_mpy_rnd_ll_s0:
730    case M2_mpy_rnd_ll_s1:
731    case M2_mpy_sat_ll_s0:
732    case M2_mpy_sat_ll_s1:
733    case M2_mpy_sat_rnd_ll_s0:
734    case M2_mpy_sat_rnd_ll_s1:
735    case M2_mpyd_acc_ll_s0:
736    case M2_mpyd_acc_ll_s1:
737    case M2_mpyd_ll_s0:
738    case M2_mpyd_ll_s1:
739    case M2_mpyd_nac_ll_s0:
740    case M2_mpyd_nac_ll_s1:
741    case M2_mpyd_rnd_ll_s0:
742    case M2_mpyd_rnd_ll_s1:
743    case M2_mpyu_acc_ll_s0:
744    case M2_mpyu_acc_ll_s1:
745    case M2_mpyu_ll_s0:
746    case M2_mpyu_ll_s1:
747    case M2_mpyu_nac_ll_s0:
748    case M2_mpyu_nac_ll_s1:
749    case M2_mpyud_acc_ll_s0:
750    case M2_mpyud_acc_ll_s1:
751    case M2_mpyud_ll_s0:
752    case M2_mpyud_ll_s1:
753    case M2_mpyud_nac_ll_s0:
754    case M2_mpyud_nac_ll_s1:
755      if (OpN == 1 || OpN == 2) {
756        Bits.set(Begin, Begin+16);
757        return true;
758      }
759      break;
760
761    // Two register sources. Used bits: R1[0-15], R2[16-31].
762    case A2_addh_h16_lh:
763    case A2_addh_h16_sat_lh:
764    case A2_combine_lh:
765    case A2_subh_h16_lh:
766    case A2_subh_h16_sat_lh:
767    case M2_mpy_acc_lh_s0:
768    case M2_mpy_acc_lh_s1:
769    case M2_mpy_acc_sat_lh_s0:
770    case M2_mpy_acc_sat_lh_s1:
771    case M2_mpy_lh_s0:
772    case M2_mpy_lh_s1:
773    case M2_mpy_nac_lh_s0:
774    case M2_mpy_nac_lh_s1:
775    case M2_mpy_nac_sat_lh_s0:
776    case M2_mpy_nac_sat_lh_s1:
777    case M2_mpy_rnd_lh_s0:
778    case M2_mpy_rnd_lh_s1:
779    case M2_mpy_sat_lh_s0:
780    case M2_mpy_sat_lh_s1:
781    case M2_mpy_sat_rnd_lh_s0:
782    case M2_mpy_sat_rnd_lh_s1:
783    case M2_mpyd_acc_lh_s0:
784    case M2_mpyd_acc_lh_s1:
785    case M2_mpyd_lh_s0:
786    case M2_mpyd_lh_s1:
787    case M2_mpyd_nac_lh_s0:
788    case M2_mpyd_nac_lh_s1:
789    case M2_mpyd_rnd_lh_s0:
790    case M2_mpyd_rnd_lh_s1:
791    case M2_mpyu_acc_lh_s0:
792    case M2_mpyu_acc_lh_s1:
793    case M2_mpyu_lh_s0:
794    case M2_mpyu_lh_s1:
795    case M2_mpyu_nac_lh_s0:
796    case M2_mpyu_nac_lh_s1:
797    case M2_mpyud_acc_lh_s0:
798    case M2_mpyud_acc_lh_s1:
799    case M2_mpyud_lh_s0:
800    case M2_mpyud_lh_s1:
801    case M2_mpyud_nac_lh_s0:
802    case M2_mpyud_nac_lh_s1:
803    // These four are actually LH.
804    case A2_addh_l16_hl:
805    case A2_addh_l16_sat_hl:
806    case A2_subh_l16_hl:
807    case A2_subh_l16_sat_hl:
808      if (OpN == 1) {
809        Bits.set(Begin, Begin+16);
810        return true;
811      }
812      if (OpN == 2) {
813        Bits.set(Begin+16, Begin+32);
814        return true;
815      }
816      break;
817
818    // Two register sources, used bits: R1[16-31], R2[0-15].
819    case A2_addh_h16_hl:
820    case A2_addh_h16_sat_hl:
821    case A2_combine_hl:
822    case A2_subh_h16_hl:
823    case A2_subh_h16_sat_hl:
824    case M2_mpy_acc_hl_s0:
825    case M2_mpy_acc_hl_s1:
826    case M2_mpy_acc_sat_hl_s0:
827    case M2_mpy_acc_sat_hl_s1:
828    case M2_mpy_hl_s0:
829    case M2_mpy_hl_s1:
830    case M2_mpy_nac_hl_s0:
831    case M2_mpy_nac_hl_s1:
832    case M2_mpy_nac_sat_hl_s0:
833    case M2_mpy_nac_sat_hl_s1:
834    case M2_mpy_rnd_hl_s0:
835    case M2_mpy_rnd_hl_s1:
836    case M2_mpy_sat_hl_s0:
837    case M2_mpy_sat_hl_s1:
838    case M2_mpy_sat_rnd_hl_s0:
839    case M2_mpy_sat_rnd_hl_s1:
840    case M2_mpyd_acc_hl_s0:
841    case M2_mpyd_acc_hl_s1:
842    case M2_mpyd_hl_s0:
843    case M2_mpyd_hl_s1:
844    case M2_mpyd_nac_hl_s0:
845    case M2_mpyd_nac_hl_s1:
846    case M2_mpyd_rnd_hl_s0:
847    case M2_mpyd_rnd_hl_s1:
848    case M2_mpyu_acc_hl_s0:
849    case M2_mpyu_acc_hl_s1:
850    case M2_mpyu_hl_s0:
851    case M2_mpyu_hl_s1:
852    case M2_mpyu_nac_hl_s0:
853    case M2_mpyu_nac_hl_s1:
854    case M2_mpyud_acc_hl_s0:
855    case M2_mpyud_acc_hl_s1:
856    case M2_mpyud_hl_s0:
857    case M2_mpyud_hl_s1:
858    case M2_mpyud_nac_hl_s0:
859    case M2_mpyud_nac_hl_s1:
860      if (OpN == 1) {
861        Bits.set(Begin+16, Begin+32);
862        return true;
863      }
864      if (OpN == 2) {
865        Bits.set(Begin, Begin+16);
866        return true;
867      }
868      break;
869
870    // Two register sources, used bits: R1[16-31], R2[16-31].
871    case A2_addh_h16_hh:
872    case A2_addh_h16_sat_hh:
873    case A2_combine_hh:
874    case A2_subh_h16_hh:
875    case A2_subh_h16_sat_hh:
876    case M2_mpy_acc_hh_s0:
877    case M2_mpy_acc_hh_s1:
878    case M2_mpy_acc_sat_hh_s0:
879    case M2_mpy_acc_sat_hh_s1:
880    case M2_mpy_hh_s0:
881    case M2_mpy_hh_s1:
882    case M2_mpy_nac_hh_s0:
883    case M2_mpy_nac_hh_s1:
884    case M2_mpy_nac_sat_hh_s0:
885    case M2_mpy_nac_sat_hh_s1:
886    case M2_mpy_rnd_hh_s0:
887    case M2_mpy_rnd_hh_s1:
888    case M2_mpy_sat_hh_s0:
889    case M2_mpy_sat_hh_s1:
890    case M2_mpy_sat_rnd_hh_s0:
891    case M2_mpy_sat_rnd_hh_s1:
892    case M2_mpyd_acc_hh_s0:
893    case M2_mpyd_acc_hh_s1:
894    case M2_mpyd_hh_s0:
895    case M2_mpyd_hh_s1:
896    case M2_mpyd_nac_hh_s0:
897    case M2_mpyd_nac_hh_s1:
898    case M2_mpyd_rnd_hh_s0:
899    case M2_mpyd_rnd_hh_s1:
900    case M2_mpyu_acc_hh_s0:
901    case M2_mpyu_acc_hh_s1:
902    case M2_mpyu_hh_s0:
903    case M2_mpyu_hh_s1:
904    case M2_mpyu_nac_hh_s0:
905    case M2_mpyu_nac_hh_s1:
906    case M2_mpyud_acc_hh_s0:
907    case M2_mpyud_acc_hh_s1:
908    case M2_mpyud_hh_s0:
909    case M2_mpyud_hh_s1:
910    case M2_mpyud_nac_hh_s0:
911    case M2_mpyud_nac_hh_s1:
912      if (OpN == 1 || OpN == 2) {
913        Bits.set(Begin+16, Begin+32);
914        return true;
915      }
916      break;
917  }
918
919  return false;
920}
921
922// Calculate the register class that matches Reg:Sub. For example, if
923// %1 is a double register, then %1:isub_hi would match the "int"
924// register class.
925const TargetRegisterClass *HexagonBitSimplify::getFinalVRegClass(
926      const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI) {
927  if (!RR.Reg.isVirtual())
928    return nullptr;
929  auto *RC = MRI.getRegClass(RR.Reg);
930  if (RR.Sub == 0)
931    return RC;
932  auto &HRI = static_cast<const HexagonRegisterInfo&>(
933                  *MRI.getTargetRegisterInfo());
934
935  auto VerifySR = [&HRI] (const TargetRegisterClass *RC, unsigned Sub) -> void {
936    (void)HRI;
937    assert(Sub == HRI.getHexagonSubRegIndex(*RC, Hexagon::ps_sub_lo) ||
938           Sub == HRI.getHexagonSubRegIndex(*RC, Hexagon::ps_sub_hi));
939  };
940
941  switch (RC->getID()) {
942    case Hexagon::DoubleRegsRegClassID:
943      VerifySR(RC, RR.Sub);
944      return &Hexagon::IntRegsRegClass;
945    case Hexagon::HvxWRRegClassID:
946      VerifySR(RC, RR.Sub);
947      return &Hexagon::HvxVRRegClass;
948  }
949  return nullptr;
950}
951
952// Check if RD could be replaced with RS at any possible use of RD.
953// For example a predicate register cannot be replaced with a integer
954// register, but a 64-bit register with a subregister can be replaced
955// with a 32-bit register.
956bool HexagonBitSimplify::isTransparentCopy(const BitTracker::RegisterRef &RD,
957      const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI) {
958  if (!RD.Reg.isVirtual() || !RS.Reg.isVirtual())
959    return false;
960  // Return false if one (or both) classes are nullptr.
961  auto *DRC = getFinalVRegClass(RD, MRI);
962  if (!DRC)
963    return false;
964
965  return DRC == getFinalVRegClass(RS, MRI);
966}
967
968bool HexagonBitSimplify::hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI,
969      unsigned NewSub) {
970  if (!PreserveTiedOps)
971    return false;
972  return llvm::any_of(MRI.use_operands(Reg),
973                      [NewSub] (const MachineOperand &Op) -> bool {
974                        return Op.getSubReg() != NewSub && Op.isTied();
975                      });
976}
977
978namespace {
979
980  class DeadCodeElimination {
981  public:
982    DeadCodeElimination(MachineFunction &mf, MachineDominatorTree &mdt)
983      : MF(mf), HII(*MF.getSubtarget<HexagonSubtarget>().getInstrInfo()),
984        MDT(mdt), MRI(mf.getRegInfo()) {}
985
986    bool run() {
987      return runOnNode(MDT.getRootNode());
988    }
989
990  private:
991    bool isDead(unsigned R) const;
992    bool runOnNode(MachineDomTreeNode *N);
993
994    MachineFunction &MF;
995    const HexagonInstrInfo &HII;
996    MachineDominatorTree &MDT;
997    MachineRegisterInfo &MRI;
998  };
999
1000} // end anonymous namespace
1001
1002bool DeadCodeElimination::isDead(unsigned R) const {
1003  for (const MachineOperand &MO : MRI.use_operands(R)) {
1004    const MachineInstr *UseI = MO.getParent();
1005    if (UseI->isDebugValue())
1006      continue;
1007    if (UseI->isPHI()) {
1008      assert(!UseI->getOperand(0).getSubReg());
1009      Register DR = UseI->getOperand(0).getReg();
1010      if (DR == R)
1011        continue;
1012    }
1013    return false;
1014  }
1015  return true;
1016}
1017
1018bool DeadCodeElimination::runOnNode(MachineDomTreeNode *N) {
1019  bool Changed = false;
1020
1021  for (auto *DTN : children<MachineDomTreeNode*>(N))
1022    Changed |= runOnNode(DTN);
1023
1024  MachineBasicBlock *B = N->getBlock();
1025  std::vector<MachineInstr*> Instrs;
1026  for (MachineInstr &MI : llvm::reverse(*B))
1027    Instrs.push_back(&MI);
1028
1029  for (auto *MI : Instrs) {
1030    unsigned Opc = MI->getOpcode();
1031    // Do not touch lifetime markers. This is why the target-independent DCE
1032    // cannot be used.
1033    if (Opc == TargetOpcode::LIFETIME_START ||
1034        Opc == TargetOpcode::LIFETIME_END)
1035      continue;
1036    bool Store = false;
1037    if (MI->isInlineAsm())
1038      continue;
1039    // Delete PHIs if possible.
1040    if (!MI->isPHI() && !MI->isSafeToMove(nullptr, Store))
1041      continue;
1042
1043    bool AllDead = true;
1044    SmallVector<unsigned,2> Regs;
1045    for (auto &Op : MI->operands()) {
1046      if (!Op.isReg() || !Op.isDef())
1047        continue;
1048      Register R = Op.getReg();
1049      if (!R.isVirtual() || !isDead(R)) {
1050        AllDead = false;
1051        break;
1052      }
1053      Regs.push_back(R);
1054    }
1055    if (!AllDead)
1056      continue;
1057
1058    B->erase(MI);
1059    for (unsigned i = 0, n = Regs.size(); i != n; ++i)
1060      MRI.markUsesInDebugValueAsUndef(Regs[i]);
1061    Changed = true;
1062  }
1063
1064  return Changed;
1065}
1066
1067namespace {
1068
1069// Eliminate redundant instructions
1070//
1071// This transformation will identify instructions where the output register
1072// is the same as one of its input registers. This only works on instructions
1073// that define a single register (unlike post-increment loads, for example).
1074// The equality check is actually more detailed: the code calculates which
1075// bits of the output are used, and only compares these bits with the input
1076// registers.
1077// If the output matches an input, the instruction is replaced with COPY.
1078// The copies will be removed by another transformation.
1079  class RedundantInstrElimination : public Transformation {
1080  public:
1081    RedundantInstrElimination(BitTracker &bt, const HexagonInstrInfo &hii,
1082          const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
1083        : Transformation(true), HII(hii), HRI(hri), MRI(mri), BT(bt) {}
1084
1085    bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1086
1087  private:
1088    bool isLossyShiftLeft(const MachineInstr &MI, unsigned OpN,
1089          unsigned &LostB, unsigned &LostE);
1090    bool isLossyShiftRight(const MachineInstr &MI, unsigned OpN,
1091          unsigned &LostB, unsigned &LostE);
1092    bool computeUsedBits(unsigned Reg, BitVector &Bits);
1093    bool computeUsedBits(const MachineInstr &MI, unsigned OpN, BitVector &Bits,
1094          uint16_t Begin);
1095    bool usedBitsEqual(BitTracker::RegisterRef RD, BitTracker::RegisterRef RS);
1096
1097    const HexagonInstrInfo &HII;
1098    const HexagonRegisterInfo &HRI;
1099    MachineRegisterInfo &MRI;
1100    BitTracker &BT;
1101  };
1102
1103} // end anonymous namespace
1104
1105// Check if the instruction is a lossy shift left, where the input being
1106// shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
1107// of bit indices that are lost.
1108bool RedundantInstrElimination::isLossyShiftLeft(const MachineInstr &MI,
1109      unsigned OpN, unsigned &LostB, unsigned &LostE) {
1110  using namespace Hexagon;
1111
1112  unsigned Opc = MI.getOpcode();
1113  unsigned ImN, RegN, Width;
1114  switch (Opc) {
1115    case S2_asl_i_p:
1116      ImN = 2;
1117      RegN = 1;
1118      Width = 64;
1119      break;
1120    case S2_asl_i_p_acc:
1121    case S2_asl_i_p_and:
1122    case S2_asl_i_p_nac:
1123    case S2_asl_i_p_or:
1124    case S2_asl_i_p_xacc:
1125      ImN = 3;
1126      RegN = 2;
1127      Width = 64;
1128      break;
1129    case S2_asl_i_r:
1130      ImN = 2;
1131      RegN = 1;
1132      Width = 32;
1133      break;
1134    case S2_addasl_rrri:
1135    case S4_andi_asl_ri:
1136    case S4_ori_asl_ri:
1137    case S4_addi_asl_ri:
1138    case S4_subi_asl_ri:
1139    case S2_asl_i_r_acc:
1140    case S2_asl_i_r_and:
1141    case S2_asl_i_r_nac:
1142    case S2_asl_i_r_or:
1143    case S2_asl_i_r_sat:
1144    case S2_asl_i_r_xacc:
1145      ImN = 3;
1146      RegN = 2;
1147      Width = 32;
1148      break;
1149    default:
1150      return false;
1151  }
1152
1153  if (RegN != OpN)
1154    return false;
1155
1156  assert(MI.getOperand(ImN).isImm());
1157  unsigned S = MI.getOperand(ImN).getImm();
1158  if (S == 0)
1159    return false;
1160  LostB = Width-S;
1161  LostE = Width;
1162  return true;
1163}
1164
1165// Check if the instruction is a lossy shift right, where the input being
1166// shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
1167// of bit indices that are lost.
1168bool RedundantInstrElimination::isLossyShiftRight(const MachineInstr &MI,
1169      unsigned OpN, unsigned &LostB, unsigned &LostE) {
1170  using namespace Hexagon;
1171
1172  unsigned Opc = MI.getOpcode();
1173  unsigned ImN, RegN;
1174  switch (Opc) {
1175    case S2_asr_i_p:
1176    case S2_lsr_i_p:
1177      ImN = 2;
1178      RegN = 1;
1179      break;
1180    case S2_asr_i_p_acc:
1181    case S2_asr_i_p_and:
1182    case S2_asr_i_p_nac:
1183    case S2_asr_i_p_or:
1184    case S2_lsr_i_p_acc:
1185    case S2_lsr_i_p_and:
1186    case S2_lsr_i_p_nac:
1187    case S2_lsr_i_p_or:
1188    case S2_lsr_i_p_xacc:
1189      ImN = 3;
1190      RegN = 2;
1191      break;
1192    case S2_asr_i_r:
1193    case S2_lsr_i_r:
1194      ImN = 2;
1195      RegN = 1;
1196      break;
1197    case S4_andi_lsr_ri:
1198    case S4_ori_lsr_ri:
1199    case S4_addi_lsr_ri:
1200    case S4_subi_lsr_ri:
1201    case S2_asr_i_r_acc:
1202    case S2_asr_i_r_and:
1203    case S2_asr_i_r_nac:
1204    case S2_asr_i_r_or:
1205    case S2_lsr_i_r_acc:
1206    case S2_lsr_i_r_and:
1207    case S2_lsr_i_r_nac:
1208    case S2_lsr_i_r_or:
1209    case S2_lsr_i_r_xacc:
1210      ImN = 3;
1211      RegN = 2;
1212      break;
1213
1214    default:
1215      return false;
1216  }
1217
1218  if (RegN != OpN)
1219    return false;
1220
1221  assert(MI.getOperand(ImN).isImm());
1222  unsigned S = MI.getOperand(ImN).getImm();
1223  LostB = 0;
1224  LostE = S;
1225  return true;
1226}
1227
1228// Calculate the bit vector that corresponds to the used bits of register Reg.
1229// The vector Bits has the same size, as the size of Reg in bits. If the cal-
1230// culation fails (i.e. the used bits are unknown), it returns false. Other-
1231// wise, it returns true and sets the corresponding bits in Bits.
1232bool RedundantInstrElimination::computeUsedBits(unsigned Reg, BitVector &Bits) {
1233  BitVector Used(Bits.size());
1234  RegisterSet Visited;
1235  std::vector<unsigned> Pending;
1236  Pending.push_back(Reg);
1237
1238  for (unsigned i = 0; i < Pending.size(); ++i) {
1239    unsigned R = Pending[i];
1240    if (Visited.has(R))
1241      continue;
1242    Visited.insert(R);
1243    for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
1244      BitTracker::RegisterRef UR = *I;
1245      unsigned B, W;
1246      if (!HBS::getSubregMask(UR, B, W, MRI))
1247        return false;
1248      MachineInstr &UseI = *I->getParent();
1249      if (UseI.isPHI() || UseI.isCopy()) {
1250        Register DefR = UseI.getOperand(0).getReg();
1251        if (!DefR.isVirtual())
1252          return false;
1253        Pending.push_back(DefR);
1254      } else {
1255        if (!computeUsedBits(UseI, I.getOperandNo(), Used, B))
1256          return false;
1257      }
1258    }
1259  }
1260  Bits |= Used;
1261  return true;
1262}
1263
1264// Calculate the bits used by instruction MI in a register in operand OpN.
1265// Return true/false if the calculation succeeds/fails. If is succeeds, set
1266// used bits in Bits. This function does not reset any bits in Bits, so
1267// subsequent calls over different instructions will result in the union
1268// of the used bits in all these instructions.
1269// The register in question may be used with a sub-register, whereas Bits
1270// holds the bits for the entire register. To keep track of that, the
1271// argument Begin indicates where in Bits is the lowest-significant bit
1272// of the register used in operand OpN. For example, in instruction:
1273//   %1 = S2_lsr_i_r %2:isub_hi, 10
1274// the operand 1 is a 32-bit register, which happens to be a subregister
1275// of the 64-bit register %2, and that subregister starts at position 32.
1276// In this case Begin=32, since Bits[32] would be the lowest-significant bit
1277// of %2:isub_hi.
1278bool RedundantInstrElimination::computeUsedBits(const MachineInstr &MI,
1279      unsigned OpN, BitVector &Bits, uint16_t Begin) {
1280  unsigned Opc = MI.getOpcode();
1281  BitVector T(Bits.size());
1282  bool GotBits = HBS::getUsedBits(Opc, OpN, T, Begin, HII);
1283  // Even if we don't have bits yet, we could still provide some information
1284  // if the instruction is a lossy shift: the lost bits will be marked as
1285  // not used.
1286  unsigned LB, LE;
1287  if (isLossyShiftLeft(MI, OpN, LB, LE) || isLossyShiftRight(MI, OpN, LB, LE)) {
1288    assert(MI.getOperand(OpN).isReg());
1289    BitTracker::RegisterRef RR = MI.getOperand(OpN);
1290    const TargetRegisterClass *RC = HBS::getFinalVRegClass(RR, MRI);
1291    uint16_t Width = HRI.getRegSizeInBits(*RC);
1292
1293    if (!GotBits)
1294      T.set(Begin, Begin+Width);
1295    assert(LB <= LE && LB < Width && LE <= Width);
1296    T.reset(Begin+LB, Begin+LE);
1297    GotBits = true;
1298  }
1299  if (GotBits)
1300    Bits |= T;
1301  return GotBits;
1302}
1303
1304// Calculates the used bits in RD ("defined register"), and checks if these
1305// bits in RS ("used register") and RD are identical.
1306bool RedundantInstrElimination::usedBitsEqual(BitTracker::RegisterRef RD,
1307      BitTracker::RegisterRef RS) {
1308  const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
1309  const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
1310
1311  unsigned DB, DW;
1312  if (!HBS::getSubregMask(RD, DB, DW, MRI))
1313    return false;
1314  unsigned SB, SW;
1315  if (!HBS::getSubregMask(RS, SB, SW, MRI))
1316    return false;
1317  if (SW != DW)
1318    return false;
1319
1320  BitVector Used(DC.width());
1321  if (!computeUsedBits(RD.Reg, Used))
1322    return false;
1323
1324  for (unsigned i = 0; i != DW; ++i)
1325    if (Used[i+DB] && DC[DB+i] != SC[SB+i])
1326      return false;
1327  return true;
1328}
1329
1330bool RedundantInstrElimination::processBlock(MachineBasicBlock &B,
1331      const RegisterSet&) {
1332  if (!BT.reached(&B))
1333    return false;
1334  bool Changed = false;
1335
1336  for (auto I = B.begin(), E = B.end(); I != E; ++I) {
1337    MachineInstr *MI = &*I;
1338
1339    if (MI->getOpcode() == TargetOpcode::COPY)
1340      continue;
1341    if (MI->isPHI() || MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
1342      continue;
1343    unsigned NumD = MI->getDesc().getNumDefs();
1344    if (NumD != 1)
1345      continue;
1346
1347    BitTracker::RegisterRef RD = MI->getOperand(0);
1348    if (!BT.has(RD.Reg))
1349      continue;
1350    const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
1351    auto At = MachineBasicBlock::iterator(MI);
1352
1353    // Find a source operand that is equal to the result.
1354    for (auto &Op : MI->uses()) {
1355      if (!Op.isReg())
1356        continue;
1357      BitTracker::RegisterRef RS = Op;
1358      if (!BT.has(RS.Reg))
1359        continue;
1360      if (!HBS::isTransparentCopy(RD, RS, MRI))
1361        continue;
1362
1363      unsigned BN, BW;
1364      if (!HBS::getSubregMask(RS, BN, BW, MRI))
1365        continue;
1366
1367      const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
1368      if (!usedBitsEqual(RD, RS) && !HBS::isEqual(DC, 0, SC, BN, BW))
1369        continue;
1370
1371      // If found, replace the instruction with a COPY.
1372      const DebugLoc &DL = MI->getDebugLoc();
1373      const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
1374      Register NewR = MRI.createVirtualRegister(FRC);
1375      MachineInstr *CopyI =
1376          BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
1377            .addReg(RS.Reg, 0, RS.Sub);
1378      HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1379      // This pass can create copies between registers that don't have the
1380      // exact same values. Updating the tracker has to involve updating
1381      // all dependent cells. Example:
1382      //   %1  = inst %2     ; %1 != %2, but used bits are equal
1383      //
1384      //   %3  = copy %2     ; <- inserted
1385      //   ... = %3          ; <- replaced from %2
1386      // Indirectly, we can create a "copy" between %1 and %2 even
1387      // though their exact values do not match.
1388      BT.visit(*CopyI);
1389      Changed = true;
1390      break;
1391    }
1392  }
1393
1394  return Changed;
1395}
1396
1397namespace {
1398
1399// Recognize instructions that produce constant values known at compile-time.
1400// Replace them with register definitions that load these constants directly.
1401  class ConstGeneration : public Transformation {
1402  public:
1403    ConstGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
1404        MachineRegisterInfo &mri)
1405      : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1406
1407    bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1408    static bool isTfrConst(const MachineInstr &MI);
1409
1410  private:
1411    Register genTfrConst(const TargetRegisterClass *RC, int64_t C,
1412                         MachineBasicBlock &B, MachineBasicBlock::iterator At,
1413                         DebugLoc &DL);
1414
1415    const HexagonInstrInfo &HII;
1416    MachineRegisterInfo &MRI;
1417    BitTracker &BT;
1418  };
1419
1420} // end anonymous namespace
1421
1422bool ConstGeneration::isTfrConst(const MachineInstr &MI) {
1423  unsigned Opc = MI.getOpcode();
1424  switch (Opc) {
1425    case Hexagon::A2_combineii:
1426    case Hexagon::A4_combineii:
1427    case Hexagon::A2_tfrsi:
1428    case Hexagon::A2_tfrpi:
1429    case Hexagon::PS_true:
1430    case Hexagon::PS_false:
1431    case Hexagon::CONST32:
1432    case Hexagon::CONST64:
1433      return true;
1434  }
1435  return false;
1436}
1437
1438// Generate a transfer-immediate instruction that is appropriate for the
1439// register class and the actual value being transferred.
1440Register ConstGeneration::genTfrConst(const TargetRegisterClass *RC, int64_t C,
1441                                      MachineBasicBlock &B,
1442                                      MachineBasicBlock::iterator At,
1443                                      DebugLoc &DL) {
1444  Register Reg = MRI.createVirtualRegister(RC);
1445  if (RC == &Hexagon::IntRegsRegClass) {
1446    BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), Reg)
1447        .addImm(int32_t(C));
1448    return Reg;
1449  }
1450
1451  if (RC == &Hexagon::DoubleRegsRegClass) {
1452    if (isInt<8>(C)) {
1453      BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrpi), Reg)
1454          .addImm(C);
1455      return Reg;
1456    }
1457
1458    unsigned Lo = Lo_32(C), Hi = Hi_32(C);
1459    if (isInt<8>(Lo) || isInt<8>(Hi)) {
1460      unsigned Opc = isInt<8>(Lo) ? Hexagon::A2_combineii
1461                                  : Hexagon::A4_combineii;
1462      BuildMI(B, At, DL, HII.get(Opc), Reg)
1463          .addImm(int32_t(Hi))
1464          .addImm(int32_t(Lo));
1465      return Reg;
1466    }
1467    MachineFunction *MF = B.getParent();
1468    auto &HST = MF->getSubtarget<HexagonSubtarget>();
1469
1470    // Disable CONST64 for tiny core since it takes a LD resource.
1471    if (!HST.isTinyCore() ||
1472        MF->getFunction().hasOptSize()) {
1473      BuildMI(B, At, DL, HII.get(Hexagon::CONST64), Reg)
1474          .addImm(C);
1475      return Reg;
1476    }
1477  }
1478
1479  if (RC == &Hexagon::PredRegsRegClass) {
1480    unsigned Opc;
1481    if (C == 0)
1482      Opc = Hexagon::PS_false;
1483    else if ((C & 0xFF) == 0xFF)
1484      Opc = Hexagon::PS_true;
1485    else
1486      return 0;
1487    BuildMI(B, At, DL, HII.get(Opc), Reg);
1488    return Reg;
1489  }
1490
1491  return 0;
1492}
1493
1494bool ConstGeneration::processBlock(MachineBasicBlock &B, const RegisterSet&) {
1495  if (!BT.reached(&B))
1496    return false;
1497  bool Changed = false;
1498  RegisterSet Defs;
1499
1500  for (auto I = B.begin(), E = B.end(); I != E; ++I) {
1501    if (isTfrConst(*I))
1502      continue;
1503    Defs.clear();
1504    HBS::getInstrDefs(*I, Defs);
1505    if (Defs.count() != 1)
1506      continue;
1507    Register DR = Defs.find_first();
1508    if (!DR.isVirtual())
1509      continue;
1510    uint64_t U;
1511    const BitTracker::RegisterCell &DRC = BT.lookup(DR);
1512    if (HBS::getConst(DRC, 0, DRC.width(), U)) {
1513      int64_t C = U;
1514      DebugLoc DL = I->getDebugLoc();
1515      auto At = I->isPHI() ? B.getFirstNonPHI() : I;
1516      Register ImmReg = genTfrConst(MRI.getRegClass(DR), C, B, At, DL);
1517      if (ImmReg) {
1518        HBS::replaceReg(DR, ImmReg, MRI);
1519        BT.put(ImmReg, DRC);
1520        Changed = true;
1521      }
1522    }
1523  }
1524  return Changed;
1525}
1526
1527namespace {
1528
1529// Identify pairs of available registers which hold identical values.
1530// In such cases, only one of them needs to be calculated, the other one
1531// will be defined as a copy of the first.
1532  class CopyGeneration : public Transformation {
1533  public:
1534    CopyGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
1535        const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
1536      : Transformation(true), HII(hii), HRI(hri), MRI(mri), BT(bt) {}
1537
1538    bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1539
1540  private:
1541    bool findMatch(const BitTracker::RegisterRef &Inp,
1542        BitTracker::RegisterRef &Out, const RegisterSet &AVs);
1543
1544    const HexagonInstrInfo &HII;
1545    const HexagonRegisterInfo &HRI;
1546    MachineRegisterInfo &MRI;
1547    BitTracker &BT;
1548    RegisterSet Forbidden;
1549  };
1550
1551// Eliminate register copies RD = RS, by replacing the uses of RD with
1552// with uses of RS.
1553  class CopyPropagation : public Transformation {
1554  public:
1555    CopyPropagation(const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
1556        : Transformation(false), HRI(hri), MRI(mri) {}
1557
1558    bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1559
1560    static bool isCopyReg(unsigned Opc, bool NoConv);
1561
1562  private:
1563    bool propagateRegCopy(MachineInstr &MI);
1564
1565    const HexagonRegisterInfo &HRI;
1566    MachineRegisterInfo &MRI;
1567  };
1568
1569} // end anonymous namespace
1570
1571/// Check if there is a register in AVs that is identical to Inp. If so,
1572/// set Out to the found register. The output may be a pair Reg:Sub.
1573bool CopyGeneration::findMatch(const BitTracker::RegisterRef &Inp,
1574      BitTracker::RegisterRef &Out, const RegisterSet &AVs) {
1575  if (!BT.has(Inp.Reg))
1576    return false;
1577  const BitTracker::RegisterCell &InpRC = BT.lookup(Inp.Reg);
1578  auto *FRC = HBS::getFinalVRegClass(Inp, MRI);
1579  unsigned B, W;
1580  if (!HBS::getSubregMask(Inp, B, W, MRI))
1581    return false;
1582
1583  for (Register R = AVs.find_first(); R; R = AVs.find_next(R)) {
1584    if (!BT.has(R) || Forbidden[R])
1585      continue;
1586    const BitTracker::RegisterCell &RC = BT.lookup(R);
1587    unsigned RW = RC.width();
1588    if (W == RW) {
1589      if (FRC != MRI.getRegClass(R))
1590        continue;
1591      if (!HBS::isTransparentCopy(R, Inp, MRI))
1592        continue;
1593      if (!HBS::isEqual(InpRC, B, RC, 0, W))
1594        continue;
1595      Out.Reg = R;
1596      Out.Sub = 0;
1597      return true;
1598    }
1599    // Check if there is a super-register, whose part (with a subregister)
1600    // is equal to the input.
1601    // Only do double registers for now.
1602    if (W*2 != RW)
1603      continue;
1604    if (MRI.getRegClass(R) != &Hexagon::DoubleRegsRegClass)
1605      continue;
1606
1607    if (HBS::isEqual(InpRC, B, RC, 0, W))
1608      Out.Sub = Hexagon::isub_lo;
1609    else if (HBS::isEqual(InpRC, B, RC, W, W))
1610      Out.Sub = Hexagon::isub_hi;
1611    else
1612      continue;
1613    Out.Reg = R;
1614    if (HBS::isTransparentCopy(Out, Inp, MRI))
1615      return true;
1616  }
1617  return false;
1618}
1619
1620bool CopyGeneration::processBlock(MachineBasicBlock &B,
1621      const RegisterSet &AVs) {
1622  if (!BT.reached(&B))
1623    return false;
1624  RegisterSet AVB(AVs);
1625  bool Changed = false;
1626  RegisterSet Defs;
1627
1628  for (auto I = B.begin(), E = B.end(); I != E; ++I, AVB.insert(Defs)) {
1629    Defs.clear();
1630    HBS::getInstrDefs(*I, Defs);
1631
1632    unsigned Opc = I->getOpcode();
1633    if (CopyPropagation::isCopyReg(Opc, false) ||
1634        ConstGeneration::isTfrConst(*I))
1635      continue;
1636
1637    DebugLoc DL = I->getDebugLoc();
1638    auto At = I->isPHI() ? B.getFirstNonPHI() : I;
1639
1640    for (Register R = Defs.find_first(); R; R = Defs.find_next(R)) {
1641      BitTracker::RegisterRef MR;
1642      auto *FRC = HBS::getFinalVRegClass(R, MRI);
1643
1644      if (findMatch(R, MR, AVB)) {
1645        Register NewR = MRI.createVirtualRegister(FRC);
1646        BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
1647          .addReg(MR.Reg, 0, MR.Sub);
1648        BT.put(BitTracker::RegisterRef(NewR), BT.get(MR));
1649        HBS::replaceReg(R, NewR, MRI);
1650        Forbidden.insert(R);
1651        continue;
1652      }
1653
1654      if (FRC == &Hexagon::DoubleRegsRegClass ||
1655          FRC == &Hexagon::HvxWRRegClass) {
1656        // Try to generate REG_SEQUENCE.
1657        unsigned SubLo = HRI.getHexagonSubRegIndex(*FRC, Hexagon::ps_sub_lo);
1658        unsigned SubHi = HRI.getHexagonSubRegIndex(*FRC, Hexagon::ps_sub_hi);
1659        BitTracker::RegisterRef TL = { R, SubLo };
1660        BitTracker::RegisterRef TH = { R, SubHi };
1661        BitTracker::RegisterRef ML, MH;
1662        if (findMatch(TL, ML, AVB) && findMatch(TH, MH, AVB)) {
1663          auto *FRC = HBS::getFinalVRegClass(R, MRI);
1664          Register NewR = MRI.createVirtualRegister(FRC);
1665          BuildMI(B, At, DL, HII.get(TargetOpcode::REG_SEQUENCE), NewR)
1666            .addReg(ML.Reg, 0, ML.Sub)
1667            .addImm(SubLo)
1668            .addReg(MH.Reg, 0, MH.Sub)
1669            .addImm(SubHi);
1670          BT.put(BitTracker::RegisterRef(NewR), BT.get(R));
1671          HBS::replaceReg(R, NewR, MRI);
1672          Forbidden.insert(R);
1673        }
1674      }
1675    }
1676  }
1677
1678  return Changed;
1679}
1680
1681bool CopyPropagation::isCopyReg(unsigned Opc, bool NoConv) {
1682  switch (Opc) {
1683    case TargetOpcode::COPY:
1684    case TargetOpcode::REG_SEQUENCE:
1685    case Hexagon::A4_combineir:
1686    case Hexagon::A4_combineri:
1687      return true;
1688    case Hexagon::A2_tfr:
1689    case Hexagon::A2_tfrp:
1690    case Hexagon::A2_combinew:
1691    case Hexagon::V6_vcombine:
1692      return NoConv;
1693    default:
1694      break;
1695  }
1696  return false;
1697}
1698
1699bool CopyPropagation::propagateRegCopy(MachineInstr &MI) {
1700  bool Changed = false;
1701  unsigned Opc = MI.getOpcode();
1702  BitTracker::RegisterRef RD = MI.getOperand(0);
1703  assert(MI.getOperand(0).getSubReg() == 0);
1704
1705  switch (Opc) {
1706    case TargetOpcode::COPY:
1707    case Hexagon::A2_tfr:
1708    case Hexagon::A2_tfrp: {
1709      BitTracker::RegisterRef RS = MI.getOperand(1);
1710      if (!HBS::isTransparentCopy(RD, RS, MRI))
1711        break;
1712      if (RS.Sub != 0)
1713        Changed = HBS::replaceRegWithSub(RD.Reg, RS.Reg, RS.Sub, MRI);
1714      else
1715        Changed = HBS::replaceReg(RD.Reg, RS.Reg, MRI);
1716      break;
1717    }
1718    case TargetOpcode::REG_SEQUENCE: {
1719      BitTracker::RegisterRef SL, SH;
1720      if (HBS::parseRegSequence(MI, SL, SH, MRI)) {
1721        const TargetRegisterClass &RC = *MRI.getRegClass(RD.Reg);
1722        unsigned SubLo = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo);
1723        unsigned SubHi = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi);
1724        Changed  = HBS::replaceSubWithSub(RD.Reg, SubLo, SL.Reg, SL.Sub, MRI);
1725        Changed |= HBS::replaceSubWithSub(RD.Reg, SubHi, SH.Reg, SH.Sub, MRI);
1726      }
1727      break;
1728    }
1729    case Hexagon::A2_combinew:
1730    case Hexagon::V6_vcombine: {
1731      const TargetRegisterClass &RC = *MRI.getRegClass(RD.Reg);
1732      unsigned SubLo = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo);
1733      unsigned SubHi = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi);
1734      BitTracker::RegisterRef RH = MI.getOperand(1), RL = MI.getOperand(2);
1735      Changed  = HBS::replaceSubWithSub(RD.Reg, SubLo, RL.Reg, RL.Sub, MRI);
1736      Changed |= HBS::replaceSubWithSub(RD.Reg, SubHi, RH.Reg, RH.Sub, MRI);
1737      break;
1738    }
1739    case Hexagon::A4_combineir:
1740    case Hexagon::A4_combineri: {
1741      unsigned SrcX = (Opc == Hexagon::A4_combineir) ? 2 : 1;
1742      unsigned Sub = (Opc == Hexagon::A4_combineir) ? Hexagon::isub_lo
1743                                                    : Hexagon::isub_hi;
1744      BitTracker::RegisterRef RS = MI.getOperand(SrcX);
1745      Changed = HBS::replaceSubWithSub(RD.Reg, Sub, RS.Reg, RS.Sub, MRI);
1746      break;
1747    }
1748  }
1749  return Changed;
1750}
1751
1752bool CopyPropagation::processBlock(MachineBasicBlock &B, const RegisterSet&) {
1753  std::vector<MachineInstr*> Instrs;
1754  for (MachineInstr &MI : llvm::reverse(B))
1755    Instrs.push_back(&MI);
1756
1757  bool Changed = false;
1758  for (auto *I : Instrs) {
1759    unsigned Opc = I->getOpcode();
1760    if (!CopyPropagation::isCopyReg(Opc, true))
1761      continue;
1762    Changed |= propagateRegCopy(*I);
1763  }
1764
1765  return Changed;
1766}
1767
1768namespace {
1769
1770// Recognize patterns that can be simplified and replace them with the
1771// simpler forms.
1772// This is by no means complete
1773  class BitSimplification : public Transformation {
1774  public:
1775    BitSimplification(BitTracker &bt, const MachineDominatorTree &mdt,
1776        const HexagonInstrInfo &hii, const HexagonRegisterInfo &hri,
1777        MachineRegisterInfo &mri, MachineFunction &mf)
1778      : Transformation(true), MDT(mdt), HII(hii), HRI(hri), MRI(mri),
1779        MF(mf), BT(bt) {}
1780
1781    bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1782
1783  private:
1784    struct RegHalf : public BitTracker::RegisterRef {
1785      bool Low;  // Low/High halfword.
1786    };
1787
1788    bool matchHalf(unsigned SelfR, const BitTracker::RegisterCell &RC,
1789          unsigned B, RegHalf &RH);
1790    bool validateReg(BitTracker::RegisterRef R, unsigned Opc, unsigned OpNum);
1791
1792    bool matchPackhl(unsigned SelfR, const BitTracker::RegisterCell &RC,
1793          BitTracker::RegisterRef &Rs, BitTracker::RegisterRef &Rt);
1794    unsigned getCombineOpcode(bool HLow, bool LLow);
1795
1796    bool genStoreUpperHalf(MachineInstr *MI);
1797    bool genStoreImmediate(MachineInstr *MI);
1798    bool genPackhl(MachineInstr *MI, BitTracker::RegisterRef RD,
1799          const BitTracker::RegisterCell &RC);
1800    bool genExtractHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
1801          const BitTracker::RegisterCell &RC);
1802    bool genCombineHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
1803          const BitTracker::RegisterCell &RC);
1804    bool genExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
1805          const BitTracker::RegisterCell &RC);
1806    bool genBitSplit(MachineInstr *MI, BitTracker::RegisterRef RD,
1807          const BitTracker::RegisterCell &RC, const RegisterSet &AVs);
1808    bool simplifyTstbit(MachineInstr *MI, BitTracker::RegisterRef RD,
1809          const BitTracker::RegisterCell &RC);
1810    bool simplifyExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
1811          const BitTracker::RegisterCell &RC, const RegisterSet &AVs);
1812    bool simplifyRCmp0(MachineInstr *MI, BitTracker::RegisterRef RD);
1813
1814    // Cache of created instructions to avoid creating duplicates.
1815    // XXX Currently only used by genBitSplit.
1816    std::vector<MachineInstr*> NewMIs;
1817
1818    const MachineDominatorTree &MDT;
1819    const HexagonInstrInfo &HII;
1820    const HexagonRegisterInfo &HRI;
1821    MachineRegisterInfo &MRI;
1822    MachineFunction &MF;
1823    BitTracker &BT;
1824  };
1825
1826} // end anonymous namespace
1827
1828// Check if the bits [B..B+16) in register cell RC form a valid halfword,
1829// i.e. [0..16), [16..32), etc. of some register. If so, return true and
1830// set the information about the found register in RH.
1831bool BitSimplification::matchHalf(unsigned SelfR,
1832      const BitTracker::RegisterCell &RC, unsigned B, RegHalf &RH) {
1833  // XXX This could be searching in the set of available registers, in case
1834  // the match is not exact.
1835
1836  // Match 16-bit chunks, where the RC[B..B+15] references exactly one
1837  // register and all the bits B..B+15 match between RC and the register.
1838  // This is meant to match "v1[0-15]", where v1 = { [0]:0 [1-15]:v1... },
1839  // and RC = { [0]:0 [1-15]:v1[1-15]... }.
1840  bool Low = false;
1841  unsigned I = B;
1842  while (I < B+16 && RC[I].num())
1843    I++;
1844  if (I == B+16)
1845    return false;
1846
1847  Register Reg = RC[I].RefI.Reg;
1848  unsigned P = RC[I].RefI.Pos;    // The RefI.Pos will be advanced by I-B.
1849  if (P < I-B)
1850    return false;
1851  unsigned Pos = P - (I-B);
1852
1853  if (Reg == 0 || Reg == SelfR)    // Don't match "self".
1854    return false;
1855  if (!Reg.isVirtual())
1856    return false;
1857  if (!BT.has(Reg))
1858    return false;
1859
1860  const BitTracker::RegisterCell &SC = BT.lookup(Reg);
1861  if (Pos+16 > SC.width())
1862    return false;
1863
1864  for (unsigned i = 0; i < 16; ++i) {
1865    const BitTracker::BitValue &RV = RC[i+B];
1866    if (RV.Type == BitTracker::BitValue::Ref) {
1867      if (RV.RefI.Reg != Reg)
1868        return false;
1869      if (RV.RefI.Pos != i+Pos)
1870        return false;
1871      continue;
1872    }
1873    if (RC[i+B] != SC[i+Pos])
1874      return false;
1875  }
1876
1877  unsigned Sub = 0;
1878  switch (Pos) {
1879    case 0:
1880      Sub = Hexagon::isub_lo;
1881      Low = true;
1882      break;
1883    case 16:
1884      Sub = Hexagon::isub_lo;
1885      Low = false;
1886      break;
1887    case 32:
1888      Sub = Hexagon::isub_hi;
1889      Low = true;
1890      break;
1891    case 48:
1892      Sub = Hexagon::isub_hi;
1893      Low = false;
1894      break;
1895    default:
1896      return false;
1897  }
1898
1899  RH.Reg = Reg;
1900  RH.Sub = Sub;
1901  RH.Low = Low;
1902  // If the subregister is not valid with the register, set it to 0.
1903  if (!HBS::getFinalVRegClass(RH, MRI))
1904    RH.Sub = 0;
1905
1906  return true;
1907}
1908
1909bool BitSimplification::validateReg(BitTracker::RegisterRef R, unsigned Opc,
1910      unsigned OpNum) {
1911  auto *OpRC = HII.getRegClass(HII.get(Opc), OpNum, &HRI, MF);
1912  auto *RRC = HBS::getFinalVRegClass(R, MRI);
1913  return OpRC->hasSubClassEq(RRC);
1914}
1915
1916// Check if RC matches the pattern of a S2_packhl. If so, return true and
1917// set the inputs Rs and Rt.
1918bool BitSimplification::matchPackhl(unsigned SelfR,
1919      const BitTracker::RegisterCell &RC, BitTracker::RegisterRef &Rs,
1920      BitTracker::RegisterRef &Rt) {
1921  RegHalf L1, H1, L2, H2;
1922
1923  if (!matchHalf(SelfR, RC, 0, L2)  || !matchHalf(SelfR, RC, 16, L1))
1924    return false;
1925  if (!matchHalf(SelfR, RC, 32, H2) || !matchHalf(SelfR, RC, 48, H1))
1926    return false;
1927
1928  // Rs = H1.L1, Rt = H2.L2
1929  if (H1.Reg != L1.Reg || H1.Sub != L1.Sub || H1.Low || !L1.Low)
1930    return false;
1931  if (H2.Reg != L2.Reg || H2.Sub != L2.Sub || H2.Low || !L2.Low)
1932    return false;
1933
1934  Rs = H1;
1935  Rt = H2;
1936  return true;
1937}
1938
1939unsigned BitSimplification::getCombineOpcode(bool HLow, bool LLow) {
1940  return HLow ? LLow ? Hexagon::A2_combine_ll
1941                     : Hexagon::A2_combine_lh
1942              : LLow ? Hexagon::A2_combine_hl
1943                     : Hexagon::A2_combine_hh;
1944}
1945
1946// If MI stores the upper halfword of a register (potentially obtained via
1947// shifts or extracts), replace it with a storerf instruction. This could
1948// cause the "extraction" code to become dead.
1949bool BitSimplification::genStoreUpperHalf(MachineInstr *MI) {
1950  unsigned Opc = MI->getOpcode();
1951  if (Opc != Hexagon::S2_storerh_io)
1952    return false;
1953
1954  MachineOperand &ValOp = MI->getOperand(2);
1955  BitTracker::RegisterRef RS = ValOp;
1956  if (!BT.has(RS.Reg))
1957    return false;
1958  const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
1959  RegHalf H;
1960  if (!matchHalf(0, RC, 0, H))
1961    return false;
1962  if (H.Low)
1963    return false;
1964  MI->setDesc(HII.get(Hexagon::S2_storerf_io));
1965  ValOp.setReg(H.Reg);
1966  ValOp.setSubReg(H.Sub);
1967  return true;
1968}
1969
1970// If MI stores a value known at compile-time, and the value is within a range
1971// that avoids using constant-extenders, replace it with a store-immediate.
1972bool BitSimplification::genStoreImmediate(MachineInstr *MI) {
1973  unsigned Opc = MI->getOpcode();
1974  unsigned Align = 0;
1975  switch (Opc) {
1976    case Hexagon::S2_storeri_io:
1977      Align++;
1978      [[fallthrough]];
1979    case Hexagon::S2_storerh_io:
1980      Align++;
1981      [[fallthrough]];
1982    case Hexagon::S2_storerb_io:
1983      break;
1984    default:
1985      return false;
1986  }
1987
1988  // Avoid stores to frame-indices (due to an unknown offset).
1989  if (!MI->getOperand(0).isReg())
1990    return false;
1991  MachineOperand &OffOp = MI->getOperand(1);
1992  if (!OffOp.isImm())
1993    return false;
1994
1995  int64_t Off = OffOp.getImm();
1996  // Offset is u6:a. Sadly, there is no isShiftedUInt(n,x).
1997  if (!isUIntN(6+Align, Off) || (Off & ((1<<Align)-1)))
1998    return false;
1999  // Source register:
2000  BitTracker::RegisterRef RS = MI->getOperand(2);
2001  if (!BT.has(RS.Reg))
2002    return false;
2003  const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
2004  uint64_t U;
2005  if (!HBS::getConst(RC, 0, RC.width(), U))
2006    return false;
2007
2008  // Only consider 8-bit values to avoid constant-extenders.
2009  int V;
2010  switch (Opc) {
2011    case Hexagon::S2_storerb_io:
2012      V = int8_t(U);
2013      break;
2014    case Hexagon::S2_storerh_io:
2015      V = int16_t(U);
2016      break;
2017    case Hexagon::S2_storeri_io:
2018      V = int32_t(U);
2019      break;
2020    default:
2021      // Opc is already checked above to be one of the three store instructions.
2022      // This silences a -Wuninitialized false positive on GCC 5.4.
2023      llvm_unreachable("Unexpected store opcode");
2024  }
2025  if (!isInt<8>(V))
2026    return false;
2027
2028  MI->removeOperand(2);
2029  switch (Opc) {
2030    case Hexagon::S2_storerb_io:
2031      MI->setDesc(HII.get(Hexagon::S4_storeirb_io));
2032      break;
2033    case Hexagon::S2_storerh_io:
2034      MI->setDesc(HII.get(Hexagon::S4_storeirh_io));
2035      break;
2036    case Hexagon::S2_storeri_io:
2037      MI->setDesc(HII.get(Hexagon::S4_storeiri_io));
2038      break;
2039  }
2040  MI->addOperand(MachineOperand::CreateImm(V));
2041  return true;
2042}
2043
2044// If MI is equivalent o S2_packhl, generate the S2_packhl. MI could be the
2045// last instruction in a sequence that results in something equivalent to
2046// the pack-halfwords. The intent is to cause the entire sequence to become
2047// dead.
2048bool BitSimplification::genPackhl(MachineInstr *MI,
2049      BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2050  unsigned Opc = MI->getOpcode();
2051  if (Opc == Hexagon::S2_packhl)
2052    return false;
2053  BitTracker::RegisterRef Rs, Rt;
2054  if (!matchPackhl(RD.Reg, RC, Rs, Rt))
2055    return false;
2056  if (!validateReg(Rs, Hexagon::S2_packhl, 1) ||
2057      !validateReg(Rt, Hexagon::S2_packhl, 2))
2058    return false;
2059
2060  MachineBasicBlock &B = *MI->getParent();
2061  Register NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
2062  DebugLoc DL = MI->getDebugLoc();
2063  auto At = MI->isPHI() ? B.getFirstNonPHI()
2064                        : MachineBasicBlock::iterator(MI);
2065  BuildMI(B, At, DL, HII.get(Hexagon::S2_packhl), NewR)
2066      .addReg(Rs.Reg, 0, Rs.Sub)
2067      .addReg(Rt.Reg, 0, Rt.Sub);
2068  HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2069  BT.put(BitTracker::RegisterRef(NewR), RC);
2070  return true;
2071}
2072
2073// If MI produces halfword of the input in the low half of the output,
2074// replace it with zero-extend or extractu.
2075bool BitSimplification::genExtractHalf(MachineInstr *MI,
2076      BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2077  RegHalf L;
2078  // Check for halfword in low 16 bits, zeros elsewhere.
2079  if (!matchHalf(RD.Reg, RC, 0, L) || !HBS::isZero(RC, 16, 16))
2080    return false;
2081
2082  unsigned Opc = MI->getOpcode();
2083  MachineBasicBlock &B = *MI->getParent();
2084  DebugLoc DL = MI->getDebugLoc();
2085
2086  // Prefer zxth, since zxth can go in any slot, while extractu only in
2087  // slots 2 and 3.
2088  unsigned NewR = 0;
2089  auto At = MI->isPHI() ? B.getFirstNonPHI()
2090                        : MachineBasicBlock::iterator(MI);
2091  if (L.Low && Opc != Hexagon::A2_zxth) {
2092    if (validateReg(L, Hexagon::A2_zxth, 1)) {
2093      NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2094      BuildMI(B, At, DL, HII.get(Hexagon::A2_zxth), NewR)
2095          .addReg(L.Reg, 0, L.Sub);
2096    }
2097  } else if (!L.Low && Opc != Hexagon::S2_lsr_i_r) {
2098    if (validateReg(L, Hexagon::S2_lsr_i_r, 1)) {
2099      NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2100      BuildMI(B, MI, DL, HII.get(Hexagon::S2_lsr_i_r), NewR)
2101          .addReg(L.Reg, 0, L.Sub)
2102          .addImm(16);
2103    }
2104  }
2105  if (NewR == 0)
2106    return false;
2107  HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2108  BT.put(BitTracker::RegisterRef(NewR), RC);
2109  return true;
2110}
2111
2112// If MI is equivalent to a combine(.L/.H, .L/.H) replace with with the
2113// combine.
2114bool BitSimplification::genCombineHalf(MachineInstr *MI,
2115      BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2116  RegHalf L, H;
2117  // Check for combine h/l
2118  if (!matchHalf(RD.Reg, RC, 0, L) || !matchHalf(RD.Reg, RC, 16, H))
2119    return false;
2120  // Do nothing if this is just a reg copy.
2121  if (L.Reg == H.Reg && L.Sub == H.Sub && !H.Low && L.Low)
2122    return false;
2123
2124  unsigned Opc = MI->getOpcode();
2125  unsigned COpc = getCombineOpcode(H.Low, L.Low);
2126  if (COpc == Opc)
2127    return false;
2128  if (!validateReg(H, COpc, 1) || !validateReg(L, COpc, 2))
2129    return false;
2130
2131  MachineBasicBlock &B = *MI->getParent();
2132  DebugLoc DL = MI->getDebugLoc();
2133  Register NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2134  auto At = MI->isPHI() ? B.getFirstNonPHI()
2135                        : MachineBasicBlock::iterator(MI);
2136  BuildMI(B, At, DL, HII.get(COpc), NewR)
2137      .addReg(H.Reg, 0, H.Sub)
2138      .addReg(L.Reg, 0, L.Sub);
2139  HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2140  BT.put(BitTracker::RegisterRef(NewR), RC);
2141  return true;
2142}
2143
2144// If MI resets high bits of a register and keeps the lower ones, replace it
2145// with zero-extend byte/half, and-immediate, or extractu, as appropriate.
2146bool BitSimplification::genExtractLow(MachineInstr *MI,
2147      BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2148  unsigned Opc = MI->getOpcode();
2149  switch (Opc) {
2150    case Hexagon::A2_zxtb:
2151    case Hexagon::A2_zxth:
2152    case Hexagon::S2_extractu:
2153      return false;
2154  }
2155  if (Opc == Hexagon::A2_andir && MI->getOperand(2).isImm()) {
2156    int32_t Imm = MI->getOperand(2).getImm();
2157    if (isInt<10>(Imm))
2158      return false;
2159  }
2160
2161  if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
2162    return false;
2163  unsigned W = RC.width();
2164  while (W > 0 && RC[W-1].is(0))
2165    W--;
2166  if (W == 0 || W == RC.width())
2167    return false;
2168  unsigned NewOpc = (W == 8)  ? Hexagon::A2_zxtb
2169                  : (W == 16) ? Hexagon::A2_zxth
2170                  : (W < 10)  ? Hexagon::A2_andir
2171                  : Hexagon::S2_extractu;
2172  MachineBasicBlock &B = *MI->getParent();
2173  DebugLoc DL = MI->getDebugLoc();
2174
2175  for (auto &Op : MI->uses()) {
2176    if (!Op.isReg())
2177      continue;
2178    BitTracker::RegisterRef RS = Op;
2179    if (!BT.has(RS.Reg))
2180      continue;
2181    const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
2182    unsigned BN, BW;
2183    if (!HBS::getSubregMask(RS, BN, BW, MRI))
2184      continue;
2185    if (BW < W || !HBS::isEqual(RC, 0, SC, BN, W))
2186      continue;
2187    if (!validateReg(RS, NewOpc, 1))
2188      continue;
2189
2190    Register NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2191    auto At = MI->isPHI() ? B.getFirstNonPHI()
2192                          : MachineBasicBlock::iterator(MI);
2193    auto MIB = BuildMI(B, At, DL, HII.get(NewOpc), NewR)
2194                  .addReg(RS.Reg, 0, RS.Sub);
2195    if (NewOpc == Hexagon::A2_andir)
2196      MIB.addImm((1 << W) - 1);
2197    else if (NewOpc == Hexagon::S2_extractu)
2198      MIB.addImm(W).addImm(0);
2199    HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2200    BT.put(BitTracker::RegisterRef(NewR), RC);
2201    return true;
2202  }
2203  return false;
2204}
2205
2206bool BitSimplification::genBitSplit(MachineInstr *MI,
2207      BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC,
2208      const RegisterSet &AVs) {
2209  if (!GenBitSplit)
2210    return false;
2211  if (MaxBitSplit.getNumOccurrences()) {
2212    if (CountBitSplit >= MaxBitSplit)
2213      return false;
2214  }
2215
2216  unsigned Opc = MI->getOpcode();
2217  switch (Opc) {
2218    case Hexagon::A4_bitsplit:
2219    case Hexagon::A4_bitspliti:
2220      return false;
2221  }
2222
2223  unsigned W = RC.width();
2224  if (W != 32)
2225    return false;
2226
2227  auto ctlz = [] (const BitTracker::RegisterCell &C) -> unsigned {
2228    unsigned Z = C.width();
2229    while (Z > 0 && C[Z-1].is(0))
2230      --Z;
2231    return C.width() - Z;
2232  };
2233
2234  // Count the number of leading zeros in the target RC.
2235  unsigned Z = ctlz(RC);
2236  if (Z == 0 || Z == W)
2237    return false;
2238
2239  // A simplistic analysis: assume the source register (the one being split)
2240  // is fully unknown, and that all its bits are self-references.
2241  const BitTracker::BitValue &B0 = RC[0];
2242  if (B0.Type != BitTracker::BitValue::Ref)
2243    return false;
2244
2245  unsigned SrcR = B0.RefI.Reg;
2246  unsigned SrcSR = 0;
2247  unsigned Pos = B0.RefI.Pos;
2248
2249  // All the non-zero bits should be consecutive bits from the same register.
2250  for (unsigned i = 1; i < W-Z; ++i) {
2251    const BitTracker::BitValue &V = RC[i];
2252    if (V.Type != BitTracker::BitValue::Ref)
2253      return false;
2254    if (V.RefI.Reg != SrcR || V.RefI.Pos != Pos+i)
2255      return false;
2256  }
2257
2258  // Now, find the other bitfield among AVs.
2259  for (unsigned S = AVs.find_first(); S; S = AVs.find_next(S)) {
2260    // The number of leading zeros here should be the number of trailing
2261    // non-zeros in RC.
2262    unsigned SRC = MRI.getRegClass(S)->getID();
2263    if (SRC != Hexagon::IntRegsRegClassID &&
2264        SRC != Hexagon::DoubleRegsRegClassID)
2265      continue;
2266    if (!BT.has(S))
2267      continue;
2268    const BitTracker::RegisterCell &SC = BT.lookup(S);
2269    if (SC.width() != W || ctlz(SC) != W-Z)
2270      continue;
2271    // The Z lower bits should now match SrcR.
2272    const BitTracker::BitValue &S0 = SC[0];
2273    if (S0.Type != BitTracker::BitValue::Ref || S0.RefI.Reg != SrcR)
2274      continue;
2275    unsigned P = S0.RefI.Pos;
2276
2277    if (Pos <= P && (Pos + W-Z) != P)
2278      continue;
2279    if (P < Pos && (P + Z) != Pos)
2280      continue;
2281    // The starting bitfield position must be at a subregister boundary.
2282    if (std::min(P, Pos) != 0 && std::min(P, Pos) != 32)
2283      continue;
2284
2285    unsigned I;
2286    for (I = 1; I < Z; ++I) {
2287      const BitTracker::BitValue &V = SC[I];
2288      if (V.Type != BitTracker::BitValue::Ref)
2289        break;
2290      if (V.RefI.Reg != SrcR || V.RefI.Pos != P+I)
2291        break;
2292    }
2293    if (I != Z)
2294      continue;
2295
2296    // Generate bitsplit where S is defined.
2297    if (MaxBitSplit.getNumOccurrences())
2298      CountBitSplit++;
2299    MachineInstr *DefS = MRI.getVRegDef(S);
2300    assert(DefS != nullptr);
2301    DebugLoc DL = DefS->getDebugLoc();
2302    MachineBasicBlock &B = *DefS->getParent();
2303    auto At = DefS->isPHI() ? B.getFirstNonPHI()
2304                            : MachineBasicBlock::iterator(DefS);
2305    if (MRI.getRegClass(SrcR)->getID() == Hexagon::DoubleRegsRegClassID)
2306      SrcSR = (std::min(Pos, P) == 32) ? Hexagon::isub_hi : Hexagon::isub_lo;
2307    if (!validateReg({SrcR,SrcSR}, Hexagon::A4_bitspliti, 1))
2308      continue;
2309    unsigned ImmOp = Pos <= P ? W-Z : Z;
2310
2311    // Find an existing bitsplit instruction if one already exists.
2312    unsigned NewR = 0;
2313    for (MachineInstr *In : NewMIs) {
2314      if (In->getOpcode() != Hexagon::A4_bitspliti)
2315        continue;
2316      MachineOperand &Op1 = In->getOperand(1);
2317      if (Op1.getReg() != SrcR || Op1.getSubReg() != SrcSR)
2318        continue;
2319      if (In->getOperand(2).getImm() != ImmOp)
2320        continue;
2321      // Check if the target register is available here.
2322      MachineOperand &Op0 = In->getOperand(0);
2323      MachineInstr *DefI = MRI.getVRegDef(Op0.getReg());
2324      assert(DefI != nullptr);
2325      if (!MDT.dominates(DefI, &*At))
2326        continue;
2327
2328      // Found one that can be reused.
2329      assert(Op0.getSubReg() == 0);
2330      NewR = Op0.getReg();
2331      break;
2332    }
2333    if (!NewR) {
2334      NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
2335      auto NewBS = BuildMI(B, At, DL, HII.get(Hexagon::A4_bitspliti), NewR)
2336                      .addReg(SrcR, 0, SrcSR)
2337                      .addImm(ImmOp);
2338      NewMIs.push_back(NewBS);
2339    }
2340    if (Pos <= P) {
2341      HBS::replaceRegWithSub(RD.Reg, NewR, Hexagon::isub_lo, MRI);
2342      HBS::replaceRegWithSub(S,      NewR, Hexagon::isub_hi, MRI);
2343    } else {
2344      HBS::replaceRegWithSub(S,      NewR, Hexagon::isub_lo, MRI);
2345      HBS::replaceRegWithSub(RD.Reg, NewR, Hexagon::isub_hi, MRI);
2346    }
2347    return true;
2348  }
2349
2350  return false;
2351}
2352
2353// Check for tstbit simplification opportunity, where the bit being checked
2354// can be tracked back to another register. For example:
2355//   %2 = S2_lsr_i_r  %1, 5
2356//   %3 = S2_tstbit_i %2, 0
2357// =>
2358//   %3 = S2_tstbit_i %1, 5
2359bool BitSimplification::simplifyTstbit(MachineInstr *MI,
2360      BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2361  unsigned Opc = MI->getOpcode();
2362  if (Opc != Hexagon::S2_tstbit_i)
2363    return false;
2364
2365  unsigned BN = MI->getOperand(2).getImm();
2366  BitTracker::RegisterRef RS = MI->getOperand(1);
2367  unsigned F, W;
2368  DebugLoc DL = MI->getDebugLoc();
2369  if (!BT.has(RS.Reg) || !HBS::getSubregMask(RS, F, W, MRI))
2370    return false;
2371  MachineBasicBlock &B = *MI->getParent();
2372  auto At = MI->isPHI() ? B.getFirstNonPHI()
2373                        : MachineBasicBlock::iterator(MI);
2374
2375  const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
2376  const BitTracker::BitValue &V = SC[F+BN];
2377  if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != RS.Reg) {
2378    const TargetRegisterClass *TC = MRI.getRegClass(V.RefI.Reg);
2379    // Need to map V.RefI.Reg to a 32-bit register, i.e. if it is
2380    // a double register, need to use a subregister and adjust bit
2381    // number.
2382    unsigned P = std::numeric_limits<unsigned>::max();
2383    BitTracker::RegisterRef RR(V.RefI.Reg, 0);
2384    if (TC == &Hexagon::DoubleRegsRegClass) {
2385      P = V.RefI.Pos;
2386      RR.Sub = Hexagon::isub_lo;
2387      if (P >= 32) {
2388        P -= 32;
2389        RR.Sub = Hexagon::isub_hi;
2390      }
2391    } else if (TC == &Hexagon::IntRegsRegClass) {
2392      P = V.RefI.Pos;
2393    }
2394    if (P != std::numeric_limits<unsigned>::max()) {
2395      Register NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
2396      BuildMI(B, At, DL, HII.get(Hexagon::S2_tstbit_i), NewR)
2397          .addReg(RR.Reg, 0, RR.Sub)
2398          .addImm(P);
2399      HBS::replaceReg(RD.Reg, NewR, MRI);
2400      BT.put(NewR, RC);
2401      return true;
2402    }
2403  } else if (V.is(0) || V.is(1)) {
2404    Register NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
2405    unsigned NewOpc = V.is(0) ? Hexagon::PS_false : Hexagon::PS_true;
2406    BuildMI(B, At, DL, HII.get(NewOpc), NewR);
2407    HBS::replaceReg(RD.Reg, NewR, MRI);
2408    return true;
2409  }
2410
2411  return false;
2412}
2413
2414// Detect whether RD is a bitfield extract (sign- or zero-extended) of
2415// some register from the AVs set. Create a new corresponding instruction
2416// at the location of MI. The intent is to recognize situations where
2417// a sequence of instructions performs an operation that is equivalent to
2418// an extract operation, such as a shift left followed by a shift right.
2419bool BitSimplification::simplifyExtractLow(MachineInstr *MI,
2420      BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC,
2421      const RegisterSet &AVs) {
2422  if (!GenExtract)
2423    return false;
2424  if (MaxExtract.getNumOccurrences()) {
2425    if (CountExtract >= MaxExtract)
2426      return false;
2427    CountExtract++;
2428  }
2429
2430  unsigned W = RC.width();
2431  unsigned RW = W;
2432  unsigned Len;
2433  bool Signed;
2434
2435  // The code is mostly class-independent, except for the part that generates
2436  // the extract instruction, and establishes the source register (in case it
2437  // needs to use a subregister).
2438  const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2439  if (FRC != &Hexagon::IntRegsRegClass && FRC != &Hexagon::DoubleRegsRegClass)
2440    return false;
2441  assert(RD.Sub == 0);
2442
2443  // Observation:
2444  // If the cell has a form of 00..0xx..x with k zeros and n remaining
2445  // bits, this could be an extractu of the n bits, but it could also be
2446  // an extractu of a longer field which happens to have 0s in the top
2447  // bit positions.
2448  // The same logic applies to sign-extended fields.
2449  //
2450  // Do not check for the extended extracts, since it would expand the
2451  // search space quite a bit. The search may be expensive as it is.
2452
2453  const BitTracker::BitValue &TopV = RC[W-1];
2454
2455  // Eliminate candidates that have self-referential bits, since they
2456  // cannot be extracts from other registers. Also, skip registers that
2457  // have compile-time constant values.
2458  bool IsConst = true;
2459  for (unsigned I = 0; I != W; ++I) {
2460    const BitTracker::BitValue &V = RC[I];
2461    if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == RD.Reg)
2462      return false;
2463    IsConst = IsConst && (V.is(0) || V.is(1));
2464  }
2465  if (IsConst)
2466    return false;
2467
2468  if (TopV.is(0) || TopV.is(1)) {
2469    bool S = TopV.is(1);
2470    for (--W; W > 0 && RC[W-1].is(S); --W)
2471      ;
2472    Len = W;
2473    Signed = S;
2474    // The sign bit must be a part of the field being extended.
2475    if (Signed)
2476      ++Len;
2477  } else {
2478    // This could still be a sign-extended extract.
2479    assert(TopV.Type == BitTracker::BitValue::Ref);
2480    if (TopV.RefI.Reg == RD.Reg || TopV.RefI.Pos == W-1)
2481      return false;
2482    for (--W; W > 0 && RC[W-1] == TopV; --W)
2483      ;
2484    // The top bits of RC are copies of TopV. One occurrence of TopV will
2485    // be a part of the field.
2486    Len = W + 1;
2487    Signed = true;
2488  }
2489
2490  // This would be just a copy. It should be handled elsewhere.
2491  if (Len == RW)
2492    return false;
2493
2494  LLVM_DEBUG({
2495    dbgs() << __func__ << " on reg: " << printReg(RD.Reg, &HRI, RD.Sub)
2496           << ", MI: " << *MI;
2497    dbgs() << "Cell: " << RC << '\n';
2498    dbgs() << "Expected bitfield size: " << Len << " bits, "
2499           << (Signed ? "sign" : "zero") << "-extended\n";
2500  });
2501
2502  bool Changed = false;
2503
2504  for (unsigned R = AVs.find_first(); R != 0; R = AVs.find_next(R)) {
2505    if (!BT.has(R))
2506      continue;
2507    const BitTracker::RegisterCell &SC = BT.lookup(R);
2508    unsigned SW = SC.width();
2509
2510    // The source can be longer than the destination, as long as its size is
2511    // a multiple of the size of the destination. Also, we would need to be
2512    // able to refer to the subregister in the source that would be of the
2513    // same size as the destination, but only check the sizes here.
2514    if (SW < RW || (SW % RW) != 0)
2515      continue;
2516
2517    // The field can start at any offset in SC as long as it contains Len
2518    // bits and does not cross subregister boundary (if the source register
2519    // is longer than the destination).
2520    unsigned Off = 0;
2521    while (Off <= SW-Len) {
2522      unsigned OE = (Off+Len)/RW;
2523      if (OE != Off/RW) {
2524        // The assumption here is that if the source (R) is longer than the
2525        // destination, then the destination is a sequence of words of
2526        // size RW, and each such word in R can be accessed via a subregister.
2527        //
2528        // If the beginning and the end of the field cross the subregister
2529        // boundary, advance to the next subregister.
2530        Off = OE*RW;
2531        continue;
2532      }
2533      if (HBS::isEqual(RC, 0, SC, Off, Len))
2534        break;
2535      ++Off;
2536    }
2537
2538    if (Off > SW-Len)
2539      continue;
2540
2541    // Found match.
2542    unsigned ExtOpc = 0;
2543    if (Off == 0) {
2544      if (Len == 8)
2545        ExtOpc = Signed ? Hexagon::A2_sxtb : Hexagon::A2_zxtb;
2546      else if (Len == 16)
2547        ExtOpc = Signed ? Hexagon::A2_sxth : Hexagon::A2_zxth;
2548      else if (Len < 10 && !Signed)
2549        ExtOpc = Hexagon::A2_andir;
2550    }
2551    if (ExtOpc == 0) {
2552      ExtOpc =
2553          Signed ? (RW == 32 ? Hexagon::S4_extract  : Hexagon::S4_extractp)
2554                 : (RW == 32 ? Hexagon::S2_extractu : Hexagon::S2_extractup);
2555    }
2556    unsigned SR = 0;
2557    // This only recognizes isub_lo and isub_hi.
2558    if (RW != SW && RW*2 != SW)
2559      continue;
2560    if (RW != SW)
2561      SR = (Off/RW == 0) ? Hexagon::isub_lo : Hexagon::isub_hi;
2562    Off = Off % RW;
2563
2564    if (!validateReg({R,SR}, ExtOpc, 1))
2565      continue;
2566
2567    // Don't generate the same instruction as the one being optimized.
2568    if (MI->getOpcode() == ExtOpc) {
2569      // All possible ExtOpc's have the source in operand(1).
2570      const MachineOperand &SrcOp = MI->getOperand(1);
2571      if (SrcOp.getReg() == R)
2572        continue;
2573    }
2574
2575    DebugLoc DL = MI->getDebugLoc();
2576    MachineBasicBlock &B = *MI->getParent();
2577    Register NewR = MRI.createVirtualRegister(FRC);
2578    auto At = MI->isPHI() ? B.getFirstNonPHI()
2579                          : MachineBasicBlock::iterator(MI);
2580    auto MIB = BuildMI(B, At, DL, HII.get(ExtOpc), NewR)
2581                  .addReg(R, 0, SR);
2582    switch (ExtOpc) {
2583      case Hexagon::A2_sxtb:
2584      case Hexagon::A2_zxtb:
2585      case Hexagon::A2_sxth:
2586      case Hexagon::A2_zxth:
2587        break;
2588      case Hexagon::A2_andir:
2589        MIB.addImm((1u << Len) - 1);
2590        break;
2591      case Hexagon::S4_extract:
2592      case Hexagon::S2_extractu:
2593      case Hexagon::S4_extractp:
2594      case Hexagon::S2_extractup:
2595        MIB.addImm(Len)
2596           .addImm(Off);
2597        break;
2598      default:
2599        llvm_unreachable("Unexpected opcode");
2600    }
2601
2602    HBS::replaceReg(RD.Reg, NewR, MRI);
2603    BT.put(BitTracker::RegisterRef(NewR), RC);
2604    Changed = true;
2605    break;
2606  }
2607
2608  return Changed;
2609}
2610
2611bool BitSimplification::simplifyRCmp0(MachineInstr *MI,
2612      BitTracker::RegisterRef RD) {
2613  unsigned Opc = MI->getOpcode();
2614  if (Opc != Hexagon::A4_rcmpeqi && Opc != Hexagon::A4_rcmpneqi)
2615    return false;
2616  MachineOperand &CmpOp = MI->getOperand(2);
2617  if (!CmpOp.isImm() || CmpOp.getImm() != 0)
2618    return false;
2619
2620  const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2621  if (FRC != &Hexagon::IntRegsRegClass && FRC != &Hexagon::DoubleRegsRegClass)
2622    return false;
2623  assert(RD.Sub == 0);
2624
2625  MachineBasicBlock &B = *MI->getParent();
2626  const DebugLoc &DL = MI->getDebugLoc();
2627  auto At = MI->isPHI() ? B.getFirstNonPHI()
2628                        : MachineBasicBlock::iterator(MI);
2629  bool KnownZ = true;
2630  bool KnownNZ = false;
2631
2632  BitTracker::RegisterRef SR = MI->getOperand(1);
2633  if (!BT.has(SR.Reg))
2634    return false;
2635  const BitTracker::RegisterCell &SC = BT.lookup(SR.Reg);
2636  unsigned F, W;
2637  if (!HBS::getSubregMask(SR, F, W, MRI))
2638    return false;
2639
2640  for (uint16_t I = F; I != F+W; ++I) {
2641    const BitTracker::BitValue &V = SC[I];
2642    if (!V.is(0))
2643      KnownZ = false;
2644    if (V.is(1))
2645      KnownNZ = true;
2646  }
2647
2648  auto ReplaceWithConst = [&](int C) {
2649    Register NewR = MRI.createVirtualRegister(FRC);
2650    BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), NewR)
2651      .addImm(C);
2652    HBS::replaceReg(RD.Reg, NewR, MRI);
2653    BitTracker::RegisterCell NewRC(W);
2654    for (uint16_t I = 0; I != W; ++I) {
2655      NewRC[I] = BitTracker::BitValue(C & 1);
2656      C = unsigned(C) >> 1;
2657    }
2658    BT.put(BitTracker::RegisterRef(NewR), NewRC);
2659    return true;
2660  };
2661
2662  auto IsNonZero = [] (const MachineOperand &Op) {
2663    if (Op.isGlobal() || Op.isBlockAddress())
2664      return true;
2665    if (Op.isImm())
2666      return Op.getImm() != 0;
2667    if (Op.isCImm())
2668      return !Op.getCImm()->isZero();
2669    if (Op.isFPImm())
2670      return !Op.getFPImm()->isZero();
2671    return false;
2672  };
2673
2674  auto IsZero = [] (const MachineOperand &Op) {
2675    if (Op.isGlobal() || Op.isBlockAddress())
2676      return false;
2677    if (Op.isImm())
2678      return Op.getImm() == 0;
2679    if (Op.isCImm())
2680      return Op.getCImm()->isZero();
2681    if (Op.isFPImm())
2682      return Op.getFPImm()->isZero();
2683    return false;
2684  };
2685
2686  // If the source register is known to be 0 or non-0, the comparison can
2687  // be folded to a load of a constant.
2688  if (KnownZ || KnownNZ) {
2689    assert(KnownZ != KnownNZ && "Register cannot be both 0 and non-0");
2690    return ReplaceWithConst(KnownZ == (Opc == Hexagon::A4_rcmpeqi));
2691  }
2692
2693  // Special case: if the compare comes from a C2_muxii, then we know the
2694  // two possible constants that can be the source value.
2695  MachineInstr *InpDef = MRI.getVRegDef(SR.Reg);
2696  if (!InpDef)
2697    return false;
2698  if (SR.Sub == 0 && InpDef->getOpcode() == Hexagon::C2_muxii) {
2699    MachineOperand &Src1 = InpDef->getOperand(2);
2700    MachineOperand &Src2 = InpDef->getOperand(3);
2701    // Check if both are non-zero.
2702    bool KnownNZ1 = IsNonZero(Src1), KnownNZ2 = IsNonZero(Src2);
2703    if (KnownNZ1 && KnownNZ2)
2704      return ReplaceWithConst(Opc == Hexagon::A4_rcmpneqi);
2705    // Check if both are zero.
2706    bool KnownZ1 = IsZero(Src1), KnownZ2 = IsZero(Src2);
2707    if (KnownZ1 && KnownZ2)
2708      return ReplaceWithConst(Opc == Hexagon::A4_rcmpeqi);
2709
2710    // If for both operands we know that they are either 0 or non-0,
2711    // replace the comparison with a C2_muxii, using the same predicate
2712    // register, but with operands substituted with 0/1 accordingly.
2713    if ((KnownZ1 || KnownNZ1) && (KnownZ2 || KnownNZ2)) {
2714      Register NewR = MRI.createVirtualRegister(FRC);
2715      BuildMI(B, At, DL, HII.get(Hexagon::C2_muxii), NewR)
2716        .addReg(InpDef->getOperand(1).getReg())
2717        .addImm(KnownZ1 == (Opc == Hexagon::A4_rcmpeqi))
2718        .addImm(KnownZ2 == (Opc == Hexagon::A4_rcmpeqi));
2719      HBS::replaceReg(RD.Reg, NewR, MRI);
2720      // Create a new cell with only the least significant bit unknown.
2721      BitTracker::RegisterCell NewRC(W);
2722      NewRC[0] = BitTracker::BitValue::self();
2723      NewRC.fill(1, W, BitTracker::BitValue::Zero);
2724      BT.put(BitTracker::RegisterRef(NewR), NewRC);
2725      return true;
2726    }
2727  }
2728
2729  return false;
2730}
2731
2732bool BitSimplification::processBlock(MachineBasicBlock &B,
2733      const RegisterSet &AVs) {
2734  if (!BT.reached(&B))
2735    return false;
2736  bool Changed = false;
2737  RegisterSet AVB = AVs;
2738  RegisterSet Defs;
2739
2740  for (auto I = B.begin(), E = B.end(); I != E; ++I, AVB.insert(Defs)) {
2741    MachineInstr *MI = &*I;
2742    Defs.clear();
2743    HBS::getInstrDefs(*MI, Defs);
2744
2745    unsigned Opc = MI->getOpcode();
2746    if (Opc == TargetOpcode::COPY || Opc == TargetOpcode::REG_SEQUENCE)
2747      continue;
2748
2749    if (MI->mayStore()) {
2750      bool T = genStoreUpperHalf(MI);
2751      T = T || genStoreImmediate(MI);
2752      Changed |= T;
2753      continue;
2754    }
2755
2756    if (Defs.count() != 1)
2757      continue;
2758    const MachineOperand &Op0 = MI->getOperand(0);
2759    if (!Op0.isReg() || !Op0.isDef())
2760      continue;
2761    BitTracker::RegisterRef RD = Op0;
2762    if (!BT.has(RD.Reg))
2763      continue;
2764    const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2765    const BitTracker::RegisterCell &RC = BT.lookup(RD.Reg);
2766
2767    if (FRC->getID() == Hexagon::DoubleRegsRegClassID) {
2768      bool T = genPackhl(MI, RD, RC);
2769      T = T || simplifyExtractLow(MI, RD, RC, AVB);
2770      Changed |= T;
2771      continue;
2772    }
2773
2774    if (FRC->getID() == Hexagon::IntRegsRegClassID) {
2775      bool T = genBitSplit(MI, RD, RC, AVB);
2776      T = T || simplifyExtractLow(MI, RD, RC, AVB);
2777      T = T || genExtractHalf(MI, RD, RC);
2778      T = T || genCombineHalf(MI, RD, RC);
2779      T = T || genExtractLow(MI, RD, RC);
2780      T = T || simplifyRCmp0(MI, RD);
2781      Changed |= T;
2782      continue;
2783    }
2784
2785    if (FRC->getID() == Hexagon::PredRegsRegClassID) {
2786      bool T = simplifyTstbit(MI, RD, RC);
2787      Changed |= T;
2788      continue;
2789    }
2790  }
2791  return Changed;
2792}
2793
2794bool HexagonBitSimplify::runOnMachineFunction(MachineFunction &MF) {
2795  if (skipFunction(MF.getFunction()))
2796    return false;
2797
2798  auto &HST = MF.getSubtarget<HexagonSubtarget>();
2799  auto &HRI = *HST.getRegisterInfo();
2800  auto &HII = *HST.getInstrInfo();
2801
2802  MDT = &getAnalysis<MachineDominatorTree>();
2803  MachineRegisterInfo &MRI = MF.getRegInfo();
2804  bool Changed;
2805
2806  Changed = DeadCodeElimination(MF, *MDT).run();
2807
2808  const HexagonEvaluator HE(HRI, MRI, HII, MF);
2809  BitTracker BT(HE, MF);
2810  LLVM_DEBUG(BT.trace(true));
2811  BT.run();
2812
2813  MachineBasicBlock &Entry = MF.front();
2814
2815  RegisterSet AIG;  // Available registers for IG.
2816  ConstGeneration ImmG(BT, HII, MRI);
2817  Changed |= visitBlock(Entry, ImmG, AIG);
2818
2819  RegisterSet ARE;  // Available registers for RIE.
2820  RedundantInstrElimination RIE(BT, HII, HRI, MRI);
2821  bool Ried = visitBlock(Entry, RIE, ARE);
2822  if (Ried) {
2823    Changed = true;
2824    BT.run();
2825  }
2826
2827  RegisterSet ACG;  // Available registers for CG.
2828  CopyGeneration CopyG(BT, HII, HRI, MRI);
2829  Changed |= visitBlock(Entry, CopyG, ACG);
2830
2831  RegisterSet ACP;  // Available registers for CP.
2832  CopyPropagation CopyP(HRI, MRI);
2833  Changed |= visitBlock(Entry, CopyP, ACP);
2834
2835  Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
2836
2837  BT.run();
2838  RegisterSet ABS;  // Available registers for BS.
2839  BitSimplification BitS(BT, *MDT, HII, HRI, MRI, MF);
2840  Changed |= visitBlock(Entry, BitS, ABS);
2841
2842  Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
2843
2844  if (Changed) {
2845    for (auto &B : MF)
2846      for (auto &I : B)
2847        I.clearKillInfo();
2848    DeadCodeElimination(MF, *MDT).run();
2849  }
2850  return Changed;
2851}
2852
2853// Recognize loops where the code at the end of the loop matches the code
2854// before the entry of the loop, and the matching code is such that is can
2855// be simplified. This pass relies on the bit simplification above and only
2856// prepares code in a way that can be handled by the bit simplifcation.
2857//
2858// This is the motivating testcase (and explanation):
2859//
2860// {
2861//   loop0(.LBB0_2, r1)      // %for.body.preheader
2862//   r5:4 = memd(r0++#8)
2863// }
2864// {
2865//   r3 = lsr(r4, #16)
2866//   r7:6 = combine(r5, r5)
2867// }
2868// {
2869//   r3 = insert(r5, #16, #16)
2870//   r7:6 = vlsrw(r7:6, #16)
2871// }
2872// .LBB0_2:
2873// {
2874//   memh(r2+#4) = r5
2875//   memh(r2+#6) = r6            # R6 is really R5.H
2876// }
2877// {
2878//   r2 = add(r2, #8)
2879//   memh(r2+#0) = r4
2880//   memh(r2+#2) = r3            # R3 is really R4.H
2881// }
2882// {
2883//   r5:4 = memd(r0++#8)
2884// }
2885// {                             # "Shuffling" code that sets up R3 and R6
2886//   r3 = lsr(r4, #16)           # so that their halves can be stored in the
2887//   r7:6 = combine(r5, r5)      # next iteration. This could be folded into
2888// }                             # the stores if the code was at the beginning
2889// {                             # of the loop iteration. Since the same code
2890//   r3 = insert(r5, #16, #16)   # precedes the loop, it can actually be moved
2891//   r7:6 = vlsrw(r7:6, #16)     # there.
2892// }:endloop0
2893//
2894//
2895// The outcome:
2896//
2897// {
2898//   loop0(.LBB0_2, r1)
2899//   r5:4 = memd(r0++#8)
2900// }
2901// .LBB0_2:
2902// {
2903//   memh(r2+#4) = r5
2904//   memh(r2+#6) = r5.h
2905// }
2906// {
2907//   r2 = add(r2, #8)
2908//   memh(r2+#0) = r4
2909//   memh(r2+#2) = r4.h
2910// }
2911// {
2912//   r5:4 = memd(r0++#8)
2913// }:endloop0
2914
2915namespace llvm {
2916
2917  FunctionPass *createHexagonLoopRescheduling();
2918  void initializeHexagonLoopReschedulingPass(PassRegistry&);
2919
2920} // end namespace llvm
2921
2922namespace {
2923
2924  class HexagonLoopRescheduling : public MachineFunctionPass {
2925  public:
2926    static char ID;
2927
2928    HexagonLoopRescheduling() : MachineFunctionPass(ID) {
2929      initializeHexagonLoopReschedulingPass(*PassRegistry::getPassRegistry());
2930    }
2931
2932    bool runOnMachineFunction(MachineFunction &MF) override;
2933
2934  private:
2935    const HexagonInstrInfo *HII = nullptr;
2936    const HexagonRegisterInfo *HRI = nullptr;
2937    MachineRegisterInfo *MRI = nullptr;
2938    BitTracker *BTP = nullptr;
2939
2940    struct LoopCand {
2941      LoopCand(MachineBasicBlock *lb, MachineBasicBlock *pb,
2942            MachineBasicBlock *eb) : LB(lb), PB(pb), EB(eb) {}
2943
2944      MachineBasicBlock *LB, *PB, *EB;
2945    };
2946    using InstrList = std::vector<MachineInstr *>;
2947    struct InstrGroup {
2948      BitTracker::RegisterRef Inp, Out;
2949      InstrList Ins;
2950    };
2951    struct PhiInfo {
2952      PhiInfo(MachineInstr &P, MachineBasicBlock &B);
2953
2954      unsigned DefR;
2955      BitTracker::RegisterRef LR, PR; // Loop Register, Preheader Register
2956      MachineBasicBlock *LB, *PB;     // Loop Block, Preheader Block
2957    };
2958
2959    static unsigned getDefReg(const MachineInstr *MI);
2960    bool isConst(unsigned Reg) const;
2961    bool isBitShuffle(const MachineInstr *MI, unsigned DefR) const;
2962    bool isStoreInput(const MachineInstr *MI, unsigned DefR) const;
2963    bool isShuffleOf(unsigned OutR, unsigned InpR) const;
2964    bool isSameShuffle(unsigned OutR1, unsigned InpR1, unsigned OutR2,
2965        unsigned &InpR2) const;
2966    void moveGroup(InstrGroup &G, MachineBasicBlock &LB, MachineBasicBlock &PB,
2967        MachineBasicBlock::iterator At, unsigned OldPhiR, unsigned NewPredR);
2968    bool processLoop(LoopCand &C);
2969  };
2970
2971} // end anonymous namespace
2972
2973char HexagonLoopRescheduling::ID = 0;
2974
2975INITIALIZE_PASS(HexagonLoopRescheduling, "hexagon-loop-resched",
2976  "Hexagon Loop Rescheduling", false, false)
2977
2978HexagonLoopRescheduling::PhiInfo::PhiInfo(MachineInstr &P,
2979      MachineBasicBlock &B) {
2980  DefR = HexagonLoopRescheduling::getDefReg(&P);
2981  LB = &B;
2982  PB = nullptr;
2983  for (unsigned i = 1, n = P.getNumOperands(); i < n; i += 2) {
2984    const MachineOperand &OpB = P.getOperand(i+1);
2985    if (OpB.getMBB() == &B) {
2986      LR = P.getOperand(i);
2987      continue;
2988    }
2989    PB = OpB.getMBB();
2990    PR = P.getOperand(i);
2991  }
2992}
2993
2994unsigned HexagonLoopRescheduling::getDefReg(const MachineInstr *MI) {
2995  RegisterSet Defs;
2996  HBS::getInstrDefs(*MI, Defs);
2997  if (Defs.count() != 1)
2998    return 0;
2999  return Defs.find_first();
3000}
3001
3002bool HexagonLoopRescheduling::isConst(unsigned Reg) const {
3003  if (!BTP->has(Reg))
3004    return false;
3005  const BitTracker::RegisterCell &RC = BTP->lookup(Reg);
3006  for (unsigned i = 0, w = RC.width(); i < w; ++i) {
3007    const BitTracker::BitValue &V = RC[i];
3008    if (!V.is(0) && !V.is(1))
3009      return false;
3010  }
3011  return true;
3012}
3013
3014bool HexagonLoopRescheduling::isBitShuffle(const MachineInstr *MI,
3015      unsigned DefR) const {
3016  unsigned Opc = MI->getOpcode();
3017  switch (Opc) {
3018    case TargetOpcode::COPY:
3019    case Hexagon::S2_lsr_i_r:
3020    case Hexagon::S2_asr_i_r:
3021    case Hexagon::S2_asl_i_r:
3022    case Hexagon::S2_lsr_i_p:
3023    case Hexagon::S2_asr_i_p:
3024    case Hexagon::S2_asl_i_p:
3025    case Hexagon::S2_insert:
3026    case Hexagon::A2_or:
3027    case Hexagon::A2_orp:
3028    case Hexagon::A2_and:
3029    case Hexagon::A2_andp:
3030    case Hexagon::A2_combinew:
3031    case Hexagon::A4_combineri:
3032    case Hexagon::A4_combineir:
3033    case Hexagon::A2_combineii:
3034    case Hexagon::A4_combineii:
3035    case Hexagon::A2_combine_ll:
3036    case Hexagon::A2_combine_lh:
3037    case Hexagon::A2_combine_hl:
3038    case Hexagon::A2_combine_hh:
3039      return true;
3040  }
3041  return false;
3042}
3043
3044bool HexagonLoopRescheduling::isStoreInput(const MachineInstr *MI,
3045      unsigned InpR) const {
3046  for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
3047    const MachineOperand &Op = MI->getOperand(i);
3048    if (!Op.isReg())
3049      continue;
3050    if (Op.getReg() == InpR)
3051      return i == n-1;
3052  }
3053  return false;
3054}
3055
3056bool HexagonLoopRescheduling::isShuffleOf(unsigned OutR, unsigned InpR) const {
3057  if (!BTP->has(OutR) || !BTP->has(InpR))
3058    return false;
3059  const BitTracker::RegisterCell &OutC = BTP->lookup(OutR);
3060  for (unsigned i = 0, w = OutC.width(); i < w; ++i) {
3061    const BitTracker::BitValue &V = OutC[i];
3062    if (V.Type != BitTracker::BitValue::Ref)
3063      continue;
3064    if (V.RefI.Reg != InpR)
3065      return false;
3066  }
3067  return true;
3068}
3069
3070bool HexagonLoopRescheduling::isSameShuffle(unsigned OutR1, unsigned InpR1,
3071      unsigned OutR2, unsigned &InpR2) const {
3072  if (!BTP->has(OutR1) || !BTP->has(InpR1) || !BTP->has(OutR2))
3073    return false;
3074  const BitTracker::RegisterCell &OutC1 = BTP->lookup(OutR1);
3075  const BitTracker::RegisterCell &OutC2 = BTP->lookup(OutR2);
3076  unsigned W = OutC1.width();
3077  unsigned MatchR = 0;
3078  if (W != OutC2.width())
3079    return false;
3080  for (unsigned i = 0; i < W; ++i) {
3081    const BitTracker::BitValue &V1 = OutC1[i], &V2 = OutC2[i];
3082    if (V1.Type != V2.Type || V1.Type == BitTracker::BitValue::One)
3083      return false;
3084    if (V1.Type != BitTracker::BitValue::Ref)
3085      continue;
3086    if (V1.RefI.Pos != V2.RefI.Pos)
3087      return false;
3088    if (V1.RefI.Reg != InpR1)
3089      return false;
3090    if (V2.RefI.Reg == 0 || V2.RefI.Reg == OutR2)
3091      return false;
3092    if (!MatchR)
3093      MatchR = V2.RefI.Reg;
3094    else if (V2.RefI.Reg != MatchR)
3095      return false;
3096  }
3097  InpR2 = MatchR;
3098  return true;
3099}
3100
3101void HexagonLoopRescheduling::moveGroup(InstrGroup &G, MachineBasicBlock &LB,
3102      MachineBasicBlock &PB, MachineBasicBlock::iterator At, unsigned OldPhiR,
3103      unsigned NewPredR) {
3104  DenseMap<unsigned,unsigned> RegMap;
3105
3106  const TargetRegisterClass *PhiRC = MRI->getRegClass(NewPredR);
3107  Register PhiR = MRI->createVirtualRegister(PhiRC);
3108  BuildMI(LB, At, At->getDebugLoc(), HII->get(TargetOpcode::PHI), PhiR)
3109    .addReg(NewPredR)
3110    .addMBB(&PB)
3111    .addReg(G.Inp.Reg)
3112    .addMBB(&LB);
3113  RegMap.insert(std::make_pair(G.Inp.Reg, PhiR));
3114
3115  for (const MachineInstr *SI : llvm::reverse(G.Ins)) {
3116    unsigned DR = getDefReg(SI);
3117    const TargetRegisterClass *RC = MRI->getRegClass(DR);
3118    Register NewDR = MRI->createVirtualRegister(RC);
3119    DebugLoc DL = SI->getDebugLoc();
3120
3121    auto MIB = BuildMI(LB, At, DL, HII->get(SI->getOpcode()), NewDR);
3122    for (const MachineOperand &Op : SI->operands()) {
3123      if (!Op.isReg()) {
3124        MIB.add(Op);
3125        continue;
3126      }
3127      if (!Op.isUse())
3128        continue;
3129      unsigned UseR = RegMap[Op.getReg()];
3130      MIB.addReg(UseR, 0, Op.getSubReg());
3131    }
3132    RegMap.insert(std::make_pair(DR, NewDR));
3133  }
3134
3135  HBS::replaceReg(OldPhiR, RegMap[G.Out.Reg], *MRI);
3136}
3137
3138bool HexagonLoopRescheduling::processLoop(LoopCand &C) {
3139  LLVM_DEBUG(dbgs() << "Processing loop in " << printMBBReference(*C.LB)
3140                    << "\n");
3141  std::vector<PhiInfo> Phis;
3142  for (auto &I : *C.LB) {
3143    if (!I.isPHI())
3144      break;
3145    unsigned PR = getDefReg(&I);
3146    if (isConst(PR))
3147      continue;
3148    bool BadUse = false, GoodUse = false;
3149    for (const MachineOperand &MO : MRI->use_operands(PR)) {
3150      const MachineInstr *UseI = MO.getParent();
3151      if (UseI->getParent() != C.LB) {
3152        BadUse = true;
3153        break;
3154      }
3155      if (isBitShuffle(UseI, PR) || isStoreInput(UseI, PR))
3156        GoodUse = true;
3157    }
3158    if (BadUse || !GoodUse)
3159      continue;
3160
3161    Phis.push_back(PhiInfo(I, *C.LB));
3162  }
3163
3164  LLVM_DEBUG({
3165    dbgs() << "Phis: {";
3166    for (auto &I : Phis) {
3167      dbgs() << ' ' << printReg(I.DefR, HRI) << "=phi("
3168             << printReg(I.PR.Reg, HRI, I.PR.Sub) << ":b" << I.PB->getNumber()
3169             << ',' << printReg(I.LR.Reg, HRI, I.LR.Sub) << ":b"
3170             << I.LB->getNumber() << ')';
3171    }
3172    dbgs() << " }\n";
3173  });
3174
3175  if (Phis.empty())
3176    return false;
3177
3178  bool Changed = false;
3179  InstrList ShufIns;
3180
3181  // Go backwards in the block: for each bit shuffling instruction, check
3182  // if that instruction could potentially be moved to the front of the loop:
3183  // the output of the loop cannot be used in a non-shuffling instruction
3184  // in this loop.
3185  for (MachineInstr &MI : llvm::reverse(*C.LB)) {
3186    if (MI.isTerminator())
3187      continue;
3188    if (MI.isPHI())
3189      break;
3190
3191    RegisterSet Defs;
3192    HBS::getInstrDefs(MI, Defs);
3193    if (Defs.count() != 1)
3194      continue;
3195    Register DefR = Defs.find_first();
3196    if (!DefR.isVirtual())
3197      continue;
3198    if (!isBitShuffle(&MI, DefR))
3199      continue;
3200
3201    bool BadUse = false;
3202    for (auto UI = MRI->use_begin(DefR), UE = MRI->use_end(); UI != UE; ++UI) {
3203      MachineInstr *UseI = UI->getParent();
3204      if (UseI->getParent() == C.LB) {
3205        if (UseI->isPHI()) {
3206          // If the use is in a phi node in this loop, then it should be
3207          // the value corresponding to the back edge.
3208          unsigned Idx = UI.getOperandNo();
3209          if (UseI->getOperand(Idx+1).getMBB() != C.LB)
3210            BadUse = true;
3211        } else {
3212          if (!llvm::is_contained(ShufIns, UseI))
3213            BadUse = true;
3214        }
3215      } else {
3216        // There is a use outside of the loop, but there is no epilog block
3217        // suitable for a copy-out.
3218        if (C.EB == nullptr)
3219          BadUse = true;
3220      }
3221      if (BadUse)
3222        break;
3223    }
3224
3225    if (BadUse)
3226      continue;
3227    ShufIns.push_back(&MI);
3228  }
3229
3230  // Partition the list of shuffling instructions into instruction groups,
3231  // where each group has to be moved as a whole (i.e. a group is a chain of
3232  // dependent instructions). A group produces a single live output register,
3233  // which is meant to be the input of the loop phi node (although this is
3234  // not checked here yet). It also uses a single register as its input,
3235  // which is some value produced in the loop body. After moving the group
3236  // to the beginning of the loop, that input register would need to be
3237  // the loop-carried register (through a phi node) instead of the (currently
3238  // loop-carried) output register.
3239  using InstrGroupList = std::vector<InstrGroup>;
3240  InstrGroupList Groups;
3241
3242  for (unsigned i = 0, n = ShufIns.size(); i < n; ++i) {
3243    MachineInstr *SI = ShufIns[i];
3244    if (SI == nullptr)
3245      continue;
3246
3247    InstrGroup G;
3248    G.Ins.push_back(SI);
3249    G.Out.Reg = getDefReg(SI);
3250    RegisterSet Inputs;
3251    HBS::getInstrUses(*SI, Inputs);
3252
3253    for (unsigned j = i+1; j < n; ++j) {
3254      MachineInstr *MI = ShufIns[j];
3255      if (MI == nullptr)
3256        continue;
3257      RegisterSet Defs;
3258      HBS::getInstrDefs(*MI, Defs);
3259      // If this instruction does not define any pending inputs, skip it.
3260      if (!Defs.intersects(Inputs))
3261        continue;
3262      // Otherwise, add it to the current group and remove the inputs that
3263      // are defined by MI.
3264      G.Ins.push_back(MI);
3265      Inputs.remove(Defs);
3266      // Then add all registers used by MI.
3267      HBS::getInstrUses(*MI, Inputs);
3268      ShufIns[j] = nullptr;
3269    }
3270
3271    // Only add a group if it requires at most one register.
3272    if (Inputs.count() > 1)
3273      continue;
3274    auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
3275      return G.Out.Reg == P.LR.Reg;
3276    };
3277    if (llvm::none_of(Phis, LoopInpEq))
3278      continue;
3279
3280    G.Inp.Reg = Inputs.find_first();
3281    Groups.push_back(G);
3282  }
3283
3284  LLVM_DEBUG({
3285    for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
3286      InstrGroup &G = Groups[i];
3287      dbgs() << "Group[" << i << "] inp: "
3288             << printReg(G.Inp.Reg, HRI, G.Inp.Sub)
3289             << "  out: " << printReg(G.Out.Reg, HRI, G.Out.Sub) << "\n";
3290      for (const MachineInstr *MI : G.Ins)
3291        dbgs() << "  " << MI;
3292    }
3293  });
3294
3295  for (InstrGroup &G : Groups) {
3296    if (!isShuffleOf(G.Out.Reg, G.Inp.Reg))
3297      continue;
3298    auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
3299      return G.Out.Reg == P.LR.Reg;
3300    };
3301    auto F = llvm::find_if(Phis, LoopInpEq);
3302    if (F == Phis.end())
3303      continue;
3304    unsigned PrehR = 0;
3305    if (!isSameShuffle(G.Out.Reg, G.Inp.Reg, F->PR.Reg, PrehR)) {
3306      const MachineInstr *DefPrehR = MRI->getVRegDef(F->PR.Reg);
3307      unsigned Opc = DefPrehR->getOpcode();
3308      if (Opc != Hexagon::A2_tfrsi && Opc != Hexagon::A2_tfrpi)
3309        continue;
3310      if (!DefPrehR->getOperand(1).isImm())
3311        continue;
3312      if (DefPrehR->getOperand(1).getImm() != 0)
3313        continue;
3314      const TargetRegisterClass *RC = MRI->getRegClass(G.Inp.Reg);
3315      if (RC != MRI->getRegClass(F->PR.Reg)) {
3316        PrehR = MRI->createVirtualRegister(RC);
3317        unsigned TfrI = (RC == &Hexagon::IntRegsRegClass) ? Hexagon::A2_tfrsi
3318                                                          : Hexagon::A2_tfrpi;
3319        auto T = C.PB->getFirstTerminator();
3320        DebugLoc DL = (T != C.PB->end()) ? T->getDebugLoc() : DebugLoc();
3321        BuildMI(*C.PB, T, DL, HII->get(TfrI), PrehR)
3322          .addImm(0);
3323      } else {
3324        PrehR = F->PR.Reg;
3325      }
3326    }
3327    // isSameShuffle could match with PrehR being of a wider class than
3328    // G.Inp.Reg, for example if G shuffles the low 32 bits of its input,
3329    // it would match for the input being a 32-bit register, and PrehR
3330    // being a 64-bit register (where the low 32 bits match). This could
3331    // be handled, but for now skip these cases.
3332    if (MRI->getRegClass(PrehR) != MRI->getRegClass(G.Inp.Reg))
3333      continue;
3334    moveGroup(G, *F->LB, *F->PB, F->LB->getFirstNonPHI(), F->DefR, PrehR);
3335    Changed = true;
3336  }
3337
3338  return Changed;
3339}
3340
3341bool HexagonLoopRescheduling::runOnMachineFunction(MachineFunction &MF) {
3342  if (skipFunction(MF.getFunction()))
3343    return false;
3344
3345  auto &HST = MF.getSubtarget<HexagonSubtarget>();
3346  HII = HST.getInstrInfo();
3347  HRI = HST.getRegisterInfo();
3348  MRI = &MF.getRegInfo();
3349  const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
3350  BitTracker BT(HE, MF);
3351  LLVM_DEBUG(BT.trace(true));
3352  BT.run();
3353  BTP = &BT;
3354
3355  std::vector<LoopCand> Cand;
3356
3357  for (auto &B : MF) {
3358    if (B.pred_size() != 2 || B.succ_size() != 2)
3359      continue;
3360    MachineBasicBlock *PB = nullptr;
3361    bool IsLoop = false;
3362    for (MachineBasicBlock *Pred : B.predecessors()) {
3363      if (Pred != &B)
3364        PB = Pred;
3365      else
3366        IsLoop = true;
3367    }
3368    if (!IsLoop)
3369      continue;
3370
3371    MachineBasicBlock *EB = nullptr;
3372    for (MachineBasicBlock *Succ : B.successors()) {
3373      if (Succ == &B)
3374        continue;
3375      // Set EP to the epilog block, if it has only 1 predecessor (i.e. the
3376      // edge from B to EP is non-critical.
3377      if (Succ->pred_size() == 1)
3378        EB = Succ;
3379      break;
3380    }
3381
3382    Cand.push_back(LoopCand(&B, PB, EB));
3383  }
3384
3385  bool Changed = false;
3386  for (auto &C : Cand)
3387    Changed |= processLoop(C);
3388
3389  return Changed;
3390}
3391
3392//===----------------------------------------------------------------------===//
3393//                         Public Constructor Functions
3394//===----------------------------------------------------------------------===//
3395
3396FunctionPass *llvm::createHexagonLoopRescheduling() {
3397  return new HexagonLoopRescheduling();
3398}
3399
3400FunctionPass *llvm::createHexagonBitSimplify() {
3401  return new HexagonBitSimplify();
3402}
3403